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Abstract
Smart contracts are nowadays at the core of most blockchain systems. Like all computer pro-
grams, smart contracts are subject to the presence of residual faults, including severe security
vulnerabilities. However, the key distinction lies in how these vulnerabilities are addressed.
In smart contracts, when a vulnerability is identified, the affected contract must be termi-
nated within the blockchain, as due to the immutable nature of blockchains, it is impossible
to patch a contract once deployed. In this context, research efforts have been focused on
proactively preventing the deployment of smart contracts containing vulnerabilities, mainly
through the development of vulnerability detection tools. Along with these efforts, several
heterogeneous vulnerability classification schemes appeared (e.g., most notably DASP and
SWC). At the time of writing, these are mostly outdated initiatives, even though new smart
contract vulnerabilities are consistently uncovered. In this paper, we propose OpenSCV,
a new and Open hierarchical taxonomy for Smart Contract vulnerabilities, which is open
to community contributions and matches the current state of the practice while being pre-
pared to handle future modifications and evolution. The taxonomy was built based on the
analysis of the existing research on vulnerability classification, community-maintained clas-
sification schemes, and research on smart contract vulnerability detection. We show how
OpenSCV covers the announced detection ability of the current vulnerability detection tools
and highlight its usefulness in smart contract vulnerability research. To validate OpenSCV,
we performed an expert-based analysis wherein we invited multiple experts engaged in smart
contract security research to participate in a questionnaire. The feedback from these experts
indicated that the categories in OpenSCV are representative, clear, easily understandable,
comprehensive, and highly useful. Regarding the vulnerabilities, the experts confirmed that
they are easily understandable.
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1 Introduction

Smart contracts play an important role in advancing blockchain as they expand the application
of the technology to various domains (e.g., finance (Hewa et al. 2021), education (Grech and
Camilleri 2017), healthcare (Agbo et al. 2019), government (Geneiatakis et al. 2020)). While
they are essential for the consolidation and expansion of the technology, they also bring
serious risks, namely those associated with the potential presence of vulnerabilities that can
affect the security of the blockchain system (Atzei et al. 2017).

Just as conventional programs, smart contracts are being deployed with residual software
faults (i.e., bugs or defects), including security vulnerabilities (i.e., internal faults that enable
external events to harm the system) (Qian et al. 2022; Avizienis et al. 2004). However, the
consequences of deploying a faulty contract have particular characteristics in the context of
blockchain systems, such as: i) if faulty code is identified, the respective contract cannot
be patched, it must be terminated, and a new one should be created (Zou et al. 2019); ii)
once the potentially erroneous data (generated/updated by faulty contracts) has been stored
in the blockchain, there is no way to change it, i.e., to undo the respective transactions
(and subsequent transactions that rely on this data) (Yaga et al. 2018); and iii) if the faulty
contract has been executed, the associated impact may be irreparable (e.g., reputation costs)
(Antonopoulos and Wood 2018).

Several initiatives have been created that ultimately aim at contributing to the development
of more secure smart contracts. Among these initiatives, we find three main types: i) New
smart contract programming languages (e.g., Clarify (Blockstack 2021), Vyper (Kaleem et al.
2020), Obsidian (Coblenz 2019)), which aim at increasing protection against vulnerabilities;
ii) New vulnerability detection tools (e.g., Mythril (ConsenSys 2021), Neucheck (Lu et al.
2019), Bose et al. (2022), SoliDetector (Hu et al. 2023)), which have the main goal of
detecting vulnerabilities in smart contracts so that vulnerable contracts do not reach the
deployment phase; and also, iii) vulnerability classifications that mostly allow knowledge
regarding vulnerabilities to be identified in a standard manner and systematized.

The existence of vulnerability (or software defects, in general) classifications is quite
important, as we can observe by the research and industry effort associated with well-known
cases like OWASP (OWASP Foundation 2001), NVD (government 1999), CVE (MITRE
Corporation 1999), CWE (CWE Community 2009), or, in the case of smart contracts most
notably by SWC (SmartContractSecurity 2020), and DASP (NCCGroup 2021). Generally,
they raise the level of awareness among developers and may allow, in a uniform manner, for
development tools to assist developers regarding defects being placed in the code. They may
also help in the design and development of vulnerability detection tools and in the assessment
of their detection capabilities (Durieux et al. 2020;Hu et al. 2021; di Angelo and Salzer 2019).
This case also holds for programming languages. It is known that languages, such asObsidian,
have benefited from the systematized knowledge of vulnerabilities. There are even studies
that use taxonomies as a basis for comparing different programming languages with respect
to the protection offered against certain types of vulnerabilities (Kaleem et al. 2020).

At the time of writing, vulnerability classifications for smart contracts have significant
limitations. First, these classifications are often outdated, such as well-known schemes like
DASP or SWC that have not been updated since 2018. This largely differs from the state of
the practice, in which we find cases of tools like Securify2 (Tsankov 2018) already detecting
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several vulnerabilities for which there is no accurate description in the classifications. As
in other software areas, with new vulnerabilities being continuously discovered, having a
flexible way of integrating them (and possibly restructuring the classification) is crucial.

Second, vulnerability naming and classification schemes are beingdefinedusingarbitrary
nomenclatures. This is easily visible just by analyzing a few of the most cited papers in
vulnerability detection, e.g., (Luu et al. 2016; Tsankov et al. 2018; Kalra et al. 2018). The lack
of a standard nomenclature leads to verification tools mostly using arbitrary names to present
their result. For instance, SmartCheck (Tikhomirov et al. 2018) and Slither (Feist et al. 2019)
respectively use balance equality and incorrect-equality/locked-ether to refer to the same
vulnerability. As a result, it is very difficult to compare the effectiveness of different tools. As
classifications are often built based on different sources, such as different industry tools and
several research papers (Rameder et al. 2022), the terms easily end up being inconsistent. This
is aggravated when no active maintenance exists, even for known issues. Indeed, reduced
community contribution is known to be a problem, with the main classifications that are
community-oriented (i.e., DASP, SWC) showing residual community activity, many times
related to minor problems (e.g., broken links) (NCC Group 2019; SmartContractSecurity
2020).

Third, many times, vulnerability classification schemesmix the characteristics of a certain
vulnerability with the effect of exploiting it, how it is exploited, or its impact. This concept
inconsistency is quite visible in the existing taxonomies. As an example, in Kaleem et al.
(2020), DoS with unbounded operation is presented as a vulnerability, but it is not possible
to understand what exactly the vulnerability is with this name (e.g., it can be a problem in a
loop, it can be a malicious call that is externally triggered several times). Instead, the given
name refers to the possible impact of exploiting a vulnerability, which should be a separate
dimension for characterizing the vulnerability. Similarly, this occurs in DASP (NCC Group
2019), in which one of the categories is preciselyDenial of Service. Another aspect this latter
example shows is that taxonomies are being built with inadequate granularity, often too
coarse to be really helpful. For instance, theDenial of Service category in DASPmay refer to
gas limit reached, unexpected throw, unexpected kill, or access control breached. Moreover,
the description is sometimes so short that it may become ambiguous (e.g., access control
breached may refer to a vulnerability that would simply fit in access control, which is another
DASP category).

In this paper, we propose OpenSCV, a new hierarchical and Open taxonomy for
Smart Contract Vulnerabilities (available at https://openscv.dei.uc.pt), which is open to
community’s contributions (Vidal et al. 2024b). OpenSCV aims to match the current state
of the practice and is prepared to handle future modifications and evolution. To build the
taxonomy, we analyzed current smart contract vulnerability classifications and discussed
their gaps and limitations. We then analyzed the detection capabilities of 77 smart contract
vulnerability detection tools, which resulted in collecting a heterogeneous set of 481 vulner-
abilities. We then mapped the vulnerabilities in existing classifications, namely DASP (NCC
Group 2019), SWC (SmartContractSecurity 2020), Rameder et al. (2022), and CWE (CWE
Community 2009) and further characterized them using the Orthogonal Defect Classifica-
tion (ODC) (IBM 2013b, a) and a code excerpt. Names were then consolidated and grouped
in a structure that was built bottom-up. This process involved two experienced researchers
and one early-stage researcher, who revised the proposed taxonomy iteratively in terms of
structure, correctness, and uniformity.

We structured OpenSCV in a way that is flexible to changes and evolution by preparing
a supporting infrastructure at GitHub. We are able to receive change requests easily and
integrate information from new research on vulnerability detection into the taxonomy. All
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OpenSCV entries are supported by a code example, with the goal of mitigating possible
ambiguities in the description of each vulnerability.We also prepared an initial dataset holding
vulnerable contracts (one per each of the vulnerabilities present in OpenSCV) and their
respective correction. OpenSCV is available online at https://openscv.dei.uc.pt (Vidal et al.
2024c). The GitHub repository is available at Vidal et al. (2024b) and linked to Zenodo,
which permanently hosts the dataset (Vidal et al. 2024a). It is worthwhile mentioning that the
taxonomy considers mostly software vulnerabilities and a few software defects considered
in the literature to be associated with high-security risks. For simplicity, we use the term
vulnerability throughout the paper to refer to both cases.

To validate our taxonomy, we conducted an expert-based analysis. We invited 150 experts
who are actively involved in smart-contract security research to participate in a questionnaire.
We have received 28 responses and additional comments. We then aggregated all responses
to calculate an agreement score. Feedback on the vulnerability categories indicated that they
are representative, clear, easily understandable, comprehensive, and highly useful, achieving
an overall score of 0.78 out of 1.00. Regarding the vulnerabilities, the feedback highlighted
their ease of understanding, resulting in an overall score of 0.76 out of 1.00.

The rest of this paper is organized as follows. Section 2 discusses the related work and
limitations of current vulnerability classification schemes. Section 3 presents the process
followed to build the taxonomy and overviews the final outcome. Section 4 presents the
taxonomy structure and provides a brief description of all vulnerabilities included in the
taxonomy. Section 5 characterizes and discusses the coverage of the taxonomy in perspective
with the state-of-the-art and presents the validation results. Section 6 presents the threats to
the validity of this work, and finally, Section 7 concludes this paper.

2 State of the Art

This section presents the quality properties of taxonomies and then discusses the existing
classification schemes for smart contract vulnerabilities. The classification schemes presented
have their origins in a) existing research on smart contract vulnerability classification, b)
community-oriented initiatives, and c) vulnerability detection research. The section closes
with a discussion of the gaps and limitations of the existing classifications.

2.1 Taxonomy Quality Properties

We analyzed a set of reference works centered around the definition of taxonomies as well as
critical analyses of vulnerability taxonomies (Bishop andBailey 1996; Lindqvist and Jonsson
1997; Mann and Christey 1999; Rameder et al. 2022; Lough 2001; Hansman and Hunt 2005)
to identify a set of quality properties criteria, which should be followed when designing a
taxonomy that is expected to be long-lived. The following paragraphs discuss the identified
properties.

A classification systemmay benefit from a hierarchical organization as it allows to show
similar characteristics of related vulnerabilities, which may also be helpful for vulnerability
prevention (Bishop and Bailey 1996). A hierarchical structure may be a tree in which each
node refers to a category of vulnerabilities, and each leaf corresponds to individual vulner-
abilities. Thus, the granularity of the categories should generally vary from large to fine as
we traverse the tree from the root to the leaves.
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Nodes at a certain tree level must be as uniform as possible, i.e., ideally representing the
same level of abstraction or a group of vulnerabilities viewed from the same perspective.
Obviously, this is quite difficult to achieve because, many times, this has to be balanced with
the creation of taxonomy trees that become too complex, which, in the end, may make it
less comprehensible or less helpful. Also, sometimes the nature of the problem is simply
an unbalanced or heterogeneous (in structure) one, which basically disallows these criteria.
Anyway, a uniform taxonomymay contribute to fewer errors (in its use) and, as such, a higher
probability of adoption by practitioners. In practice, it may contribute to a taxonomy that is
useful and understandable (Lindqvist and Jonsson 1997) (i.e., understandable by security
experts but also by less specialized people).

The selection of names to be used in a classification scheme is particularly important. The
name that describes a certain vulnerability must be a unique identifier) and non-ambiguous
(Howard 1997; Lindqvist and Jonsson 1997), meaning that the name and also the associated
descriptionmust allow not only for easy identification but should include enough information
to distinguish it fromother vulnerabilities (Mann andChristey 1999;Bishop andBailey 1996).
Whenever possible, existing terminology should be used (Lindqvist and Jonsson 1997). The
name and characteristics of a certain defect should characterize what the issue is and not
additional dimensions, such as the effect of exploiting it. While it is acceptable to understand
the effect of exploiting a certain vulnerability starting from its description, the characteristics
of the problem itself cannot be omitted and should be clearly identified (Mann and Christey
1999; Bishop and Bailey 1996).

Regardless of the perspective of the individuals using the taxonomy, a certain vulnerability
should be classified in the same manner by different individuals (e.g., developers, users,
testers). This means that not only the names and structure should be as clear as possible, but
also that the process of classifying a certain defectmust bemade clear (whenever the structure
and nomenclature are not sufficient), i.e., there must be a deterministic (Krsul 1998) way of
classifying a certain defect, which fosters repeatability (Howard 1997; Krsul 1998) of using
the classification.

Finally, a taxonomy should also allow for completeness (Amoroso 1994), i.e., the taxon-
omy should provide a good coverage (Rameder et al. 2022) of the vulnerabilities identified
in state of the art or reported by vulnerability detection tools. Also, it should be open to the
community (i.e., accept new entries from the community) and shareable (i.e., no distribu-
tion restrictions) (Mann and Christey 1999). The fact that it is open is also a factor that can
contribute to it being accepted (Amoroso 1994; Howard 1997).

2.2 Smart Contract Vulnerability Classification Schemes

To the best of our knowledge, the first initiative to classify smart contract vulnerabilities (for
Ethereum systems) is proposed in Atzei et al. (2017). The authors listed 12 vulnerabilities,
which we listed in Table 1, and implemented nine of the corresponding attacks.

This initial effort is quite relevant but holds some limitations. Some of the selected names
do not really specify the nature of the vulnerabilities or are not clear about the problem
being characterized (e.g., call to the unknown). This limitation was mitigated in Zhou et al.
(2022a) and Argañaraz et al. (2020), where the authors tried to make the names used more
specific. In Atzei et al. (2017), three categories of issues are proposed: i) Solidity issues
(i.e., language weaknesses), ii) EVM issues (i.e., residuals faults in byte code), and iii)
Blockchain issues (i.e., vulnerabilities from blockchain technology). Despite allowing an
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Table 1 Classification proposed
in Atzei et al. (2017)

Level Vulnerability

Solidity Call to the unknown

Gasless send

Exception disorders

Type casts

Reentrancy

Keeping secrets

EVM Immutable bugs

Ether lost in transfer

Stack size limit

Blockchain Unpredicable state

Generating randomness

Time constraints

initial separation of the vulnerabilities (which may help developers in dealing with them),
this scheme does not benefit from the presence of a more complex hierarchy, which is a
better fit for cases where we find several interrelated families of vulnerabilities. We have
also identified that these three categories may generate some ambiguity as some cases could
potentially fit into multiple categories. For example, Immutable Bugs could be classified into
EVM or Blockchain. Despite this, the separation between the cases referring to the programs
(i.e., solidity source code or EVM binary code) and the blockchain platform is helpful. This
classification is not available in a public repository, and, due to its age, its coverage is relatively
low, accounting for 12 vulnerabilities.

Table 2 overviews the vulnerability classification presented in Kaleem et al. (2020), which
has the goal of allowing comparison between the security of the Solidity andVype languages.
The work presents 18 vulnerabilities, along with a detailed explanation for each one, and
individual code examples for each vulnerability. Being mostly a list of vulnerabilities, there
are no benefits associated with hierarchical structures. Moreover, there is no open public
repository associated with the proposal, and the 18 vulnerabilities are nowadays a small
amount.

A classification is presented in Argañaraz et al. (2020) with the goal of exposing threats
and, ultimately,minimizing the presence of software faults in smart contracts. Table 3 presents
the proposed classification in which we find that the faults are separated into two categories:
i) security vulnerabilities (i.e., defects that may be exploited by attacks; and ii) functional
faults (i.e., faults that violate the program’s functionality). Each fault is also associated with
a criticality level, which may be useful for getting developers’ attention while coding. We
found that certain cases, such as Non-verified maths andMalicious libraries, may refer to the
same vulnerability, indicating a potential need for further clarification and refinement of the
classification process to address any ambiguity. Similar to the previously presented works,
there is no hierarchical structure besides the two groups of faults. Moreover, some names
used in the classification are quite specific (i.e., Use of tx.origin), which makes it difficult to
understand the problem in a more abstract manner. Only 13 faults are considered, with no
possibility of expansion. Still, the idea of classifying the faults into two broad concepts of
security and functionality is a vision that may be interesting for newer classifications (e.g.,
targeting different types of systems).
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Table 2 Classification proposal
in Kaleem et al. (2020)

Vulnerabilities

Integer overflow and underflow

DoS with unbounded operation

Unchecked call return value

Reentrancy

Delegate call injection

Forced Ether to contract

DoS with unexpected revert

Erroneous visibility

Uninitialized storage pointer

Upgradeable contract

Type casts

Insufficient signature information

Frozen Ether

Authentication through tx. Origin

Unprotected suicide

Leaking Ether to arbitrary address

Secrecy failure

Outdated compiler version

A smart contract vulnerability classification is presented in Zhou et al. (2022a), based on
a previous work presented in Atzei et al. (2017). In this classification, summarized in Table 4,
the groupsweremaintained (i.e., Solidity, EVM, andBlockchain), but the vulnerability entries
weremodified (i.e., somenameswere removed, like stack size limit and gasless send and other
names were included, like tx. origin and default visibility). The authors linked the proposed
names to an external taxonomy, namely CWE (CWE Community 2009), which is helpful for

Table 3 Classification proposal in Argañaraz et al. (2020)

Level Vulnerability Impact

Security Equality on the balance Average

Non-verified external call High

Use of send instead of transfer Average

Denial of a service because of an external contract High

Re-entrancy High

Malicious libraries Low

Use of tx.origin Average

Transfer of all the gas High

Functional Integer division Low

Blocked money Average

Non-verified maths Low

Dependence on the timestamp Average

Unsecure inference Average
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Table 4 Vulnerability classification in Zhou et al. (2022a)

Level Vulnerability CWE Real-word attack

Solidity Re-entrancy CWE-841 The DAO Attack

Arithmetic issues CWE-682 PoWHcoin attack

Delegatecall to insecure contracts CWE-829 Parity Wallet (Second Hack)

Selfdestruct CWE-284 Parity Library bug

Tx.origin CWE-477 –

Mishandled exception CWE-252 King of The Ether attack

Default visibility CWE-710 Parity Wallet (First Hack)

External contract referencing CWE-829 Honey Pot

EVM Short address/parameter issues CWE-88 –

Freezing Ether CWE-17 –

Blockchain Transaction order dependence CWE-362 Attack on Bancor

Generating randomness CWE-330 PRNG contract

Timestamp dependence CWE-829 GovernMental attack

understanding each vulnerability, verifying the correctness of the proposed classification, and
also for standardization purposes. The proposed classification defines a basic separation of
vulnerabilities, mostly distinguishing cases related to the programs from cases related to the
platform. Again, the number of vulnerabilities listed is quite small (i.e.,13 vulnerabilities),
and the work could benefit from a repository open to community contributions.

