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Abstract
Machine Learning (ML) is increasingly being adopted in different industries. Deep Rein-
forcement Learning (DRL) is a subdomain of ML used to produce intelligent agents. Despite
recent developments in DRL technology, the main challenges that developers face in the
development of DRL applications are still unknown. To fill this gap, in this paper, we con-
duct a large-scale empirical study of 927 DRL-related posts extracted from Stack Overflow,
the most popular Q&A platform in the software community. Through the process of labeling
and categorizing extracted posts, we created a taxonomy of common challenges encountered
in the development of DRL applications, along with their corresponding popularity levels.
This taxonomy has been validated through a survey involving 65 DRL developers. Results
show that at least 45% of developers experienced 18 of the 21 challenges identified in the tax-
onomy. The most frequent source of difficulty during the development of DRL applications
are Comprehension, API usage, and Design problems, while Parallel processing, and DRL
libraries/frameworks are classified as the most difficult challenges to address, with respect to
the time required to receive an accepted answer. We hope that the research community will
leverage this taxonomy to develop efficient strategies to address the identified challenges and
improve the quality of DRL applications
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1 Introduction

Reinforcement Learning (RL) has begun making its mark across a range of industrial sec-
tors, from autonomous vehicles (Aradi 2020) and traffic engineering (Xiao et al. 2021) to
healthcare systems (Yu et al. 2021). Recently we have been also witnessing an increasing
adoption of RL to solve different software engineering tasks, from automatic code improve-
ment (Wan et al. 2018), to test case prioritization (Bagherzadeh et al. 2021), and program
debloating (Heo et al. 2018). Reinforcement Learning differs significantly from other sub-
categories of Machine Learning (ML) such as supervised and unsupervised learning, as it
includes an agent that interacts with an environment to learn how to perform a sequence of
actions leading to the best cumulative final rewards (Nikanjam et al. 2022). In other words,
in RL, an agent learns to act in a way that modifies its behavior gradually to achieve the best
final result; which makes traditional software quality assurance techniques inadequate for
RL.

DeepReinforcementLearning (DRL) is an integration ofDeepLearning (DL) andRL, also
known as Deep RL, to address challenges, such as high-dimension input data (Arulkumaran
et al. 2017). Combining DL and RL enables DRL to discover compact low-dimensional
representations of high-dimensional data automatically (Arulkumaran et al. 2017).

Although there exist studies on testing and debugging RL programs (Zolfagharian et al.
2022; Tambon et al. 2023), the main challenges and obstacles that developers face while
developing RL applications are still unclear (Zhang et al. 2020). Moreover, because of
basic differences between the paradigm of traditional software applications and ML applica-
tions (Morovati et al. 2023; Islamet al. 2020), it is expected that developers ofMLapplications
face different types of challenges in the implementation process of such applications. Thus,
DRL developers may face different challenges from other types of software systems (includ-
ing traditional software systems as well as other subcategories of ML applications) (Nguyen
et al. 2020; Du and Ding 2021; Dulac-Arnold et al. 2021).

As an example, Listing.1 shows a SO post (70562317) related to a DRL application,
representing a challenge in implementing the method to choose an optimal action which is
specific to DRL development and differs from ML and DL development challenges.

Although there exist some studies regarding challenges in the development of DL (Zhang
et al. 2019; Rao and Frtunikj 2018), ML applications (Lwakatare et al. 2019; de Souza Nasci-
mento et al. 2019), to the best of our knowledge there is no study on the challenges that
developers face when developing DRL applications. The study by Yahmed et al. (2023) is
the most closely related work to this research. It examines the challenges that developers
face during the deployment process of DRL systems but does not consider the challenges
occurring in the early development phases prior to deployment. In this study, we examine
the following research questions:
RQ1. What are the common challenges of DRL application development?
RQ2. How are the identified challenges perceived by DRL practitioners?
RQ3. Are DRL application development challenges language- and/or framework-specific?
To answer these research questions, we manually examined and categorized 927 Stack
Overflow (SO) posts that are related to DRL development. We report our results as a tax-
onomy of challenges in DRL application development. Besides, we conducted a survey
of DRL developers/practitioners to validate our findings. Moreover, we investigated the
dependency of the identified challenges on programming languages and libraries/frame-
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1 def act(self , some_input , state):
2 mu , var , state_value = self.model(some_input , state)
3 # mu contains info required for gradient
4 mu = mu.data.cpu().numpy()
5 # mu is detached and now has forgot all the

operations performed in "self.action_head"
6 sigma = torch.sqrt(var).data.cpu().numpy()
7 action = np.random.normal(mu , sigma)
8 action = np.clip(action , 0, 1)
9 action = torch.from_numpy(action /1000)

10 return action , state_value

Listing 1 SO post (70562317) showing a challenge in the development of the RL action

works used for DRL development. The contributions of this study are summarized as
follows.

– We provide the first large-scale empirical study of the challenges in the development of
DRL applications,

– We categorize challenges in DRL application development and propose a taxonomy,
– We conduct a surveywithDRLpractitioners to validate the identified common challenges
of DRL application development,

– We examine the relationship between the identified challenges and the programming
languages and libraries/frameworks used to develop DRL applications.

The Rest of the Paper is as Follows We describe the methodology of our study in
Section 2. In Section 3, we report our findings including the taxonomy of DRL development
challenges. Section 4 discusses the implications of the highlighted findings. Afterward, we
review relatedworks inSection5.Threats to the validity of our research, and conclusion/future
works are discussed in Sections 6 and 7, respectively.

2 Methodology

This section describes the methodology we follow in this study. This methodology is illus-
trated in Fig. 1.

2.1 Extracting Posts from Stack Overflow (SO)

We rely on Stack Overflow (SO) as the main source of information in this study; similar
to several previous studies which utilized data exclusively obtained from SO for analy-
ses (Zhang et al. 2019; Alshangiti et al. 2019; Hamidi et al. 2021). SO is known as the largest

Fig. 1 High-level view of the used methodology
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technical question and answer (Q&A) website creating a public knowledge base in various
areas (Zhu et al. 2022), with 23.4 million questions and 19.6 million users as of December
2022 (StackExchange 2022). In the software development community, SO provides a plat-
form for developers to exchange about coding issues; improving their coding knowledge.
To extract SO posts related to DRL, we use Stack Exchange Data Explorer1 which provides
access to up-to-date SO data. Overall, we use a list of DRL-related tags and keywords to
collect DRL-related SO posts. Listing 2 presents an example of a query used to collect SO
posts containing ‘deep-learning’ and ‘reinforcement-learning’ tags at the same time.

1 SELECT * FROM Posts
2 WHERE Tags LIKE ’%<deep -learning >%’
3 AND Tags LIKE ’%<reinforcement -learning >%’

Listing 2 Sample query to extract SO posts that have ‘deep-learning’ and ‘reinforcement-learning’ tags
simultaneously

To gather the list of DRL-related tags and keywords, we follow previous study (Alshangiti
et al. 2019) using a snowballing approach in which we start with posts that have ‘deep-
learning’ and ‘reinforcement-learning’ tags, simultaneously. In the next step, we collect all
tags assigned to the SO posts gathered in the previous step. Then, we include DRL-related
tags to our list of tags (e.g., ‘dqn’). We continue this process and expand the list of DRL-
related tags until we are unable to add any new tags to our list. Besides, we create a list of
DRL-related keywords based on the list of collected DRL-related tags. Firstly, we include
all DRL-related tags (such as ‘reinforcement learning’) to the list of DRL-related keywords.
Moreover, we add expanded forms of DRL-related tags which are acronyms. As an example,
we add ‘DeepQ-Learning’which is the expanded form of ‘dqn’. The complete list of tags and
keywords used to extract SO posts are available in our replication package (Morovati et al.
2023). In summary, we collected SO posts that meet at least one of the following criteria:

– Posts having one of the identified tags (e.g., ‘drl’, ‘dqn’, etc.)
– Posts with a combination of identified tags (e.g., combination of ‘deep-learning’ and
‘reinforcement-learning’)

– Posts with a combination of identified tags and keywords in their title or body (e.g.,
‘reinforcement-learning’ tag and ‘deep’ in the post title)

– Posts including identified keywords in their title or body (e.g., ‘drl’)

After extracting all posts and removing duplicates, we obtained 3,083 posts. Then, we
filtered out the posts without an accepted answer which leaves us with 927 posts. We chose
to remove postswithout an accepted answer, similar to previous studies (Nikanjam et al. 2022;
He et al. 2023) because the correctness of any of such responseswould not be inferable, which
could potentially bias our results. We also collected information about the time taken by each
post to receive an accepted answer and used it as an indicator of the level of difficulty of the
question, similar to the approach employed in previous works (Haque et al. 2020; Zahedi
et al. 2020).

2.2 Manual Inspection

During this step, a team of four raters (three Ph.D. candidates and a senior research staff
who all are practitioners of DRL development) is responsible for labeling the collected SO
posts. Following a methodology similar to prior works (Humbatova et al. 2020; Islam et al.

