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Inviscid instability of an unbounded shear layer: effect of surface
tension, density and velocity profile
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Abstract. The inviscid temporal stability analysis of an unbounded shear layer of two fluids of different density
is investigated. Two background velocity profiles are considered: the piecewise-linear profile and the more realis-
tic error-function profile. The disturbance kinetic energy is analyzed to physically understand the mechanism that
causes instability. The surface-tension effect is investigated extensively. Surface tension is found to destabilize the
neutrally stable waves that exist when surface tension is absent. This surface-tension-induced unstable mode is
generally weaker than the dominant mode and extremely less evident when the density and/or viscosity difference
increases. Short-wavelength instability is observed with a background viscosity jump at the interface. A comparison
between the two velocity profiles is presented. The piecewise-linear profile does not match the more realistic results
obtained with the error-function profile in the short wavelength range, especially in nonhomogeneous shear-layer
flows; however, the phase-speed results are in a good agreement with those of the error-function profile.
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1. Introduction

Under certain conditions, free-shear-layer flows become inviscidly unstable to infinitesimal
disturbances. At sufficiently large Reynolds numbers, the inviscid framework is adequate to
describe the evolution of perturbations in free flows such as jets and layers [1]. Furthermore,
the inviscid limit can be used in a shear flow consisting of a viscous and an inviscid fluid.
Early work by Miles [2] showed that for a flow in which the light fluid is inviscid and the
dense fluid is viscous, the viscosity has little effect on the instability. The results of Lindsay
[3] agree with this conclusion.

The inviscid problem of an infinite surface of discontinuity, i.e., vortex sheet, separating
two unbounded fluids of different density and velocity, and subjected to an initial sinusoidal
disturbance of infinitesimal amplitude was first recognized by Helmholtz in 1868, and solved
by Kelvin in 1871. This type of flow is found to be always unstable as long as a velocity
difference exists. Also, it experiences the largest growth rate in a homogeneous fluid, i.e., no
density discontinuity.

Zalosh [4] used the discrete-vortex method to study the stabilizing effect of the surface ten-
sion on the vortex-sheet evolution. His results revealed that at the intermediate surface-tension
range, the flow is marginally stable, and for large values the flow is stable. In the marginally
stable configuration, the amplitude grows slightly at first and then oscillates in time.

The role of surface tension and density difference in the instability of the vortex sheet
is extensively discussed by Rangel and Sirignano [5]. The inclusion of the surface tension is
shown to temporarily slow down the rollup rate of the vortex sheet. When the surface-tension
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force is large enough, the accumulation of vorticity at the interface is prevented and conse-
quently the rollup disappears.

Vortex-sheet profiles cannot persist, being diffused by viscosity into continuously varying
shear layers. The study of such discontinuous profiles is therefore based on the expectation
that they retain characteristic features of continuous shear-layer profiles, while allowing sim-
pler mathematical treatment. This is indeed so, but care is required in interpreting the results.
Thus, continuous profiles give more realistic results but require more complicated treatment.

Drazin and Howard [6] obtained formulas to determine the instability characteristics of
unbounded parallel inviscid flows in the limit of long waves. These formulas are valid for any
arbitrary velocity profile since the detailed structure of the profile is not important for small
wavenumbers. A three-term-approximation power series for the hyperbolic-tangent profile was
derived.

Michalke [7] computed the eigenfunctions and the amplified eigenvalues spectrum of the
hyperbolic-tangent profile numerically using a shooting technique. The dimensionless cut-off
wavenumber was found to be 1; however, this neutral wavenumber was already known ana-
lytically by Garcia [8]. The numerical results were in a good agreement with the three-term
approximation by Drazin and Howard [6] up to α=0·2.

An inviscid damping mode for the hyperbolic-tangent profile was found by Tatsumi et al.
[9] in the higher range of wavenumbers (α > 1). They showed that the only mechanism that
could consume the kinetic energy of the disturbance in this inviscid limit is the consideration
of a smooth continuous velocity profile. Such a profile implies the existence of viscosity in the
basic flow, and obviously this viscosity retains its role as a hidden parameter to damp these
inviscid disturbances.

Pouliquen et al. [10] carried out a detailed investigation of the inviscid instability of two
immiscible fluids in a shear layer when the thickness of the density profile is much smaller
than the thickness of the velocity profile. Although the perturbation analysis ignores the vis-
cosity effects, the chosen velocity profile satisfies the continuation of the shear stress at the
interface. With a symmetric broken-line profile, counter-propagating (Holmboe) waves were
observed. When the profile symmetry is broken relatively high wavenumbers were dominated
by a single propagating mode moving in the same direction as the less viscous fluid. The lin-
ear stability for an inviscid density-stratified shear layer is well documented in Redekopp [11]
with more emphasis on environmental flows.

2. Rayleigh’s equation

The instability eigenvalue problem on the interval −∞< y <∞ for inviscid parallel shear
flows is defined by the Rayleigh’s equation:

φ′′ −α2φ− U ′′

U − c =0, (1)

where α is a real positive wavenumber, c is the complex wave speed, U(y) is the background
velocity and the prime denotes differentiation with respect to y. The eigenfunction φ(y) is
an unknown complex function that represents the normal mode amplitude of the disturbance
stream function:

ψ ′(x, y, t)=φ(y)eiα(x−ct). (2)
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From Equations (2), one can obtain the following expressions for the complex amplitude of
the disturbance velocities:

û(y)=φ′(y), (3a)

v̂(y)=−iαφ(y), (3b)

It can be seen that Equation (1) is unchanged when α is replaced by −α. Thus, if we take
α≥0, there exists a solution with ci >0 for instability to occur. Therefore ci >0, can be con-
sidered as the criterion for instability [12, Section 21].

The boundary condition for the disturbance φ is that the disturbance velocities must van-
ish at infinity:

φ(∞)=φ(−∞)=0. (4)

Note that all the variables in this paper are dimensionless, unless otherwise stated.

