
Empirical Software Engineering (2024) 29:78
https://doi.org/10.1007/s10664-024-10484-2

Demystifying code snippets in code reviews: a study
of the OpenStack and Qt communities and a practitioner
survey

Beiqi Zhang1,2 · Liming Fu1,2 · Peng Liang1,2 · Jiaxin Yu1,2 · Chong Wang1,2

Accepted: 3 April 2024 / Published online: 3 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Code review is widely known as one of the best practices for software quality assurance in
software development. In a typical code review process, reviewers check the code committed
by developers to ensure the quality of the code, during which reviewers and developers would
communicate with each other in review comments to exchange necessary information. As
a result, understanding the information in review comments is a prerequisite for reviewers
and developers to conduct an effective code review. Code snippet, as a special form of code,
can be used to convey necessary information in code reviews. For example, reviewers can
use code snippets to make suggestions or elaborate their ideas to meet developers’ informa-
tion needs in code reviews. However, little research has focused on the practices of providing
code snippets in code reviews. To bridge this gap, we conduct a mixed-methods study to mine
information and knowledge related to code snippets in code reviews, which can help practi-
tioners and researchers get a better understanding about using code snippets in code review.
Specifically, our study includes two phases: mining code review data and conducting practi-
tioners’ survey. In Phase 1, we conducted an exploratory study to mine code review data from
two popular developer communities (i.e., OpenStack and Qt). We manually labelled 69,604
review comments and finally identified 3,213 review comments that contain code snippets.
Based on the code review data collected, we analyzed the extent of using code snippets, the
reviewers’ purposes of providing code snippets, the developers’ acceptance of code snippet
suggestions, and the reasons that developers do not accept code snippet suggestions in code
reviews. In Phase 2, we used an online questionnaire to survey practitioners from industry.
By analyzing the 63 valid responses we received, we explored the scenarios reviewers pro-
vide code snippets, the developers’ attitudes towards code snippets, and the characteristics
of code snippets developers expect reviewers to provide in code reviews. Our results show
that: (1) code snippets are not frequently used in code reviews, and most of the code snippets
are provided by reviewers rather than developers; (2) the purposes of reviewers providing
code snippets in code reviews are Suggestion and Citation, in which Suggestion is the main
purpose; (3) most developers would accept reviewers’ code snippet suggestions; (4) the most
common reasons that developers do not accept reviewers’ code snippet suggestions in code
reviews are difference in the opinions between developers and reviewers and reviewer’s sug-

Communicated by: Massimiliano Di Penta

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10484-2&domain=pdf
http://orcid.org/0000-0002-2056-5346

Empirical Software Engineering (2024) 29:78

gestion is flawed; (5) reviewers often provide code snippets in code reviews when code is
more illustrate than words; (6) most developers hold positive attitudes towards code snippet
comments; and (7) most developers expect that code snippets in review comments are under-
standable and fitting into existing code. The study results highlight that reviewers can provide
code snippets in appropriate scenarios to meet developers’ specific information needs in code
reviews, which will facilitate and accelerate the code review process.

Keywords Modern code review · Code snippets · Mining software repositories ·
Empirical study

1 Introduction

Code review has proven to be one of the best practices in software development which is
conducted by the developers other than the code author through amanual inspection of source
code (Ackerman et al. 1989). Modern Code Review (MCR) is a type of code review that is
informal, tool-based, and occurs regularly in practice (Bacchelli and Bird 2013). Nowadays,
MCR practices are becoming more lightweight, co-located, continuous, and asynchronous
(Sadowski et al. 2018; Badampudi et al. 2023), due to the rise of agile and Open Source
Software (OSS) development (Rigby and Bird 2013). In a typical MCR process, reviewers
and developers engage in asynchronous online discussions to exchange information with
each other, ensuring that the proposed code changes are of sufficient quality and align with
the direction of the project before they are accepted (Pascarella et al. 2018). MCR not only
provides assurance of software quality (Davila and Nunes 2021), but also contributes to
design improvement, knowledge sharing, and code ownership (Nazir et al. 2020).

Understanding the information in code review comments is a prerequisite of efficient code
review process.When developers submit code changes, they are concerned about information
related to whether they make mistakes in their new code and whether they follow their team’s
coding conventions (Ko et al. 2007), which can be obtained from code review comments.
However, it is challenging for developers to get the necessary information inMCR (Bacchelli
and Bird 2013). Although many tools (e.g., Gerrit, Veracode, Reshift) support the process
of MCR, developers and reviewers still have the need of richer communications including a
wide range of mechanisms in code review process (Bacchelli and Bird 2013). Sutherland and
Venolia (2009) investigated the code review practices of software product teams at Microsoft
to understand the nature of the code review dialog and exchange of information, how the
information was retained, and the nature of its later reuse. The results indicated that the
retention and recovery of information in code reviews is not well supported in the current
environment.

Code review comments are text-based, which may contain textual content like URL links
and code snippets for developers to get useful information for a better understanding of the
review comments. Previous studies have investigated the practice of link sharing and their
purposes in code reviews, and have explored what types of information could be provided
through link sharing (Wang et al. 2021). Similar to links, code snippets could also convey
necessary information for developers in code reviews. However, the different nature of links
and code snippets leads to their dedicated purposes and influences in the practice of code
review. To the best of our knowledge, little study has investigated the use of code snippets in
MCR, and it is still unknown about the purposes of providing code snippets and the practices
and knowledge of using code snippets in code reviews.

123

78 Page 2 of 45

Empirical Software Engineering (2024) 29:78

To bridge this gap, we conducted this mixed-methods study to provide a comprehensive
understanding of code snippets in code reviews. We mined code review discussions from
four most active projects selected from the OpenStack1 community (Nova2 and Neutron3)
and the Qt4 community (Qt Base5 and Qt Creator6) based on the number of closed code
changes. The code review process of these four projects are all supported by Gerrit7, a
Web-based code review platform built on the top of Git. We also used an online survey to
explore code snippets in code reviews by following the guidelines provided by Kitchenham
and Pfleeger (Kitchenham and Pfleeger 2008). We sent the survey questionnaire to potential
respondents from the popular developer groups (i.e., LinkedIn) and to practitioners from the
four selected projects in OpenStack and Qt (i.e., Nova, Neutron, Qt Base, and Qt Creator).
In total, we got 3,197 review comments containing code snippets by manually checking
69,604 code review discussions obtained from the mined data sources, and we received 63
valid responses from the survey questionnaire. A comprehensive quantitative and qualitative
analysis were conducted to study the extent of using code snippets, the purposes of providing
code snippets, and how developers treat code snippet suggestions in code reviews, in order
to understand the practices and purposes of code snippets in MCR. Our results suggest that:
(1) Code snippets are not prevalently used in code reviews, and most of the code snippets in
review comments are provided by reviewers. (2) Reviewers make code snippet suggestions
in code review with the aim of Suggestion and Citation, in which Suggestion is the main
purpose. (3) For code snippet suggestions, most developers would accept them. (4) The
main reasons why developers not accept reviewers’ code review suggestions are Difference
in the opinions between developers and reviewers and Reviewer’s suggestion is flawed. (5)
Reviewers tend to provide code snippets in code reviews when code is more illustrate than
words. (6) For review comments containing code snippets, most developers hold positive
attitudes. (7) Developers expect that code snippets provided by reviewers in code reviews
can be Concise, Correct, and Executable.

This paper extends our earlier work on studying code snippets in code reviews (Fu et al.
2022b) through the following additions:

1. We extended our dataset by including the code review data from two most active projects
of the Qt community and collecting all the closed code changes updated in 2021, which
are 127,182 code review comments in total.

2. We explored the reasons why developers do not accept code snippet suggestions in code
reviews (RQ4).

3. We further investigated the scenarios when reviewers provide code snippets, developers’
attitude towards code snippets, and the characteristics of code snippets that developers
expect reviewers to provide in code reviews (RQ5, RQ6, and RQ7) through an industrial
survey.

The rest of this paper is structured as follows: Section 2 presents the relatedwork. Section 3
describes the research design of this study. Section 4 provides the study results, which are
further discussed in Section 5. The potential threats to validity are clarified in Section 6, and
Section 7 concludes this work with future directions.

1 https://www.openstack.org/
2 https://wiki.openstack.org/wiki/Nova
3 https://wiki.openstack.org/wiki/Neutron
4 https://www.qt.io/
5 https://github.com/qt/qtbase
6 https://www.qt.io/product/development-tools
7 https://www.gerritcodereview.com

123

Page 3 of 45 78

https://www.openstack.org/
https://wiki.openstack.org/wiki/Nova
https://wiki.openstack.org/wiki/Neutron
https://www.qt.io/
https://github.com/qt/qtbase
https://www.qt.io/product/development-tools
https://www.gerritcodereview.com

Empirical Software Engineering (2024) 29:78

2 Related work

2.1 Code snippet

Several studies have focused on identifying various information from code snippets. Subra-
manian andHolmes (2013) performed static analysis on code snippets from accepted answers
in Stack Overflow to understand that the structural information could be obtained from code
snippets, and they used such information to effectively identify API usage in snippets. Their
code snippet analysis approach could dramatically improve the accuracy of identifying struc-
tural relationships from code snippets compared to lexical approaches. Chatterjee et al. (2017)
conducted an exploratory study to extract what kinds of information associated with code
snippets are available in various software-related documents, including blog posts, API doc-
umentation, code reviews, and public chats. Their results revealed the characteristics of the
code snippets embedded in different document types, the kinds of information contained in
code snippets, and what cues can indicate code snippet related information. Panichella et al.
(2012) mined code snippet descriptions from developer communities such as mailing lists
and bug reports. They used such information to propose an approach which could automati-
cally extract method descriptions in developers’ communications in order to help developers
understand the code. The method descriptions extracted by their approach reached a high
precision.

Many studies have focused on tools related to code snippets. Galenson et al. (2014) pre-
sented an efficient tool called CodeHint to help synthesize code snippets that use real-world
Java features, and their results show that the algorithms of CodeHint could significantly
improve developers’ productivity. Wong et al. (2013) mined question and answer platforms
like Stack Overflow which contain code descriptions written by developers to propose Auto-
Comment tool, which could automatically generate code snippet comments. They applied
Natural Language Processing (NLP) techniques in this code-description generation tool to
analyze sentence semantics, and many practitioners thought that the generated comments by
the tool were accurate, adequate, concise, and useful in helping them understand the related
code. Campbell and Treude (2017) proposed a tool called NLP2Code integrated in Eclipse
IDE which has a content assist feature for code snippets. NLP2Code could recommend rele-
vant code snippets on Stack Overflow based on the natural language typed by the developers,
thus saving developers’ time of searching the Web for the required code snippets.

Compared to the existing work related to code snippets discussed above, our work tends
to focus on the practice of code snippets in code reviews by investigating the extent of using
code snippets, the purposes of providing code snippets, and how developers treat code snippet
suggestions in code reviews.

2.2 Code review

Code review is a mature practice and essential part in modern software development. In
recent years, many studies have explored the modern code review process in practice. Some
studies chose to investigate code review process based on pull requests. Zampetti et al. (2019)
investigated how developers use the outcome of Continuous Integration (CI) builds during
modern code reviewbased on the discussion of pull requests. Their results show thatwhile pull
requests with passed builds have slightly more chances of being merged than when builds are
broken, other process-related factors have a stronger correlation with such a merger. Wessel
et al. (2020) explored why open source maintainers integrate code review bots into the pull

123

78 Page 4 of 45

Empirical Software Engineering (2024) 29:78

request workflow and how they perceive the changes these bots induce. They found that the
most frequently mentioned motivations for using bots include automating repetitive tasks,
improving tools’ feedback, and reducing maintenance effort. Some studies chose to use code
review tools to investigate code reviews. McIntosh et al. (2016) mined Gerrit review database
to study the relationships between post-release defects and modern code review. They found
that code review coverage, participation, and expertise have a clear link with software quality,
and their results empirically confirm the intuition that code which has not been well reviewed
has a negative impact on software quality in large system development.

Pascarella et al. (2018) gathered reliable data from three large open-source software
projects on reviewers’ information needs. Based on their results, they found that the most
important needs in code reviews are the needs to know whether a proposed alternative solu-
tion is valid and whether the understanding of the reviewer about the code under review is
correct. Ko et al. (2007) analyzed software developers’ day-to-day information needs in col-
located software development teams. Their results show that the most often deferred searches
included knowledge about design and program behavior (e.g., why code was written a partic-
ular way and what a program was supposed to do). Sutherland and Venolia (2009) performed
an investigation of the code review practices of software product teams at Microsoft to better
understand the nature of the code review dialog and exchange of information, how the infor-
mation was retained, and the nature of its later reuse. Their results reveal that code reviews
in collocated development environments such as Microsoft use a mix of face-to-face and
electronic communication.

Hirao et al. (2022) studied patches with divergent review scores in the OpenStack and Qt
communities. Their results suggest that review tooling should integratewith release schedules
and detect concurrent development of similar patches to optimize review discussions with
divergent scores. DaCunha andGreathead (2007) investigated if there is a specific personality
type that is correlated with performance on a code-review task. They suggested that software
companies should capitalize on the strengths of their employees who can better perform
code review tasks than others and consider employees perhaps previously overlooked for
particular code review tasks.

