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Abstract
Refactoring is the most prominent way of repaying Technical Debt and improving software 
maintainability. Despite the acknowledgement of refactorings as a state-of-practice tech-
nique (both by industry and academia), refactoring-based quality optimizations are debata-
ble due to three important concerns: (a) the impact of a refactoring on quality is not always 
positive; (b) the list of available refactoring candidates is usually vast, restricting develop-
ers from applying all suggestions; and (c) there is no empirical evidence on which param-
eters are related to positive refactoring impact on quality. To alleviate these concerns, we 
reuse a benchmark (constructed in a previous study) of real-world refactorings having 
either a positive or negative impact on quality; and we explore the parameters (structural 
characteristics of classes) affecting the impact of the refactoring. Based on the findings, we 
propose a metrics-based approach for guiding practitioners on how to prioritize refactoring 
candidates. The results of the study suggest that classes with high coupling and large size 
should be given priority, since they tend to have a positive impact on technical debt.
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1 Introduction

The Technical Debt (TD) metaphor expresses in monetary terms the effort that a software 
development team saves or "borrows", by opting for a “quicker” but “non-optimal” devel-
opment approach in terms of quality—implying that consequently, interest will have to be 
paid. TD Interest expresses the additional effort that teams will need to pay during software 
maintenance, because of the presence of inefficiencies, while the cost to resolve these inef-
ficiencies is called TD Principal. Large amounts of TD Interest are an important concern 
for software development teams, as it essentially describes the future cost of ‘sweeping 
problems under the carpet’ that are neither evident in the short term and are not easy to 
quantify or even accurately predict in the future (Arvanitou et al. 2020). TD Management 
(TDM) is the process that systematically assesses TD, monitors its evolution, and when 
necessary, suggests actions for reducing the amount of TD Principal, which in turn, is 
expected to limit the amount of TD Interest. Current empirical evidence suggests that fol-
lowing the laws of software evolution (Lehman et al. 1997), TD Principal usually increases 
in absolute value as a system grows; however, effective TDM can lead to a reduction of TD 
density (TD normalized over the total lines of code), as it is evident in software projects 
with well-defined quality assurance processes (Digkas et al. 2022).

According to the literature, there are both re-active and pro-active approaches for TD reduc-
tion. On the one hand, the re-active strategy, which is the most common in industry (Smiari 
et al. 2022), refers to the application of refactoring to purposefully eliminate code, design or 
architectural smells and implementation flaws that may exist. On the other hand, the pro-active 
approaches, that seem to be appealing to individual practitioners (Ampatzoglou et al. 2019), 
but are not yet well-established, yield for the definition of Quality Gates that impose the merg-
ing in the main development branch, only of code that is “cleaner” compared to the average 
quality in the code base (Digkas et al. 2022). Other, stricter policies for quality control impose 
the “zero-bug” policy in the main branch: allowing only code commits with limited (under a 
defined threshold) or zero violations against a pre-defined set of rules (Falessi et al. 2017a). In 
this study, we focus on the re-active strategy, i.e., the application of refactoring, which despite 
being well-accepted and recognized as a useful and practical solution, is haunted by empirical 
uncertainty, and practical limitations, as outlined in Fig. 1, and discussed below:

