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Abstract
Context Exception handling (EH) bugs stem from incorrect usage of exception handling
mechanisms (EHMs) and often incur severe consequences (e.g., system downtime, data loss,
and security risk). Tracking EH bugs is particularly relevant for contemporary systems (e.g.,
cloud- and AI-based systems), in which the software’s sophisticated logic is an additional
threat to the correct use of the EHM. On top of that, bug reporters seldom can tag EH bugs—
since it may require an encompassing knowledge of the software’s EH strategy. Surprisingly,
to the best of our knowledge, there is no automated procedure to identify EH bugs from report
descriptions.
Objective First, we aim to evaluate the extent to which Natural Language Processing (NLP)
and Machine Learning (ML) can be used to reliably label EH bugs using the text fields from
bug reports (e.g., summary, description, and comments). Second, we aim to provide a reliably
labeled dataset that the community can use in future endeavors. Overall, we expect our work
to raise the community’s awareness regarding the importance of EH bugs.
Method We manually analyzed 4,516 bug reports from the four main components of
Apache’s Hadoop project, out of which we labeled ≈ 20% (943) as EH bugs. We also
labeled 2,584 non-EH bugs analyzing their bug-fixing code and creating a dataset composed
of 7,100 bug reports. Then, we usedword embedding techniques (Bag-of-Words andTF-IDF)
to summarize the textual fields of bug reports. Subsequently, we used these embeddings to fit
five classes ofMLmethods and evaluate them on unseen data.We also evaluated a pre-trained
transformer-based model using the complete textual fields. We have also evaluated whether
considering only EH keywords is enough to achieve high predictive performance.
Results Our results show that using a pre-trained DistilBERT with a linear layer trained with
our proposed dataset can reasonably label EHbugs, achievingROC-AUC scores of up to 0.88.
The combination of NLP and ML traditional techniques achieved ROC-AUC scores of up to
0.74 and recall up to 0.56. As a sanity check, we also evaluate methods using embeddings
extracted solely from keywords. Considering ROC-AUC as the primary concern, for the
majority of ML methods tested, the analysis suggests that keywords alone are not sufficient
to characterize reports of EH bugs, although this can change based on other metrics (such as
recall and precision) or ML methods (e.g., Random Forest).
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Conclusions To the best of our knowledge, this is the first study addressing the problem
of automatic labeling of EH bugs. Based on our results, we can conclude that the use of
ML techniques, specially transformer-base models, sounds promising to automate the task
of labeling EH bugs. Overall, we hope (i) that our work will contribute towards raising
awareness around EH bugs; and (ii) that our (publicly available) dataset will serve as a
benchmarking dataset, paving the way for follow-up works. Additionally, our findings can
be used to build tools that help maintainers flesh out EH bugs during the triage process.

Keywords Exception handling bug · Automatic bug labeling · Machine learning · and
Natural language processing

1 Introduction

Exception handling (EH) is a forward error-recovery technique that allows us to anticipate
abnormal situations. When a system reaches these abnormal states during runtime, it trig-
gers a series of pre-defined recovery actions. Besides improving robustness (Shahrokni and
Feldt 2013), EH enables the separation of error-handling code from regular code, enhancing
software comprehensibility and maintainability (Chen et al. 2009; Cacho et al. 2014a, b).
However, the way EH features are implemented in mainstream program languages (e.g., C#,
Java, and Python) leads developers to create multiple control flows, making the software
harder to debug (Robillard and Murphy 2003; Chang and Choi 2016) and posing new chal-
lenges to software testing (Sinha and Harrold 2000; Zhang and Elbaum 2014; Dalton et al.
2020; Marcilio and Furia 2021; Lima et al. 2021).

Despite the importance of EH, several studies report that EH is often poorly understood,
usually neglected, and insufficiently tested by developers (mostly by novice ones) (Shah
et al. 2010; Kechagia and Spinellis 2014; Zhang and Elbaum 2014; Asaduzzaman et al.
2016; Goffi et al. 2016; Chang and Choi 2016; Filho et al. 2017). The combination of these
factors creates a fertile ground for defects caused by the incorrect use of the EH mechanism
(EHM), baptized “exception handling bugs” by Ebert et al. (2015). While EH was always
a complex subject, Chen et al. (2019a) recently argued that the vast space of potential error
conditions and the sophisticated logic of modern systems (e.g., cloud-based, microservice-
based, and big data-oriented) makes using EHMs correctly even harder, leaving modern
software systems especially prone to EH bugs. In these complex systems, EH bugs may
lead to dire consequences, such as system downtime, data loss, and security risk (Zhang
et al. 2021). Given these potential risks, EH bugs must be quickly triaged (i.e., identified,
prioritized, and assigned) and fixed.

The bug triage process is typically done by reading each bug report to better understand its
nature (e.g., source, kind, and severity), prioritizing and assigning it to a maintainer who best
fits (Catolino et al. 2019). However, as the bug report backlog increases, the triage process
becomes a time and resource-consuming task as well (Picus and Serban 2022; Köksal and
Öztürk 2022). A straightforward solution to improve this process consists of enriching the
bug report (before the triage starts) with informative labels to best characterize each reported
bug. Nevertheless, this labeling task mostly relies on the bug reporter’s knowledge, time, and
convenience which may lead to reliability information issues, calling for automatization.

Previous works on EH bugs have explored the relationship between EH and post-release
defects by identifying, classifying, and quantifying the source of EH bugs (Barbosa et al.
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2014; Ebert et al. 2015; Coelho et al. 2017; de Pádua and Shang 2017; Ebert et al. 2020;
de Sousa et al. 2020) and investigating the existence of statistical relationships between
them (Marinescu 2011; Sawadpong et al. 2012; Marinescu 2013; Sawadpong and Allen
2016; de Pádua and Shang 2018). These studies provide empirical evidence that discloses a
substandard in EH implementation practices and how this phenomenon can impact several
quality attributes (e.g., maintainability, reliability, and robustness) (Melo et al. 2019). On
a different note, several studies focus on leveraging Machine Learning (ML) and Natural
Language Processing (NLP) techniques to help in bug triage by performing automatic issue
type classification (if bug or not) (Pandey et al. 2017; Chawla and Singh 2015; Aung et al.
2022), labeling the kind of bug (e.g., security and permission) (Chawla and Singh 2014;
Peters et al. 2019; Catolino et al. 2019; Elzanaty et al. 2021), assigning bug severity (Gomes
et al. 2019; Picus and Serban 2022), estimating priority (Tian et al. 2015; Uddin et al. 2017),
and suggesting the fixer (Hu et al. 2014; Lee et al. 2017; Chen et al. 2019b; Aung et al. 2022).
Surprisingly, however, there are no works on using ML and NLP to improve the triage of EH
bugs.

In this study, we empirically evaluate the idea of automatically labeling EH bugs using
ML classifiers and NLP techniques to extract features from bug report fields (e.g., summary,
description, and comments). However, the use of such techniques to label EH bug reports
poses challenges due to the lack of previously labeled datasets to build models.

To bridge this gap, we first built a manually labeled dataset from an existing dataset
that contains 10 years of bug-fixing activity from the Apache Hadoop project. Thus, 4,516
bug reports were manually inspected and 943 (about 20%) of them were labeled as EH
bugs. Additionally, we also labeled 2,584 non-EH bugs analyzing their bug-fixing code,
and creating a dataset composed of 7,100 bug reports. Next, we analyzed our dataset to
determine whether the lack of attention given to EH, as reported in previous work, also
occurs in bug-fixing activities. To this end, we compared EH and non-EH bugs concerning
their priorities, fixing time, number of comments in reports, and the number of changed
test files in fix commits. Finally, we perform a controlled experiment combining six ML
classifiers (Support Vector Classifier, Multinomial Naive Bayes, Linear Regression, Random
Forest, AdaBoost Classifier and pre-trained DistilBERT) with two NLP strategies to extract
features from the bug report text (Bag of Words and TF-IDF). We also evaluate if using Bag
of Words and TF-IDF only on keywords related to exception handling extracted from textual
fields could improve the ML models’ performance.