Several studies have focused on investigating a variety of artifacts in code review process.
Zanaty et al. (2018) studied the frequency and nature of design discussions in code reviews
to better understand to what extent design is discussed during code review. Their manual
analysis indicates that though design-related discussions are still rare during code review
process, design related comments are constructive and can provide suggestions to mitigate
design issues. Fu et al. (2022a) conducted an exploratory study in an attempt to understand the
nature of Potential Technical Debt (PTD) in code reviews. Their findings indicate that review-
based detection of PTD is one of the trustworthy mechanisms in development. Kashiwa et al.
(2022) conducted a study aiming to understand the effect of Self-Admitted Technical Debt
(SATD) comments on accepting and revising patch-sets and the practice of introducing SATD
in code reviews. Their results show that 28~48% of SATD comments are introduced during
MCRs. Han et al. (2021) conducted an empirical study to investigate the concept behind
code smells identified in code reviews and what actions reviewers suggest and developers
take in response to the identified smells, and they found that the majority of smell-related
suggestions were accepted by developers.

Different from the aforementioned works, our work intends to study the distribution,
purposes, and acceptance of code snippets in code reviews by manually extracting code
snippet related comments from themost active projects of theOpenStack andQt communities,
and the scenarios in which reviewers provide code snippets, the developers’ attitudes towards

123

Page 5 of 45 78

Empirical Software Engineering (2024) 29:78

code snippets, and the characteristics of code snippets developers expect reviewers to provide
in code reviews from an industrial survey.

3 Methodology

We used a mixed-methods approach that combines an exploratory study through mining
code review data from the OpenStack and Qt communities and an industrial survey with
63 practitioners. In this section, we first present our seven Research Questions (RQs). Then
we describe the research process (see Fig. 1) and detail the methods used to collect, label,
extract, and analyze the data in this study.

3.1 Research questions

The goal of this study is to understand the practices of using code snippets in the context of
code review, and to develop a practical guideline of using code snippets in code reviews. This

select collect

Code Review
Data

[127182]

Popular
Communities

[2]

Active
Projects

[4]

Data Items

Data Extraction

Pilot Data
Labeling

[993+1021]

Manually Label whether Review
Comments Contain Code SnippetsPurpose

Classification

Accept the Code
Snippet Suggestion?

Not Accept Reasons
Classification

Data Analysis

Open Coding
&

Constant Comparison

:
use the itself as the
buffer, to avoid a memcpy:

buffer(size,
Qt::Uninitialized);

M
in

in
g

C
od

e
R

ev
ie

w
D

at
a

Ph
as

e
1

Design Survey
Questionnaire
[6 Questions]

Survey
Form

Conduct Pilot
Survey

[10 Responses]

Collect Participant
Responses

[63 Responses]
Reporting Survey

Results

Survey Data
Analysis

Validate the
Survey

C
on

du
ct

in
g

Pr
ac

tit
io

ne
rs

'
Su

rv
ey

Ph
as

e
2

Review Comments
with Code Snippets

[3197]

Fig. 1 Overview of the mixed-methods research process

123

78 Page 6 of 45

Empirical Software Engineering (2024) 29:78

goal can be further decomposed into sevenRQs as listed below. Specifically, the first four RQs
(i.e., RQ1, RQ2, RQ3, and RQ4) are answered through an exploratory study by analyzing the
code review data collected from the OpenStack and Qt communities. The results of these four
RQs can help understand the extent of using code snippets in code reviews, the reviewers’
purposes of providing code snippets in code reviews, the developers’ acceptance of code
snippets in code reviews, and the reasons developers do not accept code snippet suggestions
in code reviews.
RQ1: To what extent are code snippets used in code reviews?
MotivationCurrently, we do not know how frequently code snippets are used in code reviews
in themodern code review process. As an exploratory study on code snippets in code reviews,
this RQ aims to explore the distribution and proportion of review comments that contain code
snippets. The answer of this RQ can help to get a basic overview of code snippets in code
reviews.
RQ2: What are the purposes of code snippets provided by reviewers in code reviews?
Motivation Previous work has studied the purposes of shared links in code reviews to inves-
tigate what kinds of information could be provided through link sharing (Wang et al. 2021).
Code snippets can also provide important information in code reviews similar to shared links,
however, we have no idea about the purposes of providing code snippets in code reviews.
According to the results of RQ1, we found that most code snippets in review comments are
provided by reviewers. This RQ aims to understand the purposes of code snippets provided
by reviewers in code reviews. The answer of this RQ can help to get a better understanding
of the roles code snippets play in code review.
RQ3: How do developers treat code snippet suggestions in code reviews?
Motivation The reaction of developers to the review comments that contain code snippets is
meaningful to explore the impact of code snippets in code reviews. According to the results
of RQ2, we found that the most common purpose for reviewers to provide code snippets in
code reviews is Suggestion for developers. Developers may take different actions towards
reviewers’ code snippet suggestions. They could decide whether or not to accept reviewers’
code snippet suggestions or just ignore them. This RQ aims to explore how developers treat
code snippet suggestions in code reviews by investigating howmany code snippet suggestions
are accepted, ignored, and not accepted, respectively. Such information can help to understand
the usefulness of the code snippets in code reviews.
RQ4: What are the reasons that developers do not accept code snippet suggestions in
code reviews?
Motivation During the code review process, not all code snippet suggestions would be
accepted by developers. Sometimes, developers may not follow reviewers’ code review sug-
gestions even though developers agree with the reviewers, for other reasons. This RQ aims
to explore the reasons why developers do not accept reviewers’ code snippet suggestions.
The answer of this RQ can help reviewers be aware of the reasons behind developers’ nonac-
ceptance of the code snippet suggestions and thus help reviewers improve their code reviews
and avoid the situations that result in code snippet suggestions not being accepted.
RQ5: In which scenarios do reviewers often provide code snippets in code reviews?
Motivation During the code review process, in some scenarios reviewers tend to provide
code snippets in review comments, while in some other scenarios, they tend to provide plain
text or shared links instead. This RQ aims to investigate the situationswhen reviewers provide
code snippets in code reviews. The answer of this RQ can help acquire the knowledge and
practices of using code snippets in code reviews. Such information can also guide reviewers
when to provide code snippets in code reviews.

123

Page 7 of 45 78

Empirical Software Engineering (2024) 29:78

RQ6: What are the attitudes of developers towards code snippets provided in code
reviews?
Motivation Intuitively, developers may have a positive attitude towards code snippets pro-
vided in code reviews as code is more convincing and direct than review comments in plain
text. This RQ aims to understand the actual attitudes of developers towards code snippets
in code reviews. Answering this RQ can help to guide whether reviewers are encouraged to
provide code snippet in order to make the discussions during the code review process more
smoothly.
RQ7: What are the characteristics of code snippets that developers expect reviewers to
provide in code reviews?
Motivation Code snippets with specific characteristics (e.g., code quality and readability) in
code reviews may decide whether developers will accept reviewers’ suggestions or not. This
RQ aims to summarize the characteristics that developers hope code snippets in code reviews
to have. The results of this RQ can help reviewers be aware of the key points of providing
code snippets in code reviews and thus make their code snippet suggestions more acceptable.

3.2 Exploratory study design

3.2.1 Data collection

For the exploratory study, we used four active projects from two large and popular open-
source communities: OpenStack and Qt. OpenStack is a set of software components that
provide common services for cloud infrastructure, and is contributed by many well-known
software companies, e.g., IBM, VMware, and NEC (Thongtanunam et al. 2017). Qt is a
cross-platform tool and UI framework for creating graphical user interfaces and developing
multi-platform applications. In addition to Qt company, many organizations and individuals
who use Qt as a development platform also contribute in the open development of Qt through
the Qt community. Meanwhile, the OpenStack and Qt communities have made a serious
investment in code review for many years (Hirao et al. 2022), and the code review data from
these two communities have been widely used in many studies related to code review (e.g.,
Wang et al. (2019); Thongtanunam et al. (2016); Ruangwan et al. (2019); Hamasaki et al.
(2013); Ueda et al. (2018); Wang et al. (2021)).

Basedon the reasons above,we argue that it is appropriate and representative to conduct our
code review research based on these two communities. The OpenStack and Qt communities
are both composed of a set of projects, and we selected the two most active projects in each
community as our subject projects (based on the number of closed code changes): Nova (a
cloud computing fabric controller) and Neutron (a networking service) in the OpenStack
community and Qt Base (a module which offers classes for embedded Linux devices) and Qt
Creator (a cross-platform Integrated Development Environment (IDE)) in the Qt community.

Both OpenStack and Qt communities use Gerrit8 to support their code review process.
Gerrit is a Web-based code review tool built on top of Git, a well-known distributed control
system for code. Gerrit provides various REST APIs to acquire code review data. By using
the RESTful API provided by Gerrit, we were able to collect all the closed code changes of
the OpenStack projects (Nova and Neutron) and the Qt projects (Qt Base and Qt Creator)
from 2020 to 2021. Then, we extracted all available review comments for these code changes
and stored the review data in local files for further analysis. Table 1 shows the details of the

8 https://www.gerritcodereview.com/

123

78 Page 8 of 45

https://www.gerritcodereview.com/

Empirical Software Engineering (2024) 29:78

Table 1 Overview of the
collected code review data from
each project

Project #Code Changes #Review Comments (RCs)

Nova 2,960 20,748

Neutron 3,475 13,541

Qt Base 17,181 66,878

Qt Creator 10,754 26,015

Total 34,370 12,7182

code review data collected from each project. In total, we collected 34,370 code changes and
127,182 review comments from the OpenStack and Qt communities, which were used as the
basic code review data for the exploratory study.

3.2.2 Data labelling

After collecting the code review data from the OpenStack and Qt communities, we got a total
of 127,182 review comments to label if they contain code snippets. It is time-consuming to
label such a large number of code review comments manually, and we decided to eliminate
some irrelevant code review comments by using certain measures. The whole process of data
labelling is divided into the following five steps:

In step one, we removed the review comments that were generated by bots (i.e., Zuul
in OpenStack and Qt Sanity Bot in Qt) since we aimed at exploring code snippets in code
reviews from the perspective of developers and reviewers.

In step two, considering that Nova and Neutron projects are mainly written in Python
(more than 97%), and Qt Base and Qt Creator projects are mainly written in C++ (more
than 85%), we decided to focus on the review comments that contain Python code snippets
in Nova and Neutron and the review comments that contain C++ code snippets in Qt Base
and Qt Creator. In addition, we only retained the review comments from the source files
written in the main programming language of each project, as these source files are directly
related to the code snippets written in corresponding programming languages. In particular,
for Nova and Neutron projects, we only kept review comments from the source files with .py
file extension, and for Qt Base and Qt Creator projects, we only kept review comments in the
source files with .cpp or .h file extension. After the two steps, a part of the irrelevant review
comments were filtered out. The counts of remaining review comments for each project are
presented in Table 2.

In step three, the first and second authors manually labelled the remaining review com-
ments after a pilot data labelling. Specifically, the pilot data labelling process is composed

Table 2 Counts of review comments of the four projects in the OpenStack and Qt communities

Project #RCs #RCs after Step Two #RCs after Step Three

Nova 20,748 14,680 625

Neutron 13,541 7,951 342

Qt Base 66,878 35,021 1,672

Qt Creator 26,015 11,952 574

Total 127,182 69,604 3,213

123

Page 9 of 45 78

Empirical Software Engineering (2024) 29:78

of the following substeps: (1) With a 95% confidence level and a 3% margin of error (Israel
1992), the first author randomly selected 993 review comments from the code review data
of the OpenStack projects in 2020 and 1,021 review comments from the code review data of
the Qt projects in 2021. We randomly selected review comment data from different projects
in different years in order to increase the diversity of the pilot labelling data. (2) The first
and second authors labelled independently whether the review comments should be included
or not. (3) Review comments labelled by the two authors were compared to measure the
inter-rater reliability and Cohen’s Kappa coefficient (Cohen 1960) was calculated as a way
to verify the consistency on the labelled review comments between the two authors. The
Cohen’s Kappa coefficient for the OpenStack community is 0.86, while it is 0.92 for the Qt
community, both higher than 0.8, thus indicating a high degree of consistency between the
two authors.

In the data labelling process, the first two authors followed a set of inclusion and exclusion
criteria: (I1) If a review comment contains code snippets (source code or pseudocode) with at
least one valid statement, we include it. (E1) If a review comment only contains the name of
a certain variable or function, we exclude it. (E2) If the code snippets contained in a review
comment come from log files (e.g., error stack trace), we exclude it. To better illustrate the
inclusion and exclusion criteria, consider the following two exemplary review comments. The
first review comment is included as it contains a valid code statement. The second review
comment is excluded. Though it contains a valid code statement, the code snippet is from
the system error output log.

Link: http://alturl.com/9gnck
Reviewer: “shorter suggestion:
return parent.isValid() ? treeItemAtIndex(parent)->
childCount():
m_rootItem->childCount();”

Link: http://alturl.com/e2ib3
Reviewer: “src/plugins/qmldesigner/components/itemlibrary/itemlibrary
assetimporter.
cpp:504: error: ‘m_importFiles’ was not declared in this scope
504 | if (model && !m_importFiles.isEmpty()) {
An ifdef is missing somewhere. Please fix.”

It is easy to tell whether a review comment contains code snippets or not based on the
inclusion and exclusion criteria as most of the review comments we collected are trivial
cases. During the data labelling process, if the first two authors were unsure whether or not to
include a review comment, which is very rare (only 14), the third author was invited to discuss
until an agreement was reached. After manually labelling all the candidates, we finally got
a total of 3,213 review comments that contain code snippets from the four projects of the
OpenStack and Qt communities. Table 2 shows the count of review comments after each step
of data labelling. Note that we used the data after step two to answer RQ1, and the data after
step three to answer RQ2.