Size of the Solution Space: Identifying refactoring candidates can be performed either 
manually (Ge et al. 2012) or with tool support (Campbell and Papapetrou 2013; Tsan-
talis et al. 2008; Sharma et al. 2016). For the latter case (which is the most prominent 
in the industry (Ivers et  al. 2022)), a practical problem is that the list of refactoring 
candidates is usually so long that the developer cannot cope with efficiently processing 
it. Thus, there is a need for an approach and a tool implementation that could automati-
cally prioritize the refactoring candidates. Uncertainty of Refactoring Impact: Several 
studies have investigated the impact of refactorings on various aspects of software qual-
ity, but the results are contradictory: i.e., identify cases that the refactoring has a posi-
tive impact, and others that the refactoring is neutral, or even has a negative impact (see 
Section  2). To this end, it is important to provide an approach that can pin-point to 
refactoring candidates that will have a positive impact on quality after their application 
(TD Principal and TD Interest), relying on information available before the refactor-
ing. Refactoring Impact Parameters: Given the above, the developers need to apply an 
automated prioritization approach, relying on the available pieces of information: (a) the 
type of the refactoring (e.g., Extract Method, Extract Class, etc.); and (b) the class or 
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the set of classes that constitute the candidate for refactoring. According to practitioners 
(Smiari et al. 2022; Ampatzoglou et al. 2019; Ivers et al. 2022) refactoring prioritization 
would be more efficient, based on “where” the refactoring is applied, given that “design 
hotspots” (i.e., parts of code with particularly low quality) should receive more atten-
tion. To this end, there is a need for an approach that prioritizes refactoring candidates, 
based on the characteristics of classes (Refactoring Impact Parameters) that would be 
involved in the refactoring process. This need leads to a counter problem: “How does 
someone aggregate the characteristics of a group of classes to a unified unit of analysis? 
In our case: from the class-level to the refactoring candidate-level”.

To alleviate this problem, we provide empirical evidence on which structural metrics 
(Refactoring Impact Parameters) can be inspected (after being aggregated to the Refactoring 
Candidate level) before the application of a refactoring, to increase the probability of select-
ing a beneficial refactoring, i.e., having a positive impact in terms of TD. To achieve this 
goal, we need to rely on past (historical) data, i.e., cases in which a refactoring had a posi-
tive or a non-positive (neutral or negative) impact on TD. To construct this dataset, we reuse 
the process proposed by Nikolaidis et  al. (Nikolaidis et  al. 2023), who identified isolated 
(from other maintenance activities) refactoring applications, along the history of various 
software projects, relying on the mechanism of labelling Pull Requests (PRs). The process 
for constructing the dataset is presented in detail in Section 4.3. Upon the construction of the 
dataset, we apply a thorough experimental setup via the fitting of Generalized Linear Mixed 
Models (GLMMs), using Refactoring Impact Parameters (a set of structural metrics for the 
classes that are Refactoring Candidates) as independent variables; whereas as response vari-
able a binary value for the impact of the refactoring (positive or non-positive) is used. A 
similar process of using mixed effects models has also been followed in previous studies 
on TDM (Nikolaidis et al. 2023), given their appropriateness for the nested nature of data: 
i.e., Refactoring Candidates are grouped by the Project they belong to. The rest of the paper 
is organized as follows: In Section 2 we discuss related work, while in Section 3 we briefly 
outline the employed quantification approach, which forms the backbone of this quantitative 
study. The design of our case study is presented in Section 4, along with the corresponding 
research questions. The results are presented and discussed in Section 5, the implications 

Fig. 1  Study Motivation and Problem Statement
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to both practitioners and researchers are presented in Section 6. We identify threats to the 
validity of the study in Section 7; and finally, we conclude the paper in Section 8.

2  Related Work

In this section, we present existing studies and background information for this paper. In 
Section 2.1, we focus on the effect of refactorings on software quality. This section aims 
at showcasing the need for this study, i.e., by presenting the controversy of empirical find-
ings on the impact of refactorings: some cases positive, others having a negative effect. In 
Section 2.2, we present related work that shares a common study setup, in terms of unit of 
analysis. Thus, we present studies that analyze Pull Requests, instead of classes, commits, 
or projects. Finally, in Section 2.3, we present directly related work, i.e., studies that aim to 
estimate the impact that a refactoring could have on software quality.

2.1  Refactoring and Software Quality

Murphy-Hill et al. (Murphy-Hill et al. 2011) investigated the habits of developers in terms 
of refactoring and found that developers rarely perform refactoring-related activities. But 
when a refactoring does take place, the effect on quality is still uncertain. Various studies 
have observed positive and negative impacts. Kataoka et al. (Kataoka et al. 2002) evaluated 
the impact of the “Extract Method” and the “Extract Class” refactoring methods on a soft-
ware project’s maintainability, written in C +  + , using coupling metrics. The results indi-
cate that refactorings magnify system maintainability from the perspective of code metrics. 
Stroulia and Kapoor (Stroulia and Kapoor 2001) investigated the effect on size and cou-
pling measures after the application of refactoring and their results show that the average 
LOC of involved classes and coupling metrics decreased after refactoring.