Our results show that using a pre-trained DistilBERT with a classification linear layer
trained with our proposed dataset can reasonably label EH bugs, achieving ROC-AUC scores
of up to 0.88. The combination of NLP and ML traditional techniques achieved ROC-AUC
scores of up to 0.74. Additionally, considering only keywords related to EH and being AUC
the major concern, the ML models’ performance was worst when compared to the ones
that use the full text (DistilBERT) and all keywords in the textual fields. To the best of our
knowledge, this is the first study addressing the task of automatic labeling of EH bugs.

2 Background

2.1 What is an Exception?

The terms failure, error, fault, defect, and bug are frequently referred to in software testing
literature. Although their meanings are related, there are important distinctions between
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these four concepts. The first three terms (failure, error, and fault) are well understood in the
Dependable Computing and Fault Tolerance communities (Avizienis et al. 2004). A failure
occurs when the system’s external behavior does not conform to its specification. An error
is a system’s internal state, which in the absence of a proper system recovery action could
lead to a failure. A fault is the adjudged or hypothesized cause of an error. A fault may
remain dormant for a long period until activated by some event. A defect is a flaw in a
software system that could lead it to behave erroneously or improperly, different from what
is expected. Considering the source of software failure, the terms defect and fault can be
seen as synonymous and interchangeable. The term bug is widely used by the developers’
community to refer to a software defect, thus we adopt this term in this paper.

An exception is an event that models a state in which the normal flow of system execution
cannot continue (Kienzle 2008). In order for the system to continue executing correctly, the
flow of execution must deviate and an additional computation must be employed to deal with
that situation (Knudsen 1987). In reliable systems, an error can be modeled as an exception,
as it rarely happens during system execution (Goodenough 1975; Parnas and Würges 1976).
Exception handling provides a means to structure fault tolerance activities through error
recovery (Garcia et al. 2001). Additionally, exceptions can model other situations (Miller
and Tripathi 1997), such as (i) deviation - the emergence of an invalid state, but which is
allowed by the system; (ii) notification - information to the invoker of the operation that the
state of the system has changed; and (iii) languages - other uses where the occurrence of the
exception is rare rather than abnormal.

2.2 Java Exception Handling

In Java programming language, “an exception is an event, which occurs during the execution
of a program, which disrupts the normal flow of the program’s instructions” (Gallardo et al.
2014). When an error occurs inside a method, an exception is raised. In Java, the raising of an
exception is called throwing. Exceptions are represented as objects following a proper class
hierarchy. Exceptions can be divided into two categories: checked and unchecked exceptions.
Checked exceptions are all exceptions that inherit, directly or indirectly, from Exception
class from java.lang package and represent exceptional conditions that a robust applica-
tion should anticipate and recover from. Unchecked exceptions are those that inherit, directly
or indirectly, from Error or RuntimeException classes (both from java.lang pack-
age) and represent an internal (RuntimeException) or an external (Error) exceptional
conditions that the application usually cannot anticipate or recover from. In Java, the handling
of checked exceptions is mandatory while the handling of unchecked exceptions is not.

When an exception is raised, the execution flow is interrupted and deviated to a spe-
cific point where the exceptional condition is handled. In Java, exceptions can be raised
using the throw statement, signaled using the throws statement, and handled in the
try-catch-finally blocks. The “throw new E()” statement is an example of
throwing the exception E. The “public void m() throws E” is an example of how
throws statement is used in the method declaration to indicate the signaling of exception E.

The try block is used to enclose the method calls that might throw an exception, also
called protected region. If an exception occurswithin thetry block, that exception is handled
by an exception handler associated with it. Handlers are associated with a try block by
putting a catch block after it. A try block can be associated with multiples catch

123



Empirical Software Engineering (2024) 29 _#####################_ Page 5 of 30 _####_

Fig. 1 Summary content of HDFS-13100 bug report

blocks. Each catch block catches a specific exception type and encloses the exception
handler code. The finally block is optional, but if declared always executes when the
try block finishes, even if an exception occurs. Cleanup actions are usually coded within
the finally block.

2.3 Exception Handling Bug

To better understand EH bugs, it is first necessary to precisely definewhen a bug is considered
an EH bug or not. One of the most accepted definitions for EH bugs was given by Ebert
et al. (2015): “An Exception Handling Bug is a bug whose cause is related to exception
handling. EH-bugs can occur when the exception is defined, thrown, propagated, handled,
or documented; in the clean-up action of a protected region where the exception is thrown;
when the exception should have been thrown or handled while it is not thrown or handled”.
In this study, we choose the Ebert et al. (2015) definition of EH bug to support our manual
labeling of reported bugs as EH bug or not.

Identifying an EH bug is not an easy task. It requires inspecting the bug report fields
(summary, description, and comments) to understand the source of a bug and if it complies
with the EH bug definition. To illustrate this process, we present some examples of EH bugs
from the Apache Hadoop project in the next paragraphs.

Sometimes, the information needed to classify the reported bug as an EH bug is easy to
find in the bug report summary itself. It is exactly the case of the bug report HDFS-131001

from Hadoop’s HDFS module (see Fig. 1). In fact, the cause of HDFS-13100 bug is
the incorrect handling of two exceptions: UnsurportedOperationExcetion and
IllegalArgumentException. The fix action addresses the bug by implementing the
following rules: (i) if the required operation is not supported, the
UnsurportedOperationExcetion must be thrown; and (ii) if the given parameter
is not a legal one, the exception IllegalArgumentException must be thrown.

In other cases, it is necessary to go beyond and also inspect the bug report description,
as in the case of MAPREDUCE-61562 bug report of the Hadoop’s MapReduce module
(see Fig. 2). The description of MAPREDUCE-6156 bug gives us the idea that the handler
(catch block) associated with the IOException does not deal properly with the connection
timeout variable. The fix provided by Hadoop’s maintainers addresses exactly this problem.

There are cases in which inspecting only the report summary and description is not enough
to classify the reported bug as an EH bug. In this case, it is necessary to go deeper and
analyze the comments posted by the maintainers and the discussions between them. The
HDFS-15053 bug report of Hadoop’s HDFS module is an example of that (see Fig. 3). It is
possible to infer from the comments that the maintainers reached an understanding that the

1 https://issues.apache.org/jira/browse/HDFS-13100
2 https://issues.apache.org/jira/browse/MAPREDUCE-6156
3 https://issues.apache.org/jira/browse/HDFS-1505
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Fig. 2 Description of MAPREDUCE-6156 bug report

cause of the reported bug is the lack of throwing an exception to characterize the failure to
save in all image directories.

3 The EH-Bug Dataset

Our EH-Bug dataset was derived from an existing Bug-Fixing dataset. In this section, we
first describe the original dataset (Section 3.1) and then we describe the EH-Bug dataset itself
(Section 3.2).

3.1 The Original Dataset

Vieira et al. (2019) proposed a dataset comprising a set of 10-year bug-tracking information
from 55 open-source projects from the Apache ecosystem. We describe in this section the
Vieira et al. (2019) data collection methodology and the description of the dataset itself.

The Vieira et al. (2019) dataset was created using data extracted from the official Jira4 and
Git5 repositories of the Apache Software Foundation (ASF). First, the Jira repository was
mined selecting issues labeled as “Bug” with CLOSED or RESOLVED status and with the
“Fixed” resolution status. The mining process targeted bug reports created and fixed between
2009-01-01 and 2019-01-02. They used Python Jira6 library to automate the mining process.