3. Temporally developing viscous shear layers

Although we are investigating the inviscid instability of the flow, it is of interest to exam-
ine, in some approximate way, the role that viscosity may play, not during the development
of the instability, but in the background flow whose stability we are trying to analyze. In this
regard, it is useful to consider the similarities and differences between spatially developing vis-
cous shear layers and temporally developing ones. In both cases, we are dealing with a viscous
region that grows, with downstream distance in the former case or with time in the latter one.
Thus, the notion of non-parallelism that exists in the spatially developing layer has its coun-
terpart in the temporal case, except that it is the time variation itself, as opposed to being
frozen in time, that represents the analogy. Therefore, considering a frozen state of the flow
in the temporally developing layer is akin to assuming parallel flow in the spatially developing
problem.

Of course, there are important mathematical differences between the two flows. While, in
the temporal flow, we only deal with a simple parabolic evolution of the equations, in the
spatially developing flow we have both convection and diffusion in the direction of develop-
ment. This difference is important if only for the fact the temporally developing layer admits
an exact solution in the form of an error-function while the spatially developing layer does
not have an exact solution, although the hyperbolic tangent profile is a reasonable approxi-
mation under the parallel-flow assumption. Furthermore, the temporally growing shear layer
admits an exact error-function solution in the case where the upper and lower streams have
different but constant densities and viscosities.

In Section 6 we examine the temporal instability of this error-function profile by making
a “frozen flow” approximation as described above. However, we first investigate the instability
of an approximation to such solution as represented by a piecewise-linear profile in Section 5
after analyzing the kinetic energy behavior in Section 4.

4. Kinetic energy of disturbances

The energy contained within the disturbance is fed by the background flow. Thus, in order to
understand the evolution of the disturbance and the role of surface tension, we investigate the
mechanism of this energy transfer between the background flow and the disturbance motion.
To derive the disturbance kinetic-energy equation, we multiply the x- and y-components of
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the nonlinear inviscid two-dimensional equations of motion for the disturbance by u′ and v′,
respectively. The two equations are then added and integrated over one wavelength (2π/α) of
the disturbance and a domain bounded by y=±∞.

Care must be taken when integrating terms involving the pressure over the y-domain. This
integration should be carried out for the upper and lower domains separately, as the pressure
is discontinuous across the interface due to surface tension.

Let the initial displacement of the interface due to a small disturbance amplitude ε be

η(x, t)= εeiα(x−ct). (5)

Accordingly, the pressure balance at the interface can be expressed as follows:

p′
2(0)− sp′

1(0)= sεα2Weiα(x−ct). (6)

W is the inverse of the Weber number and is defined as:

W = σ

ρ1L
∗
c (V

∗
c )

2
, (7)

where the asterisks denote dimensional quantities. It should be pointed out that we neglect
gravity effects in this analysis. This is a valid assumption in small-scale applications such as
atomizers and spray jets.

Upon utilizing integration by parts and the periodicity behavior of the perturbation veloc-
ity along with the results in (6), one can obtain the equation governing the kinetic energy of
the disturbance:

∂

∂t

∫ ∞

0

∫ 2π/α

0

1
2 s
(
u′2

1 +v′2
1

)
dxdy+ ∂

∂t

∫ 0

−∞

∫ 2π/α

0

1
2

(
u′2

2 +v′2
2

)
dxdy

= s
∫ ∞

0

∫ 2π/α

0
(−u′

1v
′
1)

dU
dy

dxdy+
∫ 0

−∞

∫ 2π/α

0
(−u′

2v
′
2)

dU
dy

dxdy−πsα2Wφoie2αci t . (8)

where φoi is the imaginary part of the disturbance eigenfunction at the interface.
The left-hand side of (8) is the temporal variation of the disturbance kinetic energy. It

involves a balance between the production term (first two terms on the right-hand side) and
the surface-tension energy (last term on the right-hand side). The appearance of W in the
surface-tension energy term shows that surface tension plays an important role in the stability
mechanism of the flow. When surface tension is sufficiently large, such that its effect is greater
than that of the Reynolds stress, the flow is stable.

To get further insight into the effect of the surface tension, it seems more meaningful to
evaluate the integrals in (8) over the wavelength. Upon decomposing the perturbation veloc-
ity based on the normal-mode solution and after a considerable amount of manipulation, we
can rewrite Equation (8) as:

cis

∫ ∞

0

(∣∣φ′
1

∣∣2 +α2 |φ1|2
)

dy+ ci
∫ 0

−∞

(∣∣φ′
2

∣∣2 +α2 |φ2|2
)

dy

= s
∫ ∞

0

(
φ1rφ

′
1i −φ1iφ

′
1r

) dU
dy

dy+
∫ 0

−∞

(
φ2rφ

′
2i −φ2iφ

′
2r

) dU
dy

dy− sα2Wφoi. (9)

where |φ| denotes the modulus of φ.
Equation (9) describes the balance between the time rate of change of the kinetic energy of

disturbances with the work done by the Reynolds stress and the surface-tension energy. This
equation is general for any background velocity profile. It can be seen from Equation (9) that,
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if the Reynolds stress term is positive, which means that the energy is being transferred to
the disturbance flow, and larger than the surface tension term, we have unstable flow. Fur-
ther, when the flow is unstable, i.e., ci > 0, the second term on the right-hand side of (9) is
always negative; surface tension appears to always have a stabilizing influence in the presence
of growing disturbances. However, this is not always the case, as we will show in Section 7.

