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Flow of surfactant-laden thin films down an inclined plane
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Abstract. A theory is formulated to describe the dynamics of a thin film flowing down an inclined plane laden
with insoluble surfactant, present in dilute concentrations. Use of lubrication theory yields a coupled pair of par-
tial differential equations for the film height and surfactant monolayer concentration. The contact line singularity
is relieved by assuming the presence of a thin precursor layer ahead of the advancing film. Base flow solutions
for a flow of constant flux are examined over various inclination angle, precursor-layer thickness, Peclet number,
and capillary parameter ranges. Application of a transient growth analysis highlights the presence of an instability
and the vulnerability of the flow to transverse disturbances of intermediate wavenumber. Our results reveal that
several key features of the much-studied uncontaminated film flow, including stability, are modified qualitatively
by the inclusion of surfactant.
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1. Introduction

Thin liquid films appear across a wide range of contexts, spanning engineering, manufactur-
ing and biophysics. Their applications are relevant not only to chemical engineering and mate-
rials processing, but also to numerous biological processes, many of which are found within
mammalian systems [1]. In many of these settings an advancing fluid front is susceptible to a
transverse instability which can lead to rivulet formation, in the form of slender or triangular
saw-tooth fingers, which is undesirable in applications such as coating-flow technology. In the
presence of surfactant, and hence Marangoni driving forces, another instability resulting in
the formation of fingering patterns is also known to occur (see [2–4] and references therein).

Interest in coating flows developed from experimental work which highlighted the existence
of rivulet formation originating at the thickened front, located at the film’s leading edge [5,
6]. These experimental observations were complemented by modelling work which proposed
mechanisms for fingering at the gravitationally driven fluid front, [7–9]. Further experimental
studies [10] produced detailed images of the fingering structures formed for varying inclina-
tion angles. More recent work has returned to modelling of the problem with observations of
steady-state finger formation [11–13], and methods proposed for controlling the front instabil-
ity, driving it into predetermined or controlled pattern formation [14,15].

The majority of the studies mentioned above, however, have involved uncontaminated liq-
uid films. With the addition of a surfactant into the problem, solutocapillary flow must be
taken into account. The flows generated by solutocapillarity are mainly of interest in biolog-
ical systems such as membranes, linings, and tear films, but they also appear within some
manufacturing techniques [16]. Of particular interest are the effects of Marangoni flow on the
front dynamics, flow stability, and surfactant transport. The majority of the research involving
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surfactant-driven flows has been conducted in connection with surfactant-replacement ther-
apy (SRT), a treatment for both neonate and adult respiratory distress syndrome. This sub-
ject has been covered extensively by previous investigators who have examined the steady-state
[17], dynamic spreading of insoluble, [18–20], and soluble surfactants [21,22], and the process
of surfactant-enhanced drug delivery [23,24]. The stability of the spreading process, which
is often accompanied by fingering phenomena has also received considerable attention [2–4],
[25–28].

In this paper, we investigate a gravitationally driven flow in the presence of a dilute surfac-
tant. Evolution equations for the film thickness and surfactant monolayer concentration are
derived using lubrication theory and applied to a flow with constant flux; a precursor layer
model is used to relieve the contact line singularity. The effects of gravity, Marangoni stress,
inclination angle, precursor layer thickness, capillarity, and surface diffusion on the flow are
considered, while van der Waals, and inertial forces are neglected [25]. In addition to the base
state height and surfactant concentration profiles, the stability of the flow is examined using
suitable transient growth measures over a wide range of conditions. Our results reveal how
the presence of surfactant modifies the instability which exists at the advancing front of an
uncontaminated gravitationally driven thin film.

The rest of the paper is structured as follows. Section 2 details the problem formulation.
Section 3 focuses on a discussion of the numerical results, while Section 4 contains some con-
cluding remarks.

2. Mathematical formulation

We consider a thin layer of an incompressible, Newtonian fluid of constant viscosity µ, and
density ρ, lying on an inclined plane bounded from below by a rigid, impermeable solid sub-
strate and from above by an inviscid gas; this is shown schematically in Figure 1. The film
is partially covered with insoluble surfactant of initially uniform concentration, �m, which is
assumed to be much smaller than the saturation concentration. We assume that the film flows
out of a reservoir at the flow origin which provides a constant flux of fluid and surfactant.