4 https://issues.apache.org/jira
5 http://gitbox.apache.org
6 https://jira.readthedocs.io/
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Fig. 3 Comments of HDFS-1505 bug report

Second, they used the bug report ID of mined issues from Jira to mine Git repository using
Pydriller7 (Spadini et al. 2018) framework to retrieve the respective fixing commits, resulting
in the first dataset they called snapshot.

Using the list of retrieved issue IDs from Jira, they mined other datasets. The first one was
the change-log dataset, which contains all the changes made in each bug report during
the considered time period. The second set was the comment-log dataset, which contains
all the comments on each bug report posted during the same period of time. The last one
was called commit-log, which contains a dataset with detailed information about fixing
commits.

Finally, Vieira et al. (2019) performed a pre-processing in the text fields (i.e, summary,
description, comments, and commit messages) of each bug report using the NLTK8, a Python
library for Natural Language Processing, to extract and store the 1,000 most frequent words
and their respective frequencies in the dataset.

Overall, Vieira et al. (2019) dataset provides information under two perspectives (static
and dynamic) we explain in the following.
Static Perspective. For each bug report, 53 attributes are available, divided into data points
collected from Jira and from Git. Additionally, the attributes were also classified according
to the nature of the information they represent: general (standard information), text (textual
information), time (time-related information), versioning (system version-related informa-
tion), summation (fields that store counting information), link (bug dependencies), and source
(source code related information). The complete list of static perspective (snapshot)
dataset fields can be found in Table 1.

Dynamic Perspective. The bug reports contain attributes with immutable information such as
the CreationDate and Key (identifier). Other attributes, such as AffectsVersions
and Assignee, may not be required and may change during the lifetime of the report. The
Bug Report is constantly changing and updating until it is resolved. The dynamic dataset
perspective represents those times when the report changes, when new information is added
to the report, or a field changes, such as status or priority change; a new comment is added;
a new employee starts to be responsible for fixing the problem. The dynamic dataset is
composed of three files: (i) changelog: This dataset stores every modification that ever
happened on every Jira report field. The data fields are shown in Table 2 and they were mined

7 https://github.com/ishepard/pydriller
8 https://www.nltk.org/
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Table 1 The snapshot dataset fields, with 53 attributes acquired from Jira and Git

From Type Field

Jira (30) General (10) Project

Owner

Manager

Category

Key

Priority

Status

Reporter

Assignee

Components

Link (2) InwardIssueLinks

OutwardIssueLinks

Summation (4) NoComments

NoWatchers

NoAttachments

NoAttachedPatches

Text (3) SummaryTopWords

DescriptionTopWords

CommentsTopWords

Time (8) CreationDate

ResolutionDate

FirstCommentDate

LastCommentDate

FirstAttachmentDate

LastAttachmentDate

FirstAttachedPatchDate

LastAttachedPatchDate

Versioning (2) AffectsVersions

FixVersions

Git (24) Text (1) CommitsMessagesTopWords

Versioning (1) HasMergeCommit

Summation (3) NoCommits

NoAuthors

NoCommitters

Time (4) AuthorsFirstCommitDate

AuthorsLastCommitDate

CommittersFirstCommitDate

CommittersLastCommitDate

Source (15) NonSrcAddFiles

NonSrcDelFiles

NonSrcModFiles
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Table 1 continued

From Type Field

NonSrcAddLines

NonSrcDelLines

SrcAddFiles

SrcDelFiles

SrcModFiles

SrcAddLines

SrcDelLines

TestAddFiles

TestDelFiles

TestModFiles

TestAddLines

TestDelLines

Table 2 The changelog
dataset fields

Field From Type

Jira (9) General (6) Project

Manager

Category

Key

Author

Field

Time (1) ChangeDate

Text (2) From

To

Table 3 The comment-log
dataset fields

Field From Type

Jira (7) General (5) Project

Manager

Category

Key

Author

Time (1) CommentDate

Text (1) Content
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from Jira; (ii) comment-log: This dataset stores information about each comment related
to its report. These data fields, mined from Jira, are shown in Table 3 and they were mined
from Jira; and (iii) commit-log: A number of bug reports are related to some commit that
fixes that bug. This dataset stores commit information related to each report that has one.
The dataset entries bring detailed information about each file modified by bug-fix commits.
The data fields are shown in Table 4.

3.2 Our Dataset

Our EH-Bug dataset was derived from Vieira et al. (2019) dataset (see Section 3.1) consid-
ering only the Apache Hadoop project. Hadoop is an open-source framework developed by
the Apache Software Foundation for distributed and scalable computing. This distributed
system allows the storage and processing of large datasets across clusters of computers and
is designed to detect and handle faults, providing a highly reliable service (White 2015).
The Hadoop architecture comprises four main components: (i) Core: which provides the
utility package to support other Hadoop modules; (ii) MapReduce: a programming model
for storage and data processing. Its parallel programming comes into its own in large-scale
data analysis; (iii) Distributed Filesystem (HDFS): a distributed filesystem that runs on clus-
ters designed for storing very large files and providing high-throughput access; (iv) YARN
(Yet Another Resource Negotiator): a framework for job scheduling/monitoring and cluster

Table 4 The commit-log
dataset fields

Field From Type

Jira (4) General (4) Project

Manager

Category

Key

Git (18) Versioning (2) CommitHash

IsMergeCommit

General (2) Author

Committer

Time (2) AuthorDate

CommitterDate

Text (1) CommitMessageTopWords

Source (11) FileName

FilePath

ChangeType

IsSrcFile

IsTestFile

AddLines

DelLines

NoMethods

LoC

CyC

NoTokens
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Table 5 Target components of Hadoop project

Category Hadoop component 1st Release #Bugs 1st #Bugs 2nd

Big-data (4) Core 2006 2861 1105

YARN 2012 2090 1017

HDFS 2009 3214 1504

MapReduce 2009 2210 890

resource management. It provides APIs for requesting and working with cluster resources
hiding the resource management details from the user. YARN was introduced to improve the
MapReduce implementation, but its functions allowed other distributed computing projects
and paradigms to be aggregated as well. Table 5 shows the name, year of the first release,
and the number of bugs for each component considering both filtering steps we explain later.

Hadoop (and consequently its components) was chosen because it has a set of well-
documented bug reports. Furthermore, Hadoop is widely used and incorporated in a large
number of companies and their products. Its commercial support is available on a large scale
from companies such as EMC, IBM, Microsoft, and Oracle (White 2015).

The methodology we used to create the EH-Bug dataset is depicted in Fig. 4. In the 1st

filtering, we select from the original snapshot dataset only the records related to the four
components ofHadoop, resulting in a total of 10,375 bug reports.After that,we try to getmore
probably EH bugs by applying a 2nd filtering over the set of the selected bug reports. In this
filtering,we select only reported bugs that in at least one text field (summary, description, com-
ments, and commitsmessage) have anyEH-related keyword.Webuild our set of EHkeywords
based on the Ebert et al. (2015) study, which considers relevant radicals for EH-related key-
words, such as “catches”, “thrown”, and “raises” and believes that these keywords are likely
linked to EH issues. Thus, our final set of EH-related keywords is [“catch”, “caught”, “handl”,
“exception”, “throw”, “rais”, “signal”]. This second filtering results in 4,516 bug reports.

Fig. 4 Dataset creation methodology flow covering all the steps to the final EH-Bug dataset
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All bug reports resulting from the second filtering were manually inspected and classified
into two categories: EH bug and non-EH bug. The classification was based on the text in
summary, description, and comments fields, using the definition presented in Section 2.3.
We also look for exception-handling code updates in the bug-fixing patch (when available
in the bug report) to assert even more our classification. The attribute “Type” was created
in the dataset and assigned 1.0 for the EH bug and 0.0 for the non-EH bug. This manual
labeling was performed by the first author of this study (a senior software engineer with
large experience in software reliability and robustness tests) taking into account information
available in all text fields (summary, description, comments, and commits message) of each
report. As a result, 943 (≈ 20%) were labeled as EH bugs and 3,573 were labeled as non-EH
bugs.

