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Abstract. The approach to the solution of a three-dimensional boundary-value stress problem for elastic hollow
inhomogeneous cylinders of corrugated elliptic cross-section is proposed. The boundary conditions make it pos-
sible to separate variables along the length at the cylinder ends. It is proposed to include additional functions
into the resolving system of differential equations. These functions enable the variables to be separated along a
directrix using discrete Fourier series. The boundary-value problem derived for the system of ordinary differen-
tial equations is solved by the stable numerical method of discrete orthogonalization over the cylinder thickness.
Results in the form of plots and tables are presented.
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1. Introduction

Problems on the stress state of circular cylinders under mechanical and thermal loads have
been addressed before by Timoshenko [1, Chapter 11]. In a review by Soldatos [2, pp. 237–
238] it is pointed out, that noncircular cylindrical shells with small or large eccentricity are
widely used in aerospace and mechanical engineering applications. It was also noted that
the number of studies devoted to noncircular cylinders is rather scanty in comparison with
the extended literature on circular cylinders. Among these investigations there are studies
on the solution of problems for hollow noncircular cylinders with arbitrary cross-section,
including those with corrugated elliptical cross-section being considered in the present paper.
However, in contrast to circular cylinders, where in solving the boundary-value problems the
dimensionality may be reduced by representing resolving functions in the form of Fourier
series along a circumferential coordinate, the problem solution in the case of noncircular cyl-
inders is complicated, making it necessary to solve a three-dimensional boundary-value prob-
lem, as was demonstrated by Grigorenko and Rozhok [3]. Some semi-analytical approaches
to the solution of problems of this class are given in [2] and [4, Chapter 9]. There the dimen-
sionality over the cylinder thickness is reduced by the finite-difference method. Thus, in [3]
the problem for an elliptical isotropic cylinder under certain boundary conditions imposed
on the ends after separating the variables along the longitudinal coordinate is reduced to a
two-dimensional one which is solved using a discrete Fourier series (see [5], [6, Chapter 6],
[7, Chapter 19.7]) and the stable numerical discrete orthogonalization method proposed by
Godunov [8], Grigorenko [9, pp. 80–84, 90–94], Bellman and Kalaba [10, Chapter 4.2].

This paper considers an approach to the solution of a stress problem for inhomogeneous
orthotropic cylinders with corrugated elliptic cross-section under specified conditions at the
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Figure 1. Cross-section of the reference surface. Figure 2. Structure of the cylinder cross-section.

ends. The problem is solved by using a discrete Fourier series and a numerical discrete-
orthogonalization method.

2. Statement of the problem

Let us consider a stress problem for elastic hollow layered orthotropic noncircular constant-
thickness cylinders with the cross-section at each point being corrugated and elliptical. The
problem is described by the elasticity equations for an orthotropic body [4, Chapters 9–10],
[11, pp. 59–64], [12, pp. 22–36]. In this case the first quadratic form can be written as

dS2 =ds2 +A2
2(ψ, γ )dψ

2 +dγ 2, (1)

where s,ψ, γ are the orthogonal curvilinear coordinates, s is the arc length along a generatrix,
ψ is the polar angle in the cross-section, γ is the normal coordinate to the reference surface
γ =γ0.

The directrix of the reference surface at the cross-section (Figure 1) is specified in polar
coordinates in the form

ρ(ψ)= a

(1− e2 cos2ψ)1/2
+α cosmψ (0≤ψ ≤2π), (2)

e=
√

1− (a/b)2 =2
√
�/(1+�), �= (b−a)/(b+a),

where α is the amplitude, m is the corrugation frequency, a, b, and e are the semi-axes and
eccentricity of the ellipse (b>a). The point O (ρ=0) lies at the intersection of the ellipse axes.
When α= 0, the curve (2) describes an ellipse and at a= b a corrugated circumference. The
element of the cylinder cross-section is shown in Figure 2.