123

78 Page 10 of 45

http://alturl.com/9gnck
http://alturl.com/e2ib3

Empirical Software Engineering (2024) 29:78

3.2.3 Data extraction and analysis

1) Data Extraction Before data analysis, the first and second authors conducted a pilot data
extraction by randomly selecting 10 code snippet comments from each of the four project in
each year (80 review comments in total). The two authors extracted the data items listed in
Table 3 independently. If any disagreements arouse, the third author was involved to discuss
with the two authors and came to an agreement. After the pilot data extraction, the first two
authors extracted the data items from all the code snippet comments identified. During this
process, any uncertain part was discussed between the first three authors until they reached a
consensus to increase the correctness of the extracted data. Finally, the first author rechecked
and compared all the extracted data to further enhance the accuracy of the extracted data.

Note that different data were used to answer the RQs. To answer RQ1, we used all the
review comments after step two of data labelling (see Section 3.2.2) as the raw data, and we
counted how many review comments in the raw data contain code snippets to investigate the
extent of using code snippets in code reviews. To answer RQ2, we analyzed all the review
comments that contain code snippets gained from RQ1 (i.e., the review comments after step
three) to get the purposes of reviewers when using code snippets in code reviews. To answer
RQ3, we collected the code snippet suggestions identified in RQ2 to explore the reaction of
developers towards these suggestions, and we then used the unaccepted suggestions as the
data to answer RQ4.

2) Data Analysis
After the data extraction, the first and second authors analyzed the extracted data to answer

the RQs of the exploratory study.
RQ1: To what extent are code snippets used in code reviews?

To answer RQ1, we analyzed (1) the percentage of review comments that contain code
snippets, (2) the percentages of code snippets provided in review comments by reviewers
and developers, and (3) the percentages of developers and reviewers who had provided code
snippets in review comments, to investigate the usage of code snippets in code reviews. By
analyzing these three aspects, we could know the basic overview of how often reviewers and

Table 3 Data items extracted and their corresponding RQs

Data Item Description RQ

D1 Selected Whether or not a review comment contains
code snippets

RQ1

D2 Identity The identity of the people who makes the
review comments (i.e., reviewer or developer)

RQ1

D3 Purpose The intention of providing code snippets in a
review comment

RQ2

D4 Detailed purpose The elaborated intention of providing code
snippets in a review comment

RQ2

D5 Developer’s action The action taken by the developer (i.e., accept,
ignore, or not accept) towards the reviewer’s
code snippet suggestion

RQ3

D6 Evidence The proof that the developer accepted the code
snippet suggestion

RQ3

D7 Not accept reason The reason why the developer did not accept
the reviewer’s code snippet suggestion

RQ4

123

Page 11 of 45 78

Empirical Software Engineering (2024) 29:78

developers provide code snippets in code reviews, as well as the main identity of people who
provide code snippets in code reviews.
RQ2: What are the purposes of code snippets provided by reviewers in code reviews?

To answer RQ2,we usedOpenCoding andConstant Comparisonmethods fromGrounded
Theory (GT) (Stol et al. 2016) to find the purposes of reviewers providing code snippets in
code reviews. As the purposes of reviewers providing code snippets in code reviews might
be expected to be closely related to the purposes of shared links and comments in general,
we considered both taxonomies proposed by Wang et al. (2021) and Li et al. (2017) as the
base to build the taxonomy in this study. For every review comment containing code snippets
provided by reviewers, we read through the textual content of the comment, its corresponding
source code, and its contextual information to understand the reviewer’s purpose of providing
code snippets. The detailed steps of data analysis for answering RQ2 are the following:

1. The first two authors coded reviewers’ purposes of providing code snippets in code review
comments by highlighting the text sections related.

2. The first author rechecked all the coding results to make sure that the extracted data of
RQ2 were correctly coded.

3. The first two authors grouped similar codes into categories. The process is iterative, in
which the two coders went back and forth between the codes and categories to refine the
taxonomy.

4. The third author then examined the analysis results and disagreements were eliminated
through discussions with the first two authors.

A review comment may contain multiple code snippets, in which case we fully considered
the contextual information and selected the most significant purpose as the final purpose
of providing code snippets in this review comment. The reason why we did not identify
multiple purposes in review comments with multiple code snippets is that a piece of code
review comment is an integral part of delivering code review information, which could not be
analyzed in separate sections. For example, a reviewer provided two pieces of code snippets
in the following review comments. The first code snippet serves as a specific code use case
to assist reviewers in elaborating on the aforementioned example, while the second one was
made by the reviewer to suggest the developer toweaken the return type of the function. Based
on the comprehensive analysis and feedback from the developer, we concluded that the first
code snippet which elaborates the example at length is used to help the developer better
understand the flaws in the current code and thus better understand the suggestions in the
second code snippet. Therefore, we selected the purpose of providing the second code snippet
by the reviewer as the main purpose of the code snippets provided in this review comment.
Note that only 10 (0.31%, 10/3213) review comments contain multiple code snippets, which
is very rare.

Link: http://alturl.com/n9zbr
Reviewer: “In case if value is an lvalue, T will be deduced as lvalue ref, for example:
[code snippet]... which is not what we want. You should decay the return type, i.e.:
[code snippet]...”
Developer: “Done.”

RQ3: How do developers treat code snippet suggestions in code reviews?

123

78 Page 12 of 45

http://alturl.com/n9zbr

Empirical Software Engineering (2024) 29:78

To answer RQ3, we manually checked and analyzed the contextual information of code
snippet comments, including the whole code review discussions and associated source code.
First, we looked through developers’ responses to reviewers’ code snippet suggestions. Sec-
ond, we compared the suggested code snippets with the changes made by developers to the
reviewed source code.We combined both textual and code information to conclude the accep-
tance of code snippet suggestions. According to our analysis results, the actions developers
took towards reviewers’ code snippet suggestions are in three categories:

– Accept: (1) developers change the relevant code based on the code snippets provided by
the reviewers or (2) developers clearly show a positive attitude toward the code snippet
suggestions provided by the reviewers.
For situation (1), Fig. 2 presents an example of a developer accepting a reviewer’s code
snippet suggestion. In this review comment, the reviewer provided a code snippet sug-
gestion to make the code more readable (i.e., “just nit: IMHO easier to read would be
something like: [code snippet]”), and the developer replied “Done” andmade correspond-
ing code change to the relevant source code, which means that the developer accepted
the code snippet suggestion.
For situation (2), the reviewer provided a suggestion for optimizing the code and attached
a relevant code snippet in the review comment below. The developer first thanked the
reviewer and made it clear that he would try it out, which also indicates that the developer
accepted the reviewer’s code snippet suggestion.

Link: http://alturl.com/hroeq
Reviewer: “If we wanted to optimize as much as possible, we could limit to only
the neutron_pg_drop row with something like: [code snippet]”
Developer: “Thanks for the tip, I’ll definitely try that out...”

– Ignore: developers neither respond to reviewers nor change the relevant code in the
subsequent patchsets.

– Not Accept: (1) developers articulate totally different opinions towards reviewers’ code
snippet suggestions or (2) developers respond to reviewers but the developers do not
change the relevant code or they do not change the relevant code according to the review-
ers’ suggestions.
In the following review comment, the developer said that he would not change the current
code to make the code more complex, which clearly shows that he would not accept the
reviewer’s code snippet suggestion.

Link: http://alturl.com/vpw3e
Reviewer: “How about adding: [code snippet] ...”
Developer: “... libvirt will do something similar but until we actually need that
for some reason i would prefer not to add the extra complexity.”

This process was performed by the same two coders in the data analysis of RQ2. Most
of the identified code snippet suggestions in RQ2 are trivial cases which are straightforward
and simple to tell whether they were accepted, ignored, or not accepted. Of all the 2,322 code
snippet suggestions identified in OpenStack and Qt communities, the two coders could not
decide on 28 of the suggestions. For the 28 code snippet suggestions, the third author was
involved to discuss with the two coders and reach an agreement.

123

Page 13 of 45 78

http://alturl.com/hroeq
http://alturl.com/vpw3e

Empirical Software Engineering (2024) 29:78

R
ev

ie
w

er

D
ev

el
op

er

Su
bs

eq
ue

nt
 P

at
ch

se
t

R
ev

ie
w

er
's

 C
od

e
Sn

ip
pe

t S
ug

ge
st

io
n

D
ev

el
op

er
's

 C
ha

ng
e

to
 R

el
ev

an
t C

od
e

Fi
g.
2

E
xa
m
pl
e
of

a
de
ve
lo
pe
r
ac
ce
pt
in
g
a
re
vi
ew

er
’s
co
de

sn
ip
pe
ts
ug

ge
st
io
n

123

78 Page 14 of 45

Empirical Software Engineering (2024) 29:78

RQ4: What are the reasons that developers do not accept code snippet suggestions in
code reviews?

To answer RQ4, we extracted the relevant data item listed in Table 3 and analyzed all the
code snippet suggestions which were not accepted by developers based on the results of RQ3.
Through manually checking on the whole corresponding discussions among developers and
reviewers, we used Open Coding and Constant Comparison methods to identify the reasons
that developers do not accept code snippet suggestions in code reviews, and this process was
similar to the data analysis for answering RQ2.

3.3 Survey study design

A survey is used to gather information from or about people to describe, compare, or explain
their knowledge, attitudes, and behavior (Fink 2003). To validate the results of RQ1 and
RQ2 and to obtain practitioners’ insights on code snippets in code reviews (e.g., usage
scenarios),we decided to conduct an industrial survey as a complementary data collection tool
to understand practitioners’ perceptions and current practices regarding code snippets in code
reviews. A survey study could be conducted by self-administered questionnaires, telephone
surveys, and one-to-one interviews to collect data (KitchenhamandPfleeger 2008).Wefinally
chose to employ an online self-administered questionnaire to collect the information because
using the online questionnaire could help us get evidence from potential participants which
may come from different countries and facilitate the collection of responses from a large
number of participants (Campbell et al. 2013).

3.3.1 Creating the questionnaire and recruitment of participants

We formulated the survey questionnaire covering fiveRQs (RQ1,RQ2,RQ5,RQ6, andRQ7).
The questionnaire was prepared in both English and Chinese in order to get more responses.
Thequestionnaire inEnglish couldhelp us invite potential participants from theWorld, and the
questionnaire in Chinese could increase the probability of practitioners in China filling them
out. To ensure that themeaning of the questionnaire is the same in both languages, the first two
authors who are native Chinese speakers translated the questionnaire in English into Chinese,
and the third author checked and refined the translation. The questionnaire is composed of
seven parts: the Welcome page shows the questionnaire requirements, introduction, and an
example of code snippet used in review comments, one question (SQ1) about participants’
background information, two questions (SQ2 and SQ3) about validating RQ1 and RQ2, and
three questions (SQ4, SQ5, and SQ6) about answering RQ5, RQ6, and RQ7 (see Tables 6
and 7). After preparing the survey questionnaire, we needed to select the survey participants.
Our target participants are software developers with code review experience, and we used the
following contact channels to invite the potential respondents with code review experience:

– Developers from the OpenStack and Qt communities: To engage developers from the
OpenStack and Qt communities in our survey study, we employed two ways: (1) send
survey invitation emails to the 640 developers who had provided code snippets in code
reviews collected in the dataset of our exploratory study and (2) send a survey invitation
email to the developermailing lists ofOpenStack andQt. For (1),when sending the survey
invitation emails to the 640 developers, we first apologized for bothering them. Besides,
we only emailed these developers once. For (2), we also sent the survey invitation email
only one time to the developer mailing lists of OpenStack and Qt in order to contact
a wide range developers of OpenStack and Qt. With these measures, developers from

123

Page 15 of 45 78

Empirical Software Engineering (2024) 29:78

Table 4 Software development groups in Linkedin used to post our survey

Linkedin Group URL

LP1 Software Developer http://alturl.com/aybty

LG2 Agile and Lean Software Development http://alturl.com/fgvm3

LP3 Software Engineer - Full Stack Developer http://alturl.com/cxkxo

LP4 Java / J2EE / Core Java / Corejava / Java Developer / Software
Engineer - (JAVA)

http://alturl.com/bzd3y

LP5 Python Developer / Full Stack Developer /WebDeveloper / Soft-
ware Developer / Data Analyst

http://alturl.com/uoqz5

LP6 Software Developer, Programmer and Architect (Java | Python |
PHP | C# | C++ | GO | Swift)

http://alturl.com/v7y5p

LP7 Software Engineer / Developer / Programmer / Data Analyst /
Data Scientist / Data Engineer / RPA

http://alturl.com/5h74j

OpenStack and Qt could voluntarily choose whether to fill out the survey questionnaire
with minimal interruption.

– Developers from well-known software companies:Wecontacted developers fromwell-
known software companies inChina, i.e., ByteDance,Alibaba, andTencent, to participate
in our survey study. These companies are the leading and most prestigious IT companies
in China. ByteDance and Alibaba have been credited as the top 50 most innovative
companies in 20239, while Tencent is the world’s tenth most valuable company as of
Feburary 202210. To collect as many responses as possible, we also employed snowball
sampling (Shull et al. 2007) by requesting theses developers to share the survey invitation
with individuals or groups deemed as potential participants.

– Developers from professional software development groups: We posted the survey
invitation on software development groups listed in Table 4 on Linkedin, where software
developers from around the world share their issues, experiences, and knowledge.

Note that throughout the entire survey study, we upheld the privacy of OpenStack and
Qt community members while gathering and utilizing information regarding code reviews.
We tried our best to make sure that our research was conducted ethically, ensuring the
confidentiality of the data collected, and all the data acquired was solely utilized for research
purposes.

