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Abstract. The analytical solutions for the velocity distribution of turbulent round and plane jets described in the
classical textbook of Schlichting (Boundary Layer Theory 7th edition (1979)) based on boundary-layer approx-
imations are well-known, and have provided the fundamental understanding of the mechanics of turbulent jets.
However, the scaling coefficients involved were not well quantified as discussed recently by Mathieu and Scott (An
Introduction to Turbulent Flow (2000)). In this paper, it is shown that the coefficients can be better determined by
the available experimental measurements in the literature. Furthermore, by assuming that the turbulent diffusivity
relates to the eddy viscosity, it is shown that closed-form analytical solutions can also be obtained for the scalar
concentration distribution in addition to the velocity distribution. The turbulent Schmidt number is found to be
less than 1 for both plane and round jets, and close to the isotropic turbulence value of 0·7 in the round jet
case.
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1. Introduction

Turbulent round and plane jets in stagnant ambient have been studied extensively as basic
representations of turbulent shear flow in fluid mechanics. They are also rudimentary scenar-
ios for the dilution analysis of wastewater effluent discharges. Experimental investigations in
the past have revealed in detail their characteristics such as the decay and cross-sectional dis-
tribution of the axial velocity and scalar concentration. A good summary can be found in
[1, Chapter 9].

Turbulent jets are essentially boundary-layer phenomena due to the slender aspect ratios.
With the boundary-layer approximations and the assumptions of self-similarity, analytical
solutions for the velocity distribution profile for both round and plane jets had been obtained
with the eddy-viscosity approach. These solutions, described in the classical text of [2, Chap-
ter 14], are well-known and have provided the fundamental understanding of the mechanics
of turbulent jets. They have been commonly presented in advanced textbooks in fluid mechan-
ics, e.g. [3, Chapter 5], [4, Chapter 5], [5, Chapter 6]. The self-similarity assumptions have also
been well verified in experimental studies conducted with advanced measurement techniques
as presented in [6–8].

Despite the general good fit of the analytical solutions to the experimental data in terms
of the non-dimensional profiles, a major problem exists due to the fact that the scaling coeffi-
cients involved are not well quantified as addressed in [3] and also discussed recently in [4].
In this study, we attempt to define these scaling coefficients deterministically based on conser-
vation laws together with the available experimental measurements in the literature. Further-
more, by assuming that the turbulent diffusivity bears a ratio to the eddy viscosity, which is
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a common assumption adopted in many commercial CFD codes closed-form analytical solu-
tions are derived for the scalar concentration distribution in addition to the velocity distribu-
tion. Although similarity solutions for the concentration distribution for turbulent jets have
been explored in the literature (e.g. [9]), the closed-form analytical solutions derived here have
not been previously reported as far as the author is aware.

2. Round jets

We begin with the derivation for a turbulent round jet following the procedures of [2], as well
as the recent additions reported in [3], and [4]. The conservation of mass in the axisymetric
coordinate system is given by:

1
r

∂ r v̄

∂r
+ ∂w̄

∂z
=0, (1)

where v̄ and w̄ are the mean velocity in the radial r - and axial z-directions respectively.
The Reynolds-averaged Navier–Stokes equation with the boundary-layer approximations for
a three-dimensional round jet can be expressed as [2]:

w̄
∂w̄

∂z
+ v̄

∂w̄

∂r
=−1

r

∂rw′v′
∂r

, (2)

where v′ and w′ are the velocity fluctuations in the r - and z-directions, respectively. Integra-
tion of (2) with respect to r shows that the mean momentum, MM , is conserved with distance
z, i.e.:

∂ MM

∂ z
= ∂

∂z

∫ ∞

0
2πw̄2rdr =0. (3)

We now derive the velocity-distribution functions in a manner that follows closely the pre-
vious references, particularly [4]. However, instead of working with dimensional distribution
functions, as in the references, the distribution functions introduced here have been made non-
dimensional observing the known facts that they should be proportional with the square root
of the initial momentum, Mo, and inversely proportional with the distance, z, i.e.

w̄ = M
1/2
o f (ξ)

(z − zo)
, v̄ = M

1/2
o g (ξ)

(z − zo)
, (4, 5)

where zo is the virtual origin, and ξ = r
(z−zo)

a non-dimensional radial variable. For a round
jet, the initial momentum is given by:

Mo = π

4
D2w2

o, (6)

where D is the nozzle diameter and wo is the initial velocity.
Substituting (4) and (5) in (1) and integrating, we have:

ξg (ξ)= ξ2 f (ξ)− F (ξ) ; F (ξ)=
∫ ξ

0
ξ ′ f

(
ξ ′)dξ ′. (7)

A closure is needed for the Reynolds-stress term in the RHS of (2). The basic eddy-viscosity
representation is adopted, namely that:

w′v′ =−νt
∂w̄

∂r
, (8)
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where νt is the eddy viscosity that does not depend on the transverse direction (see [4, Chap-
ter 5] for a detailed discussion), i.e.