The liquid–air boundary is a deformable interface located at z=h(x, y, t), where x, y and
z are the streamwise, transverse and surface normal coordinates, respectively, while t denotes
time. The characteristic depth of the film, H , is considered to be small in comparison to the
lateral extent of the film L: ε =H/L�1; in such a situation lubrication theory can be applied.

H
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x
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Figure 1. Schematic representation of the flow configuration for a thin film lying on an inclined pre-wetted substrate
partially covered with surfactant.
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Note that the film spreads over a pre-wetted solid substrate, which is covered by a precursor
layer of uniform thickness Hb [7].

The governing equations are non-dimensionalized as follows, where overbars denote
dimensionless quantities: x =Lx̄, y =Lȳ, z=Hz̄, u=Uū, v =Uv̄, w = εUw̄, t = (µL2/�H)t̄ ,
p = (�/H)p̄, σ̄ = (σ − σm)/�, � =�m�̄, where u, v, w, p, denote the streamwise, transverse,
and normal components of the velocity field, u, and pressure, respectively. Here, �=σo −σm,
the spreading pressure, is the difference between the maximal and initial values of the sur-
face tension, σo and σm, respectively, and is used to scale the local surface tension, σ . Finally,
U =�H/µL is the characteristic Marangoni velocity in this problem. The overbars are hence-
forth suppressed and the equations in the following section are written in dimensionless vari-
ables, unless otherwise stated.

2.1. Hydrodynamics

Substitution of the above scalings in the governing mass and momentum equations yields, in
the lubrication approximation,

ux +vy +wz =0, (1)

px −uzz −G sin θ =0, (2)

py −vzz =0, (3)

pz =0, (4)

where subscripts denote partial differentiation with respect to that coordinate and G ≡
ρgHL/� is a Bond number. The tangential and normal stress balances at the film surface,
z=h(x, y, t), are given by,

uz =σx, (5)

vz =σy, (6)

p =−C∇2h, (7)

where, C ≡ε2σm/� is a capillary parameter. Although capillary forces scale as ε2, the associ-
ated terms will be retained due to their regularizing effect. The kinematic boundary condition
is given by,

ht +
(∫ h

0
udz

)
x

+
(∫ h

0
vdz

)
y

=0. (8)

For closure, a linear surfactant equation of state is chosen, which in dimensional form, is
given by,

σ(�)=σo −α��, (9)

where, α� =−(∂σ/∂�)�=0. In dimensionless form, this equation is expressed by

σ =1−�. (10)

Integration of (2–4), application of no slip and no penetration conditions (u = w = 0 at
z=0) and use of (5), (6) and (10) results in,

u= 1
2z(z−2h)(px −G sin θ)− z�x, (11)

v = 1
2z(z−2h)py − z�y. (12)
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Substitution of Equation (7) in (11) and (12) and substitution of the resultant solutions in
Equation (8) yields the following film height evolution equation,

ht =∇ ·
[

h3

3
(−C∇∇2h)+ h2

2
∇�

]
−
[

h3

3
G sin θ

]
x

. (13)

The leading-order dimensionless equation of surfactant mass conservation is,

�t +∇ · (us�)= ∇2�

Pe
, (14)

where the subscript ‘s’ denotes quantities evaluated at z=h(x, y, t). For Equation (14) the sur-
face velocity, us , is given by,

us = h2

2

[
C∇∇2h+G sin θ

]
−h∇�, (15)

while, Pe ≡�H/µDs , is a surface Peclet number, with Ds representing the surface diffusivity
of the surfactant.

Substitution of Equation (15) in Equation (14) yields the relevant surfactant monolayer
evolution equation,

�t = ∇2�

Pe
+∇ ·

[
−h2

2
�C∇∇2h+h�∇�

]
−
[

h2

2
�G sin θ

]
x

. (16)

Note that (13) and (16) are further parameterized by another dimensionless group, b ≡
Hb/H , which is a ratio of the precursor thickness to the characteristic film thickness.