1 https://data.stackexchange.com/stackoverflow/query
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2019), we split the collected SO posts into 10 parts, each of which is inspected in a dedicated
labeling round. All the discussions and referenced source codes in each post are thoroughly
reviewed. The raters use an open coding method (Lune and Berg 2017) to label SO posts
and categorize them. Each SO post is reviewed by two raters. We use the “Google Sheets”
platform (GoogleSheet 2020) to save all extracted labels in an online environment. That is,
all raters put generated labels in the shared document, but they do not have access to the
labels that other raters assigned to each post. After labeling SO posts in each round, the
raters meet to discuss disagreements and resolve conflicts. In the case they fail to resolve a
disagreement, a third rater reviews the SO post and makes a decision about its label, acting
as a tie-breaker. Besides, the raters review the generated labels in each meeting to ensure
their comprehensiveness and granularity (combining similar labels generated by different
raters or dividing a label into separate ones). The justification for dividing SO posts into 10
labeling rounds, with approximately 10% of the total collected posts in each round, emerges
from the necessity for raters’ discussion in iterative meetings. These discussions are essential
for resolving labeling conflicts and reaching an agreement, reviewing generated labels, and
creating finer or coarser-grained labels. In case of changing existing labels, raters re-review
the previously labeled posts to ensure that assigned labels are in synchronization with newly
generated labels. We made this decision to allow for continuous improvement of the labeling
process. This way raters have the opportunity to resolve their conflicts at the end of each
round, similar to the technique used in previous studies (Humbatova et al. 2020; Islam et al.
2019). Besides, in the case that any of the raters suggests generating a new label, all raters
meet to discuss and reach an agreement on that new label. After completing labeling all
927 posts, all raters meet to finalize the generated labels, categorize them, and create the
taxonomy. Then, the first two authors review all of the labeled posts again to ensure that
their assigned labels are in sync with the final generated taxonomy. Regarding the posts
in which the questioner asks more than one question belonging to multiple categories of
challenges, we repeat that record in our dataset and assign a different label to each record.
For instance, post #45382763 has been identified to belong to two categories, comprehension
and design problems. Although we could not report inter-rater agreement level due to the
lack of prior defined categories, we calculate inter-rater agreement between the pair of raters
who investigate each SO post after finalizing the labels using Cohen’s Kappa (McDonald
et al. 2019) and obtained an 86% agreement level. Table 1 presents detailed information on
the labeling procedure.

During the manual inspection of SO posts, we filtered out 57 posts that were not related
to DRL development. Generally, some questioners may add DRL-related tags to their posts
by mistake or because of unfamiliarity with DRL and its real capabilities to solve their
considered problems (such as #60958362). We also filtered out posts that are too general
and which could not be considered as reporting about a challenge in DRL development (e.g.,
#3972812).

It is worth mentioning that 70% of the DRL-related questions in SO still remain without
any accepted answer. This is consistent with previous findings by Alshangiti et al. (2019)
that 61% of ML-related SO posts remain without any accepted answer. Multiple factors
could explain this finding. In some cases, the person who asks the question responds to the
question after a while, but she does not assign the accepted answer badge to the post (e.g.,
#45364837). Some users also ask basic questions irrelevant to DRL but assign DRL-related
tags to them. These questions receive negative scores and remainwithout any accepted answer
(e.g., #50544568).We also observe postswhere the person asking the question forgot to assign
the accepted answer badge to an answer, based on upvotes to the response, comments of the
person who asked the question, or other people with the same problem under the response
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Table 1 Detailed information on the manual labeling process

Round Analyzed SO posts Conflicts Relevant to DRL New categories

1 100 11 95 15

2 100 7 93 1

3 72 10 67 –

4 100 16 96 4

5 100 14 90 1

6 100 9 96 –

7 100 5 95 –

8 100 7 93 1

9 100 5 94 –

10 55 3 51 –

Total 927 87 870 22

The boldface cells mean the total of all values on the column

(e.g., #63250935). About the posts with accepted answers, it should be mentioned that 16%
of them have been answered by the user who published the question. This usually happens
when a user asks a very specific question that remains unanswered for a long time, and then
the same user finds the response elsewhere and adds it to his original post (e.g., #2723999).

2.3 Taxonomy Construction andValidation

Similar to previous studies (Vijayaraghavan and Kaner 2003; Humbatova et al. 2020), we
use a bottom-up methodology to create the taxonomy. In fact, after completing each labeling
round, we categorize all generated labels belonging to a similar theme into a group. Next,
we build up parent nodes in a way that makes sure that categories and their subcategories
adhere to a ‘is a’ relationship. Concerning that the raters may provide new labels during each
labeling round, we need to update the taxonomy which means adding a new category, a new
subcategory, or combining two categories/subcategories. After any update on the taxonomy
which leads to a new version of it, all the authors have a debate on the newly generated
version of the taxonomy in a group meeting. By completing the final labeling round and
integrating all updates on the taxonomy, all paper’s authors carry out a careful inspection
of the produced taxonomy (including all categories and subcategories) over a meeting and
finalize it.

Interviews and surveys stand as the two popular methods to validate the results of qualita-
tive studies (Hove andAnda 2005; Aldhaen 2020). Considering the advantages of conducting
surveys, including cost-effectiveness, generalizability, reliability, and versatility (DeCarlo
2018; Nekkanti and Reddy 2016), we assessed the comprehensiveness and representative-
ness of the obtained taxonomy using a survey with DRL developers/practitioners who are
not involved in the construction of the taxonomy. Nevertheless, it is noteworthy that several
preceding studies have presented their findings without undergoing any validation pro-
cess (Zhang et al. 2019; Islam et al. 2019).

While we build our taxonomy based on SO posts, we use Github to identify potential
respondents to our survey. We collect a list of survey participants from collaborators of
GitHub repositories related to DRL. Specifically, we extract GitHub repositories mentioning
’deep reinforcement learning’ in their description using GitHub’s search API V3; a rest API
that receives a query and returns a list of repositories that satisfy conditions stated in the
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query. In other words, we use ‘deep reinforcement learning’ as the keyword to generate the
search query of GitHub search API V32. Given that GitHub search API limits access to only
the first 1,000 results, we follow the methodology used in Morovati et al. (2023) and run
several different queries to achieve less than 1,000 repositories for each query. That is, we
divide the duration of the search for repository creation date between Jan 1, 2010, and Jan
31, 2023 (the date of running queries) into snapshots of 1 month. Thus, we execute 157
GitHub search requests to collect 7,244 repositories. Subsequently, we filter out forked and
disabled repositories. The complete list of repositories and a sample search query to extract
DRL-related repositories are accessible via the replication package (Morovati et al. 2023). In
the next step, we check the repositories’ contributors and collect the contributors mentioning
their email addresses, obtaining 2531 unique email addresses of developers.

We use Qualtrics (Qualtrics 2023), an online survey tool for designing and conducting
surveys, to create survey forms. Table 2 presents the structure of our survey questionnaires.
The survey starts with general questions regarding the participant’s current role and expe-
rience in DRL development (Section 1 of Table 2). Subsequently, we delve into specific
questions regarding each DRL development challenge which is pointed out in the final-
ized taxonomy (Section 2 of Table 2). Concerning the potential complexity and difficulty of
comprehending the whole taxonomy as a single figure within the survey, we present chal-
lenges (subcategories) in groups based on their respective main categories. Besides, to ensure
clarity, a detailed description is given with each challenge offering participants a thorough
understanding of the asked challenges. For each identified challenge, we ask three questions
including 1) a ‘yes/no’ question identifying whether the answerer has faced the identified
challenge, 2) the severity of the challenge, and 3) the amount of effort required to address
the challenge. If a participant answers ‘yes’ to the first question, s/he will have the next two
Likert-scale questions which are related to the severity of challenges and the required effort
to address them.We also provide a free-text question in the final part of the survey asking the
participants about any challenges in developing DRL applications not listed in our provided
taxonomy (Section 3 of Table 2). These free-text questions allow us to collect possible chal-
lenges that we may miss in the taxonomy. The full survey questionnaire is available in our
replication package (Morovati et al. 2023).

We conduct a comprehensive analysis of top DRL-related GitHub repositories to ensure
the completeness of the generated taxonomy. Besides, investigating the challenges faced by
developers engaged in the development of real-world DRL applications may further enhance
the generalizability of the generated taxonomy. Our methodology for selecting DRL-related
repositories alignswith established approaches documented in similar prior studies (Morovati
et al. 2023, 2024;Humbatova et al. 2020). Initially, we extracted 7,244 repositories to identify
contributors of DRL-related repositories. Then, we select the top 100 repositories based on
the highest number of stars. Subsequently, we conduct searches for ‘challenge’, ‘difficult’,
and ‘complex’ keywords within repositories’ documentation, commit messages, and closed
issues to identify potential challenges encountered by developers during the development
of these repositories. Our search yielded 746 occurrences of the aforementioned keywords
within the top 100DRL-related repositories.Using a confidence level of 95%and a confidence
interval of 5%, we conduct sampling, resulting in the selection of 254 instances. In the next
step, two raters independently examine 254 randomly selected commits and issues to find
out whether they pertained to real DRL-related development challenges. The raters carefully
review commit messages, issue discussions, and investigate any changes made in relation to
the specified keywords.

2 https://docs.github.com/en/rest
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3 Results

This section presents and discusses the results of our study. All the materials used in this
study, including the collected data, are publicly available online in our replication package
at Morovati et al. (2023).

RQ1:What are the common challenges of DRL application development?