Then, we have:

A2(ψ, γ )=H2(ψ, γ )ω(ψ), (3)
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where

H2(ψ, γ )=1+γ /R(ψ), R(ψ)= [ρ2 + (ρ′)2]3/2

ρ2 +2(ρ′)2 −ρρ′′ , ω(ψ)= [ρ2 + (ρ′)2]1/2,

ρ′ =−
[

ae2 sin 2ψ
2(1− e2 cos2ψ)3/2

+αm sinmψ

]
,

ρ′′ =−
{
ae2

2

[
2 cos 2ψ

(1− e2 cos2ψ)3/2
− 3e2 sin2ψ

2(1− e2 cos2ψ)5/2

]
+αm2 cosmψ

}
,

where R(ψ) is the radius of the reference surface curvature.
Taking into account (1–3), we can write the initial equations and relations, which describe

the equilibrium of cylinders for the given class, for the i-th layer as follows:
– expressions for strains in terms of displacements

eis =
∂uis

∂s
, eiψ = 1

H2ω

∂uiψ

∂ψ
+ 1
H2

∂H2

∂γ
uiγ , eiγ = ∂uiγ

∂γ
,

eisψ = 1
H2ω

∂uis

∂ψ
+
∂uiψ

∂s
, eisγ = ∂uiγ

∂s
+ ∂uis

∂γ
, (4)

eiψγ =H2
∂

∂γ

(
uiψ

H2

)
+ 1
H2ω

∂uiγ

∂ψ
;

– equilibrium equations

H2
∂σ is

∂s
+ 1
ω

∂τ isψ

∂ψ
+ ∂

∂γ

(
H2τ

i
sγ

)
=0,

1
ω

∂σ iψ

∂ψ
+ ∂

∂γ

(
H2τ

i
ψγ

)
+H2

∂τ isψ

∂s
+ ∂H2

∂γ
τ iψγ =0, (5)

∂

∂γ

(
H2σ

i
γ

)
+H2

∂τ isγ

∂s
+ 1
ω

∂τ iψγ

∂ψ
− ∂H2

∂γ
σ iψ =0;

– relations of generalized Hooke’s law for an orthotropic body

eis =ai11σ
i
s +ai12σ

i
ψ +ai13σ

i
γ ; eiψγ =ai44τ

i
ψγ ,

eiψ =ai12σ
i
s +ai22σ

i
ψ +ai23σ

i
γ ; eisγ =ai55τ

i
sγ , (6)

eiγ =ai13σ
i
s +ai23σ

i
ψ +ai33σ

i
γ ; eisψ =ai66τ

i
sψ ,

where

ai11 = 1
Eis
, ai12 =−

νisψ

Eiψ

=−
νiψs

Eis
, ai13 =−ν

i
sγ

Eiγ
=−ν

i
γ s

Eis
, ai22 = 1

Eiψ

,

ai23 =−
νiγψ

Eiψ

=−
νiψγ

Eiγ
, ai33 = 1

Eiγ
, ai44 = 1

Giψγ

, ai55 = 1
Gisγ

, ai66 = 1

Giψs

, (7)

(0≤ s≤ l, 0≤ψ ≤2π, γp≤γ ≤γq) (i=1, T ).
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In the case of an isotropic body, relations (6) become:

eis =
1
Ei
(σ is −νi(σ iψ +σ iγ )), eiψγ = 1

Gi
τ iψγ ,

eiψ = 1
Ei
(σ iψ −νi(σ is +σ iγ )), eisγ = 1

Gi
τ isγ , (8)

eiγ = 1
Ei
(σ iγ −νi(σ is +σ iψ)), eisψ = 1

Gi
τ isψ .

In (4–6) uis, u
i
ψ , u

i
γ are the displacements along the generatrix, directrix, and over the

thickness, eis, e
i
ψ , e

i
γ , e

i
sψ , e

i
ψγ , e

i
sγ , σ

i
s , σ

i
ψ , σ

i
γ , τ

i
sψ , τ

i
ψγ , τ

i
sγ are the strains and stresses in the

i-th layer, Eis,E
i
ψ,E

i
γ ,G

i
sγ ,G

i
sψ ,G

i
ψγ , ν

i
sγ , ν

i
sψ , ν

i
ψγ are the corresponding elastic moduli,

shear moduli, and Poisson’s ratios.
Adding to Equations (4–6) the boundary conditions at the ends s = 0, s = l and the lateral

surfaces γ =γp;γ =γq of the cylinder, we arrive at a three-dimensional boundary-value problem.
Let us consider conditions for cylinders with simply supported [2] ends:

σ is =0, uiψ =0, uiγ =0 at s=0, s= l. (9)

These conditions correspond to the presence at the ends of a diaphragm that is perfectly
rigid in its plane and flexible out of it.