We also perform a 3rd filtering trying to analyze the bug reports that don’t match the
second filtering criteria. In this case, we select only the bug reports that do not have any
EH-related keywords in their text fields (summary, description, comments, and commits
message). We used the commit-log dataset from the original dataset to inspect only bug
reports that have fixing commits linked to them. Therefore, we mine each fixing commit and
automatically parser each .java file changed in the commit and check if the changed parts
affect the EH code, i.e., if the changes take place within a try, catch, or finally block
or contains the throw or throws statements. Note that if a fixing commit affects the EH
code, it is not possible to say that the linked bug is or is not an EH bug. However, if all fixing
commits of a bug do not affect the EH code, it is reasonable to assume that this bug is a
non-EH bug. Thus, our third filtering resulted in a total of 2,584 non-EH bugs. Finally, we
joined both automatically and manually labeled datasets, resulting in a final EH-Bug dataset
with 7,100 bugs.

After the firstmanual classification, we performed an evaluation to assess the classification
reliability (see Fig. 5). With this purpose, we performed a second manual classification and
computed the level of agreement between both sets of labels. The second manual classifica-
tion was performed by two other independent authors of this study on a randomly selected
significantly-sized sample from the bug reports under consideration. The sample size was
computed considering the following statistical constraints: confidence level of 95% and mar-
gin of error of 5%. Considering the population of 4,573 reports and the statistical constraints,
the significant sample size was computed as 355 bug reports. As a final validation step, the
second and third labelers discuss their discordances and reach an agreement, generating the
final labels for the selected sample dataset.

We used Cohen’s Kappa coefficient (Cohen 1960) to measure the level of agreement
between the two labelings (the sample labeled by the first labeler and the sample agreed
between the second and third labelers). The Kappa coefficient can be computed using the
formula: (Pc − Pe)/(1 − Pe). Where Pc is the proportion of units for which the labelers
agreed and Pe is the proportion of units for which agreement is expected by chance. Table 6
provides an interpretation of Cohen’s Kappa coefficient.

Fig. 5 Manual dataset labeling evaluation methodology flow
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Table 6 Cohen’s kappa score
interpretation

Kappa statistic Strength of agreement

<0.00 Poor

[0.00, 0.20] Slight

[0.21, 0.40] Fair

[0.41, 0.60] Moderate

[0.61, 0.80] Substantial

[0.81, 1.00] Almost perfect

In our evaluation, we obtained aCohen’sKappa score of 0.876. Thus, according to Table 6,
Cohen’s Kappa score obtained is classified as almost perfect of agreement, being a result
considered relevant to guarantee the reliability of our dataset.

4 The EH-Bug Dataset Analysis

In this section, we will examine our dataset to assess whether developers approach EH bug-
fixing in the same manner as they approach other bug-fixing tasks regarding priority, fixing
time, discussion, and testing. We first establish the analysis design, with the overall goal,
research questions, and methodology, followed by the results and discussion.

4.1 Goal and Research Questions

As we mentioned early, previous studies have suggested that developers often pay less
attention to exception handling (EH) design and code compared to other design and code
parts (Shah et al. 2010; Kechagia and Spinellis 2014; Zhang and Elbaum 2014; Asaduzzaman
et al. 2016; Goffi et al. 2016; Chang and Choi 2016; Filho et al. 2017). In this analysis, we aim
to investigate whether this phenomenon also occurs during bug-fixing activity in the Hadoop
project. By controlling the EH bug fields of our dataset (priority, bug-fixing time, number of
comments, and number of test files changed) with its non-EH bug fields counterpart, we can
reason how EH bug fixing can differ from the activity to fix other types of bugs. In this anal-
ysis, we group all the bugs not classified in the labeling phase as EH bugs, not distinguishing
them as any specific type of bug. Hence, we asked the following research questions:

RQ1. To what extent are EH bugs prioritized compared to non-EH bugs?
To gain a better understanding of whether EH bugs receive less attention than other types

of bugs, we will compare the extent to which EH bugs are assigned a lower/higher priority
and require more/less time to be resolved compared to non-EH bugs.

RQ2. To what extent are EH bugs discussed compared to non-EH bugs?
We consider the number of comments posted in bug reports as a proxy for developers’

discussions in bug-fixing tasks. Based on that, we compare the extent to which EH bugs have
more/less discussion compared to non-EH bugs.

RQ3. To what extent are EH bugs tested compared to non-EH bugs?
Finally, we use the number of test files modified in the bug-fixing commits as an indicator

of the developers’ level of commitment to testing the fixed code. Then,we use this information
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to compare the extent to which EH bugs fixed are more/less tested compared to non-EH fixed
ones.

To answer the research questions, first, we split the dataset into two groups: EH bugs
and non-EH bugs. For each specific RQ, we apply hypothesis tests to look at the difference
between both groups, considering specific dataset fields. To answer RQ1, we evaluate the
priority and the fixing time (i.e., the time between the creation and resolution of the report);
RQ2, the number of comments; and RQ3, the number of changed test files (i.e., the sum of
deleted, added and modified test files). We use the Mann-Whitney U test, value of α = 0.05,
and also compute the Cohen’s delta effect size for each result. We have formalized both null
and alternative hypotheses for each RQ.

For this analysis, we perform a few data processing steps. First, we transform the priority
fields (originally reported as words, as seen in Table 8) to ordinal variables, from 1 (lower
priority) to 5 (highest priority). We also remove some reports based on two rules: i) reports
resolved in less than 15 minutes after their creation (16 reports); and ii) reports with no
associated commit (817 reports). These filter rules are based on another work (Vieira et al.
2022) that uses the same dataset discussed in Section 3.1. Based on a sample of 300 bug
reports, the authors verify that 80% of the filtered-out bugs fall in one of the cases: duplicated,
already resolved by another report, created with a solution (report to document the bug only,
with no discussion purposes or bug resolution details), discovered later that was not a bug or
reports asking for documentation updates. Finally, we removed some outliers three standard
deviations from the sample mean. Removing outliers based on the sample standard deviation
is a common technique, and we select the outlier factor of three to be very conservative once
values as one or two can significantly reduce the sample size. In this case, only 136 (0.02%)
of the 6283 reports that remained from the previous filters were removed.

4.2 Results

Table 7 shows the hypothesis test results, p-value, and effect size values for each hypothesis
established in the RQs.

4.2.1 RQ1. To what extent are EH bugs prioritized compared to non-EH bugs?

�

�

�

�

Summary of RQ1: The EH bugs are significantly (i) more prioritized with a negligible
effect size and (ii) take more time to be fixed with a small effect size than non-EH bugs.

To answer this question, we have formulated two groups of hypotheses, considering the
priority level and bug-fixing time of EH and non-EH bugs.

The first group of hypotheses contains the null hypothesis (HA
0 ), stating that there is no

difference in priority level between EH bugs and non-EH bugs. The alternative hypotheses,
on the other hand, assume that EH bugs have either a higher (HA

1 ) or a lower (HA
2 ) level of

priority than non-EH bugs.
The second group of hypotheses contains the null hypothesis (HB

0 ) stating that there is no
difference in bug-fixing time between EH bugs and non-EH bugs. The alternative hypotheses,
in this case, assume that EH bugs have either a higher (HB

1 ) or a lower (HB
2 ) bug-fixing time

than non-EH bugs. Table 7 (two first rows) shows the statistical test results for both groups
of hypotheses.