Table 5 presents a vulnerability classification proposed byAmiet (2021). The classification
is based on two categories: i) core blockchain vulnerabilities (i.e., vulnerabilities related to
the blockchain platform) and ii) smart contracts vulnerabilities (i.e., vulnerabilities related
to the programs deployed in the blockchain). At the blockchain level, examples are provided
(e.g., attacks on the consensus mechanism), whereas, at the contract level, pseudo-code is
presented, which clarifies the security issues identified. These two broad groups are a basis
for applying the classification to other types of systems. There are no further hierarchical

Table 5 Classification proposed
in Amiet (2021)

Group Vulnerabilities

Core blockchain Consensus mechanism manipulation

Underlying cryptosystem vulnerabilities

Improper blockchain magic validation

Improper transaction nonce validation

Denial of service

Public-key and address mismatch

Smart contract Reentrancy

Arithmetic issues

Unprotected selfdestruct

Visibility issues

Weak randomness

Transaction order dependence

123

101 Page 8 of 67



Empirical Software Engineering (2024) 29:101

levels present in this taxonomy, and we found vulnerability names that are unclear, such
as Improper Blockchain Magic Validation, which does not really characterize the technical
details involving the vulnerability. As with previous cases, the 12 vulnerabilities represent a
quite small number of currently known vulnerabilities.

A classification of 28 vulnerabilities is proposed in Staderini et al. (2020) and was fur-
ther evolved to categorize a total of 33 vulnerabilities in Staderini et al. (2022). Table 6
presents an overview of the authors’ classification, identifying the acronym and name of the
vulnerabilities and an associated CWE (CWE Community 2009).

Table 6 Classification proposed
in Staderini et al. (2022)

Acr. Vulnerability name CWE-ID

ELT Ether lost in transfer

RV Requirement violation CWE-20

SA Short addresses

Atx Authorization through tx. origin

UEW Unprotected ether withdrawal

Usd Unprotected selfdestruct CWE-284

UWSL Unprotected write to storage location

VEF Visibility of exposed functions

GR Generating randomness CWE-330

MPRA Missing protection against signature

SM Signature malleability

Ty Type casts CWE-345

CPL DoS costly patterns and loops

Gs Gasless send CWE-400

BU Blockhash usage

ML Malicious libraries

SF Secrecy failure

TD Timestamp dependency CWE-668

CU Call to the unknown

DUC Delegatecall to the untrusted callee

EC DoS by external contracts CWE-669

AP Arithmetic precision order

IOU Integer overflow or underflow CWE-682

AJ Arbitrary Jump

FE Freezing ether

IGG Insufficient gas griefing

Re Reentrancy

RLO Right left override

TOD Transaction ordering dependence

UEB Unexpected ether balance CWE-691

ED Exception disorder

Us Unchecked send

UV Unchecked call return values CWE-703

123

Page 9 of 67 101



Empirical Software Engineering (2024) 29:101

Table 7 Vulnerability classification in Rameder et al. (2022)

Group Code Vulnerability

Malicious environment, Transactions
or input

1A Reentrancy

1B Call to the unknown

1C Exact balance dependency

1D Improper data validation

1E Vulnerable DELEGATECALL

Blockchain/Environment dependency 2A Timestamp dependency

2B Transaction-ordering dependency
(TOD)

2C Bad random number generation

2D Leakage of confidential information

2E Unpredictable state (dynamic
libraries)

2F Blockhash dependency

Exception & Error handling disorders 3A Unchecked low level call/send return
values

3B Unexpected throw or revert

3C Mishandled out-of-gas exception

3D Assert, require or revert violation

Denial of service 4A Frozen Ether

4B Ether lost in transfer

4C DoS with block gas limit reached

4D DoS by exception inside loop

4E Insufficient gas griefing

Resource consumption & Gas issues 5A Gas costly loops

5B Gas costly pattern

5C High gas consumption of variable data
type or declaration

5D High gas consumption function type

5E Under-priced opcodes

Authentication & Access control vul-
nerabilities

6A Authorization via transaction origin

6B Unauthorized accessibility due to
wrong function or state variable vis-
ibility

6C Unprotected self-destruction

6D Unauthorized Ether withdrawal

6E Signature based vulnerabilities

Arithmetic bugs 7A Integer over- or underflow

7B Integer division

7C Integer bugs or arithmetic issues
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Table 7 continued

Group Code Vulnerability

Bad Coding and Language Specifics 8A Type cast

8B Coding error

8C Bad coding pattern

8D Deprecated source language features

8E Write to arbitrary storage location

8F Use of assembly

8G Incorrect inheritance order

8H Variable shadowing

8I Misleading source code

8J Missing logic, logical errors or dead
code

8K Insecure contract upgrading

8L Inadequate or incorrect logging or
documentation

Environment Configuration Issues 9A Short address

9B Outdated compiler version

9C Floating or no pragma

9D Token API violation

9E Ethereum update incompatibility

9F Configuration error

Eliminated/Deprecated Vulnerabili-
ties

10A Callstack depth limit

10B Uninitialized storage pointer

10C Erroneous constructor name

Aswe can see in Table 6, the additional characterization byCWE is quite helpful, although
it is not accompanied by a blockchain-specific classification scheme, such as SWC (Smart-
ContractSecurity 2020), which could help in unifying knowledge. The source of information
is based on a set of references in Staderini et al. (2020) and Staderini et al. (2022), which do
not directly map with the state of the practice (e.g., tools for vulnerability detection). Still,
the process for building the classification is insightful and helpful as a way to solidify our
own classification, e.g., by allowing verification of our own mapping to CWE.

A consolidated taxonomy is presented in Rameder et al. (2022). The authors were able to
collect 54 vulnerabilities reported from different verification tools and grouped them into 10
categories. Table 7 overviews the taxonomy created by the authors.

This classification is more fine-grained than the previously discussed ones. However,
there are a few issues with some names given to the vulnerabilities. For instance, it is not
obvious to what extent integer bugs or arithmetic issues - 7C is different from Integer over-
or underflow - 7A or Integer division - 7B, and there are names like Gas costly loops and
Gas costly pattern which seem very similar. Also, names like configuration error are quite
generic and could lead to amore specific vulnerability likeEnvironment Configuration Issues.
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Regarding the structure itself, the taxonomy has a flat organization in which the categories do
not really represent aspects at the same abstraction or conceptual level. For instance,Denial of
Service is generally considered as a type of attack or the effect of an exploited vulnerability, or
Configuration Issues is quite generic, and it does not characterize the vulnerability sufficiently.
We can observe a similar issue between the names given to the categories and to the specific
vulnerabilities, e.g., Bad Coding Group versus Coding error Vulnerability. Although the
classification lists 54 vulnerabilities, it would benefit from evolving and including more
recent ones (e.g., via an open repository).

Table 8 presents the classification proposed by Zhang et al. (2020a), in which faults
are classified based on IEEE Standard Classification for Software Anomalies (I. Group et al
2010). The authors organized the faults into ninemain groups: data, description, environment,
interaction, interface, logic, performance, security, and standard. Thus, the paper does not
focus on security vulnerabilities but on faults in general. In addition, despite the work listing
49 faults, some identified faults are more related to best practices and not to software defects.
Nonstandard naming, Wasteful contracts, and Specify Function Variable as Any Type are
examples of these types of faults presented in the paper. Also, some vulnerabilities could be
placed in other groups. For instance, Integer Truncation is related to a cast operation and
not to a calculation operation, and Right-To-Left-Override Control Character is related to
a function Call with wrong arguments and not to "Description". Also, some vulnerabilities
seem to be misplaced, such as Results of Contract Execution Affected by Miners, because it is
a blockchain environment problem (i.e., a vulnerability in the miner process) and not related
to programming. It is worthwhile mentioning that the paper could provide more details about
each vulnerability/fault because some names (e.g., Pre-sent Ether) seem to be more related
to normal operations than a vulnerability/fault. A code example for each classification entry
would be helpful for this matter.

Chen et al. (2020a) present a taxonomy with 20 vulnerabilities (i.e., Table 9). The authors
categorized the vulnerabilities according to potential security, availability, performance,
maintainability, and reusability problems.Also, the paper proposes solutions (code examples)
to avoid each vulnerability being activated. The taxonomy follows a flat structure that is some-
what confusing. Sometimes, an entry refers to a group of vulnerabilities (i.e., Reentrancy);
sometimes, it refers to individual vulnerabilities (i.e., Unspecified Compiler Version). Some
vulnerabilities such as High Gas Consumption Function Type and High Gas Consumption
Data Type could be grouped inside a Gas Consumption group.

2.3 Community-Based Classification Schemes

This section discusses taxonomies or classification initiatives maintained by communities.
One of the most popular ones is Smart Contract Weakness Classification (SWC) (Smart-

ContractSecurity 2020), a vulnerability classification scheme for smart contracts whose main
goals are: i) Provide a straightforward way to classify ’weaknesses’ of a smart contract; ii)
Identify weaknesses that lead to vulnerabilities; iii) Define a common language to describe
weaknesses in the architecture, design, and coding of smart contracts; and finally, iv) Being
a way to improve the effectiveness of smart contract security analysis tools (Wagner 2018).

In SWC, each vulnerability has an external relationship with another taxonomy (i.e.,
CWE (CWE Community 2009)), and there are examples (i.e., faulty and non-faulty code) to
illustrate the vulnerability and a correction. SWChas a flat list structure, where the distinction
between vulnerabilities and other types of defects is often unclear.Also, it isworthmentioning
that there are cases where it is difficult to distinguish whether the problem is related to the
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Table 8 Vulnerability classification in Zhang et al. (2020a)

Group Sub-Group Vulnerability

Data Calculation Integer Division

Integer Overflow and Underflow

Integer Sign

Integer Truncation

Wrong Operator

Hidden Hidden Built-in Symbols

Hidden State Variables

Incorrect Inheritance Order

Initialization Unitialized Local/State Variables

Unitialized Store Variables

Description Output Right-To-Left-Override Control Character

Environment Supporting software Delete Dynamic Array Elements

Using continue statements in do-while state-
ments

Interaction Contract call Re-entrancy Vulnerability

Unhandled Exception

Ether flow Forced to receive ether

Locked Ether

Pre-sent Ether

Interface Parameter Call/delegatecall data/address is constrolled
externally

Hash Collision withMultiple Variable Length
Arguments

Short Address Attack

Signature with Wrong Parameter

Token parameter Nonstardard token interface

Logic Assembly code Returning results using assembly code in the
constructor

Specify Function Variable as Any Type

Denial of service DOS by Complexity Fallback Functions

DOS by Gaslimit

DOS by Non-existent address or malicious
contract

Fairness Results of Contracts Execution Affected by
Miners

Transaction Order Dependence

Storage Storage Overlap Attack

Performance Gas Byte[]

Invariants in Loop

Invariants State Variables Are Not Declared
Constant
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Table 8 continued

Group Sub-Group Vulnerability

Unused Public Functions Within The Con-
tracts Should Be Declared External

Security Authority control Replay Attack

Suicide Contracts

Use tx.origin for authentication

Wasteful contracts

Wrong constructor name

Privacy Non-public variables are accessed by pub-
lic/external functions

Public Data

Standard Maintainability Implicity Visibility Level

Nonstardard naming

Too Many Digits

Unlimited Compiler Versions

Use Depracated Build-in Symbols

Programming specification View/constant function changes contracts
states

Improper use of require, assert and revert

Table 9 Classification proposed
in Chen et al. (2020a)

Vulnerabilities

Unchecked external calls

Dos under external influence

Strict balance equality

Unmatched type assignment

Transaction state dependency

Reentrancy

Hard code address

Block info dependency

Nested call

Deprecated APIs

Unspecified compiler version

Misleading data location

Unused statement

Unmatched ERC-20 standard

Missing return statement

Missing interrupter

Missing reminder

Greedy contract

High gas consumption function type

High gas consumption data type

123

101 Page 14 of 67



Empirical Software Engineering (2024) 29:101

blockchain platform or to the smart contract itself (e.g., Weak Sources of Randomness from
Chain Attributes, Unencrypted Private Data On-Chain). A positive aspect is that SWC is
associated with an open repository, although, at the time of writing, the last update was made
in 2018. Considering the changes and new knowledge about smart contract vulnerabilities,
this means that practitioners’ involvement is now impaired. For instance, the classification
presented in Rameder et al. (2022) identifies several new vulnerabilities that are not present
in SWC.

The NCCGroup initiated the Decentralized Application Security Project (DASP) in 2018,
which includes a vulnerability classification scheme for smart contracts. The main idea is
to present the top 10 smart contract vulnerabilities, for which a single iteration was carried
out precisely in 2018. Thus, it does not really reflect the whole landscape of vulnerabilities.
DASP provides a short description for each class of vulnerabilities, which is accompanied by
pseudo-code as away of explaining the vulnerabilities in detail. The classification emphasizes
the impact the vulnerability had in real-world scenarios (e.g., reentrancy loss estimated at
3.5M ETH 50M USD at the time). References to real-world attacks are provided (i.e.,
reports, magazines, etc.), which present a historical view of vulnerability exploitation. The
nomenclature is clear, although some parts of the structure are questionable. For instance, the
Denial of Service category inDASP refers to gas limit reached, unexpected throw, unexpected
kill, and access control breached. The description is sometimes very short and may become
ambiguous (e.g., access control breached may refer to a vulnerability that would simply fit
in Access Control, which is another DASP category). In Durieux et al. (2020), the authors
used DASP but concluded that the categories were not sufficient to cover the vulnerabilities
found.

SIGP (Manning 2018) is a vulnerability classification scheme for smart contracts written
in Solidity that forms the basis of of the work in Antonopoulos and Wood (2018). The
classification considers three main elements: vulnerability, preventive technique, and a real-
world example. The first element conceptually describes the reported vulnerability. It also
presents the vulnerable code and explains how the attack is performed. The second element
presents a solution for the problem, and the last element discusses a real-world attack in
which the vulnerability was exploited. The clarity of the names used for the vulnerabilities
could be improved (e.g., entropy illusion and constructors with care are ambiguous). There
is an open repository associated, but not receiving any updates at the time of writing. As in
previous cases, there are only 16 vulnerabilities listed, which is currently far from the state
of the practice.

The SMARTDEC classification (SmartDec Corporation 2018) originated from the experi-
ence gathered from the creation of Smartcheck (Tikhomirov et al. 2018). The vulnerabilities
are organized into threemain categories: Blockchain (i.e., vulnerabilities from the blockchain
system), Language (i.e., programming language defects), and Model (i.e., vulnerabilities
caused by mistakes in the model). Each group has several entries (up to a total of 11), where
each entry corresponds to a set of related vulnerabilities. The entry names are unique, although
they are also quite generic and therefore less descriptive (e.g., Trust). The authors provide
a mapping between their taxonomy and other classifications, namely DASP (NCCGroup
2021), SWC (SmartContractSecurity 2020), and SIGP (Manning 2018). As an example, the
Arithmetic category is related to Over/underflow in SWC-101, DASP-3, and SP-2 and to
Precision issues in SP-15. The repository is open to contributions, although, at the time of
writing, there has been no update since 2018.
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2.4 Classification Schemes in Vulnerability Detection Research

Research in smart contract vulnerability detection is generally accompanied by custom vul-
nerability classification schemes (Luu et al. 2016; Kalra et al. 2018;Wang et al. 2019; Ghaleb
and Pattabiraman 2020; Choi et al. 2021; Bose et al. 2022). This is primarily due to lacking
an appropriate and up-to-date classification standard or taxonomy. As a result, biased and
limited classifications emerged, which are coupled to the context in which they were created.
The next paragraphs describe the classification schemes of selected research, namely of three
of the most cited vulnerability detection research works (at the time of writing and according
to Google Scholar). In all of these cases, the heterogeneity is clear, as well as the divergence
with other classification schemes, such as the ones previously presented in this section.

A symbolic execution tool named Oyente is proposed in Luu et al. (2016) with the goal
of allowing practitioners to detect security vulnerabilities. In this work, the authors identify
a small set of security vulnerabilities, as illustrated in Table 10.

Although the work in Oyente targets a specific set of vulnerabilities, the absence of a
standard way for categorizing and naming the vulnerabilities impairs the assessment and
comparison of results with other tools or approaches.

Securify (Tsankov et al. 2018) is a vulnerability detection tool based on symbolic execution
methods, which, at the time of writing, is able to detect 37 security vulnerabilities (Tsankov
2018), grouped by severity, as we can see in Table 11.