3.3.2 Evaluating and validating the questionnaire

Before disseminating the survey invitations,we conducted a pilot surveywith developers from
the OpenStack and Qt communities to evaluate and validate the questionnaire. For the 640
developers who had provided code snippets in code reviews that we collected in the dataset of
our exploratory study, we ranked them based on the number of review comments they made
as an indicator of activeness, and sent the survey invitations to the top 100 most active code
reviewers. Out of the 100 participants contacted for the pilot survey, 10 replied. By looking
through the pilot results, we checked the understandability of the survey questions and the
effectiveness of each question. We found that the length of the survey is appropriate, the

9 http://alturl.com/wef4g
10 http://alturl.com/n9rgs

123

78 Page 16 of 45

http://alturl.com/aybty
http://alturl.com/fgvm3
http://alturl.com/cxkxo
http://alturl.com/bzd3y
http://alturl.com/uoqz5
http://alturl.com/v7y5p
http://alturl.com/5h74j
http://alturl.com/wef4g
http://alturl.com/n9rgs

Empirical Software Engineering (2024) 29:78

Table 5 The Welcome page of the survey questionnaire

The goal of this survey is trying to understand the practice and purposes of providing code snippets in code
reviews. This questionnaire is designed to capture the knowledge and experience of industrial practitioners
in the use of code snippets in code reviews. Our questionnaire contains 4 closed-ended questions and 2
open-ended questions, which may take about 3-5 minutes.

Note that no personal information will be involved in this questionnaire and nor will your response be
disclosed to the third parties. Please feel free to contact us if you have any questions or concerns.

Thank you very much for your participation!

As shown in the example below, a reviewer made a suggestion towards code style and provided a code
snippet to the developer in his/her code review comment, which intends to help the developer write more
readable code.

questions are clear and easy to understand, and the answers to the questions are meaningful,
and consequently we did not refine the questionnaire. Finally, our survey questionnaire11

is composed of 4 closed-ended questions and 2 open-ended questions. Table 5 presents the
Welcome page of the survey questionnaire, and Table 6 presents the survey questions of the
questionnaire.

3.3.3 Conducting the survey and analyzing survey data

After finalizing the questionnaire, we sent out the survey invitations to the participants we
recruited. The invitations were sent on March 26, 2023, and as of May 31, 2023, a total of
63 responses were collected. For the 63 participants who filled out the survey questionnaire,
43 are developers from OpenStack and Qt communities or LinkedIn groups, while 17 are
developers from well-known software companies in China. However, we were unable to tell
the response rate for both open-source and closed-source cases. This is because we lacked the
information regarding the number of developers who received our survey invitation emails
from the developer mailing lists of OpenStack and Qt. Additionally, the anonymity of the
survey responses made it challenging to identify the sources of the respondents.

11 https://forms.gle/7eKfjhzHtnBXhEMJ7

123

Page 17 of 45 78

https://forms.gle/7eKfjhzHtnBXhEMJ7

Empirical Software Engineering (2024) 29:78

Ta
bl
e
6

Su
rv
ey

qu
es
tio

ns
on

co
de

sn
ip
pe
ts
in

co
de

re
vi
ew

s

ID
Ty

pe
of

Q
ue
st
io
ns

Q
ue
st
io
ns

Ty
pe

of
A
ns
w
er
s

SQ
1

B
ac
kg

ro
un

d
in
fo
rm

at
io
n
ab
ou

tp
ar
tic

ip
an
ts

Q
1.
H
ow

m
an
y
ye
ar
s
ha
ve

yo
u
be
en

in
vo
lv
ed

in
so
ft
w
ar
e

de
ve
lo
pm

en
t?

<
1
ye
ar

/1
∼

3
ye
ar
s
/3

∼
5
ye
ar
s
/>

5
ye
ar
s

SQ
2

Q
ue
st
io
n
fo
r
va
lid

at
in
g
R
Q
1

Q
2.

H
ow

of
te
n
do

yo
u
pr
ov
id
e
co
de

sn
ip
pe
ts
in

re
vi
ew

co
m
m
en
ts
w
he
n
co
nd

uc
tin

g
co
de

re
vi
ew

s?
N
ev
er

/V
er
y
fe
w
/S

om
et
im

es
/O

ft
en

SQ
3

Q
ue
st
io
n
fo
r
va
lid

at
in
g
R
Q
2

Q
3.
(M

ul
tip

le
C
ho
ic
e)
A
s
a
re
vi
ew

er
in
co
de

re
vi
ew

s,
fo
r

w
ha
t
pu

rp
os
es

do
yo

u
pr
ov
id
e
co
de

sn
ip
pe
ts

in
re
vi
ew

co
m
m
en
ts
?

Im
pr
ov
in
g
C
od

e
Im

pl
em

en
ta
tio

n
-
Po

in
t
ou

t
al
te
rn
at
iv
e

so
lu
tio

ns
or

ad
vi
ce

to
im

pr
ov
e
th
e
cu
rr
en
t
co
de

in
th
e

pa
tc
hs
et
s
(e
.g
.,
de
si
gn

or
de
ta
ile
d
im

pl
em

en
ta
tio

n)
./
Fo

l-
lo
w
in
g
C
od

e
St
yl
e
-
M
ak
e
th
e
st
yl
e
of

th
e
cu
rr
en
t
co
de

co
ns
is
te
nt

w
ith

th
e
be
st

co
de

co
nv
en
tio

ns
.
/
C
or
re
ct
in
g

C
od

e
-S

ho
w
w
ha
tk
in
d
of
m
is
ta
ke
sd

ev
el
op

er
sh

av
e
m
ad
e

in
cu
rr
en
t
co
de

an
d
to

co
rr
ec
t
th
e
er
ro
r
co
de
.
/
C
om

-
pl
em

en
tin

g
C
od

e
Im

pl
em

en
ta
tio

n
-
R
em

in
d
de
ve
lo
pe
rs

th
at
th
e
cu
rr
en
tc
od

e
im

pl
em

en
ta
tio

ns
ar
e
in
co
m
pl
et
e
an
d

th
ey

sh
ou

ld
co
m
pl
em

en
tt
he

co
de

w
ith

th
e
pr
ov
id
ed

co
de

sn
ip
pe
ts
./
E
la
bo
ra
tin

g
-H

el
p
re
vi
ew

er
s
su
pp
le
m
en
tt
he
ir

ex
pl
an
at
io
ns

or
ill
us
tr
at
io
ns
.
/
Pr
ov
id
in
g
C
on

te
xt

-
Pr
o-

vi
de

ad
di
tio

na
li
nf
or
m
at
io
n
re
la
te
d
to
w
ha
tr
ev
ie
w
er
s
ha
d

sa
id

in
th
e
re
vi
ew

co
m
m
en
ts
./

O
th
er

SQ
4

Q
ue
st
io
n
fo
r
an
sw

er
in
g
R
Q
5

Q
4.

(O
pt
io
na
l)
A
s
a
re
vi
ew

er
in

co
de

re
vi
ew

s,
in

w
hi
ch

sc
en
ar
io
s
yo

u
te
nd

to
pr
ov
id
e
co
de

sn
ip
pe
ts

in
co
de

re
vi
ew

co
m
m
en
ts
?

Fr
ee

te
xt

SQ
5

Q
ue
st
io
n
fo
r
an
sw

er
in
g
R
Q
6

Q
5.
A
s
a
de
ve
lo
pe
ri
n
co
de

re
vi
ew

s,
w
ha
ti
s
yo
ur

at
tit
ud
e

to
w
ar
ds

th
e
pr
ov
id
ed

co
de

sn
ip
pe
ts
in

co
de

re
vi
ew

s?
Po

si
tiv

e.
It
hi
nk

it
is
a
go

od
th
in
g
to
se
e
re
vi
ew

co
m
m
en
ts

th
at
co
nt
ai
n
co
de

sn
ip
pe
ts
./
N
eu
tr
al
.I
do
n’
tc
ar
e
if
re
vi
ew

co
m
m
en
ts
co
nt
ai
n
co
de

sn
ip
pe
ts
or
no
t.
/N

eg
at
iv
e.
It
hi
nk

it
is

tr
ou

bl
es
om

e
to

se
e
re
vi
ew

co
m
m
en
ts

th
at

co
nt
ai
n

co
de

sn
ip
pe
ts
./

O
th
er

SQ
6

Q
ue
st
io
n
fo
r
an
sw

er
in
g
R
Q
7

Q
6.
(O

pt
io
na
l)
A
sa

de
ve
lo
pe
ri
n
co
de

re
vi
ew

s,
w
ha
tc
ha
r-

ac
te
ri
st
ic
s
of

co
de

sn
ip
pe
ts
w
ou
ld

yo
u
lik

e
re
vi
ew

er
s
to

pr
ov
id
e
in

co
de

re
vi
ew

co
m
m
en
ts
?

Fr
ee

te
xt

123

78 Page 18 of 45

Empirical Software Engineering (2024) 29:78

Table 7 Survey questions and their analysis methods for answering the RQs

Survey Question Data Analysis Method RQ

SQ1 Descriptive Statistics Demographic

SQ2 Descriptive Statistics RQ1

SQ3 Descriptive Statistics RQ2

SQ4 Open Coding and Constant Comparison RQ5

SQ5 Descriptive Statistics RQ6

SQ6 Open Coding and Constant Comparison RQ7

We used descriptive statistics (Kaur et al. 2018), Open Coding, and Constant Comparison
techniques (Glaser and Strauss 2017) to analyze the quantitative (i.e., closed-ended questions)
and qualitative (i.e., open-ended questions) responses to the survey questions. Table 7 presents
the survey questions and their analysis methods for answering the RQs.

According to the survey results, the distribution of software development experience of
the survey participants is shown in Fig. 3. We can find that 79.4% (11.1% + 68.3% = 79.4%)
of the participants have more than 3 years of software development experience, and nearly
70% of the participants have more than 5 years of software development experience, which
somewhat indicates that the survey results are representative.

Fig. 3 Distribution of software development experience of the participants

123

Page 19 of 45 78

Empirical Software Engineering (2024) 29:78

Table 8 Counts and percentages
of review comments that contain
code snippets

Community #RCs #RCs with Code Snippets (CSs) (%)

OpenStack 22,631 967 (4.3%)

Qt 46,973 2,246 (4.8%)

Total 69,604 3,213 (4.6%)

Note that two examples are provided for the two open-ended survey questions respectively
to help participants better understand the terms used in the questions. The examples were
formed based on the results of the exploratory study, which may somewhat restrict practi-
tioners from answering the two open-ended survey questions. In order to get valid survey
results, we excluded the responses that are inconsistent with the question, randomly filled
in, or meaningless when we analyzed the data. During the process of analyzing the data, the
first three authors discussed inconsistent opinions till they reached an agreement. The survey
results have been provided in our dataset (Zhang et al. 2023).

4 Results

In this section, we present the final results of the seven RQs formulated in Section 3.1.

4.1 RQ1: the extent code snippets used in code reviews

4.1.1 Results of RQ1

To answer RQ1, we investigated (1) the proportion of review comments that contain code
snippets, (2) the proportions of code snippets provided in review comments by reviewers
and developers respectively, and (3) the proportion of developers and reviewers who had
provided code snippets in review comments.
The proportion of review comments that contain code snippets

Table 8 presents the counts and percentages of review comments that contain code snippets
per community. In total, we collected 69,604 review comments fromOpenStack andQt, 3,213
of which contain code snippets. Overall, the percentage of code snippet comments is 4.6%
only, which means that code snippets are not prevalently used in review comments by during
code review. Moreover, the percentages of code snippet comments are similar in OpenStack
and Qt, thus indicating a consistency of the results.
The proportion of code snippets provided in review comments by reviewers and devel-
opers respectively

Table 9 Counts and percentages of review comments that contain code snippets provided by reviewers and
developers

Community #RCs with CSs by Reviewers (%) #RCs with CSs by Developers (%)

OpenStack 863 (89.2%) 104 (10.8%)

Qt 1,905 (84.8%) 341 (15.2%)

Total 2,768 (86.2%) 445 (13.8%)

123

78 Page 20 of 45

Empirical Software Engineering (2024) 29:78

Table 10 Counts and Percentages of developers and reviewers who had provided code snippets in code reviews

Community #Developers and Reviewers #Developers and Reviewers
who had Provided CSs

%

OpenStack 338 86 25.4%

Qt 375 129 34.4%

Total 713 215 30.2%

Table 9 shows the counts and percentages of code snippet comments provided by review-
ers and developers respectively. In code reviews, most review comments that contain code
snippets are provided by reviewers, whose proportions in OpenStack and Qt are 89.2% and
84.4% respectively. In general, more than 85% (2,768 out of 3,213, 86.2%) review comments
with code snippets are provided by reviewers. It is not surprising that reviewers are the pri-
mary source that provides code snippet comments because reviewers play a major role in
code reviews.
The proportion of developers and reviewers who had provided code snippets in review
comments

Table 10 presents the proportion of developers and reviewers who had provided code
snippets in review comments according to the dataset we collected from OpenStack and Qt.
From the results, we can find that 25.4%developers and reviewers inOpenStack had provided
code snippets, while 34.4% in Qt. Overall, the proportion of developers and reviewers who
had provided code snippets in review comments is 30.2%. However, given the reason that in
a project a contributor can play both roles, i.e., developer and reviewer, we could not tell the
proportion of developers or reviewers providing code snippets in review comments.

4.1.2 Feedback on the findings of RQ1

Figure 4 shows the distribution of how often industrial developers provide code snippets in
review comments when conducting code reviews.We can find that most participants said that
they provided code snippets in code reviews sometimes or very few, accounting for 76.2% in
total. More specifically, 50.8% participants chose that they sometimes used code snippet in
code reviews and 25.4% chose that they used code snippets very few. 17.5% participants said
that they often used code snippets in code reviews. Only 4 participants expressed that they
never used code snippets when conducting code reviews, accounting for 6.3%. According
to the feedback, most developers tend to use code snippets in code review process, but how
often they use code snippets mainly depends on the necessity of the context (reviewed code
and review discussions) rather than the perceived value of using code snippets in review
comments.