2.2. Travelling-wave solutions

The one-dimensional (1-D) forms of (13) and (16) are given by,

ht =
[
−h3

3
Chxxx + h2

2
�x − h3

3
G sin θ

]
x

, (17)

�t = �xx

Pe
+
[

h2

2
�(−Chxxx)+h��x − h2

2
�G sin θ

]
x

. (18)

Given that flow down an inclined plane in the absence of surfactant gives rise to travel-
ling-wave (TW) solutions, we postulate the existence of such solutions in the present problem
and move into a frame of reference travelling with the wave:

ξ =x − ct, h(x, t)=H(ξ), �(x, t)=G(ξ), (19)

where c is the speed of the TW so that the above equations in the limit of Pe→∞ become[
cH− H

3

3
CHξξξ + H

2

2
Gξ − H

3

3
G sin θ

]
ξ

=0, (20)

[
cG− H

2

2
GCHξξξ +HGGξ − H

2

2
GG sin θ

]
ξ

=0. (21)

Integrating (20) and (21) from −∞ to ∞ with the following boundary conditions

ξ →∞, H→b, Hξξξ →0, G→0, Gξ →0, (22)

ξ →−∞, H→1, Hξξξ →0, G→1, Gξ →0, (23)
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yields the following relations for c:

c= (1−b3)

3(1−b)
G sin θ, (24)

c= G

2
sin θ. (25)

Equations (24) and (25) give different values for c, unless b takes the unique value of
0·366, which is too large to be of interest here. Hence there are no steady travelling-wave
solutions for both (17) and (18). In general, the front propagation will be controlled by
the smaller velocity proposed by (24), as seen in the numerical solutions to be discussed
below.

In order to investigate any structural changes in the flow introduced by the inclusion of
surfactant (for example the “step” structure that will be discussed later), Equations (20) and
(21) can be integrated from ξs −δ to ξs +δ, where δ is a very small distance from the location
of the step, ξs ; the following boundary conditions should be used:

ξ >ξs, H=b, Hξξξ =0, G=0, Gξ =0, (26)

ξ <ξs, H≡H0, Hξξξ =0, G≡G0, Gξ ≡−τ, (27)

where H0, G0 and τ represent the height of the step, the concentration and concentration gra-
dient in that region, respectively. Integration of (20) and (21) subject to these boundary con-
ditions yields

cb− b3

3
G sin θ − cH0 + τ

2
H

2
0 + H

3
0

3
G sin θ =0, (28)

G0

(
c−H0τ − H

2
0

2
G sin θ

)
=0, (29)

from which

τ = c

H 0
− H0

2
G sin θ, (30)

c

(
b− H0

2

)
+ G sin θ

3

(
H

3
0

4
−b3

)
=0. (31)

Equation (31) should be solved to find H0; here c is given by (24). Note that if the second
term in (31) is neglected, then H0 = 2b (which appears to be the case in our computations,
shown later; see the inset in Figure 6(e)). If, however, c=0 then H0 =41/3b. Importantly, we
note that later numerical simulations show that the travelling fronts do indeed progress at uni-
form velocity, however, the surfactant concentration grows with time at the capillary ridge;
the analysis above ignores this. Nonetheless, the value of c, and step height are confirmed by
numerical simulations.
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2.3. Transient growth

We examine the flow stability by decomposing the flow into its (1-D) base states, (h(0), �(0))(x, t)

and applied infinitesimal disturbances, (h(1), �(1))(x, t)eiky :

h
(0)
t =

[
h(0)3

3
(−Ch(0)

xxx)+ h(0)2

2
�(0)

x − h(0)3

3
G sin θ

]
x

, (32)

�
(0)
t = �

(0)
xx

Pe
+
[

h(0)2

2
�(0)(−Ch(0)

xxx)+h(0)�(0)�(0)
x − h(0)2

2
�(0)G sin θ

]
x

, (33)

h
(1)
t =

[
h(0)3

3
(−Ch(1)

xxx)+h(0)2h(1)(−Ch(0)
xxx)+ h(0)3

3
(Ch(1)

x k2)+ h(0)2

2
�(1)

x

+h(0)h(1)�(0)
x −h(0)2h(1)G sin θ

]
x

− h(0)3

3
Ch(1)k4 + h(0)3

3
Ch(1)

xx k2

−h(0)2

2
�(1)k2, (34)

�
(1)
t = �

(1)
xx

Pe
+ �(1)(−k2)

Pe
+
[
h(0)h(1)�(0)(−Ch(0)

xxx)+ h(0)2

2
�(1)(−Ch(0)

xxx)