Again, as with the previous tool, the groups and the names or vulnerability definition
are non-standard, although there is an effort to classify most of them according to SWC
(SmartContractSecurity 2020).

Zeus is a tool based on abstract interpretation and symbolic execution (Kalra et al. 2018).
Table 12 shows the vulnerability classification performed by the authors and targeted by the
tools.

As we can see in Table 12, the authors created several groups (e.g., incorrect contracts,
unfair contracts), in which several vulnerabilities are placed. Although this is obviously a
partial classification of known vulnerabilities, the heterogeneity of the naming and definitions
and also general classification structures is relatively clear when compared to other works.
It again emphasizes the need for a more standard way of categorizing vulnerabilities.

2.5 Limitations of Current Classification Schemes

In this section, we highlight the main gaps and limitations identified during the analysis of
the different vulnerability classifications previously described, as follows:

– Classifications proposed in the literature tend to have simple structures, most of them
simply grouping the vulnerabilities into related groups. Many times, no groups at all are
used. This is not a problem by itself and may be useful in certain environments (e.g., a

Table 10 List of vulnerabilities
in Luu et al. (2016)

Vulnerability name

Mishandled exceptions

Reentrancy

Timestamp dependence

Transaction-ordering dependence
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Table 11 Vulnerability
classification in Tsankov et al.
(2018) and extended in Tsankov
(2018)

Severity Vulnerability

Critical TODAmount

TODReceiver

TODTransfer

UnrestrictedWrite

High RightToLeftOverride

ShadowedStateVariable

UnrestrictedSelfdestruct

UninitializedStateVariable

UninitializedStorage

UnrestrictedDelegateCall

DAO

Medium ERC20Interface

ERC721Interface

IncorrectEquality

LockedEther

ReentrancyNoETH

TxOrigin

UnhandledException

UnrestrictedEtherFlow

UninitializedLocal

UnusedReturn

Low ShadowedBuiltin

ShadowedLocalVariable

CallToDefaultConstructor?

CallInLoop

ReentrancyBenign

Timestamp

Info AssemblyUsage

ERC20Indexed

LowLevelCalls

NamingConvention

SolcVersion

UnusedStateVariable

TooManyDigits

ConstableStates

ExternalFunctions

StateVariablesDefaultVisibility
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Table 12 Vulnerability
classification in Kalra et al.
(2018)

Group Vulnerability

Incorrect contracts Reentrancy

Unchecked send

Failed send

Integer overflow/underflow

Transaction state dependence

Unfair contracts Absense of logic

Incorrect logic

Logically correct but unfair

Miner’s influence Block state dependence

Transaction order dependence

novice in the field of smart contracts trying to gain fast knowledge about security), how-
ever, such structures are often ad-hoc and, consequently, short-lived, resulting in limited
adoption. The classifications that collect more vulnerabilities are found in Rameder et al.
(2022); SmartContractSecurity (2020); Tsankov (2018), with Tsankov (2018) grouping
vulnerabilities by criticality and with Rameder et al. (2022) using conceptual groups to
fit related vulnerabilities.

– There is a large diversity of names being used in state of the art to refer to the same
vulnerability (e.g., both Integer bugs or arithmetic issues and Integer over or underflow
(Rameder et al. 2022) refer to the same vulnerability). There are also cases in which very
similar names refer to different vulnerabilities (e.g., unpredictable state (Grishchenko
et al. 2018) refers to wrong class inheritance order defect while vulnerable state (Krupp
and Rossow 2018) refers to uninitialized storage variable defect). In some cases, the same
name refers to different vulnerabilities, e.g., Transaction Order Dependency (TOD) is
the name used in Liao et al. (2019) and in Bose et al. (2022), which refers respectively
to "6.1.5 Transfer Amount Dependent on Transaction Order" and to "6.1.6 Transfer
Recipient Dependent on Transaction Order" in OpenSCV.

– Current classifications include several generic names that do not assist in the classification
of specific vulnerabilities (e.g., call to the unknown (Atzei et al. 2017) or unexpected
function invocation (Chen et al. 2020b)). In several cases, unclear nomenclatures are
used, such as entropy illusion, constructors with care (Manning 2018), or improper
Blockchain Magic Validation (Amiet 2021), which do not specify what the vulnerability
is. Another example is Style guide violation (Zhang et al. 2019), which is not even clear
whether it is referring to bad practice or a vulnerability.

– Regarding vulnerability classification, current research appears to be falling far behind the
state of the practice. Current vulnerability detection tools identify several vulnerabilities
(e.g., Securify2 (Tsankov 2018)) that do not fit in relatively well-established classifica-
tions, such as DASP (NCC Group 2019), or SWC (SmartContractSecurity 2020).

– Current classifications do not involve active community participation, and we observed
little to no participation at all in several classifications. Thus, it is fundamental that a
classification can be easily maintained and evolve to integrate new vulnerabilities or
even has the possibility of structurally changing (i.e., versioning is also required). This
reduced community participation is the main reason why the most popular classification
initiatives, like SWC (SmartContractSecurity 2020) or DASP (NCC Group 2019), are
currently far behind the detection capabilities of vulnerability detection tools.
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– Classifications originated fromvulnerability detection tools sometimes use names that are
biased towards the tool’s capabilities, which is fully acceptable from a tool perspective,
but for broader goals (e.g., tool benchmarking), a vulnerability classification must be
independent of specific tools’ capabilities. For instance, Osiris (Torres et al. 2018) is a
tool for detecting vulnerabilities related to integer values and naturally focuses on a few
types of issues affecting integer manipulation. Thus, the naming used is very specific to
this context and also does not capture the larger picture (e.g., issues affecting other types
of numbers may be related but are not represented).

– The high heterogeneity of names used across various tools, community efforts, and
research initiatives creates a significant obstacle to understanding which tools perform
better. Although initiatives exist to assess the effectiveness of vulnerability detection
tools, they all face difficulties in adopting a uniform, fine-grained taxonomy for defects.

– Many times, taxonomies mix the characteristics of a certain vulnerability with the effect
of exploiting it or with how it is exploited, or its impact, and use category names like
Denial of Service, which is basically a consequence of the activation of a certain vulner-
ability. This is not necessarily wrong, but it may contribute to a non-uniform taxonomy
and possibly error-prone from the point of view of the taxonomy’s user. For instance,
Ghaleb et al. (2023) classified the access control vulnerabilities into two vulnerabili-
ties: violated access control checks (VACC) and missing access control checks (MACC).
The first one (i.e., VACC) refers to a vulnerability that results in improper access con-
trol. After analyzing the vulnerability presented in the paper, we realized that the attack
occurred due to a wrong constructor name. The second one (i.e., MACC) refers to incor-
rect authentication or authorization. According to the paper (Ghaleb et al. 2023)), the
vulnerability is activated when the developer makes a mistake in verifying the owner’s
identification (i.e., the Caller is not the owner). This clearly shows that the name selected
for the vulnerability does not reflect the nature of the vulnerability but the impact of
the vulnerability. OpenSCV covers both vulnerabilities within the entries 5.2.2 - Wrong
Constructor Name and 7.1.1 Wrong Caller Identification, respectively.

– Classification structures are often constructed with different degrees of granularity. Some
structures have general categories, while others have more specific categories. This
inconsistent categorization poses difficulties and complexities for practitioners and tool
developers, as they end up creating new classifications. Overall, a broader view of vulner-
ability detection is needed to foster the longevity of a particular taxonomy, accompanied
by the possibility of evolving it.

3 OpenSCV Construction Process

This section describes the process followed to build the OpenSCV taxonomy. Overall, it
was an iterative and incremental process during which we kept general taxonomy quality
properties (e.g., the ones discussed in Section 2) in perspective while going through all the
construction phases. Asmentioned in Section 1, we use the general term vulnerability to refer
to vulnerabilities and also to software defects considered in the literature to be associated
with high-security risks. Figure 1 overviews the process, which consists of the following
phases:

i) Vulnerability information collection;
ii) Vulnerability relationship with other classifications;
iii) Vulnerability characterization (defect type, qualifier, and code clip example);

123

Page 19 of 67 101



Empirical Software Engineering (2024) 29:101

Fig. 1 Taxonomy construction process

123

101 Page 20 of 67



Empirical Software Engineering (2024) 29:101

iv) Structural and nomenclature consolidation;
v) Dataset construction.

Regarding the first phase (vulnerability information collection), visible on the top of
Fig. 1), the main goal was to gather an up-to-date, heterogeneous, and non-curated list of
vulnerabilities that affect smart contracts. This list allowed us to understand the naming and
classification heterogeneity, which is essential to building an integrated vision and ultimately
reaching a meaningful taxonomy.

To build our taxonomy,wemainly relied on two sets ofworks: i) the existing smart contract
vulnerability classifications and ii) the smart contract vulnerability detection tools or works.
We used Google Scholar to first identify research work on smart contract vulnerability
classification (e.g., taxonomies and vulnerability classification schemes), which resulted in
the identification of 11 research papers. We then proceeded to search for research targeting
smart contract vulnerability detection, which resulted in the identification of 77 research
papers, mostly materialized in tools and that we summarized in Table 13. The identified
works refer to research carried out from October 2016 to April 2023 and resulted in the
collection of 481 vulnerability definitions. To filter the identified studies, a set of inclusion
and exclusion criteria was applied:

Inclusion Criteria:
a) The work must address smart contract vulnerability detection and, therefore, must

specify types of vulnerabilities (e.g., reentrancy (Liu et al. 2018)).
b) The work must clearly characterize the technique used to perform vulnerability detec-

tion so that we can specify its type/subtype while allowing readers to understand its basic
mechanics.

Exclusion Criteria:
a) Works that are published as short papers (e.g., less than 4 pages) are excluded from the

analysis. The same happened with non-peer-reviewed research (i.e., pre-prints, despite being
publicly available).

b) Due to the huge number of publications on this topic in recent years (i.e., detection
verification tools) and also serving as a quality assessment measure, we exclude papers
published in tier B conferences and lower (we use CORE 2021 (The Computing Research
and Education Association of Australasia 2021), as reference), as well as papers published in
JCR Q2 Journals and lower (Clarivate 2021). The exceptions to this are papers published in
blockchain conferences or journals, which did not have enough time to enter the respective
rankings and are considered due to this reason.

To go through the aforementioned criteria, we analyzed each paper’s information, namely
the title, abstract, and full text. The full-text analysis served initially to understand if vulner-
ability types are present and sufficiently described.

It is worth emphasizing that OpenSCV’s primary focus is on the characterization and
classification of security vulnerabilities within smart contracts, which may help develop-
ers of mitigation solutions for implementing more effective tools. Thus, the focus is not
on threat mitigation, which can be found in other works, such as in Ivanov et al. (2023),
where the authors classify threat mitigation solutions (e.g., vulnerability detection tools) for
smart contracts across several dimensions. Also important to notice is the fact that the iden-
tified research led us to the identification of community-oriented initiatives, namely SWC
(SmartContractSecurity 2020) and DASP (NCC Group 2019), SIGP (Manning 2018), and
SMARTDEC (SmartDec Corporation 2018).

In the second phase, we analyzed the vulnerability relationship with other classifica-
tions by going through each of the identified vulnerabilities and mapping them to popular
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Table 13 Vulnerability detection tools identified in the state-of-the-art

Categories Tecnique Tool name Reference

Formal methods Abstract interpretation HFCCT Li et al. (2022b)

SoliDetector Hu et al. (2023)

Vulpedia Ye et al. (2022)

MadMax Grech et al. (2020)

Securify Tsankov et al. (2018)

Model checking Crincoli et al Crincoli et al. (2022)

Helmholtz Nishida et al. (2021)

Zeus Kalra et al. (2018)

VeriSolid Mavridou et al. (2019)

SmartPulse Stephens et al. (2021)

VeriSmart So et al. (2020)

Symbolic execution ConFuzzius Torres et al. (2021)

ExGen Jin et al. (2023)

GasChecker Chen et al. (2021)

HFCCT Li et al. (2022b)

MOPS Fu et al. (2019)

Pluto Ma et al. (2022)

SAILFISH Bose et al. (2022)

SmarTest Sunbeom et al. (2021)

sCompile Chang et al. (2019)

RA Chinen et al. (2020)

EthRacer Kolluri et al. (2019)

teEther Krupp and Rossow (2018)

Oyente Luu et al. (2016)

MAR Wang et al. (2021)

Zhang et al. Zhang et al. (2022b)

Osiris Torres et al. (2018)

DEPOSafe Ji et al. (2020)

Vultron Wang et al. (2019)

Theorem proving Ayoade et al. Ayoade et al. (2019)

Static code analysis Pattern recognition Vrust Cui et al. (2022)

SmartDagger Liao et al. (2022)

SmartCheck Tikhomirov et al. (2018)

Taint analysis EOSIOAnalyzer Li et al. (2022c)

Sereum Rodler et al. (2019)

SmartDagger Liao et al. (2022)

SmartFast Li et al. (2022d)

Achecker Ghaleb et al. (2023)

Ethainter Brent et al. (2020)

Slither Feist et al. (2019)

EasyFlow Gao et al. (2019)

Osiris Torres et al. (2018)
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Table 13 continued

Categories Tecnique Tool name Reference

Clairyoyance Xue et al. (2020)

EthPloit Zhang et al. (2020b)

Software testing Concolic execution EthRacer Kolluri et al. (2019)

ConFuzzius Torres et al. (2021)

Etherolic Ashouri (2020)

Fuzzing SODA Chen et al. (2020b)

Gas Gauge Nassirzadeh et al. (2023)

Hfcontractfuzzer Ding et al. (2021)

DEPOSafe Ji et al. (2020)

xFuzz Xue et al. (2022)

Pied-Piper Ma et al. (2023)

ReDefender Li et al. (2022a)

Sereum Rodler et al. (2019)

SMARTIAN Choi et al. (2021)

SmartFuzzDriverGen Pani et al. (2023)

Solanalyser Akca et al. (2019)

GasFuzzer Ashraf et al. (2020)

ContractFuzzer Jiang et al. (2018)

sFuzz Nguyen et al. (2020)

Vultron Wang et al. (2019)

WASAI Chen et al. (2022)

Machine learning Classical learning Eth2Vec Ashizawa et al. (2021)

xFuzz Xue et al. (2022)

MODNN Zhang et al. (2022a)

Peculiar Wu et al. (2021)

SmartDagger Liao et al. (2022)

SmartMix Shakya et al. (2022)

TMLVD Zhou et al. (2022b)

Slicing Matrix Xing et al. (2020)

Song et al. Song et al. (2019)

ContractWard Wang et al. (2021)

Deep learning ASSBert Sun et al. (2023)

CodeNet Hwang et al. (2022)

DeeSCVHunter Yu et al. (2021)

EtherGis Zeng et al. (2022)

Gupta et al. Gupta et al. (2022)

ReVulDL Zhang et al. (2022c)

VSCL Mi et al. (2021)

Zhuang et al. Liu et al. (2021)

Zhuang et al. Zhuang et al. (2020)

Ensenble learning Dynamit Eshghie et al. (2021)
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smart contract vulnerability classification schemes, namely SWC (SmartContractSecurity
2020) and DASP (NCCGroup 2021). We also selected, from the state of the art in vulnerabil-
ity classification, what is, to the best of our knowledge, the currently largest and most recent
vulnerability classification scheme proposed by Rameder et al. (2022). Then, we resorted to a
broader security-related classification, namely the Common Weakness Enumeration (CWE)
(CWECommunity 2009), which provides us with a non-domain-specific view of each defect.
Although the action consists of simply mapping vulnerabilities, it actually contributes to the
characterization of each vulnerability. This may be useful for later taxonomy consolidation
purposes (e.g., bymerging defects that are the same but are representedwith different names).
Obviously, mapping the identified vulnerabilities to existing classifications also allows us to
understand the exact coverage of existing classifications or disparities against the current
state of the art or practice.

The third phase - vulnerability characterization (defect type, qualifier, and code clip
example) - has the direct goal of detailing the vulnerability according to its nature and also
by example, which allows for clarity of the explanation and may help in cases where the
vulnerability description and remaining attributes are inadvertently left unclear. Regarding
(vulnerability nature), we resort to theOrthogonalDefect Classification (ODC), namely to the
’defect type’ attribute, which generally characterizes the type of software defect and can cor-
respond to Assignment/Initialization, Checking, Algorithm/Method, Function/Class/Object,
Interface/O-OMessages, Timing/Serialization,Relationship (IBM2013b).We alsomake use
of the ’defect qualifier’ attribute, which characterizes the state of the implementation before
a correction, namely if the defect refers to missing, wrong, or extraneous code. We also use
the ODC extensions, as proposed in IBM (2013a), for vulnerabilities that relate to other
aspects (e.g., defect types related to the process followed during compilation or management
of libraries). For each vulnerability, we also extracted a code excerpt (when made available
by the authors) that could represent the issue, as a way to reduce or eliminate any possible
ambiguities that could still be present. For the cases where no code example was made avail-
able and the description allowed to build one, we created a Solidity code example as a way
of further illustrating the defect. Thus, all of the identified vulnerabilities in OpenSCV are
associated with a code example.

The fourth phase, naming and structural consolidation, consists of two steps: the attri-
bution of names to the vulnerabilities, and ii) their organization in a tree structure. In the first
step, we merged defects that referred to the same issue (despite being named differently by
different authors. This required going through the names and descriptions of the different
defects and, whenever provided by the authors, also analyzing the corresponding vulnerable
code to understand if it referred to the same defect or not. The additional characterization
(e.g., ODC) helped in such grouping. Obviously, during this step, several adjustments to the
characterization of the defects were made, as well as corrections to the defects’ relationships
with other classifications. Figure 2 shows an example of the same vulnerability named dif-
ferently by different authors. In Brent et al. (2018) named it Unsecured Balance (Fig. 2.a))
and it basically consists of a misnamed constructor while Zhang et al. (2019) named itMiss-
ing constructor (Fig. 2.b)), where we observe that it is actually a wrong name used during
the definition of the constructor. So, besides the names, we actually see that the definitions
provided may not be really accurate sometimes. In this particular case, and as an example,
we named this defect as Wrong Constructor Name. Thus, during this step, we defined an
initial name for each of the defects, based on the name given by the authors of the respective
paper, on the names presented in the corresponding related classifications (i.e., DASP, SWC,
CWE), and on the ODC classification.
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Fig. 2 The same vulnerability named and also described differently in: a) (Brent et al. 2018); b) (Zhang et al.
2019)

Each vulnerability is analyzed and classified according to its most prevalent nature. For
example, design flaws related to the lack of exception handling are linked to Mishandled
Events category, or failures of functions that are known to be called externally but which
need further checking are classified in Unsafe External Calls category in the OpenSCV.