The final taxonomy of challenges of DRL application development is arranged into a tree
structure with five high-level categories in which leaves (subcategories) refer to the chal-
lenges. Figure 2 shows the taxonomy of common challenges in the development of DRL
applications. The number in parentheses presented next to each category/subcategory is the
absolute number of identified SO posts that are categorized into that category (the absolute
frequency of each challenge). To give a better understanding of identified challenges, a brief
description of each category/subcategory is provided in the following.

DRL Issues This category focuses on the challenges that developers may face while
developing the DRL part of their applications. Challenges that belong to this category are
specific to DRL application development. That is, compared to challenges classified under
other categories that can be shared among other kinds of ML-related applications (e.g. super-
vised learning), challenges of theDRL issues category are only faced during DRL application
development.

a. Design Problem: Instances where the user asks advice for designing a solution and
implementing a DRL application for their specific problem or scenario. For example,
developers asked for recommendations to implement different parts of DRL applications
for Curve Fever or mini-golf games. Another such challenge in this category is related
to designing the properties of each object in a tank game. Although we tried to make
finer-grained subcategories under this subcategory, we found out that it is impractical
to split this subcategory further, as the majority of this subcategory’s posts primarily
comprised users seeking guidance on high-level conceptual queries about defining their
problem within a DRL context.

DRL Development 
Challenges

DRL issues 
(433)

Parallel 
processing (12)

DRL library & 
framework (200)

DL issues 
(114)

General 
programming 

(126)

Comprehension 
(253)

Design 
Problem (99)

Reward 
(21)

Hyperpara
meters (10)

Environment 
(15)

Ac�on 
(12)

State / 
Observa�on (10)

Policy 
(13)

Mul�-
threading (4)

Mul�-
processing (4)

GPU 
Usage (3)

Distributed 
Systems (1)

Model 
(61)

DL Frame-
work (33)

Data Pre-
processing (20)

Documenta�on 
(2)

Dependency 
(30)

Installa�on 
(25)

Best Fi�ed 
Library (7)

Issues Inside 
Framework (5)

API usage 
(131)

Algorithm 
(189)

Training
(26)

Problem 
A�ributes (37)

Missing API 
Args (36)

Deprecated 
API(7)

Missing API 
Calls (8)

Buggy 
API (4)

API 
Misuse (76)

Fig. 2 Taxonomy of common challenges in DRL development. Numbers represented with each category/sub-
category indicate the number of SO posts categorized into that category/subcategory
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b. Comprehension:Challenges about themeaning or details of theoretical concepts in DRL,
i.e., misunderstanding about basic formulas of different DRL algorithms. For instance,
a developer mentioned “I’m trying to make a learning football game from scratch using
DeepQ-learning algorithm (without convolutional network though). I just couldn’t figure
out what does � stand for in this algorithm.”, or one which is related to the difference
between SARSA and Q-learning algorithms in terms of collecting the next policy value.

b.1. Training: This subcategory comprises inquiries concerning the theoretical concepts
of the DL model and its significance in DRL applications. The DL model plays an
essential role in the training and decision-making process of the DRL agents. Indeed,
DL models in DRL applications serve to represent policy of the agent, estimate the
value of state-action, and learn mappings from states to values.

b.2. Problem attributes: SO posts containing theoretical queries about attributes of DRL
problems (such as reward, action, state, etc.) are categorized in this subcategory. SO
posts in this category are related to the conceptual aspects of reward, action, and state,
not their implementation details. For example, questions on how to formulate states,
actions, and the reward signal for a particular DRL problem, or why a particular
definition of the states is not suitable for a problem.

b.3. Algorithm: Questions related to fundamental concepts of various DRL algorithms,
such as actor-critic, Q-learning, SARSA, etc., are categorized as algorithm subcate-
gories. The main duty of DRL algorithms is updating parameters of the policy and
value function according to the observed states and achieved rewards. Our investiga-
tion into these algorithms reveals that Q-learning (28%) and DQN (15.3%) are the
most commonDRL-related algorithms posing challenges for developers. Conversely,
Actor-Critic (3.1%), Proximal Policy Optimization (2.6%), and Trust Region Policy
Optimization (0.5%) are the least queried DRL-related algorithms.

c. Policy’s Loss: This category refers to challenges about DRL learning policy’s loss. As an
example, questions regarding implementing a customized loss function or any problems
in loss calculation methods are categorized in this group.

d. Reward: Challenges in the implementation of reward, e.g., not using the negative reward
to penalize each added time step are categorized in this subcategory. An example of this
category is a post asking “I am implementing the basic RL algorithm to play the game
Flappy Bird. I want to be able to process the screen and recognize whether a point has
been scored or the bird has died. Processing the screen returns a stacked numpy array.
The reward function then needs to assign a reward to the provided array, but I have no
idea how to go about this”.

e. Action: Questions/Challenges related to the action(s). e.g., possible actions in a specific
game or implementing a ‘chooseAction’ method for a PacMan bot.

f. State/Observation:Questions/Problems regarding the state(s) or the agent observation(s),
e.g., handling large state spaces. An example of such instance is a user asking “I imple-
mented a 3x3 OX game by q-learning (it works perfectly in AI v.s AI and AI v.s Human),
but I can’t go one step further to 4x4 OX game since it will eat up all my PC memory
and crash…Since I need to calculate each Q value (for each state, each action), I need
such a large number of array, is it expected? any way to avoid it?” and the accepted
answer offered suggestions on reducing their state space size by considering symmetries
and other tricks.

g. Environment:Questions/Problems pertinent to the environment, e.g., designing a custom
environment. For example a user asked“I’m very new to Ray RLlib and have an issuewith
using a custom simulator my teammade.We’re trying to integrate a customPython-based
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simulator into Ray RLlib to do a single-agent DQN training. However, I’m uncertain
about how to integrate the simulator into RLlib as an environment”.

h. Hyperparameters: Questions/Challenges related to the hyperparameters of the RL algo-
rithm, e.g., setting the discount factor too high. A good example of this group is
demonstrated in a post where the user shared the code for the learning algorithm and
reported that the loss keeps increasing and themodel is not learning. The accepted answer
states that “The main problem I think is the discount factor, gamma. You are setting it to
1.0, which means that you are giving the same weight to the future rewards as the current
one”.

DRL Libraries/Frameworks This category refers to the challenges that developers face
when they are trying to use DRL-specific libraries/frameworks (e.g., KerasRL (Plappert
2016), RLlib (Liang et al. 2018), Tensorforce (Schaarschmidt et al. 2018), etc.). Challenges
that software developers face when using libraries/frameworks have been extensively studied
for traditional software systems development (Decan et al. 2019; Nguyen et al. 2010) and also
for DL applications development (Arpteg et al. 2018). However, despite the large number
of SO posts related to the usage of DRL libraries/frameworks (i.e., 200 SO posts), these
challenges are yet to be examined for DRL application development.

a. Installation:Questions/problems regarding installing/uninstallingDRL-related libraries-
/frameworks or missing libraries. Issues categorized in this subcategory can often stem
from an incompatibility between DRL-related frameworks/libraries and other libraries.
For example, a user described her issue as “when I try to install gym[box2d] I get the
following error: I tried: pip install gym[box2d]. on anaconda prompt I installed swig
and gym[box2d] but I code in python3.9 env and it still not working (my text editor is
pycharm) gym is already installed”..

b. Dependency: This subcategory includes questions/challenges about the mismatch
between versions of installed libraries/frameworks and problems in installed versions
of libraries, e.g., when the version of the installed OpenAI Gym is not compatible with
Python. An instance of this subcategory is a user reporting getting an errorwhile installing
OpenAIGym and the answer pointed out that “the error means that the package has
dependency requirements that conflict with one another”.

c. API usage: This subcategory includes questions about the usage of arguments, attributes,
methods, etc. of an API. It also includes questions about the default values, implemented
method, existence of attributes, or methods in an API. An example from this group of
issues is a user reporting not knowing how to get the weights of the network using the
correct API methods: “I’m using RLlib to train a reinforcement learning policy (PPO
algorithm). I want to see the weights in the neural network underlying the policy. After
digging through RLlib’s PPO object, I found the TensorFlow Graph object. I thought
that I would find the weights of the neural network there. But I can’t find them”. This
subcategory is subdivided into five subcategories to delineate more detailed challenges.

c.1. API misuse: This subcategory covers SO posts that mention misunderstanding of
API usage. In other words, API misuse occurs when DRL developers try to utilize
an API in a manner that is not aligned with its intended purpose.

c.2. Missing API call: Questions related to the absence of necessary API calls within a
code snippet are classified in this subcategory.

c.3. Missing API args:When SO posts discuss challenges that DRL developers face due
to the absence of one or more essential arguments in an API call, we classify them
under this subcategory.
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c.4. Buggy API: This subcategory includes SO posts that inquire about calling APIs
resulting from the bugs within the implementation of APIs. It is worth mentioning
that this challenge is distinct from issues related to the implementation of DRL
applications themselves; rather, they pertain to the implementation of the API.

c.5. Deprecated API: In this subcategory, we cover questions about calling a deprecated
API which has been altered or removed from the library/framework.

d. Documentation (using newly added features): This subcategory of issues occurs when a
developer wants to use a feature of a DRL library/framework, but there is no documen-
tation for it. For example, a user who could not find the required documentation for the
Neural Network Approximator in ReinforcementLearning.jl: “I have decided to use a
Neural Network Approximator. But the docs do not discuss much about it, nor are there
any examples where a neural network approximator is used. I am stuck on how to figure
out how to use such an approximator”.

e. Best fitted library for a special task (library suitability): Instances where the user asks
about the best DRL libraries/frameworks for customizing agents, based on the require-
ments of the problem. An instance of this group was observed in a post where a user had
a customized state space and was looking for a library that supports it: “I’ve had some
luck training an agent using keras-rl, specifically the DQNAgent, however, keras-rl is
under-supported and very poorly documented. Any recommendations for RL packages
that can handle this type of observation space? It doesn’t appear that openai baselines,
nor stable-baselines can handle it at present”.

f. Problems inside DRL frameworks: Including issues that are encountered because of
internal faults, i.e., bugs in the DRL frameworks. For example, a user kept getting a
numpy error when calling the model.learn() function and it was found to be an official
bug in the used library Stable Baselines3.