The destabilizing role of surface tension is best illustrated as a mathematical feature of the
instability using the phase shift concept that was first discussed by Prandtl [13]. The ampli-
tude of the normal mode for the perturbation velocities can be expressed in the form:

û(y)= ∣∣û(y)∣∣ eiχu(y), (10a)

v̂(y)= ∣∣v̂(y)∣∣ eiχv(y), (10b)

Upon averaging over a wavelength of the disturbance along with using Equations (3), the
Reynolds stress appearing in the kinetic energy equation can be written as:

τxy =−u′v′ = 1
4 iα(φ φ′�−φ�φ′)e2αci t , (11)

where the bar and star denote, respectively, a spatial average quantity and a complex conju-
gate. Using (10) we can write the Reynolds stress as:

τxy =−u′v′ =− 1
2

∣∣û(y)∣∣ ∣∣v̂(y)∣∣ cos [χu(y)−χv(y)] e2αci t . (12)

In the absence of surface tension, Equation (9) implies that, for neutrally stable waves,
the Reynolds stress τxy must be zero and hence the phase-angle difference for the distur-
bance velocities in Equation (12) must be ±π/2. Setting W to a nonzero value while keeping
other flow parameters unchanged, shifts the phase angle difference to the unstable (second
and third) quadrants in which the cosine of this difference is negative. This shift leads to a
positive Reynolds stress which is large enough to overcome the otherwise stabilizing effect of
surface tension and rendering these otherwise neutrally stable waves unstable.

5. Piecewise-linear profile

We consider two unbounded parallel streams of respective velocity V ∗
1 and V ∗

2 . The two
streams are assumed to have different density ρ. Although we investigate the inviscid stability
of the flow, we consider velocity distributions that satisfy, either in approximate or exact man-
ner, the viscous equation for the background flow. The frame of reference is moving with a
velocity 1

2

(
V ∗

1 +V ∗
2

)
. Upon taking the thickness of the background flow in the upper stream

δ∗1 as the characteristic length and half the velocity discontinuity V ∗
c = 1

2

(
V ∗

1 −V ∗
2

)
as the

characteristic velocity, we can express the piecewise-linear velocity profile as:

U(y)=




1, y >1
uo+ (1−uo)y, 0<y<1

uo+ (1+uo)y
d
, −d <y<0

−1, y <−d

, (13)

where d=√
s/m. If we define s=ρ1/ρ2 as the density ratio, m=µ1/µ2 as the viscosity ratio

and p=1/
√
sm, the dimensionless velocity of the interface is uo= (1−p)/ (1+p).

The continuity of the vertical velocity at any point in the flow constitutes the kinematic
condition. This condition requires that the vertical disturbance velocity between each subdo-
main must be equal:

φy
+ =φy−

, φy
+
o =φy−

o = ε(c−uo), (14)
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Figure 1. The basic flow. (a) Piecewise-linear profile, (b) error-function profile.

where the superscripts y+ and y− refer to the upper and lower side of y-subdomain at 1
and −d, while the subscript yo refers to the interface (Figure 1).

The dynamic condition requires that the pressure must be equal on either side at y = 1
and −d:

[
U ′φ− (U − c)φ′]y+ = [U ′φ− (U − c)φ′]y−

. (15)

Now we consider the dynamic condition at the interface where surface tension will be
taken into account:

[
φ′

2(0)− sφ′
1(0)

]
(c−uo)+

[
d−1(1+uo)φ2(0)− s(1−uo)φ1(0)

]
= εsα2W. (16)

Upon solving Rayleigh’s equation in (1) along with the boundary conditions in (4), one is
led to:

φ(y)=




Ae−αy, y >1
B sinh(αy)+G cosh(αy), 0<y<1
D sinh(αy)+E cosh(αy), −d <y<0

F eαy, y <−d
. (17)

We use the kinematic conditions in (14) along with the dynamic condition in (15) to solve
for the constants in (17). This allows us to determine the dispersion equation for this flow by
employing the dynamic condition at the interface:

2
1+p

(
1
d

−d
)
(c−uo)+α

(
D̃− sB̃

)
(c−uo)2 = sα2W, (18)

where B̃ and D̃ are constants defined as follows:

B̃= B

ε (c−uo) =− (c−1)αeα + (1−uo) coshα
(c−1)αeα + (1−uo) sinhα

, (19a)

D̃= D

ε (c−uo) = (1+ c)αdeαd − (1+uo) cosh (αd)
(1+ c)αdeαd − (1+uo) sinh (αd)

. (19b)

Equation (18) gives a quartic equation in c. However, the case of homogeneous shear flow
has a relatively simpler biquadratic equation for c:

[
2e−4α +8α2c2 −2(1−2α)2

4α2c2 − (1− e−2α −2α)2

]
c2 =αW. (20)
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Equations (18) and (20) are analogous to Equations (4) and (5) derived by Pouliquen et al.
[10].

The temporal change of disturbances kinetic energy for a piecewise-linear profile can be
obtained from the general Equation (9):

cis

∫ ∞

0

(∣∣φ′
1

∣∣2 +α2 |φ1|2
)

dy+ ci
∫ 0

−∞

(∣∣φ′
2

∣∣2 +α2 |φ2|2
)

dy

= s(1−uo)
∫ 1

0

(
φ1rφ

′
1i −φ1iφ

′
1r

)
dy+d−1(1+uo)

∫ 0

−d

(
φ2rφ

′
2i −φ2iφ

′
2r

)
dy− sα2Wci, (21)

where φoi = ci was used from the kinematic condition (14).
Integrating the Reynolds stress term on the right-hand side of (21) analytically using the

solution in (17) we obtain:

cis

∫ ∞

0

(∣∣φ′
1

∣∣2 +α2 |φ1|2
)

dy+ ci
∫ 0

−∞

(∣∣φ′
2

∣∣2 +α2 |φ2|2
)

dy

= sα(1−uo)(Bicr −Brci)+α(1+uo)(Dicr −Drci)− sα2Wci, (22)

where Br , Bi , Dr and Di are the real and imaginary parts of the constants in (17).
Equation (21) shows that both fluids contribute towards the Reynolds shear stress acting

on the background flow which controls the process of the energy transfer from and to the dis-
turbances. Most of the time, the less viscous fluid generates the greatest part of the Reynolds
stress that causes instability to occur.

