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Steady non-ideal detonations in cylindrical sticks of explosives
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Abstract. Numerical simulations of detonations in cylindrical rate-sticks of highly non-ideal explosives are per-
formed, using a simple model with a weakly pressure-dependent rate law and a pseudo-polytropic equation of
state. Some numerical issues with such simulations are investigated, and it is shown that very high resolution
(hundreds of points in the reaction zone) are required for highly accurate (converged) solutions. High-resolution
simulations are then used to investigate the qualitative dependences of the detonation driving zone structure
on the diameter and degree of confinement of the explosive charge. The simulation results are used to show
that, given the radius of curvature of the shock at the charge axis, the steady detonation speed and the axial
solution are accurately predicted by a quasi-one-dimensional theory, even for cases where the detonation propa-
gates at speeds significantly below the Chapman-Jouguet speed. Given reaction rate and equation of state models,
this quasi-one-dimensional theory offers a significant improvement to Wood-Kirkwood theories currently used in
industry.
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1. Introduction

Detonations are supersonic waves that can propagate through reactive materials which con-
sist of a strong shock wave coupled to the exothermicty of the chemical reactions. In so-
called non-ideal detonation processes, the non-linear coupling between front curvature and
the details of the chemical decomposition kinetics is important in the propagation of the
wave. The chemical physics of condensed phase non-ideal detonations is of relevance to a
number of disparate industries, both from the point of view of safety and of performance.
These include: (i) defence related industries where insensitive munitions (IMs) as well as
low explosives used by terrorists entail non-ideal detonation processes; (ii) mining industry,
where the modern commercial explosives used are mainly ammonium nitrate based water-
in-oil emulsions or ammonium nitrate-fuel oil slurries (ANFO), sometimes incorporating
ammonium nitrate prills (heavy ANFO, doped emulsions); (iii) industries where the manu-
facture, transport and storage of hazardous (explosive, combustible and detonable) materials
are involved; (iv) chemical/petrochemical and fine chemical industries, where it is inevitable
that some chemical processing operations will involve unstable intermediates, some of which
may be detonable, these include those handling acetylene and acetylides, peroxides, nitrates
and perchlorates, ethylene oxide and propylene oxide.

Theoretical attempts have been made to progress beyond simple one-dimensional thermo-
hydrodynamic (Chapman-Jouguet) descriptions of condensed phase detonations in non-ideal
explosives. One approach that is currently in use in the mining (e.g. [1]) and defence (e.g. [2])
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industries is that based on Wood-Kirkwood theory [3], which uses a slightly divergent flow
central stream tube approximation to give the solution only along the axis of a cylindrical
charge. However, this is an incomplete theory which involves an unknown function (the axial
flow divergence) that needs to be arbitrarily prescribed. Furthermore, there exist concerns over
the validity of this slightly divergent flow approach for significantly non-ideal explosives, e.g.
for determining critical diameters for detonations in different confinements (indeed, further
unknown relationships between the radius of curvature of the shock at the axis, the charge
diameter and confinement need to be empirically specified in this method in order to obtain
detonation speeds as a function of diameter [1]).

A rational asymptotic theory for two-dimensional steady detonations is given in [4], based
on the assumption of weak-shock curvature (on the detonation reaction-zone length) or
equivalently on the assumption of detonation speed close to the Chapman-Jouguet (planar)
detonation speed. Stemming from this work, there is now a large body of theoretical and
experimental work on propagation laws of curved detonation fronts known as detonation
shock dynamics (DSD) (see the review in [5], and references contained therein).

The lowest order asymptotic DSD theory is equivalent to an assumption that the front
is quasi-one-dimensional and hence that it is governed by a single normal detonation speed-
shock curvature (Dn–κ) law. This Dn–κ law can found from an asymptotic (small curvature)
analysis (e.g. [4,6]) or numerical integration of the quasi-one-dimensional equations (e.g. [7,8],
Short and Sharpe, submitted) given a reaction rate law and equation of state model. Applied
to the ratestick problem, the asymptotic theory gives an equation which determines the shock
shape of the steady-state detonation, which can then be used to solve the complete prob-
lem (e.g. detonation speed versus charge diameter) [4]. The shock-shape equation is subject
to a boundary condition at the charge edge, which depends on the explosive and confinement
model pair (this condition can be determined through a modified inert shock polar analysis
at the shock-charge edge intersection point [5,9]). However, such an asymptotic theory based
on small curvature/small detonation speed deficits from CJ is not likely to be valid for the
highly non-ideal explosives of interest here, in which detonations can propagate even when
the detonation speed is ∼50% of CJ and the shock front is strongly curved.

Indeed, it is found that the first-order DSD theory does not do well in describing experi-
mental shock shapes for these highly non-ideal explosives. The experimentally measured shock
shapes give a Dn–κ relation for the shock front as one moves from the charge axis to the
charge edge. For mildly non-ideal explosives, such as PBX 9502 or Nitromethane, the Dn–κ

relations along different shock fronts (e.g. corresponding to different charge diameters) do all
lie close to one another or overlay, at least for sufficiently small curvatures [10–12], indicat-
ing that the dynamics of curved detonation fronts in such explosives are, to leading order,
well described by a single Dn–κ law as predicted by the first-order theory. Indeed, the Dn–κ

law determined from rate-stick experiments for a given explosive can then be used to theoret-
ically determine the shock front dynamics for the explosive in more complex geometries [5,
13]. For the more non-ideal explosives, however, such as PBXN 1111 and ANFOs, the Dn–κ

relations along individual shock fronts lie along different curves for different diameters, and
these curves do not intersect or overlap [11,14,15]. Hence for these non-ideal explosives, the
front propagation cannot be described a simple, single Dn–κ law such as the first-order DSD
theories give, and thus higher order (two-dimensional) effects must be important.