DL Issues This category represents the challenges that arise specifically from the DL part
of DRL applications. As the challenges belonging to this category are shared by both DL and
DRL applications, we use the high-level categories of the taxonomy provided by Humbatova
et al. (2020) for DL applications.

a. Model: Questions regarding the DL model including model layer, activation function,
load/save model, etc. For instance, a user who was implementing a DRL model asked
for advice on back propagation: “I am struggling with the implementation of the back
propagation. Since the rewards are so big, the error values are huge, which creates huge
weights. After a few training rounds, the weights to the hidden layer are so big, my nodes
in the hidden layer are only creating the values -1 or 1”.

b. Data Preprocessing:Questions about preparing data to be fed into the DLmodel, e.g., the
shape of the input matrix. As an example, there was a user who asked “I am learning how
to useGymenvironments to train deep learningmodels built with TFLearn. At themoment
my array of observations has the following shape: (210, 160, 3). Any recommendations on
what is the best way to reshape this array so it can be used in a TensorFlow classification
model?”

c. DL framework: Questions about the usage of DL frameworks (e.g., Keras, TensorFlow,
PyTorch, etc.) in development of DL part in DRL applications. For instance, a user who
wanted to use Huber loss in their model which was written using Keras, but this loss
function is not readily available inKeras, and the accepted answer implements theHuber
loss function.
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Parallel Processing & Multi-threading This category focuses on the challenges asso-
ciated with running DRL applications as parallel or distributed applications. While running
different types of DL applications in a parallel style is a common practice (e.g., using GPU
or multi-core CPU), it is important to note that the architecture of DRL applications differs
from other types of DL applications. As a result, running a DRL application as a parallel
or distributed application introduces new challenges that may not occur in DL application
development.

a. GPU usage:Questions/Problems regarding utilizing GPU for running DRL applications.
For example, a user was facing performance issues when training a DQN on GPU: “I
am try to train a DQN model with the following code. The GPU (cuda) usage is always
lower than 25 percent. I know the tensorflow backend is consulting the GPU resources,
but the usage is low. Is there any way I can improve the utilization of the GPU (When I
train a CNN network, the GPU (cude) utilization is around 70 percent)?”

b. Distributed processing: Questions/Challenges about running DRL applications as a dis-
tributed software. For example when a user wanted to implement the Asynchronous
Advantage Actor Critic (A3C) model for reinforcement learning in the local machine,
she posed a question about the possibility of implementing it in a distributed manner:
“Would it be easier/faster/better to implement this using the distributed TensorFlow
API? In the documentation and talks, they always make explicit mention of using it in
multi-device environments. I don’t know if it’s an overkill to use it in a local async
algorithm”.

c. Multi-threading: Questions/Problems about running DRL applications as a multi-
threaded software. An example of this category was observed in a post where the user
asked about the possibility of reducing the DRL application’s training time by running
it on multiple threads concurrently: “My friend and I are training a DDQN for learning
2D soccer. I trained the model about 40.000 episodes but it tooks 6 days. Is there a way
for training this model concurrently? For example, I have 4 core and 4 thread and each
thread trains the model 10.000 times concurrently. Therefore, time to training 40.000
episodes are reduced 6 days to 1,5 days like parallelism of for loop”.

d. Multi-processing: This subcategory refers to challenges stemming from running DRL
applications on multiple processing units (e.g., multiple CPUs). As an example, a user
asked a question about using Ray3 in a multi-processing style.

General Programming Issues This category contains programming and coding mistakes
occurring when developing DRL applications. The challenges in this category could not be
classified in any of the other categories described above. For example, a user had a question
about how to slice a 3D numpy array in an RL finite MDP application (#67089715).

Overall, the majority of the analyzed SO posts have been assigned to categories Com-
prehension, Design problem, Model, and API Usage. Aside from Design problem related
questions, which are often quite specific (i.e., related to particular implementations of DRL),
the majority of questions asked by DRL developers concern issues that apply to DRL appli-
cations in general.

3 https://www.ray.io/
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Finding 1: The taxonomy of challenges in DRL development is structured into five
main categories including DRL issues, DL issues, DRL libraries/frameworks, par-
allel processing & Multi-threading, and general programming issues, where DRL
issues (48.9%) andDRL libraries/frameworks (22.6%) categories are themost popu-
lar. Among the challenges, comprehension (28.6%), API usage (14.8%), and design
problem (11.2%) are the most prevalent DRL development challenges. Comprehen-
sion (58.4%). This can however be explained by the fact that survey respondents
being more experienced in DRL which would limit such questions.

Table 3 shows the number and percentage of the SO posts within our dataset having dif-
ferent tags and/or keywords that we used in Section 2.1. Figure 3 presents the distribution
of SO posts related to DRL application development for a period of 13 years, from 2009 to

Table 3 Detailed information regarding tags and keywords used to extract DRL-related SO posts

Tag/ PostsDRL DRL DRL DL PP Gen
Keyword (#) (%) LF (%) (%) (%) (%)

Tags Reinforcement-learning 710 96 58 86.8 83.3 54.8
Openai-gym 208 10 59 10.5 25 25.4
Tensorflow 159 11.3 14 47.4 16.7 20.6
Q-learning 137 25.2 2 13.2 – 7.1
Deep-learning 127 13.4 6.5 32.5 – 15.1
Keras 78 5.1 6 29.8 – 7.9
Pytorch 65 6.5 3 18.4 – 7.9
Dqn 39 4.4 2 7 8.3 5.6
Stable-baselines 24 – 5.5 1.8 - 5.6
Keras-rl 19 – 3.5 5.3 – 2.4
Tensorflow-agents 12 0.5 2.5 2.6 – 1.6
rllib 9 0.5 4 – – –
Tensorboard 8 – 2 – – 2.4
Starcraftgym 5 – 2 – – 0.8

Keywords Reinforcement learning 313 44.8 24 36 41.7 19.8
Deep 136 16.4 10.5 23.7 16.7 11.9
ppo 117 11.5 18 11.4 8.3 13.5
Deep reinforcement learning 37 4.6 2.5 5.3 8.3 4
a3c 17 1.6 0.5 3.5 25 1.6
Deep q-learning 16 2.5 1 0.9 – 1.6
Actor critic 11 1 – 4.4 8.3 0.8
ddqn 9 – 1 1.8 8.3 –
drl 5 0.7 0.5 – – 0.8
dql 5 0.7 0.5 0.9 – –
Deep rl 2 0.5 – – – –
trpo 2 0.5 – – – –
Hierarchical 1 0.2 – – – –
Trust region 1 0.2 – – – –
Policy optimization

Columns show the number (#) and percentage (%) of SO posts categorized in the main categories hav-
ing mentioned tags/keywords (‘DRL’, ‘DRL LF’, ‘DL’, ‘PP’, and ‘Gen’ refer to ‘DRL issues’, ‘DRL
libraries/frameworks’, ‘DL issues’, ‘Parallel processing’, and ‘General programming’, respectively)
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Fig. 3 Distribution of DRL related SO posts per years (a) high-level categories of the provided taxonomy, (b)
subcategories of ‘DRL issues’ category

2022. From Fig. 3(a), we observe a substantial surge of inquiries about DRL development in
2016; reaching a peak in 2019 and 2020. Additionally, as can be seen on Fig. 3(b), compre-
hension and design problem questions dominated posts about DRL application development
challenges. It is also noticeable that API usage, the second most common DRL application
development challenge, was at its peak in 2018.

Figure 4 depicts the distribution of time taken by SO posts from different categories to
receive an accepted answer. This duration is an indicator of the difficulty level of the questions
mentioned in the SO posts in the development of both traditional (Haque et al. 2020; Zahedi
et al. 2020) and ML software (Alshangiti et al. 2019; Chen et al. 2020). Parallel Processing
is the category with the highest average time taken before receiving an accepted answer.

Fig. 4 Duration to receive an accepted answer (hours)
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This can be explained by the fact that using multi-processing or distributed processing in
DRL is not necessarily widespread and also requires particular knowledge and expertise.
The remaining categories need a nearly similar average time frame to receive an accepted
answer, with the general programming issues category having the shortest average duration.
We attribute the shortest average time of the general programming issues category to the fact
that this category contains generic challenges that do not require expertise in DL or DRL.