RQ1 Summary: According to our results, only a small proportion of review com-
ments contain code snippets (less than 5%), and most code snippet comments are
provided by reviewers rather than developers (more than 85%).

123

Page 21 of 45 78

Empirical Software Engineering (2024) 29:78

4.2 RQ2: the reviewers’purposes of providing code snippets in code reviews

4.2.1 Results of RQ2

The purposes of reviewers providing code snippets in code reviews
To answer RQ2, we used Open Coding and Constant Comparison methods to identify the

purposes of reviewers providing code snippets in code reviews, and two high-level categories
are formulated (i.e., Suggestion and Citation). We further identified four detailed purposes
of providing code snippets in code reviews under the Suggestion category and two detailed
purposes under the Citation category. Moreover, to make the detailed purpose Improving
Code Implementation clearer, six specific purposes are categorized under it (see Fig. 5). The
identified purposes are presented below, and we provide a review comment example for each
detailed purpose.

(1) Suggestion refers to the situation in which reviewers provide code snippets in review
comments to recommend developers what they can do or what they should do to make the
quality of code better. The provided code snippets are what reviewers want developers to
change the current code to. Suggestion contains four detailed purposes:

Improving Code implementation The reviewed code is correct and complete but needs
improvements. The code snippets provided by reviewers in code reviews are used to remind
developers what they can do to improve specific quality attributes of current code:

Fig. 4 Distribution of how often industrial developers provide code snippets in code reviews

123

78 Page 22 of 45

Empirical Software Engineering (2024) 29:78

El
ab

or
at

in
g

Pr
ov

id
in

g
C

on
te

xt

C
at

eg
or

y
of

Pu
rp

os
es

 o
f C

od
e

Sn
ip

pe
ts

Pr
ov

id
ed

 b
y

R
ev

ie
w

er
s

in
 C

od
e

R
ev

ie
w

s
C

om
pl

em
en

tin
g

C
od

e
Im

pl
em

en
ta

tio
n

C
or

re
ct

in
g

C
od

e

Im
pr

ov
in

g
Te

st
ab

ili
ty

 o
f C

od
e

C
ita

tio
n

Su
gg

es
tio

n

C
at
eg

or
y

Ta
xo

no
m

y
Le

ge
nd

Ta
xo

no
m

y D
et

ai
le

d
Pu

rp
os

e

Im
pr

ov
in

g
C

od
e

Im
pl

em
en

ta
tio

n

Im
pr

ov
in

g
C

om
pa

tib
ili

ty
 o

f C
od

e

Im
pr

ov
in

g
Po

rt
ab

ili
ty

 o
f C

od
e

Im
pr

ov
in

g
R

ob
us

tn
es

s
of

 C
od

e

Im
pr

ov
in

g
Pe

rf
or

m
an

ce
 o

f C
od

e

Im
pr

ov
in

g
M

ai
nt

ai
na

bi
lit

y
of

 C
od

e

Fo
llo

w
in

g
C

od
e

St
yl

e

Fi
g.
5

C
at
eg
or
y
of

pu
rp
os
es

of
co
de

sn
ip
pe
ts
pr
ov
id
ed

by
re
vi
ew

er
s
in

co
de

re
vi
ew

s

123

Page 23 of 45 78

Empirical Software Engineering (2024) 29:78

– Improving Maintainability of Code: The provided code snippets are what reviewers
want developers to change the current code to, which can make code simpler, more
readable, more efficient, and thus easier to maintain.

Link: http://alturl.com/am3q9
Reviewer: “Sure, I’m just saying we’re supposing that check_traits will always
return this way. I’m just saying (for code maintenance) that having some explicit
attributes would help (and would raise some error in case the returned object
changes). eg. [code snippet]”

– Improving Performance of Code: The provided code snippets are what reviewers want
developers to change the current code to, which can make code execute faster and be
more efficient.

Link: http://alturl.com/4gcs7
Reviewer: “I’ll let Nate comment on this too, but the problem now is there will
always be two lookups for the SG now,which could affect performance. Oneway
to lessen this would be a slight change here, something like: [code snippet]...”

– Improving Robustness of Code: The provided code snippets are what reviewers want
developers to change the current code to, which can make code have stronger ability to
withstand or overcome adverse conditions.

Link: http://alturl.com/uwr3h
Reviewer: “This should not be computed by len / oldLength,whichmayoverflow
for small oldLength and large len. We know oldLength is of comparable order
to dx() and dy(), so [code snippet] is more numerically robust.”

– Improving Testability of Code: The provided code snippets are what reviewers want
developers to change the current code to, which canmake code support testing to a greater
degree in a given test environment.

Link: http://alturl.com/rfz6y
Reviewer: “... i guess this is why you said almost all places in the commit
message.maybe you should still use the fixture here too for consitency so add a
setup thatdoes [code snippet]. this works but it might be nice have this bevhior
in all tests by defualt.”

– Improving Compatibility of Code:The provided code snippets are what reviewers want
developers to change the current code to, which can make code enhance the ability to
work with data or configurations created by older versions.

Link: http://alturl.com/oq69p
Reviewer: “Why even botherwith the _WITH_ARGS() version?Wehavemacro
varargs now.At the very least,make life easy for clients: [code snippet].Wecould,
of course, do similar for Q_GLOBAL_STATIC(), although we’d have to keep
the _WITH_ARGS() version for backwards compatibility.”

123

78 Page 24 of 45

http://alturl.com/am3q9
http://alturl.com/4gcs7
http://alturl.com/uwr3h
http://alturl.com/rfz6y
http://alturl.com/oq69p

Empirical Software Engineering (2024) 29:78

– Improving Portability of Code: The provided code snippets are what reviewers want
developers to change the current code to, which can make code run on a wider variety of
platforms.

Link: http://alturl.com/urdmh
Reviewer: “Would [code snippet] work, too? If so I’d prefer that as this doesn’t
depend directly on the host os and potentially works remotely.”

Following code style The reviewed code is correct and complete but has code style issues.
The code snippets provided by reviewers in code reviews are used to remind developers the
code style issues of current code, and developers should change the current code style to the
style of provided code snippets, to be consistent with the best code conventions.

Link: http://alturl.com/jis7g
Reviewer: “I think this is not an acceptable coding style for Qt in this case. Would
go with something like: [code snippet]...”

Correcting code The reviewed code is incorrect (e.g., has logic errors). The code snippets
provided by reviewers in code reviews are used to remind developers the incorrectness of
current code, and developers should correct the error code with the provided code snippets.

Link: http://alturl.com/4c63s
Reviewer: “Hi, This is a BUG. Should modify it like this: [code snippet]...”
Developer: “Thanks much for pointing it out! I will investigate the issue.”

Complementing code implementation The reviewed code is incomplete. The code snip-
pets provided by reviewers in code reviews are used to remind developers the incompleteness
of current code, and developers should complement the codewith the provided code snippets.

Link: http://alturl.com/qt62k
Reviewer: “The case of empty headers (or CRLF-only headers) would have size()
== 0 but succeed. It’s probably worth adding. Suggestion: [code snippet].”
Developer: “Done.”

(2) Citation refers to the situation in which reviewers provide code snippets cited from
internal (e.g., the code in the current files of the patchsets) or external (e.g., the code in other
files of the project) sources in code reviews to offer developers necessary review-related
information rather than offer suggestions. Citation contains two detailed purposes:

Elaborating The code snippets cited by reviewers in code reviews are used to help review-
ers supplement their explanations or illustrations.

Link: http://alturl.com/3h8iq
Reviewer: “I think you’re just getting confused because we’re building the regex in
two steps. metakey_pattern_base isn’t being sent to the regex engine - we’re using
it to compose the regex that is. Maybe this helps: [code snippet].”

123

Page 25 of 45 78

http://alturl.com/urdmh
http://alturl.com/jis7g
http://alturl.com/4c63s
http://alturl.com/qt62k
http://alturl.com/3h8iq

Empirical Software Engineering (2024) 29:78

Table 11 Counts and percentages of review comments for high-level purposes of using code snippets in the
OpenStack and Qt communities

Community #RCs with CSs by
Reviewers

#RCs with Suggestion
Purpose

#RCs with Cita-
tion Purpose

OpenStack 863 747 (86.6%) 116 (13.4%)

Qt 1,905 1,575 (82.7%) 330 (17.3%)

Total 2,768 2,322 (83.9%) 446 (16.1%)

When reviewers provide code snippets in code reviews for the purpose of Elaborating,
they usually have offered suggestions in the previous comments and they cite code snippets
in a following new comment to explain why they make the previous suggestions.

Providing context The code snippets cited by reviewers in code reviews are used to pro-
vide contextual information related towhat reviewers hadmentioned in the review comments.

Link: http://alturl.com/8rzjs
Reviewer: “In ‘Ml2Plugin._create_port_db’ the variable passed is the dictionary:
[code snippet]”

When reviewers provide code snippets in code reviews for the purpose of Providing
Context, they usually cite code snippets fromother files of the sameproject tomake developers
get the contextual information. Reviewers may also provide links related to the provided code
snippets at the same time.
The proportion of code snippets provided in review comments for different purposes
by reviewers

We further investigated the distribution of the purposes of code snippets provided by
reviewers in code reviews. Table 11 presents the distribution of the two high-level purposes
of providing code snippets in theOpenStack andQt communities. In general, among the 2,768
review comments with code snippets provided by reviewers, 2,322 (83.9%) are provided for
the purpose of Suggestion, while 446 (16.1%) for the purpose of Citation. In both OpenStack
and Qt communities, the main purpose of reviewers using code snippets in code reviews is
Suggestion, and the proportion of review comments for Suggestion purpose is significantly
higher than the proportion of Citation. This result shows that code snippets are usually
provided by reviewers in review comments to make suggestions for developers.

Moreover, Table 12 presents the distribution of the detailed purposes under the two high-
level purposes of using code snippets in code reviews. Improving Code Implementation is
the main purpose of reviewers providing code snippets in code reviews, which is more than
50% in both OpenStack and Qt, and higher than other purposes by a large margin, indicating
that reviewers often provide code snippets to offer developers suggestions which can improve
quality attributes of current code. Among all the quality attributes, reviewers want to improve
the maintainability of reviewed code most. Besides, the proportions of Correcting Code,
Complementing Code Implementation, Elaborating, and Providing Context are very close
in both communities. However, the proportion of Following Code Style varies considerably
between the two communities. In OpenStack, Following Code Style accounts for 16.6%,
making it the second most frequent purpose of providing code snippets by reviewers in code
reviews. However in Qt, Following Code Style accounts for only 4.8%.
The proportion of reviewers who had provided code snippet comments with different
purposes

123

78 Page 26 of 45

http://alturl.com/8rzjs

Empirical Software Engineering (2024) 29:78

Table 12 Counts and percentages of review comments for each detailed purpose of using code snippets in
code reviews

Detailed Purpose #RCs in #RCs in
OpenStack (%) Qt (%)

Improving Code Improving Maintainability of Code 416 (48.2%) 1,052 (55.2%)

Implementation Improving Performance of Code 11 (1.3%) 33 (1.7%)

Improving Robustness of Code 4 (0.5%) 20 (1.0%)

Improving Testability of Code 1 (0.1%) 6 (0.3%)

Improving Compatibility of Code 0 (0.0%) 2 (0.1%)

Improving Portability of Code 0 (0.0%) 1 (0.1%)

Following Code Style 143 (16.6%) 91 (4.8%)

Correcting Code 90 (10.4%) 195 (10.2%)

Complementing Code Implementation 82 (9.5%) 175 (9.2%)

Elaborating 72 (8.3%) 217 (11.4%)

Providing Context 44 (5.1%) 113 (5.9%)

Total 863 1,905

In total, there are 86 reviewers who had provided code snippets in OpenStack, and 101
in Qt. We then counted the reviewers who provided code snippet comments for different
purposes, as shown in Table 13. For reviewers who provided code snippets in code reviews,
most of them (i.e., 75.0% in OpenStack and 83.2% in Qt) provided snippets to Improve
Code Implementation, which is also the most common purpose regarding the number of
code snippet comments. In OpenStack, the percentages of reviewers providing code snippet
suggestions for the other three purposes (i.e., Following Code Style, Correcting Code, and
Complementing Code Implementation) are very close, and reviewers who provided code
snippet comments for the purpose of Providing Context account the least (22.4%). In Qt, the
proportion of reviewerswho provided code snippet comments aiming atFollowing Code Style
account the least (25.7%), while the percentages of reviewers who provided code snippet
comments for the remaining four purposes (i.e., Correcting Code, Complementing Code
Implementation, Elaborating, and Providing Context) are comparable.

Table 13 Counts and percentages of reviewers who had provided code snippets in code reviews for different
purposes

Detailed Purpose #Reviewers in OpenStack (%) #Reviewers in Qt (%)

Improving Code Implementation 57 (75.0%) 84 (83.2%)

Following Code Style 24 (31.6%) 26 (25.7%)

Correcting Code 26 (34.2%) 43 (42.6%)

Complementing Code Implementation 25 (32.9%) 39 (38.6%)

Elaborating 21 (27.6%) 47 (46.5%)

Providing Context 17 (22.4%) 45 (44.6%)

123

Page 27 of 45 78

Empirical Software Engineering (2024) 29:78

4.2.2 Feedback on the findings of RQ2

According to the results of how often developers provide code snippets in code reviews of the
survey study, 4 participants (6.3%) answered that they never provided code snippets in review
comments. So we analyzed the responses of the remaining 59 participants to investigate the
purposes of industrial developers providing code snippets. The survey question (SQ3) in the
questionnaire provides the six detailed purposes of code snippets obtained from the repository
mining study (see Section 4.2.1) as candidate options for participants to choose. Note that
the participants can select multiple purposes when answering this survey question, and they
can also fill in the “Other” field to express other purposes of providing code snippets that
are not covered by the candidate options. In the 59 responses, 3 participants completed the
“Other” field. However, we decided to exclude their answers to the “Other” field as these
3 participants did not explain their other purposes clearly. In the “Other” field, they just
expressed their opinions about using code snippets in code reviews and did not highlight
the point, as one of them stated “nearly only if writing code is more readable and more
explanatory than normal text”, which is about the characteristics of code snippets instead of
a clear purpose of providing them.