A second-order (in the deficit of the detonation speed from CJ) DSD theory exists [5,13,
15]. At second order, two-dimensional (and time-dependent) effects and brought into play.
The Dn–κ relations along different shock fronts determined from this higher-order theory
are in better qualitative agreement with the non-ideal explosive experiments. However, this



Steady non-ideal detonations 41

higher-order theory is still based on the rational asymptotic limit that the detonation is
asymptotically close to the CJ speed. Hence it is not quantitatively predictive for highly non-
ideal explosive such as heavy ANFOs and doped emulsions in which the departure from
the CJ speed is significant. Furthermore, to date this theory has only been developed for a
specific, simple form of the reaction-rate law, with a square-root dependence on the reac-
tion progress variable (square-root depletion), a polytropic equation of state and only for
slab geometry. The analysis would be significantly less tractable for more complex forms
of the reaction-rate model (note that even changing from square root to simple depletion
(a linear dependence of the rate law on the reaction progress variable) introduces logarith-
mic near-sonic boundary layers, even in the first-order DSD theory [16]), as well as for
cylindrical-charge geometry due the introduction of geometric source terms.

In order to increase the range over which the higher order theory is valid, an extended the-
ory based on the exact shock-change equation is also given in [13], where the single unknown
term in the equation is approximated using the higher-order DSD theory results. For lower
detonation speeds, this extended theory gives results which are significantly different to the
higher DSD theory (J. Bdzil, private communication), and which are in much better agree-
ment with the results for front shapes and speeds from numerical simulations [13]. However,
this shock-change equation based theory is essentially only a front-propagation law, and one
cannot reconstruct the flow field behind the shock (e.g. along the charge axis or the explo-
sive-inert interface) from this, since the equation on which it is based is valid only at the
shock. Furthermore, this front-propagation theory has again only been developed for the sim-
ple pressure-dependent rate law with square-root depletion and a polytropic equation of state
in slab geometry.

Hence in order to investigate highly non-ideal steady detonations in cylindrical charges,
including the details of the reactive flow field in the reaction zone and detonation products,
one must currently resort to direct numerical simulations of the full reactive Euler equations.
Aslam and co-workers [5,9,13,15] performed several simulations in two-dimensional slab
geometry. Their main interest was in validating or comparing with various aspects of DSD
theory. However, a major result of this work was to show that for reasonably accurate results,
numerical resolutions of more than about 50 numerical grid points in the reaction-zone length
are required [13]. Importantly, this raises severe questions regarding the validity of engineer-
ing style calculations, which typically only use 4 –10 grid points in the reaction zone (e.g. [17]).
Axisymmetric simulations of cylindrical charges were performed in [18]. They found that for
small charge diameters the sonic locus in the steady-state wave could be different to that in
the analysis in [4]. However, the calculations were less accurate than those of Aslam and co-
workers, and they only presented results for two (unconfined) cases. Some simulations in slab
geometry have also been performed in [19], but were interested only in comparing numerical
methods, rather than in the details of the solution. Hence parametric studies of detonations
in cylindrical charges using high-resolution simulations are needed.

In this paper we perform such high-resolution studies of non-ideal detonations in cylin-
drical charges for a simple reaction rate law and equation of state. The purpose of the paper
is threefold: (i) to provide complete two-dimensional solutions which can be used for assess-
ing and improving approximate theories (e.g., we use the results to show that a significant
improvement to Wood-Kirkwood theory for determining the axial solution is provided by
a quasi-one-dimensional theory); (ii) to investigate how the qualitative nature of the reac-
tion-zone structure changes with charge diameter and with the degree of confinement; (iii) to
examine and identify some numerical issues that arise in such simulations, even when simple
models are used. We stress here at the outset that this paper is not concerned with modelling
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of a specific explosive, nor in detailed modelling of reaction rates or equations of states for
such explosives, nor in explicit modelling of the heterogeneities inherent in many non-ideal
explosives. Finally, here we are concerned only with the steady-state solutions, and not in the
evolution to this steady state.

2. The model

The governing equations of the model are the Reactive Euler equations, which represent con-
servation of mass, momentum and energy coupled to a chemical reaction,
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Here v is the material velocity, ρ is the material density, p the pressure, e the internal energy
per unit mass, λ a reaction progress variable (i.e., λ= 0 in the initial explosive and λ= 1 in
the completely burnt state), with W the reaction rate.

Equations (1) are closed by specifying an equation of state (eos) and a form for the reac-
tion rate. For the purposes of the paper as stated in the introduction, it is sufficient to use
relatively simple, but representative, eos and rate laws. Note first that theoretical detonation
curvature studies show that highly non-ideal detonations, which can propagate even when the
front curvature is large and at speeds which depart significantly from the CJ speed, are asso-
ciated with rate laws which are not very state sensitive (e.g. [8,15, Short and Sharpe, submit-
ted]). While the main results here are generic to non-ideal explosives, the rate and eos laws
that are used were chosen to be representative of commercial ANFO explosives, namely
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where Q is the heat of reaction and ρ0 is the initial density of the explosive, and
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where

γ0 =1·3333, γ1 =0·36264, γ2 =0·076288, pref =1 GPa,

Q=3·822×106 J kg−1

Hence a simple pseudo-polytropic eos given in Equation (2) is used to represent the thermo-
dynamics of the explosive and its detonation products (cf. [1]). This eos and its associated
parameters are chosen to give a match for adiabatic γ at both the CJ state and in the hot
gaseous products to those determined from an ideal (thermochemical equilibrium) detonation
code, which is based on a fundamental intermolecular potential based equation of state for
the fluid state [20].
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and adiabatic γ is then given by

γ = ρc2

p
.

The 1·5 power for the pressure dependence in the reaction rate was chosen from a best
fit of the results from an industrial Wood-Kirkwood code with experimental data (I. Parker,
C. Cunningham, private communications), while the value of the rate constant is taken to be

τ =28 µs,

which was chosen so that the detonation speed determined from the numerical simulations
agreed well with the experimental result for the case of an unconfined explosive with a charge
diameter of 100 mm.

Note that our choice of rate law and eos can be considered one of a commonly used class
of models with pressure-dependent rate laws of the form kpn(1−λ)m (k a rate constant) and
equations of state of the form e=p/((γ ∗ −1)ρ), as used in previous rate-stick simulations (the
case n=0, m=1/2, γ ∗ =γ =3 was considered in [19], results for n=1, m=1, γ ∗ =γ =1·4 were
given in [18], while Aslam and co-workers [5,9,13,15] used m=1/2, γ ∗ =γ =3 and n=0,1,2
and 3). Some additional results with a different choice of the eos and rate parameters are
given in the Appendix A, which shows that the main results and conclusions described in Sec-
tion 5 below are not sensitive to the choice of parameters for this class of models. Note also
that even the more complex, semi-empirical rate laws often used to model specific explosives
(e.g. [1]) are essentially pressure-dependent rates.

