Empirical Software Engineering (2024) 29:122
https://doi.org/10.1007/510664-024-10510-3

®

Check for
updates

An empirical study on the potential of word embedding
techniques in bug report management tasks

Bingting Chen' . Weiqin Zou'-? - Biyu Cai' - Qianshuang Meng' - Wenijie Liu’ -
Piji Li' - Lin Chen3

Accepted: 30 May 2024 / Published online: 25 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Context Representing the textual semantics of bug reports is a key component of bug
report management (BRM) techniques. Existing studies mainly use classical information
retrieval-based (IR-based) approaches, such as the vector space model (VSM) to do semantic
extraction. Little attention is paid to exploring whether word embedding (WE) models from
the natural language process could help BRM tasks.

Objective To have a general view of the potential of word embedding models in representing
the semantics of bug reports and attempt to provide some actionable guidelines in using
semantic retrieval models for BRM tasks.

Method We studied the efficacy of five widely recognized WE models for six BRM tasks
on 20 widely-used products from the Eclipse and Mozilla foundations. Specifically, we first
explored the suitable machine learning techniques under the use of WE models and the
suitable WE model for BRM tasks. Then we studied whether WE models performed better
than classical VSM. Last, we investigated whether WE models fine-tuned with bug reports
outperformed general pre-trained WE models.

Key Results The Random Forest (RF) classifier outperformed other typical classifiers under
the use of different WE models in semantic extraction.We rarely observed statistically sig-
nificant performance differences among five WE models in five BRM classification tasks,
but we found that small-dimensional WE models performed better than larger ones in the
duplicate bug report detection task. Among three BRM tasks (i.e., bug severity prediction,
reopened bug prediction, and duplicate bug report detection) that showed statistically sig-
nificant performance differences, VSM outperformed the studied WE models. We did not
find performance improvement after we fine-tuned general pre-trained BERT with bug report
data.

Conclusion Performance improvements of using pre-trained WE models were not observed
in studied BRM tasks. The combination of RF and traditional VSM was found to achieve the
best performance in various BRM tasks.

Keywords Bug report - Word embedding - Pre-trained models - Vector space model

Communicated by: Yasutaka Kamei

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10510-3&domain=pdf

122 Page 2 of48 Empirical Software Engineering (2024) 29:122

1 Introduction

Bug reports are an important kind of software artifact. They generally provide information
about the behavior of software and bug-occurring environments (Bettenburg et al. 2008). With
bug reports, software practitioners could better understand and fix a bug and identify potential
software-quality improvement directions (Bertram et al. 2010). Currently, many software
projects use a bug tracking system such as Bugzilla! or Jira? to collect and track their bug
reports, where any end users are free to submit a bug report to describe what problems they
are facing (Anvik 2006). The openness of receiving bug reports and the increasing software
scale make software practitioners have to handle a large number of bug reports (Zou et al.
2018). How to effectively and efficiently manage as many bug reports as possible under
limited resources is increasingly becoming a big challenge for modern software projects.

To help address the problem mentioned above, researchers have been developing various
kinds of bug report management (BRM) techniques, such as bug localization (Kim et al.
2013; Ye et al. 2015), duplicate bug detection (Wang et al. 2008; Sun et al. 2011), bug
priority prediction (Tian et al. 2013, 2015), bug fixing time prediction (Weiss et al. 2007,
Choetkiertikul et al. 2017), etc. A key step of BRM techniques is to correctly retrieve the
semantics of bug reports as much as possible since it is the basis for further prediction. A bug
report’s two most important items are the brief one-line summary of a bug and the detailed
problem description that provides important information such as reproduction steps and
observed/expected behavior (Lamkanfi et al. 2010). These two items are generally written
in plain text and are widely considered in existing BRM research. To a large extent, the
semantic retrieval of a bug report is taken as the semantic retrieval of textual bug summary
and description items.

Currently, existing BRM studies mainly use some information retrieval models to represent
the semantics of bug reports, where the vector space model (VSM) is mainly used. These
models, like VSM, generally take bug reports as a bag of words, considering little about the
contextual semantics of words, which may negatively affect the BRM performance. With the
fast development of NLP techniques, more advanced semantic retrieval approaches from the
NLP area have appeared. Among them, word embedding models, such as Word2 Vec (Mikolov
etal. 2013a) and BERT (Devlin et al. 2018), attract much attention from both the academic and
industrial community (Yang et al. 2016; Xiao et al. 2019). Word embedding models represent
the semantics of a word with an N-dimensional numeric vector, with each element capturing a
specific semantic aspect of the word in the world. They are expected to capture the contextual
semantics of words better and have been proven effective in many NLP downstream tasks
(such as text classification and question answering) relying on textual semantic retrieval.
Inspired by the applications of WE models in the NLP area, some researchers also try to
integrate WE models such as Word2Vec and GloVe into BRM techniques (Van Nguyen et al.
2017; Deshmukh et al. 2017; Jia et al. 2021).

While word embedding has become more prevalent in NLP, its adoption in BRM tasks
remains relatively limited. Most existing studies have focused on earlier WE models like
Word2Vec, even though the NLP community has since introduced a range of more advanced
models, such as BERT. The success of WE in NLP tasks encourages us to study the potential
of WE in BRM tasks systematically. Our exploration in this study is motivated by two key
observations. On one hand, bug reports can be taken as general text in the same form as NLP
tasks. It provides the basis for applying WE models to bug reports. On the other hand, unlike

1 https://www.bugzilla.org/

2 https://www.atlassian.com/software/jira

@ Springer

https://www.bugzilla.org/
https://www.atlassian.com/software/jira

Empirical Software Engineering (2024) 29:122 Page30f48 122

general text, bug reports are software artifacts that have domain-specific knowledge. How
well WE models can capture the semantics of bug reports is still a question mark.

We attempt to answer four research questions to understand the value of WE in BRM tasks.
Five widely recognized WE models are thoroughly tested on six typical BRM tasks using
a dataset of 20 products from different domains to get as general conclusions as possible.
Word2Vec, GloVe, FastText, ELMo, and BERT are the five WE models. Six BRM tasks
include duplicate bug report detection, bug severity prediction, bug priority prediction, bug
fixing time prediction, reopened bug prediction, and bug field reassignment prediction. The
concrete RQs, as well as their corresponding key findings, are as follows.

RQ1. Which machine learning approach performs best for BRM tasks on the whole?
This research question is about finding the most suitable machine learning (ML) algorithm
for BRM tasks under the constraint of applying WE models to retrieve the semantics of bug
reports. Four classical machine learning algorithms are compared in the study, namely Naive
Bayes, Random Forest, Logistic Regression, and Support Vector Machine.

Findings: The Random Forest classifier always outperformed other machine learning
algorithms based on retrieved semantic features of five pre-trained WE models. Naive Bayes
performed worst among all classifiers.

RQ2. Is there a word embedding model that generally outperforms others for BRM
tasks? This research question is to study whether there is a dominant WE model that out-
performs other WE models in various BRM tasks. This RQ could show some insights into
selecting the WE model in performing BRM tasks.

Findings: We rarely observed statistically significant performance differences among
five WE models in five BRM classification tasks (i.e., bug severity prediction, bug priority
prediction, bug fixing time prediction, reopened bug prediction, and bug field reassign-
ment prediction); we only detected a statistically significant performance difference between
smaller-dimensional WE models and relatively larger ones for the duplicate bug report detec-
tion task (a recommendation task).

RQ3. Do word embedding models outperform the most used VSM model for BRM
tasks? This RQ could help us understand whether WE models are preferred to be applied
in domain-specific BRM tasks rather than general NLP tasks. This gives practitioners better
guidance in adopting traditional VSM or WE models in their BRM tasks.

Findings: Among three BRM tasks, i.e., bug severity prediction, reopened bug prediction,
and duplicate bug report detection, that showed statistically significant performance differ-
ences, VSM outperformed studied WE models; the performance differences are found to be
negligible to small on the bug severity prediction and reopened bug prediction tasks, but are
large on the duplicate bug report detection task, according to Cliff’s delta effect sizes.

RQ4. How will the performance change if word embedding models are fine-tuned
with bug data? This RQ investigates the performance of fine-tuned BERT with bug reports
compared to the generic pre-trained BERT model. Answering this RQ could help us under-
stand the value of domain-specific corpus for pre-trained WE models in semantic extraction.

Findings: We did not observe performance improvements of the fine-tuned BERT over
the generic pre-trained one. Their performance differences that show statistical significance
are all negligible according to Cliff’s delta effect sizes on experimental products. The main
contributions of our work are as follows:

— We conduct a systematic study to explore the potential of word embedding models on
bug report management tasks by evaluating five typical embedding techniques across six
representative downstream BRM tasks.

@ Springer

122 Page 4 of48 Empirical Software Engineering (2024) 29:122

— We attempt to investigate the most suitable machine learning algorithm for applying WE
models, the best-performance WE model in BRM tasks, the advantage of WE over the
most used VSM model, and the value of the model fine-tuned with bug report corpus.

— We obtain a list of actionable findings that could guide developers or researchers in
adopting suitable semantic retrieval models while performing BRM tasks.

Paper Organization The remaining parts are structured as follows: we present the back-
ground of WE and BRM in Section 2 and describe our experimental design in Section 3.
Section 4 presents our experimental results and answers to research questions. Section 5 lists
the implications and the threats to the validity of our experiment. After surveying the related
work in Section 6, we conclude our work in Section 7.

2 Background

In this section, we discuss the background related to this study. We first introduce word
embedding(WE), including five typical word embedding models and pre-trained models.
Then, we talk about bug report management(BRM).

2.1 Word Embedding

Text representation is an important work in the field of natural language processing (NLP).
Effectively converting text data into a meaningful representation that computers can recognize
is a very important step in the NLP area. The word embedding technique is such a popular
and effective method for presenting the semantics of text contents. This technique maps
a single word to a §-dimensional vector space (Hinton et al. 1986). It aims to capture the
latent semantics of words by using neural network-based word embedding vectors that are
dense, distributed, and with a fixed length. Textual content within bug reports can also be
transformed by word embedding technology into numeric embedding vectors. In this section,
we describe the existing popular and representative embedding techniques evaluated in this
work, i.e., Word2Vec, GloVe, FastText, ELMo, and BERT.

2.1.1 Five Typical Word Embedding Models

Word2Vec is a language model published in 2013 (Mikolov et al. 2013a). It takes a large text
corpus as input and generates a vector space, typically of several hundred dimensions, with
each unique word in the corpus being assigned a corresponding vector in the space. Word2 Vec
has two model architectures: continuous bag-of-words (CBOW) and continuous skip-gram.
In the CBOW architecture, the model predicts the masked word by a given window of its
surrounding context words, and the order of context words does not influence the prediction
results (due to the bag-of-words assumption). In the continuous skip-gram architecture, the
model uses a given word to predict the context words surrounding the word. Unlike CBOW,
the skip-gram architecture weighs nearby context words more heavily than more distant
context words (Mikolov et al. 2013b). Regardless of CBOW or skip-gram, Word2Vec would
assign a unique numeric vector to a word, limiting it in handling the polysemy problem.
GloVe (Global Vectors for Word Representation) is proposed by Pennington et al. (Pen-
nington et al. 2014) in 2014. It is a global log-bilinear regression model for unsupervised
learning of word representations. Compared to Word2Vec, GloVe aims to use a global word-
word co-occurrence matrix to learn word representation, which is expected to better represent

@ Springer

Empirical Software Engineering (2024) 29:122 Page 50f48 122

aword’s meaning. It is reported to outperform other models on word analogy, word similarity,
and named entity recognition tasks.

FastText is proposed by Bojanowski et al. (Bojanowski et al. 2017) in 2017. Unlike models
like Word2Vec or GloVe which treat a word as an atom during model training, FastText treats
a word as a set of n-gram units. Based on these n-gram sets, a skip-gram model is built, and
an embedding vector for each n-gram is obtained. The vectors of n-gram sets of a word are
then integrated to obtain the final embedding vector for the word. In this way, FastText can
capture the semantics of short/rarely appeared words and those pre/suffixes.

ELMo (Embeddings from Language Models) is proposed by Peters et al.(Peters et al.
2018)in 2018. The ELMo embedding vectors are derived from a bi-directional LSTM trained
with a coupled language model on a large text corpus>. In ELMo, character-level tokens are
taken as the input to a bi-directional LSTM that would then produce word-level embeddings.
It is a new type of deep contextualized word representation that models both (1) complex
characteristics of word use (E.G., syntax and semantics), and (2) how these uses vary across
linguistic contexts. Unlike “Bag of Words™ approaches such as Word2Vec, ELMo is context-
sensitive and could generate different representations for words with the same spelling but
different meanings.

BERT (Bidirectional Encoder Representations from Transformers) is proposed by Devlin
et al. (Devlin et al. 2018) in 2018. BERT is based on the transformer architecture and is pre-
trained on a large corpus of unlabelled text, including the entire Wikipedia (with 2,500 million
words) and Book Corpus (with 800 million words). BERT is a deeply bidirectional model.
Bidirectional means that BERT learns information from both the left and the right side of a
token’s context during training. The word embedding representation obtained through BERT
incorporates more grammatical, lexical, and semantic information. With BERT, words would
have different word embedding representations in different contexts.

2.1.2 Pre-trained Word Embedding Models

Asmentioned above, in the NLP area, word embedding is generally an n-dimensional numeric
vector that captures the semantics of a word, with similar words that are closer in the vector
space being expected to have similar meanings. Generally speaking, one can obtain the word
embedding for a word with two approaches. One approach is to train a word embedding
model (E.G., Word2Vec) on their dataset from scratch to obtain the word embeddings, while
the other way is to obtain the word embeddings from an existing word embedding model
trained on other large datasets, i.e., a pre-trained word embedding model.

Due to the sparsity of training data and a large number of trainable parameters, it becomes
a challenging problem for users to learn their own embeddings from scratch, especially when
they have limited small-scale datasets. In this case, pre-trained models would be a preferred
choice for them due to the following advantages: 1) Pre-training on large-scale unlabeled
data can learn more general language representation and apply it to downstream tasks; 2) Pre-
training provides better initialization parameters, which helps to improve the generalization
performance of the model and accelerate the convergence of the model; 3) Pre-training can
be regarded as an effective regularization method to avoid over-fitting on small data sets.
Currently, there is a list of pre-trained WE models kindly shared by the academics and
industry, including the five typical word embedding models we compared in the study, such
as the pre-trained BERT through training BERT on a large amount of Wikipedia content.
Sometimes, practitioners would use domain-specific data to fine-tune the pre-trained models

3 For example, the 1 billion word benchmark: https://www.statmt.org/lm-benchmark/

@ Springer

https://www.statmt.org/lm-benchmark/

122 Page 6 of 48 Empirical Software Engineering (2024) 29:122

to understand their tasks better. The advantages of pre-trained models have made them find
numerous important applications in the real world (Yang et al. 2019; Zhou et al. 2020).

2.2 Bug Report Management

In this part, we will first briefly introduce typical bug reports collected by bug tracking systems
of Eclipse and Mozilla. Then we introduce six typical bug report management techniques we
focused on in this paper.