νt =λM
1/2
o . (9)

Substituting (6) and (8) in (2) and solving as in [3] and [4], we have

F = 4λ (αξ)2

1+ (αξ)2
. (10)

where α is an integration constant that represents a scale of the width. With F known, the
velocity-distribution functions can be resolved as:

f = 8λα2

(
1+ (αξ)2

)2
, g =

4λα2ξ
(

1+ (αξ)2
)

(
1+ (αξ)2

)2
. (11, 12)

The meaning of α as a scaling constant for the jet width is well understood, but its quan-
titative value has not been defined in the references. It is commented, in [4, Chapter 5], that
α is not a fixed value but rather can be looked upon as a fitting constant, and a value of
8 is suggested based on the matching of the observed experimental velocity profile. Here, we
attempt to quantify α in a more physical manner by employing the conservation of the mean
momentum flux. Given (11), the mean momentum flux can be calculated as:

MM =
(∫ ∞

0
2πξ f 2 (ξ)dξ

)
Mo = 64

3
πα2λ2 Mo. (13)

Recently, the relationship between the total and mean momentum fluxes for a round jet
was investigated experimentally by [8]. It was found that the two fluxes are related by a con-
stant ratio k j M as

Mo = k j M MM (14)

and that k j M is equal to 1·10 independent of z. Note that, since the total momentum flux
should be conserved for a free jet, it is replaced by the source momentum flux Mo in (14).
Equations (13) and (14) together imply that

λ=
√

3

8π

1
2 αk

1
2
j M

. (15)

At the centerline,

f (ξ =0)=8α2λ=
√

4
π

k jw (16)

where k jw is the centerline-decay coefficient commonly expressed in the following format in
the literature:

wo

w̄c
= (z − zo)

k jw D
, (17)

where w̄c is the centerline velocity. The coefficient k jw has been investigated extensively in the
past ([1]). The recent investigation in [8] shows a value of 6·48 by taking zo =0 which should
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be reasonable, given the fact that the virtual origin of a turbulent round jet is less than one
nozzle diameter. Solving the two simultaneous equations (15) and (16), we have

α = 2k
1
2
j M k jw√

3
and λ= 3

16
√

πk j M k jw
. (18a,b)

Substitution of the above-suggested values for k j M and k jw yields α =7·84 and λ=0·0149.
Figure 1 shows the predicted non-dimensional velocity distribution (scaled with the center-
line velocity), in comparison with the experimental measurements taken from [8]. Clearly, the
matching is quite satisfactory, suggesting that the basic eddy-viscosity approach gives a good
representation of the underlying mechanics.

We will now continue and analyze the distribution of the scalar concentration in a simi-
lar manner. With the boundary-layer approximations, the conservation equation for the scalar
concentration can be expressed as:

w̄
∂ c̄

∂z
+ v̄

∂ c̄

∂r
=−1

r

∂ r c′v′
∂r

, (19)

where c̄ is the mean concentration and c′ is the concentration fluctuation. We introduce a
non-dimensional scalar distribution function as follows:

c̄ = QoCoχ (ξ)

M
1/2
o (z − zo)

. (20)

Adopting a turbulent diffusivity Dt that is similar to the eddy diffusivity, we can model the
turbulence mass flux in (19) as:

c′v′ =−Dt
∂ c̄

∂r
. (21)

Furthermore, Dt and νt are assumed to be related by a constant σ ,

Dt =σνt , σ = 1
Sct

, (22a,b)

where Sct is the turbulent Schmidt number. Equation (22) is an assumption commonly
adopted nowadays in many commercial CFD codes for the turbulence closure of scalar trans-
port, and is shown to be valid in isotropic turbulence ([10, Chapter 4]). Substituting (21) and
(22) in (19) and simplifying, we have
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Figure 1. Velocity distribution for a round jet.
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Figure 2. Concentration distribution for a round jet.
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σλ
d

dξ

(
ξ

dχ

dξ

)
+ F

dχ

dξ
+ ξ f χ =0. (23)

With the velocity-distribution functions defined in (10) and (11), we have

σξ
(

1+α2ζ 2
)2 d2χ

dξ2
+

(
σ

(
1+α2ζ 2

)2 +4α2ζ 2
(

1+α2ζ 2
))

dχ

dξ
+8α2ξχ =0. (24)

The general solution to (24) that enforces a monotonic decrease from the centerline is:

χ = K R(
1+ (αξ)2

)2/σ
, (25)

where K R is a scalar decay constant. At the centerline, the scalar concentration from (20) and
(25) is:

c̄c = K R QoCo

M
1/2
o (z − zo)

, (26)

where Qo is the discharge and Co the source concentration. Experimentally, it has been found
that the centerline decay of scalar concentration follows the format of:

c̄c = k jcCo D

(z − zo)
, (27)

where k jc is the decay constant ([1]). The experimental investigation in [8] showed that k jc =
5·26 by taking the virtual origin to be zero. Solving (26) and (27), we obtain

K R = 2k jc√
π

, (28)

i.e.