In our dataset, a bug report can receive five different levels of priority (see Table 8):
Trivial, Minor, Major, Critical, and Blocker. Table 9 shows the priority
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Table 7 Summary of hypothesis statement, the statistics test, and the Cohen’s Delta effect size results

MW hypothesis p-value Effect size

HA
0 : EH_PRIORITY = NON_EH_PRIORITY (✗) 2.338 × 10−3 0.0904

HA
1 : EH_PRIORITY > NON_EH_PRIORITY (�) (negligible)

HA
2 : EH_PRIORITY < NON_EH_PRIORITY (✗)

HB
0 : EH_FIXING-TIME = NON_EH_FIXING-TIME (✗) 8.912 × 10−16 0.2213

HB
1 : EH_FIXING-TIME > NON_EH_FIXING-TIME (�) (small)

HB
2 : EH_FIXING-TIME < NON_EH_FIXING-TIME (✗)

HC
0 : EH_COMMENTS = NON_EH_COMMENTS (✗) 6.274 × 10−25 0.3994

HC
1 : EH_COMMENTS > NON_EH_COMMENTS (�) (medium)

HC
2 : EH_COMMENTS < NON_EH_COMMENTS (✗)

HD
0 : EH_TEST = NON_EH_TEST (✗) 3.342 × 10−24 0.2899

HD
1 : EH_TEST > NON_EH_TEST (�) (small)

HD
2 : EH_TEST < NON_EH_TEST (✗)

The symbols � and ✗ indicate the result of the null hypothesis test (� fail to reject, and ✗ reject). The Cohen’s
Delta effect size interpretation: negligible = [0, 0.147), small = [0.147, 0.33), medium = [0.33, 0.474), and
large = [0.474, 1]

Table 8 Bug report priority classification in Jira plataform

Priority Description

Blocker Highest priority. Indicates that this issue takes precedence over all others.

Critical Indicates that this issue is causing a problem and requires urgent attention.

Major Indicates that this issue has a significant impact.

Minor Indicates that this issue has a relatively minor impact.

Trivial Lowest priority.

Table 9 Distribution of EH and
non-EH bugs priority

Priority EH Bugs Non-EH Bugs
Number (%) Number (%)

Blocker 59 07.42 539 09.83

Critical 117 14.70 567 10.34

Major 482 60.56 3106 56.60

Minor 119 14.94 982 17.89

Trivial 19 02.38 293 05.34

Table 10 Descriptive statistics results for EH and non-EH bugs concerning the lag time in bug fixing activities

Bug category Fixing Time (days)
Mean Minimum Maximum Median Std. deviation

EH 58.80 0.03 615.77 14.31 111.16

Non-EH 38.81 0.00 621.70 6.67 86.92

123



_####_ Page 16 of 30 Empirical Software Engineering (2024) 29 _#####################_

distribution of both groups of bugs (EH and non-EH bugs) and also the total and the percentile
of each priority group. Looking at Table 9, one can see that EH bugs have less percentage
of higher priority bugs (7.42%) when compared with non-EH bugs (9.83%). Additionally, it
is possible to see that EH bugs tend to have a lower percentage of lower-priority bugs when
compared with non-EH bugs. This perception is confirmed by the statistical test results that
reject the null hypothesis HA

0 , accepting the alternative hypothesis HA
1 . This indicates that

not only the priority of EH and non-EH bugs are statistically different but also that the EH
bugs are statistically more prioritized than EH bugs but with a negligible effect size. In fact,
the results shows that the average priority of EH bugs is 0.0904 standard deviations higher
than the average priority of non-EH bugs.

Table 10 presents the bug-fixing time descriptive statistics for EH and non-EH bugs, while
Fig. 6 shows the boxplot of bug-fixing time. When comparing the boxplots, it is possible
to see that the interquartile EH bug-fixing time is larger than the non-EH bug-fixing time.
Additionally, themean andmedian of EH bugs in Table 10 are greater than non-EH bugs. This
perception is confirmed by the statistical test results that reject the null hypothesis HB

0 and
accept HB

1 . This indicates that the bug-fixing times of EH and non-EH bugs are statistically
different and non-EH bugs are statistically fixed faster than EH bugs with a small effect size.
The results show that the average bug-fixing time of EH bugs is 0.2213 standard deviations
higher than the average bug-fixing time of non-EH bugs.

4.2.2 RQ2. To what extent are EH bugs discussed compared to non-EH bugs?

�

�

�

�

Summary of RQ2: The EH bugs are significantly more discussed with a medium effect
size than non-EH bugs.

To answer this question, we have formulated one group of hypotheses, considering the
number of comments of EH and non-EH bugs. The set of hypotheses includes the null
hypothesis (HC

0 ), which suggests that there is no difference in the number of comments
between EH and non-EH bug reports. Conversely, the alternative hypotheses propose that

Fig. 6 Bug-fixing time boxplot. When comparing the boxplots, it is possible to see that the interquartile EH
bug-fixing time is larger than the non-EH bug-fixing time

123



Empirical Software Engineering (2024) 29 _#####################_ Page 17 of 30 _####_

Table 11 Descriptive statistics results for EH and non-EH bugs concerning the number of comments

Bug category Number of comments
Mean Minimum Maximum Median Std. deviation

EH 19.80 4 55 17 10.78

Non-EH 15.87 2 55 14 9.36

EH bugs have either a higher (HC
1 ) or a lower (HC

2 ) number of comments compared to non-EH
bugs.

Table 11 presents the descriptive statistics for the number of comments posted in EH
and non-EH bug reports, while Fig. 7 shows the boxplot of the number of comments. Upon
comparing the boxplots and statistics, it is evident that they are very similar, but the EH bugs
present slightly higher values. This observation is confirmed by the statistical test results that
reject the null hypothesis HC

0 and accept HC
1 . Therefore, we can assume that the number of

comments in EH bug reports is statistically higher than non-EH bug reports with a medium
size effect of 0.3994.

4.2.3 RQ3. To what extent are EH bugs tested compared to non-EH bugs?

�

�

�

�

Summary of RQ3: The EH bugs are significantly more tested with a small effect size
than non-EH bugs.

To answer this question, we have formulated one group of hypotheses, considering the
number of changed test files of EH and non-EH bugs. The group of hypotheses contains the
null hypothesis (HD

0 ) stating that there is no difference in the number of changed test files
between EH and non-EH bugs. The alternative hypotheses, on the other hand, assume that
EH bugs have either a higher (HD

1 ) or a lower (HD
2 ) number of changed test files than non-EH

bugs.

Fig. 7 Number of comments boxplot. When comparing the boxplots, it is possible to see that EH bugs tend
to present a higher number of comments than non-EH bugs
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Table 12 Descriptive statistics results for EH and non-EH bugs concerning the number of test files changed

Bug category Number of changes
Mean Minimum Maximum Median Std. deviation

EH 1.086 0 10 1 1.32

Non-EH 0.742 0 10 0 1.16

Table 12 presents descriptive statistics for the number of test files changed in fixing
commits of both EH and non-EH bugs. Meanwhile, Fig. 8 displays a boxplot of the number
of test files changed. Upon comparing the boxplots and statistics, it is evident that they are
similar, but the EH bugs present slightly higher values. This observation is confirmed by the
statistical test results that reject the null hypothesis HD

0 and accept HD
1 . Therefore, we can

assume that the number of test files changed in fixing commits of EH bugs is significantly
higher but with a small effect size of 0.2899.

4.3 Discussion

The main goal of this analysis was to investigate whether the EH bugs receive less attention
from developers compared with non-EH bugs in bug-fixing tasks. Therefore, we observed
that for two dimensions (priority and fixing time) present EH bugs as being more prioritized
and demanding more time to be fixed. However, it is important to notice that although the
results for RQ1 concerning priority and bug-fixing time reached a statistically significant
p-value, the associated effect size suggests caution in the interpretation of the findings on
this matter.