2.2.1 Bug Report

Bug reports are an important information carrier for software practitioners to find/fix bugs and
ensure software quality. Fig. 1 shows a typical bug report collected by bug tracking systems.
As shown in the figure, a bug report generally has information items like BugID, Status,
Product, Component, Importance, Reported, Summary, Description, Comment, etc. BugID
(E.G., 550200 in the figure) is a number that uniquely identifies a bug of a project. Summary
is generally one sentence briefly summarizing a bug. The Description item provides details
about the bug, where the details generally include steps to reproduce the bug, the expected

Bug 550200 - "Dirty" flag appears when opening PDF file

Status: CLOSED WONTFIX 2019—08-19 05:58 EDT by Eugene Grebenyuk
Modified:

2021-08-09 14:02 EDT (History)
Alias: None CC List: 0 users

Product: Platform
Component: IDE (show other bugs) See Also:
Version: 4,12 (4
Hardware: PC Windows 10

Importance: P3 normal [vote)

Target Milestone: --- (4
Assignee: Platform-UI-Inbox
QA Contact:

Eugene Grebenyuk 2019-08-19 05:58:18 EDT ption

Created attachment 279619 [details]
Dirty flag

In Eclipse IDE 4.12 (under Windows 10 x64):

1. File -> Open File...

2. Select .pdf file, press "Open" button.

3. File opens inside Eclipse by In-Place Editor but with "x" - dirty flag!
And in parallel, this pdf opens in external Acrobat Reader.

Eclipse Genie 2021-08-09 14:02:39 EDT

This bug hasn't had any activity in quite some time. Maybe the problem got
resolved, was a duplicate of something else, or became less pressing for some
reason — or maybe it's still relevant but just hasn't been looked at yet. As such,
we're closing this bug.

If you have further information on the current state of the bug, please add it and
reopen this bug. The information can be, for example, that the problem still

occurs, that you still want the feature, that more information is needed, or that
the bug is (for whatever reason) no longer relevant.

The automated Eclipse Genie.

Fig.1 A Bug report example with ID=550200 in Eclipse

@ Springer

Empirical Software Engineering (2024) 29:122

Page 7 of 48 122

User
Unconfirmed
l Triager
-
New
\
l Triager
Assigned €
Possible Resolutions: \
FIXED l Developer
DUPLICATE
PVORIEIX Resolved
WORKFORME
INVALID .
REMIND Triager
LATER No
Verified Reopen

l Yes

Closed

Fig.2 The life-cycle of a bug report

behavior or observed behavior, etc. Status describes the current state of a bug report. During
the lifecycle of a bug report, its status could be from Unconfirmed to Closed/Resolved as
shown in Fig. 2, each closed bug report would have a corresponding resolution such as
FIXED, DUPLICATE, etc. Detailed introduction to the status and resolutions can be found
in the website 4. The Reported field includes the reporting time of a bug and the person who
reports it. The Importance field has two parts, namely priority (E.G., “P3” in the figure) and
severity (E.G., “normal” in the figure). The modifications towards a bug report, such as status
changes would all be recorded in the “History” item, and the Modified item memos the last

modification time.

4 https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Status/RESOLVED

@ Springer

https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Status/RESOLVED

122 Page 8 of 48 Empirical Software Engineering (2024) 29:122

2.2.2 Six BRM Techniques

To help resolve as many bug reports as possible with limited resources, researchers proposed
a list of techniques to manage these bug reports, namely bug report management techniques
(Zou et al. 2018), including bug localization, bug severity/priority prediction, bug fixing time
prediction, etc.

This section mainly introduces six bug report management techniques studied in our work,
also considered important by software practitioners (Huo et al. 2014; Zou et al. 2018). They
are duplicate bug report detection, bug severity prediction, bug priority prediction, bug fixing
time prediction, bug field reassignment prediction, and re-opened bug prediction. These
techniques can help us more purely understand the usefulness of WE models in representing
bug report semantics. This is because they mainly rely on the analysis of textual summary
and description of a bug report. In other words, we can avoid the situation that our findings
get biased by the potential interactions between bug reports and other software artifacts, as
well as imprecise processing steps such as bug-code linking in other BRM techniques.

Duplicate Bug Report Detection aims to identify whether or not a newly reported bug is
duplicated with existing bugs in the bug tracking system. With duplicate bug detection, users
could avoid reporting the same problems, while developers could save time in handling more
bug reports without wasting time doing redundant work. In a bug tracking system, a bug
report with a “DUPLICATE” resolution represents that the bug is duplicated with an existing
bug(s). Existing studies mainly take duplicate bug report detection as a recommendation task
((Runeson et al., 2007; Wang et al., 2008; Sun et al., 2011; Zhang et al., 2023)). The process
is to use typical VSM to represent the semantics of the summary and description items first,
then rank bug reports based on the cosine similarity of VSM vectors where a word is mainly
weighted by TF-IDF (Sun et al. 2010), BM25F (Sun et al. 2011), etc. Some studies attempt
to take this task as a classification one by applying machine learning algorithms like SVM,
LSTM, and CNN to predict whether a bug report is duplicated with another one or not (Sun
et al. 2010; Budhiraja et al. 2018a; Rodrigues et al. 2020).

Bug Severity Prediction aims to predict the severity of a bug report. The severity of a bug
report reveals how severe the bug is in the software. Some bugs are particularly critical such as
data corruption and need to be fixed immediately; while some may be minor problems and can
be delayed until resources are available. Thus, bug severity prediction can help stakeholders
better arrange resources in fixing bugs and ensure that software works properly as much as
possible. Existing research usually regards bug severity prediction as a classification problem.
Among those studies, the summary and description items are mostly used, items like stack
trace, components, priorities, product, and code change history are sometimes used to improve
prediction performance(Menzies and Marcus 2008; Yang et al. 2014; Roy and Rossi 2014;
Sahin and Tosun 2019; Ramay et al. 2019; Arokiam and Bradbury 2020; Kim and Yang
2022). The VSM with TF/TF-IDF weighting is commonly adopted to represent the textual
semantics of bug reports; other models like LDA or Word2Vec are also used in a few studies.
Regarding the selection of ML models, most studies tend to use traditional classification
algorithms like SVM, NB, and RF; few studies use deep learning methods such as MLP and
LSTM to make severity predictions.

Bug Priority Prediction aims to predict the priority of a bug report, which could save
practitioners from the time-consuming and error-prone manual priority assignment activity.
Bug reports with high priority, such as those impacting a large number of consumers should be
fixed first. With automated priority prediction, software maintainers could have a better mind
about collected bug reports before manually diving into the bugs and make a better resource

@ Springer

Empirical Software Engineering (2024) 29:122 Page90f48 122

allocation in resolving them to avoid letting high-priority bugs go without notice among
large amounts of bugs. For bug priority prediction, mainstream research also regards it as a
classification task. Besides the summary and description features, other features like historical
similar bug reports, reporter information, and the component/product a bug report belonged
to, would also be integrated to facilitate prediction performance (Kanwal and Magbool 2012;
Tian et al. 2013, 2015; Umer et al. 2019; Zhang and Challis. 2020). The VSM is mostly
used in the semantic retrieval of textual content; the LDA and word embedding models are
also used in some cases. As for the adoption of ML methods, it shows a route from using
traditional ML models like SVM, NB, and KNN to (deep) neural networks like CNN.

Bug Fixing Time Prediction aims to predict how long a bug report would be fixed. For
a large and evolving software system, a project team may receive many bug reports over a
long period. It would be very valuable to achieve a quantitative understanding of bug-fixing
time for those bugs, in that not only users could know possible feedback or status of their
reported bugs but also project maintainers could make a better resource schedule for fixing
bugs. Towards the bug-fixing time prediction task, some researchers choose to estimate the
total time required to fix a bug (Panjer 2007; Weiss et al. 2007; Hewett and Kijsanayothin
2009; Vieira et al. 2022) while some researchers try to predict whether it would be a slow or
fast fix (Giger et al. 2010; Marks et al. 2011; Zhang et al. 2013; Habayeb et al. 2017; Yuan
et al. 2021). The items used in existing studies mainly include the summary and description,
bug severity/priority, reporter popularity, open bugs, developer activities, field updates, etc.
Prediction models also mainly focus on traditional ML methods such as Logistic Regression,
Random Forest, and Hidden Markov Model, with some recent work also applying neural
networks such as MLP (Yuan et al. 2021; Vieira et al. 2022).

Re-opened Bug Prediction Re-opened bugs are bugs closed by developers but re-opened
later (i.e., status being “Reopen” in the lifecycle of a bug in Fig. 2). Bugs can be re-opened for
a variety of reasons such as partial fixing. The existence of re-opened bugs makes developers
generally have to take a longer time to resolve them and hence further increase the main-
tenance costs of a project. Thus, a series of studies have emerged to automatically predict
whether a bug report would be re-opened during its lifecycle (Shihab et al. 2010; Zimmer-
mann et al. (2012); Shihab et al. 2013; Xia et al. 2013, 2015b; Mi et al. 2018; Tagra et al.
2022). These studies generally take re-opened bug prediction as a classification task, by apply-
ing traditional supervised machine learning models like NB, DT, LR, and Bagging towards
bug instances represented by a set of features such as textual bug description, reporter/fixer
reputation, work habit, etc.

Bug Report Field Reassignment Prediction A bug report contains many fields, such as
product, component, severity, priority, and so on. Those important information items can help
developers a lot in bug fixer assignments and bug fixing. However, as reported by (Xia et al.
2014), reporters often provide wrong values for bug report fields, which prevents developers
from effectively fixing bugs. Bug report field reassignment prediction aims to predict which
fields would have their values reassigned so that developers or reporters could better cope with
their bug reports, E.G., by trying to correct them timely. Bug report field reassignment is also
generally taken as a classification task. In this field, ML algorithms like NB, KNN, and HMM
are generally tested; the textual summary and description items are commonly used to build
prediction models, function call sequences from stack traces and some categorical features
like operating systems are also considered in specific studies (Lamkanfi and Demeyer. 2013;
Xia et al. 2015a; Islam et al. 2021).

@ Springer

122 Page 10 of 48 Empirical Software Engineering (2024) 29:122

3 Experiment Setup

In this section, we will first briefly present the overall workflow of our experiments. Then
we introduce the datasets we use to conduct our experiments. After that, we describe how
we use WE models to retrieve bug report semantics and build prediction/recommendation
models to perform BRM tasks. Last we present the four research questions whose answers
may help us understand the potential of WE models in BRM tasks.

3.1 Overflow

Figure 3 shows the whole experiment process of our study. First of all, we separately crawled
all bug reports from the bug tracking systems (BTS) of Eclipse and Mozilla by the time we
conducted our study. For each bug report, we extract the summary and description items from
bug reports for experiments. Then, we use pre-trained word embedding models to extract
semantics from the textual content of summary and description items.

After applying WE models, each word of a bug report would be represented as a numeric
vector with N dimensions (E.G., general pre-trained Word2Vec would generate a 300-
dimensional numeric vector for a word), and a final N-dimensional vector would be generated
for abug report after operations such as max/average-pooling. The final N-dimensional vector
represents the semantic features of a bug report.

Based on these embedding vectors, six models for six downstream BRM tasks are built.
These models are then tested on the new bug data. The prediction results are further analyzed
to answer four research questions that explore the most suitable ML for WE models, the
best WE models, the comparison between WE models and the VSM model, and the value of
fine-tuning general pre-trained WE models for BRM tasks.

As shown in the figure, when we build corresponding BRM models, we only consider
textual semantic features of summary and description items without leveraging other helpful
factors such as developer experience. We adopt this strategy mainly because: 1) The two
textual items are most important for a bug report and play a major role in existing BRM
techniques; 2) The goal of our study is to understand the potential of WE in representing bug
report semantics for various BRM tasks not to propose most-advanced BRM techniques; 3)
Considering other factors may introduce confounding factors that prevent us from obtain-
ing unbiased conclusions related to the value of using WE in BRM tasks; 4) Since we use
performance difference to answer our research questions, the possibly even-not-so-high per-
formance values would not harm our analysis.

3.2 Data Collection

We conduct our experiments on data from two famous open-source foundations, Eclipse and
Mozilla. For each foundation, we first crawl all bug reports from its bug tracking system
(BTS). The BTS supports several bug data formats, including XML, CSV, JSON, etc. In this
study, we downloaded the corresponding XML files of those bug reports. Each XML file
represents a whole bug report, and a tag can identify each information item of the bug report.
For example, the tags indicated the one-line summary and description items are “short_desc”
and “long_desc” for Eclipse and Mozilla. We also use these tags to retrieve the needed
information items.

After obtaining all bug reports for each foundation, we select the top 10 products with
the largest number of bug reports. The selected 20 products are popular among developers

@ Springer

Page 11 0f48 122

Empirical Software Engineering (2024) 29:122

uoIORIIXF J1JURWSS

Apmys Ino Jo yIomawelj [[eIAQ € ‘B4

uonadvjjo) eyeq

IIIIIIIIIIIIIIIIIIIIII - —— e — —
_‘ sppqetsse;y SIPPOIN UOREIISSEID _ _ SN suUonSaND YdJeasay 1
_ < —, uondIpald Juawusisseay pjal4 Sng WI ImWOH_uW—Q ._IS_I > Q D _ _ duew.opzd _
« 25 /W |BI3UID SA _
_ ﬁ uonipald Sng pauadoay Hl ||||||| > . _ “ $3NS2Y | a1055 14 IM pauny-auly _
_ 510309\ JUBWS — uoipIpald awiy Suixig Sng _l ||||||| > _ E
_ ﬁ uonaipaid Alsanas Sng _l ||||||| > Q D _ - _ feosu l _
2> _ uoisaId _
_ — uonoipaid Auoud Sng _l ||||||| > _ o
_ |2POIN UOIIEPUBWIWIOIRY _ l1e29y-N _
ﬁ uonoayag Sng azedydng _|V], T2] _
_ Ayejiwis auiso) Ihl _ _
= _eemwwees T D sshew
| seeowam T T T T T T T T T T T 1 _ﬂ|||||||||||m§ﬁ¢m|a:_ﬂos_|||||“
paulen-aid
2D
_ ejeq passasoid-aid “ _ suoday Sng s)npoid 123]3§ @ wayshs _
_ ’ " _ _ Sunpes) Sng _
- uonduasag ° —
_ @— Aewwng I - o. suoday Sng asdip3 = ' _
| | At B . 2
| | |
| | |
L _

pringer

Qs

122 Page 12 of 48 Empirical Software Engineering (2024) 29:122

and users. Some are often used in existing studies (Lamkanfi et al. 2010; Nguyen et al.
2012; Tian et al. 2013; Zhang et al. 2016). They come from different domains and are of
different sizes, which to some extent guarantee the generalizability of our findings in practice.
We would first retrieve each product’s bug reports and prepare corresponding datasets for
different BRM tasks. Specifically, we would filter out not-yet-closed bug reports for bug
severity/priority/reassignment prediction tasks since we can not determine their final status
or resolutions. For the bug fixing time prediction task, we only consider the bug reports
whose resolution is “fixed”. As for the reopened bug prediction task, besides closed ones,
bug reports whose status is “reopened” are also included during experiments. Table 1 shows
the basic statistics of our experimental products.

After obtaining the text of the one-line summary and description items for each bug report,
we take the extracted content as plain text and follow a common flow to preprocess it. That
is, we first tokenize the text into words. At the same time, special symbols, digits, and single
characters are also removed. We further split camel case words into individual words (E.G.,
windowWidth — window + width), with original camel case words being also kept. After
that, we convert each word to its lowercase and then use Porter Stemmer to do stemming by
transferring individual words into their root forms (E.G., reported — report). At last, we use
the NLTK stop-word list’to remove stopwords (such as “the”, “and”, and “a”) that frequently
appeared in a corpus and generally contribute little to one’s understanding of text content.
Like most BRM studies (Roy and Rossi 2014; Xia et al. 2015b, a), we did not further handle
the hyperlinks and stack traces after applying the above preprocessing steps towards them.