Although we note a high proportion of outliers in Fig. 4, we have a relatively low median,
first, and third quartiles, for all categories compared to the average. Meaning that, although
the majority of posts received an accepted answer in a relatively short period of time (in
general less than 10 days), a sizable number of posts required a longer time (more than 20
days). Therefore, even within categories, there is quite some discrepancies inside the subcat-
egories (challenges) themselves. As can be seen on Fig. 5(a), SO posts categorized asModel
have a higher average waiting time to receive an accepted answer than the other subcate-
gories of the DL Issues category. Among subcategories under DRL Issues, hyperparameters
includes SO posts with the highest average required time for receiving an accepted answer
(Fig. 5(b)). AboutDRL libraries/frameworks, SO posts belonging to API usage,Dependency
and Installation subcategories require the longest average time before receiving an accepted
answer (Fig. 5(c)). Regarding subcategories within parallel Processing & multi-threading,
it is notable that the average duration required to receive an accepted answer for SO posts

Fig. 5 SO posts’ required time to receive an accepted answer
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classified under multi-processing subcategory exceeds one year. It should be also taken into
account that the small number of SO posts in this subcategory might bias the results, with
respect to the fact that small datamay not represent the distribution of classes in the population
adequately (Bruer et al. 2015).

Although our methodology to measure the difficulty level of addressing challenges aligns
with prior studies analyzing SO posts (Alshangiti et al. 2019; Decan et al. 2019), it is worth
noting that some studies have utilized the number of posts within each category as a metric to
illustrate the difficulty associated with addressing the related challenges (Bangash et al. 2019;
Hamidi et al. 2021). In the case of considering the number of posts as an indicator of the diffi-
culty level for tackling challenges (the numbermentioned alongwith each category in Fig. 2),
the results would closely mirror the difficulty levels observed for the challenges categorized
asDL issues and parallel processing categories depicted in Fig. 5. For instance, design prob-
lem is the secondmost difficult challenge in theDRL issues category whenwe use ‘number of
posts’ or ‘duration to receive an accepted answer’ to measure the difficulty level. Conversely,
the difficulty levels for challenges falling under DRL issues and DRL libraries/frameworks
differ by using these two metrics. For example, as illustrated in Fig. 5(b), hyperparameters
emerges as the most challenging subcategory within the DRL issues category, even though
comprehension has the highest number of posts. This discrepancy may be attributed to the
nature of inquiring about hyperparameters, which may necessitate various implementations
and a longer time to respond compared to other challenges. Furthermore, addressing SO posts
categorized as comprehension mainly seeks users’ background knowledge, which does not
necessarily require practical implementation or application execution.

Finding 2: The proportion of SO posts containing questions related to DRL applica-
tion development increased significantly during the period (2016 - 2021), reaching
a peak between 2019 and 2020. In terms of average time before the reception of an
accepted answer, Parallel processing is the category that required the longest period
of time, in comparison to the other categories. Overall, we observe a high variance in
the time to answer of the posts from the different categories of challenges identified
in our taxonomy, suggesting that their impact on the development process of DRL
applications is not equal.

RQ2: How are the identified challenges perceived by DRL practitioners?

We cross-check the taxonomy generated based on SO posts using a validation survey. 65ML
practitioners participated in our survey to assess our identified challenges, including 55%
researchers (Master’s and Ph.D. students, research assistants, and professors), 27% ML/SE
engineers, 11%developers, and 7%data scientists. Among our respondents, 86%have at least
1 year ofDRLdevelopment experience and 46%havemore than 3 years of experience. Table 4
summarizes the responses of participants for each DRL development challenge contained in
the taxonomy. For each challenge, we provide the percentage of developers who reported
having experienced that challenge (based on the answers to the ‘yes’ or ‘no’ question).
Besides, we asked the participants about the severity of each challenge and the effort required
to address them.Results show that all challenges presented in our taxonomywere encountered
by the survey respondents. Moreover, no additional challenges were proposed by the survey
participants through the open-text questions. This indicates that our provided taxonomy is
representative of challenges faced by developers during the DRL application development.
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It is worth noting that the survey questions incorporate the challenges depicted in the third
level of the taxonomy (Fig. 2), ensuring the survey’s conciseness.

According to the survey results, the majority of our respondents have been confronted
with challenges classified as DRL issues (68.9% average over all subcategories in this cat-
egory). This observation is aligned with the proportion of SO posts categorized as DRL
issues (see Fig. 2). Conversely, challenges belong to Parallel Processing & Multi-threading
category have been experienced the least with only 45.25% of respondents (which is the low-
est proportion among all categories) reporting having faced challenges leveraging parallel
processing. This finding is reflected by the results of our quantitative analysis of SO posts,
which show that only 1.5% of posts contained questions related to the Parallel Processing
&Multi-threading category. It should be also taken into consideration that previous research
showed that there is a growing trend toward the number of studies on DRL (Panzer and Ben-
der 2022; Kiran et al. 2021). Among the challenges identified in our taxonomy, developers
who participated in our survey specify reward (86%), environment (83%), hyperparameters
(80%), and design problem (75%) as the most common challenges in DRL development.
Although only 14.8% of SO posts contained questions about API usage, 38% of survey
respondents identified it as a challenging issue in DRL development. Given that reward,
environment, hyperparameters, and design problem are fundamental components of an RL
application (Lorenz 2022), it is expected that survey participants reported them as the most
encountered challenges. For instance, defining the environment is known as a crucial step in
an RL application development process that affects the convergence of an agent’s behavior
significantly (Reda et al. 2020).

This however contrasts with the number of SO posts identified as DRL environment (i.e.,
1.6% of SO posts). We also note that comprehension, the most frequent challenge in terms
of the number of SO posts in our taxonomy (28.6% of SO posts), has been reported by
52% of survey participants as a non-challenging issue. The explanation for this variance lies
in the experience level of the survey respondents. Indeed, it is indicated that 84% of the
survey participants have at least 1 year of experience in DRL development In other words,
experienced practitioners are less likely to seek help for understanding the fundamental DRL
concepts because they have already mastered these basics. Moreover, it can be interpreted
as the fact that the most challenging steps in the development of DRL applications for DRL
practitioners are related to providing an optimized solution for variousDRL-related problems,
not just addressing a DRL-related problem. Therefore, to fulfill the specific requirements of
various DRL developers with different experience levels, it is important to acknowledge
that DRL developers have unique needs at different stages of the DRL development journey.
Moreover, it should be taken into consideration that the survey was conducted in 2023; nearly
a decade after DRL started to become mainstream (Mnih et al. 2015; Li 2017).

To enhance the completeness of our provided taxonomy, we scrutinize 254 sampled com-
mits and issues extracted from real-world DRL-related repositories (Section 2.3). Upon
thorough examination of the sampled commits, we did not identify any instances of chal-
lenges being mentioned in relation to the DRL. Furthermore, an analysis of sampled closed
issues revealed a consistent pattern wherein users primarily seek support on the utilization
of DRL applications offered by the repositories.

According to our 13-year analysis of the distribution of DRL-related SO posts, there
has been a drop in the number of SO posts categorized as DRL issues after its peak in
2019 (Fig. 3(a) and (b)). This phenomenon may be attributed to various factors. Initially,
it suggests a potential progression in the mastery of fundamental DRL concepts among
developers over these years leading to a reduction in challenges encountered and thereby
a decrease in the number of DRL-related posts on SO. This can stem from the fact that
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the growth of DRL popularity in the community results in increased accessibility of DRL
tutorial resources including books, tutorials, videos, and papers. These resources aid DRL
developers in enhancing their understanding of foundational DRL concepts. Besides, these
resources mostly address various DRL problems, including repositories of practical DRL
examples that facilitate comprehension of DRL concepts. Moreover, as time has passed, the
accumulation of SO posts regarding DRL development has delivered a rich source of DRL
development challenges. As a result, many DRL developers can potentially find answers
to their questions among the existing SO posts. It should be also taken into consideration
that previous research showed that there is a growing trend toward the number of studies on
DRL (Rao and Frtunikj 2018; Li 2017), so the drop in DRL-related SO posts does not imply
a drop in the popularity of research on this topic.

Finding 3: Survey respondents encountered all the challenges included in our tax-
onomy. They identified reward, design problem, environment, and hyperparameters
as the most common challenges in the development of DRL applications. However,
this observation highlights a notable contrast with the findings from the analysis of
SO posts, wherein comprehensionwith 28.6% of SO posts is the most frequent chal-
lenge. The variability observed can be attributed to the fact that DRL practitioners
mostly face challenges when they are trying to provide solutions for different DRL
problems.

We also ask survey respondents about the severity and needed effort to address the chal-
lenges identified in the provided taxonomy (Table 4). In general, the majority (exceeding
57%) of the survey respondents indicated that the most frequent challenges from their view-
point (i.e.,Reward,Environment,Design problem andHyperparameters) aremajor or critical.
Moreover, at least 63% of the survey participants considered the level of effort required to
address these challenges, to be “Medium" or “High". The majority (more than 52%) of the
survey participants consider the other identified challenges to be ofMinor severity level, and
to require a Low level of effort. In general, the participants consider that Installation and API
usage challenges require a low level of effort, which might signal that DRL libraries/frame-
works have good documentation and usability in general (Mojica-Hanke et al. 2023).