For our choice of model parameters, we also fix the initial pressure and density of the
explosive, p0 and ρ0 respectively, to be

p0 =1×105 Pa, ρ0 =0·8 g/cm3.

Here we are concerned with detonations in cylindrical rate sticks, and therefore solve the
two-dimensional, axially symmetric version of Equations (1), i.e., in (r, z) co-ordinates. The
material velocity is then v = (u,w), where u and w are the radial and axial components,
respectively.

We also need to model the effects of different confinements. In this work we are concerned
with how the confinement affects the detonation wave in the explosive, rather than in the
motion of the confinement. Hence in order to model confinement we simply include an inert
material surrounding the explosive which has the same properties as the explosive itself (apart
from being non-reactive), i.e., the inert is taken to have an equation of state as in the explo-
sive, given by the first term in the definition of e in Equation (2). Since the explosive and con-
fining inert are in mechanical equilibrium, the initial pressure of the confining inert is equal
to that in the explosive (1×105 Pa). Increasing confinement effects can then be modelled by
varying the initial density of the inert, ρI . While simple, this model allows us to consider all
cases from completely unconfined (ρI →0, for which the inert then behaves as an ideal gas) to
infinite confinement (ρI →∞, for which the inert behaves as a solid, immovable wall). Also,
from a numerical perspective, this is very efficient since it allows us to solve the whole sys-
tem (explosive and inert) as a single material with the interface numerically captured, and
hence this avoids unresolved numerical and closure issues involved in tracking and keeping
a sharp interface between the explosive and inert, which is required when the inert material
has markedly different properties to that of the explosive. Note that [18] and [19] used the
same approach for modelling confinement.
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Hence the remaining parameters to vary are the charge diameter, d, and the initial den-
sity of the confining inert, ρI . In order to explore the effects of both charge diameter and
confinement several cases were considered, for which d and ρI are given in Table 2.

3. Numerical method

To perform the numerical simulations in this paper we use the hierarchically adaptive grid
code, Cobra, which has been developed for industrial applications by Mantis Numerics Ltd.,
and is described more fully in [21]. To summarize, it is a second-order Godunov (shock cap-
turing) scheme, which employs a hierarchical series of grids G0, . . . ,GN , such that the grid
Gn has mesh spacing h/2n, where h is the mesh spacing on the base grid G0. The higher grids
only occupy regions where increased resolution is required. Refinement of the grids is con-
trolled by comparing the solutions of each physical variable, and also their rates of change,
on grids Gn and Gn−1. For detonation calculations we also ensure that the whole reaction
zone is also refined to the highest grid, by forcing grid refinement whenever the size of the
reaction rate is above some small value. This grid adaptivity makes the code particularly suit-
able for detonation simulations, where high resolution is required in the detonation reaction
zone, but this reaction zone usually occupies only a very small part of the explosive.

The numerical domain is rectangular in (r, z) co-ordinates. The explosive initially lies in the
region r ≤ d/2, with the surrounding inert initially in the region d/2 <r ≤R, where R is the
width of the domain in the radial direction. The boundary condition at r = 0 is a symmetry
condition, while an outflow boundary condition was used at r =R, as in [18]. The thickness
of the inert in the domain was 50 mm for all cases, i.e., R =d/2+50. Outflow/inflow bound-
ary conditions were also used at the boundaries in the z-direction.

In this study we are interested only in the steady propagation of the detonation through
the explosive. Hence the initial conditions for the calculations were chosen so that the steady
state was reached as quickly as possible in the simulations. After some experimentation it
was found that this was achieved by initializing the calculations by placing the steady, pla-
nar ZND detonation wave onto the grid in the explosive region r ≤d/2, with the shock ini-
tially lying along z=0 and the reaction zone lying in the region z<0. Figure 1 shows profiles
of pressure and λ in the ZND (plane) detonation. The detonation speed, shock pressure, CJ
pressure (the pressure at the sonic point at the end of the reaction zone) and the 99% reaction
length (the distance between the shock and the point where λ=0·99) for the ZND detonation
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are

DCJ =4·797 km/s, pshk =10·3 GPa, pCJ =4·88 GPa, l99 =23·1 mm.

Note that the simulations are performed in the rest frame of the initial explosive, so that
the detonation propagates through the numerical grid in the positive z-direction. The left
(rear) z-boundary was placed sufficiently far (160 mm) behind the initial shock position so
that it had little effect during the time of the simulations, while the right z-boundary was
placed 800 mm ahead of it. The calculations were run until the detonation became steady
in its own rest frame, i.e., when its speed and reaction-zone structure became independent
of time. Once the steady state was achieved, the results were transformed back into the rest
frame of the detonation. Hence note that for all the results below, the axial material veloc-
ity corresponds to the shock rest-frame measured velocity, while the z-coordinate is the axial
distance from the position of the shock front at the axis.

In the simulations presented here, the interface is captured and hence becomes smeared
across a few grid cells behind the shock. Since we are using a conservative scheme and con-
sidering a single fluid (same eos in explosive and inert), the flow variables on either side of
the captured interface should be correct provided the resolution is sufficiently high such that
its numerical thickness is much thinner than any other length scale in the problem. This is
a standard approach (cf. [18,19]). The thickness of the captured interface can be seen in the
density contour plots in Figure 4, which shows that in the detonation driving zone (DDZ, the
part of the solution which can affect the front propagation) the captured interface remains
very thin on the reaction-zone scale. In order to determine the ‘location’ of the interface, an
advecting scalar is also tracked in the numerics which is initially unity in the explosive and
zero in the inert. The interface ‘locus’ plotted in the figures in this paper are the contours
where this scalar is equal to a half.

4. Numerical resolution study

An important numerical question is how much resolution is required to obtain well converged
numerical solutions for the steady-state non-ideal detonation problem? While engineering-style
calculations often use just a few (of the order of 10 or less) numerical grid points in the reac-
tion zone [17], Aslam and co-workers [5,13,15] found that at least about 50 points in the reac-
tion zone were necessary for reasonably accurate detonation speeds for their model. This is
not surprising since the steady-state non-ideal detonation is essentially an eigenvalue problem,
i.e., the speed and structure of the wave are non-linearly coupled.