+h(0)2

2
�(0)(−Ch(1)

xxx)+ h(0)2

2
�(0)(Ch(1)

x k2)+h(1)�(0)�(0)
x +h(0)�(1)�(0)

x

+h(0)�(0)�(1)
x −h(0)h(1)�(0)G sin θ − h(0)2

2
�(1)G sin θ

]
x
− h(0)2

2
�(0)Ch(1)k4

+h(0)2

2
�(0)Ch(1)

xx k2 −h(0)�(0)�(1)k2. (35)

The spatially and temporally evolving base states for this problem, given by (17) and (18),
preclude a simple normal-mode eigenvalue analysis. We therefore conduct a transient-growth
analysis (TGA) of the evolving base states which relies on the concept of ‘momentary stabil-
ity’ as a measure of instantaneous stability of a time-dependent base flow [26–28].

To elucidate this approach we define the “energy” of a disturbance, Eq , as,

Eq(t)≡
∫ ∞

0
(q −q∞)2(x, t)dx, (36)

for which q = (h(0), �(0), h(1), �(1)) and q∞ = (b,0,0,0). These, of course, are not physical
energies, but simply a measure of growth. We then define amplification ratios for the disturbances
in the height and surfactant, Gh and G�, respectively. These represent the ratio of disturbance to
base state ‘energy’ at time t normalized by the initial value:

Gh(t)≡ (Eh(1)/Eh(0) )(t)

(Eh(1)/Eh(0) )(t =0)
, G�(t)≡ (E�(1)/E�(0) )(t)

(E�(1)/E�(0) )(t =0)
. (37)

To extract further information about the destabilizing mechanism, variables to track the
overall instant growth rates are defined. They are given by,

λh(t)= 1
Gh

dGh

dt
=λh(1) −λh(0) , λ�(t)= 1

G�

dG�

dt
=λ�(1) −λ�(0) , (38)

where the λ terms are defined as, λi = 1
2Ei

dEi

dt
[26].
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2.4. Initial and boundary conditions

The initial and boundary conditions can have a significant influence on the evolution of the
film. In the present work, we shall consider the much-studied “constant flux” case, which
involves the flow of a film down an incline from an infinite reservoir from which it can draw
both fluid and surfactant. Initial conditions that reflect this physical situation are given by:

h(0)(x,0)= (1−x2 −b)F (1−x)+b, (39)

�(0)(x,0)=F(1−x), (40)

where b represents the thickness of the precursor layer, and F(x)=1/2[1+ tanh(100x)]; these
initial conditions are shown in Figure 2. The boundary conditions for this situation are set
as,

h(0)(0, t)=�(0)(0, t)=1, (41)

h(0)
x (xmax, t)=h(0)

xxx(xmax, t)=0, (42)

h(0)(xmax, t)=b, �(0)
x (xmax, t)=0, (43)

thus pinning both the height and surfactant concentration to fixed values at x = 0, which is
consistent with the assumed constant flux condition.

The initial conditions for the applied disturbances, h(1) and �(1), are localized near the ori-
gin of the flow and are defined as,

h(1)(x,0)=�(1)(x,0)= exp (−x2). (44)

Other choices of the initial conditions for h(1) and �(1) give rise to quantitative rather than
qualitative differences in the numerical solutions. Finally, the boundary conditions for h(1)

and �(1) are expressed by:
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Figure 2. Initial conditions for the (a) film thickness, and (b) surfactant concentration.
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h(1)
x (0, t)=h(1)

x (xmax, t)=0, (45)

h(1)
xxx(0, t)=h(1)

xxx(xmax, t)=0, (46)

�(1)
x (0, t)=�(1)

x (xmax, t)=0. (47)

3. Numerical results

In this section, we present a discussion of the numerical results for this system. The results
associated with the base state evolution will be presented first, followed by those associated
with the TGA. First, however, a brief description of the numerical procedure employed in this
study is presented.

3.1. Numerical procedure

Two independent numerical procedures have been used to solve the highly nonlinear coupled
system of partial differential equations. One procedure is PDECOL, which uses finite-element
collocation in space and Gear’s method in time and has been used to solve many related
problems [25,26]. The other procedure employs an adaptive method with Petrov-Galerkin pro-
jections and Gear’s method in time on a non-uniform grid. Identical results were obtained
upon comparison of the solutions from these codes. Typically, 2000–3000 grid points were
used to carry out the computations on a computational domain of up to xmax =50, with con-
vergence being demonstrated upon mesh refinement.