χ = 2k jc

√
π

(
1+ (αξ)2

)2/σ
. (29)

It is also found that ([8]), for a round jet, the mean mass flux is related to the total mass
flux by a constant ratio:

QoCo = k j H Hj M = k j H

(
2π

∫ ∞

0
w̄ c̄ rdr

)
(30)

where k j H is determined to be 1·076. Solving (30), we obtain

σ = 2

16λπ
1
2 k jck j H −1

(31)

Substituting the above values yields σ =1·45. In other words, the turbulent diffusivity is larger
than the eddy viscosity by 45%, which explains the common observation that the spread for
the concentration is wider than the velocity spread for a round jet. The turbulent Schmidt
number is equal to 1/1·45 = 0·690 which is very close to the value of 0·7 found in isotropic
turbulence ([10, Chapter 4]). Figure 2 shows the non-dimensional scalar concentration distri-
bution compared with the experimental measurements of [8]. The matching is satisfactory up
to approximately 0·12, but after that the analytical solution decreases at a faster rate. This
shows that the turbulent-diffusivity approach is valid near the jet’s centerline, but somewhat
overestimates the scalar dispersion away from the center.
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3. Plane jets

We shall now derive the analytical solutions for two-dimensional plane jets with the same ide-
alized assumptions. The conservation of mass in the Cartesian coordinate is:

∂w̄

∂z
+ ∂v̄

∂y
=0, (32)

where z and y are the longitudinal and transverse coordinate, respectively. The Reynolds-
averaged Navier–Stokes equation for the two-dimensional plane jet subject to the boundary-
layer approximations is:

w̄
∂w̄

∂z
+ v̄

∂w̄

∂y
=−∂v′w′

∂y
. (33)

Integration (33) with respect to y shows that the mean momentum flux MM is also a constant
within this formulation:

∂ MM

∂z
= ∂

∂z

∫ ∞

−∞
w̄2dy =0. (34)

We now introduce the non-dimensional velocity-distribution functions based on the known
observation that the velocity in a plane jet is proportional to the square root of the source
momentum flux, Mo, but inversely proportionally to the square root of the distance:

w̄ = M
1/2
o f (ξ)

(z − zo)
1/2

, v̄ = M
1/2
o g (ξ)

(z − zo)
1/2

, (35, 36)

where ξ = y
(z−zo)

is a non-dimensional transverse variable for the two-dimensional case. The
source momentum flux for a plane jet is defined as:

Mo =b wo, (37)

where b is the initial slot width. Substitution (35) and (36) in (32) yields:

g (ξ)= ξ f (ξ)− 1
2

∫ ξ

0
f
(
ξ ′)dξ ′. (38)

The eddy-viscosity assumption is also adopted as:

v′w′ =−νt
∂w̄

∂y
(39)

It is further assumed that νt depends on the longitudinal but not the transverse direction (see
again [4, Chapter 5]) for a detailed description), i.e.,

νt =λ M
1/2
o (z − zo)

1/2 . (40)

With Equation (40) we have

λ
d f

dξ
+ f (ξ)

∫ ξ

0
f
(
ξ ′)dξ ′ =0. (41)

Integrating (41) and solving as shown in [4], we have

F (ξ)=4αλ tanh (αξ) , (42)
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where

F (ξ)=
∫ ξ

0
f
(
ξ ′)dξ ′ (43)

and α is an integration constant that represents a scale of the jet width. The solution of (42)
is:

f (ξ)= 4α2λ

cosh2 (αξ)
, (44)

g (ξ)= 4α2λξ

cosh2 (αξ)
−2αλ tanh (αξ) . (45)

We now attempt to quantify the coefficients more precisely using the conservation laws.
The mean jet longitudinal momentum flux is calculated as

MM =
(∫ ∞

−∞
f 2 (ξ)dξ

)
Mo = 64

3
α3λ2 Mo. (46)

Assuming that the mean and total momentum fluxes bear a constant ratio as in (14), we
observe that α and λ are related as follows:

λ=
√

3

8α

3
2 k

1
2
j M

. (47)

At the centerline,

f (ξ =0)=4α2λ= k jw, (48)

where k jw is the centerline decay coefficient in the form of:

wo

w̄c
= (z − zo)