Here we are interested in the full solution of the two-dimensional DDZ (e.g., shock shapes,
axial solution, etc.), and it is therefore important to perform numerical resolution studies
in order to ensure that the full numerical solution (not just the axial detonation speed) is
well converged for non-ideal detonation problems. Furthermore, such a study is also useful
in identifying and determining the effects of numerical artifacts inherent in shock capturing
schemes on the non-ideal detonation solution (see below).

Table 1 shows the dependence of the solution along the charge axis on the numerical res-
olution for the case d =100 mm, ρI =ρ0 =0·8 g/cm3. Here � is the grid spacing on the finest
grid, which covers the reaction zone, lDDZ is the non-ideal axial DDZ length (i.e., the dis-
tance between the shock and sonic locus along the charge axis) in the steady state (14·9 mm
in this case), pshk is the shock-pressure at the axis. Note that we are using a shock-capturing
scheme, as is the case for all previous simulations of the ratestick problem, which means that
the shock is spread over a few numerical grid points, with the majority of the pressure rise



46 G.J. Sharpe and M. Braithwaite

Table 1. Properties of axial solution as a function of numerical resolution for ρI = 0·8 g/cm3 and d =
100 mm. � is the numerical grid spacing in the reaction zone, points/lDDZ is the number of grid points
between the shock and sonic loci along the charge axis, D is the detonation speed in the axial direction,
pshk is the numerical shock pressure on the axis, λshk is the amount of burning within the numerically
smeared shock on the axis.

� (mm) points/lDDZ D (km/s) pshk (GPa) λshk

0·1 149·0 3·13 4·32 0·05
0·2 74·5 3·12 4·24 0·09
0·4 37·3 3·10 4·11 0·12
0·8 18·7 3·05 3·88 0·15
1·6 9·3 3·01 3·67 0·21
3·2 4·7 2·93 3·25 0·52

over 2 to 3 grid points. Since the rate is maximum just behind the shock in these types of
reaction models, there will also be some burning occurring in the captured shock (cf. [18]),
i.e., the smeared shock and reaction overlap to some extent in the numerical solution. Hence
also given in Table 1 is the value of the reaction progress variable at the axis at the point
where the pressure is a maximum, λshk (i.e., the degree of burning that occurs in the numer-
ical shock). As the resolution increases and the shock becomes thinner, particles spend less
time in the shock and hence this effect is decreased. However, one important ramification of
this is that the normal speed of the wave in the simulation is not related directly to the numer-
ically calculated shock pressure through the inert shock jump conditions, because some heat
release has also occurred in the numerical shock. Indeed, this burning in the shock lowers
the peak pressure for a given value of D. Hence in order to determine D, once the wave has
reached steady state in the simulations (typical taken to be once the axial numerical shock
pressure has stopped decreasing), the detonation is allowed to propagate further over many
reaction times (until it is near the right z-boundary) and the speed determined by the distance
it has propagated in this time of steady propagation.

There is also a further numerical effect acting (and interacting with the burning within
the shock) which results in a lower apparent shock pressure. For simple pressure-dependent
rate laws as used here, the pressures profiles have a well defined von Neumann spike, as in
Figure 1. When such spiky profiles are discretized and averaged over a grid cell, the spike is
‘clipped’ resulting in a lower numerical shock pressure than in the exact solution. The amount
of shock ‘clipping’ that occurs depends on the location of the physical spike with respect to
the cell centre.

Returning to Table 1, we see that for our highest resolution of 0·1 mm (or about 150
points in the axial DDZ), the detonation speed is well converged, and less than 5% of the
burning occurs within the numerical shock structure. The shock pressure is less well converged
than the wave speed because of the well defined von Neumann spike, so that extremely high
resolution would be required to prevent significant shock clipping. As the resolution decreases
and drops below about 50 points/lDDZ, the solution quickly degrades. For resolutions typically
used in engineering calculations (e.g. the lowest two resolutions in Table 1), the numerical det-
onation speed and shock pressures are significantly below the converged values, while a large
amount of the burning actually occurs within the numerical shock (over 50% for five points
in the reaction zone).
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Figure 2 shows the convergence of the shock pressure variation from the charge axis to
the edge with numerical resolution. The lower the resolution, the more the shock pressure is
underestimated across the entire charge diameter, as well as at the axis. However, note the
numerical oscillations in the shock pressure with radius, and that the amplitude and wave-
length of these oscillations decrease as the resolution increases. This is due to shock clipping,
with the amount of clipping being dependent on the relative position of the von Neumann
spike with respect to the cell centre, and the alignment of the shock with the grid. Such
shock-pressure oscillations are inherent in shock-capturing schemes; indeed, very similar oscil-
lations can be seen in Figure 7 of [18], which have relatively large amplitude due to the low
resolutions used in that work.

With regard to the shock shape, any measure of the captured shock position in the numer-
ics can of course only be at best accurate to within one numerical grid cell. Here we take the
shock ‘position’ for a given r to be the cell in which the pressure is a maximum in the z-direc-
tion. Figure 3 shows the numerical shock loci for various resolutions. Clearly, very high reso-
lution is also required to obtain a good representation of the shock shape on the grid. Note
that it is difficult to determine local curvatures and shock normal angles from the data due to
the finite resolution, in that on the grid scale the shock can look locally flat (this is especially
true for engineering style resolutions, e.g., Figure 3(d)). This is also an issue with experiments,
due to the finite resolution of experimental techniques for measuring shock shapes [10,12].
Note that the radial positions at which the numerical shock location jumps to lower axial cell
positions in Figure 3 correspond to the positions of the local minimums in the shock pressure
oscillations in Figure 2.

Our approach for determining the shape and local curvatures is to fit a curve through the
data, as is done for experimental shock shapes [10–12]. However, there is still some ambiguity
in the fit due to the local flatness of the data, but the error in the fit decreases with resolu-
tion. On the other hand, for lower resolutions, it can be seen that it would be very difficult
to accurately determine the shock shapes.