On the other hand, Stroggylos and Spinellis (Stroggylos and Spinellis 2007) inspected 
the logs in the version control systems of four open-source software projects to extract 
the revisions where software refactoring had taken place. The findings reveal that, despite 
the expectation that a refactoring improves the quality of the software, the measurements 
in the examined systems show the opposite. In particular, the authors observed that code 
refactoring caused a slight increase in cohesion and coupling related metrics. In another 
study, Alshayeb (Alshayeb 2009) concluded that the application of refactoring does not 
necessarily improve external quality characteristics, such as adaptability, maintainability, 
and comprehensibility. By applying refactoring techniques, as defined by Fowler, on three 
software systems and measuring the effect on selected software metrics, vast discrepancies 
in the effect of refactoring were revealed. The author concluded that it was not possible to 
corroborate that software refactoring as a general practice can improve quality.

Also noteworthy is the study by Wilking et al. (Wilking et al. 2007), who conducted a 
controlled experiment to investigate how refactoring affects the conservation and modi-
fication of projects. The results of their experiment suggest that there is no direct effect 
of software refactoring leading to improved maintainability. Most of the findings of the 
above studies agree on the limited practical adoption of software refactoring and on a 
rather mixed effect on the quality of a project, at least on quality aspects that can be quanti-
fied. Moreover, the study of Moser et al. (Moser et al. 2008) approached the problem from 
a perspective closer to the industry. The authors examined whether refactoring increased 
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productivity as well as code quality. To achieve that, they relied on a small industrial tool 
which captures the productivity and the code metrics of each developer. They found out 
that productivity increases after a refactoring takes place and that code metrics improve.

Al Omar et al. (AlOmar et al. 2019) analyzed a total of 1,245 commits from 3,795 
Java projects to capture the effect that the developer intended to achieve through a refac-
toring versus the actual effect. To this end, several projects were analyzed looking for 
the refactorings that took place with the help of the Refactoring Miner (Tsantalis et al. 
2022) and ReffDiff (Silva and Valente 2017) tools. Next, they retained only the commits 
where the corresponding message explicitly specified the exact quality attribute that 
was the target. By analyzing the before- and after- state of the code for each commit, it 
becomes possible to determine if the developer achieved the desired outcome through 
the applied refactoring. It was found out that for the quality attributes of cohesion, cou-
pling, and complexity refactorings were able to capture the intention of the developer, 
but for the rest of the metrics the refactoring in the commit had not affected them.

Finally, another study with mixed results was conducted by Bois and Mens (Bois 
and Mens 2003). They took a different approach from the rest of the previous studies, 
in the sense that they based their analysis on the abstract syntax tree (AST) representa-
tion of source code. They examined the change of the metric values defined on the AST 
representation for different types of refactorings like Extract Method, Encapsulate Field, 
and Pull Up Method. The application of the examined refactorings showed positive and 
negative impacts on the studied metrics.

2.2  Pull Requests and Software Quality

In the literature, it is common to explore PRs to find their contributions to the quality of the 
submitted code or even their acceptance based on the quality of the new code. This goes to 
show the importance of studying PRs since they constitute a cohesive set of commits that 
makes a specific bug-fix, addition, or maintenance activity of a given project. Silva et al. 
(Silva et al. 2016) analyzed 1,722 PRs and found that 30% of the rejected PRs are due to 
the presence of technical debt issues. Also interesting is that the most frequently attributed 
rejection reason was code design, which was also identified in the study by Zou et al. (Zou 
et al. 2019). Zou et al. analyzed 50,000 PRs from 117 different projects to find whether the 
coding style affects the PRs chances from being eventually merged. This study found out 
that the more consistent the added code is to the already existing code base, the higher the 
probability of a merging the PRs. Another study analyzed PRs from the perspective of code 
quality for three projects, namely Spark, Kafka, and React (Karmakar et  al. 2022). This 
study showed that the discussion of technical debt in PRs appears to be different than in 
other software artifacts (e.g., code comments, commits, issues, or discussion forums).