6. Error-function profile

The analytical solution for a temporally growing shear-layer of two viscous semi-infinite flu-
ids moving with uniform but different parallel velocities is used to determine the velocity pro-
file in this problem. Accordingly, the dimensionless velocity of the upper and lower fluid in a
shear-layer flow can be expressed, respectively, as follows:

U(y)=




2p
1+p erf (y)+uo, y >0

2
1+p erf

(y
d

)
+uo, y <0

. (23)

The frame of reference is moving with the average velocity 1
2 (V

∗
1 +V ∗

2 ). Half of the difference
between the free stream velocities in both fluids 1

2 (V
∗
1 −V ∗

2 ) was used to nondimensionalize
the velocity. The parameters shown in Equation (23), p and d, and the interface velocity uo
are the same as defined in Section 5.

To proceed with the solution, it is convenient to replace the boundary conditions in (4)
with the asymptotic behavior of the complex eigenfunction φ. This can be obtained by solv-
ing the Rayleigh’s equation in the limit y=±∞:

as y−→∞, φ=C1e−αy and φ′ =−αφ, (24a)

as y−→−∞, φ=C2eαy and φ′ =αφ. (24b)

Two interfacial conditions must be satisfied. The continuity of the normal velocity:

φ1(0)=φ2(0)= ε(c−uo) (25)
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and the pressure balance by surface tension:

[
φ′

2(0)− sφ′
1(0)

]
(c−uo)+ 4√

π(1+p)
[
d−1φ2(0)−dφ1(0)

]
= εsα2W. (26)

Introducing a new dependent variable f for the Rayleigh’s equation such that:

φ= ε(c−uo) exp
(∫ y

0
f dỹ

)
(27)

and substituting (27) in Rayleigh’s equation, we obtain:

f ′ =α2 −f 2 + U ′′

U − c . (28)

The differential equation in (28) must be solved numerically in order to evaluate the eigen-
value ci and thus determine the stability characteristics of the flow. To simplify the numerical
computation and reduce the integration region to a finite interval, we transform the indepen-
dent variable in Rayleigh’s equation y as follows:

z=



1− e−y, 0≤y≤∞

ey/d −1, −∞≤y≤0
. (29)

Substituting Equations (23) and (29) in the transformed Rayleigh equation in (28) and
breaking the resulting system of differential equations into real and imaginary parts yield the
corresponding stability equations at each fluid region. For the upper fluid:

df1r

dz
= α2 −f 2

1r +f 2
1i

1− z + 8p log (1− z) e−[− log(1−z)]2
√
π (1− z) (1+p)

× 2p (1+p)−1 erf [− log (1− z)]+uo− cr{
2p (1+p)−1 erf [− log (1− z)]+uo− cr

}2 + c2
i

, (30a)

df1i

dz
= −2f1rf1i

1− z + 8p
[√
π (1− z) (1+p)]−1 log (1− z) e−[− log(1−z)]2ci{

2p (1+p)−1 erf [− log (1− z)]+uo− cr
}2 + c2

i

(30b)

and for the lower fluid:

df2r

dz
= α2 −f 2

2r +f 2
2i

d−1 (1+ z) − 8 log (1+ z) e−[log(1+z)]2
√
πd (1+ z) (1+p)

× 2 (1+p)−1 erf [log (1+ z)]+uo− cr{
2 (1+p)−1 erf [log (1+ z)]+uo− cr

}2 + c2
i

, (31a)

df2i

dz
= −2f2rf2i

d−1 (1+ z) + 8
[√
πd (1+ z) (1+p)]−1 log (1+ z) e−[log(1+z)]2ci{
2 (1+p)−1 erf [log (1+ z)]+uo− cr

}2 + c2
i

. (31b)

Accordingly, the boundary conditions in (24) turn into:

f1r (1)=−α, f1i (1)=0,
f2r (−1)=α, f2i (−1)=0,

(32)

where subscripts r and i denote the real and imaginary parts, respectively.
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Equations (30) and (31) are undetermined at z=1 and −1 respectively. L’Hôpital’s rule is
used to evaluate the limiting values:

df1r

dz

∣∣∣∣
z→1

= df1i

dz

∣∣∣∣
z→1

= df2r

dz

∣∣∣∣
z→−1

= df2i

dz

∣∣∣∣
z→−1

=0. (33)

Combining the kinematic and dynamic conditions in (25) and (26) along with the trans-
formation in (27) yields the following equation, which will be used as a required condition in
the numerical computation:

4
(
d−1 −d)√
π (1+p) (c−uo)+ [f2(0)− sf1(0)] (c−uo)2 = sα2W. (34)

The eigenvalue c is computed by integrating (30) and (31) numerically with a fourth-order
Runge-Kutta method. An optimization algorithm developed by the authors that utilizes a par-
allelogram in the cr -ci-plane is used. The results are presented in Section 7.

From Equation (9), the disturbance kinetic energy for the error-function profile can be
written as follows:

cis

∫ 1

0
(1− z)−1

(∣∣∣∣dφ1

dz

∣∣∣∣
2

+α2 |φ1|2
)

dz+ ci
∫ 0

−1
(1+ z)−1

(∣∣∣∣dφ2

dz

∣∣∣∣
2

+α2 |φ2|2
)

dz

= 4d√
π (1+p)

∫ 1

0

e−[− log(1−z)]2

(1− z)
(
φ1r

dφ1i

dz
−φ1i

dφ1r

dz

)
dz

+ 4√
π (1+p)

∫ 0

−1

e−[log(1+z)]2

(1+ z)
(
φ2r

dφ2i

dz
−φ2i

dφ2r

dz

)
dz− sα2Wci. (35)

7. Results and discussion

7.1. Homogeneous shear flow (s=m=1)

In this case, the shear flow is assumed to be homogeneous in terms of density and the back-
ground flow satisfies the equations for homogenous viscosity. When surface tension is set
to zero, unstable and damped waves exist for wavenumbers under the cut-off wavenumber
αc = 0·639 for the piecewise-linear profile and 1·037 for the error-function profile, while trav-
eling stable waves exist for α > αc. It is worth noting that the results for a homogeneous
error-function with no surface tension have a fair agreement with the results of Michalke [7]
for the hyperbolic-tangent velocity profile. He found that the hyperbolic-tangent profile has a
cut-off of 1 compared with 1·037 for the error-function and a maximum growth rate of 0·19
occurs at an optimum wavenumber of 0·445 compared with 0·216 and 0·485, respectively.