In this paper we use a resolution of � = 0·1 mm throughout. A significantly higher res-
olution would be computationally prohibitive, even with our adaptive code. As can be seen
above, this resolution is sufficient to obtain well converged solutions, at least for unconfined
and lightly confined charges. However, as the confinement (ρI ) increases, the shock front
becomes flatter, and hence the shock shape and curvature become less well represented on
the grid for a fixed resolution. Also, as ρI increases (for fixed diameter) the detonation speed
and hence shock pressures increase, resulting in a higher reaction rate in the cells near the
peak pressure and thus more shock burning and clipping for a fixed resolution. Hence even
though our resolution of �=0·1 mm, which corresponds to at least 149 points/lDDZ (depend-
ing on confinement), is, as far as we are aware, the highest resolution of ratestick simu-
lations published so far (in terms of points per reaction-zone length), some caution must
still be attached in considering the very highly confined simulations as being well converged
solutions.

5. Results

Consider first a ‘base case’ with d = 100 mm and ρI =ρ0 = 0·8 g/cm3, for which the speed of
the steady state detonation in the axial direction is 3·13 km/s (or 0·652DCJ). Figure 4 shows
the pressure, density and reaction progress variable for the steady-state detonation in this case.
Figure 5 shows the position of the shock, sonic locus and the explosive-inert interface. The



48 G.J. Sharpe and M. Braithwaite

2

 2.5

3

 3.5

4

 4.5

0  10  20  30  40  50

p 
(G

Pa
)

r (mm)

Figure 2. Numerical shock pressure versus radial posi-
tion for ρI =0·8 g/cm3, d =100 mm and numerical res-
olutions �=0·1 mm (solid line), 0·2 mm (dashed line),
0·4 mm (dot-dashed line), 0·8 mm (double-dot-dashed
line), 1·6 mm (triple-dot-dashed line) and 3·2 mm (dot-
ted line).
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Figure 4. Contour plots of (a) pressure (contours of
0·7, 1·1, 1·5, 1·9, 2·3, 2·7, 3·1, 3·5, 3·9 and 4·3 GPa),
(b) density (contours of 0·6, 0·75, 0·9, 1·05, 1·2, 1·35,
1·5, 1·65 and 1·8 g/cm3) and (c) reaction progress var-
iable (contours of 0·01, 0·1, 0·2, 0·3, 0·4, 0·5, 0·6, 0·7
and 0·8), for d =100 mm and ρI =0·8 g/cm3.
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Figure 3. Numerical shock position based on cell in
which pressure is maximum in axial direction for ρI =
0·8 g/cm3, d =100 mm and numerical resolutions, �, of
(a) 0·1 mm, (b) 0·4 mm, (c) 0·8 mm, (d) 3·2 mm.

sonic locus is defined as the curve on which

M =
√

u2 +w2

c
=1,

where M is the local Mach number. Hence the region which governs the propagation of the
front, or the detonation DDZ, is that between the shock and sonic locus. Note that close
inspection of the near edge structures shows that for this case the sonic locus intersects the
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Figure 5. Shock locus (solid line), sonic locus
(dashed line) and explosive/inert interface position
(dotted line) for d =100 mm and ρI =0·8 g/cm3.
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Figure 6. Shock locus (dotted line) for d =100 mm and
ρI = 0·8 g/cm3, and ellipse of the form (5) with α =
31·57, β =63·37 (solid line).

explosive/inert interface very slightly below the shock front, and thus the post-shock flow in
the explosive at the edge is slightly subsonic. Hence for this case the detonation is very weakly
confined by the inert, since once the confinement is sufficiently weak that the flow at the edge
becomes sonic, the DDZ becomes decoupled from the inert confiner because the flow along
the explosive-inert interface is supersonic.

Note from Figure 4(c) that in this very weakly confined case, the burning does not pro-
ceed to completion in the steady wave. Figure 11(b) shows the axial profile of λ. The burn-
ing is effectively quenched in the expansion behind the sonic locus (λ asymptotes to 0·9 with
distance behind the shock in this case). Note the pressure and hence reaction rate near the
explosive–inert interface is much lower than at the axis. Hence as one approaches the interface
a layer of only slightly burned material is formed (see Figure 4c). However, the quenching of
the reaction rate occurs behind the sonic locus, and hence it is immaterial to the propagation
of the front.

In order to examine the shape of the shock in the explosive, an ellipse of the form

(z+α)2

α2
+ r2

β2
=1 (5)

was fitted through the shock locus data from the simulation. Figure 6 shows the comparison
of an ellipse of the form in Equation (5) (with α = 31·57 and β = 63·37) with the numerical
shock locus, from which it can be seen that the ellipse can be fit very well to the locus in the
explosive, i.e., in the region r ≤ 50 mm. Interestingly, it was found in [11] that experimental
shock shapes in highly non-ideal explosives could also be well fitted to ellipses, which is not
true for more ideal explosives [11].

5.1. Effect of charge diameter

Figure 8 shows the shock, interface and sonic loci when ρI = 0·8 g/cm3, but now for larger
charge diameters of 150 and 200 mm. The wave speed is 3·73 km/s (0·778DCJ) for d =150 mm,
and 4·02 km/s (0·837DCJ) for d =200 mm. Again, in both cases an ellipse can be fitted well to
the shock locus in the explosive. These fits show that the curvature of the shock at the axis
decreases as d increases (see Section 5.3). Since the detonation speed increases with diame-
ter, and hence the shock pressures and reaction rates also increase everywhere, the layer of
partially burnt material near the explosive–inert interface becomes thinner. For d =150 mm, λ

asymptotes to about 0·97 with distance along the axis, while for d =200 the burning eventu-
ally proceeds all the way to completion.

A point to note from Figure 7 is that, although the detonation speed tends to the CJ
speed and the front become less curved as d increases, the lag between the shock position
at the axis and that at the edge increases with d. A similar result was found in [4] for the
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Figure 7. Shock locus (solid lines), sonic locus (dashed
lines) and explosive/inert interface position (dotted
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Figure 9. Shock locus (solid lines), sonic locus
(dashed lines) and explosive/inert interface position
(dotted lines) for d = 100 mm and (a) ρI = 0·6 g/cm3

(also shown as dot-dashed lines are the loci for
ρI =0·8 g/cm3), (b) ρI =2 g/cm3 and (c) ρI =4 g/cm3.

leading-order DSD theory, where it was shown that as d →∞, the lag in the edge shock posi-
tion tends to infinity.