3.3 Semantic Extraction

We mainly use five typical pre-trained word embedding models (i.e., Word2Vec, FastText,
GloVe, ELMo, and BERT) to extract the textual semantics of bug reports. For each word, a
WE model would generate a N-dimensional numeric vector for it. For a bug report of a list
of words, we take each dimension’s average value from vectors for all words it contains (i.e.,
average pooling) and generate a final N-dimensional vector. This final vector is taken as the
semantic representation of the bug. We directly use the shared five pre-trained WE models
from their official websites ©.

All WE models except Word2Vec (N=300) provide several vector-dimension options.
For example, users can download pre-trained GloVe models that generate 50/100/200/300-
dimensional vectors for words. The dimensional options of BERT and ELMo are 768/1024
and 1024/2048/4096 respectively. FastText provides a 300-dimensional model but also pro-
vides a tool to transform it to a customized size. Based on our preliminary exploration, we
find three options of FastText, i.e., 100, 200, and 300, are mostly used in previous studies.
As we have no idea in advance whether the dimension size would affect the findings or not,
we decide to test all those options.

Furthermore, considering that larger feature numbers generally require a much larger
dataset to well approximate their weights during model building, for BERT and ELMo, we
only test the smallest pre-trained model, i.e., 768 for BERT and 1024 for ELMo. Based

5 https://www.nltk.org/search.html?q=stopwords
6 https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english- vectors.html
https://huggingface.co/bert-base-uncased
https://allenai.org/allennlp/software/elmo

@ Springer

https://www.nltk.org/search.html?q=stopwords
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://huggingface.co/bert-base-uncased
https://allenai.org/allennlp/software/elmo

Page 13 0f48 122

Empirical Software Engineering (2024) 29:122

SodeLIAIU] SuTWeISo1d 088°v€ L6ETT LTS'LY OVS'SS ooy,
LD [rewy LLE'6S 160°CT LTSTS SES09 parqropunyf,
70T SYTOMOWEL]/S[OOL, SUNSAL, 198°8 868°31 ¥$9°0¢ Y8YvE Sunsog,
a°d 21Ing JouINU] 1L1°61T 891°1¢C ¥¥8°C6 80C°96 S THALEN
- QmjoNnSeIFU] SMON[IRIA LSY'IT £06°01 606°6T 060 910D SMANTIEIN e[[IZON
8661 wasg sunerado 18291 L19°6C TESOL TESOL pIeAdABID SO XOJOIL]
1dy TosmoIg A[IqON 080°€T 661°ST 916 ISI'6€ PpIeAoARID) PIOIPUY IO} XOJOIL]
1OSMOIE GOM LT9LT 8L6°6€ 6C1°8LT 819961 X0jorny
$[00], JodojoAd(gom TIS6 €S0°LI 208°0€ L8ESE S[00LAR(
NN SU[PUBH JUSIUOD) GIM [dqadl ¥1690T 8S0V0F TST'S9Y 210D
QAIYOIY Sng 89L%C €08°1¢S 8ST'LL TLO'S8 PIAIYOIY 2
aamjonnselyu] Juawdofoaa(y aremos SP6'Tl LTS€ES OLYIT 6£6°1C1 woe|d
Te0t JuswuoNAUF Judwdo[eAd(] ur-3njd 99t'¢ L6 87891 8IGLI aad
uef J1omaurer] SuI[epoy €S wy's 0666 LTl snifdeq
- HAI 99M $79 9¢1°L 01€°01 0LY*01 uorQ asdrpyg
100 QoejIau] 1as() 966°1 €TT’S 6T6°L 7988 UKIAN
100 s[00, Judwdo[oaa(] eAef 018°cT 99°8¢ P68°LS LT6°C9 iar
INMOAIYIIY ucoaommﬁmz\\co\wﬂoﬁ_ AJIAIRS mmm,N @moaw o.votvﬁ O@VJL xo:_zwm
9d1A10S AyUnuIo)) 868°T 8€L'81 91 +T L6SYT Aymunurwo))
JuewoAUF JuawWdo[aAR(PAIBISA] ++D/D) 96¢£°¢ L9ETT TSELT 60T 1ao
poL{ sury, urewo(sared aedrdng sAd paxig sA g PaIsoD sAugd jonpoig 193loag

sjonpoid [ejuewradxy ImQ Jo sonsnels oiseq | d|qel

pringer

Qs

122 Page 14 of 48 Empirical Software Engineering (2024) 29:122

on our investigation, larger BERT/ELMo pre-trained models are not so commonly used in
existing software engineering studies. Finally, the dimensions we use for numeric vectors
generated by BERT, ELMo, FastText, Word2Vec, and GloVe are 768, 1024, 100/200/300,
300, 50/100/200/300 respectively.

Meanwhile, since one of our goals is to compare the performance of WE models to mostly
used VSM 1in existing BRM studies, we also use the VSM model to represent the semantics
of bug reports. VSM (Vector Space Model) is a typical information retrieval model for text.
It treats a bug report as a bag of words and generates a bug vector. The vector size is the
number of unique words in a corpus (all bug reports), with each element corresponding to a
unique word, and the value of an element is the weight of a term in a document (bug report).
Following existing studies (Zhou et al. 2012; Saha et al. 2013; Ye et al. 2014), we use TF-IDF
to measure the term weight.

3.4 Model Building and Evaluation for Six BRM Tasks
3.4.1 Model Building

After obtaining semantic feature vectors of individual bug reports, our next step is to train
models for six BRM tasks, namely duplicate bug report detection, bug severity prediction,
bug priority prediction, bug fixing time prediction, re-opened bug prediction, and bug field
reassignment prediction. Following the mainstream BRM studies (Jalbert and Weimer 2008;
Lamkanfi et al. 2010; Giger et al. 2010; Nguyen et al. 2012; Deshmukh et al. 2017), we
take duplicate bug report detection as a recommendation task and the other five as classi-
fication tasks. In other words, duplicate bug report detection aims to recommend a list of
potential duplicate bug reports for a given bug report, where the recommendation is mainly
based on the cosine similarity between two semantic feature vectors. The remaining five
tasks aim to classify a bug report into pre-defined categories, where a prediction model
generally needs to be built by applying a machine learning (ML) algorithm to a dataset of
labeled bug reports represented in semantic feature vectors. In this study, we test four typical
machine learning algorithms, namely NB (Naive Bayes), SVM (Support Vector Machine),
RF (Random Forest), and LR (Logistic Regression) in model building. These algorithms are
classical machine learning approaches for classification tasks and are often used in BRM
studies (Lamkanfi et al. 2010; Tian et al. 2013, 2015; Zhang et al. 2016). The combination
of different WE/VSM models and ML algorithms could help us explore the suitable ML or
semantic feature extraction models in the study.

To build or evaluate a model, we need to have a benchmark dataset for the six BRM
tasks. The previous subsection has helped us obtain semantic feature vectors for individual
bug reports, and we need to label each bug report further to have a ground truth (with both
instance features and labels determined) for model training and prediction. The detailed
labeling strategies of six BRM tasks are as follows.

Duplicate Bug Report Detection. We mainly rely on the resolution field to find those
duplicate bug pairs. Specifically, for a bug report, if it is a duplicate one with another bug
report, the resolution field of this bug report would be set as “duplicate”, with the corre-
sponding dupld also being attached. dupld indicates which bug report the current bug report
is duplicated with. For example, for a bug with id 1234, suppose its resolution is “duplicate”
and its dupld is 5678, then we can understand that bug 1234 is a duplicate of bug 5678.
The bug 5678 is also called the master bug report. We can identify whether two bug reports
are duplicates by referring to the “duplicate” resolution and dupld. We can find all possible

@ Springer

Empirical Software Engineering (2024) 29:122 Page 150f48 122

duplicate pairs by collecting all such pairs and constituting a directed diagram. Those pairs
would work as the ground truth when we evaluate the built duplicate bug detection model.

Bug Severity Prediction.According to the configuration of bug tracking systems adopted
by Eclipse and Mozilla, a bug report generally has a severity field, whose values are among
Blocker, Critical, Major, Minor, Trivial, and Enhancement; sometimes, Mozilla would also
use S1, S2, S3 and S4 to indicate severity 7 Following (Lamkanfi et al. 2010, 2011; Tian et al.
2015), we classify bug reports into two categories, i.e., Severe or Non-severe. Bug reports
with severity levels of Blocker, Critical, and Major, or S1/S2 are put into the Severe category.
Bug reports with severity levels of Minor and Trivial, or S4 are considered Non-severe. Bug
reports with the Enhancement level or S3 are ignored because these reports are requests for
new functionalities.

Bug Priority Prediction. Similar to bug severity, a bug report has a field to indicate its
priority. The priority field has 5 levels, namely P1, P2, P3, P4, and P5, with P1 indicating
the highest priority and P5 indicating the lowest priority. Reports whose priority is “— are
ignored in this task. Following (Alenezi and Banitaan 2013; Izadi et al. 2022), we divide
these five levels into three class labels namely High, Medium, and Low. High includes P1
and P2, Medium includes P3, and Low includes P4 and P5.

Bug Fixing Time Prediction. We take a two-step way to determine the fixing time label
for a bug report with a “fixed” resolution inspired by the study of (Vieira et al. 2022). First,
we calculate the time span from the creation time of a bug report to the time the bug was
fixed. Then we classify all bug reports into three categories, i.e., <5 days, 5-10 days, and >
10 days. As claimed in (Vieira et al. 2022), 5 days roughly represent a week of 5-weekdays
and are considered as a more reasonable or practical time unit than other studies by, E.G.,
classifying bug reports into slow-fixing or fast-fixing categories.

Re-opened Bug Prediction. For each resolved bug report, we retrieve its history item and
check its content to find whether there is a record reporting that the status of a bug report has
ever been changed to “reopened”. If there is, then the re-opened label of the bug report is 1,
otherwise 0. The bug reports whose current status is “reopened” are directly labeled as 1.

Bug Report Field Reassignment Prediction. For each resolved bug report, we retrieve
its history item and check whether the values of certain items have ever been changed to
other values. Following (Xia et al. 2015a), we mainly check the field reassignment problem
of meta-items including status, component, product, priority, severity, operating system(OS),
and version. These items are important for bug locating/fixing and tend to have wrong values
submitted by reporters. Note that unlike (Xia et al. 2015a), we ignored the reassignment to
the assignee item (who or which team is responsible for fixing a bug) as it has little to do
with reporters and is most likely to be changed during the lifecycle of a bug report. For each
considered item, if its value has ever been modified, as shown in the history item, then the
reassignment label is 1, otherwise 0. Notice that for the status item, like (Xia et al. 2015a),
we only consider the case where the status field is changed from resolved, removed, and
reopened values to other values.

During model building for the five classification tasks, our project datasets present the
class imbalance problem to different degrees, i.e., a class may have many more instances
than others. Table 2 shows the instance numbers of each class for five BRM tasks. Such
an imbalanced class problem may bias the prediction results. For example, the model may
always predict an instance as one of the majority class. To avoid potential threats brought by
imbalanced class data, we adopt the random oversampling strategy to balance the datasets
in our study. Oversampling aims to balance uneven datasets by keeping all instances in the

7 https://wiki.mozilla.org/BMO/UserGuide/BugFields#bug_severity

@ Springer

https://wiki.mozilla.org/BMO/UserGuide/BugFields#bug_severity

Empirical Software Engineering (2024) 29:122

122 Page 16 of 48

8II°C 6LT'S +E8°T L90°SH 9IL9T 1180C 090°C 8I1°c 0IS'S 60€°91 089°1 80v°¢ I[ooL
066°¢ 1€1'6 1€S°T 9SIIS LLEQL OPI9E Y0€¢ 661 9 6108 796 080°¢ pliqrepunyg,
LT6 WOl 16£T 9TS'8T 8LT'8 9LETT IL1°OI L6T'1 186°C L6801 091°¢ 1087 Sunsof,
12C°6 00€°CC 98¢y 10S'88 9SS°€8 88T6 £98 9TSI €10y o1v'61 10S LST'1 KoquojNeag
906°1 I81°8 0861 SI0°8T 16T9C 819°¢ 961 Iy 899°1 6€9°6 €LE 68 910D SMINIIBIN B[[IZON
ISy €gL'e 0TL'e TI8'99 1€8YT 10L°SS Lty 8eS'T 98L°8 SYI°1T 888°C ¥8S°S prekoALID) SO X0JoIL]
LOS 8TEY S90°T 980°LE LE€9'EE 60S'S 606T 98I1°C IvL'e PES VI 961 697 PIeAOARID PIOIPUY I0J XOJOIL]
€7CTC 1L0T 8SP'T I¥S'Lk 060°61 80S0€ 1SLY L69Y PLYTI 999°G1 9v6°1 8€0°¢ X0JoI1g
€50°1 Y8y LOOT I€1'6C vT6'TT 8L8'L TISE 0€L'9 8859 87671 €69 4! S[00LAq
9SI‘’L 010T 8ILY 18TSY IPI°LT ILS'IE 169°LI YLLO 8¥9'8 0€8 VI S60°S 9r°'8 alo)
0L6T 0€T¥l €S¥'9 6LO'IL 08TT9 8L6YVI 0IL L66°S9 1SS°01 £98°91 SI9°1 STee PaAIYOIYZ
006T ¥06'9 16L°C 60T9y I¥I91 8pSee 1434 €558y L ¥S9°ST LY0T Sse9 uopeld
09L ¥86°1 I9T'T ¥ILSI 99Sy T8TTI €01 09291 S8y YLS'S £68 [SyAly dad
09¢ €6v'1 6LE 1996 LT8T €9I'L L1 999°6 LOE LT8'S 444 102°C snikdeq
9¢ €79 €Iy S€6'6 618°C 16v°L 43! LEY'6 849 LS9E 686 ¥68°C uotQ asdrpyg
090°1 YEL 8vL €61°L 876°€ 100y SS9 61€°S SS6°1 866°C 8Ly LyL'1 uk AN
WIY €v6'S ¥S9'9 TISIS OvITC ¥SLSE 12L1 6€6°1S YETY LYS'61 689°C 0€T°9 Lar
Wy 8L €18 SLTEl L6T'Y 6786 LL S8LET 781 0S99t £€9 9SLT xournbg
€y 986'C €0€T 8TITT 98¢t 0£0°1C 1cc 886°€T L09 T$T6 607°1 LLO'8 Amunurwo)
8¥8 69C°C €0I'T LTE9I 0619 TII°T1 9 00691 06¢ 8€1°6 01L 615T Ldd
QIOAIS-UON QI9AQS SOX ON SOA ON MOT wWnIpIN ySiH sAep i< sAep(Q[-¢ sAep G-0 jonpoig 3foag
JNIAEYEIN uwdoay JUIWUSISSBIY Aaorag Juiry, Surxig

SYSB) UoneIYISSe]d A Al J0J sirodar Snq Jo s1aqunN g 3|qel

pringer

as

Empirical Software Engineering (2024) 29:122 Page 17 of 48 122

majority class and repeatedly sampling an instance from the minority class until the sizes of
the two classes are the same. We use functions provided by Python package imblearn to do
oversampling.