When the flow is homogeneous and the velocity profile is antisymmetric with respect to
the cross-stream direction, it follows from [14] that the phase speed cr is constant and equals
the interface velocity uo provided the unstable eigenfunction φ is unique. Consequently, we
only need to iterate the eigenvalue ci during the numerical computation which reduces the
time required for convergence substantially.

In addition, we note that a neutrally stable stationary wave (a trivial solution of the equa-
tions) is also possible but usually ignored. This neutrally stable solution can be seen clearly
in the error-function profile where the required condition at the interface (34) reduces to:

[f2(0)− sf1(0)] (c−uo)2 =0. (36)

Obviously, a neutrally stable eigenvalue, ci = 0, is a possible solution for all wavenumbers as
long as the interface curvature is ignored. Although this trivial solution is ignored in the
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α α

α α

(a) (b)

Figure 2. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a homogeneous shear
layer with different surface-tension values. (a) Piecewise-linear profile, (b) error-function profile.

W =0 analysis, it plays a major role when surface tension is added. Imposing surface ten-
sion at y= 0 is found to perturb this neutral wave away from its neutrally stable state and,
as a result, a new set of damped and unstable modes is created. These new modes eventu-
ally merge with the original modes at a certain wavenumber αm as shown in Figure 2. This
is analogous to the observation made by Yih [15] that introducing a viscosity stratification in
a shear layer creates new unstable modes in the neighborhood of a hidden neutral mode for
the case of a same fluid. This second unstable mode with W �= 0 can be seen to arise from
Equation (20) which produces a bi-quadratic equation in c:

Âc4 + B̂c2 + D̂=0, (37)

where the coefficients are defined as follows:

Â=8α2, B̂=2e−4α −2(1−2α)2 −4α3W, D̂=
(

1− e−2α −2α
)2
αW. (38)

When the surface tension is of the order of ε, where ε is a very small quantity, Equation (37)
gives the following roots:

c1,2 =±i

√
B̂

Â
, c3,4 =±i

√
ε

4ÂB̂2
. (39a,b)

The corresponding eigenvalues to (39a) are unstable for all α < αc where B̂ changes sign
after the cut-off wavenumber. On the other hand, the roots in (39b) are unstable for all α<
αm where the two modes merge and the first mode dominates. When the surface tension is
neglected, the roots in (39b) become trivial solutions to (37), which represent the neutral sta-
ble waves that are observed in W =0 case.

For the error-function profile, the real part of the required condition at the interface,
Equation (34), shows that when the two fluids are identical, then for α<αm the complex wave
speed c has a quadratic equation with discriminant equal to −4 [f2r (0)−f1r (0)]α2W which
produces the first unstable mode. On the other hand, the imaginary part of the required con-
dition gives the second unstable mode as long as f2i (0)−f1i (0)= 0. However, when α>αm,
the difference between the real parts of the transformed eigenfunctions at the interface,
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f2r (0)−f1r (0), changes sign and becomes negative and the difference in the imaginary parts
become non-zero which in turn eliminates one of the complex roots, leaving only one unstable
mode thereafter.

The appearance of this mode can be attributed to the slip in the tangential disturbance
velocity that is caused by the surface tension at the interface. In this sense, it may be con-
cluded that surface tension, while stabilizing the most unstable mode, introduces instability in
a previously neutral mode. A mathematical argument for this phenomenon was given at the
end of Section 4. To explain this phenomenon physically, we employ the kinematic condition
in (14) with the dynamic condition in (16) (or alternatively (25) and (26) for the error-function
profile) to obtain:

c
[
û(0−)− û(0+)

]= εα2W. (40)

The presence of surface tension generates an additional discontinuity in the tangential veloc-
ity at the interface. This instability is proportional to the square of the wavenumber, which
explains the rapid growth of the second mode with increasing wavenumber, as seen in Figure
2, especially when W is sufficiently large. When W =0, no slip in the tangential velocity occurs
and the second mode is neutrally stable. This is analogous to the situation involving neutrally
stable waves in the Kelvin-Helmholtz problem, where the instability is driven by the disconti-
nuity of two uniform velocity profiles at the interface. When an additional velocity difference
is imposed, those neutrally stable waves become unstable.

The kinetic energy equation in (8) shows the important role that surface tension plays in
the stabilizing mechanism of the flow. When W is sufficiently large, such that the last term in
(8) is larger than the Reynolds stress integrals, the flow is stable to all waves. Conversely, when
W is not large enough to overcome all the energy produced by the Reynolds stress, the dis-
turbances keep growing and the flow becomes unstable. Based on this argument, we expect a
critical W to exist above which surface tension stabilizes all wavenumbers. Figure 2 shows that
in a certain range of W , surface tension actually destabilizes progressively shorter waves until
W exceeds a critical value of 2·383 for the piecewise-linear profile and 1·931 for the error-func-
tion profile, where the cut-off wavenumber becomes exactly the same as the no-surface-tension
cut-off. For all W >Wc surface tension was observed to stabilize all wavenumbers.

It is clear from (8) that, in order to have unstable flow, there must be a dominant region
in the flow where the Reynolds stress (−u′v′) has the same sign as the velocity gradient of
the background flow (dU/dy). Otherwise the disturbance energy will decrease and eventually
a stable flow results. Accordingly, we do not expect surface tension to work only as a stabi-
lizing factor because the Reynolds stress would not be able to develop the appropriate sign in
case of a stable flow when surface tension is absent.