In the second step of the fourth phase (i.e., structural consolidation), we defined a hier-
archical structure for the taxonomy based on the merged vulnerabilities and preliminary
naming. During this step, names were further adjusted for clarity and also to better fit in the
categories being created. The final result is visible in Figs. 3 and 4. As we can see in both
Figures, OpenSCV consists of three levels. The first one (at the left-hand side of both Figs. 3
and 4) contains the higher level categories, the intermediate nodes are hybrid and contains
groups (i.e., subcategories) of vulnerabilities as well as a few isolated vulnerabilities. All
items at the last level (leaves at the right-hand side of Figs. 3 and 4) represent vulnerabilities.
Each vulnerability identified in the tree is labeled with several symbols that characterize it
in terms of ODC defect type and ODC qualifier.

To build the taxonomy structure, we followed a bottom-up process and began by grouping
the defects of similar nature, which allowed us to create a set of categories, such as reentrancy,
useless code, or improper type usage, for example.Certain defects could not really be grouped,
such asUse of Malicious Libraries or Inadequate Data Representation, although at the same
time, many of them sounded like higher-level defects (i.e., siblings were expected). Thus, for
the time being, we opted not to keep these vulnerabilities at the bottom layer (e.g., by creating
a subcategory with a single vulnerability). After this, the same procedure was applied at this
current intermediate level to reach the definition of the higher-level categories.

To build our taxonomy, we analyzed the nature of each vulnerability and the reason why
each vulnerabilitymay appear in the code. Althoughwe provide information about the impact
of each, the categorization and naming of the vulnerabilities is mainly based on the nature
of each vulnerability (e.g., Arithmetic Issues -> Division Bugs -> Divide by Zero). The main
reason for this is to help developers easily find the vulnerabilities and better understand how
to avoid these vulnerabilities. Each leaf in our taxonomy belongs to a concrete vulnerability;
thus, we provide concrete code examples for each.

The whole taxonomy construction process was iterative and required the involvement of 2
experienced researchers and 1 early stage researcher. During the process, several adjustments
to nameswere performed for further clarity and consistency across all categories of the taxon-
omy. Obviously, this is a continuous effort, which is now open to community participation via
our GitHub repository (Vidal et al. 2024b). The current shape of the taxonomy may evolve
to incorporate further vulnerabilities. It is worth mentioning that, during this process, we
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Fig. 3 Taxonomy of smart contract vulnerabilities (Part 1 of 2)

observed that the integration of new works on vulnerability detection was a major contribu-
tor to the definition of the taxonomy, and this is the reason why we intend to be continuously
integrating new works on vulnerability detection and mapping their information into new
versions of our taxonomy, possibly making naming and structural adjustments as a conse-
quence of such integration. Currently, our taxonomy lists 94 vulnerabilities and is available
at Vidal et al. (2024c), where all the mapped works are identified, as well as the vulnerability
names used by those works. The taxonomy allows easy integration of new works. It is ready
not only to support naming and structural changes but also to correct possible errors.

The fifth phase refers to the validation process in which we invited smart contract security
experts to validate our taxonomy. They are mostly developers of vulnerability detection tools
and are interested in this research area. Each participant was introduced to the vulnerabilities
and their category individually and asked to evaluate the title and description of each vulner-
ability in terms of Clarity and Comprehensibility and also evaluate each category in terms of
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Fig. 4 Taxonomy of smart contracts’ vulnerabilities (Part 2 of 2)

Representativeness, Clarity, Comprehensiveness andUsefulness. We also encourage them to
provide additional feedback in order to improve the overall quality of the taxonomy.

The sixth phase refers to the dataset constrution, where we aimed at obtaining multiple
real examples of smart contracts thatmatch the defects present in our taxonomy.At the time of
writing, a preliminary version of the dataset is created by gathering multiple real examples of
contracts (i.e., a vulnerable contract and the corresponding correction) per each vulnerability
presented in our taxonomy. Indeed, each vulnerability might appear in the code in different
forms (i.e., different implementations), and vulnerability detection tools might be able to
detect just some of the forms. We directly used examples from the collected papers whenever
complete contracts were made available. In some cases, SWC also had good examples. All
collected contracts present in our dataset passed through the compilation phase. Our intention
is to provide an initial basis for researchers to use and, at the same time, provide the possibility
of adding further examples (ideally, different forms of the same vulnerability being added to
the dataset).
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4 Taxonomy of Smart Contract Vulnerabilities

In this section, we traverse the taxonomy tree and briefly describe all categories and individual
vulnerabilities. We use the original index numbers as presented in Figs. 3 and 4 (at the left-
hand side of each taxonomy item) for consistency with OpenSCV’s website (Vidal et al.
2024c), which provides a detailed description of the taxonomy. So, please note that the
following item numbers (marked with the # symbol) refer to the index of a certain item in
the taxonomy and not to subsections of the document.

To ensure the paper is kept within reasonable length, most of the descriptions consist of
brief explanations. For further information, the reader may refer to Vidal et al. (2024c) and
the provided examples. However, for illustrative purposes, we discuss the first vulnerability
(i.e., 1.1.1 Unsafe credit transfer)in detail.

# 1 Unsafe External Calls

This category represents a set of vulnerabilities in which there is an interaction between at
least two contracts. It also refers to vulnerabilities related to contractsmaking non-blockchain
external calls, such as calling external web services, calling external libraries, executing
external commands, or accessing external files.

# 1.1 Reentrancy

The first subcategory is reentrancy, in which two or more contracts are involved: the vul-
nerable contract and the malicious contract. Overall, this type of vulnerability occurs when
the malicious contract, after initiating a call, is allowed to make new calls to the vulnera-
ble contract before the initial call has been completed. Thus, unexpected state changes may
occur, such as depletion of credit. We identified two types of reentrancy vulnerabilities: one
associated with loss of credit and the other associated with unexpected state changes. This
is in line with several vulnerability detection tools, such as Securify (Tsankov 2018), Slither
(Slither’s Github 2019), or Momeni et al. (2019); Feist et al. (2019), which also distinguish
these two cases (although using different names).

# 1.1.1 Unsafe Credit Transfer

Known due to the DAO attack event (Siegel 2016), this vulnerability allows attackers to
maliciously change balance via credit transfer calls that are allowed to take place before a
previous call has been completed. Let us consider the case where a smart contract maintains
the balance of several addresses, allowing the retrieval of funds. A malicious contract may
initiate a withdrawal operation, which would lead the vulnerable contract to send funds to
the malicious one before updating the balance of the malicious contract. Funds would be
accepted on the malicious contract side, and a new withdrawal could be initiated (before the
balance had been updated on the vulnerable contract side). As a consequence, the malicious
contract could withdraw funds multiple times, with the total sum exceeding its own funds.

Using the Orthogonal Defect Classification (ODC) as a reference, this vulnerability can
be classified as being of type Algorithm as the nature of the vulnerability sits in the logic
created by the programmer. The ODC qualifier is defined as wrong as the vulnerability is
related to incorrect logic (i.e., not missing or extraneous logic), related to the order of the
instructions in the code. Figure 5 shows a concrete example available at OpenSCV’s website
(Vidal et al. 2024c) for this vulnerability.

Regarding the relationship to CWE, we classify this vulnerability (and actually the whole
reentrancy group) as CWE-841, which describes a situation where "the software supports
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Fig. 5 Example for the 1.1.1 unsafe credit transfer vulnerability at OpenSCV’s website

a session in which more than one behavior must be performed by an actor, but it does
not properly ensure that the actor performs the behaviors in the required sequence". This
vulnerability is also known in the literature as simple reentrancy (Li et al. 2022a), modified
reentrancy (Li et al. 2022a), reentrancy-eth (Li et al. 2022d), cross-function re-entrancy
(Mavridou et al. 2019),DAO (Tsankov et al. 2018), buggy-locked reentrancy (Li et al. 2022a),
reentrancy vulnerabilities (Chinen et al. 2020), reentrancy (Gupta et al. 2022; Sun et al. 2023;
Chen et al. 2020b; Hwang et al. 2022; Yu et al. 2021; Eshghie et al. 2021; Ashizawa et al.
2021; Zeng et al. 2022; Hu et al. 2023; Xue et al. 2022; Zhang et al. 2022a; Fu et al. 2019;
Ma et al. 2022; Wu et al. 2021; Rodler et al. 2019; Bose et al. 2022; Choi et al. 2021; Liao
et al. 2022; Zhou et al. 2022b; Mi et al. 2021; Ye et al. 2022; Liu et al. 2021; Zhuang et al.
2020; Ashouri 2020; Ashraf et al. 2020; Feist et al. 2019; Jiang et al. 2018; Kalra et al.
2018; Luu et al. 2016; Wang et al. 2021; Mavridou et al. 2019; Nguyen et al. 2020; Stephens
et al. 2021; Song et al. 2019; Tikhomirov et al. 2018; Wang et al. 2021, 2019; Xue et al.
2020; Akca et al. 2019; Torres et al. 2021; Zhang et al. 2022c), or SWC-107: reentrancy
(SmartContractSecurity 2020).

# 1.1.2 Unsafe System State Changes

This vulnerability is similar in nature to v1.1.1, with the main difference being the fact that
there is no credit involved and, thus, no impact on users’ funds. Due to the way the contract
is coded, a call that reaches the vulnerable contract before a previous one has ended may
allow an attacker to place the program in an unexpected state, leading to various effects,
depending on the type of contract involved, including performance or availability issues.
This vulnerability is also known in the literature as reentrancy Benign (Tsankov et al. 2018),
reentrancy No ETH (Tsankov et al. 2018), or SWC-107: reentrancy (SmartContractSecurity
2020).

# 1.2 Malicious Fallback Function

Fallback functions are functions that are executed when a program receives a call to a func-
tion whose signature does not exist, i.e., either the name does not exist, or the parameters do
not match the parameters of any of the existing functions. An attacker could exploit a smart
contract through a vulnerability fallback function externally, which could activate other vul-
nerabilities (i.e., Reentrancy or Access Control). For instance, the attacker could invoke it
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and reach a state that was not allowed to reach (Chen et al. 2020b). This vulnerability is
also known in the literature as call to the unknown (Atzei et al. 2017) or unexpected function
invocation (Chen et al. 2020b)

# 1.3 Improper Check of External Call Result

This category groups vulnerabilities that verify the execution of external contracts in an
improper manner (i.e., verification is wrong or even missing), which affects the subsequent
logic of the calling contract. The result of invoking a certain external operation should be
verified, first of all, because it may simply fail, but especially because the called operation
may be malicious (or may just have been poorly coded, resulting in an unexpected result);
thus, the direct use of the result may lead to unexpected behavior.

# 1.3.1 Improper Check of External Call Return Value

This vulnerability consists of an incorrect (or missing) verification of the returned value from
the external execution of a contract. When a smart contract invokes another one, the returned
value should be verified because the called operation may return an unexpected value (i.e.,
either because the callee is malicious or may just have been poorly coded, resulting in an
unexpected result) (Chen et al. 2020b). This vulnerability is also known in the literature as
call-stack depth attack (Song et al. 2019;Wang et al. 2021), call depth (Sun et al. 2023; Zhang
et al. 2022a), no check after contract invocation (Chen et al. 2020b), unchecked call return
value (Zheng et al. 2021), unchecked external call (Tikhomirov et al. 2018), unused Return
(Tsankov et al. 2018), unchecked return values (Fu et al. 2019), or SWC-104: Unchecked
Call Return Value (SmartContractSecurity 2020).

# 1.3.2 Improper Exception Handling of External Calls

In the case of this vulnerability, the problem resides in the incorrect (or missing) handling
of exceptional behavior thrown by a call (i.e., instead of residing in the handling of values,
as in the case of vulnerability v1.3.1). The improper verification of exceptions thrown by the
callee may lead to unexpected behavior in the caller contract. There are various reasons why
the callee may exhibit exceptional behavior. For instance, the callee could be under mali-
cious control, the execution of the transaction could activate a fault in the callee contract, the
transaction could be terminated due to reaching the gas limit, or the callee contract may have
been terminated (e.g., after a software fault has been detected in the contract). This vulner-
ability is also known in the literature as denial of service (Ashouri 2020), doS by external
contract (Tikhomirov et al. 2018), dos attack (Liao et al. 2022), external contract referencing
(Mavridou et al. 2019) or SWC-113: DoS with Failed Call (SmartContractSecurity 2020).

# 1.3.3 Improper Check of Low-Level Call Return Value

Languages like Solidity provide the possibility of using low-level calls that operate over raw
addresses. Such calls do not verify that the code exists or the success of the calls. Thus, its
use may lead to unexpected behavior (Xi and Pattabiraman 2023). As a result, using such
calls can be risky and should be avoided in most cases. This vulnerability is also known
in the literature as check effects (Zhang et al. 2022a), inline assembly (Zhang et al. 2022a),
low level calls (Tsankov et al. 2018; Zhang et al. 2022a), unchecked call (Hu et al. 2023),
unchecked low-level calls (Hwang et al. 2022), or low-level-calls (Li et al. 2022d).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: Return value of low-level calls not used".

123

101 Page 30 of 67



Empirical Software Engineering (2024) 29:101

# 1.4 Improper Locking During External Calls

A vulnerable contract uses a lock mechanism in an erroneous manner, which may cause
deadlocks. For instance, when a developer creates a condition with strict equality checks
for the Ether balance, this condition can never be satisfied, which could allow an attacker to
explore a DOS attack. Thismay result, for instance, in the impossibility of executing transfers
and eventually in Denial of Service (Mavridou et al. 2019). This vulnerability is also known
in the literature as SWC-132: Unexpected Ether balance (SmartContractSecurity 2020).

# 1.5 Interoperability Issues with Other Contracts

This issue relates to interoperability issues between contracts built in different language ver-
sions. Newer contracts may execute or inherit discontinued functionality present in older
contracts (Khan et al. 2021). For instance, Solidity has introduced the operation code
STATICCALL to allow a contract to call another contract (or itself) without modifying
the state. Starting from V0.5.0, pure and view functions must now be called using the code
STATICCALL instead of the usual CALL code. Consequently, when defining an interface
for older contracts, the programmer should only use view instead of constant in the case
s/he is absolutely sure that the function will work with STATICCALL (Solidity 2023). This
vulnerability is also known in the literature as assembly Usage (Tsankov et al. 2018).

# 1.6 Delegatecall to Untrusted Callee

Calling untrusted contracts using the delegate feature is generally highly problematic because
it opens the possibility for the called contract to change sensitive variables (e.g., msg.data
or sender) of the source contract (Jiang et al. 2018). This type of issue has beenmost notably
known as the Parity hack,which allowed attackers to reset the ownership and usage arguments
of existing user wallets (Krupp and Rossow 2018). This vulnerability is also known as code
injection (Krupp and Rossow 2018), control-flow hijack (Choi et al. 2021), cross program
invocation (Cui et al. 2022), dangerous delegate call (Ashraf et al. 2020; Jiang et al. 2018),
delegate call (Hu et al. 2023; Zeng et al. 2022; Xue et al. 2022), delegate call abuse (Fu et al.
2019), tainted delegate call (Brent et al. 2020), unchecked delegate call function (Nguyen
et al. 2020), unrestricted delegate call (Tsankov et al. 2018), unsafe delegate call (Torres
et al. 2021), or SWC-112: Delegate call to Untrusted Callee (SmartContractSecurity 2020).

# 1.7 Unsafe Non-Blockchain External Call

This category of vulnerabilities is related to contracts i) making non-blockchain external
calls to untrusted third-party resources like web services and libraries, ii) executing external
commands, or iii) accessing external files. These calls or accesses to non-blockchain external
resources will cause security issues if different results are returned to each peer node, which
consequently will result in inconsistent endorsements.

# 1.7.1 Unsafe External Web Service Call

Sometimes, contracts may opt to streamline the development process and reduce effort by
reusing external web services through API calls. Nevertheless, this approach can potentially
lead to security issues if the returnedvalues vary across different peer nodes.This vulnerability
is also known in the literature asWeb service (Li et al. 2022b).

123

Page 31 of 67 101



Empirical Software Engineering (2024) 29:101

# 1.7.2 Unsafe External Library Call

Similar to the previously mentioned vulnerability, contracts might incorporate external
libraries without a comprehensive understanding of their internal workings. This vulner-
ability is also known in the literature as External Library Calling (Li et al. 2022b).

# 1.7.3 Unsafe External Command Execution

External command execution is another possibility within smart contracts. Nevertheless, this
action cannot guarantee consistent results across all peer nodes. This vulnerability is also
known in the literature as System Command Execution (Li et al. 2022b).

# 1.7.4 Unsafe External File Access

Like external command execution, smart contracts also enable access to external files, but
it cannot be assured that the nodes will receive identical results. This vulnerability is also
known in the literature as External File Accessing (Li et al. 2022b).

# 1.8 Cross Channel Invocation

Certain blockchain platforms like Hyperledger Fabric permit contracts to call each other.
However, when two contracts interact through different channels, inconsistencies can arise
in message reception. This vulnerability is known in the literature with the same name (Li
et al. 2022b).