Regarding the more general software quality area, Gousios et al. (Gousios et al. 2015) 
conducted a large-scale survey of 749 participants, that act as integrators in many different 
systems to find out the factors that affect the decision of accepting or not a PRs. The code 
quality was the top factor that influenced the decision of the integrators, along with the 
testing and the alignment with the project’s overall idea. The main takeaway was that both 
technical and social factors play a significant role in the PRs acceptance. The social aspect 
was found (and confirmed) to be a very important aspect in other studies as well (Moreira 
Soares et al. 2021), where the developer was the most important factor that influenced the 
chances of a PR. Finally, Lenarduzzi et  al. (Lenarduzzi et  al. 2021) analyzed more than 
36,000 PRs from a total of 28 Java projects focusing on whether the quality of the code 
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that is being introduced is related to the acceptance probability of the PR. In that study, 
the PMD tool was used to find code quality defects, and it was evident that quality did not 
play a key role in the acceptance or rejection of the PRs. However, it seems that certain 
PMD rules are indeed considered by the reviewers for the acceptance of new code. Similar 
results were found in other studies (Calefato et al. 2017), where the developers’ trustwor-
thiness was more important as well as the code quality and structure.

2.3  Estimating the Impact of Refactorings

There is a plethora of tools regarding refactoring recommendations. Kurbatova et al. (Kur-
batova et  al. 2020) proposed an approach to recommend Move Method refactorings that 
relies on the path-based representation of code, and they used this to train a machine learn-
ing classifier. After some evaluation, it was obvious that this approach can stand against, 
or even outperform in some cases, the state of the art tools. In another study, Murphy-Hill 
et  al. (Murphy-Hill and Black 2008) stated the importance of refactoring tools and pre-
sented three new ones. These tools could help developers with Extract Method refactorings 
by avoiding selection errors and understanding refactoring precondition violations. These 
tools were also assessed by their accuracy and their user satisfaction, which was very high. 
Moreover, approaches have been proposed that help developers prioritize and select the 
most effective or profitable refactorings (Mavridis et al. 2012; Meananeatra et al. 2011). 
Similarly, SEMI, a tool that helps with the prioritization of Extract Method refactorings, 
uses a ranking approach, based on the benefits that each refactoring is going to have in the 
overall cohesion, based on the single responsibility principle (Charalampidou et al. 2016).

Chaparro et al. (Chaparro et al. 2014) created an approach named RIRE, which can pre-
dict the values of some structural metrics based on the refactoring that is going to take 
place. RIPE can calculate the impact of 12 different refactoring operations, on 11 structural 
metrics. Even though some of the refactoring operations have very good accuracy for some 
metrics, in a test case RIPE was only able to perfectly predict 38% of 8,103 metric scores. 
The evaluation took place in 15 Java projects and a total of 504 refactorings. A similar 
study, but on a smaller scale, was conducted by Kataoka et al. (Kataoka et al. 2002). They 
used only metrics that are related to coupling and refactoring methods that affect coupling, 
like Extract Method, Extract Class, and Move Method.

Moreover, Higo et al. (Higo et al. 2008), created a methodology and tool, which can rec-
ommend a refactoring based on its effect on the quality of the project. In that study, 6 metrics 
were used from the CK metric suite. To validate the results a real-world example was used, 
and the methodology was able to propose a refactoring that was used at the end. The study by 
Soetens and Demeyer (Soetens and Demeyer et al. 2010) analyzed the evolution of the com-
plexity of a project. Then, by extracting the commit that explicitly stated that a refactoring 
was applied, it was possible to isolate the effect that it had on complexity. The most impor-
tant takeaway was that many times the complexity of the project was not reduced, while at a 
closer look it was found that complexity was highly correlated with the type of refactoring.