After handling the class imbalanced problem, we apply ML algorithms to the balanced
datasets to obtain prediction models for BRM tasks. We use the functions provided by Python
package cuML8to build those models. cuML package provides a series of GPU-accelerated
machine learning algorithms, and its APIs mirror Scikit-learn’s” Only for those models
that encountered the out-of-memory problem on a single NVIDIA GeForce RTX 3090 GPU
(with 30G memory), would we train them with the CPU-based Scikit-learn ML APIs. All ML
algorithms use the default settings provided by cuML or Scikit-learn. Using default settings
improves the replicability of our study and what is more important, makes our findings more
general and hence more referenable in practice. This is because practitioners could not know
in advance what optimal settings are for their BRM tasks at hand, in which case choosing
a relatively better ML in general cases is very likely to be their first step in building their
models. We adopt stratified ten-fold cross-validation during model building. That is, for each
dataset, we first divide it into ten mutually exclusive subsets of approximately equal size,
with each subset being testing data and the remaining nine subsets as training data. Both
the training and testing data preserved the percentage of samples for each class. Then, for
each pair of training and testing data (10 pairs in total), we perform the model training and
prediction activities. Last, we take the averaged prediction results of ten rounds as the final
performance of built BRM models. Note that, for the three quite large products, namely
Platform, Core, and Firefox, we do not use all but the latest 50,000 closed/reopened bug
reports for model training, which we think is sufficient to build a representative classifier but
with much less time for model training. Moreover, we only do oversampling to the original
training data of 9 folds. When we test the model, we use the original 1-fold testing data,
which is still imbalanced. We think this is more reasonable than using balanced testing data
to evaluate built models, as the testing data is imbalanced in real-world situations.

3.4.2 Evaluation Metrics

As mentioned previously, the detection of a duplicate bug report is a recommendation task,
which recommends a list of bug reports that may be duplicated with a given bug report. In this
study, following (Runeson et al. 2007; Hindle et al. 2016), we calculate the cosine similarity
between two semantic vectors of two bug reports to get the recommendation list. When
evaluating detection performance, we calculate the Recall-N value for the tested bug reports.
Here Recall-N refers to the ratio of duplicate bug reports whose master reports are within
the suggested recommendation lists of N bug reports, over the total number of duplicate bug
reports used in the experiment. In this study, we use N=20 for the duplicate bug detection

task.

duplicate bugs correctly detected in top N
Recall — N = - (1)
total # duplicate bugs

For the other five classification BRM tasks, by following the practice of prior BRM studies
(Xiaet al. 2015b; Zhang et al. 2016; Ardimento and Mele 2020; Jia et al. 2021), we adopt the

8 https://docs.rapids.ai/api/cuml/stable/
9 https://scikit-learn.org/stable/

@ Springer

https://docs.rapids.ai/api/cuml/stable/
https://scikit-learn.org/stable/

122 Page 18 of 48 Empirical Software Engineering (2024) 29:122

widely used Precision, Recall, and F1 score to measure the performance of our models for
BRM tasks. The calculation of the three metrics is shown in the following formula, where S
represents a predicted class label.

. # bugs correctly predicted as S
Precision = - (2)
bugs predicted as S

bugs correctly predicted as S
Recall = 3)
bugs of S

2 x Precision x Recall
F1 — Score = — 4
Precision + Recall

3.5 Research Questions

We try to answer four research questions (RQs) to understand the potential of word embedding
models in bug report management tasks.

RQ1. Which machine learning approach performs best for BRM tasks on the whole?
To the best of our knowledge, most existing studies take BRM tasks as classification tasks,
which generally apply typical machine learning (ML) algorithms, such as SVM, NB, and
RF, to semantic features obtained by classical information retrieval models like VSM, LDA,
etc. We have no idea whether the findings on existing studies about suitable ML for BRM
tasks still hold under the situation that we use WE models to retrieve bug report semantics.
Hence, we plan to answer this RQ with the aim of helping developers choose suitable ML for
their BRM tasks. We compare four typical and commonly used ML methods in this paper,
including Naive Bayes, Random Forest, Logistic Regression, and Support Vector Machine.

RQ2. Is there a word embedding model that generally outperforms others for BRM
tasks? Semantic retrieval of bug reports is a fundamental step for BRM tasks. For the five
WE models (i.e., Word2Vec, GloVe, FastText, ELMo, and BERT) we studied in this paper,
we attempt to explore whether there is a dominant WE model that always tends to outperform
other WE models for BRM tasks. The answer to this RQ could guide developers in choosing
the most suitable WE model for their BRM tasks at hand.

RQ3. Do word embedding models outperform the most used VSM model for BRM
tasks? Before the applications of WE models for BRM tasks, most studies used the simple
and effective VSM model to retrieve the semantics of bug reports. Compared to VSM, WE
models are relatively complex. The performance of WE models compared to that of VSM
is still a question mark. Answering this question could help us understand whether it is
beneficial to use WE or the VSM model for various BRM tasks.

RQ4. How will the performance change if word embedding models are fine-tuned
with bug data? To fully exploit the potential of WE models, it is not uncommon for
researchers/practitioners to adapt the general pre-trained WE models to their tasks, through
further training those models with domain-specific data. This naturally inspires us to explore
whether we could obtain better prediction performance of BRM tasks if we further train the
general WE models on bug data. In this study, we choose to further train BERT whose archi-
tecture is designed to facilitate further training. We use a large dataset of bug reports to further
train the general pre-trained BERT. Then, we compare the performance difference between
ML models built on feature vectors obtained by general pre-trained BERT and fine-tuned
BERT, to answer this RQ.

@ Springer

Empirical Software Engineering (2024) 29:122 Page 19 0f 48 122

4 Experiment Results

4.1 RQ1. Which machine learning approach performs best for BRM tasks
on the whole?

Approach. To find the most suitable ML algorithm under the situation of using WE models
to retrieve bug report semantic features, we conducted a series of experiments. For each BRM
classification task (duplicate bug report detection is excluded as it is mainly considered as
a recommendation rather than a classification problem), we first use five WE models to
retrieve the semantics of bug reports for each product (as described in Section 3.1). Then we
apply four ML approaches, namely LR, SVM, RF, and NB, to the feature vectors of five WE
models separately to obtain prediction models. Last, we use corresponding testing datasets
to evaluate the performance of those prediction models. In other words, we would have 800
prediction results for each BRM classification task, i.e., 20 products * 4 ML algorithms * 10
WE models with different dimension sizes = 800. Similarly, each ML would have 20 * 10 =
200 prediction values for each BRM task.

Since our results do not fulfill the residual normality and sphericity assumptions of para-
metric ANOVA, we followed the guidelines by (Demsar 2006) to combine non-parametric
Friedman test and Nemenyi post-hoc test to do the statistical comparison of multiple ML over
multiple datasets. Friedman test can tell us whether or not there are statistically significant
differences among three or more populations. If yes, then the Nemenyi test can be applied
to compare the classifier with each other. The Nemenyi test uses the critical difference (CD)
between average ranks to define significantly different populations. If the distance between
the average ranks of two populations is larger than the CD value, then the two populations are
significantly different. Otherwise, the experimental data is not sufficient to reach any conclu-
sions related to the compared approaches. A CD diagram is used to visualize the Nemenyi
test results. Such a diagram provides the rank order of compared approaches, the significance
of observed differences, etc. Both the Friedman test and the Nemenyi test can only tell us
whether there are statistically significant differences among compared approaches. We fur-
ther use Cliff’s delta effect size (Macbeth et al. 2011) to measure how large the difference
might be quantitatively. The non-parametric Clift’s delta does not require the data to follow
certain distributions like the normal distribution. The effect size of Cliff’s Delta is divided
into four levels:|d| < 0.147 (Negligible, N), 0.147 < |d| < 0.333 (Small, S),0.333 < |d| <
0.474 (Medium, M) and |d| > 0.474 (Large, L).

Table 3 Friedman tests of ML

algorithms on five BRM Task Chi-squared Statistic p-value

classification tasks Fixing Time 419.82 1.12E-90
Priority 512.47 9.42E-111
Reassignment 482.23 3.37E-104
Reopen 523.98 3.02E-113
Severity 409.59 1.85E-88

Fixing Time: Bug Fixing Time Prediction;

Priority: Bug Priority Prediction;

Reassignment: Report Field Reassignment Prediction;
Reopen: Re-opened Bug Prediction task;

Severity: Bug Severity Prediction task;

*The same rules applied to other tables and figures

@ Springer

122 Page 20 of 48

Empirical Software Engineering (2024) 29:122

Results. Table 3 and Fig. 4 present the results of the Friedman test and the Nemenyi post-
hoc test over the Fl-scores of four ML algorithms on five BRM classification tasks. In
this study, we use a p-value of 0.05 as the significance level threshold. If the p-value of
a statistical test is less than 0.05, then we conclude that there is a statistically significant
difference between/among compared populations. Related to the CD diagrams, a pair of
techniques connected with a bold line indicates that the post-hoc test does not detect a

CD
1 2 3 4
L 1 1]
RF J
SVM
(a) Fixing Time
CD
1 2 3 4
L 1 1]
RF — L
SVM
(b) Priority
CD
1 2 3 4
L 1]
RF — | L
SVM
(c) Reassignment
CD
1 2 3 4
I 1]
RF J L
SVM
(d) Reopen
CD
1 2 3 4
L 1 1]
RF L
SVM

(e) Severity

NB
Logistic

NB
Logistic

NB
Logistic

NB
Logistic

NB
Logistic

Fig. 4 Comparison of all classifiers against each other with the Nemenyi test. Groups of classifiers that are

not significantly different (p-value>0.05) are connected with the bold line(s)

@ Springer

Empirical Software Engineering (2024) 29:122 Page 21 0f48 122

significant difference in F1 scores between them (E.G., the pair of RF and SVM in the bug
severity prediction task in Fig. 4).

From the p-values in Table 3, we can conclude that there indeed exists a statistically
significant difference among the four ML methods for every studied BRM classification task.
Further, from the CD diagram in Fig. 4, we can find that RF achieved the best performance
ranks among four ML algorithms on all five BRM classification tasks. All performance
differences between them are statistically significant except the pair of RF and SVM in
the bug severity prediction task. To understand the magnitude of performance differences
between these ML approaches, we further calculate their corresponding Cliff’s delta effect
sizes. The results are shown in Table 4. From the table, we can find that the F1-score difference
between RF and SVM ranges from small to large over four BRM tasks; the performance
difference over the bug severity prediction task is excluded in that it shows no statistical

Table 4 The magnitude of statistically significant F1 score differences between ML algorithms for five BRM
classification tasks

Recall-N Model Pairs Cliff’s Delta Difference Magnitude
Fixing Time RF vs SVM 0.2689 small
Fixing Time RF vs Logistic 0.43965 medium
Fixing Time RF vs NB 0.5026 large
Fixing Time SVM vs Logistic 0.21775 small
Fixing Time SVM vs NB 0.2603 small
Fixing Time Logistic vs NB 0.0521 negligible
Priority RF vs SVM 0.90745 large
Priority RF vs Logistic 0.99235 large
Priority RF vs NB 0.9936 large
Priority SVM vs Logistic 0.34255 medium
Priority SVM vs NB 0.6328 large
Priority Logistic vs NB 0.46205 medium
Reassignment RF vs SVM 0.1682 small
Reassignment RF vs Logistic 0.29345 small
Reassignment RF vs NB 0.6159 large
Reassignment SVM vs Logistic 0.1139 negligible
Reassignment SVM vs NB 0.4872 large
Reassignment Logistic vs NB 0.44125 medium
Reopen RF vs SVM 0.90745 large
Reopen RF vs Logistic 0.99235 large
Reopen RF vs NB 0.9936 large
Reopen SVM vs Logistic 0.34255 medium
Reopen SVM vs NB 0.6328 large
Reopen Logistic vs NB 0.46205 medium
Severity RF vs Logistic 0.17565 small
Severity RF vs NB 0.6911 large
Severity SVM vs Logistic 0.25895 small
Severity SVM vs NB 0.7292 large
Severity Logistic vs NB 0.56865 large

@ Springer

122 Page 22 of 48 Empirical Software Engineering (2024) 29:122

significance in the CD diagram. The performance differences between RF and LR/NB are
also obvious according to Cliff’s delta effect sizes, with 6 large, 1 medium, and 1 small
magnitude levels respectively on five BRM classification tasks. Similarly, we can conclude
that SVM outperforms LR and NB while LR outperforms NB in five BRM classification
tasks.

Finding 1. RF performs best among studied traditional ML algorithms, the F1-score dif-
ference between RF and the other three ML algorithms ranges from small to large (mostly
large) according to Cliff’s delta effect sizes.

4.2 RQ2.Is there a word embedding model that generally outperforms others
for BRM tasks?

Approach. Similar to RQ1, we use the same statistic tests, i.e., Friedman test, Nemenyi test,
and Cliff’s delta effect size, to compare the studied WE models over 20 products on six studied
BRM tasks. In detail, for the five BRM tasks, we would collect the F1 scores by applying four
ML algorithms to feature vectors of bug reports obtained by different WE models. As for the
duplicate bug report detection task, for each duplicate bug report, we would first calculate
the cosine similarities between the WE vectors of this bug report and all its previous bug
reports; then, a rank list is created from those similarity scores, where bug reports with the
largest scores ranked first in the list. Based on the rank lists of all duplicated bug reports and
the ground truth, i.e., duplicate pairs obtained in Section 3.4.1, we can compute the Recall-N
values. We consider five N values in this study, namely 1/5/10/15/20, indicating providing a
rank list of the most similar 1/5/10/15/20 bug reports for a given duplicate bug report. When
we compare the WE models over the duplicate bug report detection task, we conduct the
statistical tests over Recall-1, Recall-5, Recall=10, Recall-15, and Recall-20, respectively.
For BRM classification tasks, each WE model would have a population of 80 prediction
result samples, i.e., 4 ML algorithms * 20 products, used to perform statistical tests; while
for the cosine-similarity-based duplicate bug detection task, the number would be 20 (we
conduct experiments on 20 products) at each level of Recall-N.

Results. (a) Comparison of FastText/Glo Ve with different dimension sizes. As mentioned
in Section 3, the official websites provide several dimension options for some pre-trained
WE models. For example, users can use GloVe-50/100/200/300 to obtain a GloVe embed-
ding vector with 50/100/200/300 elements separately. To understand the possible effects of
dimension sizes over BRM tasks, we compare the prediction performance of using different
dimension sizes for pre-trained FastText (100/200/300) and GloVe (50/100/200/300). We first
check the Friedman test results and find that all p-values are <0.05 (detailed test results can be
found in the Appendix Table 12). Hence, we can conclude that there indeed exists pre-trained
FastText/GloVe with a certain dimension size that performs differently than others.

By further checking the CD diagrams in Figs. 5, 11, 12, 13 (Figs. 11-13 show a similar
trend with Fig. 5, we place them in the Appendix section) we can find that, on five BRM
classification tasks, FastText-300 performs best, with FastText-200 being the second best; the
only exception is that we cannot conclude whether FastText-200 performs better or not than
FastText-100 on the bug fixing time prediction task as the test result is not statistically signifi-
cant (connected with a bold line). As for GloVe, we can find that except for the connected pair
of GloVe-100 and GloVe-50 in the bug report reassignment task (no conclusion can arrive),
GloVe models generated larger vectors always perform better than those with smaller dimen-
sion sizes on the five BRM classification tasks. As for the duplicate bug report detection

@ Springer

Empirical Software Engineering (2024) 29:122

Page 23 0f 48 122

(‘fastText',
(‘fastText',

(‘fastText',
(‘fastText’,

(‘fastText’,
(‘fastText’,

(‘fastText',
(‘fastText',

(‘fastText',
(‘fastText',

3

cD
1
300) J _L
200)
(a) Fixing Time
cb
1 3
300) J L
200)
(b) Priority
cb
1 3
300) J L
200)
(c) Reassignment
cb
—
1 3
300) _______J L_______
200) —mM8M8
(d) Reopen
cb
1 3
300) 4‘ L
200)

(e) Severity

(‘fastText',

(‘fastText',

(‘fastText',

(‘fastText',

(‘fastText',

100)

100)

100)

100)

100)

Fig. 5 Comparison of FastText with different dimension sizes on five BRM classification tasks with the
Nemenyi test. Groups of FastText-N that are not significantly different (p-value>0.05) are connected with the

bold line(s)

task, we cannot tell whether GloVe-300 performs better than Glove-200 or not, but we can
tell that GloVe-300 and GloVe-200 perform better than GloVe-50. The differences between
pairs (GloVe-200, GloVe-100), (GloVe-100, GloVe-50) also have no statistical significance,
indicating no conclusion can be arrived.