The boundary conditions at the lateral surfaces of the cylinder are specified in the form:

σγ =q−
γ , τsγ =q−

s , τψγ =q−
ψ at γ =γp,

σγ =q+
γ , τsγ =q+

s , τψγ =q+
ψ at γ =γq. (10)

When the adjacent layers contact without slip and separation, conditions of continuity should
be met:

σ iγ =σ i+1
γ , τ isγ = τ i+1

sγ , τ iψγ = τ i+1
ψγ ,

uiγ =ui+1
γ , uis =ui+1

s , uiψ =ui+1
ψ , (i=1, T −1).

(11)

As resolving functions, with allowance for the conjugation conditions, we choose the stress
and displacement components σγ , τsγ , τψγ , uγ , us, uψ . Upon performing some transforma-
tions, from (4–6) we obtain the resolving system of partial differential equations with sixth-
order variable coefficients

∂σ iγ

∂γ
= (ci2 −1)

1
H2

∂H2

∂γ
σ iγ − ∂τ isγ

∂s
− 1
H2ω

∂τ iψγ

∂ψ

+bi22

(
1
H2

∂H2

∂γ

)2

uiγ +bi12
1
H2

∂H2

∂γ

∂uis

∂s
+bi22

1

H 2
2

∂H2

∂γ

1
ω

∂uiψ

∂ψ
,

∂τ isγ

∂γ
=−ci1

∂σ iγ

∂s
− 1
H2

∂H2

∂γ
τ isγ −bi12

1
H2

∂H2

∂γ

∂uiγ

∂s
−bi11

∂2uis

∂s2

−bi66
1
H2ω

∂

∂ψ

(
1
H2ω

∂uis

∂ψ

)
− (bi12 +bi66)

1
H2ω

∂2uiψ

∂s∂ψ
,

∂τ iψγ

∂γ
=−ci2

1
H2ω

∂σ iγ

∂ψ
− 2
H2

∂H2

∂γ
τ iψγ −bi22

1
H2ω

∂

∂ψ

(
1
H2

∂H2

∂γ
uiγ

)

−(bi12 +bi66)
1
H2ω

∂2uis

∂s∂ψ
−bi22

1
H2ω

∂

∂ψ

(
1
H2ω

∂uiψ

∂ψ

)
−bi66

∂2uiψ

∂s2
, (12)
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∂uiγ

∂γ
= ci4σ iγ − ci2

1
H2

∂H2

∂γ
uiγ − ci1

∂uis

∂s
− ci2

1
H2ω

∂uiψ

∂ψ
,

∂uis

∂γ
=ai55τ

i
sγ − ∂uiγ

∂s
,

∂uiψ

∂γ
=ai44τ

i
ψγ − 1

H2ω

∂uiγ

∂ψ
+ 1
H2

∂H2

∂γ
uiψ ,

where

bi11 =ai22a
i
66/�

i, bi12 =−ai12a
i
66/�

i, bi22 =ai11a
i
66/�

i,

bi66 =1/ai66, �i = (ai11a
i
22 −ai212)a

i
66, (13)

ci1 =−(bi11a
i
13 +bi12a

i
23), ci2 =−(bi12a

i
13 +bi22a

i
23), ci4 =ai33 + ci1ai13 + ci2ai23.

3. Method for solving the problem

The boundary conditions (9) specified at ends allow us to separate in system (12) the vari-
ables in s and to reduce the problem to a two-dimensional one. Let us present the resolving
functions and load components in the form of a Fourier series along a cylinder generatrix as

X(s,ψ, γ )=
N∑
n=1

Xn(ψ,γ ) sinλns, Y (s,ψ, γ )=
N∑
n=0

Yn(ψ, γ ) cosλns,

X={σ iγ ; τ iψγ ;uiγ ;uiψ ;qiγ ;qiψ }, Y ={τ isγ ;uis;qis}, λn=πn/l, (0≤ s≤ l; i=1, T ).

(14)

Substituting (14) in system (12) and boundary conditions (10), we obtain for the n-th term
in expansions (14) the two-dimensional boundary-value problem (for simplicity the index i is
omitted):

∂σγ,n

∂γ
= (c2 −1)