Figure 8 shows the loci (including the sonic loci) for the three diameters considered, d =100,
150 and 200 mm, when ρ0 =0·8 g/cm3, but with the origin relocated to the shock/interface inter-
section point at the charge edge in each case. It can be seen that each of the shock, sonic and
interface loci all overlay for the different diameters in a region within about 5 mm of the edge.
Since Figure 8 shows the structure of all the loci sufficiently near the edge is not sensitive to
d, this suggests that, for a given inert, a single simulation could be run for one diameter, and
then the resulting near edge structure could be used to determine the near edge properties for
other diameters without further simulations. This information could then be used in theoretical
approaches to the two-dimensional steady detonation problem as edge boundary conditions,
e.g. to determine diameter effects, without the need for further simulations.

Finally, note the qualitative change in the nature of the sonic locus as the diameter
decreases. For larger d, the z-position of the locus has a local minimum at a radial position
towards the charge edge. However, as d decreases, this minimum in the z-position becomes
less pronounced. This agrees with the result in [18], where it was found that for sufficiently
small diameters the sonic locus has no internal minimum in the axial position.

5.2. Effect of confinement

Figure 9 shows the shock, interface and sonic loci for a fixed diameter of d =100 mm, but for
three different densities of the inert (0·6, 2 and 4 g/cm3), giving different levels of confinement.
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For ρI =0·6 g/cm3, Figure 9(a) shows that the sonic locus and shock intersect at the charge
edge. For comparison the base case (with ρI = 0·8 g/cm3) loci are also shown in Figure 9(a).
For most of the charge radius the loci for the two cases are in good agreement. However,
as the edge is approached they begin to diverge, especially the sonic loci. A result of this
small difference in structures near the edge is that slightly less heat release occurs within the
DDZ for ρI = 0·6 g/cm3 than in the base case, so that the axial speed is also slightly lower
(3·11 km/s, as compared with 3·13 km/s for the base case). Note that since the flow is sonic at
the edge behind the shock, this case can be considered to be ‘unconfined’ in that the DDZ
is not in communication with the confinement as the flow along the interface is supersonic.
Thus, any further decrease in the inert density does not affect the explosive DDZ (e.g. the
axial speed or shock and sonic loci shapes of the steady detonation) [22], but as ρI decreases
further there is an ever stronger Prandtl–Meyer fan embedded between the sonic locus and
the interface [4]. A fit of an ellipse to the shock locus in the explosive for the unconfined case
also shows that at the axis the shock is slightly more curved than as compared to the base
case (see Table 2).

As ρI , and hence the degree of confinement increases for fixed d, the detonation tends to
that of the planar CJ wave (the infinite confinement solution). Indeed, the detonation speed
increases (see Table 2), and as can be seen in Figures 9(b, c), the shock front also becomes
less curved, the sonic locus also becomes flatter and the post-shock flow in the explosive
becomes increasingly subsonic at the edge, so that the distance between the shock and the
sonic locus increases there. Thus, for a given diameter and sufficiently large ρI , the detonation
will become close to CJ and hence the asymptotic DSD theories will become valid. Note also

Table 2. Properties of solution along the axis: D is the detonation speed; Rshk is the radius of curvature
of the shock; pshk is the shock pressure; pCJ is the pressure at the sonic point; lDDZ is the DDZ length
(distance between shock and sonic point); l99 is the 99% reaction length (distance between shock and
point where λ=0·99); λCJ is the value of the reaction progress variable at the sonic point.

d (mm) ρI (g/cm3) D (km/s) Rshk (mm) pshk (GPa) pCJ (GPa)

100 0·6 3·11 125·5 4·26 1·98
100 0·8 3·13 127·3 4·32 2·01
100 2·0 3·57 177·6 5·63 2·65
150 0·8 3·73 211·1 6·12 2·89
100 4·0 3·98 284·6 6·97 3·31
200 0·8 4·02 309·0 7·09 3·37
100 6·0 4·19 415·7 7·71 3·68
100 8·0 4·32 573·7 8·22 3·92

lDDZ (mm) l99 (mm) λCJ

14·9 – 0·73
14·9 – 0·73
15·6 – 0·83
16·2 – 0·86
16·6 107·0 0·90
17·3 69·5 0·91
17·6 58·2 0·93
18·6 44·9 0·95
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that the angle between the interface and the axis (i.e., the flow deflection angle) decreases as
the confinement increases. For these confined cases, ahead of the sonic locus the interface sep-
arates subsonic flow in the explosive from supersonic flow in the inert. Note that for fixed
diameter and increasing confinement the local minimum in the z-position of the sonic locus
moves towards the axis, and for high enough confinement the sonic locus slope becomes pos-
itive across the whole charge radius.

For the confined cases we find the shock front shape in the explosive can still be well fit-
ted by the arc of an ellipse apart from a very small boundary layer region adjacent to the
egde [4]. However, for very high confinements, such as the case with ρI = 4 g/cm3 shown in
Figure 9(c), the shock shape becomes too flat to be well represented on the grid at the reso-
lution we are using.

5.3. Axial solution and quasi-one-dimensional analysis

Table 2 shows various properties of the axial solution for all of the cases which were sim-
ulated. These have been placed in order of ascending detonation speed in Table 2, from
which it can be seen that the properties of the axial solution depend parametrically only on
the axial detonation speed for both varying diameter and confinement (with the diameter or
confinement serving to modify this speed). For example, Figure 10 shows the numerical data
points for the axial radius of curvature of the shock (Rshk) against the detonation speed,
which shows that all the data points appear to lie on a single curve. Hence as the detona-
tion speed increases, the shock locus always becomes flatter at the axis. Also, Table 2 shows
that, as expected, for higher detonation speeds the pressure throughout the reaction zone
increases and hence the explosive burns more rapidly due to higher reaction rates. However,
perhaps counter-intuitively, the axial DDZ length increases as the speed increases. This is due
to the fact that, although the reaction rates are lower for smaller D, resulting in longer overall
reaction lengths, the sonic point moves to an increasingly unburnt state (smaller λCJ) as D

decreases (cf. [7]).
The fact that the axial solution depends only parametrically on the detonation speed (or

alternatively on the radius of curvature of the shock at the axis), suggests that this dependence
is governed by a simple Dn–κ law, e.g. as determined by a quasi-one-dimensional analysis.