# 2 Mishandled Events

This category includes a set of vulnerabilities in which exceptional events are mishandled.
In Solidity, specific functions can be used to verify if certain conditions exist and throw
exceptions in case the conditions are not met, namely require and assert. There are,
however, fundamental differences. When the require function returns false, all executed
changes are reverted, and all remaining gas fees are refunded. When the assert function
returns false, it reverts all changes but consumes all remaining gas. However, such differences
have become a frequent source of problems (Hajdu and Jovanović 2020).

# 2.1 Improper Exceptional Events Handling

This first group of vulnerabilities is directly related to exceptional events, which, when
mishandled, are often linked to the loss of atomicity in operations and other effects, such as
excessive gas consumption or unauthorized access.

# 2.1.1 Improper Use of Exception Handling Functions

Diverse run-time errors (e.g., out-of-gas error, data type overflow error, division by zero
error, array-out-of-index error, etc.) may happen after a compiled smart contract is deployed.
However, Solidity has many functions for error handling (e.g., throw, assert, require,
revert), but their correct use relies on the experience and expertise of the developer. This
vulnerability occurs when the developer misuses the handling exception functions, which can
lead the program to unexpected behavior. This vulnerability is also known in the literature
as exception disorder (Jiang et al. 2018), exception state (Zhou et al. 2022b), mishandled
exceptions (Choi et al. 2021; Fu et al. 2019; Luu et al. 2016; Mavridou et al. 2019; Nguyen
et al. 2020), unexpected revert (Ye et al. 2022), unhandled errors (Li et al. 2022b), unhandled
exception (Ashouri 2020; Torres et al. 2021), or unhandled exception (Tsankov et al. 2018).
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# 2.1.2 Improper Exception Handling in a Loop

This vulnerability occurs when a transaction is excessively large (i.e., it executes too many
statements) and may lead to excessive costs. For instance, when one of the statements in a
transaction fails (e.g., due to a software bug), the transaction will not be packaged into a
block, and the consumed gas will not be returned to the user (and actually the concluded
operations are reverted and must be executed again). Thus, such kinds of transactions should
be decomposed into smaller parts so that the likelihood of success increases and the negative
effects associated with the failure cases diminish. This vulnerability is also known in the
literature as call in loop (Tsankov et al. 2018), costly loop (Shakya et al. 2022; Tikhomirov
et al. 2018), expensive operations in a loop (Chen et al. 2021), fusible loops (Chen et al.
2021), repeated computation in a loop (Chen et al. 2021), revert DOS (Stephens et al. 2021),
unilateral comparison in a loop (Chen et al. 2021), unbounded mass operation (Grech et al.
2020), costly-operations-loop (Li et al. 2022d), gas limit DoS on a contract via unbounded
operations (Nassirzadeh et al. 2023), or SWC-128: DoS With Block Gas Limit (SmartCon-
tractSecurity 2020).

# 2.1.3 Incorrect Revert Implementation in a Loop

In the case of this vulnerability, the developer incorrectly specifies how the revert operation
should be handled (in the context of a loop or a transaction composed of multiple operations),
which ends up in a partial revert of the whole set of operations that should be reverted. This
vulnerability is also known in the literature as non-isolated calls (wallet griefing) (Grech
et al. 2020), push DOS (Stephens et al. 2021), or SWC-126: Insufficient Gas Griefing (Smart-
ContractSecurity 2020).

# 2.2 Improper Token Exception Handling

The ERC-20 standard (Vogelsteller and Buterin 2015) provides functionalities to exchange
tokens. Besides describing the functionalities, the standard specifies good practices for devel-
opers to implement its features. Regarding the transfer function, exceptional events can
become problematic if handled improperly.

# 2.2.1 Missing Thrown Exception

Regarding the transfer function (i.e., functionality to transfer tokens from one account
to another), the ERC-20 standard recommends that the developer throw an exception when a
condition of the caller’s account balance does not have enough tokens to spend. This allows
the caller to understand the reason forwhich the transfer is not completed and take appropriate
action. This vulnerability is also known in the literature as ERC-20 transfer (Ashizawa et al.
2021), missing the transfer event (Chen et al. 2020b), or non-standard implementation of
tokens (Ji et al. 2020).

# 2.2.2 Extraneous Exception Handling

This type of vulnerability refers to the implementation of extra actions compared to what is
recommended in a certain specification. The specification does not recommend actions like
using guard functions (e.g., require or assert) in addition to throwing an exception when there
is no balance in the caller. The extra actions might be arbitrary and incompatible with the
purpose of a transfer functionality (e.g., returning true or false to report the success of the
execution). This vulnerability is also known in the literature as flawed back-end Verification
of CEXes (Ji et al. 2020), infinite loop (Liu et al. 2021; Zhuang et al. 2020), or token API
violation (Tikhomirov et al. 2018).
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# 3 Gas Depletion

This category groups vulnerabilities that, in different ways, lead to gas depletion of the
account used for the smart contract execution.

# 3.1 Improper Gas Requirements Checking

This vulnerability represents missing or wrong checking of the prerequisites (i.e., in
terms of gas) for executing a certain operation, causing unnecessary processing and use
of memory resources. For cost management reasons, languages offer programmers sev-
eral ways to deal with the cost of executing a certain operation in a contract. For
instance, for transferring credits, Solidity provides the functions transfer() and
send(), which have a limit of 2300 gas units for each execution. An alternative is
to build a custom transfer function, where the gas limit is defined by a variable (e.g.,
address.call.value(ethAmount).gas(gasAmount)()). Despite having sev-
eral ways of managing the program costs, it is challenging for programmers to predict which
part of the code may fail. If an out-of-gas exception is triggered, the result may be unexpected
behavior. This vulnerability is also known in the literature as extra gas consumption (Shakya
et al. 2022), gas consumption (Ashizawa et al. 2021), gas Dos (Stephens et al. 2021), gas less
send (Ashraf et al. 2020; Nguyen et al. 2020; Jiang et al. 2018; Wang et al. 2019), opaque
predicate (Chen et al. 2021), out of gas (Akca et al. 2019), or SWC-126: Insufficient Gas
Griefing (SmartContractSecurity 2020).

# 3.2 Call with Hardcoded Gas Amount

This vulnerability refers to the impossibility of adjusting the amount of gas a certain program
uses after being deployed. This issue is related to the observation that certain credit transfers
in real contracts were being deployed using a fixed amount of gas (i.e., 2300 gas). If the gas
cost of EVM instructions changes during, for instance, a hard fork, previously deployed smart
contracts will easily break. This vulnerability is also known in the literature as SWC-134:
Message call with hardcoded gas amount (SmartContractSecurity 2020).

# 4 Erroneous Credit Transfer

This category groups vulnerabilities that are generally related to improper credit transfer
operations.

# 4.1 Improper Check on Transfer Credit

This vulnerability refers to the absence of verification (or wrong verification) after a transfer
event, which can lead to an erroneous vision of the correct balance of the account. Indeed, the
balance of the account may not reflect the currency transferred in an exact manner, leading
to potential errors and opening the door to security issues. This vulnerability is also known
in the literature as forged transfer notification (Li et al. 2022c), unchecked send (Kalra et al.
2018; Akca et al. 2019; Stephens et al. 2021), or including Fake EOS transfer (Li et al.
2022c).

This issue was addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: Failure condition of send ignored. Consider using transfer instead".
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# 4.2 Unprotected Transfer Value

The transfer function uses a numeric variable for transfers and may be vulnerable if
it does not protect or specify limits for the values. When attribute address.balance
is used for identifying the amount to be transferred, it will result in transferring the total
balance at once, which is a high-risk operation for the cases where the amount is high
(Zhang et al. 2020b). This vulnerability is also known in the literature as arbitrarily transfer
(Ma et al. 2023), ETH transfer inside the loop (Shakya et al. 2022), ether leak (Choi et al.
2021), manipulated balance (Hu et al. 2023), multiple send (Choi et al. 2021), transfer
forwards all gas (Tikhomirov et al. 2018), unchecked transfer value (Zhang et al. 2020b),
unrestricted ether flow (Tsankov et al. 2018), or SWC-105: Unprotected Ether Withdrawal
(SmartContractSecurity 2020).

# 4.3 Wrong use of Transfer Credit Function

Depending on the programming language, there are different ways to carry out credit transfer
operations. In Solidity, transfer and send will both allow executing a credit transfer.
However, in the case of a problem, transfer will abort the process with an exception,
whereas send function will return false, and transaction execution is continued. An
attacker may manipulate the send function and be able to continue executing a credit trans-
fer operation without proper authorization. This vulnerability is also known in the literature
as failed send (Kalra et al. 2018, send instead of transfer (Shakya et al. 2022; Tikhomirov
et al. 2018)

# 4.4 Missing Token Issuer Verification

This vulnerability is related to EOSIO blockchain, in which the ‘transfer‘ function allows
attackers to win the cryptocurrency without paying a ticket fee. This vulnerability is also
known in the literature as fake EOS (Chen et al. 2022).

# 4.5 Missing Token Verification of Exchange

This vulnerability arises when an attacker can perform a fake deposit due to inadequate
verification in the exchange implementation, specifically when unsafe usage of transfer
or transferFrom functions is present. A potential solution for this issue involves adopting
the safeTransferFrom function, which incorporates security checks before invoking
the transferFrom, thereby mitigating the risk. This vulnerability is also known in the
literature as flawed token Verification of DEXes (Ji et al. 2020).

# 4.6 Fake Notification

This vulnerability is related to the EOSIO blockchain, specifically in EOS notifications. The
problem occurs when the attackers forward the notification from eosio.token to the victim
and forge an EOS notification. This vulnerability is also known in the literature as fake
notification (Chen et al. 2022) or fake receipt (He et al. 2021).

# 5 Bad Programming Practices and Language Weaknesses

This category represents issues that are mostly related to bad programming practices (i.e.,
error-prone or insecure coding practices) and language weaknesses, which are mostly related
to insufficient protection mechanisms offered by the language, allowing the developers to
make mistakes that could be avoided, e.g., by language constructs.
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# 5.1 Bad Randomness

This vulnerability is related to using the variables that control the blocks in a blockchain
to generate randomness, which is not secure. Such variables may be manipulated by min-
ers so that the randomness is subverted, compromising the security of the blockchain, with
its information becoming vulnerable to attacks. In fact, generating a strong enough source
of randomness can be very challenging. The use of variables like block.timestamp,
blockhash,block.difficulty, and other fields is problematic as these can bemanip-
ulated by miners. For example, a miner could select a specific timestamp within a delimited
range or use powerful hardware to mine several blocks quickly, choose the block that would
provide an interesting hash, and drop the remaining. This vulnerability is also known in the
literature as bad randomness (Hu et al. 2023; Crincoli et al. 2022; Ashouri 2020), bump Seeds
(Cui et al. 2022), generating randomness (Gupta et al. 2022), random number generation
(Li et al. 2022b), use predictable variable (Zhou et al. 2022b), predicable variable depen-
dency (Fu et al. 2019), or SWC-120: Weak Sources of Randomness from Chain Attributes
(SmartContractSecurity 2020).

# 5.2 Improper Declaration or Initialization

The smart contract has resources that are either not initialized or initialized incorrectly,
leading to unexpected behavior.

# 5.2.1 Missing Constructor

A smart contract constructor is a function that is executed exactly once during the lifetime
of a contract. It executes at deployment time, initializes state variables, performs a few
necessary tasks that the specific contract requires, and sets the contract owner. If there is
no constructor, the developer will have to implement such tasks manually, which is prone
to security issues (e.g., variables may be set with incorrect values or forgotten, which may
result in security problems). This vulnerability is also known in the literature as SWC-118:
Incorrect Constructor Name (SmartContractSecurity 2020).

# 5.2.2 Wrong Constructor Name

This vulnerability is related to the contracts that were publishedwithout a constructor because
the programmer created a function, imagining it would behave like a constructor. Usually,
the construction function has sensitive code (e.g., assignment of the owner of the contract),
and by declaring a wrong function name, any user can call the function, thus, causing serious
security risks. This vulnerability is also known in the literature as erroneous constructor name
(Hu et al. 2023), violated access control checks (VACC) (Ghaleb et al. 2023), or SWC-118:
Incorrect Constructor Name (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Functions are not allowed to have the same name as the contract. If you intend this
to be a constructor, use constructor(...) ... to define it. Error: Expected identifier but got ()".

# 5.2.3 Missing Variable Initialization

This vulnerability refers to the lack of initialization of variables that are used throughout the
contract. Obviously, the effects can largely vary, depending on the variable itself and on the
context in which it is being used. This vulnerability is also known in the literature as golang
grammar error (Li et al. 2022b), uninitialized variables (Feist et al. 2019), uninitialized-local
(Tsankov et al. 2018), or uninitialized state variable (Tsankov et al. 2018).
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# 5.2.4 Uninitialized Storage Variables

In Solidity, state variables are assigned to memory or storage. When a state variable is
declared, it is assigned to a certain storage slot. If that variable is not initialized, it will be
stored in slot 0 (the first one) of the contract’s storage. Thus, it may conflict with the next
variable that is declared in the same slot, causing an address conflict. This latter variable will
overwrite the first, leading to unexpected behavior. This is the reason why it is important to
initialize all state variables in a smart contract so that they are set into the correct storage slots
(and possible conflicts are avoided) (Antonopoulos and Wood 2018). This vulnerability is
also known in the literature as uninitialized storage pointers (Antonopoulos andWood 2018),
uninitialized Storage (Tsankov et al. 2018;Hu et al. 2023), orSWC-109:Uninitialized Storage
Pointer (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: This variable is of storage pointer type and can be accessed without prior assignment,
which would lead to undefined behavior.".

# 5.2.5 Extraneous Field Declaration

This vulnerability occurs when the programmer leaves field declarations in the contract struc-
ture, thereby enabling direct access to these fields (i.e., as they are defined in the structure).
Given the possibility of the node environment falling out of sync, the contract’s field values
may diverge and become inconsistent among peer nodes. This vulnerability is also known in
the literature as field declarations (Li et al. 2022b).

# 5.2.6 Hardcoded Address

This vulnerability occurs when the programmer writes the code with a static address that
should be an input variable. This vulnerability is also known in the literature as hardcoded
address (Shakya et al. 2022)

# 5.3 Isolation Phenomena

This category gathers vulnerabilities that occur due to blockchain synchronization systems
(i.e., enforced by consensus mechanisms), which can lead a program to produce different
results at different times for the same query.

# 5.3.1 Phantom Reads

TheHyperledger Fabric providesmechanisms for reading the ledger (i.e.,getPrivateDa-
taQueryResult), similar to querying conventional databases, but with the difference that
the programmer cannot decide about the isolation level of the ledger. Thus, a contract can read
out-of-sync node information from the ledger (i.e., during the validation phase), computing
and/or processing based on outdated information. This vulnerability is also known in the
literature as range query risks (Li et al. 2022b).

# 5.3.2 Dirty Reads

In the context of HF, a query may return a key value before its update within the same
transaction. As a consequence, this behavior can lead to unexpected results, as the returned
valuemight not reflect themost recent update. This vulnerability is also known in the literature
as read-write conflict (Li et al. 2022b).
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# 5.4 Error in Function Call

In a blockchain context, each function in a smart contract is identified by its name, input
parameters, and output parameters. Thus, these items compose the function signature, which
is used by the contracts to verify that the right function is being called. This category groups
vulnerabilities in which a developer uses a function in the wrong manner: either a wrong
signature is used, wrong arguments are used, or a wrong function is called.

# 5.4.1 Wrong Function Call

The issue occurs when a contract executes a certain function at a wrong address, i.e., at the
address used by another function, which, however, has the same signature as the intended
function. This vulnerability is also known in the literature as type casts (Atzei et al. 2017).

# 5.4.2 Wrong Selection of Guard Function

Assert is a Solidity function, which is recommended to be used only in the development
phase. Intentionally, the programmer inserts the function at a specific point in the program
where a bug is suspected. If running the program results in gas depletion, the suspicion is
confirmed.

Thus, this vulnerability refers to caseswhere theassert function is implementedwith the
wrong purpose, not having the expected effect. Inmore severe cases, inwhich the programmer
forgets to remove it from the code or does not replace it with require, the impact of this
vulnerability can be serious. This vulnerability is also known in the literature as assert fail
(Zhang et al. 2022a), assertion failure (Choi et al. 2021; Torres et al. 2021), assertion violation
(Sunbeom et al. 2021), or SWC-110 Assert Violation (SmartContractSecurity 2020).

# 5.4.3 Function Call with Wrong Arguments

This vulnerability refers to the presence of certain control characters within the arguments
of a function call, namely the right-to-left override control character, which can cause the
function to execute with arguments in reverse order. This is a known issue also in other
computing areas (Yosifova and Bontchev 2021). This vulnerability is also known in the
literature as right to left override (Tsankov et al. 2018), rtlo (Li et al. 2022d), or SWC-130:
Right-To-Left-Override control character (U+202E).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Mismatching directional override markers in a comment or string literal".

# 5.5 Wrong Class Inheritance Order

Contracts may have inheritance relationships with other contracts. In the case of solidity,
the code of the inherited contract is always executed first, e.g., so that state variables are
initialized properly. Solidity uses an algorithm named C3 linearization to determine the order
in which the contracts are to be executed. Developers specify the inheritance relationships
in a inherit statement and may believe that the order in which the inherited contracts are
specified in that statement reflects the order in which the linearization algorithm should work.
This opens space for security issues due to the wrong order of the contract in the inherit
statement. This vulnerability is also known in the literature asSWC-125: Incorrect Inheritance
Order (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. Now, if encountered, the compiler provides the following informative error message:
"Error: Derived contract must override function validPurchase. Two or more base classes
define a function with the same name and parameter types.".
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# 5.6 Improper Type Usage

This category groups vulnerabilities in which there is some misuse of types of data structures
or functions.