Table 5 Friedman tests of five WE models on five BRM classification tasks and the duplicate BR detection

task

Five BRM Classification Tasks Duplicate BR Detection

Task Chi-squared p-value Recall-N Chi-squared p-value
Statistic Statistic

Fixing Time 0.44 9.79E-01 Recall-1 71.12 1.31E-14

Priority 18.83 8.45E-04 Recall-5 75.71 1.40E-15

Reassignment 7.85 9.72E-02 Recall-10 76.63 8.96E-16

Reopen 45.73 2.80E-09 Recall-15 76.63 8.96E-16

Severity 17.21 1.75E-03 Recall-20 76.36 1.02E-15

@ Springer

122 Page 24 of 48

Empirical Software Engineering (2024) 29:122

CD
P
1 3 4 5
(‘'word2vec', 300) (‘elmo’, 1024)
('bert', 768) (‘fastText', 300)
(‘glove’, 300)
(a) Fixing Time
CD
 —
1 3 4 5
L 1 1 1
(‘glove', 300) (‘fastText', 300)
(‘'word2vec', 300) (‘elmo’, 1024)
('bert', 768)
(b) Severity
CD
P
1 2 3 4 5
L 1 1 1]
('bert', 768) (‘fastText', 300)
(‘elmo’, 1024) (‘glove’, 300)
(‘'word2vec', 300)
(c) Priority
P
1 2 3 4 5
('elmo’, 1024) ('fastText', 300)
('bert', 768) (‘glove’, 300)
(‘'word2vec', 300)
(d) Reopen
A
1 2 3 4 5
]

(‘fastText', 300)

(‘word2vec', 300)

(‘glove’, 300)

(‘elmo', 1024)

('bert', 768)

(e) Reassignment

Fig.6 Comparison of five WE models against each other on five BRM classification tasks with the Nemenyi
test. Groups of WE models that are not significantly different (p-value>0.05) are connected with the bold

line(s)

@ Springer

Empirical Software Engineering (2024) 29:122 Page 250f48 122

Finding 2. On the whole, pre-trained FastText/GloVe with the largest dimension size
perform better than other smaller dimension sizes over six studied BRM tasks.

(b) Comparison of five WE Models. Based on the above analysis, we decided to use
GloVe-300 and FastText-300 while comparing the performance of five WE models, that is,
FastText-300, GloVE-300, Word2Vec-300, BERT-768, ELMo-1024. Similarly, we resort to
the Friedman test results in Table 5 and CD diagrams in Figs. 6 and 7, to help us compare
these models. From the Friedman test results, we find that nothing can be concluded on
the bug fixing time prediction and bug report field reassignment tasks as the tests are not
statistically significant. For the remaining BRM classification tasks, we can find that most
pairs are connected with bold lines, indicating we cannot determine whether the connected
WEs perform the same. Only a few comparisons show statistically significant performance

P
1 2 3 4 5
L | | |)
(‘fastText', 300) ('bert’, 768)
(‘'word2vec', 300) (‘elmo’, 1024)
(‘glove’, 300)
(a) Recall-1
CD
|
3 4
| |
(‘fastText', 300) ('bert’, 768)
(‘word2vec', 300) (‘elmo’, 1024)
('glove’, 300)
(b) Recall-5
CD
|
3 4
|
(‘fastText', 300) ('bert’, 768)
(‘word2vec', 300) (‘elmo’, 1024)
(‘glove’, 300)
(¢) Recall-10
CD
|
3 4
|
(‘fastText', 300) ('bert’, 768)
(‘word2vec', 300) (‘elmo’, 1024)
(‘glove’, 300)
(d) Recall-15
CD
|
3 4
|
(‘fastText', 300) ('bert’, 768)
(‘word2vec', 300) (‘elmo’, 1024)
(‘glove’, 300)

(e) Recall-20

Fig.7 Comparison of five WE models against each other on the duplicate BR detection task with the Nemenyi
test. Groups of WE models that are not significantly different (p-value>0.05) are connected with the bold
line(s)

@ Springer

122 Page 26 of 48 Empirical Software Engineering (2024) 29:122

differences, such as the ELMo-1024 performs better than FastText-300 on the bug priority
prediction task. As for the duplicate bug report detection task, at different recommendation list
sizes, i.e.,1/5/10/15/20, we can find that the group of small WE models that generate smaller
embedding vectors, namely FastText-300, GloVe-300, and Word2Vec-300 generally perform
better than the relatively larger group of WE models, including BERT-768 and ELMo-1024.
But we cannot tell whether one performs better or not than another one within the small WE
group or large WE group, as the connected bold lines indicate statistically non-significant

differences.

Finding 3.In most cases, we did not detect statistically significant performance differences
among five WE models in five BRM classification tasks; on the duplicate bug report detec-
tion task, small WE models (FastText/GloVe/Word2Vec that generate 300-dimensional
embedding vectors) performed better than relatively large WE models (BERT and ELMo
that generate 768 and 1024-dimensional vectors separately).

(‘'word2vec', 300)
(‘'vsm’, 'tfidf')
('elmo’, 1024)

(‘word2vec', 300)
(‘'vsm’, 'tfidf')
(‘glove’, 300)

(‘word2vec', 300)
(‘'vsm’, 'tfidf')
(‘glove’, 300)

('vsm’, 'tfidf')
(‘bert’, 768)
(‘elmo’, 1024)

3 4 5 6

-

(a) Fixing Time

3 4 5 6

1 2 3 4 5 6
(d) Reopen

3 4 5 6

(‘'vsm', 'tfidf')
('bert', 768)
(‘elmo’, 1024)

(e) Severity

(‘glove’, 300)
(‘fastText', 300)
('bert', 768)

(‘elmo’, 1024)
('bert’, 768)
(‘fastText', 300)

(‘fastText', 300)
('bert’, 768)
(‘elmo’, 1024)

(‘glove’, 300)
(‘fastText', 300)
(‘word2vec', 300)

(‘glove’, 300)
('word2vec', 300)
(‘fastText', 300)

Fig. 8 Comparison of five WE models against VSM on five BRM classification tasks with the Bonferroni-
Dunn test. Models with ranks outside the marked interval line are considered significantly different from the

VSM

@ Springer

Empirical Software Engineering (2024) 29:122 Page 27 of 48 122

4.3 RQ3. Do word embedding models outperform the most used VSM model
for BRM tasks?

Approach. To compare the effectiveness between VSM and the word embedding techniques,
we build different classification and recommendation models where VSM and the five WE
models are used to extract the semantic features of bug reports separately for the six BRM
tasks on 20 products from Eclipse and Mozilla. For the five BRM classification tasks, we
chose RF as the classifier as it performed better than other traditional ML algorithms in RQ1.
The term weighting strategy of VSM we used is the tf-idf. As suggested in (DemSar 2006),
instead of using the Nemenyi post-hoc test for the case when all approaches are compared
to each other, Bonferroni-Dunn test (Dunn 1961) is more powerful than Nemenyi test in the
specific case when all approaches are compared with a control one as it controls the family-
wise error in multiple hypothesis testing. Hence, we use the Bonferroni-Dunn test to compare
all WE models to the controlled model, namely VSM. The test results can be found in the

1 2 3 4 5 6
|

(‘'vsm', 'tfidf') J L (‘bert’, 768)

(‘word2vec', 300) —M8Mm L——— (‘elmo’, 1024)
(‘fastText', 300) (‘glove’, 300)

(a) Recall-1

1 2 3 4 5 6
! . . .) |)
('vsm’, 'tfidf") J L ('bert', 768)
(‘fastText', 300) — L———— (‘elmo’, 1024)
(‘word2vec', 300) (‘glove’, 300)
(b) Recall-5
1 2 3 4 5 6
(‘'vsm’, 'tfidf') J L ('bert', 768)
(‘fastText', 300) — L (‘elmo’, 1024)
(‘word2vec', 300) (‘glove’, 300)

(¢) Recall-10

1 2 3 4 5 6
: i - : 1 1 1]
('vsm', 'tfidf') J \\ (‘bert’, 768)
(‘fastText', 300) —— L—— (‘elmo’, 1024)
(‘'word2vec', 300) (‘glove’, 300)

(d) Recall-15

1 2 3 4 5 6
1 A . ! . | |
oty] L
(‘'vsm', 'tfidf') ('bert', 768)
(‘'fastText', 300) —M888M8M™M L—— (‘elmo’, 1024)
(‘word2vec', 300) (‘glove’, 300)

(e) Recall-20

Fig. 9 Comparison of five WE models against VSM on the duplicate BR detection task with the Bonferroni-
Dunn test. Models with ranks outside the marked interval line are considered significantly different from the
VSM

@ Springer

122 Page 28 of 48 Empirical Software Engineering (2024) 29:122

Table 6 The magnitude of statistically significant F1 score differences between small WE Models and VSM
for two BRM classification tasks

Task Model Pairs Cliff’s Delta Difference Magnitude
Severity fastText-300 vs VSM -0.185 small

Severity glove-300 vs VSM -0.270 small

Severity word2Vec-300 vs VSM -0.235 small

Reopen fastText-300 vs VSM -0.030 negligible

Reopen glove-300 vs VSM -0.025 negligible

Reopen word2Vec-300 vs VSM -0.020 negligible

CD diagrams shown in Figs 8 and 9. In the figures, VSM is the controlled model. For each
subfigure, a bold line is drawn to mark an interval where all WE models with ranks outside
the marked interval are significantly different from the control VSM at p-value<0.05.
Results. From the results in Fig. 8, we can find that for three out of five BRM classification
tasks (i.e., bug fixing time prediction, bug priority prediction, bug report field reassignment
prediction), we cannot arrive at any conclusion about whether WE models perform better or
not than VSM, as all statistical tests are not statistically significant (the ranks of all WEs are
within the marked interval bold line).

For the bug severity prediction and reopened bug prediction tasks, we can tell that the small
WE models, namely FastText-300, GloVe-300, and Word2Vec-300 perform worse than the
traditional VSM; while we cannot conclude whether the relatively large WE models, namely
Bert-768 and EIMo-1024 perform the same with VSM or not. For the comparisons between
VSM and those small WE models that show statistically significant performance differences,
we further check the magnitude of these differences by Cliff’s delta effect size. Table 6 shows
the results. From the table, we can find that the magnitude of F1 score differences between
VSM and the three small WE models on the bug severity prediction task are all small, while
for the reopened bug prediction task, the difference is negligible according to Cliff’s delta
effect sizes.

As for the recommendation task, i.e., duplicate bug report detection, we can find that at all
recommendation levels, namely, 1,5,10,15,20, in most cases except the three comparisons of
VSM and FastText-300 (no statistically significant Recall N difference is detected), VSM
always achieved the best Recall_N scores than WE models. Similarly, we further check the
magnitude of Recall_N differences for those comparisons with statistical significance. The
results are shown in Table 7. The table shows that all differences between VSM and other
WE models are large based on Cliff’s delta effect size values.

Finding 4. Most comparisons of WE models over VSM on five BRM classification tasks
do not show statistical significance from the Bonforroni-Dunn tests; for the duplicate bug
report detection task, VSM is found to outperform WE models, with a large Recall N
difference according to the Cliff’s delta effect size.

4.4 RQA4. How will the performance change if word embedding models
are fine-tuned with bug data?

Approach. This RQ aims to investigate how the performance of WE models would change

when they are fine-tuned on a domain-specific corpus. To this end, we first constructed a bug
dataset of more than 3 million bug reports crawled from the Eclipse, Mozilla, and Apache

@ Springer

Empirical Software Engineering (2024) 29:122 Page 29 of 48 122

Table 7 The magnitude of statistically significant Recall-N differences between WE models and VSM for the
duplicate BR detection task

Recall-N Model Pairs Cliff’s Delta Difference Magnitude
Recall-1 Bert vs VSM -0.620 large
Recall-1 EIMo vs VSM -0.740 large
Recall-1 fastText-300 vs VSM -0.675 large
Recall-1 glove-300 vs VSM -0.545 large
Recall-1 word2vec-300 vs VSM -0.500 large
Recall-5 Bert vs VSM -0.765 large
Recall-5 EIMo vs VSM -0.850 large
Recall-5 glove-300 vs VSM -0.720 large
Recall-5 word2vec-300 vs VSM -0.690 large
Recall-10 Bert vs VSM -0.815 large
Recall-10 EIMo vs VSM -0.875 large
Recall-10 glove-300 vs VSM -0.770 large
Recall-10 word2vec-300 vs VSM -0.705 large
Recall-15 Bert vs VSM -0.840 large
Recall-15 EIMo vs VSM -0.890 large
Recall-15 glove-300 vs VSM -0.815 large
Recall-15 word2vec-300 vs VSM -0.755 large
Recall-20 Bert vs VSM -0.855 large
Recall-20 EIMo vs VSM -0.890 large
Recall-20 glove-300 vs VSM -0.820 large
Recall-20 word2vec-300 vs VSM -0.795 large

foundations. We extract the summary and description from each bug report and then feed them
sentence by sentence to the general pre-trained BERT, i.e., the bert-base-uncased model down-
loaded from HuggingFace '© We chose BERT’s built-in Masked Language Model (MLM)
task during the further training to let the general pre-trained BERT capture the deeper con-
textual semantics of bug data. With MLM, the model is trained to fill in the missing tokens in
a text where certain tokens are masked or replaced with a special token, typically “[MASK]”.
After we obtained the fine-tuned BERT (named ftBERT), we use ftBERT to extract the seman-
tics of bug reports and then perform the six BRM tasks. We also collect the F1 scores of five
BRM tasks and Recall_N of the duplicate bug report detection task after adopting ftBERT
for semantic extraction. Then, we compare the performance of using ftBERT with that of
general pre-trained BERT. As the comparison only involves two models, we use the Wilcoxon
signed ranks test to determine whether the F1 score or Recall_N difference is statistically
significant. The Wilcoxon singed-ranks test is non-parametric. It assumes commensurability
of differences but only qualitatively, does not assume normal distributions of samples, and
is less affected by outliers than the alternative paired t-test (Demsar 2006). After conducting
the Wilcoxon test, we use the Cliff’s delta effect size to identify the magnitude of such a
difference.

Results. Table 8 shows the test results and the associated effect sizes over five BRM clas-
sification tasks. The table shows that the Wilcoxon signed-ranks test detects a statistically

10 https://huggingface.co/bert-base-uncased

@ Springer

https://huggingface.co/bert-base-uncased

122 Page 30 of 48 Empirical Software Engineering (2024) 29:122

Table 8 Wilcoxon signed ranks tests and the magnitude of F1 score differences between general pre-trained
BERT and fine-tuned BERT over five BRM classification tasks

Task P-value Cliff’s Delta Difference Magnitude
Fixing Time 2.3334E-05 0.0463 negligible
Priority 0.2124 -0.0072 negligible
Reassignment 0.0037 -0.0278 negligible
Reopen 0.0041 0.0669 negligible
Severity 0.2517 0.0106 negligible

significant F1 score difference between the general pre-trained Bert and the fine-tuned BERT
(i.e., ftBERT) on three out of five BRM classification tasks. They are fixing time prediction,
reopened bug prediction, and bug report field reassignment prediction tasks. By further refer-
ring to Cliff’s delta effect sizes, we can say that the pre-trained BERT performs better than
the ftBERT, but the difference is negligible.

As for the duplicate bug report detection task shown in Table 9, except the Recall_1,
all comparisons do not show statistically significant differences. In other words, we cannot
conclude whether the fine-tuned BERT is better than the general pre-trained BERT based on
our experimental results.