For this problem the initial and boundary conditions applied are those listed in the previ-
ous section. Full numerical results have been obtained for a range of parameter values. The
range and scale of all parameters employed in this problem can be found in Table 1. The next
section presents a discussion of the results produced over these ranges.

Table 1. Order of magnitude estimates of the relevant parameteric groups.

System Parameter Units/Representation Typical Value

ρ kg m−3 103

g m s−2 100

H m 10−4–10−8

L m 10−2–10−6

σ0 N m−1 10−2–10−3

σm N m−1 10−2–10−3

� N m−1 10−3–10−5

µ Pa s 10−2–10−4

Ds m2 s−1 10−9–10−10

Hb m 10−5–10−9

G ρgHL/� 101–10−1

C ε2σm/� 10−1–10−4

Pe �H/µDs 103–105

ε H/L 10−2–10−4
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Figure 3. Film thickness and surfactant concentration evolution shown in panels (a), (c), (e), and (b), (d), (f),
respectively for θ =5◦, θ =30◦, and θ =60◦ obtained with the parameter set Pe=1000, G=1·0, C =0·01, and b=0·1
over 100 dimensionless time units.

3.2. Base-state evolution

In Figure 3 we show the effect of varying θ on the evolution of h(0) and �(0) for Pe=1000,
G = 1·0, b = 0·1, and C = 0·01. Inspection of Figure 3 reveals that at small angles, gravita-
tional forcing is weak and the fluid is driven slowly down the slope; in this case the evolution
is reminiscent of a spreading surfactant covered droplet [26], with a structure, resembling a
“step”, developing at the foot of the main fluid ridge, approximately at the surfactant lead-
ing edge. As will be discussed below, this feature of the flow, which is consistently present
for all θ values, is produced by the introduction of surfactant and indicates that the surfac-
tant will play an important role at the leading edge of the fluid film. For an inclination angle
of 30◦ the increase in relative significance of gravity gives rise to an accumulation of fluid
behind the step and faster spreading rates. At higher angles still, as shown in Figure 3(e), the
gravitational driving forces become even more significant, leading to more pronounced fluid
ridges formed behind the step; the h(0) profiles rapidly exhibit quasi-steady travelling-wave-
like solutions with elevated capillary ridges. An additional structure appears behind the main
fluid ridge, forming a weak fluid ‘hump’ which has been previously observed experimentally
[10]. Its formation is driven by a balance of Marangoni forces, which drive flow from high
to low surfactant concentrations (that is from the ridge back towards the flow origin), and
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Figure 4. Comparison of the (a) film thickness (solid line) and surfactant concentration (dotted line) for θ = 60◦,
Pe = 1000, G= 1·0, C = 0·01, and (b) the uncontaminated film thickness evolution obtained with C = 0·01, b = 0·1,
at t =100.

gravity. The structure is seen to exist in Figure 3(c) and (e), but is more clearly present in the
comparisons of Figure 4.

The evolution of the surfactant concentration for different θ values is shown in Fig-
ures 3(b), (d), and (f). At small θ values the surfactant is drawn down the slope as the fluid
spreads. For higher θ values the solutions appear to change resulting in a different type of
surfactant concentration profile: a near monotonic increase in �(0), reaching a maximal value
at the propagating fluid ridge, followed by an essentially linear decrease to zero. In all the
cases studied, the leading edge of the surfactant concentration profile lies ahead of the main
fluid front, coinciding with the region in which the raised step adjusts back onto the undis-
turbed precursor layer.

To show the interaction between the evolving profiles of h(0) and �(0) clearly, height and
surfactant concentration profiles have been overlayed in Figure 4(a). The features which have
been highlighted above immediately become clear. The protruding step coincides with the por-
tion of the surfactant profile over which �(0) exhibits an essentially linear profile. The Ma-
rangoni stresses acting in this region have deformed the underlying film and given rise to the
fluid step, this is a common mechanism seen in many works on surfactant spreading [20].
The maximum surfactant concentration coincides approximately with the steepest part of the
main fluid ridge and in turn produces a second concentration gradient which acts up the slope
towards the flow origin. The balance between this gradient and the gravitational forces acting
in the opposite direction leads to fluid accumulation and the formation of a hump on the
upstream side of the main fluid ridge.