As pointed out in Section 4, this destabilizing effect can be attributed to the slight shift,
caused by surface tension, in the phase difference for the disturbance velocities outside the
stable quadrants. This increases the work done by the Reynolds stress on the background flow
such that its destabilizing influence dominates over the stabilizing effect of surface tension. To
better understand the indirect impact of surface tension on the Reynolds stress, it is of inter-
est to integrate the Reynolds stress term in Equation (21) analytically for the s=m=1 case:

∫ 1

−1

(
φiφ

′
r −φrφ′

i

)
dy= 2α2ci |c|2

α2
(
c2
i +ϑ2

)
e2α +2αϑeα sinh (α)+ sinh2 (α)

, (41)
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where ϑ equals (cr −1), respectively. The kinetic energy of the disturbances as a function of
wavenumber is plotted in Figure 3(a). Further, Equations (35) are integrated numerically to
evaluate the temporal change of disturbances energy for the error-function profile. The results
are shown in Figure 3(b). These figures show that, at low to intermediate W , surface ten-
sion contributes to boost the kinetic energy of the least unstable disturbed waves (the lower
branch) making them more unstable and it also delivers energy to some otherwise neutrally
stable waves in the 0·6<α<1·25 range for the linear profile and 1·04<α<1·8 for the error-
function profile, making them unstable. For the most unstable waves (the upper branch of the
bi-modal region) surface tension does exhibit the expected stabilizing effect as the last term in
Equation (9) overcomes the destabilizing effect of the Reynolds stress. It is also interesting to
notice from Figure 3 that, although large values of W (W >2) supply more kinetic energy to
the intermediate range of disturbed waves (0·1<α< 0·75), these waves become less unstable
as most of that energy is used to speed up the traveling disturbances rather than to intensify
the growth rate. This gain in the velocity of the disturbances as W increases can be seen in
Figure 4.

A very interesting phenomenon in the solution of the piecewise-linear profile can be seen
in Figure 5. A second unstable region can exist beyond a certain stable range of wavenumbers.
The second instability region is small compared with the first region in terms of the wavenum-
ber range and the growth rate of the disturbances. This region is not seen when the surface
tension is neglected (W =0) and thus it can be concluded that the sole cause of this instabil-
ity is the inclusion of surface tension at the interface with a piecewise-linear profile. Adding

α α

(a) (b)

(
)

∂ ∂ t

(
)

∂ ∂ t

Figure 3. Temporal variation of the dimensionless disturbance kinetic energy vs. the dimensionless wavenumber for
a homogeneous shear layer at different surface tension values. (a) Piecewise-linear profile, (b) error-function profile.

α α

(a) (b)

Figure 4. Dimensionless phase speed cr vs. the dimensionless wavenumber α for a homogeneous shear layer at
different surface-tension values. (a) Piecewise-linear profile, (b) error-function profile.
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α

α
Figure 5. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a homogeneous piece-
wise-linear profile with different surface tension values: the second unstable region.

a very small amount of surface tension creates an infinitesimal second unstable region at
very short wavelengths. Increasing the surface tension would rapidly move the second region
towards the first one while increasing its growth rate. The second region, however, does not
persist for all W values. Figure 5 shows that at a particular value of W (Wm=0·4586) the two
regions merge together to form one unstable region and only this merged region exists there-
after. That value is found to decrease monotonically when a density differential is imposed
at the interface. However, this feature was not observed when a smooth velocity profile is
considered for the mean flow. Figure 6(a) shows that the error-function profile has a con-
tinuous spectrum of unstable wavenumbers with only one cut-off which is close to the cut-
off of the second region in the linear-profile case. The nature of the piecewise-linear profile
structure is definitely what causes the unstable wavenumbers spectrum to split into two dis-
continuous regions. The linear profile is thus not a good approximation for a free shear-layer
flow especially in the short-wave range. However, it can provide adequate results for long and
intermediate wavelengths as it shows a good agreement with the error-function profile in that
wavelength range, as shown in Figure 6(a). It should be pointed out that this is true even
when surface tension is neglected. Figure 6(b) demonstrates that even when W =0, the insta-
bility prediction of the short wavelength by the piecewise-linear profile does not agree with
the one obtained with the error-function profile.

α

α α

α

(a) (b)

Figure 6. Comparison between the dimensionless growth rate αci of the piecewise-linear profile (solid line) and the
error-function profile (dash line) for a homogeneous shear-layer flow. (a) W =0·4, (b) W =0.
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7.1.1. Limit of very thin viscous layer
In the limit of very thin viscous layer, that is δ→0, Equation (20) reduces to:

c2 = 4
3α (1−α)±

√
7

3 α
(

1− 16
7 α
)
. (42)

To study the limit of small viscosity, consider Kelvin-Helmholtz instability, for instance, at
W = 100. The cut-off wavenumber is found at 0·02. The corresponding values of c2 for the
piecewise-linear profile at W =100 and α=0·02 are:

c2 =0·0430 and 0·0093. (43)

Hence, we conclude that a small amount of viscosity stabilizes all Kelvin-Helmholtz waves.

7.1.2. Limit of infinite shear-layer thickness
In the limit of infinite viscous layer or infinite wavenumber, that is δ→∞ and α→∞, Equa-
tion (20) reduces to:

c2 = αW

2
, (44)

which implies that the flow is then stable to all waves. When surface tension is ignored, the
stable waves travel with the same speed of the interface, i.e., stationary waves. If we assume
that the wavenumber is very large (α	1) but finite, then Equation (20) can be written as:

c2 =




1
2αW

(
1− 1

2α
−1
)2
. (45)

Again the flow is stable to all wavelengths in the range of α	 1. For example, at W = 0 we
have two set of stable waves. The first set travels with the interface and the other one travels
with an asymptote to 1 and −1. It is worthwhile to mention that this result is valid for all
α	1 regardless of the shear layer thickness.

7.2. Effect of background viscosity (s=1,m �=1)

Although this work deals with the inviscid stability problem of free-shear-layer flows, viscos-
ity does appear in an indirect manner through its effect on the background flow and therefore
has a significant impact on the stability characteristics of the flow. In this section, we exam-
ine the effect of the background viscosity on the stability. First we investigate the effect of
viscosity in the absence of surface tension, then when surface tension is taken into account.
Since we are here interested only in the viscosity effect, the two streams are assumed to have
the same density, i.e., s=1, throughout the analysis.