Finding 5. We only detect a negligible performance difference between fined-tuned BERT
and the general pre-trained BERT on three out of six BRM tasks. Other comparisons do
not show statistical significance from the Wilcoxon signed-ranks tests.

5 Discussion

In this section, we first discuss the potential effect of hyperparameter tuning of RF on arrived
conclusions. Then we introduce the implications of our work. Last, we present the threats to
the validity of our study.

5.1 Hyper Parameter Tuning

Motivation. Among the six BRM tasks, five of them are classification tasks, which involve
applying a specific ML algorithm to WE-based or VSM-based semantic representations
of bug reports. Given that an ML algorithm generally has some hyperparameters whose
values could also be set by users, and it is not uncommon for practitioners to tune these
hyperparameters to obtain optimal hyperparameter settings for their adopted ML models,

Table9 Wilcoxon signed ranks tests and the magnitude of Recall-N differences between general pre-trained
BERT and fine-tuned BERT on the duplicate BR detection task

Recall-N P-value Cliff’s Delta Difference Magnitude
Recall-1 0.0172 0.0650 negligible
Recall-5 0.3144 0.0375 negligible
Recall-10 0.7841 -0.0050 negligible
Recall-15 0.5958 0.0000 negligible
Recall-20 0.2772 -0.0025 negligible

@ Springer

Empirical Software Engineering (2024) 29:122 Page 31 0f48 122

we also checked whether the hyperparameter tuning would affect our arrived conclusions in
this study. This could help us understand whether hyperparameter optimization plays a role
in our arrived sort of counterintuitive results, i.e., with default parameter settings, we did
neither find the advantage of using WE over VSM in studied BRM tasks nor the performance
improvement of fine-tuning the general pre-trained BERT with bug data.

Approach. Specifically, for five BRM classification tasks'!, we decided to perform hyper-
parameter tuning on the RF classifier after we obtained the semantic representations of bug
reports through the WE or VSM models. RF is an ensemble method that constructs multiple
decision trees at training time and leverages their power to make predictions. Its hyperpa-
rameters include the number of samples or features used to train a meta tree, the number of
meta trees to be constructed, the maximum depth of a tree, the minimum number of samples
required to split an internal node, etc. Each hyperparameter is associated with a value range,
E.G., for the number of samples used to construct a tree, its value range is (0.0,1.0] (E.G.,
0.1 means 10 percent of all samples are used to build a meta tree).

Given the constraints of combinatorial explosion and computational resource limitations,
it is generally impractical to test all possible hyperparameter settings when tuning the RF.
Hence, we adhere to the common practice that using a well-chosen subset of the hyper-
parameter space to find the optimal settings for each dataset. Detailedly, inspired by the
findings of RF tuning studies that are widely recognized by the research community (Probst
et al. 2019b, a; Probst and Boulesteix. 2018), we decided to fine-tune two hyperparameters,
namely the number of samples used to build a tree (referred to as sampleNum), and the num-
ber of features used to construct a tree (referred to as featureNum), in that they are found to be
most important and tunable (may have a significant effect on results). For other less important
and relatively untunable hyperparameters (like the number of trees to be constructed (Probst
et al. 2019a), since the settings of sampleNum and featureNum actually have inexplicitly
placed constraints on their value options (E.G., affect the depth of a tree (Probst et al. 2019b),
we think it is acceptable to focus on tuning the two hyperparameters.

During hyperparameter tuning, we choose five values for the sampleNum hyperparameter:
0.2*N, 0.4*N, 0.6*N, 0.8*N, and 1.0*N, where N is the number of training instances. By
default, RF constructs each meta tree using all N training instances. For the featureNum
hyperparameter, we choose seven values, namely sqrt(M), log2(M), 0.1*M, 0.2*M, 0.3*M,
0.4*M, 0.5*M, where M is the number of instance features (E.G., M would be 300 for 300-
dimensional Word2Vec model, and M would be the number of all unique words in the VSM
model). sqrt(M) and log2(M) are two recommended value options by the cuML and scikit-
learn libraries. In both cuML and scikit-learn, the default value is sqrt(M). Given that it is
generally best practice to use only a limited number of features to construct each tree so that
RF can ensure its diversity of meta trees (such diversity could help RF improve its predictive
performance, reduce overfitting, and effectively handle complex datasets with many features),
we decide not to consider larger featureNum (i.e., >0.5*N and <=1.0*N). Hence, we
would have 35 combinations (5*%7=35) of sampleNum and featureNum. For each BRM
classification task, we rerun our experiments with each parameter combination on every
dataset whose bug reports are represented by five pre-trained WE, the VSM, and the fine-
tuned WE (ftBERT), with parameters besides sampleNum and featureNum still using their
default settings. In total, we would repeat our whole experiments with RF 245,000 times
(35 parameter combinations * 5 BRM tasks * 20 projects * 7 semantic representations * 10
stratified cross-validation).

11 Duplicate bug report detection is a recommendation task that does not involve applying ML algorithms,
hence not considered here.

@ Springer

122 Page 32 of 48 Empirical Software Engineering (2024) 29:122

Results. After we performed hyperparameter tuning, we retrieved the best F1 scores from
35 parameter combinations for each dataset of five BRM tasks. Then, we compared the
performance of BRM techniques using WE models and that of using VSM. Similarly, we
also checked the performance between BRM techniques using general pre-trained WE and
the fine tuned WE with bug data. Details are as follows.

(a) WE vs. VSM after hyperparameter tunning. We used the same statistical method as
RQ3 to explore whether WE models show advantages over VSM in five BRM classification
tasks after hyperparameter tuning over RF. Fig. 10 shows the results. From the figure, we can
find that most comparisons between WE and VSM are still not statistically significant after
hyperparameter tuning (their ranks are within the marked interval bold line), just like that by
using default hyperparameter settings in Fig. 8.

Only few performance comparisons between WE models and the VSM show statistical
significance, which means we can tell which one is better from the statistical perspective.
Specifically, for the bug-fixing time prediction task, Word2Vec outperformed the VSM. For

1 2 3 4 5 6
(‘'word2vec', 300) J \— (‘fastText', 300)
('bert', 768) (‘glove’, 300)
('vsm’, 'tfidf') (‘'elmo’, 1024)

(a) Fixing Time

1 2 3 4 5 6

(‘word2vec', 300) (‘fastText', 300)

(‘'vsm’, 'tfidf') (‘glove’, 300)
('bert', 768) (‘elmo’, 1024)
(b) Priority
1 2 3 4 5 6
(‘word2vec', 300) 4 \— (‘elmo’, 1024)
(‘'vsm’, 'tfidf') ('bert’, 768)
(‘glove’, 300) (‘fastText', 300)

(c) Reassignment

1 2 3 4 6
F . . } ,
(‘vsm’, 'tfidf') 4 \— (‘glove’, 300)
('elmo’, 1024) (‘fastText', 300)
(‘bert’, 768) (‘word2vec', 300)
(d) Reopen
1 2 3 4 6
I .) |
(‘'vsm’, 'tfidf') \— (‘word2vec', 300)
(‘fastText', 300) (‘glove’, 300)
(‘bert’, 768) (‘elmo’, 1024)

(e) Severity

Fig. 10 Comparison of five WE models against VSM on five BRM classification tasks with the Bonferroni-
Dunn test after hyperparameter tuning. Models with ranks outside the marked interval line are considered
significantly different from the VSM

@ Springer

Empirical Software Engineering (2024) 29:122 Page330f48 122

Table 10 The magnitude of statistically significant F1 score differences between WE Models and VSM for
BRM classification tasks after hyperparameter tuning

Task Model Pairs Cliff’s Delta Difference Magnitude
Fixing Time word2vec-300 vs VSM 0.09 negligible
Reassignment elmo-1024 vs VSM -0.035 negligible

Reopen glove-300 vs VSM -0.020 negligible

Reopen fastText-300 vs VSM -0.025 negligible

Severity word2Vec-300 vs VSM -0.130 negligible

Severity glove-300 vs VSM -0.185 small

Severity elmo-1024 vs VSM -0.125 negligible

the bug priority prediction task, all comparisons are not statistically significant. For the bug
field reassignment prediction task, ELMo performed worse than the VSM. For the reopened
bug prediction task, GloVe and FastText performed worse than the VSM. For the bug sever-
ity prediction task, three WE models including Word2Vec, GloVe, and ELMo, performed
worse than the VSM. To understand how large these performance differences are, we further
computed their Cliff’s delta effect size as shown in Table 10. From the table, we can see that
only the magnitude of F1 score differences between VSM and GloVe on the bug severity pre-
diction task is small, with all others being negligible according to Cliff’s delta effect sizes.
In other words, whether we performed hyperparameter tuning or not, we did not find the
advantages of using WE models over the VSM model on the five BRM classification tasks.

(b) General pre-trained BERT vs. ftBERT after hyperparameter tuning. After we
obtained the embedding vectors of general pre-trained BERT and the fine-tuned BERT, we
also tuned RF with different combinations of sampleNum and featureNum to these instance
feature vectors to build prediction models with different performances. Then, the models
with the best prediction performance are selected to compare the general pre-trained BERT
and ftBERT in the five BRM classification tasks. Like in RQ4, we use the Wilcoxon signed
ranks test to determine whether the F1 score difference between general pret-trained BERT
and the ftBERT is statistically significant or not, and use Cliff’s delta effect size to identify
the difference magnitude. Table 11 shows the corresponding test results. From the table
results with hyperparameter tuning, we can find that all F1 score differences between the

Table 11 Wilcoxon signed ranks tests and the magnitude of F1 score differences between general pre-trained
BERT and fine-tuned BERT over five BRM classification tasks after hyperparameter tuning

Task P-value Cliff’s Delta Difference Magnitude
Fixing Time 0.8408 0.01 negligible
Priority 0.1327 -0.01 negligible
Reassignment 0.5958 0.00 negligible
Reopen 0.4524 0.02 negligible
Severity 0.1536 0.06 negligible

@ Springer

122 Page 34 of 48 Empirical Software Engineering (2024) 29:122

general pre-trained BERT and the ftBERT are negligible according to Cliff’s delta effect size;
this is similar to that of using default hyperparameter settings. But we cannot tell whether
these negligible differences are a fact or just caused by accident, as the p-values of their
Wilcoxon signed ranks tests are all larger than 0.05 (which means no statistical significance
was detected).

5.2 Implication

We would recommend practitioners use RF to build their BRM classifiers when pre-
trained WE models are used to represent the semantics of bug reports. In RQ1, we find
that RF generally outperformed the other ML classifiers (SVM, NB, and LR) based on various
WE-based semantic feature representations of bug reports. The performance differences
among them ranged from small to large (mostly large) measured by Cliff’s delta effect sizes.
Such an advantage, to a certain degree, may be due to the fact that RF is an ensemble
method based on a list of meta-decision trees, which can combine the advantages of different
meta-classifiers for learning specific semantic aspects of bug reports. Moreover, during our
experiments, we found that as an ensemble approach, the training process of RF is actually not
slower than, E.G., the second-best SVM. Hence, RF would be a good choice for practitioners
to build BRM models based on WE feature vectors of bug reports. Further, if practitioners
choose RF as their BRM classifier, it would be suitable for them to use the default parameter
settings when they need to further decide which pre-trained WE to use, as the conclusion
would not make much difference based on our hyperparameter tuning results in Sect. 5.1.

Practitioners have a relatively high degree of freedom when choosing which WE
model to use in their BRM tasks as none of them is dominant, but larger FastText/GloVe
is more recommended than their smaller versions once FastText/GloVe is their option.
The statistical test results in RQ2 indicate that we cannot conclude whether a dominant WE
model exists for five BRM classification tasks. This means practitioners are more free to
choose WE models that they can consider more about their concrete task constraints, such
as computing power, storage space, or room for future fine-tuning. Further, if practitioners
decide to use FastText/GloVe for semantic retrieval in their BRM tasks, we recommend they
use the largest ones, i.e., FastText-300/GloVe-300, as they are found to generally perform
better than their smaller versions such as FastText-100/GloVe-50. This is also consistent with
the statement that for a general pre-trained WE model, the larger dimension generally means
the more information it can capture. The FastText-300/GloVe-300 (actually also includes the
Word2Vec-300) also perform better than other large-WE models (BERT-768/ELMo-1024)
for the duplicate bug report detection task based on our experimental results.

The traditional VSM is still a good option of semantic representation for BRM tasks.
From the results of RQ3, regardless of whether they show statistically significant differences
or not, we find that the traditional VSM generally gets better performance than WE models
when combined with traditional ML methods. We think the reason may lie in the not important
or noisy terms. For the VSM model, the tf-idf value may do reveal the importance of a term
in a bug report. While in the use of WE models, the importance of key terms is weakened.
That is, in general settings of using WE models for bug report semantic extraction, each
term is represented as an N-dimensional numeric vector first, and then an average pooling
strategy is applied to these vectors to get a final N-dimensional vector for a bug report. As
the number of important terms is generally much smaller than that of insignificant terms,
averaging them would flatten the importance of key terms but relatively increase the influence
of less important terms. Whatever the reason, at least from the performance perspective, the

@ Springer

Empirical Software Engineering (2024) 29:122 Page350f48 122

traditional VSM is still a good choice for practitioners to use in their BRM tasks, especially
in the duplicate bug report task. Further, it should be noted that, for five BRM classification
tasks, we find that the performance difference between the VSM and five WE models is
quite small. Hence, if practitioners focus more on other aspects than performance such as
the computation cost, we think it would be a good choice to use pre-trained WE models (in
our experiments, the sparse, high-dimensional semantic vector of the VSM costs much more
training time than the smaller N-dimensional vectors of WE models (N ranged from 50 to
1024)).

Further efforts are required to help WE models better learn the semantics of bugs.
In RQ4, we find that using the fine-tuned BERT with bug data to represent the semantics
of bug reports did not achieve better BRM performance than the general pre-trained BERT.
This may lie in the knowledge gap between general website contents and domain-specific
bug data, which is still not learned well by using the built-in objective task to further train
the general pre-trained BERT. Or it may be the quality of the textual content of bug reports
is not high and the embedded noisy information adversely affects the fine-tuning process.
In the future, one valuable attempt would be to test or develop new objective tasks to fine-
tune general pre-trained WE models to better capture the domain knowledge of bug reports.
Meanwhile, we think it would be interesting and valuable to combine key term identification
techniques (which help reduce noisy bug information) with WE models to perform semantic
retrieval of bug reports.

5.3 Threats to Validity

Internal Validity The experimental design method used in the empirical study does have
an impact on the results. In our work, we try our best to follow the literature of previous
experiments for each step in the experiment. In order to make the experimental results more
reliable, researchers may repeat the whole process many times, such as Bennin et al. (Bennin
etal. 2019), Giger et al. (Giger et al. 2010) (they repeated 10 times). In our experiment, we do
not repeat each BRM task on the same open-source software multiple times. Nevertheless,
we use the following strategies for experiments instead: 1) the top 10 products in each open
source project are selected for experiments, which is equivalent to conducting 10 repeated
experiments on that project; 2) four machine learning classification methods are used for each
WE technique, which equals to conducting 4 repeated experiments for that WE technique; 3)
last, we perform 10-fold cross-validation during model building for each BRM classification
task. The above-repeated experiments to some extent ensure the reliability of our observations
in the study.