1
H2

∂H2

∂γ
σγ,n+λnτsγ,n− 1

H2ω

∂τψγ,n

∂ψ

+b22

(
1
H2

∂H2

∂γ

)2

uγ,n−b12λn
1
H2

∂H2

∂γ
us,n+b22

1

H 2
2

∂H2

∂γ

1
ω

∂uψ,n

∂ψ
,

∂τsγ,n

∂γ
= −c1λnσγ,n− 1

H2

∂H2

∂γ
τsγ,n−b12λn

1
H2

∂H2

∂γ
uγ,n+b11λ

2
nus,n

−bi66
1
H2ω

∂

∂ψ

(
1
H2ω

∂us,n

∂ψ

)
− (b12 +b66)λn

1
H2ω

∂uψ,n

∂ψ
,

∂τψγ,n

∂γ
= −c2

1
H2ω

∂σγ,n

∂ψ
− 2
H2

∂H2

∂γ
τψγ,n−b22

1
H2ω

∂

∂ψ

(
1
H2

∂H2

∂γ
uγ,n

)

+(b12 +b66)λn
1
H2ω

∂us,n

∂ψ
−b22

1
H2ω

∂

∂ψ

(
1
H2ω

∂uψ,n

∂ψ

)
+b66λ

2
nuψ,n,

∂uγ,n

∂γ
= c4σγ,n− c2

1
H2

∂H2

∂γ
uγ,n+ c1λnus,n− c2

1
H2ω

∂uψ,n

∂ψ
,

∂us,n

∂γ
=a55τ

i
sγ,n−λnuγ,n,

∂uψ,n

∂γ
= a44τψγ,n− 1

H2ω

∂uγ,n

∂ψ
+ 1
H2

∂H2

∂γ
uψ,n(n=0,N)

(15)

with boundary conditions

σγ,n=q−
γ,n, τsγ,n=q−

s,n, τψγ,n=q−
ψ,n at γ =γp,

σγ,n=q+
γ,n, τsγ,n=q+

s,n, τψγ,n=q+
ψ,n at γ =γq. (16)

To reduce the two-dimensional boundary-value problem (15) and (16) to a one-dimensional
one, we will use an approach [3], [13] based on the change of the terms in the resolving sys-
tem (15), which interfere with the separation of variables along the cylinder directrix, with
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new additional functions. These functions, expressed in terms of resolving functions, include
geometrical parameters and have the form

ϕ
j

1 = 1
H2

∂H2

∂γ

{
σγ,n; τsγ,n;uγ,n;us,n; 1

H2

∂H2

∂γ
uγ,n

}
, (j =1,5),

ϕ
j

2 = 1
H2

∂H2

∂γ
{τψγ,n;uψ,n}, (j =1,2),

ϕ
j

3 = 1
H2ω

∂

∂ψ
{σγ,n;uγ,n;us,n}, (j =1,3), (17)

ϕ
j

4 = 1
H2ω

{
∂τψγ,n

∂ψ
; ∂uψ,n
∂ψ

; 1
H2

∂H2

∂γ

∂uψ,n

∂ψ

}
, (j =1,3)(n=0,N),

ϕ5 = 1
H2ω

∂ϕ3
1

∂ψ
, ϕ6 = 1

H2ω

∂ϕ3
3

∂ψ
, ϕ7 = 1

H2ω

∂ϕ2
4

∂ψ
.

After substituting the additional functions (17) in the system (15), we arrive at the follow-
ing system of equations:

∂σγ

∂γ
= (c2 −1)ϕ1

1 +λnτsγ −ϕ1
4 +b22ϕ

5
1 −b12λnϕ

4
1 +b22ϕ

3
4 ,

∂τsγ

∂γ
=−c1λnσγ −ϕ2

1 −b12λnϕ
3
1 +b11λ

2
nus −b66ϕ6 − (b12 +b66)λnϕ

2
4 ,

∂τψγ

∂γ
=−c2ϕ

1
3 −2ϕ1

2 −b22ϕ5 + (b12 +b66)λnϕ
3
3 −b22ϕ7 +b66λ

2
nuψ, (18)

∂uγ

∂γ
= c4σγ − c2ϕ

2
4 + c1λnus − c2ϕ

3
1 ,

∂us

∂γ
=a55τsγ −λnuγ , ∂uψ

∂γ
=a44τψγ −ϕ2

3 +ϕ2
2

with the boundary conditions (16). Here the index n, in the notations of resolving and addi-
tional functions is omitted.

Now represent all the functions entering into the system (18) and boundary conditions
(16) as the expansions into the Fourier series along the coordinate ψ :

X(ψ,γ )=
K∑
k=0

Xk(γ ) cos kψ, Y (ψ, γ )=
K∑
k=1

Yk(γ ) sin kψ,

X=
{
σγ ; τsγ ;uγ ;us;ϕj1 ;ϕj4 ;ϕ6;qγ ;qs

}
, Y =

{
τψγ ;uψ ;ϕj2 ;ϕj3 ;ϕ5;ϕ7;qψ

}
.