7.2.1. No surface tension (W =0)
First we consider the cases when the lower fluid is more viscous than the upper one. We must
keep in mind that, in our inviscid analysis, the effect of viscosity appears through its effect
on the background velocity profile only. Figure 7 shows that the homogeneous shear layer
has the least instability whereas the flow becomes more unstable with decreasing the viscos-
ity ratio as the velocity profile in the upper fluid gets steeper. However, disturbances respond
differently as we vary the viscosity ratio. Figure 8(a) shows that for a piecewise-linear profile,
disturbances of small wavenumber (α<0·1) are less sensitive to the viscosity ratio (the growth
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α

α α

α

(a) (b)

Figure 7. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a same-density
shear layer at various viscosity ratios (m < 1) and zero surface tension (W = 0). (a) Piecewise-linear profile, (b)
error-function profile.

(a) (b)

α

α

α

α

Figure 8. Dimensionless disturbance growth rate αci for a same-density piecewise-linear profile versus the viscosity
ratio m at various dimensionless wavenumbers and W =0. (a) m<1, (b) m>1.

rate is almost constant through the range of m<1). On the other hand, for disturbances with
large wavenumbers (α>0·5), the destabilizing effect associated with increasing viscosity is sig-
nificantly more noticeable. At the range of intermediate wavenumbers (0·1<α< 0·5), distur-
bances are observed to experience a slight damping as we increase the viscosity ratio when
m<0·1.

The zero viscosity ratio (m= 0) curve in Figure 7(a) was obtained by taking the limit of
m→ 0 for (19) and then substituting them in (18) taking s= 1 and W = 0. In this case, the
quartic equation obtained in Section 5 reduces to the following cubic equation:

c3 + c2 +
[

2
α

− 2 sinhα
α2eα

−1
]
(c+1)=0 (46)

A very interesting property of this limit was observed. The growth rate of the most
amplified wave in the limit of m= 0 is found to be twice (to 6 significant figures) that for
m= 1 (0·402371 vs. 0·2011855). Furthermore, the optimum wavenumber at which the maxi-
mum instability occurs and the cut-off wavenumber for the flow with zero viscosity ratio are
0·796812 and 0·398406, respectively, which are greater than the corresponding wavenumbers
for a uniform viscosity flow by a factor of two. This result is not surprising since, unlike
the other cases, the velocity profiles for m= 0 and m= 1 possess a continuous slope across
the interface and the velocity slope for the latter case is exactly half the one for the former
one. Thus, the greatest instability the flow can reach by increasing the viscosity of the lower
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fluid cannot exceed a value equal to twice the instability of the homogenous shear-layer flow.
However, it should be pointed out that, besides these two cases, there is another case where
the slope of the velocity maintains the same value as we cross the interface of the shear-
layer. This occurs when the viscosity of the lower fluid approaches zero, in other words, when
m→∞. In this case, the velocity profile has an infinite slope which makes the flow unstable to
all wavelengths. It is worthwhile to mention that in the limit of m→∞, the background veloc-
ity recovers the inviscid problem of an infinite surface of discontinuity (vortex-sheet) where
the flow becomes unstable to all wave lengths and hence the results of the Kelvin-Helmholtz
instability can be used.

Next we examine the case when the lower fluid is less viscous than the upper one. From
Figure 9 it can be seen that the degree of instability always grows with increasing viscosity
difference. When the lower fluid is less viscous, its layer thickness decreases and the slope of
the background velocity profile increases and this generates more instability.

Figure 8(b) illustrates the disturbance behavior for a piecewise-linear profile at large viscos-
ity ratio range (m>1). The disturbances show the same trend observed in the small m range
as the long waves (α < 0·1) are unaffected by the change in the viscosity ratio. As opposed
to the solution with long waves, short disturbed waves (α > 0·6) are affected by the viscos-
ity ratio. These disturbances experience a substantial amplification as m increases. Note that
the disturbed waves with the error-function profile do not differ from the linear profile in this
respect.

The results obtained with the piecewise-linear profile again show significant disagreement
when compared with the more accurate error-function profile. Figure 10 demonstrates this dis-
agreement as it is more evident for shorter waves. Furthermore, the piecewise-linear profile
becomes less realistic when the two fluids have different viscosity. For example at m=1·5, the
linear profile yields stable waves beyond α=1·13, while the error-function profile results in a
flow that is not be stable before α=10.

7.2.2. Effect of surface tension (W =5)
In general, a viscous background profile in the presence of surface tension is found to yield
the same result on the stability characteristics of the same viscous profile in the absence of
surface tension. However, it is worthwhile to point out some modifications on the disturbance
behavior that are produced by the inclusion of surface tension.

α

α α

α

(a) (b)

Figure 9. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a same-density shear
layer at various viscosity ratios (m>1) and zero surface tension (W =0). (a) Piecewise-linear profile, (b) error-func-
tion profile.
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α

α
Figure 10. Comparison between the dimensionless growth rate αci of the piecewise-linear profile and the error-func-
tion profile for a same-density shear-layer flow at different viscosity ratios greater than one and W =0.

α

α α

α

(a) (b)

Figure 11. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a same-density piece-
wise-linear profile at various viscosity ratios and W =5. (a) m<1, (b) m>1.

As mentioned in Section 7.1, surface tension creates a second unstable mode which merges
with the first mode if the flow is homogeneous, or which exists separately if the two streams
have different properties. Figure 11 shows the effect of the background viscosity difference on
these two modes. Decreasing the viscosity of the lower fluid stabilizes all disturbances in the
first mode, but the opposite effect occurs on those disturbances of the second mode. A reduc-
tion in the viscosity of the lower fluid results in an enhancement of the amplification rate of
the waves propagating through the second mode. This destabilizing effect of viscosity, how-
ever, is insignificant as far as the stability criteria are concerned, because only disturbances
with larger growth rate, i.e., first mode, are relevant when assessing the overall stability of
the shear-layer flow. The viscosity ratio is still found to affect only the small and interme-
diate wavelengths (α>0·1) while that effect is generally negligible for long waves even in the
presence of surface tension.