External Validity Our experiments are conducted on all open-source projects from Eclipse
and Mozilla with varied scale sizes. We cannot guarantee that our arrived conclusions could be
applicable to other OSS projects, non-open-source projects, or commercial projects. However,
considering that all selected experimental projects are typical software products with active
developments among developers and are popular among users, this makes us believe that our
findings still shed some light on the adoption of word embedding techniques in BRM tasks.
We encourage future research to replicate our studies in bug reports from other projects to
further improve the generalizability of our findings. Another threat is that we only use the
oversampling strategy to solve the data imbalance problem. Whether the conclusions could
hold for other imbalanced-data-handling strategies such as SMOTE is still unknown. Further
consideration arises from our methodology in constructing experimental datasets, we perform
average pooling to word embedding vectors to obtain the final instance features. Actually,

@ Springer

122 Page 36 of 48 Empirical Software Engineering (2024) 29:122

besides the commonly-used average pooling (Deshmukh et al. 2017; Messaoud et al. 2022),
there also exist other pooling strategies such as max pooling. We cannot guarantee that our
conclusions still hold when tested with other pooling strategies. We encourage researchers
to replicate our studies to further improve the generalizability of our work in the future.

6 Related Work

Among various kinds of bug report management technologies, a common process is to extract
the textual semantics of bug reports. The extracted semantics would be used as an important
source of features that are fed into E.G., a classification model or recommendation model,
to help build models to finish a series of BRM tasks. Hence, it is full of important to explore
semantic extraction approaches for bug reports. Our study is also a study that focuses on
investigating the potential of word embedding models in semantic feature extraction of bug
reports. Based on the way in semantic extraction, we divide existing studies into two parts.
One is to introduce existing BRM studies that use traditional information-based approaches to
represent the semantics of bug reports, such as VSM, LDA, etc. The other one is to introduce
BRM studies that try to adopt word embedding techniques to extract the semantics of bug
reports. They are as follows.

IR-Based Semantic Extraction To the best of our knowledge, a majority of bug report
management tasks generally use traditional IR-based approaches to represent the textual
semantics of bug reports, including VSM, Latent Dirichlet Allocation (LDA), and Latent
Semantic Indexing (LSI), etc. VSM uses a numeric vector to represent a bug report. The
length of the vector is the number of unique words in a corpus. Each element the vector
represents a unique word and its numeric value represents the weight (E.G., term frequency)
of the word in the bug report. As a classic information retrieval method, VSM is used in
many BRM tasks and those tasks often use the term frequency-inverse document frequency
(TF-IDF) to weigh the terms of bug reports, those tasks include bug localization (Wang et al.
2014; Tantithamthavorn et al. 2018; Liu et al. 2019), duplicate bug detection (Runeson et al.
2007; Jalbert and Weimer 2008; Wang et al. 2008; Tian et al. 2012), bug priority prediction
(Tian et al. 2013; Alenezi and Banitaan 2013; Tian et al. 2015; Izadi et al. 2022), and other
tasks (Giger et al. 2010; Xia et al. 2015b,a; Zhang et al. 2022). LSI is an indexing and
retrieval method that can identify the relationship between the terms and concepts contained
in an unstructured collection of text by using mathematical techniques such as Singular Value
Decomposition (SVD). Itis used in earlier, for example, bug localization studies (Poshyvanyk
et al. 2006, 2007) or as a baseline or complementary part to later studies (Lukins et al. 2008;
Chawla and Singh 2014). LDA is a topic model that represents a document with a distribution
of topics. Its representation is a normalized vector in the topic space by converting a bag-
of-words document from a word space into a topic space. It is usually applied in duplicate
bug detection task (Nguyen et al. 2012; Han et al. 2012; Hindle et al. 2016; Aggarwal et al.
2017).

WE-Based Semantic Extraction With the development of word embedding technolo-
gies in the NLP area, more and more researchers also adopt WE techniques to do semantic
extraction in their BRM tasks at hand. Existing BRM studies mainly use Word2Vec, GloVe,
FastText, etc (Budhiraja et al. 2018a; Jia et al. 2021; Ciborowska and Damevski 2022). For
Word2Vec (supporting skip-gram and CBOW)), since existing studies of Word2Vec (Mikolov
et al. 2013a,b) showed that the skip-gram model was better than the CBOW, researchers
mostly used the skip-gram model for experiments (at the time it was mostly called skip-gram

@ Springer

Empirical Software Engineering (2024) 29:122 Page 37 of 48 122

rather than Word2Vec). Yang et al. (Yang et al. 2016) propose an approach that computes
and combines two similarity scores based on word embedding vectors by using the skip-
gram model and TF-IDF vectors to recommend similar bug reports. Budhiraja et al. also use
the skip-gram model to extract semantics for duplicate bug detection task (Budhiraja et al.
2018a,b). With the development of other word embedding techniques besides Word2Vec,
some researchers also try to use more word embedding technologies and compare them with
traditional technology in their BRM tasks. Cheng et al. (Cheng et al. 2020) applied Wor2Vec
to bug localization task and compared it with TF-IDF. Ciborowska el al. (Ciborowska and
Damevski 2022) compare BERT and VSM in bug localization task. Ardimento et al. (Ardi-
mento and Mele 2020; Ardimento 2022) used fine-tuned BERT to predict bug fixing time and
conducted a comparative experiment between BERT and DistilBERT. Kumar et al. (Kumar
et al. 2021) applied CBOW, skip-gram, GloVe, Word2 Vec, FastText, BERT and GPT to pre-
dict bug severity and also compared it with TF-IDF. Jia et al. (Jia et al. 2021) use FastText to
get embedding vectors for the bug report severity prediction task.

To better mine the advantages of word embedding models and neural networks, some
researchers propose to combine them to perform their BRM tasks (Sepahvand et al. 2020;
Izadi et al. 2022). Xiao et al. (Xiao et al. 2017) and Guo et al. (Guo et al. 2020) use Word2 Vec
to extract the semantic information of a bug report and then feed the semantic vector to Convo-
lutional Neural Networks (CNN) for bug report management downstream tasks. Deshmukh
et al. (Deshmukh et al. 2017) propose a retrieval and classification model using Siamese CNN
and Long Short Term Memory (LSTM) for accurate detection and retrieval of duplicate and
similar bugs. They mainly use Word2Vec and GloVe to extract semantics from bug reports.

7 Conclusion

In this paper, we conduct an empirical study to explore the potential of pre-trained word
embedding models in six BRM tasks. Our whole work aims to answer four research questions,
related to the best-performance machine learning algorithm under various word embedding
models, the best-performance word embedding model under various machine learning algo-
rithms, the performance difference between word embedding models and the vector space
model in semantic extraction, and the value of fine-tuning general pre-trained WE models
with bug data. Based on experiments over a set of OSS products, we obtain a list of actionable
findings that developers could refer to in choosing suitable techniques for building relevant
bug report management models. Our study also indicates that it would be rewarding for
researchers to conduct more cross-domain research in BRM tasks and even other software

engineering tasks involving textual semantic extraction'?.

Appendix

The Friedman test results and three CD graphs mentioned in the results part of Section 4:
RQ2-(a) are as follows:

12 hetps://github.com/SurfGitHub/WE4BRM

@ Springer

https://github.com/SurfGitHub/WE4BRM

122 Page 38 of 48

Empirical Software Engineering (2024) 29:122

Table 12 Friedman tests of FastText and GloVe with different dimension sizes on five BRM classification

tasks and the duplicate BR detection task

Five BRM Classification Tasks

FastText GloVe
Task Chi-squared Statistic p-value Chi-squared Statistic p-value
Fixing Time 73.67 1.00E-16 133.99 7.44E-29
Priority 93.32 5.42E-21 138.31 8.72E-30
Reassignment 91.2 1.57E-20 155.54 1.67E-33
Reopen 63.7 1.47E-14 121.91 2.97E-26
Severity 82.42 1.26E-18 141.61 1.69E-30
Duplicate BR Detection

FastText GloVe
Recall-N Chi-squared Statistic p-value Chi-squared Statistic p-value
Recall-1 40 2.06E-09 60 5.87E-13
Recall-5 40 2.06E-09 60 5.87E-13
Recall-10 40 2.06E-09 60 5.87E-13
Recall-15 40 2.06E-09 60 5.87E-13
Recall-20 40 2.06E-09 60 5.87E-13

@ Springer

Empirical Software Engineering (2024) 29:122 Page390f48 122

CD
P
1 2 3
(‘fastText', 300) J L (‘fastText', 100)
('fastText', 200)
(a) Recall-1
CD
P
1 2 3
('fastText', 300) J \— (‘fastText', 100)
('fastText', 200)
(b) Recall-5
CD
P
1 2 3
(‘fastText', 300) J L (‘fastText', 100)
('fastText', 200)
(c) Recall-10
CD
P
1 2 3
('fastText', 300) J \— (‘fastText', 100)
('fastText', 200)
(d) Recall-15
CD
P
1 2 3
(‘fastText', 300) J L (‘fastText', 100)

('fastText', 200)
(e) Recall-20

Fig. 11 Comparison of FastText with different dimension sizes on the duplicate BR detection task with the
Nemenyi test. Groups of FastText-N that are not significantly different (p-value>0.05) are connected with the
bold line(s)

@ Springer

122 Page 40 of 48 Empirical Software Engineering (2024) 29:122

CD
—
1 2 3 4
L 1 L 1]

(‘glove', 300) —— L—— ('glove’, 50)
(‘glove', 200) (‘'glove’, 100)
(a) Fixing Time

CD
B
1 2 3 4
(‘glove', 300) — L——— ('glove’, 50)
("glove’, 200) (‘glove’, 100)
(b) Priority
CD
A
1 2 3 4
(‘glove', 300) —— L—— ('glove’, 50)
(‘glove’, 200) ("glove’, 100)
(c) Reassignment
CD
P
1 2 3 4
L 1 L 1]

(‘glove', 300) — L ('glove’, 50)
("glove’, 200) L ('glove’, 100)
(d) Reopen

CD
—
1 2 3 4
L 1 L 1]
(‘glove', 300) — L——— ('glove’, 50)
(‘"glove', 200) L———— ('glove’, 100)

(e) Severity

Fig.12 Comparison of GloVe with different dimension sizes on five BRM classification tasks with the Nemenyi
test. Groups of GloVe-N that are not significantly different (p-value>0.05) are connected with the bold line(s)

@ Springer

Empirical Software Engineering (2024) 29:122

Page 41 0f48 122

CcD
P
1 2 3 4
(‘glove’, 300) - (‘glove', 50)
(‘glove', 200) (‘glove', 100)
(a) Recall-1
CD
P
1 2 3 4
(‘glove', 300) - (‘glove’, 50)
(‘glove’, 200) (‘glove’, 100)
(b) Recall-5
Ccb
P
1 2 3 4
(‘glove', 300) L (‘glove’, 50)
(‘glove', 200) (‘glove', 100)
(c¢) Recall-10
CcD
P
1 2 3 4
(‘glove', 300) - (‘glove’, 50)
(‘glove', 200) (‘glove', 100)
(d) Recall-15
Ccb
P
1 2 3 4
(‘glove’, 300) - - (‘glove', 50)
(‘glove’, 200) (‘glove’, 100)

(e) Recall-20

Fig. 13 Comparison of GloVe with different dimension sizes on the duplicate BR detection task with the
Nemenyi test. Groups of GloVe-N that are not significantly different (p-value>0.05) are connected with the

bold line(s)

Acknowledgements This research is partly supported by National Natural Science Foundation of China (Grant
No. 62002161, 62272221), the Open Project Foundation of State Key Lab. for Novel Software Technology,

Nanjing University (Grant No. KFKT2024B35).

Data availability The datasets and code scripts for replication are available in the BRMWEStudy repository.

Declarations

Conflicts of interest The authors declared that they have no conflict of interest.

@ Springer

122 Page 42 of 48 Empirical Software Engineering (2024) 29:122

References

Aggarwal K, Timbers F, Rutgers T et al (2017) Detecting duplicate bug reports with software engineering
domain knowledge. J Softw Evolution Process 29(3):e1821

Alenezi M, Banitaan S (2013) Bug reports prioritization: Which features and classifier to use? In: 2013 12th
International Conference on Machine Learning and Applications, IEEE, pp 112-116

Anvik J (2006) Automating bug report assignment. In: Proceedings of the 28th International Conference on
Software Engineering, pp 937-940

Ardimento P (2022) Predicting bug-fixing time: Distilbert versus google bert. In: International Conference on
Product-Focused Software Process Improvement, Springer, pp 610-620

Ardimento P, Mele C (2020) Using bert to predict bug-fixing time. In: 2020 IEEE Conference on Evolving
and Adaptive Intelligent Systems, IEEE, pp 1-7

Arokiam J, Bradbury JS (2020) Automatically predicting bug severity early in the development process. In:
2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging
Results, pp 17-20

Bennin KE, Keung JW, Monden A (2019) On the relative value of data resampling approaches for software
defect prediction. Empir Softw Eng 24(2):602-636

Bertram D, Voida A, Greenberg S (2010) Communication, collaboration, and bugs: the social nature of issue
tracking in small, collocated teams. In: Proceedings of the 2010 ACM Conference on Computer Supported
Cooperative Work, pp 291-300

Bettenburg N, Just S, Schroter A (2008) What makes a good bug report? In: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering, pp 308-318

Bojanowski P, Grave E, Joulin A (2017) Enriching word vectors with subword information. Trans Assoc for
Comput Linguist 5:135-146

Budhiraja A, Dutta K, Reddy R (2018a) Dwen: deep word embedding network for duplicate bug report detection
in software repositories. In: Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, pp 193-194

Budhiraja A, Reddy R, Shrivastava M (2018b) Lwe: Lda refined word embeddings for duplicate bug report
detection. In: Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, pp 165-166

Chawla I, Singh SK (2014) Automatic bug labeling using semantic information from Isi. In: 2014 Seventh
International Conference on Contemporary Computing, IEEE, pp 376-381

Cheng S, Yan X, Khan AA (2020) A similarity integration method based information retrieval and word
embedding in bug localization. (2020) IEEE 20th Int Conf Software Qual. Reliability and Security,
IEEE, pp 180-187

Choetkiertikul M, Dam HK, Tran T et al (2017) Predicting the delay of issues with due dates in software
projects. Empir Softw Eng 22(3):1223-1263

Ciborowska A, Damevski K (2022) Fast changeset-based bug localization with bert. In: Proceedings of the
44th International Conference on Software Engineering, pp 946-957

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets.] Mach Learn Res 7:1-30

Deshmukh J, Annervaz K, Podder S et al (2017) Towards accurate duplicate bug retrieval using deep learning
techniques. In: 2017 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp
115-124

Devlin J, Chang MW, Lee K et al (2018) Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv:1810.04805

Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52—-64

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd International
Workshop on Recommendation Systems for Software Engineering, pp 52-56

Guo S, Zhang X, Yang X et al (2020) Developer activity motivated bug triaging: via convolutional neural
network. Neural Process Lett 51(3):2589-2606

Habayeb M, Murtaza SS, Miranskyy A et al (2017) On the use of hidden markov model to predict the time to
fix bugs. IEEE Trans Softw Eng 44(12):1224-1244

Han D, Zhang C, Fan X et al (2012) Understanding android fragmentation with topic analysis of vendor-specific
bugs. In: 2012 19th Working Conference on Reverse Engineering, IEEE, pp 83-92

Hewett R, Kijsanayothin P (2009) On modeling software defect repair time. Empir Softw Eng 14:165-186

Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more accurate duplicate bug report
detection and ranking. Empir Softw Eng 21(2):368-410

Hinton GE et al (1986) Learning distributed representations of concepts. Proc Eighth Ann Conf Cogn Sci Soc
Amherst MA 1:1-12

@ Springer

http://arxiv.org/abs/1810.04805

Empirical Software Engineering (2024) 29:122 Page 43 of 48 122

Huo D, Ding T, McMillan C et al (2014) An empirical study of the effects of expert knowledge on bug reports.
In: 2014 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 1-10