Here we determine if the numerical results do indeed agree with such a quasi-one-dimen-
sional theory. In order to perform such an analysis, the steady Reactive Euler equations are
first transformed from (r, z) coordinates to a shock-attached coordinate system (n, ξ ) where
n is the normal distance of any point from the shock (with positive (negative) values corre-
sponding to points ahead (behind) the shock) and ξ is the arclength along the shock (mea-
sured from the charge axis).

In such a co-ordinate system, the governing equations transform to

∂(ρun)

∂n
+κρ(un+Dn)

1+nκ
=R1, un

∂un

dn
+ 1

ρ

∂p

∂n
=R2,

∂e

∂n
− p

ρ2

∂ρ

∂n
=R3,

∂λ

∂n
− W

un

=R4, (6)

where κ(ξ) is the curvature of the shock and Dn(ξ) is the normal component of the shock
speed, at an arclength of ξ from the axis along the shock, while un is the component of
material velocity in the n direction. R1 to R4 contain terms involving partial derivatives with
respect to ξ or involving uξ , the component of the material velocity in the ξ -direction (these
terms are given in [23] or [24]).

The quasi-one-dimensional approximation is then that the variables vary slowly in the
ξ -direction along the shock, i.e., that the ξ -derivative terms in R1 to R4 are negligible. If
this approximation is valid, the variables depend, to leading order, only parametrically on
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ξ through the values of κ(ξ) and Dn(ξ). The reduced form of Equations (6) can then be
manipulated into the form

dρ

dn
= −Q(γ −1)ρW/un +κ∗ρun(un +Dn)

c2 −u2
n

,

(7)
dun

dn
= Q(γ −1)W −κ∗c2(un +Dn)

c2 −u2
n

,
dλ

dn
= W

un

,

where κ∗ =κ/(1+nκ), c is given by Equation (4) and

p = (γ −1)ρ

γ

[
D2

n −u2
n

2
+Qλ

]
. (8)

(note that the strong shock approximation has been used to derive Equation (8))



54 G.J. Sharpe and M. Braithwaite

Hence Equations (7) are a set of three ordinary differential equations in three unknowns
(ρ, un and λ). These are subject to the shock jump conditions, which determine the values of
ρ, un at the shock for a given value of Dn (note λ= 0 behind the shock), and to a general-
ized CJ or compatibility condition that the numerator in the right-hand side of the first two
of Equations (7) are zero when the flow is sonic (i.e., when the denominator is simultaneously
zero). The resulting boundary-value problem is thus an eigenvalue problem for Dn (for fixed
κ). The numerical shooting method for solving this problem is described in [7] and [8]. By
varying κ one can then map out a quasi-one-dimensional Dn–κ relation. Note that here no
assumption has been made regarding the size of κ.

Specializing to the axis, the axial radius of curvature is related to the curvature by Rshk =
2/κ and hence one can instead determine a quasi-one-dimensional (Q1D) Dn −Rshk relation-
ship, which is shown in Figure 10. Note that the numerical simulation data points in Fig-
ure 10 are all in excellent agreement with the quasi-one-dimensional theory, indicating that
the Q1D approximation holds very well for the axial solution, but importantly note also that
the Q1D is not exact on the axis, one term in R1 is not zero there [13], however higher-order
DSD analysis indicate this term is numerically small on the axis (J. Bdzil, private communica-
tion). Indeed, our results show this term has little influence on the axis, even when the deto-
nation speed is significantly below the CJ speed. Figure 11 also shows a comparison between
the axial pressure and λ profiles from the base case simulation, with that predicted by the
Q1D theory using the axial shock radius of curvature determined from the simulation, from
which it can be seen that the Q1D solution gives excellent agreement with the axial solution
from the simulations.

The fact that, given the axial radius of curvature of the shock, the Q1D theory gives accurate
predictions of the detonation speed and the axial solution, even for highly non-ideal detona-
tions, is an important result because in industry Wood-Kirkwood codes tend to be used for such
predictions. However, WK theory is incomplete since, even given Rshk, the theory contains an
unknown function, namely the axial flow divergence (∂u/∂r)r=0, about which some assumption
needs to be made. In terms of the version of the WK theory presented for example in [25], on
the axis the Q1D theory is directly related to the WK theory: the unknown flow divergence term
in WK is simply replaced by the appropriate Q1D curvature term. However, typically industrial
versions of WK theory involve an additional variable and equation (the ‘central stream tube
area’), as well as further assumptions [1], than in the simpler form in [25]. Hence the Q1D
theory is actually a simpler system to solve than in these industrial WK theories, with fewer
governing equations, but it is also less obvious how the two are directly related in this case.
Note that for a given explosive model, the Q1D theory is still incomplete in that, as in WK
theory, one still needs to make some assumptions about how Rshk is dependent on the charge
diameter and confinement. However, given such an assumption, the Q1D theory has no other
unknowns, and hence avoids the main uncertainty in WK theory (namely the unknown axial
flow divergence function). Finally, in the Q1D approximation we have made no assumptions
about the flow being weakly curved (or slightly divergent), instead the full Q1D equations have
been solved numerically for arbitrary Rshk (or κ). As can be seen from Figure 10, this Q1D the-
ory gives very good results even at detonation speeds significantly below the CJ speed. Hence,
given a reaction rate and an eos model, the Q1D theory offers a significant improvement to
WK codes currently used in defence and commercial industries.

5.4. Dn–κ shock loci relations

We now investigate the validity of the Q1D approximation off-axis. Note that, since we have
found that the steady detonation shock loci are well approximated by arcs of ellipses, one can
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analytically construct Dn and κ at each point on the shock front from these fits, and hence
obtain a Dn–κ relationship for individual shock loci.

If the Q1D approximation holds off-axis then the Dn–κ relation along an individual shock
locus should be in good agreement with the Q1D relation. Figure 12, which shows the Dn–κ

curves along individual shock loci from various numerical simulation runs as well as the Q1D
Dn–κ relation, reveals this is not the case. While the shock loci curves all intersect the Q1D
curve at r =0, their slopes are different to that of the Q1D relation. Furthermore, individual
shock loci for different confinements and diameters all lie along different curves. Hence the
Q1D approximation does not hold off axis, and ξ derivatives must be important for ξ >0.