Next, we contrast the structures shown in Figure 4(a) with those associated with the
uncontaminated case in order to highlight the qualitative changes in the flow profiles arising
from the inclusion of surfactant. In Figure 4(b), we plot h(0) for the surfactant free case; this
profile was obtained by setting �(0) = 0 and rescaling the problem. Close inspection of pan-
els (a) and (b) in Figure 4 reveals that the flow of the uncontaminated film is characterized
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Figure 5. The effect of varying b, C and, Pe on h(0) and �(0) shown in panels (a), (c), (e) and (b), (d), (f), respec-
tively. Unless otherwise stated in the legend, the parameters are θ = 60◦, Pe = 1000, G = 1·0, C = 0·01, b = 0·1, at
t =100.

by the formation of a travelling-wave solution [13]. Note in particular from Figure 4(b) the
absence of the “step” and the “hump” structure with its long tail shown in Figure 4(a).

We also investigate the effect of varying b, C and Pe on the flow profiles. In panels (a)
and (b) of Figure 5, it can be seen that for smaller values of b, the evolution of the fluid
front is retarded leading to the formation of larger capillary ridges while reducing the scale
of the protruding fluid step (the inset in panel (a) highlights the reduction of this structure).
These effects are made clearer in the concentration profiles, as they exhibit a reduced lateral
extent and an increasing maximum value as b decreases. In panels (c) and (d) changes in C

are investigated. In this situation a reduction in surface tension allows sharper fluid fronts to
form. However, this has virtually no effect on either the position and structure of the step
or on the evolution of the surfactant concentration profile. In panels (e) and (f) the effect of
variation of Pe is shown. As this parameter decreases the relative effect of surface diffusion is
increased. This leads to greater spreading of the surfactant and a reduction in the surfactant
concentration gradients formed. This produces smaller step and hump structures, and appar-
ently leads to faster spreading.

As with other cases of flow on an inclined plane the solutions obtained form travelling
wave patterns that can be easily dealt with through translation into a moving frame of refer-
ence [9]. Thus to conclude this section, we closely examine the step structure and the speed of
the flow by comparing the numerical solutions to the predictions made earlier in Section 2.2.
In Figure 6 we show comparisons of the speed, height and surfactant-concentration gradient
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Figure 6. Comparison of travelling wave predictions to the results obtained through numerical simulation. Panels (a)
and (b) compare step speed for θ =15◦ and 60◦, respectively, while step height and surfactant concentration gradi-
ent comparisons are made in panels (c) and (d), respectively. Unless otherwise stated in the legend, the parameters
are θ =60◦, Pe=1000, G=1·0, C =0·01, b=0·1, at t =100.

localized about the step structure; here (26), (32) and (33) are used. In Figure 6 panels (a)
and (b) the position of the leading edge of the step is compared to the predicted travelling
wave speed. For both large and small angles, the predictions compare well, with higher angle
solutions converging faster to the travelling-wave predictions. In the region of the step, both
the film height and surfactant concentration gradient show excellent agreement between the
analytical prediction and numerical solution.

3.3. Transient-growth analysis

We now turn our attention to the examination of the base-state stability. Figure 7 shows the
effect of varying θ on the amplification ratios, Gh and G�, for Pe=1000, G=1·0, C =0·01, b=
0·1 and different k values. Inspection of these results shows that the range of unstable wave-
numbers widens with increasing angle of inclination. This change also increases the value of
the most unstable wavenumber, which is qualitatively consistent with previous work involv-
ing films which exhibit a fingering instability: the finger width decreases (that is, the instabil-
ity is enhanced) with increasing θ [10]. The range of unstable wavenumbers was found to be
restricted to the range, 0≤k <5, for all parameters considered in the present work.

Having identified that unstable “modes” exist, we deem it important to identify the region
that this instability will target as evolution progresses. Figure 8 shows the evolution of
h(0) and �(0) together with those of the disturbances h(1) and �(1), for k = 3 (an estimate
of the most dangerous “mode” wavenumber). As shown in panels (a) and (b) both h(1)

and �(1) exhibit highly localized structures, which appear to target the region immediately
downstream of the capillary ridge and the maximal surfactant concentration, respectively. It
should be noted that the advancing fluid “step” is not targeted by the instability for any of
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the parameter values examined. These results suggest that the mobility mechanism normally
proposed for the uncontaminated film instability [29] may still be in operation, however, this
does not elucidate the role of the surfactant in the present flow. This issue is discussed next.