# 5.6.1 Missing return type on Function

This vulnerability refers to amissing return type in the definition of a smart contract interface.
At runtime, if a contract that implements that interface contains two functions with the same
name and arguments but have different return types, there is a chance that the wrong function
will be called. This may lead to unexpected results once the calling contract receives the
wrong data type (Zhang et al. 2019). This vulnerability is also known in the literature as
ERC 20 standard Violation (Sunbeom et al. 2021), ERC20 Interface (Tsankov et al. 2018),
or missing return statement (Hu et al. 2023).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Overriding function return types differ".

# 5.6.2 Function Return Type Mismatch

In this case, the developer implemented a function (starting from an interface), but it selected
the wrong data type for the value to be returned (i.e., it differs from what is specified in the
interface). This vulnerability is known in the literature in the context of non-fungible tokens
by the name of ERC721 Interface (Tsankov et al. 2018) or SWC-127 Arbitrary Jump with
Function Type Variable (SmartContractSecurity 2020).

# 5.6.3 Parameter Type Mismatch

This issue refers to a divergence regarding the types of arguments used in a function that
implements an interface. In this situation, even if the call is done with the right function name
and arguments, the EVM considers it to be a non-existent function error. This vulnerability
is also known in the literature as ERC20 Indexed (Tsankov et al. 2018) in the context of
fungible tokens.

# 5.6.4 Missing Type in Variable Declaration

In Solidity, the compiler infers the data type based on the assigned value whenever a variable
is declared without an associated type. This additional computation may lead to higher costs
(i.e., in gas) and memory usage and especially allows for overflow or underflow problems to
occur. For instance, the compiler may infer that a signed integer is the right datatype for a
certain variable, where an unsigned integer should be used. This vulnerability is also known
in the literature as unsafe type inference (Tikhomirov et al. 2018)

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Expected primary expression."

# 5.6.5 Wrong Type in Variable Declaration

This issue refers to a wrong selection of datatypes that leads to the allocation of more
memory than what would be necessary for the intended function, leading to an increase
in gas consumption. As an example, in Solidity, the byte[] type reserves 31 bytes of space
for each element, whereas the bytes requires a single byte per element, thus being more
space efficient. This vulnerability is also known in the literature as byte array (Tikhomirov
et al. 2018), global variable (Li et al. 2022b), type conversion errors (Ding et al. 2021), or
unsafe array’s length manipulation (Shakya et al. 2022)
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# 5.6.6 Wrong Type of Function

In Solidity, it is possible to specify a type for each function. Functions of type view can read
data from state variables but cannot modify them, and no gas costs are involved, whereas
functions of type pure neither can read nor modify state variables and similarly to view
functions, no gas costs are associated with this type of function. This vulnerability occurs
when a developer uses the wrong type for a function. For instance, there is an issue reported in
Ethereum’s GitHub (Ethereum’s Github 2022) in which a state variable conversion operation
(from storage to memory) inside a pure function results in a problem (i.e., to avoid this
problem, the function type should be view). This vulnerability is also known in the literature
as unsafe type inference (Tikhomirov et al. 2018).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: Function state mutability can be restricted to pure".

# 5.6.7 Non-Identifiable Order in Map Structure Iteration

In the Golang language, key-value pairs are not guaranteed to be unique when iterating
through a Map structure. This potential lack of uniqueness can cause security issues, partic-
ularly if these uncertain values are present in operations that involve modifying the ledger.
Such situationsmay lead to an inconsistent ledger state, which could compromise the ledger’s
integrity and reliability. This vulnerability is also known in the literature as map structure
iteration (Li et al. 2022b).

# 5.7 Useless Code

This category groups a set of vulnerabilities in which the program contains a unit of code
that, in practice, has no effect.

# 5.7.1 Unreachable Payable Function

This vulnerability refers to the case of contracts that allow the use of functions that accept
credit but do not have any functionality for transacting it. They are insecure, as there is no
way to recover the credit once it has been sent to the contract (Zhang et al. 2019). This
vulnerability is also known in the literature as be no black hole (Chang et al. 2019), disable
transferring (Ma et al. 2023), freezing ether (Choi et al. 2021; Ashraf et al. 2020; Jiang
et al. 2018; Nguyen et al. 2020), frozen ether (Hu et al. 2023), leaking ether to arbitrary
address (Hu et al. 2023), locked ether (Tsankov et al. 2018; Ashouri 2020; Mavridou et al.
2019), locked funds (Stephens et al. 2021), locked money (Shakya et al. 2022; Feist et al.
2019; Tikhomirov et al. 2018), is_greedy (Xing et al. 2020), leaking ether (Torres et al.
2021), locked-ether (Li et al. 2022d), locking ether(Torres et al. 2021), or the ether lost or
transferred (Gupta et al. 2022)

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: This function is named receive but is not the receive function of the contract. If
you intend this to be a receive function, use receive(...) ... without the function keyword to
define it".

# 5.7.2 No Effect Code Execution

This vulnerability refers to the presence of code that has no practical purpose (i.e., it has
no effect on the intended functionality). Within a smart contract, it increases the size of the
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program’s binary code, which results in more gas consumption than would otherwise be
necessary. This vulnerability is also known in the literature as call to default constructor
(Tsankov et al. 2018), dead code (Chen et al. 2021), useless assignment (Hu et al. 2023),
code-no-effects (Li et al. 2022d), or SWC-135: CodeWith No Effects (SmartContractSecurity
2020).

# 5.7.3 Unused Variables

This vulnerability refers to the declaration of variables that are not used in the contract, which
results directly in the allocation of unnecessary space in memory. As a consequence, the gas
cost of executing the contract increases as well as the attack surface of the contract. Other
effects are related to the readability or maintainability of the code. This vulnerability is also
known in the literature as redundant sstore (Chen et al. 2021), unused state variable (Hu
et al. 2023), unused State Variable (Tsankov et al. 2018), or SWC-131 Presence of unused
variables (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: Unused local variable.Warning: Unused function parameter. Remove or comment
out the variable name to silence this warning".

# 5.7.4 Inefficient Operation Sequence

Due to bad programming practices or outdated compilers (i.e., Solidity has more than 350
versions, with the first one being (Version 0.1.1) released in 2015), smart contracts may suffer
from gas-inefficient operation sequences. Consequently, such contracts could be deployed
with non-optimized bytecode, leading to increased resource and gas consumption. This vul-
nerability is also known in the literature as SWAP1=DUP2=SWAP1 (Chen et al. 2021),
PUSHx=POP (Chen et al. 2021), or PUSH1=NOT (Chen et al. 2021).

# 5.8 Version Issues

This category refers to issues that relate to the versioning of various aspects, including the
use of deprecated versions of functions.

# 5.8.1 Undetermined Program Version Prevalence

This vulnerability refers to the case where the developer allows a certain contract to be
compiled across multiple versions. This allows the known faults in older versions to be
easily activated. Zhang et al. (2019). This vulnerability is also known in the literature as
compiler version not fixed (Tikhomirov et al. 2018), Solc Version (Tsankov et al. 2018), or
SWC-103: Floating Pragma (SmartContractSecurity 2020).

# 5.8.2 Outdated Compiler Version

Contracts that have been developed against an outdated compiler version can bring in several
risks, mainly because newer versions may have resolved certain bugs or even introduced
security mechanisms to avoid particular issues (e.g., the throw function has been disallowed
in Solidity 0.5.0 and superior versions, in favor of assert, require/, and revert).
This vulnerability is also known in the literature as SWC-102: Outdated Compiler Version
(SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Source file requires different compiler version (current compiler is 0.8.20+com-
mit.a1b79de6.Darwin.appleclang) - note that nightly builds are considered to be strictly less
than the released version".
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# 5.8.3 Use of Deprecated Functions

Deprecated functions are not recommended due to the fact that they are usually replaced by
functions that solve known security issues or even operate in a more efficient manner (i.e.,
they may consume less gas). As an example, sha3 was marked as a deprecated function
in Solidity 0.5 and replaced by keccak256, which is more secure and efficient. This vul-
nerability is also known in the literature as SWC-111: Use of deprecated solidity functions
(SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: suicide has been deprecated in favor of self-destruct".

# 5.9 Inadequate Data Representation

The numbers to represent the credits (e.g., Ether) can be very large (i.e., literalswithmany dig-
its are difficult to read and review).Thus, it is recommended that the programmeruse the native
resources of the language to make this representation (e.g., Solidity 10000000000000000000
for 1 ether). This vulnerability is also known in the literature as too-many-digits (Li et al.
2022d; Tsankov et al. 2018).

# 5.10 Improper Modifier

This group gathers vulnerabilities that relate to the use ofmodifiers in functions and variables.

# 5.10.1 Wrong Function Modifier

This vulnerability refers to the case of functions that are written solely to be used by other
contracts (i.e., not within the contract). Such functions should bemarkedwith theexternal
modifier instead of public. The public modifier allows both external and internal calls.
Marking a function with external results in gas savings, as every invocation will be using
calldata (a special memory region to store arguments, which cannot be later modified by
the function) and can avoid unnecessary read and write operations to memory, which occur
with internal calls (i.e., that do not use calldata). This vulnerability is also known in the
literature as external-function (Tsankov et al. 2018) or SWC-100: Function Default Visibility
(SmartContractSecurity 2020).

# 5.10.2 Missing Constant Modifier in Variable Declaration

Variables that are not modified during the execution flow should be declared as constants to
save gas. In the absence of the constant modifier, it is assumed that the variable’s value
can be changed. This vulnerability is also known in the literature as constable states (Tsankov
et al. 2018).

# 5.10.3 Missing Visibility Modifier in Variable Declaration

Variables have different visibility states, which determine the context for accessing them. In
Solidity, by default, the visibility of state variables and functions isinternal, which allows
access from functions in the same contract or derived contracts. A developer who is unaware
of this may create a contract that allows exposure of sensitive data or allows unexpected
behavior. This vulnerability is also known in the literature as implicit Visibility (Ashizawa
et al. 2021) , state variables default visibility (Tsankov et al. 2018), visibility level (Tikhomirov
et al. 2018), or SWC-108: State Variable Default Visibility (SmartContractSecurity 2020).
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# 5.11 Redundant Functionality

Contracts that are written with redundant functionality increase code size and make main-
tainability difficult. In a simple scenario, a programmer creates a function and later (by bad
practices) ends up creating the same functionality again in a new function. He/she identifies
a vulnerability in the new function and fixes it, but the old function with the vulnerability
is used by the caller. This vulnerability is also known in the literature as redundant fallback
function (Shakya et al. 2022) or redundant fallback function (Tikhomirov et al. 2018).

# 5.12 Shadowing

This category groups vulnerabilities in which there are code elements (e.g., a function or a
variable) with the same name, which can lead to erroneous and unexpected behavior.

# 5.12.1 Use of Same Variable or Function Name In Inherited Contract

When using the same name as a local variable, which was previously declared by an inherited
contract, the program loses the reference of the inherited variable, causing the local variable
to assume the role of the other variable. This vulnerability is also known in the literature as
shadowmemory (Ashouri 2020), shadowing state variables (Tsankov et al. 2018), shadowing
(Feist et al. 2019), or SWC-119: Shadowing State Variables (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following informative error message:
"Error: Identifier already declared".

# 5.12.2 Variables or Functions Named After Reserved Words

This bug occurs when creating variables named after keywords of the language itself. For
example, in Solidity, creating a variable with the name now conflicts with the function that
returns the date and time. This vulnerability is also known in the literature as shadowed
builtin (Tsankov et al. 2018) or shadowing-builtin (Li et al. 2022d).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: This declaration shadows a built-in symbol".

# 5.12.3 Use of the Same Variable or Function Name In a Single Contract

This vulnerability refers to cases where the same name is used for more than one variable
or function inside the contract. This makes the program lose the reference of the variable of
the class, assuming the variable of the function as its role. This vulnerability is also known
in the literature as redefined variable (Hu et al. 2023) or shadowed local variable (Tsankov
et al. 2018).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time of
writing. If encountered, the compiler provides the following informative warning message:
"Warning: This declaration shadows an existing declaration".

# 5.13 Buffer-Based Vulnerabilities

This category refers to buffer-related vulnerabilities (e.g., stack-based, heap-based, bugger
over-read) in which it is possible to write more data than what the buffer can hold, thus
modifying memory areas outside the expected or read the buffer using mechanisms such as
indexes or pointers that reference memory locations after the targeted buffer.
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# 5.13.1 Stack-based Buffer Overflow

The EVM keeps an execution stack that manages the execution of contracts. If an attacker
is allowed to overflow this stack (e.g., by using specially crafted inputs), it can potentially
overwrite control variables (e.g., timestamp or block number) and, for instance, gain unau-
thorized access to certain resources. This vulnerability is also known in the literature as Stack
size limited (Atzei et al. 2017).

# 5.13.2 Write to Arbitrary Storage Location

In solidity, arrays are stored as contiguous fixed-size slots. In the absence of a bounds verifi-
cation, a malicious user could write data to a particular storage slot used to store the contract
owner’s address, which could be overwritten and then used to harm the contract further. This
vulnerability is also known in the literature as arbitrary write (Choi et al. 2021), buffer-
overwrite (Pani et al. 2023), storage modification (Krupp and Rossow 2018), unrestricted
write (Tsankov et al. 2018), or SWC-124: Write to Arbitrary Storage Location (SmartCon-
tractSecurity 2020).

# 5.13.3 Read from Arbitrary Storage Location

This vulnerability is related to the incorrect manipulation of data in a buffer, which usually
causes buffer underflow or buffer overflow. A buffer underflow occurs when a program tries
to read, write, or update data in a buffer (such as an array) before the buffer’s starting point.
In other words, it attempts to access an index that lies before the allocated memory to the
buffer. In contrast, a buffer overflow occurs when a program tries to access an index after the
allocated memory to the buffer. This vulnerability is referred to in the literature as Buffer-
overflow (Pani et al. 2023) or Buffer-underflow (Pani et al. 2023).

# 5.14 Use of Malicious Libraries

This vulnerability refers to the use of third-party libraries containing malicious code. This
vulnerability is also known in the literature as external library calling (Li et al. 2022b) or
malicious libraries (Tikhomirov et al. 2018).

# 5.15 Typographical Error

This vulnerability refers to single-digit errors made by programmers while typing source
code, e.g., in logic or arithmetic operations. For example, for value assignment, a developer
may type by mistake "+ =" instead of "=" or may use "−" instead of "+" or "−−" instead
of "++" (Hartel and Schumi 2020). This vulnerability is also known in the literature as
SWC-129: Typographical Error (SmartContractSecurity 2020).

This issue has been addressed in the latest Solidity compiler, version 0.8.20, at the time
of writing. If encountered, the compiler provides the following error message: "Error: Use
of unary + is disallowed".

# 5.16 Wrong Logic

This vulnerability refers to when the developer makes a systematic logic mistake in the
contract, leading repeatable executions to unexpected results. This vulnerability is also known
in the literature as Logic loopholes (Ding et al. 2021).
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# 5.17 Wrong Moment for Token Generation

This vulnerability arises when the token generation process within the contract relies solely
on the validity of the receiving address. As a result, malicious programmers can exploit this
weakness to generate tokens arbitrarily, gaining the ability to manipulate the token price.
This vulnerability is also known in the literature as Generate Token After ICO (Ma et al.
2023).

# 6 Incorrect Control Flow

This category groups a set of vulnerabilities that, if exploited, cause changes in the control
flow of the program.

# 6.1 Incorrect Sequencing of Behavior

This category gathers vulnerabilities that end up in a sequence of behaviors that are carried
out in the wrong order, leading to unexpected results.

# 6.1.1 Incorrect Use of Event Blockchain Variables for Time

Contracts that rely on using block control information (i.e., timestamp, coinbase, number,
difficulty, and gas limit) for sequential event control are vulnerable to tampering by the
miner. This vulnerability is also known in the literature as block info dependency (Chen
et al. 2022), block information dependency (Li et al. 2022c), block no. dependency (Ashraf
et al. 2020; Jiang et al. 2018), block number dependency (Chen et al. 2020b; Nguyen et al.
2020), block state dependence (Kalra et al. 2018), block state dependency (Choi et al. 2021),
block Timestamp (Zhang et al. 2022a), event-ordering (EO) bugs (Kolluri et al. 2019), race
condition (Ashouri 2020), system timestamp (Li et al. 2022b), time dependency (Ashizawa
et al. 2021), time dependence (Yu et al. 2021), time dep (Zhang et al. 2022a), timestamp
dependency (Chen et al. 2020b; Hwang et al. 2022; Hu et al. 2023; Ashraf et al. 2020; Song
et al. 2019; Ma et al. 2022; Akca et al. 2019; Jiang et al. 2018; Nguyen et al. 2020; Wang
et al. 2021), timestamp dependence (Liu et al. 2021; Zhuang et al. 2020; Luu et al. 2016;
Tikhomirov et al. 2018), timestamp manipulation (Liao et al. 2022), timestamp (Sun et al.
2023; Zeng et al. 2022; Tsankov et al. 2018), block dependency (Torres et al. 2021), time-
stamp expansion (Gupta et al. 2022), timestamp (Li et al. 2022d), or SWC-116: Block values
as a proxy for time (SmartContractSecurity 2020).

# 6.1.2 Incorrect Function Call Order

This vulnerability refers to the creation of public functions that expect to be called in a
certain sequence, originating unanticipated results whenever clients do not follow the right
call order (Mavridou and Laszka 2018). This vulnerability is also known in the literature
as concurrency of program (Li et al. 2022b), the transaction ordering (Gupta et al. 2022),
transaction ordering dependence (TOD) (Zeng et al. 2022), transaction order dependency
(Torres et al. 2021), or SWC-114: Transaction Order Dependence (SmartContractSecurity
2020).

# 6.1.3 Improper Locking

This issue refers to the case where a contract assumes that all entities participating in a
transaction must have the same credit balance before the contract operations can execute.
If there are no adequate (e.g., wrong or even missing) locking mechanisms, an attacker can
forcefully send credit to the other entity, which would cause the verification of the balance
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condition never to be met. Thus, the contract may become unusable or show unexpected
behavior (or unexpected state changes). This vulnerability is also known in the literature
as arbitrary sending of ether (Feist et al. 2019), balance equality (Tikhomirov et al. 2018),
checking for strict balance equality (Shakya et al. 2022) , incorrect Equality (Tsankov et al.
2018), strict check for balance (Chen et al. 2020b), or SWC-132: Unexpected Ether balance
(SmartContractSecurity 2020).