This paper is the first one that goes a step further than related work, which until now 
examined the effect of refactorings on quality or TD. More specifically, we not only 
highlight the problem of the controversy of empirical findings, but we also present 
actionable rules, and guide the practitioners on when to apply a refactoring and when 
not. This is an important advancement compared to state-of-the-art, since it moves from 
exploratory analysis to an explanatory level, with actionable results.
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3  Background Information

3.1  Software Quality

Software quality is an ambiguous term depending on the viewpoints of different stakehold-
ers, being characterized as an “elusive target” (Kitchenham and Pfleeger 1996), implying 
that developing “perfect quality” software is not feasible in practice, since not all quality 
parameters can be optimized, either because of the associated cost or due to the inher-
ent trade-offs among quality attributes. Thus, on the one hand, from the prespective of the 
developer, quality is related to the conformance of software to its specification. On the 
other hand, from the perspective of the user, quality is whether the software meets its pur-
pose. In general, software quality is assessed through its inherent characteristics. Several 
standards have been proposed, but the most popular is ISO/IEC 25010. The first level of 
this ISO describes eight quality attributes, i.e., functional suitability, performance/effi-
ciency, compatibility, reliability, usability, security, maintainability, and portability, which 
are further divided into several sub-characteristics. For instance, software maintainability 
is decomposed to: modularity, reusability, testability, analyzability, and modifiability. To 
assess and quantify a quality attribute (of the first or the second level) the development 
teams need to define or select a set of metrics, based on the development phase (Arvanitou 
et al. 2016), which are going to provide insights for the achieved level of software quality.

3.2  Code (Bad) Smells

The term “code smells” is used to describe parts of code or decisions that are generally asso-
ciated with bad design and bad programming practices. Code smells are used to locate the 
places in software that could benefit from refactorings and Fowler et al. (Fowler et al. 1999) 
described 22 possible code smells and their associated refactorings. In contrast to bugs, smells 
do not cause a fault in the application but may lead to other negative consequences, impact-
ing software maintenance and evolution. Detection of code smells has become an established 
method to indicate software design issues that may cause problems for further development 
and maintenance, and they are being considered one of the key indicators of TD (Alves et al. 
2016b). SonarQube, which is one of the most frequently used tools for estimating TD, relies 
on 273 rules associated with code smells (for Java)—e.g., “Boolean expressions should not be 
gratuitous”, “Conditionals should start on new lines”, etc. SonarQube rules that are related to 
code smells are linked to code understandability, poorly written code, and coding standards. 
But there are more rules related to bugs, vulnerabilities, and security hotspots.

3.3  Technical Debt Quantification

The main pillars of the TD metaphor are Principal and Interest, which are borrowed from 
economics. TD Principal is the effort that is required to remove inefficiencies from the 
current state of a software system to bring it closer to an “optimal” state (Ampatzoglou 
et  al. 2015a). On the other hand, TD Interest refers to the extra development effort that 
is required to maintain the software, due to the presence of inefficiencies (TD Principal) 
(Soetens and Demeyer et al. 2010).

In Fig. 2, a hypothetical software system is depicted in a maintenance state of “actual”. 
The actual quality is usually at some distance from the “optimum” quality: The effort 
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required for the development team to close this quality gap, represents the TD Principal. 
The consequence of the existence of the principal is TD Interest, which represents the addi-
tional effort required to maintain the software in the actual state, compared to the effort that 
would be required if the system was of optimal quality. In other words, for the introduc-
tion of a hypothetical Feature A to the system, the development team would require 
less time, if the system had been of an optimal (or at least ‘better than actual’) quality 
(Chatzigeorgiou et  al. 2015). The estimation of TD Principal is more straightforward as 
it is related to the identification of pre-defined inefficiencies, while the estimation of TD 
Interest is more challenging as it involves the anticipation of future changes and the assess-
ment of the additional maintenance effort.