(19)

In this case the number of series terms K should be not less than the number of terms in
the series for the functions qγ , qs, qψ .

Expansions (19) are based on the fact that functions X={σγ ; τsγ ;uγ ;us;ϕj1 ;ϕj4 ;ϕ6;qγ ;qs}
entering into Equations (18) are even and Y ={τψγ ;uψ ;ϕj2 ;ϕj3 ;ϕ5;ϕ7;qψ } are odd. Because of
this, we can restrict ourselves in the Fourier series to one term only, namely cosine or sine.
This is supported also by the situation that, after substitution of (19) in (18), the variables are
separated. If the functions X and Y do not have the property of being even, the Fourier series
have to include both the sine and cosine. This takes place in the case of anisotropic layers.

Having substituted the series (19) in the equations of system (18) and boundary condi-
tions (16) and having separated the variables, we arrive at the following system of ordinary



Equilibrium of elastic hollow inhomogeneous cylinders 151

differential equations with respect to the amplitude values of the functions entering into sys-
tem (18):

dσγ,k
dγ

= (c2 −1)ϕ1
1,k +λnτsγ,k −ϕ1

4,k +b22ϕ
5
1,k −b12λnϕ

4
1,k +b22ϕ

3
4,k,

dτsγ,k
dγ

=−c1λnσγ,k −ϕ2
1,k −b12λnϕ

3
1,k +b11λ

2
nus,k −b66ϕ6,k − (b12 +b66)λnϕ

2
4,k,

dτψγ,k
dγ

=−c2ϕ
1
3,k −2ϕ1

2,k −b22ϕ5,k + (b12 +b66)λnϕ
3
3,k −b22ϕ7,k +b66λ

2
nuψ,k, (20)

duγ,k
dγ

= c4σγ,k − c2ϕ
2
4,k + c1λnus,k − c2ϕ

3
1,k,

dus,k
dγ

=a55τsγ,k −λnuγ,k, duψ,k
dγ

=a44τψγ,k −ϕ2
3,k +ϕ2

2,k

with the boundary conditions

σγ,k =q−
γ,k, τsγ =q−

s,k, τψγ,k =q−
ψ,k at γ =γp;

σγ,k =q+
γ,k, τsγ,k =q+

s,k, τψγ,k =q+
ψ,k at γ =γq (k=0,K).

(21)

In view of (17) for each k in Equations (20) we have:

ϕ
j

1,k =ϕj1,k(γ ;σγ,l; τsγ,l;us,l), (j =1,5),

ϕ
j

2,k =ϕj2,k(γ ; τψγ,l;uψ,l), (j =1,2),

ϕ
j

3,k =ϕj3,k(γ ;σγ,l;uγ,l;us,l), (j =1,3),

ϕ
j

4,k =ϕj4,k(γ ; τψγ,l;uψ,l), (j =1,3),

ϕ5,k =ϕ5,k(γ ;uγ,l);ϕ6,k =ϕ6,k(γ ;us,l),
ϕ7,k =ϕ7,k(γ ;uψ,l), (l=0,K).

(22)

The values ϕjik which enter into the coefficients of the Fourier series, are not expressed
explicitly in terms of the Fourier-series coefficients of the resolving functions and are calcu-
lated by integrating system (20) by the Runge scheme, using the discrete Fourier series at each
step γ = const. Relations (22) demonstrate the dependency of these coefficients on the ampli-
tude values of the determined resolving functions and connectivity of all 6K + 4 equations
of system (20). The equations of this system are integrated simultaneously for all harmon-
ics by a stable discrete numerical orthogonalization method. To find the amplitude values of
the functions (22) during integration by the current values of the resolving functions for a
fixed magnitude of γ , we will calculate the values of the functions (22) at a number of points
ψr (r = 1,R) on the interval [0,2π ] and construct a discrete Fourier series, i.e., the Fourier
series for the discretely specified function. As the number of points, where values of addi-
tional functions are calculated, increases, the discrete Fourier series becomes progressively less
distinguished from the exact Fourier series. Earlier on, while integrating, we have used the
boundary conditions. The amplitude values found for the functions (22) are substituted in the
system (20) with integration being continued in γ . In this case the Runge-Kutta method with
orthogonalization at separate points of the interval (γp≤γ ≤γq ) is applied. When solving the
ill-conditioned boundary-value problems, this method is stable [9, pp. 80–84].