Figure 6 presents the feedback on our findings of RQ2. It shows that the most com-
mon purpose of participants providing code snippets in code reviews is Suggestion. In total,
45 participants said that they would provide code snippets for Improving Code Implemen-
tation, accounting for 76.2%, making Improving Code Implementation the most common
detailed purpose for industrial developers to provide code snippets in code reviews. This
result conforms to the repository mining study results (i.e., the proportion of reviewers who
had provided code snippets for different purposes). The counts and percentages of Correct-
ing Code, Following Code Style, and Elaborating are very close, accounting for 66.1% (39),
61.0% (36), and 57.6% (34) respectively. Moreover, 25 participants selected Providing Con-
text as their purpose of using code snippets in code reviews, accounting for 42.4%. Only 16
participants said that they would provide code snippets with the purpose of Complementing
Code Implementation when conducting code reviews as reviewers, accounting for 27.1%
merely.

RQ2 Summary: We identified the purposes of reviewers providing code snippets in
code reviews and categorized them into two high-level categories: Suggestion and
Citation. We further identified six types of detailed purposes under the two high-
level categories, including Improving Code Implementation, Following Code Sytle,
Correcting Code,Complementing Code Implementation,Elaborating, andProviding
Context. Furthermore, we refined the Improving Code Implementation purpose by
categorizing six specific purposes under this category. The results show that the main
purpose of using code snippets by reviewers in code reviews is Suggestion, which
accounts for 83.9% in total. Besides, most code snippets are provided for the purpose
of Improving Code Implementation to enhance code maintainability.

4.3 RQ3: the developers’ acceptance of code snippet suggestions

To answer RQ3, we explored how developers treat code review comments containing code
snippets for the purpose of Suggestion, and we found that developers either accept, ignore, or

123

78 Page 28 of 45

Empirical Software Engineering (2024) 29:78

Fi
g.
6

C
ou

nt
s
of

de
ta
ile

d
pu

rp
os
es

of
us
in
g
co
de

sn
ip
pe
ts
in

co
de

re
vi
ew

s
fr
om

th
e
in
du

st
ri
al
su
rv
ey

123

Page 29 of 45 78

Empirical Software Engineering (2024) 29:78

donot accept code snippet suggestions. Thenwe investigated (1) the distribution of developers
accepting, ignoring, or not accepting code snippet suggestions and (2) the acceptance rate of
code snippet suggestions for the four detailed purposes of Suggestion presented in the results
of RQ2 (see Section 4.2).
The distribution of developers accepting, ignoring, or not accepting code snippet sug-
gestions

The distribution of how developers treat code snippet suggestions in code reviews is
shown in Fig. 7. In OpenStack and Qt, we got 2,322 code snippet suggestions, 1,442 of
which were accepted by developers, accounting for 62.1%. However, 12.9% of the code
snippet suggestions were just ignored by developers, who neither responded to these review
comments nor made corresponding code changes. 581 code snippet suggestions were not
accepted by developers, accounting for 25.0%. In the OpenStack and Qt communities, the
acceptance of code snippet suggestions is 70.5% and 58.1%, respectively. As a whole, most
code snippet suggestions (more than 60%) were accepted by developers, and about 40% of
code snippet suggestions were just ignored or not accepted. This finding suggests that code
snippets can serve as an effective way when reviewers provide suggestions for developers in
code reviews.
The acceptance rate of code snippet suggestions for four detailed purposes of Suggestion

We further investigated the acceptance rate of four detailed Suggestion purposes as pre-
sented in Fig. 8. Overall, the result shows that the acceptance rate of Following Code Style
(73.9%) is the highest, while the acceptance rate of Improving Code Implementation (57.7%)
is the lowest. Besides, the acceptance rates of Correcting Code and Complementing Code
Implementation are very close, with a minor difference 0.1% between them.

RQ3 Summary: In general, most code snippet suggestions (62.1%) were accepted
by developers. Among the four detailed Suggestion purposes, the acceptance rate of
Following Code Style is the highest, while the acceptance rate of Improving Code
Implementation is the lowest.

4.4 RQ4: the reasons that developers do not accept code snippet suggestions

According to the results of RQ3, 581 code snippet suggestions made by reviewers were not
accepted by developers. To answer RQ4, we further analyzed these not accepted code snippet
suggestions through the discussions between developers and reviewers. Based on the con-
textual information around the review comments, we identified the reasons why developers
do not accept code snippet suggestions as listed in Table 14.

Many developers did not clarify the reasons behind their non-acceptance of code snippet
suggestions. Out of the 581 unaccepted code snippet suggestions, 144 were not accepted
due to unknown reasons. Of the remaining 437 unaccepted code snippet suggestions, differ-
ence in the opinions between developers and reviewers (31.1%) and reviewer’s suggestion is
flawed (24.0%) are the two main causes for the non-acceptance of code snippet suggestions.
Since the differences in coding preferences, coding ability, software development experi-
ence, and understanding of current code changes, developers may hold different opinions
against reviewers’ code snippet suggestions. For example, in the following review comment,
the developer thought that changing the code according to the reviewer’s suggestion was
unworthy, and he decided to keep the current code and rejected the reviewer’s suggestion.

123

78 Page 30 of 45

Empirical Software Engineering (2024) 29:78

Fi
g.
7

D
is
tr
ib
ut
io
n
of

ho
w
de
ve
lo
pe
rs
tr
ea
tc
od

e
sn
ip
pe
ts
ug

ge
st
io
ns

in
co
de

re
vi
ew

s

123

Page 31 of 45 78

Empirical Software Engineering (2024) 29:78

Fi
g.
8

A
cc
ep
ta
nc
e
ra
te
of

co
de

sn
ip
pe
ts
in

co
de

re
vi
ew

s
fo
r
fo
ur

de
ta
ile

d
pu

rp
os
es

of
Su

gg
es
tio

n

123

78 Page 32 of 45

Empirical Software Engineering (2024) 29:78

Table 14 Counts and percentages of the reasons that developers do not accept code snippet suggestions in
code reviews

Reason # %

Difference in the opinions between developers and reviewers 136 31.1%

Reviewer’s suggestion is flawed 105 24.0%

Adopt other proposed suggestion 70 16.0%

Consider as an optional suggestion 41 9.4%

Consider as a future plan 35 8.0%

Need to be discussed 15 3.4%

Avoid extra code complexity 10 2.3%

Improve code readability 9 2.1%

Developer removed the relevant code 9 2.1%

Keep code consistency 5 1.1%

Conflict with other patch 2 0.5%

Link: http://alturl.com/hb2m6
Reviewer: “Suggestion: add a method to remove the version to the Import (moti-
vation: shorter, this fix might be needed elsewhere). So then this would be shortened
to: [code snippet]”
Developer: “Import currently has no non-const methods so let’s keep it that way...
Could use reference here, too, but the minimal perf gain from that in literally mean-
ingless here, so not worth changing.”

Another main reason for developers not accepting reviewers’ code snippet suggestions
is reviewer’s suggestion is flawed. Sometimes, reviewers miss the context and provide
unsuitable solutions to current code change (see the example below). Sometimes, reviewers
proposed code snippets that have syntax or logical errors. Therefore, developers pointed out
the mistakes in the code snippet suggestions, and rejected the suggestions.

Link: http://alturl.com/6kb4v
Reviewer: “Could we use this on L401? [code snippet]”
Developer: “Why? image_chunks is intentionally initialized here so it does not get
filled in L381-392 (via the glance API call)”
Reviewer: “Yeah apologies I somehow missed that.”

Some code snippet suggestions were rejected because developers adopted other proposed
solutions. The adopted solutions may come from other reviewers, or from the developers
themselves. Some code snippet suggestions were considered as an optional suggestionwhich
are not necessary to follow or considered as a future plan which were not accepted now but
might be accepted in the follow-up patchsets. Another reason why developers do not accept
code snippet suggestions is because they thought that whether to modify the current code
based on the code snippets provided by reviewers needs to be discussed. For the reasons to
avoid extra code complexity and improve code readability, developers do not accept review-
ers’ code snippet suggestions to make code simpler and more readable (see the two examples
below):

123

Page 33 of 45 78

http://alturl.com/hb2m6
http://alturl.com/6kb4v

Empirical Software Engineering (2024) 29:78

Link: http://alturl.com/qnnou
Reviewer: “type hints? Note that you can avoid circular imports with something like
e.g. ’nova.network.neutron.API’ by doing the following: [code snippet]”
Developer: “Note that I don’t want to be reluctant to adding type hints here, but I
think we are adding extra code complexity for an unnecessary need...”

Link: http://alturl.com/cbrvr
Reviewer: “NIT (just a possibly stupid suggestion): [code snippet]”
Developer: “I will keep as-is now for readability. These methods have a long name
so doing 1 liners with them makes the indentation fun.”

In some review comments, developers removed the relevant code so they did not accept
reviewers’ code snippet suggestions:

Link: http://alturl.com/gu5cn
Reviewer: “by the way whil i like the operator module if this is all you are using it
for i would just do [code snippet]”
Developer: “Again, just code motion, this is actually dropped in the follow up series
by [URL].”

Keeping code consistency and conflicting with other patch are the least mentioned reasons
by developers, accounting for 1.1% and 0.5% respectively.

RQ4 Summary: We identified 11 categories of reasons why developers do not
accept reviewers’ code snippet suggestions, among which difference in the opinions
between developers and reviewers is the major reason.

4.5 RQ5: the scenarios in which reviewers provide code snippets

A total of 36 participants (57.1%) answered the open-ended question (SQ4) to provide the
scenarios of using code snippets in code reviews. Table 15 presents the 11 scenarios in which
reviewers provide code snippets when conducting code review collected from the feedback
of industrial developers.

Most participants expressed that they would like to provide code snippets in review com-
ments when code is more illustrative than words (27/36, 75.0%). For example, when a large
block of code has logical errors, it is easier to describe the errors by using code snippets rather
than words. As one participant stated “I think code snippets can be clearer than describing
the fix/improvement suggestion in some situations”.

Nine of the participants mentioned that when current code is suboptimal (e.g., when
current code “is unnecessarily complex or hard to follow”), they would provide code snippets
to help developers improve code quality. Five participants said that they would using code
snippets to advise developers not to deviate from code style. Besides, five other participants
mentioned that theywould provide standard code snippet examples to “help developers better
understand the suggestions in code review comments”.

123

78 Page 34 of 45

http://alturl.com/qnnou
http://alturl.com/cbrvr
http://alturl.com/gu5cn

Empirical Software Engineering (2024) 29:78

Table 15 Counts of the scenarios in which reviewers provide code snippets in code reviews

Scenario #

When code is more illustrative than words 27

Current code is suboptimal 9

Advise developers not to deviate from code style 5

Provide standard code snippet examples 5

Show algorithms, standard libraries, or tools 3

Guide new contributors 2

Avoid potential communication issues 2

Help developers know the target code elements 2

Elaborate the impact of code changes on user behavior 1

Ask about the relationship between code snippets 1

Refer to another code example 1

Three participants said that they would use code snippets to show algorithms, standard
libraries, or tools for developers. One of the three participants described the process in detail,
“I wonder if the programmer has implemented the function himself instead of using the stan-
dard library. In these cases, only writing is not enough, and for better understanding, a
sample code should also be written in the review. With an example, it can be said that the
standard library can be used in this way and the programmer’s time can be saved in this way”.
Moreover, two participants indicated that “when a difficult issue arises” and the new con-
tributors “are not entirely able to identify why the tests are not passing”, they would provide
code snippets in review comments to guide new contributors. Two other participants said that
they would consider using code snippets in code reviews to avoid potential communication
issues, which can accelerate the process of problem solving.

Some participants indicated that they would provide code snippets in code reviews when
there is a need to help developers know the target code elements, elaborate the impact of
code changes on user behavior, ask about the relationship between code snippets, and refer
to another code example. These scenarios are similar to the cases of providing code snippets
with the purpose ofElaborating orProviding Context in the results ofRQ2 (see Section 4.2.1).

RQ5 Summary: Among the 63 responses from industrial practitioners, 36 partici-
pants gave the scenarios in which reviewers provide code snippets in code reviews.
Based on the responses, we identified 11 categories of scenarios, among which over
80% participants mentioned that they would use code snippets in review comments
when code is more illustrate than words.

4.6 RQ6: the developers’ attitudes towards code snippets

The attitudes of industrial practitioners towards provided code snippets in code reviews is
shown in Fig. 9. Out of the 63 responses, 46 participants (73.0%) expressed positive attitudes,
thinking that code snippet comments are a good thing. Besides, 13 participants held a neutral
attitude towards provided code snippets, and they did not care whether review comments
contain code snippets.

123

Page 35 of 45 78

Empirical Software Engineering (2024) 29:78

Table 16 Counts of the characteristics of code snippets that developers expect reviewers to provide in code
reviews

Characteristic Example #

Understandable Pseudocode to help others under-
stand my idea

39

Fitting into existing code Generally simple examples which
can be fit into the existing code
with ease

28

Providing a better solution Sample code that can provide a
better solution

3

Scenario-specific Scenario-specific code snippets 1

Only one participant mentioned that using code snippets “is not beneficial for someone
else to solve an individual’s problems for him or her”, and is negative about provided code
snippets in code reviews.