Whenwe looked at the other two dimensions (discussion and testing) we observed that EH
bugs are more discussed (RQ2) and more tested (RQ3). Considering all the results, it is more
reasonable to think of EH bugs being more complex (as being more prioritized, taking more

Fig. 8 Boxplot of the number of test files changed in fixing commits. Upon comparing the boxplot, it is evident
that they are very similar
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time to be fixed, more discussed, and demanding more changes in text files) than neglected.
Nonetheless, it is also worth mentioning that the associated effect size, especially for the
number of test files changed, suggests caution in interpreting the findings.

5 The EH-Bug ClassificationModel

In this section, we describe the method to automatically label EH bugs usingMachine Learn-
ing and Natural Language Processing techniques, along with the obtained results.

5.1 Method Description and Goal

The manual labeling of EH bugs is time-consuming, demanding the reading, understanding,
and discussion of the bug report. Despite not being a trivial task, all conclusion around the EH
bug classification is based on the report’s textual fields: summary, description, and comments.
These fields are usually presented in all bug reports, even though their “quality” may vary
(i.e., how they are detailed or faithful to the actual bug), impacting the task’s challenge.

Once we have the labeled dataset and the necessary fields to classify an EH bug, we have
a good setup to automate the EH bug classification task using machine learning. This section
describes exploring machine learning models to identify bug reports as EH ones. We verify
the feasibility of this model by testing different ML algorithms, NLP techniques, and how
complex the task is, evaluating how much textual detail is necessary to achieve satisfactory
results.

5.2 Experiment Design

All models use bug reports’ textual fields as machine learning input: the content of sum-
mary, description, and comments. We test different machine learning and NLP techniques
to evaluate the automatic EH classification. We use six models - Support Vector Classifier
(SVC), Multinomial Naive Bayes (MNB), Linear Regression (LRC), Random Forest (RFC),
AdaBoost Classifier (ABC), and DistilBERT (DBERT)(Sanh et al. 2019), a light pre-trained
version of BERT, the transformer-based model proposed by Google - and two different NLP
encoding - Bag ofWords (BoW, where the document corpus is converted in an array contain-
ing each text token/word count) and Term Frequency-Inverse Document Frequency (TF-IDF,
which weights the relevance of each token/word in the document) (Sparck Jones 1988) (for
the DBERT we use the full textual fields with no processing to train a classification layer).
We also evaluate two different sets of words: i) All Words (AW, containing all text from the
report’s textual fields) and ii) Exception Handling Keywords (EHK, where the keywords are
catch, caught, handl, exception, throw, rais and signal), as defined by Ebert
et al. (2015). The idea is to verify how complex the EH bugs classification problem is and if it
is feasible to identify them only using these specific keywords rather than using all available
words (AW). Combining all these options, we have 21 results based on the combination of
five models, two different NLP encodings, and two sets of features (5×2×2 = 20) (plus the
use of integral fields with DistilBERT).We also define a simple rule-based classifier baseline
to gauge the EH bug classification model performance: if the report has any of the EHK in
summary, description, or comments, then it is EH bug; otherwise, it is a non-EH bug.

We train themodels using 5-fold cross-validation and perform a grid search for themodels’
hyper-parameters. Table 13 presents the space search of eachmodel.We use the nomenclature
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Table 13 Hyper-parameters Grid-search

Model Hyper-parameters Grid-Search

α: {0.00001, 0.00005, 0.0001,

Multinomial Naive Bayes 0.0005, 0.001, 0.005, 0.01, 0.05,

1.0, 5. 10,15, 20, 25, 30, 35, 40};

C: {0.001,0.005,0.01,0.05,

Logistic Regression 0.1, 0.5, 1, 5, 10 };

penalty: {‘l1’, ‘l2’};

solver: {‘liblinear’, ‘lbfgs’};

Support Vector Classifier C: [0.01, 0.05, 0.1, 0.5, 1, 5, 10]

Random Forest n_estimators: [5, 30, 50, 75,

100, 150, 200]

max_depth: [4, 5, 6, 7, 8, None]

AdaBoost Classifier n_estimators: [5, 30, 50, 75,

100, 150, 200]

DistilBERT learning_rate=5e-5,

epochs=3, eight_decay=0.01,

warmup_steps=100

of the scikit-learn package for the parameters and suggest the official documentation9 for
more details about their meaning.

5.3 Results

Table 14 presents the average and standard deviation values for several metrics of the 5-
fold runs (except for the baseline, where we show the classifier’s performance in the whole
dataset). We highlight the best results of each metric in boldface.

First, we highlight the baseline lower metric values, which justify using some machine
learning approach. Notwithstanding the high recall value - indicating that all EH bugs have
at least one of the exception-handling keywords - the low precision suggests that the rule-
based baseline produces many false positive classifications. Considering all the results, we
highlight the results obtained by using DBERT. The transformer-based model provides the
best accuracy, F1 andROC-AUC results, with values of recall higher compared to themajority
of results. We argue that recall is the major concern due to the main interest being to identify
the majority of EH bugs. The combination BoW+MNB+AW provides the highest recall
value, but presents one of the lowest precision values. Hence, we highlight the DBERT for
presenting the best balance between recall and precision compared to the other results, while
obtaining the highest values of accuracy, ROC-AUC and F1-measure.

We also evaluate the extent to which fine-grained text embeddings help classify EH bugs.
Put simply: is the rich textual content of bug reports useful, or is focusing on a few keywords
enough? To answer this question, we evaluate the effect of using AW over EHK as model
inputs. More specifically, given a combination of a machine learning algorithm (RFC, SVC,
MNB, LRC, and ABC) and an NLP word embedding (BoW or TF-IDF), we compare the

9 https://scikit-learn.org/stable/modules/classes.html
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Table 14 The EH models for classification results

NLP Models Precision Recall Accuracy ROC AUC F1
(Tokens)