In the last decade or more, numerous TD Principal quantification tools have been pro-
posed that estimate TD Principal, either in monetary terms or as effort (in time) to repay 
TD (Avgeriou et al. 2021). There have also been numerous studies about the proposed tools 
and their accuracy (Avgeriou et al. 2021; Li et al. 2015; Lefever et al. 2021). In this study 
we rely on SonarQube, which is the most frequently used tool for estimating TD Princi-
pal, according to several studies (Avgeriou et  al. 2021; Alves et  al. 2016a). SonarQube 
can capture the TD Principal by finding the code inefficiencies of the given system and 
calculate the required time to resolve the corresponding issues. The platform algorithm was 
originally based upon an adopted version of the SQALE method proposed by Letouzey 
(Letouzey 2012), in which a remediation index is obtained for requirements of an applica-
ble Quality Model. Moreover, SonarQube supports more than 20 programming languages, 
and it performs static analysis against a specified set of rules. For the Java programming 
language, that interests us in this study, SonarQube version 9.7.1 checks for violations 
against 627 rules. These rules are divided into 4 categories based on their type, namely 
bug, vulnerability, code smell, and security hotspot. Finally, apart from the remediation 
time of each issue, there is also a severity scale (blocker, critical, major, minor, info).

For TD Interest, the quantification is far more challenging, mainly due to the need 
to anticipate the future state of a given system. First, a system can by no means be 
characterized as optimal, based solely on the optimization of some structural charac-
teristics. Second, to calculate the TD Interest, the maintenance effort to add a feature 
in the actual state and in a hypothetical one, would be needed; the latter cannot be 
calculated accurately. In our study, we adopt the FITTED approach (Ampatzoglou 
et al. 2015b), which has been proposed and empirically validated in our previous work 
(Ampatzoglou et al. 2018; Tsintzira et al. 2019). The proposed TD Interest quantifica-
tion approach is based on historical data, by considering past effort spent on mainte-
nance activities and using the average number of lines of code added between sequen-
tial releases as a maintenance effort indicator. The derivation of an “optimal” peer for 
any given class is as follows: (a) find the 5 closest neighbors (classes of the system) 
of the class under study, based on structural characteristics—e.g., number of methos, 
lines of code, number of attributes, etc., (b) based on them we develop an “artificial” 
optimum peer (i.e., being characterized by the best metric scores of peers). The dis-
tance of the class (in terms of maintenance-related metrics) determines the additional 
maintenance effort for that class. The FITTED methodology estimates the approximate 
additional maintenance effort for each class which can be turned into monetary terms 
by multiplying with an average wage. According to Tsintzira et  al. (Tsintzira et  al. 
2019) the FITTED TD Interest quantification approach is correlated at the level of 0.73 
to the perception of practitioners in terms of the amount of additional effort required to 
maintain an existing industrial system, due to the presence of TD.
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4  Case Study Design

4.1  Objectives & Research Questions

The goal of this study is to identify Refactoring Impact Parameters—RIP (i.e., struc-
tural characteristics of the Refactoring Candidates—RC—before the application of 
the refactoring) that can assess the positive or non-positive effect of a refactoring on 
the values of TD Principal and/or TD Interest. By considering that quantifying the 
structural characteristics at the level of RC (calculated by aggregating the class-level 
metrics socres) is not a trivial problem in the software engineering domain (due to 
the presence of various aggregation functions), we decompose the goal on two main 
research questions:

RQ1: Can the selection of a function to aggregate metric scores (from the class- to 
the RC-level) affect the ability to identify the impact of refactoring activities on TD 
Principal and TD Interest?

When a developer gets a refactoring suggestion, he/she is not expected to change 
the code of only one file. Thus, to be able to compare RCs of different sizes (in terms 
of involved classes), there is a need of aggregating the metric scores, from the class 
to the RC level. In the software engineering literature (Ampatzoglou et al. 2020), the 
most used aggregation functions are Mean, Sum, and Max, each one yielding for a 
different interpretation. For example, using Sum as an aggregation function takes into 
consideration the number of classes to be refactored, Max focuses only on the worst-
case scenario: i.e., the worst class among those to be refactored, whereas Mean is not 
discriminating between large and small RCs, and it does not focus on extreme metric 
scores. In  RQ1 we investigate if different aggregation functions can lead to different 
factors that affect the impact of refactoring on TD Principal and TD Interest.

RQ2: Which Refactoring Impact Parameters (at the level of RC) can affect the 
impact of the refactoring on TD?