This behaviour is in agreement with experimental shock shapes for highly non-ideal explo-
sives. Indeed, despite the fact that we have used a simple model, the shock shapes in the Dn–κ

plane are in remarkable agreement with the experimental figures in [11] and [15] for ANFOs.
Also shown in Figure 12 are markers which show where the points corresponding to 50% and
90% across the charge radius lie, from which it can be seen that most of the Dn–κ variation
along the shock front occurs closer to the edge than to the axis.

The confined case with ρI = 2 g/cm3 shown as a solid line in Figure 12 agrees better
with the Q1D result than for the weakly or unconfined cases for the same charge diameter.
Indeed, for the confined case shown, the curvature variation across the charge is much smaller
than for the weakly confined cases, showing that variations with ξ become less pronounced
for higher confinements (as the degree of confinement increases further, the calculated shock
shapes occupy a smaller and smaller region in the Dn–κ plane). Hence the terms neglected in
Equations (6) involving arc-length variations become smaller and thus the Q1D approxima-
tion becomes better, as expected.

6. Conclusions

In this paper we have used simple eos and rate-law models to perform numerical simulations
of steady detonations in cylindrical charges of non-ideal explosives. It was shown that very
high resolutions, typically an order of magnitude larger than used in engineering simulations,
are required for accurate (well converged) numerical results (for the detonation speed, shock
shapes, etc.), even when such simple rate and eos models are used. For pressure-dependent
rate-law models, as used here, where the reaction rate is maximum at the shock front, burn-
ing in the numerically smeared shock is an issue even for reasonably high resolution.

We then used high-resolution simulations to examine the qualitative dependence of the
two-dimensional steady solution on the charge diameter and the degree of confinement. For
our model, we found that the shock-shapes could be fitted well to an arc of an ellipse, with
good agreement with experimental shock shape dependencies. We also found that the axial
solution from the numerics depended parametrically on the radius of curvature of the shock
at the axis, with charge diameter or confinement serving to modify the axial curvature. These
axial results agreed very well with an approximate quasi-one-dimensional theory, even for
highly non-ideal detonations which propagate significantly below the Chapman-Jouguet speed.
This quasi-one-dimensional theory therefore offers an improvement over industrial Wood-
Kirkwood codes, both in terms of accuracy and mathematical simplicity.

In this paper we have used a simple confinement model since our purpose was only to
examine how different levels of confinement affect the detonation wave and its structure.
However, in many applications one is also interested in how the passage of the detonation
affects a specific inert confiner, including confining layers of small thickness in the radial
direction. In these cases the eos for the inert model may be markedly different from that of
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the explosive, and then simple capturing of the interface as has been done here and in pre-
vious works is no longer viable. Instead the interface must usually be tracked in some way.
However, the applicability and numerical issues involved with different tracking algorithms for
these types of reactive–inert interface problems do not appear to have been properly studied
(indeed ‘closure’ issues are known to exist). We intend to examine the strengths and weak-
nesses of different tracking algorithms when applied to these detonations problems in the
future.

However, in the case where the confiner is sufficiently strong, one can perform an asymp-
totic analysis of how the confiner reacts to a given pressure loading along the interface,
including the dependence on the inert thickness (Sharpe and Bdzil, submitted). This analy-
sis essentially provides the coupling condition between the pressure loading and the shape of
the deflected inert. Currently, we are working on using this coupling condition to develop a
complete asymptotic solution to the fully coupled explosive–inert interaction problem. This
includes a DSD approximation for the detonation in the interior of the explosive, but which
includes boundary layers adjacent to the interface where the DSD approximation breaks
down, and also for the deflection of the confiner.

We have also used simple eos and rate-law models calibrated to an ANFO-like material in
this paper. More complex semi-empirical rate-law and eos models exist for different types of
explosives, but performing fully resolved simulations with such models can increase the com-
putational cost dramatically. Indeed, typically these more complex models have only be used
for highly unresolved hydrocode simulations, but proper mathematical analysis of the solu-
tions and properties of these models, or even resolved simulations of the steady-state deto-
nation problem, are generally lacking. It is hence necessary to begin examining these points
more throughly by building a hierarchy of models of increasing complexity and examining
their applicability. A proper study and analysis of existing models is currently underway at
LANL.

Finally, here we have only considered the final steady-state solution. Another point of
interest is the evolution from various initial (initiation) conditions to the steady state, includ-
ing run-up distances (the distance the shock travels from the initiation site to the achievement
of steady state). It would also hence be worth examining this evolution using simulations of
different initiation processes.

Appendix A: Additional results

In the main body of the text, the results were given for eos and rate-law parameter choices
that were calibrated to an ANFO-like material. However, simulations for several different
parameter choices were additionally ran for the widely used simple class of model with weakly
pressure-dependent rate law of the form kpn(1−λ)m and pseudo-polytropic eos e=p/((γ ∗ −
1)ρ), to ensure our the main points and conclusions were not sensitive to the specific choice
of parameters. This was indeed found to be the case. For example, Figures 13 and 14 show
some additional results for n=1, m=1/2, γ ∗ =3 (i.e., for a different choice of both the rate
and eos parameters than used in Section 5). The point to note from these figures is that the
main results and conclusions described in Section 5 also apply for a different choice of the
rate and eos parameters. (NB. since we are not calibrating to a specific explosive for these
parameters, the results have been left in dimensionless form, where the characteristic velocity
is the CJ speed, the characteristic density is the initial explosive density (ρ0 =1 in dimension-
less units) and the characteristic length is the standard half-reaction length, i.e., the distance
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Figure 13. Shock, sonic and explosive/inert interface loci for n=1, m=1/2, γ ∗ =3 and (a) ρI =1 and d =30 (solid
lines), d =45 (dashed lines) and d =60 (dotted lines) (the origin has been relocated to the point on the charge edge
where the shocks and interface intersect) and (b) d =30 with ρI =2 (solid lines) and ρI =5 (dashed lines).
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Figure 14. (a) Axial detonation speed versus axial radius of curvature of the shock from Q1D Dn −R relation (solid
line) and from numerical simulations (circles), and (b) Dn − κ relation from Q1D theory (dotted line) and along
individual shock loci for ρI =1 and d =30 (dashed line), 45 (dot-dashed line) and 60 (solid line), when n=1, m=
1/2, γ ∗ =3.

between the shock and the point where λ=0·5 in the ZND wave). The resolution was of the
order of 100 points in the axial DDZ.
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