BoW (EHK) Baseline 0.21 1.00 0.21 – 0.35

BoW MNB 0.26 ± 0.0 0.72 ± 0.0 0.69 ± 0.0 0.70 ± 0.0 0.38 ± 0.0

LRC 0.53 ± 0.0 0.56 ± 0.0 0.87 ± 0.0 0.74 ± 0.0 0.54 ± 0.0

RFC 0.46 ± 0.1 0.18 ± 0.0 0.86 ± 0.0 0.57 ± 0.0 0.26 ± 0.1

SVC 0.51 ± 0.1 0.53 ± 0.1 0.86 ± 0.0 0.72 ± 0.0 0.51 ± 0.1

ABC 0.68 ± 0.0 0.48 ± 0.0 0.90 ± 0.0 0.72 ± 0.0 0.56 ± 0.0

TF-IDF MNB 0.63 ± 0.1 0.07 ± 0.0 0.87 ± 0.0 0.53 ± 0.0 0.12 ± 0.1

LRC 0.66 ± 0.0 0.40 ± 0.1 0.89 ± 0.0 0.68 ± 0.0 0.50 ± 0.1

RFC 0.46 ± 0.1 0.14 ± 0.0 0.86 ± 0.0 0.55 ± 0.0 0.21 ± 0.0

SVC 0.76 ± 0.1 0.27 ± 0.0 0.89 ± 0.0 0.63 ± 0.0 0.40 ± 0.1

ABC 0.65 ± 0.0 0.49 ± 0.0 0.89 ± 0.0 0.72 ± 0.0 0.56 ± 0.0

BoW (EH) MNB 0.56 ± 0.1 0.50 ± 0.1 0.88 ± 0.0 0.72 ± 0.0 0.53 ± 0.1

LRC 0.71 ± 0.1 0.35 ± 0.0 0.89 ± 0.0 0.66 ± 0.0 0.46 ± 0.1

RFC 0.62 ± 0.1 0.45 ± 0.1 0.89 ± 0.0 0.70 ± 0.0 0.52 ± 0.1

SVC 0.71 ± 0.1 0.33 ± 0.1 0.89 ± 0.0 0.65 ± 0.0 0.45 ± 0.1

ABC 0.67 ± 0.0 0.43 ± 0.1 0.89 ± 0.0 0.70 ± 0.0 0.52 ± 0.0

TF-IDF (EH) MNB 0.00 ± 0.0 0.00 ± 0.0 0.86 ± 0.0 0.50 ± 0.0 0.00 ± 0.0

LRC 0.69 ± 0.1 0.28 ± 0.0 0.88 ± 0.0 0.63 ± 0.0 0.40 ± 0.1

RFC 0.60 ± 0.1 0.42 ± 0.0 0.88 ± 0.0 0.69 ± 0.0 0.50 ± 0.0

SVC 0.73 ± 0.1 0.20 ± 0.0 0.88 ± 0.0 0.59 ± 0.0 0.31 ± 0.0

ABC 0.66 ± 0.0 0.46 ± 0.0 0.89 ± 0.0 0.71 ± 0.0 0.54 ± 0.0

Full Text DBERT 0.66 ± 0.0 0.54 ± 0.0 0.90 ± 0.0 0.88 ± 0.0 0.59 ± 0.0

ROC-AUC performance in each test fold obtained using EHK and AW — subtracting the
first from the latter. We repeat the experiment 5 times (using 5-fold cross-validation) to
compute the average treatment effect of using AW over EHK. If using AW is consistently
better than using EHK, we should see a positive effect. Figure 9 shows that using AW over
EHK usually results in a positive effect. The only exception occurs with random forests.
A plausible explanation is the higher dimension of AW embeddings can be harmful when
training individual classification trees (Xu et al. 2012).

5.4 Discussion

While we observed reasonable results using simple word embeddings (TF-IDF and BoW),
the best results were obtained by using the full text to train a classification layer on the pre-
trained DistilBERT transformer-based model. The recall values are around 0.54, and none of
the other classifiers can provide a higher recall value while maintaining acceptable metrics
values, indicating that there is still room for improvement. As the transformersmodel the state
of the art to deal with textual data, we believe that the next step would be to label more EH
bug reports, as most of the data is composed of non-EH bugs. Additionally, we could weigh
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Fig. 9 Effect measure on ROC-AUC of using AW × EHK on five models

the loss function to account for cases where correctly classifying some is more important
than others. These weights can, e.g., be estimates of the (monetary) cost of miss-classifying
a bug report. Methods to “handle” imbalance are a special case of this concept where the
cost of getting a sample wrong is inversely proportional to the frequency of its label. We
believe, however, that using these techniques can be misguiding outside the context where
these costs are explicitly defined — and decided not to use “data balancing” procedures in
our experiments.

6 Overall Discussion and Implications

In this section, we discuss our results (Section 6.1) and their implications for both, researchers
(Section 6.2) and practitioners (Section 6.3).

6.1 Overall Discussion

The dataset allowed us to analyze how the EH bugs are fixed compared to non-EH bugs. As
mentioned earlier, many studies report that EH is often poorly understood, usually neglected,
and insufficiently tested by developers (Asaduzzaman et al. 2016; Goffi et al. 2016; Chang
and Choi 2016; Filho et al. 2017). With the dataset we may verify if this is not necessarily
reflected in the bug-fixing process. Our results indicate that EHbug reports, in a small amount,
are more prioritized and demand more time to be fixed, which the latter may indicate some
negligence or some higher level of complexity that demands more effort to be fixed. The
number of comments and modified test files of EH bugs being higher than non-EH bugs
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suggests that they demand more discussion and more testing, which both can be seen as an
indication of complexity. However, all those dimensions must be considered proxy variables
to the complexity and only be seen as a hypothesis to explain those differences between the
groups of EH bugs and non-EH bugs. This is aggravated by the fact that only the comments
hypothesis test presented a medium effect size, while fixing-time, priority, and test files
presented negligible and small ones.

In our case study, we only use the Hadoop components as the source and its main program-
ming language is Java. In our investigations, we evaluate if only using Java EH keywords is
enough to classify a bug report as an EH bug or if adding more textual context (keywords
unrelated to the EH Java keywords) provides better results. Our experiments indicate that
other words (coded by the NLP embeddings) plus the EH keywords lead to better results.
Thus, up to a certain limit, our classification model could be useful to label EH bugs in other
programming languages, such as C#, C++, and Python.

Our proposal may help the triage process, which is typically done by reading each bug
report to understand its nature better. Right after the report opens, the automatic labeler should
be able to identify the EH bugs. At this point, the label will be more helpful to the bug triage
process. However, marking a report as an EH bug after the triage process (in cases where
this classification is not reliable in the initial version of the report) is also beneficial once it
can be used for subsequent analysis and documentation purposes. Finally, evaluating how
practitioners perceive the automatic labeling tools in the bug-fixing process is mandatory,
especially in the triage process. It is necessary to map what type of category and how this
labeling helps them to ensure their software quality in future research.

6.2 Implications for Researchers

Our study brings at least two implications for researchers. The first one concerns the possibil-
ity of performing in-depth research on EH bugs using the proposed dataset to explore other
dimensions such as reproducibility, testability, and the extent to which they impact other bugs
and how they impact. The second implication is related to the first step to provide a labeled
dataset to evaluate other ML and NLP techniques for the task of EH bugs classification.

6.3 Implications for Practitioners

The findings of our study show that the EH bugs take more time to be fixed than other kinds
of bugs in our dataset, even if they tend to be slightly more prioritized. On the one hand,
previous studies claim that EH bugs may cause severe consequences and must be quickly
identified and fixed. On the other hand, based on our findings, these kinds of bugs are not
receiving the expected scheduling prioritization. Perhaps developers could be taking time to
start engaging in the fixing of EH bugs. In this case, our approach to the automatic labeling
of EH bugs could be used as a plugin of a bug tracking tool to help developers be more aware
and prioritize the fixing of EH bugs.

7 Threats to Validity

The threats to the validity of our study are discussed using the classification presented by
Wohlin et al. (2012). However, once we did not investigate causal relations, the internal
validity was omitted.
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7.1 ConclusionValidity

Threats to the conclusion validity are concerned with factors that impact the capacity to
make accurate inferences about the relationship between the treatment and the outcome of
an experiment. To avoid this kind of threat, we carefully chose and employed (i) well-known
statistical method (Mann-Whitney) to analyze the EH-Bug dataset, observing its assumptions
(e.g., samples distribution, dependence, and size), trying to avoid wrong conclusions; and
(ii) different ML methods and NLP text encoding techniques to experimentally find the best
combination for the task of automatic labeling ofEHbugs usingwell-established performance
metrics as proxies (e.g., ROC AUC and F1).

7.2 Construct Validity

Threats to the construct validity concerns generalizing the result of the research to the concept
or theory behind the study. To avoid this threat, we employed a peer debriefing strategy to
validate the research design and document review. The aim was to prevent discrepancies in
result interpretation. Furthermore,we started froman existing dataset and employed strategies
to assess the reliability of the manual labeling process (peer review, perspectives aligning,
and agreement level analysis). Additionally, we tried to reproduce, using NLP techniques,
the process used by developers to apply a label to a bug report (i.e., looking at text fields to
identify what kind of bug the report records).

7.3 External Validity

This threat limits the ability to generalize the results beyond the experiment setting. The
work’s findings were based on a case study of one single project: Hadoop. Therefore, the
results can not be generalized for other projects, especially in software in a very distinct
context (i.e., not open-source, not a distributed processing project). The Hadoop choice
allows us to build a dataset from a long-lived real-world large-scale software project. It is
worth noticing that in Jira, Hadoop is reported as distinct projects - Core, HDFS, Yarn, and
MapReduce - so technically, our results were based on four separate projects.

8 RelatedWork

In this section, we describe the existing studies that are somehow related to our study.
Although none of them focus on the problem of automatic labeling of EH bugs, they comprise
studies regarding EH bugs (Section 8.1) and automatic bug labeling (Section 8.2).