We compared the time-to-answer of the posts (from different challenges categories) with
the effort reported by our survey participants for the different challenges categories and made
the following observations:

– Hyperparameters, and design problems are the subcategories of DRL issues that took
longer time before receiving an accepted answer. Survey respondents also reported them
as severe and requiring a high effort from ML developers.

– The average time required to receive an accepted answer for State/observation and
comprehensionSOquestions are comparable (even though someSOpostswithin compre-
hension subcategory took a bit longer to receive an accepted answer than posts belonging
to State/observation). The survey participants also assessed these two subcategories of
challenges (i.e., comprehension and State/observation) as easy to resolve in general.

– API usage and Dependency challenges are the groups of challenges that took the longest
time before their questions received an answer. This result is in contrast with the survey
participants’ estimation of the effort required to fix them.

The severity and required effort reported by the survey participants for each challenge are
strongly correlated (using kendall’s tau (Gibbons 1993)) in a positive direction (Frost 2019)
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Table 4 Result of the survey of DRL practitioners

Challenges Response Severity Required effort
Yes No Minor Major Critical Low Medium High

DRL Issues Comprehension 48% 52% 69% 23% 8% 60% 23% 17%

Reward 86% 14% 32% 37% 31% 28% 28% 44%

Action 49% 51% 74% 11% 15% 66% 20% 14%

Environment 83% 17% 32% 34% 34% 31% 29% 40%

Hyperparameters 80% 20% 43% 32% 25% 37% 26% 37%

Design problem 75% 25% 38% 37% 25% 34% 31% 35%

Policy 62% 38% 54% 37% 9% 54% 32% 14%

State/Observation 68% 32% 52% 32% 16% 49% 37% 14%

DRL libraries/ Installation 43% 57% 85% 12% 3% 78% 15% 7%

frameworks Dependency 54% 46% 78% 14% 8% 77% 18% 5%

API usage 38% 62% 86% 9% 5% 78% 14% 8%

Documentation 51% 49% 69% 23% 8% 71% 20% 9%

Bugs inside framework 48% 52% 75% 14% 11% 70% 15% 15%

Best fitted library 51% 49% 70% 25% 5% 65% 25% 10%

Parallel GPU usage 54% 46% 72% 20% 8% 69% 20% 11%

processing Multi-threading 45% 55% 68% 24% 8% 65% 18% 17%

Multi-processing 49% 51% 57% 31% 12% 51% 23% 26%

Distributed systems 43% 57% 58% 28% 14% 55% 14% 31%

DL Model 48% 52% 71% 23% 6% 66% 26% 8%

Issues Data prepossessing 48% 52% 57% 25% 18% 63% 25% 12%

DL framework 46% 54% 66% 25% 9% 64% 27% 9%

Highlighted cells indicate values that are important for the analysis and need additional attention

and statistically significant (P − value < 0.05). Hence, more severe challenges necessitate
more effort from developers.

Finding4:Survey respondents highlightedReward,Environment,Hyperparameters,
and Design problem as the most severe and intricate-to-address challenges in DRL
development.

RQ3: Are DRL application development challenges language- and/or framework-specific?

We extract information about the programming languages used to develop DRL applications
from the collected SO posts. It should bementioned that the posts have been collectedwithout
any distinction on the programming language and frameworks used. Figure 6 presents the
proportion of posts usingPython programming language for the different identified categories
of challenges.

As can be seen, Python is by far the dominant programming language for all categories of
challenges. However, the proportion of posts mentioning other programming languages and
containing DRL issues is non-negligible (i.e., 20.2%). This high ratio is mostly attributable
to Java (5.2% of all posts), C++ (4.7% of all posts), and R (4.7% of all posts) programming
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Fig. 6 Programming languages mentioned in the posts belong to various categories of challenges

languages. It is also noteworthy that investigating the relationship between used program-
ming languages and the challenges (subcategories) within each category reveals that Python
stands out as the predominant programming language across all DRL development chal-
lenges. Based on these results, we conclude that there is no relationship between DRL
development challenges and used programming languages. This finding is in accordance
with prior research (Morovati et al. 2023; Humbatova et al. 2020) which reported that Python
is the most popular programming language for ML-enabled applications. These results about
programming languages used in DRL applications development are also supported by our
validation surveywhere all participants mentionedPython as the programming language they
use for developingDRL applications. Besides, 20%of participants reportedC/C++, and 12%
mentioned other programming languages in addition to Python (e.g., C# 4%, and Java 3%).

We also examine the mentioned frameworks and libraries in posts related to different
challenge categories. Figure 7(a) shows the number of times that each library/framework has
been mentioned in posts belonging to various subcategories of theDRL issues category. With
an exception for the environment and state/observation subcategories,Keras, Tensorflow, and
PyTorch are the most used libraries/frameworks by SO users, and they are the most popular
libraries/frameworks for developingMLandDL (Morovati et al. 2024).Considering that there
are several libraries/frameworks specifically designed to ease DRL application development
(e.g. KerasRL, RLlib, etc), Fig. 7(a) exposes that SO users usually prefer to use popular ML
libraries/frameworks which can be leveraged to implement DRL applications as a subdomain
ofML. On the other hand, gym (Brockman et al. 2016) is the most popular library/framework
in the environment subcategory which is reasonable as it is the most popular library for
implementing various RL environments and provides a standard benchmark containing a
large number of well-known RL environments (Panerati et al. 2021). This observation can be
related to the inherent nature of SO posts, which may not necessarily provide details about
the libraries/frameworks employed by the user posting questions. It is noteworthy that 46%
of 885 examined SO posts lack any reference to the used DRL-related libraries/frameworks.
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Fig. 7 Common libraries/frameworks used for developing DRL applications

As an example, post #56312962 serves as an illustrative case where no information has been
mentioned regarding the utilized libraries-frameworks to implement the DRL application.

Figure 7(b) presents the libraries/frameworks mentioned in the posts classified as
DL issues. Results show that TensorFlow, Keras, and PyTorch are the most popular
libraries/frameworks in the DL framework and model subcategories. Given that the chal-
lenges within the DL issues category pertain to the DL parts of DRL applications, it is
not surprising to see TensorFlow, Keras, and PyTorch are frequently mentioned since they
are the most used libraries in the development of DL-enabled applications (Morovati et al.
2023; Humbatova et al. 2020). Moreover, the generality of Ray in the Data preprocessing
subcategory, compared to other libraries/frameworks can be attributed to the fact that Ray
encompasses not only DRL-related libraries (e.g., RLlib (Liang et al. 2018)) but also various
other libraries for a wide range of ML-related tasks at the same time, including scalable
datasets, model training, and hyperparameter tuning (Pumperla et al. 2023) which may ease
developing DRL applications.

About the most frequently referenced libraries/frameworks in the DRL libraries/frame-
works category, as illustrated in Fig. 7(c), gym received the largest number of questions,
especially on the topics of API usage, installation, and dependency challenges. Although
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gym is the most popular library for implementing RL/DRL environments (Panerati et al.
2021), comparing Fig. 7(a) and (b) may indicate that gym has less matured documentation
and tutorials, in comparison to Keras, Tensorflow, and PyTorch. It is also worth mentioning
that Keras, Tensorflow, and PyTorch are general-purpose ML-related libraries/frameworks
which are more developed, compared to gym which is implemented specifically for RL
development (Brockman et al. 2016).

Regarding parallelization and multi-threading, as can be seen in Fig. 7(d), the majority
of issues are reported against TensorFlow, particularly regardingGPU usage and distributed
processing. It can be related to the fact that Tensorflow is considered the most popular ML
framework (Openja et al. 2022). On the other hand, most of the multi-processing challenges
relate to the ray framework, which could be attributed to the fact that ray supports multipro-
cessing and RL at the same time (Moritz et al. 2018).

The respondents of our survey corroborated these findings; with 86% of them reporting
PyTorch as their preferred framework, followed by TensorFlow (50%), and Keras (39%).
Some participants also mentioned KerasRL (6%) and JAX (6%). We note that PyTorch was
cited more than Tensorflow and Keras by participants of our validation survey compared
to SO posts. This can be explained by the fact that SO posts do not necessarily include
information about the frameworks used by users asking questions. It is also worthmentioning
that we collected SO posts over a period of 13 years (from 2009 to 2022), while PyTorchwas
introduced only in 2016 (in comparison to Tensorflow and Keras released in 2015).

Finding 5: Python is by far the dominant programming language used for DRL
development. While TensorFlow, Keras, and PyTorch are frequently mentioned in
posts reporting challenges faced by DRL developers, gym is the most challenging
libraries to install (see installation, and dependency challenges) and use (see API
usage challenges). Our results also show that ray is the most challenging library
when dealing with multi-processing and data preprocessing operations.

4 Discussion

Based on the findings of our study, in this section, we discuss the state of DRL application
development and highlight some research avenues for researchers and practitioners.

Through this study, we gained a thorough understanding of frequently asked questions
regarding DRL development to enable the community to explore potential approaches for
mitigating these challenges, minimizing errors, and enhancing the reliability of DRL appli-
cations. Based on our provided taxonomy, one can see that some challenges faced in the
development of DRL applications are common to all types of DL applications. For example,
managing dependencies when using DL libraries/frameworks is a prevalent challenge in DL
applications. However, dependency management can be more complex in DRL, because of
the need for synchronization among a larger number of libraries in the development of DRL
applications (e.g., aligning the Python version with the DRL libraries/frameworks and the
library that manages RL environment). Similarly to what was suggested by Huang et al.
(2022) to tackle dependency management challenges in DL applications, DRL researchers
can provide a dependency knowledge graph for DRL libraries/frameworks to mitigate this
challenge.