Using the detailed TGA profiles, Figure 8, we can see that the surfactant disturbances have
an inverse response to those exhibited in the fluid height (h(1)�(1) < 0). Thus, the standard
fluid-mobility argument, proposing that areas of increased fluid height flow faster, is rein-
forced as thicker regions will also be relatively deficient in surfactant, producing transient Ma-
rangoni stresses that will increase the local thickness further, thereby increasing the relative
mobility advantage and destabilizing the flow.

Further information about instability mechanisms can be obtained by decomposing the
overall instantaneous growth rates, given by Equation (40), into their component parts. Pre-
senting these terms over a range of angles allows the main destabilizing forces for different
cases to be identified; this is shown in Figure 9 wherein only λh was considered. For a hor-
izontal substrate, flow destabilization is induced by Marangoni stresses. The insert in panel
(a) shows that the gravitational terms are zero-valued, while Marangoni terms destabilize the
system (taking positive values) even at long times. Capillary forces tend to stabilize the sys-
tem (taking negative values), but are smaller than the Marangoni terms leading to instability.
As the angle of inclination increases, the gravitational force begins to dominate, yielding the
largest destabilizing contribution. The Marangoni stresses continue to provide an additional
destabilizing forces while capillary influences remain stabilizing. It should also be noted that
inclusion of surfactant effects produces instability in situations wherein the flow would other-
wise have been stable in the surfactant-free case [9].
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of each contribution.
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4. Conclusions

The evolution of a gravitationally-driven thin film on an inclined substrate has been exam-
ined in the presence of an insoluble surfactant of low concentration under conditions of con-
stant flux. A coupled system of two-dimensional (2-D) nonlinear evolution equations for the
film thickness and surfactant concentration was derived using the lubrication approximation.
The contact-line singularity was relieved using a precursor layer model. This study extends
previous work involving driven uncontaminated films, which exhibit a fingering instability, to
account for surfactant-induced effects.

The evolution of the base state film thickness and surfactant concentration, obtained via
numerical solutions of the one-dimensional version of the governing equations, was studied.
Inspection of these results revealed the formation of a capillary ridge, flanked by a Marangoni
driven fluid “step” downstream, and an additional fluid “hump” upstream. At larger inclina-
tion angles the film height forms a travelling-wave-like solution. For these cases the surfactant
concentration was found to exhibit a monotonic increase from the origin of flow reaching a
maximum value at the capillary ridge, followed by an essentially linear decrease over the step
region. At lower inclination angles the solution appeared to be similar to those obtained in
work on spreading surfactant droplets on horizontal substrates.

The stability of the film evolution was also examined using a transient growth analysis.
These results suggest that the film is linearly unstable to transverse disturbances with maxi-
mum growth obtained at intermediate wavenumbers. As the inclination of the plate increases,
the range of wavenumbers associated with growing perturbations widens. Inspection of the
flow profiles reveals that the perturbations in both the film height and surfactant concentra-
tion target very specific regions, that coincide approximately with the leading edge of the main
fluid ridge and the location of the maximum surfactant concentration, respectively. The intro-
duction of Marangoni stresses was shown to produce instability in cases where gravitationally-
driven surfactant-free films would have been stable.

Future work will focus on alternative flow configurations and on obtaining numerical solu-
tions of the fully nonlinear 2-D governing equations. The extension of the present work to
account for surfactant solubility is also underway.

Acknowledgements

The authors would like to thank M. R. E. Warner for his helpful thoughts and comments
as well as the EPSRC for their support of B. D. E. through a doctoral training account stu-
dentship. The authors would also like to acknowledge insightful comments made by the anon-
ymous referees on an earlier version of this paper.

References

1. A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Modern Phys. 69
(1997) 931–980.

2. O.K. Matar and S.M. Troian, Linear stability analysis of an insoluble surfactant monolayer spreading on a
thin liquid film. Phys. Fluids A 9 (1997) 3645–3657.

3. O.K. Matar and S.M. Troian, Spreading of surfactant monolayer on thin liquid film: Onset and evolution
of digitated structures. Chaos 9 (1999) 141–153.

4. O.K. Matar and S.M. Troian, The development of transient fingering patterns during the spreading of sur-
factant coated films. Phys. Fluids 11 (1999) 3232–3246.