The applied approach, based on the use of the discrete orthogonalization method and dis-
crete Fourier-series method, has been described in detail for solving the problem of the bend-
ing of rectangular plates and illustrated by the examples in [14]. Here too the convergence to
the problem solutions was shown. These solutions were obtained by the proposed approach,



152 Ya.M. Grigorenko and L.S. Rozhok

depending on the choice of a varying number of orthogonalization points and points for
which the tabular values of additional functions (17) are calculated, as well as on the number
of terms that are retained in expansions (19).

4. Numerical results and discussion

Based on the above approach, we will analyze the stress state of three-layered cylinders of
a corrugated elliptical cross-section under internal pressure q = q0 sin(πs/ l), q0 = const. The
problem is solved for h1 =h3 =2, h2 =4, where h1 and h3 are the thicknesses of the external
and internal layers, respectively, h2 is the thickness of the middle layer. The other parame-
ters are equal to: r0 = 40, l= 60, m= 4, α= 2,3, ν= 0·3, �= 0,0·1,0·2. It was assumed that
the perimeter of the surface-reduction cross-section for an ellipse is equal to the length of a
circumference of the radius r0.

At first, we will consider the problem involving an inhomogeneous three-layered cylinder
with isotropic layers, when the elastic moduli are E1 =E3 =E0, the middle layer has the elastic
modulus E2 =dE0, where d=1,0·1. For all the layers we used Poisson’s ratio ν=0·3. Results
of the problem solution are presented in Figures 3–6 and Tables 1 and 2 for the internal cyl-
inder surface.

In Figures 3–6, where α=2, the solid lines correspond to d=1, dashed ones to d=0·1.
Figure 3 shows how the inhomogeneity of the structure and ellipticity of the cylinder affect

the distribution of the displacements along the directrix. So, for �=0·2 the maximal displace-
ments uγ at d=0·1 increase 1·9 times in comparison with a homogeneous cylinder. The max-
imal displacements uγ (Figure 3) hold near the apex of the corrugation valley, that is, in the
most pliable region of a corrugation. This point explains the above-mentioned distinction.

Figures 4–6 show how the stresses σψ vary along the directrix and over the thickness,
depending on the structure inhomogeneity and ellipticity level of the cylinder. It follows from
Figure 4 that the maximal magnitudes of the stress σψ hold at the corrugation apex for ψ=0

Figure 3. Distribution of displacements uγ E0/q0 on
the interval 0≤ψ ≤π/2 for various values of d.

Figure 4. Distribution of stresses σψ/q0 on the interval
0≤ψ ≤π/2 for various values of d.
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Figure 5. Distribution of stresses σψ/q0 over the cylin-
der thickness at ψ=0 for various values of d.

Figure 6. Distribution of stresses σψ/q0 over the cylin-
der thickness at ψ=π/2 for various values of d.

and ψ = π/2, that is, in the domains of maximal rigidity. In this case the maximal stress
σψ(ψ=0) at d=0·1 increases by a factor 1·7 in comparison with a homogeneous cylinder at
�=0·2. The influence of ellipticity on the value of the displacements uγ for � �=0 is stronger
for ψ=0 and ψ=π/2 than that of the stresses σψ .

It can be noted regarding the change in the stress σψ over the cylinder thickness (Figures
5 and 6) that this stress takes a maximum value on the internal surface of the cylinder, that

Table 1. Values of the displacements uγE0/q0.

� H d=1·0 d=0·1
ψ=0 ψ=π/4 ψ=π/2 ψ=0 ψ=π/4 ψ=π/2

0·0 −4 96·6 414·6 96·6 134·9 848·2 134·9
−2 89·3 417·5 89·3 126·5 850·4 126·5
0·0 85·8 416·7 85·8 124·5 839·0 124·5

2 84·4 412·6 84·4 119·6 830·9 119·6
4 84·6 404·6 84·6 117·5 820·7 117·5

0·1 −4 7·1 457·9 219·1 −17·4 927·5 343·4
−2 −0·1 461·3 211·5 −25·3 930·5 334·5
0·0 −2·8 460·8 207·2 −24·3 919·6 331·0

2 −3·0 456·6 204·6 −25·7 912·0 232·0
4 −1·3 448·2 203·2 −25·6 901·4 318·2

0·2 −4 −62·0 583·2 389·9 −138·6 1150·7 635·3
−2 −69·4 588·0 381·9 −146·2 1155·7 626·1
0·0 −71·3 588·3 376·9 −139·9 1146·6 621·6

2 −70·0 584·0 373·0 −136·7 1140·6 610·0
4 −66·7 574·5 369·8 −134·3 1109·0 602·0
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Table 2. Values of the stresses σψ/q0.