123



_####_ Page 24 of 33 Empirical Software Engineering (2024) 29 _#####################_

Regarding the provided taxonomy, it is worth mentioning that all of the categories and
subcategories of challenges directly relate to the DRL application development. However,
some of the challenges may be observed in other ML-related applications. For instance, all of
the challenges belonging to DRL libraries/frameworks (e.g. API usage, Installation, Depen-
dency, etc.) have been faced by all developers who use ML/DL libraries/frameworks. But
it should be also taken into consideration that all of the investigated SO posts in this study
have been achieved after a comprehensive filtering process making sure all of the extracted
SO posts are about challenges in DRL application development. On the other hand, Reward,
Environment, Action, State/Observation, and Policy challenges are Specific to DRL appli-
cations. It should be also taken into consideration that what makes this taxonomy valuable
in the DRL community is the fact that their frequency, importance, and severity would be
different in DRL application development compared to other ML-related applications. For
example, 14.8% of challenges in DRL application development are related to API usage,
whereas it is only 5.3% in DL-related applications (Humbatova et al. 2020).

Finding 2 revealed that 27.3% of DRL development challenges categorized as compre-
hension are related to the lack of sound understanding of basic DRL concepts. In other words,
58.4% of posts belonging to DRL issues category (DRL-specific category) are about com-
prehension challenge. This finding highlights the need for documentation and tutorials to
help DRL developers who are not experts in DRL, in the development of DRL applications.
A roadmap for the development of DRL applications would also help developers navigate
through the implementation of DRL applications with fewer misunderstandings of DRL
concepts. The need for such material is emphasized by a post4 asking questions about the
difference between RL and DRL. By providing a roadmap that systematically expands DRL
developers’ understanding, developers will be supported in overcoming the most common
challenge in DRL application development. An illustration of such guidance is the work con-
ducted by Garg et al. (2019) on creating a roadmap for DL development. The need for good
documentation and guidance is also emphasized by the survey participants who mentioned
that ‘although there are a number of tutorials to start working on DRL, a few issues are
shared between many of them’. The participants also noted that many of the DRL tutorial
documents cover only a specific domain ofDRL. Participants also lamented the poor usability
of DRL-related tutorials, claiming that they often contain a lot of unnecessary materials.

Leveraging our Findings 1 and 2, researchers can develop debugging tools to help devel-
opers identify the issues early on during DRL application development. Debugging tools can
significantly reduce DRL development and maintenance costs. For instance, considering the
limited documentation available for most of the DRL libraries/frameworks in comparison
with DL libraries for example (e.g., TensorFlow), a helpful approach would be proposing
techniques and tools to assist DRL developers when using different DRL APIs. This could
help mitigate DRL API issues. An example of such techniques focusing on the challenges
of software API usage, is the work by Xie et al. (2022) which proposes an approach to
automatically extract the API parameter constraints of DL libraries/frameworks.

Finding 2 of this study regarding challenges associated with installation and dependency
management of DRL libraries/frameworks is aligned with previous studies on dependency
management in software development (Cao et al. 2022) in general, as well as in DL applica-
tions (Han et al. 2020). Considering the complex nature ofDRL application development (due
to the communication of several libraries), challenges regarding libraries/frameworks instal-
lation and their dependency management become more intricate, compared to other types
of DL applications. This highlights the need for tools (e.g., package manager) to support

4 https://stackoverflow.com/questions/37973108
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dependency management. As an example, researchers can provide a tool (such as Maven5

for Java) that automates the identification and installation of DRL libraries/frameworks that
are best suited for a specific Operating System (OS) and a specific version of Python. Addi-
tionally, such tools can assist DRL developers in synchronizing the installed DRL-related
libraries/frameworks when they need to update some of them.

Our results in Finding 2 also stress the need for supporting tools and documentation,
for parallel and distributed DRL application developments. Questions related to this topic
took a long time before receiving an accepted answer on Stack Overflow. DRL experts could
consider developing pre-configured packages to support parallel/distributed DRL application
developments. As an example of the same task in the ML-related development, Openja
et al. (2022) examined ML application deployment practices on Docker and reported that a
significant number of ML developers use Docker to manage dependencies, environment, and
the execution of ML applications.

5 RelatedWorks

We now report and discuss the related literature.

5.1 SO Posts Analysis

Beyer et al. (2020) investigated the automatic classification of SO posts. They manually
labeled 1000 posts, and identified 7 categories of questions: 1) API changes, 2) API usage, 3)
Conceptual, 4) Discrepancy, 5) Learning, 6) Errors, and 7) Review. Leveraging the labeled
dataset, they developed two approaches for the automatic classification of SO posts. In the
first approach, they used the labeled dataset to extract some regular expression patterns and
used these patterns to predict the category of other posts; achieving a performance of 0.91 for
both precision and recall. In the second approach, they trained Random Forest and Support
Vector Machine (SVM) classifiers using the labeled dataset. The best results were obtained
using the Random Forest classifier, i.e., a precision of 0.88 and a recall of 0.87.

Alshangiti et al. (2019) investigated SO posts related to ML development. They used
a tag-based snowball sampling approach to extract SO posts related to ML, starting with
the ‘machine-learning’ tag. Their results revealed that a higher number of ML-related posts
remain without any accepted answer (61%), in comparison with general domain questions
(48%). They also reported that ML-related questions need 10 times longer to receive an
answer, compared to general domain questions. Next, they compared the ratio of expert users
inML and web development (the most popular domain of programming in SO), showing that
the number of ML experts is significantly less than that in web development. Afterward, they
reviewed themost challengingML development phases revealing that data preprocessing and
manipulation, and model deployment and environment setup are the two most error-prone
phases.

Bangash et al. (2019) conducted an empirical study of SO posts related to ML. They used
the ‘machine_learning’ tag to extract 28,010 posts published between 2008 and 2018. Next,
they used Latent Dirichlet allocation (LDA) (Jelodar et al. 2019) to categorize the extracted
posts into 44 detailed topics. Then, they showed that code errors, Algorithms, and Labeling
are the most discussed topics in ML. They then combined the 44 topics identified using LDA
into 4main groups including frameworks, implementation, sub-domain (RE), and algorithms.

5 https://maven.apache.org/
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They reported that nearly 51%of allML-relatedSOposts belong to the implementation group.
Afterward, two of the researchers manually examined 230 sampled posts and reported that
most of the questions stem from the fact that ML novice developers try to use ML in their
software systems. They extracted information about the number of questions with accepted
answers and concluded that ML-related questions are harder to answer than general domain
SO questions. They also observed that only 65.6% of ML-related SO posts have appropriate
tags; whichmight suggest that many users are not knowledgeable enough to assign the proper
ML-related tags to their posts.

Hamidi et al. (2021) examined the challenges that developers may face in the develop-
ment of ML systems, based on their discussion in SO. They studied 43, 950 ML-related SO
posts submitted between 2008 and 2020. First, they showed that Python is the most popular
programming language for ML development, and C# and C/C++ are the least popular pro-
gramming languages forMLdevelopment. Then, they reported thatmodel building andmodel
evaluation are the two most challenging steps in ML development while model monitoring
is the least questioned phase. They also report that questions regarding model requirements,
data collection/processing, and model-building steps receive less accepted answers than oth-
ers. This may stem from the fact that questions about these steps are more difficult to answer
or the lack of active knowledgeable developers on SO to answer questions related to these
steps.

Although these previous works investigated SO questions related to ML/DL application
development, to the best of our knowledge, none of them examined the challenges of DRL
development specifically.

5.2 RL and DRL Quality Assurance

In this section, we report on studies about the quality assurance of RL and DRL applications.
Zhang et al. (2021) proposed strategies to help DL and DRL developers detect and resolve

quality issues in their applications. Nikanjam et al. (2021) proposed a methodology for
automatically detecting faults in DL applications, using graph transformations. development
of DL models. These studies primarily targeted issues occurring in the training program of
DL models. The issues considered in these aforementioned study fall within the ‘DL issues’
category of our provided taxonomy, which constitutes only a small portion of DRL issues.