# 6.1.4 Transfer Pre-Condition Dependent on Transaction Order

In the case of this vulnerability, the order in which transactions are executed influences
a pre-condition that guards the execution of the transfer. This influence may erroneously
result in, for instance, a transaction not being executed at all. This vulnerability is known in
the literature as front running (Crincoli et al. 2022), TOD Transfer (Tsankov et al. 2018),
TOD (Sun et al. 2023; Zhang et al. 2022a; Fu et al. 2019; Bose et al. 2022), or SWC-114:
Transaction Order Dependence (SmartContractSecurity 2020).

# 6.1.5 Transfer Amount Dependent on Transaction Order

This issue refers to the case where the value of the variable that stores or determines an
amount of a digital asset (to be transferred) is modified before it is sent to the recipient due to
transaction ordering within a block. The amount may be changed due to the effect of multiple
transactions being grouped in a block and executed in a specific order, producing unexpected
changes in the value being transferred. This vulnerability is also known in the literature as
TOD Amount (Tsankov et al. 2018), TOD (Bose et al. 2022; Wang et al. 2021), or SWC-114:
Transaction Order Dependence (SmartContractSecurity 2020).

# 6.1.6 Transfer Recipient Dependent on Transaction Order

In the case of this vulnerability, the transfer recipient is modified before the send event due to
transaction ordering within a block. For example, if the intended recipient address is stored
as a storage variable and a transfer is to execute based on this address, there is a chance
the address may be changed or overwritten by another transaction before the transfer. This
vulnerability is also known in the literature as direct value transfer (Krupp and Rossow
2018), TOD Receiver (Tsankov et al. 2018), TOD (Bose et al. 2022), transaction order
dependence (Kalra et al. 2018), transaction order dependency (Hu et al. 2023), transaction-
ordering dependence (Luu et al. 2016), transaction-ordering dependence (Song et al. 2019),
or SWC-114: Transaction Order Dependence (SmartContractSecurity 2020).

# 6.1.7 Exposed State Variables

This vulnerability refers to the case where a developer erroneously exposes a state variable,
whose value may then be modified by an attacker so that this modification influences the
execution of a certain contract operation. As an example, consider a contract that executes
a credit transfer from one user to another and has a require statement for verifying that
there is sufficient credit to conclude the operation. If the balance is stored as a public state
variable, a malicious use could change its value so that the require is avoided, allowing
the user to run a transfer that exceeds the amount of credit the malicious user holds. This
vulnerability is also known in the literature as reified object addresses (Li et al. 2022b) or
vulnerable state (Krupp and Rossow 2018).
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# 6.1.8 Wrong Definition of Actions

EOSIO facilitates inter-contract communication through the use of inline actions and defer
actions. When a smart contract invokes another contract using inline actions, all these actions
are bundled together into a single transaction under the control of the caller. In contrast, defer
actionswill be executed in a separate transaction and cannot be reverted by the caller. In certain
situations, attackers might exploit the ability to rollback inline actions, manipulating the
blockchain to deny specific transactions. To mitigate such risks, developers can strategically
implement defer actions to create a more secure contract execution flow, protecting against
rollback attacks. This vulnerability is also known in the literature as rollback (Chen et al.
2022).

# 6.2 Inadequate Input Validation

This group refers to vulnerabilities involving the inadequate validation of functional condi-
tions, which are requirements that a contract must meet so that it can operate correctly. Such
conditions may offer protection against certain types of attacks or force certain business rules
to be followed.

# 6.2.1 Improper Input Validation

This type of problem occurs when an attacker calls a certain contract operation using invalid
or malicious input data, capable of affecting the functioning of the contract due to the fact that
either it does not validate the incoming inputs or validates them in an incorrect manner. For
instance, in the context of Solidity, a Short Address Attack occurs when a contract receives
fewer data than expected, leading the system to fill the missing bytes with zeros (Chen et al.
2020b). As a consequence, the behavior may become unexpected if the code assumes that
the input data will comply with a certain length or format. This vulnerability is also known
in the literature as avoid non-existing address (Chang et al. 2019), invalid input data (Chen
et al. 2020b), short address attack (Ashouri 2020; Crincoli et al. 2022), shortening of address
(Mavridou et al. 2019), unchecked input arguments (Li et al. 2022b), unchecked tainted static
call (Brent et al. 2020), has_short_address (Xing et al. 2020), or shift-parameter-mixup (Li
et al. 2022d)

# 6.2.2 Extraneous Input Validation

In this particular case, the functional conditions of the contract are too strong and do not
allow certain behaviors (which would be valid) to occur, making the contract unable to meet
the requirements. This vulnerability is also known in the literature as requirement violation
(Choi et al. 2021) or SWC-123: Requirement violation (SmartContractSecurity 2020).

# 7. Arithmetic Issues

This category groups different vulnerabilities that share the outcome of resulting in arithmetic
problems.

# 7.1 Overflow and Underflow

This category refers to the use of operations (e.g., addition, subtraction) over values that
result in a value that is less than (or greater than) the minimum values (or maximum value)
that a variable can hold, which produces a value different from the correct result.
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# 7.1.1 Integer Underflow

This vulnerability refers to operations over an Integer variable that results in a value that is
less than the minimum value allowed by the Integer type. This vulnerability is also known
in the literature as arithmetic bugs (Torres et al. 2018), flow (Sun et al. 2023), integer under-
flow vulnerability (Song et al. 2019), integer bug (Choi et al. 2021), integer over/underflow
(Sunbeom et al. 2021; Wang et al. 2019; So et al. 2020; Kalra et al. 2018), integer underflow
(Ashizawa et al. 2021; Jin et al. 2023; Kalra et al. 2018; Stephens et al. 2021; Wang et al.
2021), integer overflow and integer underflow (Gupta et al. 2022; Ayoade et al. 2019; Ashouri
2020; Nguyen et al. 2020), overflow/underflow (Cui et al. 2022; Ma et al. 2022; Akca et al.
2019), overflow and underflow (Hu et al. 2023), underflow (Zhang et al. 2022a; Zhou et al.
2022b), has_flows (Xing et al. 2020),multi-transaction sequence vulnerabilities (Zhang et al.
2022b), or SWC-101: Integer Overflow and Underflow (SmartContractSecurity 2020).

# 7.1.2 Integer Overflow

This vulnerability refers to operations over an Integer variable that results in a value that is
larger than the maximum value allowed by the Integer type. This vulnerability is also known
in the literature as arithmetic Bugs (Torres et al. 2018), flow (Sun et al. 2023), integer bug
(Choi et al. 2021), integer over/underflow (Sunbeom et al. 2021; Wang et al. 2019), integer
overflow vulnerability (Song et al. 2019), integer overflow (Grech et al. 2020; Fu et al. 2019;
Ding et al. 2021; Ashizawa et al. 2021; Jin et al. 2023; Zhou et al. 2022b; Stephens et al.
2021; Wang et al. 2021), integer overflow and integer underflow (Gupta et al. 2022; Hu et al.
2023; Ayoade et al. 2019; Ashouri 2020; Nguyen et al. 2020; So et al. 2020), underflow (Cui
et al. 2022), overflow/underflow (Akca et al. 2019; Ma et al. 2022), overflow detector (Gao
et al. 2019), overflow (Zhang et al. 2022a; Torres et al. 2021), has_flows (Xing et al. 2020),
or SWC-101: Integer Overflow and Underflow (SmartContractSecurity 2020).

# 7.2 Division Bugs

This category groups issues related to erroneous division operations.

# 7.2.1 Divide by Zero

This issue refers to the attempt of a program to divide a value by zero. This vulnerability is also
known in the literature as arithmetic bugs (Torres et al. 2018), divide by zero (Sunbeom et al.
2021), divide-by-zero (Pani et al. 2023), division by zero (Akca et al. 2019), division-by-zero
(So et al. 2020), or zero division risk (Gupta et al. 2022).

# 7.2.2 Integer Division

At the time of writing, a smart contract mainstream language like Solidity does not sup-
port floating point or decimal types. Thus, the remainder of a division operation is always
lost. Developers may use fixed-point arithmetic and external libraries to handle this kind of
operation. This vulnerability is also known in the literature as integer division (Tikhomirov
et al. 2018), numerical precision error (Cui et al. 2022), or SWC-101: Integer Overflow and
Underflow (SmartContractSecurity 2020).

# 7.3 Conversion Bugs

This category groups a set of vulnerabilities where there are issues related to the conversion
between different datatypes.
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# 7.3.1 Truncation Bugs

This vulnerability refers to the case where a variable declared in a certain type is converted to
a smaller type, which means that data is lost during the conversion process. This vulnerability
is also known in the literature as truncation bugs (Torres et al. 2018) or SWC-101: Integer
Overflow and Underflow (SmartContractSecurity 2020).

# 7.3.2 Signedness Bugs

The conversion of a signed integer type to an unsigned type of the same width may change
a negative value to a positive one (the opposite may also happen) (Torres et al. 2018). This
vulnerability is also known in the literature as Signedness bugs (Torres et al. 2018) or SWC-
101: Integer Overflow and Underflow (SmartContractSecurity 2020).

# 8 Improper Access Control

This category groups a set of vulnerabilities that are strongly related to authentication or
access control.

# 8.1 Incorrect Authentication or Authorization

The smart contract fails to identify a client or determine its privileges properly, resulting in
wrong access privileges for that particular client.

# 8.1.1 Wrong Caller Identification

In Solidity, tx.origin allows obtaining the address of the account that initiated a trans-
action and msg.sender allows obtaining the address of the contract that has called the
function being executed. The use of the tx.origin for access control may be a way of
opening an entry point to a malicious user. A malicious user may create a contract that
calls the vulnerable function (i.e., the one that uses tx.origin to check the identity of
the caller). Thus, msg.sender will differ from tx.origin. In the case the vulnerable
function uses tx.origin for access control, it will allow the user to perform actions it
should not be able to. This vulnerability is also known in the literature as incorrect check
for authorization (Chen et al. 2020b), missing authorization verification (Chen et al. 2022),
missing access control checks (MACC) (Ghaleb et al. 2023), the abuse of tx.origin (Ye et al.
2022), transaction origin use (Choi et al. 2021), transaction state dependence (Kalra et al.
2018), tx-origin (Xue et al. 2022; Li et al. 2022d; Hwang et al. 2022; Gupta et al. 2022;
Tikhomirov et al. 2018; Sun et al. 2023; Hu et al. 2023; Zhang et al. 2022a; Akca et al. 2019;
Tsankov et al. 2018), use of tx.origin (Zeng et al. 2022), using tx.origin for authorization
(Shakya et al. 2022), or SWC-115: Authorization through tx.origin (SmartContractSecurity
2020).

# 8.1.2 Owner Manipulation

This vulnerability allows an attacker to exploit some function or feature of the smart contract
by manipulating the owner control variable. This allows the attacker to perform some kind of
restricted operations (Zhang et al. 2020b). This vulnerability is also known in the literature
as freeze account (Ma et al. 2023), missing owner check (Cui et al. 2022), taint for owner
(Liao et al. 2022), tainted owner variable (Brent et al. 2020), unprotected function (Stephens
et al. 2021), or vulnerable access control (Zhang et al. 2020b).
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# 8.1.3 Missing Verification for Program Termination

This issue refers to the lack of a secure verification for terminating a published (deployed)
contract, allowing an attacker to terminate it in an unauthorized manner. Selfdestruct
is an EVM instruction that is able to nullify the bytecode of a deployed contract. When
invoked, it stops the execution of the EVM, deletes the contract’s bytecode, and sends the
remaining funds to a certain address. Access to this kind of function by non-authorized
clients may result in security issues. This vulnerability is also known in the literature as
accessible self-destruct (Brent et al. 2020), destroy token (Ma et al. 2023), guard suicide
(Chang et al. 2019), self-destruct abusing (Ye et al. 2022), self-destruct (Zeng et al. 2022),
suicidal contract (Choi et al. 2021), suicidal contracts (Feist et al. 2019), tainted self-destruct
(Brent et al. 2020), unprotected suicide (Hu et al. 2023; Mavridou et al. 2019), unrestricted
Self-destruct (Tsankov et al. 2018), multi-transaction sequence vulnerabilities (Zhang et al.
2022b), suicide (Fu et al. 2019), unprotected self-destruct (Torres et al. 2021), or SWC-106:
Unprotected SELFDESTRUCT Instruction (SmartContractSecurity 2020).

# 8.2 Improper Protection of Sensitive Data

This category generally refers to the issues that result in the inability to protect sensitive
information from unauthorized clients.

# 8.2.1 Exposed Private Data

This issue refers to the cases in which contracts store unencrypted sensitive data in public
blockchain transactions. Solidity, like other programming languages, supports the private
keyword that indicates that data is only accessible within the contract itself. However, in
blockchain environments, marking a variable with private does not make it fully invis-
ible to the outside world. Miners, who are responsible for validating transactions on the
blockchain, can view the code of the contract and the value of its state variables (Zhang
et al. 2019). This vulnerability is also known in the literature as exposed secret (Zhang et al.
2020b), private modifier (Tikhomirov et al. 2018), private-not-hidedata (Li et al. 2022d), or
SWC-136: Unencrypted Private Data On-Chain (SmartContractSecurity 2020).

# 8.2.2 Dependency on External State Data (Unsolvable Constraints of External Critical
State Data)

This vulnerability refers to the use of data that is not under control nor is generated by the
contract (i.e., external critical state data). A malicious user may exploit this situation if such
data determines the outcome of the execution of the contract. This vulnerability is also known
in the literature as Unsolvable constraints (Zhang et al. 2020b).

# 8.3 Cryptography Misuse

This category groups vulnerabilities that generally reflect misuse of cryptography mecha-
nisms.

# 8.3.1 Incorrect Verification of Cryptographic Signature

This issue refers to the wrong verification of the authenticity and integrity of messages with
the use ofmessage signatures.As an example, a developer could develop a vulnerable contract
that relies on a signature in a signed message hash for representing the earlier verification of
previous messages. A client could generate a malicious message with a valid signature and
include it in the hash. The contract then would validate the signature and update the hash,
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indicating that the message was processed. This vulnerability is also known in the literature
as check signature (Nishida et al. 2021), missing key check (Cui et al. 2022), signature-
malleability (Li et al. 2022d), or SWC-117: Signature Malleability (SmartContractSecurity
2020).

# 8.3.2 Improper Check against Signature Replay Attacks

This vulnerability refers to a situation where a malicious client is able to obtain the message
hash of a legitimate transaction and is allowed to use the same signature to impersonate the
legitimate client and execute fraudulent transactions. This vulnerability is also known in the
literature as SWC-121:Missing Protection against Signature Replay Attacks (SmartContract-
Security 2020).

# 8.3.3 Improper Authenticity Check

In this case, a contract may tolerate off-chain signed messages instead of waiting for an
on-chain signature. This is usually done with the goal of improving performance but may
come at the expense of compromising the authenticity of the message. This vulnerability is
also known in the literature as Missing Signer Check (Cui et al. 2022), SWC-122: Lack of
proper signature verification (SmartContractSecurity 2020).

# 8.3.4 Incorrect Argument Encoding

This vulnerability refers to the misuse of one-way hash functions (i.e., Solidity keccak256)
namely in the incorrect encoding of the function arguments, which can result in a higher like-
lihood of hash collisions for different entries. This vulnerability is also known in the literature
as Authorization (Mavridou and Laszka 2018), Hash collision (Lu et al. 2019) or SWC-133:
Hash Collisions With Multiple Variable Length Arguments (SmartContractSecurity 2020).

5 Discussion

This section overviews the main characteristics of the taxonomy and maps our observations
to state-of-the-art and industry practices. This section also provides a brief summary of the
main aspects that contribute to the overall quality of the taxonomy. Additionally, we conduct
a comparative analysis between our taxonomy and existing community-based classifications.
Lastly, we detail the process followed for the expert-based validation and present the obtained
results.

5.1 Mapping the Taxonomy to State of the Art

Table 14 summarizes the distribution of the number of vulnerabilities per each of the main
categories present in our taxonomy. As we can see, the distribution is dominated by Bad
Programming Practices & Language Weaknesses, which account for almost half of the
vulnerabilities. The majority of the remaining vulnerabilities exhibit a relatively uniform
distribution.

Figure 6 further characterizes the identified vulnerabilities, namely by identifying the
different ’defect types’ (in the y-axis) and specifying the number of OpenSCV vulnerabilities
per each ’defect type’ (between parenthesis, in the y-axis). The plot then shows the prevalence
of the ’qualifier’ values (i.e., missing, wrong, and extraneous). Notice that the sum of the
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Table 14 Vulnerability distribution across OpenSCV’s main categories

Level Qtd defects

Unsafe external calls 14

Mishandled events 5

Gas depletion 2

Erroneous credit transfer 6

Bad programming practice & language weakness 42

Incorrect control flow 10

Arithmetic issues 6

Improper access control 9

qualifier values exceeds the vulnerability count (between parenthesis in the y-axis), as a
certain vulnerability may be associated with more than one qualifier (e.g., vulnerability may
occur due to a missing checking or a wrong checking).

As we can see in Fig. 6, the top ‘defect types’ belong to Assignment/Initialization,
Interface/O-O Messages, and Checking, which is closely followed by Algorithm/Method.
The top three ‘defect types’ account for nearly two-thirds of the vulnerabilities, and the top
four account for more than 80% of the 94 vulnerabilities.

Table 15 summarizes the qualifiers’ distribution. It also shows the distribution of the
combined qualifiers (e.g.,wrong andmissing together), which represent vulnerabilitieswhose
correction may be related to more than one qualifier (e.g., a certain vulnerability may be due
to amissing or due to awrong assignment). As shown, thewrong qualifier is themost frequent
one, followed bymissing. In terms of combinations,missing andwrong together are the most
frequent cases.