� H d=1·0 d=0·1
ψ=0 ψ=π/4 ψ=π/2 ψ=0 ψ=π/4 ψ=π/2

0·0 −4 12·21 −4·15 12·21 18·84 −4·07 18·84
−2 7·44 −0·26 7·44 0·92 0·16 0·92
0·0 4·03 3·40 4·03 0·71 0·43 0·71

2 1·23 7·16 1·23 5·57 7·34 5·57
4 −1·33 11·44 −1·33 −0·02 17·25 −0·02

0·1 −4 12·54 −4·54 12·83 18·97 −4·61 19·99
−2 7·27 −0·45 7·94 0·94 0·15 0·90
0·0 3·51 3·44 4·56 0·66 0·44 0·77

2 0·47 7·45 1·78 4·19 7·55 7·01
4 −2·24 12·02 −0·82 −1·40 17·97 0·81

0·2 −4 14·08 −5·56 13·92 20·81 −6·01 21·67
−2 7·47 −0·93 8·48 0·97 0·10 0·83
0·0 2·96 3·54 4·98 0·64 0·45 0·80

2 −0·57 8·21 2·14 2·82 8·04 8·38
4 −3·63 13·56 −0·58 −3·41 19·80 1·26

is, at the same place where a load is applied. The stresses in the vicinity of a middle layer
(d = 0·1) approach zero with distance from the internal surface; in the vicinity of the exter-
nal layer they assume values that are almost three times smaller than the maximum values.
In this case ellipticity has an insignificant effect.

The variation in numerical values of the displacements uγ and stress σψ over the thickness
of the inhomogeneous cylinder depending on � and d at α=3 can be seen from Tables 1 and
2. The given values of the displacements uγ and the stresses σψ characterize changes in the
similar values for α= 3 as compared with those for α= 2 (Figures 3–6). Thus, among other
things for d = 0·1, �= 0·2 the maximal displacement increases by a factor of 1·15 (Table 1,
Figure 3) and the maximal stress σψ by 1·2. (Table 2).

The problem was also solved for a three-layered cylinder, when the external layers are iso-
tropic and load-bearing, for E1 =E3 =E0 and ν=0·3, and the middle layer is orthotropic, for
Es =3·68E0, Eψ =2·68E0, Eγ 1·1E0, νsψ =0·105, νsγ =0·405, νψγ =0·431, Gsψ =0·5E0, Gsγ =
0·45E0, Gψγ = 0·41E0 [12, p. 64]. Corresponding results are given in Tables 3–4 which show
how the displacements uγ and stresses σs and σψ vary over the cylinder thickness depending
on �, ψ , and α. As this takes place, it can be noted (Table 3, Figure 3) that the values of
the maximal displacements uγ at α=2, �=0·2 for a cylinder with a homogeneous orthotrop-
ic layer and with a soft middle layer are in the ratio 1 :1·54 :3·02, that is, the cylinders become
more pliable in the same sequence. As to the stresses (Tables 4, 5), it can be noted that the
character of their distribution depends strongly on the orthotropy parameters.

In solving the above problems, to construct the discrete Fourier series for additional func-
tions, we found their magnitudes at 80 points, taking into account the first 15 harmonics. In
this case, to obtain a stable result by the numerical method used, we adopted 41 orthogonal-
ization points.

Thus, variation in cylinder characteristics makes it possible to choose the rational param-
eters of similar structure elements.
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Table 3. Values of the displacements uγE0/q0.

ψ H α=2 α=3

�=0 �=0·1 �=0·2 �=0 �=0·1 �=0·2

0·0 −4 40·2 −34·7 −94·9 32·7 −35·9 −88·7
−2 34·9 −40·2 −100·8 26·4 −42·2 −95·2
0·0 28·5 −45·4 −104·9 19·3 −47·9 −99·8

2 25·8 −44·5 −102·3 17·8 −47·2 −96·6
4 26·0 −44·1 −99·4 19·1 −44·9 −93·2

π/4 −4 239·4 275·0 380·3 325·1 360·3 461·2
−2 239·7 275·7 382·5 327·3 362·9 465·1
0·0 238·3 274·7 382·4 328·7 365·0 468·9

2 229·9 265·9 372·4 319·9 356·0 459·5
4 224·5 260·1 365·4 313·3 348·9 451·5

π/2 −4 40·2 139·2 276·7 32·7 127·3 261·4
−2 34·9 133·8 271·2 26·4 120·7 254·4
0·0 28·5 126·0 261·9 19·3 112·1 243·9

2 25·8 120·7 253·5 17·8 108·1 237·1
4 26·0 119·8 251·4 19·1 108·5 236·4

Table 4. Values of the stresses σs/q0.