Three participants filled in the “Other” field to answer the survey question. One of them
commented, “It depends, if it makes the review process faster, good. If it’s somebody telling
you ‘you should be doing something else’ then bad”. Another participant stated that, “Gener-
ally positive, as long as it facilitates communication”. The attitudes of these two participants
towards provided code snippets in review comments depend on whether the code snippets
are good for code review process. If providing code snippets can facilitate code review, they
would hold a positive attitude. Otherwise, they would be negative. One other participant men-
tioned that “I’d normally consider it to be a problem if there were things in the review that
could be solved by code snippets”. At the same time, this participant wrote that the members
of their development team were experienced, and they had worked in software industry for
6∼40 years, so there were few needs for code snippets in code reviews.

RQ6 Summary: For provided code snippets by reviewers in code reviews, most
developers (73.0%) hold a positive attitude. Besides, some developers’ attitudes
towards provided code snippets in review comments depend on whether these code
snippets are beneficial to the review process. If the code snippets are conducive, the
developers will be positive about them.

4.7 RQ7: the characteristics of code snippets developers expect reviewers to provide

Out of the 63 participants, 38 participants (60.3%) provided valid answers to the open-ended
question (SQ6). Table 16 shows the 4 categories of characteristics of code snippets that
developers expect reviewers to provide in review comments.

From Table 16, we can find that undetstandable and fitting into existing code are the
major characteristics developers want most in provided code snippets. More specifically,
most developers expect understandable code snippets, and they hope that the code snippets
should be simple, easy to read, provide detaied context, and highlight the point. As one
participant stated, “In my opinion, the desired code should be as simple as possible. In
this way, the programmer can quickly understand what to do, away from the sidelines”.
28 participants indicated that provided code snippets should be fitting into existing code.

123

78 Page 36 of 45

Empirical Software Engineering (2024) 29:78

Fi
g.
9

D
is
tr
ib
ut
io
n
of

th
e
at
tit
ud

es
of

in
du

st
ri
al
pr
ac
tit
io
ne
rs
to
w
ar
ds

pr
ov
id
ed

co
de

sn
ip
pe
ts
in

co
de

re
vi
ew

s

123

Page 37 of 45 78

Empirical Software Engineering (2024) 29:78

They hope reviewers to provide functional code snippets which can execute easilty. As one
participant mentioned, “Preferably be possible to copy & paste directly as a replacement to
the commented code”.

Few participants also stated other characteristics (i.e., providing a better solution and
scenario-specific) that they expected reviewers to provide with code snippets. We also found
that some participants did not care about the characteristics of code snippets in code reviews.
They just wanted reviewers to provide code snippets that could promote the code review
process, as one participant wrote “I have no preferences for this: I trust reviewers to use code
snippets where this is the most effective way to communicate their review comment”.

RQ7 Summary: We identified 4 types of characteristics of code snippets that devel-
opers expect reviewers to provide in code reviews, andwe found thatmost developers
expect provided code snippets in code reviews to be understandable and fitting into
existing code.

5 Discussion

In this section, we present a broader discussion of our empirical observations based on the
results of both the exploratory and survey study.

Developers should follow the best code conventions when programming and review-
ers should pay more attention to code style issues during code review According to the
results of RQ2, Following Code Style is one of the main purposes that reviewers provide code
snippets in review comments. This finding indicates that developers may be unfamiliar with
the code style used in the projects and thus may lead into code style issues. Allamanis et al.
(2014) found that one third of change reviews include feedback regarding code conventions,
and developers are often unaware of the conventions. We suggest developers to write code in
adherence to best code conventions to standardize the code formatting and reduce code style
issues, which can improve consistency of code and collaboration within development teams.
According to the results of RQ3, the acceptance rate of Following Code Style is the highest
among the four detailed Suggestion purposes, which implies that developers and reviewers
can easily reach a consensus towards suggestions related to code style. However, accord-
ing to the proportions of reviewers who had provided code snippet comments for different
purposes (Table 13 in Section 4.2.1), the ratio of reviewers providing suggestions aiming
at Following Code Style ranks the least, which indicates that only a small part of reviewers
notice the inconsistency between the style of reviewed code and the best code conventions.
We suggest reviewers to pay more attention to code style issues during code review, and this
will improve the quality of code, just as one participant mentioned, “It is very important
that all team members use the same style code. I usually advise everyone not to deviate from
this style code”. Besides, automation tools that examine whether the source code follows the
project’s code conventions can also be highly beneficial for software development. These
measures can significantly reduce reviewers’ workload on commenting code style issues and
accelerate code review process.

OSS development teams can use code snippets in review comments to guide new con-
tributors Popular open source projects receive review contributions from a diverse group of
developers, including many who have limited or no previous engagement with the project
(Hellendoorn et al. 2015). Marlow et al. (2013) found that OSS developers rely on informa-

123

78 Page 38 of 45

Empirical Software Engineering (2024) 29:78

tion about detailed traces of an individual’s project-related activities to inform their decisions
on how to interact with new, unknown contributors to their projects. Code snippets can also
be used to convey necessary information to novel contributors during code review process.
According to the results of RQ5, two participants expressed their willingness to provide code
snippets in review comments in order to guide new contributors. One of them said, “Most
often, I provide snippets to provide context to newer contributors on items such as code style
checks which are resulting in their tests failing, or when a difficult issue arises and they are
not entirely able to identify why the tests are not passing. Sometimes this is to more elaborate
or make the code more defensive, but generally more experienced developers tend to do this
inherently so the need is less”. The use of code snippets is a valuable tool to guide and inform
new contributors during code review. Experienced developers require fewer code snippet
comments in code reviews compared to new contributors as experienced developers tend to
write high-quality code naturally. Nevertheless, we recommend that knowledgeable devel-
opers within OSS development teams can utilize code snippets in code reviews to facilitate
the onboarding and contribution process for new team members, fostering collaboration and
growth of these projects.

Reviewers can more frequently provide code snippet suggestions in code reviews to
encourage developers’ acceptance Overall, 62.1% developers accepted reviewers’ code
snippet suggestions according to the results of RQ3, revealing that most developers changed
existing code to code snippets provided by reviewers in the following patches. Such a high
level of acceptance rate of reviewers’ code snippet suggestions demonstrates that code snip-
pets can greatly assist developers in understanding reviewers’ suggested code changes as
code snippets show concrete and actionable solutions. Therefore, developers can make nec-
essary adjustments to current code accordingly. These code snippet suggestions are valuable
for enhancing code quality attributes, promoting consistency in code style, ensuring code
correctness, and preserving code integrity (see the purposes of providing code snippet sug-
gestions in Section 4.2.1). By more frequently providing code snippet suggestions during
code review process, reviewers not only enhance the efficiency of communications, but also
deepen developers’ understanding of how to make code changes, ultimately resulting in
developers’ higher acceptance rate of reviewers’ code snippet suggestions.

Code snippets can serve as an effective way for communication during code review
Wurzel Gonçalves et al. (2023) have focused on the competencies developers need to execute
code review, and their study results call for more research on how to support and develop
reviewers’ potential to communicate effectively during code review. Our study results show
that code snippets can be used to improve the effectiveness of communication between
reviewers anddevelopers.According to the responses fromour survey study,most participants
thought that in some scenarios code snippets provide a quicker, easier, and unambiguous way
to express their opinions and suggestions. As one participant mentioned that, “Many times,
presenting a piece of code works better than explaining it for hours, and the programmer
quickly understands what to do”. Some other participants believed that using code snippets
in code reviews could help developers evaluate the suggestions made by reviewers, as one
response wrote that “It also makes it very easy to evaluate the suggestion by the developer”.
According to the results of RQ6, some participants even mentioned that they would provide
code snippets in code reviews to avoid potential communication issues, indicating that they
thought that providing code snippets in review comments could help them convey needed
information for code review more accurately.

Purposeful code snippets in code reviews should be understandable and easy to fit
into existing code Bacchelli and Bird (2013) explored code review comments in practice,
and they found that the key of any review is code and change understanding. Our study

123

Page 39 of 45 78

Empirical Software Engineering (2024) 29:78

results corroborate this to some extent, as the results of RQ7 highlight the importance of
the understandability of provided code snippets in review comments. Code snippets should
be written by reviewers in a way that makes them easy for developers to understand. They
should be clear and concise, without unnecessary complexity or ambiguity, making it easy
for developers to grasp its significance within the context of the code review. Otherwise,
provided code snippets that are not relevant may unnecessarily divert developers’ attention
and add extra workload. As one participants said, “Code snippets should be short and to the
point; not containing boilerplate which would be needed to run the code in isolation; as that
distracts from the main point raised in the review”.Meanwhile, provided code snippets should
be easy to fit into existing code. In other words, the code snippets should be “syntactically
correct and executable”, compatible with the code style and functionality of the codebase,
ensuring that incorporating the code snippets into the existing code will not introduce errors
or inconsistencies. RQ4 investigates the reasons why developers do not accept code snippet
suggestions, and reviewers’ suggestion is flawed accounts for nearly 25%, ranking it second,
which indirectly confirms that provided code snippets should be correct.

Developers’ purposes of providing code snippets in code reviews need further inves-
tigation According to the results of RQ1, in addition to reviewers, developers provide code
snippets in review comments as well. The results of RQ2 provide reviewers’ purposes of
providing code snippets in code reviews. However, we did not explore the purposes of devel-
opers providing code snippets in code reviews, which could be different from the purposes of
reviewers and can be further investigated and compared in the future. In code review process,
developers also need to provide information to meet reviewers’ needs. If this information is
readily available, reviewers can focus on verifying and improving the code they are review-
ing, rather than spending time and effort on inquiring and collecting missing information
(Pascarella et al. 2018). Besides, the results of RQ3 present the acceptance rate of code snip-
pet suggestions, showing that most suggestions were accepted by developers (61.9%). This
finding provides an empirical basis for researchers to further explore how the inclusion of
code snippets in reviewers’ suggestion comments has an impact on developers’ reactions.

6 Threats to validity

Given the empirical nature of our study, we discuss several threats to the validity of this work
according to the guidelines proposed by Runeson and Höst (2009), and how these threats
were partially mitigated in our study.

Construct Validity In this work, we depended on human activities, including data
labelling and data extraction & analysis, which would introduce personal bias. To reduce
this threat, each step in the aforementioned human activities was conducted by two authors
and a third author was involved to discuss and resolve the conflict in case of disagreement.
Moreover, we also conducted a pilot data labelling to make sure that the two researchers
achieved a consensus on what are code snippets in this study, which could also partially
alleviate this threat. In RQ2, we investigated the purposes of reviewers providing code snip-
pets in code reviews. 10 review comments contain multiple code snippets, from which we
only extracted the most significant purpose of these code snippets. This poses some threat
to the construct validity of the results of RQ2. However, given the small number of review
comments (0.31%, 10/3213) that contain multiple code snippets, we believe that this threat
to the construct validity is minimal.

123

78 Page 40 of 45

Empirical Software Engineering (2024) 29:78

Another threat to the construct validity of this study is that we used mostly closed-ended
questions in the industrial survey, which may affect the richness of the responses collected
from the participants. However, as argued by Reja et al. (2003), open-ended questions have
several disadvantages compared with closed-ended questions. For example, much long time
to fill out the questionnaire might make participants do not participate in the survey at all.
Participants may provide poor answers or even just skip when answering open-ended ques-
tions. Due to the above disadvantages, we chose to mainly use closed-ended questions in
our survey. For some of the closed-ended questions, we also provided the “Other” field so
that participants can fill in their own opinions if existing options do not cover their thoughts.
Furthermore, to help participants better understand the open-ended questions in the survey,
we provided two examples for each question. During the data analysis, we found that some
participants only agreed with the provided examples without providing additional answers,
which indicates that the provided examplesmay restrict participants from providing their own
answers to the open-ended questions, thus affecting the richness of answers. Besides, another
threat is that some of the responses from participants are written in Chinese, and translating
the raw data from Chinese to English may lead to information lost or corruption. The two
authors who extracted and analyzed the Chinese responses are native Chinese speakers, and
the third author who is a native Chinese speaker as well was asked to check and refine the
translation, which partially minimizes this threat.

The last threat is concerning the size of our dataset. We collected 63 responses from our
industrial survey, and we acknowledge that the small number of responses may threaten the
validity of our findings. Therefore,we conjecture thatwe could obtainmore convincing results
by inviting more developers with code review experiences from more diverse communities
to participate in the survey, which is also our next step.

External Validity We selected the four most active projects from the OpenStack and Qt
communities since these two communities have made a serious investment in code review for
many years and have been widely used in many studies related to code review. We argue that
the selected communities and projects are representative and can increase the generalizability
of our study results.

In terms of the industrial survey,we invited developers from theOpenStack andQt commu-
nities collected from our dataset, developers from well-known software companies in China,
and developers from professional software development groups, which partially increases
the external validity of the survey results. But we admitted that the findings of this study
may not be generalized to all developers. In the future, we plan to invite more developers
from various development groups (e.g., inner source development) to expand the scope of
the industrial survey.

Reliability To improve the reliability, we made a research protocol with detailed proce-
dure, which was discussed and confirmed by all the authors. Besides, all of the empirical
steps in our study, including the data mining process, data labelling, and data extraction and
analysis, were conducted and discussed by three authors. Furthermore, the dataset and analy-
sis results of our study have been made publicly available online Zhang et al. (2023) in order
to facilitate other researchers to replicate our study easily. We believe that these measures
can partially alleviate this threat.