1
2

k jwb
1
2

, (49)

where b is the initial slot width. The parameter k jw was determined, in [1], to be 2·41 by tak-
ing the virtual origin to be zero. In other words,

λ= k jw

4α2
. (50)

Solving the two simultaneous equations of (47) and (50) yields:

α = 4k2
j M k2

jw

3
, λ= 9

64k4
j M k3

jw

. (51a,b)

Unlike the round-jet case, the relationship between the total and mean momentum fluxes is
not well quantified in the literature for a plane jet. Assuming the same coefficients as in a
round jet yields α = 9·37 and λ = 0·00686. Figure 3 shows a comparison of the non-dimen-
sional velocity distributions. The matching is satisfactory which suggests that the values are
reasonable.



76 A.W.K. Law

The concentration can be analyzed in a similar manner. The conservation equation for the
scalar concentration with the boundary-layer approximations can be expressed as:

w̄
∂ c̄

∂z
+ v̄

∂ c̄

∂y
=−∂ c′v′

∂y
. (52)

Define the distribution function for the scalar concentration as

c̄ = qoCoχ (ξ)

M
1/2
o (z − zo)

1/2
, (53)

where qo is the source discharge per unit length. Also assume the turbulent diffusivity as

c′v′ =−Dt
∂ c̄

∂y
(54)

and that Dt and νt bear a constant ratio σ as in (22), then from (52)

2σλ
d2χ

dξ2
+ F

dχ

dξ
+ f χ =0. (55)

Given the known forms of the velocity-distribution functions in (43) and (44), Equation (55)
is simplified to:

σ cosh2 (αξ)
d2χ

dξ2
+2α sinh (αξ) cosh (αξ)

dχ

dξ
+2α2χ =0. (56)

The general solution to (56) that enforces a monotonic decrease from the centerline is:

χ = K P sech
2−σ
2σ (αξ)Re

(
P

(
2−σ

2σ
; 2+σ

2σ
; i sinh (αξ)

))
, (57)

where P( ) is the associated Legendre function of the first kind, Re( ) the real part, i=√−1
and K P a constant.

At the centre, the function in (57) reduces to

χ (ξ =0)=χc = K P Re


 (2 i)

2+σ
2σ

Γ
(

2−σ
2σ

)

= K P

(2)
2+σ
2σ

Γ
(

σ−2
2σ

) cos
(

(2+σ)

4σ
π

)
, (58)
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Figure 3. Velocity distribution for a plane jet.
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Figure 4. Concentration distribution for a plane jet.
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where Γ is the Gamma function. Since χc =2·38 from [1], this implies

K P =
2·38 Γ

(
2−σ
2σ

)

(2)
2+σ
2σ

sec
(

(2+σ)

4σ
π

)
. (59)

The mean mass flux can now be computed as

qoCo = k j H Hj M = k j H

[∫ ∞

−∞
w̄ c̄ dy

]
(60)

or

9·56
(
α2λ

)
Γ

(
2−σ
2σ

)

(2)
2+σ
2σ

sec
(

(2+σ)

4σ
π

)

∫ ∞

−∞
sech

2+3σ
2σ (αξ)Re

(
P

(
2−σ

2σ
; 2+σ

2σ
; i sinh (αξ)

))
dξ = k j H

(61)

The integral in (61) does not have a closed-form solution and needs to be resolved numer-
ically. Taking k j H to be 1·073 as in the round jet translates into a value of σ equal to 1·70, or
a turbulent Schmidt number of 0·588. Figure 4 shows the comparison on the non-dimensional
distribution for the scalar concentration between the predicted and experimental profiles. The
comparison is clearly satisfactory, and in fact the matching is somewhat better than in the
round jet case.

4. Conclusions

As discussed previously, despite the fact that the analytical solutions of the velocity-distribu-
tion profile for turbulent round and plane jets have been known for a long time, a major
problem has existed to the present time due to the fact that the scaling coefficients involved
are not well quantified. The difficulties in quantifying the values of these scaling coefficients
have been discussed recently in [4].

In this paper, we have attempted to determine these scaling coefficients in the analytical
solutions based on conservation laws of mass and momentum with the recently available
experimental measurements in the literature. Furthermore, by assuming that the turbulent
diffusivity bears a constant ratio to the eddy viscosity (which is a common assumption
adopted in many modern commercial CFD codes), we have derived closed-form analytical
solutions for the scalar concentration distribution in addition to the velocity distribution for
both round and plane turbulent jets. As far as the author is aware, these analytical solutions
for the scalar concentration have not been presented previously. Taken together, the analytical
solutions for both the velocity and concentration distributions provide the basic understand-
ing of the flow and dispersion characteristics by round and plane turbulent jets.
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