ψ H α=2 α=3

�=0 �=0·1 �=0·2 �=0 �=0·1 �=0·2

0·0 −4 7·18 7·58 8·93 9·49 9·60 10·27
−2 11·00 10·75 11·34 13·19 12·71 13·03
0·0 5·91 4·96 4·05 5·74 4·93 4·05

2 0·61 −0·05 −0·90 −0·20 −0·67 −1·37
4 −1·01 −1·84 −3·03 −2·46 −2·98 −3·92

π/4 −4 −2·35 −2·70 −3·64 −4·58 −4·91 −5·75
−2 0·69 0·41 −0·32 −2·21 −2·50 −3·20
0·0 5·68 5·82 6·17 4·99 5·06 5·26

2 4·43 4·70 5·41 5·25 5·48 6·07
4 6·78 7·28 8·66 9·01 9·50 10·75

π/2 −4 7·18 7·52 8·31 9·49 10·22 11·44
−2 11·00 12·04 13·53 13·19 14·43 15·97
0·0 5·91 6·99 8·13 5·75 6·57 7·26

2 0·61 1·14 1·58 −0·20 0·08 0·19
4 −1·01 −0·49 −0·18 −2·46 −2·32 −2·41
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Table 5. Values of the stresses σψ/q0.

ψ H α=2 α=3

�=0 �=0·1 �=0·2 �=0 �=0·1 �=0·2

0·0 −4 1·04 1·55 2·13 1·78 2·14 2·62
−2 −1·17 −1·05 −1·14 −0·46 −0·54 −0·63
0·0 −0·34 −1·62 −2·85 0·10 −1·23 −2·30

2 0·09 −0·81 −1·70 −0·10 −0·93 −1·71
4 −0·25 −1·60 −2·93 −0·70 −1·90 −3·04

π/4 −4 −3·60 −4·10 −5·59 −5·36 −5·89 −7·44
−2 −6·08 −6·88 −9·33 −8·75 −9·69 −12·52
0·0 −0·69 −0·75 −1·06 −1·40 −1·61 −2·36

2 2·18 2·42 3·05 2·66 2·84 3·30
4 4·10 4·59 5·98 5·43 5·87 7·05

π/2 −4 1·04 0·51 −0·18 1·78 1·48 1·10
−2 −1·17 −1·47 −1·95 −0·46 −0·34 −0·08
0·0 −0·34 1·18 3·23 0·10 1·92 4·60

2 0·09 1·12 2·45 −0·10 0·91 2·29
4 −0·25 1·29 3·30 −0·70 0·76 2·77

5. Conclusions

In conclusion we note that the method proposed in this paper provides a tool for construct-
ing solutions of the three-dimensional boundary-value problem concerning the equilibrium of
hollow non-circular inhomogeneous cylinders of intricate cross-section. For this case we effi-
ciently used the Fourier-series method for discretely specified functions and a stable numerical
discrete orthogonalization method. This approach allowed us to solve the problems as applied
to hollow cylinders of various cross-sectional shape.

Besides, the method being based on a continuous scheme makes it possible to obtain a
relatively accurate approximate solution of the problem. This problem can not be solved by
projective or variational methods. The method was found to be suitable for solving problems
involving single-layered isotropic cylinders with a corrugated circular [13] and elliptical [15]
cross-section. The possibility to realize the proposed approach to the solution of problems of
the given class has been illustrated by various examples. The solution obtained falls in the cat-
egory of exact solutions of the theory of elasticity which first of all serve as a basis for con-
structing and evaluation of the reliability of applied mathematical models and design schemes
for both development and estimation of the accuracy of the approximate methods for calcu-
lating structural elements. The numerical results obtained and presented in Figures 3–6 and
Tables 1–5 indicate that choosing rational parameters of similar structural elements can be
performed by variation in ellipticity and corrugation characteristics.
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