We selected three different cases of classification schemes for comparison with OpenSCV.
In particular, we selected SWC (SmartContractSecurity 2020) for frequently appearing in
the literature, we also selected the classification presented by Rameder et al. (2022) for being
the most extensive one found in the literature, and we also selected the list of vulnerabilities
presented in Hu et al. (2023) for being the most recent vulnerability detection work. Figure 7
shows to what extent these classifications map the vulnerabilities identified in our taxonomy.

Fig. 6 Vulnerabilities per ODC defect type and qualifier
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Table 15 ODC qualifier
distribution

Qualifier Extraneous Missing Wrong

Extraneous 16 1 3

Missing 1 34 21

Wrong 3 21 68

The first observation from Fig. 7 reveals that OpenSCV currently includes a larger number
of distinct vulnerabilities compared to the remaining classifications. While SWC includes
37 vulnerabilities, our detailed analysis has revealed that we can map these to 49 different
vulnerabilities documented in OpenSCV. In contrast, among the 54 defects (not all of which
are vulnerabilities) presented inRameder et al. (2022), only 45havebeen successfullymapped
to vulnerabilities inOpenSCV.Furthermore, all 18 vulnerabilities presented inHuet al. (2023)
are mapped with the 18 vulnerabilities in OpenSCV.

We also compared OpenSCV with existing community-oriented classification schemes.
Table 16 presents this comparison.We can observe that OpenSCVpresents a greater coverage
(i.e., 94 vulnerabilities) and holds important characteristics compared to other classifications.
OpenSCV not only provides references to external classifications it also provides links to
the vulnerability detection tools. It also provides both vulnerable and fixed codes, like most
classifications. However, in contrast to other classifications, it specifies the compiler version
in which the vulnerability is fixed. Moreover, it follows a tree structure, which is more
fine-grained and flexible to updates. At the time of writing and to the best of our knowledge,
OpenSCV is themost up-to-date vulnerability classification schemewith coverage for several
blockchain platforms.

In comparison to the two of the most notable classifications, namely DASP and SWC,
OpenSCV offers distinct advantages. Both DASP and SWC classifications lag behind the
current state of the practice. The authors of Ivanov et al. (2023) highlight a significant chal-
lenge in vulnerability mapping using SWC and DASP classifications. They point out that the
inherent difficulty in mapping vulnerabilities with the SWC is due to discrepancies in the
nomenclature used by various security tools. This problem arises because both the DASP and
SWC classifications do not incorporate the vulnerability lists provided by the vulnerability
detection tools. In contrast, OpenSCV presents a solution to this problem. OpenSCV helps

Fig. 7 Mapping of the identified vulnerabilities to other classifications
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developers seamlessly bridge the gap between the vulnerability names reported by different
tools and their corresponding entries in the SWC classification.

The authors of Ivanov et al. (2023) also highlighted another weakness of these classi-
fications (i.e., DASP, SWC), which is the discrepancy between them and the vulnerability
list detected by the vulnerability detection tools. To illustrate this point, consider the case of
Reentrancy vulnerabilities, which can be detected by tools like Slither and Securify. These
tools distinguish between different types of reentrancy issues, which may include problems
leading to financial leaks or those affecting the overall system state. SWC and DASP, how-
ever, tend to provide a broader, less detailed classification. Another example is related to
the variable initialization vulnerabilities. In SWC-109, there is a specific entry to handle
storage variable issues. However, several tools report different kinds of problems related to
variable initialization, such as uninitialized variables (Feist et al. 2019), uninitialized-local
(Tsankov et al. 2018). Regarding this aspect, OpenSCV fits better because it places both
issues under the category of Improper Declaration or Initialization and specifies each of
them with two distinct entries: 5.2.3 Missing Variable Initialization and 5.2.4 Uninitialized
Storage Variables.

Table 17 presents a list of the 10 vulnerabilities most frequently discussed in the works
analyzed in this paper. The names in Table 17 have been normalized to use the OpenSCV
vulnerability names. The ’index’ column is a reference to the OpenSCV vulnerability, the
’vulnerability’ column holds the name of the vulnerability in our taxonomy, then we show to
which SWC or DASP names it maps, and finally the ’count’ column indicates the number of
works that discuss that particular vulnerability, albeit using different names. As we can see in
Table 17 two of the top vulnerabilities (i.e.,Unreachable Payable Function and Improper Use
of ExceptionHandling Functions) do notmap to any vulnerability in SWC. Similarly, three of
the vulnerabilities do not have a corresponding one in DASP, namely the two aforementioned
cases plusMissing verification for program termination.

We also made a comparison between OpenSCV and the state of the practice (in terms of
tools) by analyzing and mapping their announced vulnerability detection capabilities and the
vulnerabilities of our taxonomy.

Table 17 The top 10 prevalent vulnerabilities identified in vulnerability detection research

Index Vulnerability SWC DASP Count

1.1.1 Unsafe credit transfer SWC-107 DASP-1 61

6.1.1 Incorrect use of event blockchain variables for time SWC-116 DASP-8 43

7.1.2 Integer overflow SWC-101 DASP-3 32

7.1.1 Integer underflow SWC-101 DASP-3 30

5.7.1 Unreachable payable function – – 26

8.1.1 Wrong caller identification SWC-115 DASP-2 24

8.1.3 Missing verification for program termination SWC-106 – 18

2.1.2 Improper exception handling in a loop SWC-128 DASP-1 15

2.1.1 Improper use of exception handling functions – – 15

1.6 Delegatecall to untrusted Callee SWC-112 DASP-2 15
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Fig. 8 Announced detection capabilities of current tools: a) the average number of vulnerabilities detected
per tool; b) the average number of tools per vulnerability

Figure 8.a) shows the practical distance of the 77 identified tools/works in vulnerability
detection to our current state of knowledge inwhat concerns smart contract vulnerabilities. As
we can see in Fig. 8.a), the existing tools are able to detect on average 5.5 of the vulnerabilities
presented in OpenSCV. Most tools are detecting from 2 to 7 different vulnerabilities. The
best vulnerability detection tools (in terms of detection capabilities) are: Securify (Tsankov
2018), covering 36% of OpenSCV vulnerabilities (34 out of 94); Smartcheck (Tikhomirov
et al. 2018) with 21%, (20 out of 94) and; SoliDetector (Hu et al. 2023) and HFCCT which
detect 20% of the vulnerabilities of OpenSCV (18 out of 94). These results indicate that there
is significant potential for improvement in vulnerability detection, and combining the diverse
capabilities of various tools could be a promising approach for the development of a more
effective solution.

Figure 8.b) shows, from the perspective of each individual vulnerability, how many tools
are able to detect it. As shown, on average, each vulnerability is detected by 5.14 tools (most
of them are detected by 1 and 5 tools).

Figure 9 shows the focus of the different classes of tools (i.e., Formal Methods, Static
Code Analysis, Software Testing, and Machine Learning) per each of the top categories in
our taxonomy. As shown in the figure, the category 1. Unsafe External Calls has the largest

Fig. 9 Announced detection capabilities for each of the taxonomy top categories
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focus on vulnerability detection tools and is mostly dominated by formal methods, despite
the recent growth of tools based on machine learning. We also observe that although, 5.
Bad Programming Practices & Language Weaknesses is the category with the largest set
of vulnerabilities (i.e., 42 OpenSCV vulnerabilities), proportionally it is not gathering the
same attention as other categories (e.g., 6. Arithmetic Issues is being targeted by 40 tools,
although it includes only 6 OpenSCV vulnerabilities). Furthermore, we observe that tools
based on Formal Methods are the most prevalent across all categories of vulnerabilities,
with the exception of 3. Gas Depletion, where software testing tools slightly outnumber the
former.

5.2 Validation of OpenSCV

To validate OpenSCV, we performed an expert-based analysis. To do so, we conducted a
questionnaire regarding the overall quality of our taxonomy.We invited experts (researchers)
who are/were active in smart contract security and requested their opinions about the vulner-
abilities and the categories defined in OpenSCV. As we intend to bring the OpenSCV closer
to state-of-the-practice, we specifically invited experts who are also authors (i.e., creators)
of verification detection tools to participate in the questionnaire. It is worth noting that, in
line with the criteria outlined in Section 3, we exclusively considered authors of the papers
that met our specified selection criteria.

Concerning the categories, we asked the experts about Representativeness, Clarity, Com-
prehensiveness, and Usefulness in order to assess the general quality of the whole category.
Concerning the vulnerabilities, we inquired with experts to evaluate the Clarity and Com-
prehensibility of the titles and descriptions provided for each vulnerability. We provided
questionnaire participantswith all the information regarding each vulnerability and its respec-
tive categories, code samples for each vulnerability, and access to the OpenSCV website at
https://openscv.dei.uc.pt.

Each question posed to participants required to be answered using a term from the follow-
ing Likert scale, each associated with a numeric value: "Strongly Disagree" (-2), "Disagree"
(-1), "Neutral" (0), "Agree" (1), and "Strongly Agree" (2). Subsequently, we aggregated
responses from the participants and calculated the average value for each specific case.
These average values were then normalized to [0,1]. A vulnerability or category with a score
of greater than 0.5 indicates expert acceptance.

Due to the huge number of nodes within our taxonomy (i.e., 124 vulnerabilities and
categories), we opted to break down the taxonomy into six distinct parts: Part 1 including
Unsafe External Calls, Part 2 includingMishandled Events, GasDepletion, Erroneous Credit
Transfer, Part 3 including one-third of Bad Programming and Language Practice, Part 4
including another one-third of Bad Programming and Language Practice, Part5 including
the final one-third of Bad Programming and Language Practice, and finally Part6 including
Arithmetic Issues, Improper Access Controls. We randomly allocated these parts among
participants.

We received 28 responses to a total of 150 inquiries(i.e., the response rate = 18%) from 8
different countries. We marked the demographic information as optional (i.e., attempting to
increase the response rate), and because of this, we received 2 answers from non-identified
countries. Participants are people involved with secure and/or reliable blockchain systems
(e.g., Slither developers) occupying different positions (e.g., Director of Engineering, Post-
doctoral Students, PhD students, Full Professors).
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Overall, the questionnaire participants appreciated OpenSCV’s categorization and hierar-
chical structure and mentioned that the provided information (i.e., title, description, and code
excerpt) made it easier to understand the taxonomy. In terms of general aspects to improve,
these mostly consisted of minor adjustments to names or descriptions, for clarity.

Regarding the questionnaire results, we received positive feedback for all categories,
which means the score achieved was greater than 0.5. To be more specific, the score for
Representativeness was 0.79, for Clarity was 0.78, for Comprehensiveness was 0.76, and
finally forUsefulnesswas 0.79. Thus, the overall score for all categories was 0.78. Regarding
the vulnerabilities, we also received positive feedback for both title and description. The
overall score for the titlewas 0.77, and the overall score for the descriptionwas 0.75.Although
we have received positive feedback regarding the vulnerabilities and categories of OpenSCV,
we have taken the aforementioned suggestions (i.e., textual suggestions) into consideration
and made minor adjustments to improve the titles and descriptions of a few vulnerabilities.
Further details regarding the questionnaire results can be viewed at Vidal et al. (2024a).

5.3 Main Contributors to the Overall Quality of the Taxonomy

We now summarize the main aspects that we believe are the main contributors to the general
quality of the taxonomy, which we are making publicly available at https://openscv.dei.uc.
pt (Vidal et al. 2024c). In terms of organization, we opted for a hierarchical structure, as it
may be useful from a defect prevention perspective. From a language designer’s perspective,
understanding that there is a certain group of defects that are related to, for instance, gas
depletionmay be helpful for designing effective protectionmechanisms against those defects.
Such mechanisms may share common strategies. From a developers’ perspective, it helps
identify potential issues within their smart contract code by providing tools for conducting a
"top->down" analysis. For instance, it organizes information hierarchically,making it simpler
to pinpoint similar problems. For instance, developers can verify the correct implementation
of credit transfer functions by examining the Erroneous Credit Transfer category and its
subcategories.

A taxonomic structure of this kind allows setting homogeneous levels of abstraction in
an easier manner, which we iteratively tried to achieve, although this kind of goal is quite
difficult as it should be balanced with the number of items and overall tree complexity (and in
some cases, due to the specificity of the problem, this may not even be possible). We tried to,
as much as possible, reuse existing terminology althoughmany times we converged to the use
of new terms (adapted from the literature), for clarity purposes. The required nomenclature
adaptations integrated into our taxonomywere carried out mostly with the goal of making the
itemsnon-ambiguous (anduniquely identifiable also) and also fostering thedeterminismof the
classification process by clarifying the meaning of each vulnerability. We complemented this
with the available information from DASP, SWC, Ramederet al. (2022), and CWE, targeting
to make the taxonomy further comprehensible and non-ambiguous (multiple perspectives
will dissipate standing doubts, fostering repeatability).

The taxonomy construction process involved the analysis of a relatively large number
of papers, tools, and other classifications, with the main goal of fostering completeness
(i.e., good coverage), which in the end makes it also more useful as we end up forming a
unified view of the landscape of smart contract vulnerabilities. As previously mentioned, we
found that the number of papers and respective vulnerabilities analyzed (i.e., an initial set of
481 vulnerabilities collected from 77 papers) was actually a main contributor to the overall
quality of the taxonomy, with a few late additions becoming trivial to map. It is worthwhile
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mentioning that the created structure is flexible in the sense that we make it open to the
community and, in particular, open to community contributions, which can be carried out by
submitting issue requests at the OpenSCV GitHub repository (Vidal et al. 2024b).

OpenSCV associates each type of vulnerability with a corresponding CWE entry, offering
a comprehensive overview of each vulnerability. It also includes Defect Type/Qualifier map-
ping from ODC, which provides insight into the nature of each vulnerability. For an in-depth
analysis, OpenSCV links each issue to prominent community classifications such as SWC
andDASP and offers vulnerable code snippets along with their respective fixes. Additionally,
it features complete Solidity programs within its dataset.

In addition to the above aspects of OpenSCV, we have also included the latest compiler
version that can automatically detect or eliminate a specific vulnerability. This helps devel-
opers to mitigate vulnerabilities by upgrading to the updated compiler version. Moreover,
we provide a mapping between each vulnerability and vulnerability detection tools. This
will also help developers in identifying the most effective combination of tools to detect
vulnerabilities within their code. Furthermore, developers can benefit from the OpenSCV
because it fills a gap in name standardization, allowing easier comparisons of results from
different vulnerability detection tools. For future work, we are planning to provide an API,
which would allow the tools to be integrated with our taxonomy, offering a unifying service
for naming.

6 Threats to Validity

This section discusses the main threats to the validity of this work. To minimize the chances
of creating an incorrect structure or providing incorrect vulnerability information, we for-
malized the taxonomy creation process, which was based on several quality criteria identified
in the state of the art, and especially made use of several researchers (i.e., one Early Stage
Researcher and 2 Experienced Researchers) who incrementally and iteratively built the tax-
onomy following a bottom-up approach. The process was enriched by establishing relations
to other classifications in the blockchain context (i.e., SWC, DASP, Rameder et al. (2022))
and in a more general context (i.e., CWE). We also characterized each vulnerability using
ODC and an example, which also served to minimize doubts and clear divergences among
researchers. In addition, we provide the taxonomy as a live structure at Vidal et al. (2024c)
supported by a GitHub repository (Vidal et al. 2024b) so that possible mistakes are corrected
and also allow future updates, changes, and overall taxonomy evolution.

We are aware that a classification or categorization scheme or a taxonomy may assume
one of several possible forms: we may have more or fewer categories, we may have a deeper
tree, the organization may or may not be hierarchical, and so on. While such diversity is
acceptable (as long as the organization and individual items are correct), we opted to focus
on the taxonomy creation process instead of on forcing a certain structure. For this purpose,
we identified quality criteria and analyzed similar structures in the state of the art so that we
could learn from possible mistakes and incorporate lessons learned by previous researchers.
While the current structure is a proposal, we made it open to change and evolve by opening it
to the community and also by directly providing ‘Request For Change’ templates to facilitate
changes or additions to the present form.

An important aspect is that the taxonomy creation process was guided by the research
that was found during the analysis of the state of the art. Thus, we may have missed some
relevant work in this context, and with time, this gap may become greater. For instance,
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the fact that we focus on vulnerability detection research may lead us to miss other types
of studies (e.g., empirical studies) which may also introduce new vulnerabilities, despite
not proposing a specific vulnerability detection technique or tool. The fact that we were
already aware of contributions coming from 3 areas: research on vulnerability classification,
initiatives on vulnerability classification that are community-oriented, and research on vul-
nerability detection, allowed for a more efficient search, through which we believe captured
representative research in this context. Despite this, and tomitigate possible gaps between the
set of works considered to build OpenSCV and the set not captured during the collection of
papers in this work, we prepared a supporting infrastructure to allow continuous updates and
evolution of OpenSCV. Thus, we are now able to easily identify and integrate new research
in vulnerability detection that may bring in emerging smart contract vulnerabilities.

7 Conclusion

In this paper, we presented an open hierarchical taxonomy for smart contract vulnerabilities.
The taxonomy is up-to-date according to the current state of the practice and is prepared to
handle future modifications and evolution. To build the taxonomy, we began by analyzing
current vulnerability classification schemes for blockchain. We also analyzed the announced
detection capabilities of the works on smart contract vulnerability detection. We then fol-
lowed an iterative process to construct the OpenSCV taxonomy. We discussed the proposed
taxonomy characteristics and coverage against the state of the practice. In particular, we
analyzed the announced detection ability of current industry-level tools and mapped it to the
OpenSCV taxonomy.We then validated our taxonomy by carrying out a questionnaire involv-
ing experts on blockchain and smart contract security. In future work, we plan on using this
taxonomy as a basis to define a benchmark for smart contract vulnerability detection tools.
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