Nikanjam et al. (2022) also investigated challenges categorized as DRL issues in our pro-
posed taxonomy. They examined questions/discussions about four popular DRL frameworks
(including gym (Brockman et al. 2016), Tensorforce (Kuhnle et al. 2017), Dopamine (Castro
et al. 2018), and Keras-rl (Plappert 2016) on GitHub and SO) and extracted 329 SO posts
about DRL. They categorized these posts into six groups: basic concepts, without acknowl-
edgment, implementation issues, answered by the owner, relative questions, and others. They
reported that ‘without acknowledgment’ and ‘implementation’ questions are the most com-
mon DRL-related questions in SO, accounting for 32% and 27%, respectively. They also
showed that in 2% of their studied SO posts, the answer has been posted by the questioner.
They report that DRL-related SO posts take an average and median time of 2.07 days and
13 hours, respectively, before receiving an accepted answer. This period is longer than the
time taken by DL-related SO posts to receive an accepted answer; which is 5 hours on aver-
age. This finding implies that DRL-related questions might be more difficult to answer than
DL-related questions. Nikanjam et al. (2022) also proposed a taxonomy of faults in DRL
models. with 11 different issue types. Our study differs from what Nikanjam et al. (2022)
carried out in several aspects. Firstly, they concentrated on four specific libraries/frameworks
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designed for DRL development, ignoring other SO posts containing source codes using other
Python-based libraries/frameworks or not mentioning any script. For instance, a number of
SO posts inquire about DRL concepts (e.g. #52838439) without mentioning any scripts, a
scope not covered by Nikanjam et al. (2022). Moreover, their research was just on the DRL
model, whereas our study delves into the challenges developers may face throughout the
development of entire DRL applications, without any limitation to a specific section of DRL
applications. Last but not least, Nikanjam et al. (2022) examined SO posts reporting program
faults during the development of DRL applications. It is imperative to distinguish between
challenges and program faults and note that challenges do not necessarily equate to pro-
gram faults. A fault denotes a defect or error leading to a discrepancy between the expected
and achieved results or observed behavior (Morovati et al. 2023). Software development
challenges, in contrast, encompass any difficulty or complexity encountered in completing
a development task. These challenges may arise from various factors, including technical
complexities, resource constraints, or lack of expertise. Nikanjam et al. (2022) also inves-
tigated challenges categorized as ‘DRL issues’ in our proposed taxonomy. They examined
questions/discussions about four popular DRL frameworks (including gym (Brockman et al.
2016), Tensorforce (Kuhnle et al. 2017), Dopamine (Castro et al. 2018), and Keras-rl (Plap-
pert 2016) on GitHub and SO) and extracted 329 SO posts about DRL. Since Nikanjam et al.
(2022) focused on software faults, they excluded 305 SO posts from their dataset, generating
their taxonomy based on 24 such posts that included faults explicitly. Notably, all SO posts
in their dataset are included in our study. Furthermore, our research incorporates SO posts
that do not pertain to program faults but instead pose queries related to the comprehension of
DRL concepts. For example, the comprehension subcategory includes 253 SO posts, none of
which reports program faults. They categorized these posts into six groups: basic concepts,
without acknowledgment, implementation issues, answered by the owner, relative questions,
and others. They reported that ‘without acknowledgment’ and ‘implementation’ questions
are the most common DRL-related questions in SO, accounting for 32% and 27%, respec-
tively. They also showed that in 2% of their studied SO posts, the answer has been posted by
the questioner. They report that DRL-related SO posts take an average and median time of
2.07 days and 13 hours, respectively, before receiving an accepted answer. This time period is
longer than the time taken by DL-related SO posts to receive an accepted answer; which is 5
hours on average. This finding implies that DRL-related questions might be more difficult to
answer than DL-related questions. Nikanjam et al. (2022) also proposed a taxonomy of faults
in DRL models. The most significant difference between their study and ours is their focus
on the DRL model only and the fact that they only collected data about faults mentioned in
SO; disregarding all the other types of questions.

Yahmed et al. (2023) conducted a study on the challenges of deploying DRL systems,
based on the questions that developers ask on SO. In the first step, they extracted 357 SO posts
related to the deployment of DRL systems. Next, they categorized collected SO posts into 4
categories with respect to their deployment platform, including ‘server/cloud’, ‘mobile/em-
bedded system’, ‘browser’, and ‘game engine’. Their results showed that the number of
SO posts regarding deployment has grown over the 7 studied years. They manually exam-
ined the extracted SO posts and identified 31 challenges related to DRL deployment. They
grouped these challenges into 11 categories (and proposed a taxonomy): general questions,
deployment infrastructure, data preprocessing, RL environment, communication, agent load-
/save, performance, environment rendering, agent export, request handling, and continuous
learning. The proposed taxonomy has been evaluated via a survey with practitioners. Their
results show that DRL developers struggle the most with deployment infrastructures and RL
environments. Their results also show that communication-related challenges (procedure,
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connection loss, configuration of remote setting, and model convergence) are the most diffi-
cult challenges to address, in terms of the time to an accepted answer. The main difference
between the work of Yahmed et al. and our study is the focus of the study. Yahmed et al.
examined DRL deployment challenges while we examined challenges faced by DRL devel-
opers during the application development phase, i.e., prior to deployment. In other words,
they ignored all DRL development steps before deployment and focused only on the deploy-
ment phase of the DRL applications, which occurs after complete implementation of them.
At the opposite extreme, we investigated the SO posts regarding the whole pipeline of DRL
applications development. Besides, comparing the number of studied SO posts in these two
studies (357 vs 927 SO posts) demonstrates that Yahmed et al filtered out the whole dataset
of SO posts on DRL development to achieve posts specifically talking about the deployment
step of the DRL application.

6 Threats to Validity

We now discuss threats to the validity of our study.
Construction Validity. Our methodology and labeling process can be a potential validity
threat. We have thoroughly described our process and the tags used to collect the posts.
As no previous taxonomy on this subject exists, we used an open coding approach with
multiple rounds and cross-checking to ensure continuous improvement and consistency of
the labeling. We further validate our results via a survey with 65 DRL practitioners.

Internal Validity. As users do not necessarily provide suitable tags for their questions, our
search might have missed some DRL challenges. For example, post 37973108 is related to
DRL, but it does not have any specific tag mentioning DRL. Nonetheless, tag usage was
necessary for a consistent methodology and we believe that the number of posts gathered and
analyzed (927) is sizable enough to provide a good representation of the challenges faced
by DRL developers. Moreover, we used a snowballing approach to expand our basic set of
DRL-related tags used to extract DRL-related SO posts, similar to previous studies (Ayman
et al. 2019). In addition to extracting posts based on the DRL-related tags, we used a set of
keywords to extract DRL-related SO posts without anyDRL-related tags to address this issue,
as other researchers followed a similar methodology (Peruma et al. 2022). Another source
of threat to the validity of this study arises from the potential overlap between users posing
questions in SOposts and the developers associatedwith theDRL-relatedGitHub repositories
that are used for our survey. To address this concern, we provided a detailed description for
each category and subcategory of the taxonomy within the survey, intentionally avoiding
any specific information references to any SO post as an example of challenges. Despite
these precautions, the prospect of overlap between these two groups of DRL developers
remains a possibility. Although utilizing the duration to receive an accepted answer has
been employed in several studies (Alshangiti et al. 2019; Decan et al. 2019) as a metric
to gauge the difficulty level of SO posts, it may present a potential threat to the internal
validity of this research. Reproducibility of issues in ML-enabled systems poses significant
challenges and sometimes needs more time compared to traditional software systems (Shah
et al. 2024). In other words, addressing certain questions in ML-enabled systems (such as
those related to parallel processing) requires specific configurations or environments, so the
question may be quite simple, but it requires a long time to receive an accepted answer. To
address this concern, we also considered the number of posts, which has been used as an
indicator to measure the difficulty level of SO posts in a few studies (Bangash et al. 2019;
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Hamidi et al. 2021). However, as discussed in Section 4, this metric yielded similar results
to the methodology we employed (i.e., the time to receive an accepted answer).

External Validity. While there might exist other DRL challenges that practitioners are
facing, we conducted our study using SO which is the largest technical Q&A platform in the
software development community. Moreover, all the challenges identified in our provided
taxonomy have been validated by our survey participants. Also, respondents of the survey
did not report any other challenge that is not included in our provided taxonomy; which is a
good result, with respect to completeness. Another external factor that could pose a threat to
the validity of our results is the possibility that users who raised SO posts maymostly fall into
the category of less experienced users. To mitigate this concern, we examined the top 100
DRL-related GitHub repositories to extract the challenges that GitHub developers mention in
their development process. However, it appears that experienced developers generally refrain
from detailing their challenges in GitHub commit messages or issues. It is noteworthy that
our provided taxonomy may represent high-level categories of challenges, covering almost
all aspects of DRL application development. Therefore, refining the taxonomy to offer more
detailed categorization could be explored as a potential avenue for future research in this
study.

Reliability Validity. We described our methodology in detail and provided a replication
package (Morovati et al. 2023) to allow others to replicate our results and expand our study.

7 Conclusion and FutureWorks

In this study, we conducted a large-scale empirical study of 927 DRL-related posts extracted
fromSO.We examined all postsmanually to identify the challenges that developers facewhen
developing DRL applications. We found that Python is by far the most popular programming
language and TensorFlow, Keras, PyTorch, and OpenAI Gym are the most frequently used
libraries/frameworks for developing DRL applications. We categorized DRL development
challenges into five groups including DRL issues, parallel processing & multi-threading,
DRL libraries/frameworks,DL issues, and general programming. An analysis of the received
response by the investigated SO posts shows that DRL comprehension, DRL libraries/frame-
works API usage, and designing a problem using DRL algorithms are the most challenging
parts of DRL applications’ development. Furthermore, parallel processing/multi-threading
and DRL libraries/frameworks challenges required a longer time to receive an accepted
answer. We proposed a taxonomy of challenges and validated it using a survey of 65 DRL
developers. The developers confirmed the frequency, severity, and required effort to address
identified challenges. We hope that the reported results in this paper will stimulate the devel-
opment of DRL quality assurance tools and guide the research community toward solving
the identified challenges.
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