5. H. Huppert, Flow and instability of a viscous current down a slope. Nature (London) 300 (1982) 427–429.



156 B.D. Edmonstone et al.

6. N. Silva and E.B. Dussan, On the rewetting of an inclined solid surface by a liquid. Phys. Fluids 28 (1985)
5–7.

7. S.M. Troian, E. Herbolzheimer, S.A. Safran and J.F. Joanny, Fingering instabilities of driven spreading films.
Europhys. Lett. 10 (1989) 25–30.

8. R. Goodwin and G.M. Homsy, Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A
3 (1991) 515–528.

9. A.L. Bertozzi and M.P. Brenner, Linear stability and transient growth in driven contact lines. Phys. Fluids
9 (1997) 530–539.

10. M.F.G. Johnson, R.A. Schluter, M.J. Miksis and S.G. Bankoff, Experimental study of rivulet formation on
an inclined plate by fluorescent imaging. J. Fluid Mech. 394 (1999) 339–354.

11. Y. Ye, and H-C. Chang, A spectral theory for fingering on a prewetted plane. Phys. Fluids 11 (1999) 2494–
2515.

12. M.H. Eres, L.W. Schwartz and R.V. Roy, Fingering phenomena for driven coating films. Phys. Fluids 12
(2000) 1278–1295.

13. L. Kondic and J. Diez, Pattern formation in the flow of thin films down an incline: Constant flux config-
uration. Phys. Fluids 13 (2001) 3168–3184.

14. L. Kondic and J. Diez, Flow on films with patterned surfaces: Controlling the instability. Phys. Rev. E 65
(2002) 045301:1–4.

15. L. Kondic and J. Diez, Flow of thin films on patterned surfaces. Colloids Surf. A 214 (2003) 1–11.
16. L.W. Schwartz, R.A. Cairncross and D.E. Weidner, Anomalous behaviour during leveling of thin coating

layers with surfactant. Phys. Fluids 8 (1996) 1693–1695.
17. M.S. Borgas and J.B. Grotberg, Monolayer flow on a thin film. J. Fluid Mech. 193 (1988) 151–170.
18. D.P. Gaver III and J.B. Grotberg, The dynamics of a localized surfactant on a thin film. J. Fluid Mech. 213

(1990) 127–148.
19. D.P. Gaver III and J.B. Grotberg, Droplet spreading on a thin viscous film. J. Fluid Mech. 235 (1992)

399–414.
20. O.E. Jensen and J.B. Grotberg, Insoluble surfactant spreading on a thin viscous film: shock evolution and

film rupture. J. Fluid Mech. 240 (1992) 259–288.
21. D. Halpern and J.B. Grotberg, Dynamics and transport of a localised soluble surfactant on a thin film.

J. Fluid Mech. 237 (1992) 1–11.
22. O.E. Jensen and J.B. Grotberg, The spreading of heat or soluble surfactant along a thin liquid film. Phys.

Fluids 5 (1993) 58–68.
23. O.E. Jensen, D. Halpern and J.B. Grotberg, Transport of passive solute by surfactant-driven flows. Chem.

Engng. Sci. 49 (1994) 1107–1117.
24. Y.L. Zhang, O.K. Matar and R.V. Craster, A theoretical study of chemical delivery within the lung using

exogenous surfactant. Med. Engng. Phys. 25 (2002) 115–132.
25. M.R.E. Warner, R.V. Craster and O.K. Matar, Unstable van der Waals driven line rupture in Marangoni

driven thin viscous films. Phys. Fluids 14 (2002) 1642–1654.
26. M.R.E. Warner, R.V. Craster and O.K. Matar, Fingering phenomena associated with insoluble surfactant

spreading on thin liquid films. J. Fluid Mech. 510 (2004) 169–200.
27. B.J. Fischer and S.M. Troian, Thinning and disturbance growth in liquid films mobilized by continuous sur-

factant delivery, Phys. Fluids 15 (2003) 3837–3845.
28. B.J. Fischer and S.M. Troian, Growth and decay of localized disturbances at the leading edge of a surfactant

monolayer spreading on a thin viscous film. Phys. Rev. E 67 (2003) 016309:1–11.
29. M.A. Spaid and G.M. Homsy, Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids

8 (1996) 460–478.