8.1 Studies on Exception Handling Bugs

The studies conducted by Barbosa et al. (2014) and Ebert et al. (2015) gather evidence that
erroneous or improper usage of exception handling can lead to a series of fault patterns, named
“exception handling bugs”. This kind of fault refers to a bug in which the primary source is
related to (i) the exception definition, throwing, propagation, handling, or documentation; (ii)
the implementation of cleanup actions; and (iii) the wrong throwing or handling (i.e., when
the exception should be thrown or handled and it is not). Barbosa et al. (2014) categorizes 10
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causes of exception handling bugs, analyzing two open source projects, Apache Tomcat and
Hadoop framework. Ebert et al. (2015) presents a comprehensive classification of exception-
handling bugs based on a survey of 154 developers and the analysis of 220 exception-handling
errors reported from two open-source projects, Apache Tomcat, and Eclipse IDE.

de Pádua and Shang (2017) conducted a study on the prevalence of exception-handling
anti-patterns across 16 open-source projects (Java and C#). They claim that the misuse of
exception handling can cause catastrophic software failures, including application crashes.
They found that all 19 exception-handling anti-patterns taken into account in the study are
broadly present in all subject projects, but only 5 of them (unhandled exception, generic
catch, unreachable handler, over-catch, and destructive wrapping) are prevalent.

Kechagia and Spinellis (2014) studied undocumented runtime exceptions thrown by the
Android platform and third-party libraries. They mined 4,900 different Stack traces from
1,800 apps looking for undocumented API methods with undocumented exceptions par-
ticipating in the crashes. They found that 10% of crashes might have been avoided if the
correspondent runtime exceptions had been properly documented.

Coelho et al. (2017) mined 6,000 Stack traces from over 600 open-source projects issues
on GitHub and Google Code searching for bug hazards regarding exception handling. Addi-
tionally, they surveyed 71 developers involved in at least one of the projects analyzed. As
a result of the mining phase, they found four bug hazards that may cause bugs in Android
applications: (i) cross-type exception wrapping; (ii) undocumented unchecked exceptions
raised by the Android platform and third-party libraries; (iii) undocumented check excep-
tions signaled by native C code; and (iv) programming mistakes made by developers. The
survey results corroborate the Stack trace findings, indicating that developers are unaware of
frequently occurring undocumented exception-handling behavior.

8.2 Studies on Automatic Bug Labeling

Chawla and Singh (2014) proposed an approach for automatic bug labeling by incorporating
semantically similar terms present in the bug data. The work presents an automated technique
for bug labeling using Term Frequency-Inverse Document Frequency (TF-IDF) and Latent
semantic indexing (LSI). For the study, they selected bug reports from Google Chrome
labeled with the following categories: security, regression, polish, and clean up, totaling 4319
bug reports. The preprocessing included tokenization, stop-words removal, and stemming.
Multinomial Naive Bayes was used for labeling. The Experimental study shows that there is
an improvement in results with the addition of semantically similar words obtained from LSI
in conjunction with the terms extracted using TF-IDF. The labeling accuracy is improved in
two out of four categories with the addition of semantically similar terms.

To facilitate the screening of bugs, Catolino et al. (2019) analyzed 1280 bug reports
of 119 popular projects. They proposed a novel taxonomy of bug types and an automated
classification model to classify the reported bugs according to the defined taxonomy. They
used Logistic Regression and analyzed the performance using F-measure, AUC-ROC, and
Matthew’s Correlation Coefficient (MCC). As a result, nine different types of bugs were
highlighted, and the proposed bug type classification model achieved an overall F-Measure,
AUC-ROC, and MCC of 64%, 74%, and 72%, respectively, presenting a good performance
for the bug type classification.

Elzanaty et al. (2021) presents an approach to automatically recover issue types in an
industrial setting. In his work, a random sample of 951 issue reports from three repositories
developed by Shopify were manually classified. The study trained four machine learning
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classifiers (KNN,MNB, SVC, andMLP) to automatically label issue reports as defect-fixing
or not using NLP-based features. As a result, the classifiers outperform random guessing
(AUC values of 0.5271–0.8070) and Zero-R baselines (F1-score improvements of 0.31–
21.72 percentage points). When datasets from other projects are integrated to create a unique
training sample, the models achieve performances equivalent to the intra-project classifiers.
In the analysis, the SVC and MLP classification techniques improve the F1-score and AUC
from within-design baselines in four out of six and two out of six experiments. The study
highlights the combining NLP and ML techniques to classify missing issue types and lay the
groundwork for adopting software analytics at Shopify.

Peters et al. (2019) proposed a way to reduce the mislabelling of security bug reports by
developing a framework composed of a combination of Filtering And Ranking methods by
text-based prediction models. The study evaluated 45.940 bug reports from Chromium and
four Apache projects. The framework begins by finding security-related keywords from the
security bug reports. Each security-related keyword is scored according to its frequency. After
that, the authors removed nonsecurity reports with scores that are similar to the ones obtained
by security bug reports. The remaining reports are used to build the prediction models. The
analysis demonstrated that the proposed framework improves the performance of text-based
prediction models for security bug reports in 90% of cases, mitigates the class imbalance
issue, and reduces the number of mislabelled security bug reports by 38%.

9 Conclusion and Final Remarks

Exception handling (EH) is an error-recovery technique that allows developers to anticipate
abnormal situations by implementing recovery actions. ThewayEH features are implemented
in major programming languages leads developers to create different flows of control, reduc-
ing the overall debugging capability of the software, and presenting new challenges for
software testing. Studies have reported that EH is often not well understood, poorly tested,
and usually neglected. All these situations can lead to serious consequences such as system
downtime, data loss, and security risk. Therefore, to avoid serious consequences, EH bugs
must be quickly identified, prioritized, and assigned. However, this triage and labeling task
depends mainly on the knowledge, time, and convenience of the bug reporter, which can lead
to information reliability issues, requiring automation.

In this study, we empirically evaluated the idea of automatic labeling of EH bugs usingML
and NLP techniques on features extracted from bug report fields. As a result, we obtained
a hand-labeled dataset from an existing dataset containing 10 years of bug-fixing activity
from the Apache Hadoop project resulting in 4516 bug reports with 943 (about 20%) of them
labeled like EH bugs. We also labeled 2,584 non-EH bugs analyzing their bug-fixing code,
and creating a dataset composed of 7,100 bug reports.

With the dataset of EH bugs obtained, we performed a controlled experiment combining
six ML classifiers with two NLP strategies to extract features from the bug report text (Bag
of Words and TF -IDF) and also evaluated whether the use of Bag of Words and TF-IDF
only on keywords related to exception handling extracted from textual fields could improve
the performance of ML models.

Our results show that using a pre-trained DistilBERT with a linear layer trained with
our proposed dataset can reasonably label EH bugs, achieving ROC-AUC scores of up to
0.88. Additionally, considering only keywords related to EH as inputs, the ML models’
performance was worst compared to using all words from the textual fields when ROC-AUC

123



Empirical Software Engineering (2024) 29 _#####################_ Page 27 of 30 _####_

is a major concern, indicating that the full text in the textual fields it is necessary to better
results.

In futurework, we plan to investigate how to build amodel to perform the task of automatic
maintainer assignment (i.e., who is the best fit to fix this EH bug?), evaluate both strategies
(automatic labeling and assigning) in real settings and test different word embedding to
improve the ML results. It is also fundamental to evaluate in future work to which extent the
practitioners benefit from using automatic labeling tools and how much their use improves
the bug-fixing process.We also intend to use other approaches (e.g., semi-automatic labeling)
as an avenue for future work to expand the dataset with more projects.

Data Availability The proposed dataset and all the code that supports the findings of this study are available
in Figshare with the identifier https://doi.org/10.6084/m9.figshare.22735124.v2.
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