Islam MS, Hamou-Lhadj A, Sabor KK et al (2021) Enhmm: On the use of ensemble hmms and stack traces to
predict the reassignment of bug report fields. In: Proceedings of the 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering, IEEE, pp 411-421

Izadi M, Akbari K, Heydarnoori A (2022) Predicting the objective and priority of issue reports in software
repositories. Empir Softw Eng 27(2):1-37

Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems. In: 2008 IEEE Interna-
tional Conference on Dependable Systems and Networks With FTCS and DCC, IEEE, pp 52-61

Jia Y, Chen X, Xu S et al (2021) Ekd-bsp: Bug report severity prediction by extracting keywords from
description. In: 2021 8th International Conference on Dependable Systems and Their Applications,
IEEE, pp 42-53

Kanwal J, Magbool O (2012) Bug prioritization to facilitate bug report triage. J Comput Sci Technol 27:397—
412

Kim D, Tao Y, Kim S et al (2013) Where should we fix this bug? a two-phase recommendation model. IEEE
Trans Softw Eng 39(11):1597-1610

Kim J, Yang G (2022) Bug severity prediction algorithm using topic-based feature selection and cnn-Istm
algorithm. IEEE Access 10:94643-94651

Kumar L, Kumar M, Murthy LB et al (2021) An empirical study on application of word embedding techniques
for prediction of software defect severity level. In: 2021 16th Conference on Computer Science and
Intelligence Systems, IEEE, pp 477-484

Lamkanfi A, Demeyer S (2013) Predicting reassignments of bug reports-an exploratory investigation. In:
Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering, IEEE,
pp 327-330

Lamkanfi A, Demeyer S, Giger E et al (2010) Predicting the severity of a reported bug. In: 2010 7th IEEE
Working Conference on Mining Software Repositories), IEEE, pp 1-10

Lamkanfi A, Demeyer S, Soetens QD et al (2011) Comparing mining algorithms for predicting the severity of
areported bug. In: 2011 15th European Conference on Software Maintenance and Reengineering, IEEE,
pp 249-258

Liu G, Lu Y, Shi K et al (2019) Mapping bug reports to relevant source code files based on the vector space
model and word embedding. IEEE Access 7:78870-78881

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet
allocation. In: 2008 15Th Working Conference on Reverse Engineering, IEEE, pp 155-164

Macbeth G, Razumiejczyk E, Ledesma RD (2011) Cliff’s delta calculator: A non-parametric effect size program
for two groups of observations. Univ Psychol 10(2):545-555

Marks L, Zou Y, Hassan AE (201 1) Studying the fix-time for bugs in large open source projects. In: Proceedings
of the 7th International Conference on Predictive Models in Software Engineering, pp 1-8

Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: 2008 IEEE Inter-
national Conference on Software Maintenance, IEEE, pp 346-355

Messaoud MB, Miladi A, Jenhani I et al (2022) Duplicate bug report detection using an attention-based neural
language model. IEEE Transactions on Reliability

Mi Q, Keung J, Huo Y et al (2018) Not all bug reopens are negative: A case study on eclipse bug reports. Inf
Softw Technol 99:93-97

Mikolov T, Chen K, Corrado G et al (2013a) Efficient estimation of word representations in vector space.
arXiv:1301.3781

Mikolov T, Sutskever I, Chen K et al (2013b) Distributed representations of words and phrases and their
compositionality. Advances in Neural Information Processing Systems 26

Nguyen AT, Nguyen TT, Nguyen TN et al (2012) Duplicate bug report detection with a combination of
information retrieval and topic modeling. In: 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, IEEE, pp 70-79

Panjer LD (2007) Predicting eclipse bug lifetimes. In: Fourth international workshop on mining software
repositories (MSR’07: ICSE workshops 2007), IEEE, pp 29-29

Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Proceedings
of the 2014 conference on empirical methods in natural language processing, pp 1532-1543

Peters ME, Neumann M, Iyyer M et al (2018) Deep contextualized word representations. arXiv:1802.05365

Poshyvanyk D, Marcus A, Rajlich V et al (2006) Combining probabilistic ranking and latent semantic indexing
for feature identification. In: 14th IEEE International Conference on Program Comprehension, IEEE, pp
137-148

Poshyvanyk D, Gueheneuc YG, Marcus A et al (2007) Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval. IEEE Trans Softw Eng 33(6):420-432

@ Springer

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1802.05365

122 Page 44 of 48 Empirical Software Engineering (2024) 29:122

Probst P, Boulesteix AL (2018) To tune or not to tune the number of trees in random forest.] Mach Learn Res
18(181):1-18

Probst P, Boulesteix AL, Bischl B (2019) Tunability: Importance of hyperparameters of machine learning
algorithms. J Mach Learn Res 20(53):1-32

Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and tuning strategies for random forest. Wiley
Interdiscip Rev data mining knowl disc 9(3):e1301

Ramay WY, Umer Q, Yin XC et al (2019) Deep neural network-based severity prediction of bug reports. IEEE
Access 7:46846-46857

Rodrigues IM, Aloise D, Fernandes ER et al (2020) A soft alignment model for bug deduplication. In: Pro-
ceedings of the 17th International Conference on Mining Software Repositories, pp 43-53

Roy NKS, Rossi B (2014) Towards an improvement of bug severity classification. In: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, IEEE, pp 269-276

Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate defect reports using natural language
processing. In: 29th International Conference on Software Engineering (ICSE’07), IEEE, pp 499-510

Saha RK, Lease M, Khurshid S et al (2013) Improving bug localization using structured information retrieval.
In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 345—
355

Sahin SE, Tosun A (2019) A conceptual replication on predicting the severity of software vulnerabilities. In:
Proceedings of the 23rd International Conference on Evaluation and Assessment in Software Engineering,
pp 244-250

Sepahvand R, Akbari R, Hashemi S (2020) Predicting the bug fixing time using word embedding and deep
long short term memories. Inst Eng Technol Softw 14(3):203-212

Shihab E, Thara A, Kamei Y et al (2010) Predicting re-opened bugs: A case study on the eclipse project. In:
2010 17th Working Conference on Reverse Engineering, IEEE, pp 249-258

Shihab E, Thara A, Kamei Y et al (2013) Studying re-opened bugs in open source software. Empir Softw Eng
18(5):1005-1042

Sun C, Lo D, Wang X et al (2010) A discriminative model approach for accurate duplicate bug report retrieval.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1,
pp 45-54

Sun C, Lo D, Khoo SC et al (2011) Towards more accurate retrieval of duplicate bug reports. In: 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 253-262

Tagra A, Zhang H, Rajbahadur GK et al (2022) Revisiting reopened bugs in open source software systems.
Empir Softw Eng 27(4):92

Tantithamthavorn C, Abebe SL, Hassan AE et al (2018) The impact of ir-based classifier configuration on the
performance and the effort of method-level bug localization. Inf Softw Technol 102:160-174

Tian'Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In: 2012 16th European Conference
on Software Maintenance and Reengineering, IEEE, pp 385-390

Tian Y, Lo D, Sun C (2013) Drone: Predicting priority of reported bugs by multi-factor analysis. In: 2013
IEEE International Conference on Software Maintenance, IEEE, pp 200-209

Tian Y, Lo D, Xia X et al (2015) Automated prediction of bug report priority using multi-factor analysis. Empir
Softw Eng 20:1354-1383

Umer Q, Liu H, Illahi T (2019) Cnn-based automatic prioritization of bug reports. IEEE Trans Reliab
69(4):1341-1354

Van Nguyen T, Nguyen AT, Phan HD et al (2017) Combining word2vec with revised vector space model
for better code retrieval. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion, IEEE, pp 183-185

Vieira RG, Mattos CLC, Rocha LS et al (2022) The role of bug report evolution in reliable fixing estimation.
Empir Softw Eng 27(7):164

Wang S, Lo D, Lawall J (2014) Compositional vector space models for improved bug localization. In: 2014
IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 171-180

Wang X, Zhang L, Xie T et al (2008) An approach to detecting duplicate bug reports using natural language
and execution information. In: Proceedings of the 30th international conference on Software engineering,
pp 461-470

Weiss C, Premraj R, Zimmermann T et al (2007) How long will it take to fix this bug? In: Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007), IEEE, pp 1-1

Xia X, Lo D, Wang X et al (2013) A comparative study of supervised learning algorithms for re-opened bug
prediction. In: 2013 17th European conference on software maintenance and reengineering, IEEE, pp
331-334

@ Springer

Empirical Software Engineering (2024) 29:122 Page 450f48 122

Xia X, Lo D, Wen M et al (2014) An empirical study of bug report field reassignment. In: 2014 Software
Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), IEEE, pp 174-183

Xia X, Lo D, Shihab E et al (2015) Automated bug report field reassignment and refinement prediction. IEEE
Trans Reliab 65(3):1094-1113

Xia X, Lo D, Shihab E et al (2015) Automatic, high accuracy prediction of reopened bugs. Autom Softw Eng
22:75-109

Xiao Y, Keung J, Mi Q et al (2017) Improving bug localization with an enhanced convolutional neural network.
In: 2017 24th Asia-Pacific Software Engineering Conference, IEEE, pp 338-347

Xiao Y, Keung J, Bennin KE et al (2019) Improving bug localization with word embedding and enhanced
convolutional neural networks. Inf Softw Technol 105:17-29

Yang A, Wang Q, Liu J et al (2019) Enhancing pre-trained language representations with rich knowledge
for machine reading comprehension. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp 23462357

Yang G, Zhang T, Lee B (2014) Towards semi-automatic bug triage and severity prediction based on topic
model and multi-feature of bug reports. In: 2014 IEEE 38th Annual Computer Software and Applications
Conference, IEEE, pp 97-106

Yang X, Lo D, Xia X et al (2016) Combining word embedding with information retrieval to recommend similar
bug reports. In: 2016 IEEE 27Th International Symposium on Software Reliability Engineering, IEEE,
pp 127-137

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp 689-699

Ye X, Bunescu R, Liu C (2015) Mapping bug reports to relevant files: A ranking model, a fine-grained
benchmark, and feature evaluation. IEEE Trans Softw Eng 42(4):379-402

Yuan W, Xiong Y, Sun H et al (2021) Incorporating multiple features to predict bug fixing time with neural
networks. In: 2021 IEEE international conference on software maintenance and evolution (ICSME),
IEEE, pp 93-103

Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of commercial software
projects. In: 2013 35th International Conference on Software Engineering (ICSE), IEEE, pp 1042-1051

Zhang T, Chen J, Yang G et al (2016) Towards more accurate severity prediction and fixer recommendation
of software bugs. J Syst Softw 117:166—184

Zhang T, Yu Y, Mao X et al (2022) Fense: A feature-based ensemble modeling approach to cross-project
just-in-time defect prediction. Empir Softw Eng 27(7):1-41

Zhang T, Han D, Vinayakarao V et al (2023) Duplicate bug report detection: How far are we? ACM Trans
Softw Eng Methodol 32(4):1-32

Zhang W, Challis C (2020) Automatic bug priority prediction using dnn based regression. In: Advances in
Natural Computation, Fuzzy Systems and Knowledge Discovery: Volume 1, Springer, pp 333-340

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In: 2012 34th International Conference on Software Engineering,
IEEE, pp 14-24

Zhou X, Zhang Y, Cui L et al (2020) Evaluating commonsense in pre-trained language models. Proc AAAI
Conf Artif Intell 34:9733-9740

Zimmermann T, Nagappan N, Guo PJ et al (2012) Characterizing and predicting which bugs get reopened. In:
2012 34th International Conference on Software Engineering, IEEE, pp 1074-1083

Zou W, Lo D, Chen Z et al (2018) How practitioners perceive automated bug report management techniques.
IEEE Trans Softw Eng 46(8):836-862

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

122 Page 46 of 48 Empirical Software Engineering (2024) 29:122

Bingting Chen She reveived her master’s degree from Nanjing Uni-
versity of Aeronautics and Astronautics in 2024. Her main research
interests include bug repository mining.

Weiqin Zou She is an associate professor in the College of Com-
puter Science and Technology at Nanjing University of Aeronautics
and Astronautics. She received her Ph.D degree at the Software Insti-
tute, Nanjing University, China, advised by Prof. Baowen Xu and
Prof. Zhenyu Chen in 2019. Her research focuses on mining softare
repositories (e.g., bug reports, GitHub data) to uncover interesting and
actionable information to help improve software quality and developer
productivity.

Biyu Cai She is a master candidate at Nanjing University of Aero-
nautics and Astronautics, China. Her research interest includes bug
localization.

@ Springer

Empirical Software Engineering (2024) 29:122 Page 47 of 48 122

Qianshuang Meng He is a postgraduate student at Nanjing University
of Aeronautics and Astronautics, China.His research interest includes
bug report analysis and natural language processing

Wenjie Liu He reveived his master’s degree from Nanjing University
of Aeronautics and Astronautics in 2024. His main research interest
include bug localization.

Piji Li He is a professor in the College of Computer Science and Tech-
nology at Nanjing University of Aeronautics and Astronautics and he
leads the NUAA NLP Group. Previously, he was a senior researcher
at Tencent Al Lab. He received his Ph.D. degree from the Department
of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong in 2018, under the supervision of Prof. Wai
Lam. Before joining CUHK, he was a full-time R&D Engineer at
Baidu Inc. and Wumii Inc. He received master and bachelor degree
from School of Computer Science and Technology in Shandong Uni-
versity from 2005 to 2012, under the supervision of Prof. Jun Ma.

@ Springer

122 Page 48 of 48 Empirical Software Engineering (2024) 29:122

Lin Chen He is an Associate Professor of computer science and tech-
nology at Nanjing University. He received his Ph.D. degree in Com-
puter Science from Southeast University in 2009. From 2015 to 2016,
he visited Purdue University as a visiting scholar under the supervi-
sion of Professor Xiangyu Zhang.

Authors and Affiliations

Bingting Chen' - Weiqin Zou"? . Biyu Cai' - Qianshuang Meng' - Wenjie Liu® -
Piji Li" - Lin Chen3
B Weiqin Zou

weiqin @nuaa.edu.cn

Bingting Chen
btchen@nuaa.edu.cn

Biyu Cai
caibiyu@nuaa.edu.cn

Qianshuang Meng
qs_meng@nuaa.edu.cn

Wenjie Liu

wenwenmu @nuaa.edu.cn

Piji Li

pjli@nuaa.edu.cn

Lin Chen

Ichen@nju.edu.cn

Department of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China

State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, P.R. China

Department of Computer Science and Technology, Nanjing University, Nanjing, China

@ Springer

	An empirical study on the potential of word embedding techniques in bug report management tasks
	Abstract
	1 Introduction
	2 Background
	2.1 Word Embedding
	2.1.1 Five Typical Word Embedding Models
	2.1.2 Pre-trained Word Embedding Models

	2.2 Bug Report Management
	2.2.1 Bug Report
	2.2.2 Six BRM Techniques

	3 Experiment Setup
	3.1 Overflow
	3.2 Data Collection
	3.3 Semantic Extraction
	3.4 Model Building and Evaluation for Six BRM Tasks
	3.4.1 Model Building
	3.4.2 Evaluation Metrics

	3.5 Research Questions

	4 Experiment Results
	4.1 RQ1. Which machine learning approach performs best for BRM tasks on the whole?
	4.2 RQ2. Is there a word embedding model that generally outperforms others for BRM tasks?
	4.3 RQ3. Do word embedding models outperform the most used VSM model for BRM tasks?
	4.4 RQ4. How will the performance change if word embedding models are fine-tuned with bug data?

	5 Discussion
	5.1 Hyper Parameter Tuning
	5.2 Implication
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	Appendix
	Acknowledgements
	References