123

Page 41 of 45 78

Empirical Software Engineering (2024) 29:78

7 Conclusions

In this work, we conducted a mixed-methods study on code snippets in code reviews. We
first analyzed the code review data mined from four most active projects of the OpenStack
(Nova and Neutron) and Qt (Qt Base and Qt Creator) communities. We then conducted an
industrial survey to get the practitioners’ perspective on code snippets in code reviews. More
specifically, we manually analyzed the extent of using code snippets, the reviewers’ purposes
of providing code snippets, the developers’ acceptance of code snippet suggestions, and the
reasons why developers do not accept code snippet suggestions in code reviews through the
repository mining study, and we explored the scenarios in which reviewers provide code
snippets, the developers’ attitudes towards code snippets, and the characteristics of code
snippets developers expect reviewers to provide in code reviews through the industrial survey
study.

According to the study results, code snippets are not frequently used in code reviews, and
most of the code snippets in review comments are provided by reviewers. Reviewers use
code snippets in code reviews with the aim of Suggestion and Citation, in which Suggestion
is the main purpose, and most developer would accept reviewers’ code snippet suggestions.
Difference in the opinions between developers and reviewers and Reviewer’s suggestion is
flawed are the main reasons why developers do not accept reviewers’ code snippet sugges-
tions. Reviewers tend to provide code snippets in code reviews when code is more illustrate
than words. Most developers hold positive attitudes towards provided code snippets in code
reviews, and they expect that the provided code snippets can be understandable and fitting
into existing code.

Based on the study results, we found that code snippets can be used as a special way tomeet
developers’ information needs in code reviews, and appropriately using code snippets in code
reviews will make the communication between developers and reviewers more effective. We
suggested novel insights and future directions related to code snippets in code reviews for
researchers. Meanwhile, we provided useful knowledge and information about using code
snippets in code reviews, which can guide practitioners toward a more effective code review
process.

In the next step, we plan to extend this work by studying code snippets in code reviews in a
larger set of data sources, including pull request data fromGitHub,more diverse projects from
different communities (e.g., projects mainly written in Java from the Apache community).
Besides, we intend to expand the scope of the industrial survey by includingmore participants
from various development groups (e.g., inner source development). We also plan to explore
the purposes of developers providing code snippets in code reviews through interviews and
thus attain a more comprehensive understanding of code snippets in code reviews.

Acknowledgements This work has been supported by the National Natural Science Foundation of China
(NSFC) under Grant No. 62172311 and the Special Fund of Hubei Luojia Laboratory. The authors would also
like to thank all the participants of the online survey.

Data Availability Statements The data generated and analyzed during the current study is available in the
Zenodo repository at (Zhang et al. 2023).

References

Ackerman AF, Buchwald LS, Lewski FH (1989) Software inspections: an effective verification process. IEEE
Softw 6(3):31–36

123

78 Page 42 of 45

Empirical Software Engineering (2024) 29:78

Allamanis M, Barr ET, Bird C, Sutton C (2014) Learning natural coding conventions. In: Proceedings of the
22nd international symposium on foundations of software engineering (FSE), ACM, pp 281–293

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 35th international conference on software engineering (ICSE), IEEE, pp 712–721

Badampudi D, Unterkalmsteiner M, Britto R (2023) Modern code reviews - survey of literature and practice.
ACM Trans Softw Eng Method 32(4):1–61

Campbell BA, Treude C (2017) NLP2Code: code snippet content assist via natural language tasks. In: Pro-
ceedings of the 33rd IEEE international conference on software maintenance and evolution (ICSME),
IEEE, pp 628–632

Campbell JL,QuincyC,Osserman J, PedersenOK(2013)Coding in-depth semistructured interviews: problems
of unitization and intercoder reliability and agreement. Sociological Method Res 42(3):294–320

Chatterjee P, Nishi MA, Damevski K, Augustine V, Pollock L, Kraft NA (2017) What information about code
snippets is available in different software-related documents? an exploratory study. In: Proceedings of
the 24th international conference on software analysis, evolution and reengineering (SANER), IEEE, pp
382–386

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46
Da Cunha AD, Greathead D (2007) Does personality matter? an analysis of code-review ability. Commun

ACM 50(5):109–112
Davila N, Nunes I (2021) A systematic literature review and taxonomy of modern code review. J Syst Softw

177:110951
Fink A (2003) The Survey Handbook. Sage Publications
Fu L, Liang P, Rasheed Z, Li Z, Tahir A, Han X (2022a) Potential technical debt and its resolution in

code reviews: an exploratory study of the openstack and qt communities. In: Proceedings of the 16th
ACM/IEEE international symposium on empirical software engineering and measurement (ESEM),
ACM, pp 216–226

Fu L, Liang P, Zhang B (2022b) Understanding code snippets in code reviews: a preliminary study of the
openstack community. In: Proceedings of the 30th IEEE/ACM international conference on program
comprehension (ICPC), IEEE, pp 152–156

Galenson J, Reames P, Bodik R, Hartmann B, Sen K (2014) Codehint: dynamic and interactive synthesis
of code snippets. In: Proceedings of the 36th international conference on software engineering (ICSE),
ACM, pp 653–663

Glaser BG, Strauss AL (2017) Discovery of Grounded Theory: Strategies for Qualitative Research. Routledge
Hamasaki K, Kula RG, Yoshida N, Cruz AEC, Fujiwara K, Iida H (2013) Who does what during a code

review? datasets of oss peer review repositories. In: Proceedings of the 10th working conference on
mining software repositories (MSR), IEEE, pp 49–52

Han X, Tahir A, Liang P, Counsell S, Luo Y (2021) Understanding code smell detection via code review: a
study of the openstack community. In: Proceedings of the 29th IEEE/ACM international conference on
program comprehension (ICPC), IEEE, pp 323–334

Hellendoorn VJ, Devanbu PT, Bacchelli A (2015) Will they like this? evaluating code contributions with
languagemodels. In: Proceedings of the 12thworking conference onmining software repositories (MSR),
IEEE, pp 157–167

Hirao T, McIntosh S, Ihara A, Matsumoto K (2022) Code reviews with divergent review scores: an empirical
study of the openstack and qt communities. IEEE Trans Software Eng 48(1):69–81

Israel GD (1992) Determining sample size. Fact Sheet PEOD-6, Florida Cooperative Extension Service,
Institute of Food and Agricultural Sciences, University of Florida, Florida, USA

Kashiwa Y, Nishikawa R, Kamei Y, Kondo M, Shihab E, Sato R, Ubayashi N (2022) An empirical study on
self-admitted technical debt in modern code review. Inf Softw Technol 146:106855

Kaur P, Stoltzfus J, Yellapu V (2018) Descriptive statistics. Int J Acad Med 4(1):60–63
Kitchenham BA, Pfleeger SL (2008) Personal Opinion Surveys, Springer, pp 63–92
Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. In: Pro-

ceedings of the 29th international conference on software engineering (ICSE), IEEE, pp 344–353
Li Z, Yu Y, Yin G, Wang T, Fan Q, Wang H (2017) Automatic classification of review comments in pull-based

development model. In: Proceedings of the 29th international conference on software engineering and
knowledge engineering (SEKE), KSI, pp 572–577

Marlow J, Dabbish L, Herbsleb J (2013) Impression formation in online peer production: Activity traces and
personal profiles in github. In: Proceedings of the 16th conference on computer supported cooperative
work (CSCW), ACM, pp 117–128

McIntosh S, Kamei Y, Adams B, Hassan A (2016) An empirical study of the impact of modern code review
practices on software quality. Empir Softw Eng 21(5):2146–2189

123

Page 43 of 45 78

Empirical Software Engineering (2024) 29:78

Nazir S, Fatima N, Chuprat S (2020) Modern code review benefits-primary findings of a systematic literature
review. In: Proceedings of the 3rd international conference on software engineering and information
management (ICSIM), ACM, pp 210–215

Panichella S, Aponte J, Di Penta M, Marcus A, Canfora G (2012) Mining source code descriptions from
developer communications. In: Proceedings of the 20th IEEE international conference on program com-
prehension (ICPC), IEEE, pp 63–72

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Information needs in contemporary code
review. Proceedings of the ACM on Human-Computer Interaction 2(CSCW):135:1–135:27

Reja U, Manfreda KL, Hlebec V, Vehovar V (2003) Open-ended vs. close-ended questions in web question-
naires. Develop Appl Stat 19(1):159–77

Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the 9th
joint meeting of the european software engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering (ESEC/FSE), ACM, pp 202–212

Ruangwan S, Thongtanunam P, Ihara A,Matsumoto K (2019) The impact of human factors on the participation
decision of reviewers in modern code review. Empir Softw Eng 24(2):973–1016

Runeson P,HöstM (2009)Guidelines for conducting and reporting case study research in software engineering.
Empir Softw Eng 14:131–164

Sadowski C, Söderberg E, Church L, SipkoM, Bacchelli A (2018)Modern code review: a case study at google.
In: Proceedings of the 40th international conference on software engineering: software engineering in
practice track (ICSE-SEIP), ACM, pp 181–190

Shull F, Singer J, Sjøberg DI (2007) Guide to Advanced Empirical Software Engineering. Springer
Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review and

guidelines. In: Proceedings of the 38th international conference on software engineering (ICSE), ACM,
pp 120–131

Subramanian S, Holmes R (2013) Making sense of online code snippets. In: Proceedings of the 10th working
conference on mining software repositories (MSR), IEEE, pp 85–88

SutherlandA,VenoliaG (2009)Can peer code reviews be exploited for later information needs? In: Proceedings
of the 31st international conference on software engineering-companion volume (ICSE), IEEE, pp 259–
262

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2016) Revisiting code ownership and its relationship with
software quality in the scope of modern code review. In: Proceedings of the 38th international conference
on software engineering (ICSE), ACM, pp 1039–1050

Thongtanunam P, McIntosh S, Hassan AE, Iida H (2017) Review participation in modern code review: An
empirical study of the android, qt, and openstack projects. Empir Softw Eng 22:768–817

Ueda Y, Ihara A, Ishio T, Hirao T, ichi Matsumoto K (2018) How are if-conditional statements fixed through
peer code review? IEICE Trans Inform Syst 101-D:2720–2729

Wang D, Xiao T, Thongtanunam P, Kula RG, Matsumoto K (2021) Understanding shared links and their
intentions to meet information needs in modern code review: A case study of the openstack and qt
projects. Empirical Softw Eng 26(5):1–32

Wang Q, Xia X, Lo D, Li S (2019) Why is my code change abandoned? Inf Softw Technol 110:108–120
Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA (2020) What to expect from code review bots

on github? a survey with oss maintainers. In: Proceedings of the 34th Brazilian symposium on software
engineering (SBES), ACM, pp 457–462

Wong E, Yang J, Tan L (2013) Autocomment: mining question and answer sites for automatic comment
generation. In: Proceedings of the 28th IEEE/ACM international conference on automated software
engineering (ASE), IEEE, pp 562–567

Wurzel Gonçalves P, Calikli G, Serebrenik A, Bacchelli A (2023) Competencies for code review. Proceedings
of the ACM on Human-Computer Interaction 7(CSCW1):1–33

Zampetti F, Bavota G, Canfora G, Penta MD (2019) A study on the interplay between pull request review
and continuous integration builds. In: Proceedings of the 26th IEEE international conference on software
analysis, evolution and reengineering (SANER), IEEE, pp 38–48

Zanaty FE, Hirao T, McIntosh S, Ihara A, Matsumoto K (2018) An empirical study of design discussions
in code review. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement (ESEM), ACM, pp 1–10

Zhang B, Fu L, Liang P, Yu J, Wang C (2023) Dataset of the Paper: Demystifying Code Snippets in Code
Reviews: a Study of the OpenStack and Qt Communities and A Practitioner Survey. https://doi.org/10.
5281/zenodo.8098560

123

78 Page 44 of 45

https://doi.org/10.5281/zenodo.8098560
https://doi.org/10.5281/zenodo.8098560

Empirical Software Engineering (2024) 29:78

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Beiqi Zhang1,2 · Liming Fu1,2 · Peng Liang1,2 · Jiaxin Yu1,2 · Chong Wang1,2

B Peng Liang
liangp@whu.edu.cn

B Chong Wang
cwang@whu.edu.cn

Beiqi Zhang
zhangbeiqi@whu.edu.cn

Liming Fu
limingfu@whu.edu.cn

Jiaxin Yu
jiaxinyu@whu.edu.cn

1 School of Computer Science, Wuhan University, Wuhan, China
2 Hubei Luojia Laboratory, Wuhan, China

123

Page 45 of 45 78

http://orcid.org/0000-0002-2056-5346

	Demystifying code snippets in code reviews: a study of the OpenStack and Qt communities and a practitioner survey
	Abstract
	1 Introduction
	2 Related work
	2.1 Code snippet
	2.2 Code review

	3 Methodology
	3.1 Research questions
	3.2 Exploratory study design
	3.2.1 Data collection
	3.2.2 Data labelling
	3.2.3 Data extraction and analysis

	3.3 Survey study design
	3.3.1 Creating the questionnaire and recruitment of participants
	3.3.2 Evaluating and validating the questionnaire
	3.3.3 Conducting the survey and analyzing survey data

	4 Results
	4.1 RQ1: the extent code snippets used in code reviews
	4.1.1 Results of RQ1
	4.1.2 Feedback on the findings of RQ1

	4.2 RQ2: the reviewers' purposes of providing code snippets in code reviews
	4.2.1 Results of RQ2
	4.2.2 Feedback on the findings of RQ2

	4.3 RQ3: the developers’ acceptance of code snippet suggestions
	4.4 RQ4: the reasons that developers do not accept code snippet suggestions
	4.5 RQ5: the scenarios in which reviewers provide code snippets
	4.6 RQ6: the developers' attitudes towards code snippets
	4.7 RQ7: the characteristics of code snippets developers expect reviewers to provide

	5 Discussion
	6 Threats to validity
	7 Conclusions
	Acknowledgements
	References