Overall it can be concluded that the most stable state the shear-layer flow can reach is
when both fluids have the same viscosity regardless whether surface tension is taken into
account or not. Any variation in the background viscosity from that homogeneity status will
definitely result in more instability.

7.3. Nonhomogeneous shear flow (s=m �=1)

In this section we examine the stability of a background flow that consists of two fluids of
different density and viscosity but equal kinematic viscosity. The ratio between the kinematic
viscosity of the upper and lower stream equals the ratio between m and s. From the similar-
ity solution for a free shear-layer flow [16, Section 4.3], this ratio can be expressed in terms
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of the shear-layer thickness:

ν1

ν2
= m

s
=
(
δ1

δ2

)2

. (47)

Thus the s=m �=1 case, implies that the two streams have the same shear-layer thickness.
It can be seen from Figure 12 that imposing a density and viscosity difference across the

interface of the shear flow causes the second mode, created by the surface tension, to be
detached from the first mode and hence the wavenumber at which both modes merge, αm, that
was observed in the homogeneous shear flow does not exist and the second mode now has its
own cut-off wavenumber. This behavior, however, does not necessarily require a discontinuity
in both the density and viscosity across the interface. It is enough to have two fluids with
different density or viscosity as seen in Section 7.2. Furthermore, as we increase the differ-
ence in the density and viscosity between the two fluids, the second mode becomes even more
independent and extremely less evident compared with the first mode at larger surface tension.

In Section 7.1 surface tension was found to create a second unstable region for the
piecewise-linear profile after a certain range of stable wavenumbers. When the two fluids, in
the presence of surface tension, are of different density and (or) viscosity, the flow experiences
a third unstable zone. Figure 13 demonstrates this behavior clearly where the first and second
spike in each curve represent, respectively, the second and third unstable region except for the
homogeneous flow case where only the second region exists.

The same observation regarding the validity of the piecewise-linear profile that was made
in Section 7.1 is made here. Figure 14 shows that for an error-function profile with s=m=0·3
and W = 2·33 the unstable wavenumbers spectrum is continuous in contrast with the results
obtained for the piecewise-linear profile, which has two distinguished unstable wavenumbers
regions. Although the second mode solution for the linear profile shows a good agreement
with the error-function, the solution of the first mode, which is more important, does not
match the one obtained with the error-function profile. Furthermore, Figure 14 shows that
the long-wavelength disturbances are not affected by the structure of the velocity profile.
Physically, the waves start to respond to the structure of the profile appreciably when the
dimensional wavenumber is of the same or larger order than the shear-layer thickness. Since
we used the shear-layer thickness as the characteristic length, then we expect this will occur
when the dimensionless wavenumber is equal or larger than 1.

When surface tension is neglected, the error-function profile with equal density and vis-
cosity ratios exhibits a very interesting behavior. Figure 15(a) shows that all instability curves

(a) (b)

α

α α

α

Figure 12. Dimensionless disturbance growth rate αci vs. the dimensionless wavenumber α for a piecewise-linear
profile at different W values. (a) s=m=0·9, (b) s=m=0·3.
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α

Figure 13. Neutral stability curves for a piecewise-
linear profile at different s=m.

α

α

Figure 14. Comparison between the dimensionless
growth rate αci of the piecewise-linear profile (solid
line) and the error-function profile (dash line) for a
shear-layer flow with s=m=0·3 and W =2·33.

(a) (b)

Figure 15. Error-function profile with W =0 at various s=m values. (a) Growth rate αci , (b) phase speed cr .

have the same cut-off wavenumber αc regardless of the value of the density and viscosity
ratios. This cut-off is found to be 1·036. To understand the reason behind this behavior, it
is important to study the phase speed of these disturbances which is shown in Figure 15(b).
It can be seen that the phase speed of all the cases always approaches the interface velocity
at the cut-off. This behavior makes the differential equations in (30) and (31) independent of
s and m at the cut-off wavenumber, which in turn makes the solution to these equations pro-
duces the same cut-off as long as W =0.

8. Conclusions

The inviscid temporal instability of an unbounded shear layer of two fluids of different
density is investigated by performing a full linear stability analysis. The viscosity of the back-
ground flow is incorporated through the velocity profiles of the background flow. Two back-
ground velocity profiles were examined: the piecewise-linear profile and the more realistic
error-function profile. A quartic dispersion equation is derived analytically for the former,
while the eigenvalues for the latter are computed numerically with the aid of a new optimiza-
tion technique. A detailed study of the kinetic energy of inviscid disturbances is carried out
to physically understand the mechanisms of instability.

The surface-tension effects are emphasized. Apart from the stabilizing effect observed in
most of the cases, surface tension is found to destabilize the neutrally stable waves that exist
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when the interfacial tension is absent. This second unstable mode is independent of the first
(stronger) mode and extremely less evident when the background viscosity and/or density
difference increases. It is shown that short waves are destabilized by a small amount of sur-
face tension. This destabilizing effect of surface tension can be attributed to the additional
discontinuity in the tangential velocity at the interface caused by surface tension. From a
mathematical point of view, surface tension is found to shift the phase angle difference of the
perturbation velocities outside the stable quadrants. This shift leads to a positive Reynolds
stress which is large enough to overcome the otherwise stabilizing effect of surface tension
and rendering these otherwise neutrally stable waves unstable.

Increasing the background viscosity difference through the background velocity profile
gives rise to short wavelength instability and the flow is most unstable in the limit of back-
ground viscosity ratio m=0. Interestingly, the growth rate of the most amplified wave in this
limit is found to be twice that for m=1. Furthermore, the optimum wavenumber at which the
maximum growth rate occurs and the neutrally stable wavenumber of m=0 are greater than
the corresponding wavenumbers for a uniform viscosity flow by a factor of two.

A comparison between the two velocity profiles is presented. The piecewise-linear profile
does not match the more realistic results obtained with the error-function profile in the short
wavelength range, especially in nonhomogeneous shear-layer flows. However, the phase speed
results are in a good agreement with those of the error-function profile.
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