Fig. 2  TD Principal and Interest 
Visualization (Chatzigeorgiou 
et al. 2015)
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In  RQ2, we aim to model the impact of a refactoring on TD Principal and/or Inter-
est, based on the aggregated metrics scores (RIP) of a RC. In other words, we attempt 
to identify relations between specific RIPs and positive impact of refactoring, i.e., 
“Which metrics should have high/low values so as for the application of RC to have 
better chances for a positive impact on TD?”. To answer this question, as comprehen-
sively as possible, we first examine the effect of RIPs to the impact of applying the RC 
on TD Principal  (RQ2.1), then to the impact on TD Interest  (RQ2.2), and finally to the 
impact on both—i.e., positive impact on both Principal and Interest  (RQ2.3).

4.2  Case Selection and Units of Analysis

The cases of this study are open-source software (OSS) projects that are subject to sys-
tematic maintenance, including the application of refactoring applications. All of the 
selected projects can be found in Table 1, along with some basic characteristics to ini-
tially describe the sample. It becomes evident that 10 out of the 15 projects are part of 
the Apache ecosystem, since as an OSS development organization, has a reputation for 
high quality projects, emphasizing on process and quality improvement, while having 
long maintained projects. The five remaining projects are from other organizations, in an 
attempt for more generalizable results. To select the most fitting cases and ensure their 
homogeneity, but also their diversity, we navigated and selected projects from the most 
frequently maintained and popular projects (from the “explore” tab of GitHub), while 
also have defined the following criteria:

[C1] The OSS project is written in Java and uses Maven to ensure that the project can 
be analyzed. We note that the FITTED tool for calculating TD Interest is available 
only for Java code, and SonarQube can provide better results if it is part of the 
build process (since it takes into account rules based on the exact Java version that 
is being used).

[C2] The OSS project is currently under development; thus, is still maintained. This 
criterion aims at ensuring that the projects included in the analysis are still under-
going development; therefore, the studied practices are not outdated; increasing 
the chances for identifying refactorings.

[C3] The OSS project has more than 250 closed pull requests to have enough data 
points for each project. The closed pull requests can be either merged or not, and 
from the merged ones we do not expect all of them to be labeled as refactorings. 
Since we could not find any threshold for the number of PRs in the literature, we 
have intuitively set 250 as a threshold, by examining the number of PRs of OSS, as 
well as to ensure that we have enough data per project for our analysis.

[C4] The OSS project uses labeling for refactorings in pull requests, which is one of the 
most important criteria, as our study requires that a PR is labeled as “refactoring” 
to use it.

The study is a multiple case study, in the sense that from each project, multiple PRs 
labelled as refactorings (units of analysis) have been identified. Each applied refactoring 
(before its application) is considered as an RC that can be assessed as having a positive or 
non-positive impact on quality (in terms of TD Principal, TD Interest or both), by analyz-
ing the project before and after the PR.
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4.3  Data Collection

The data collection for this study has been organized around the need to identify the refac-
torings that have been applied along software evolution to mine units of analysis. Tools 
such as Refactoring Miner (Tsantalis et  al. 2022) can identify past refactoring activities 
(and have been adopted in previous related work (Nikolaidis et al. 2022)) but are not fit-
ting to the goals of this study. In particular, the application of a refactoring is not always 
the main and only intention of a developer in a commit (e.g., the developer might commit 
a feature addition, along with a small refactoring), or a refactoring might be spread in sub-
sequent commits. To create a dataset with changes only aiming at “pure” refactoring (to 
avoid construct validity), we rely on information that can be retrieved by studying PRs: an 
approach that has already been used in various studies (see Section 2.2) (Silva et al. 2016; 
Zou et  al. 2019; Karmakar et  al. 2022; Gousios et  al. 2015, 2017; Moreira Soares et  al. 
2021; Lenarduzzi et  al. 2021). In large projects that take full advantage of collaborative 
development environments, PRs are commonly used to submit groups changes, serving a 
common goal. PRs allow to contribute one or more commits for a specific functionality 
or change, which then must be reviewed before being merged. Because of the controlling 
nature of this mechanism, it is common to allow contributions to the production / main 
branch, only using PRs and disable the direct commit (also known as branch protection) 
(Hastings and Walcott 2022). The intention of a PR is usually denoted by attaching labels 
(like keywords) to a PR, and these labels can be customized per project and, although 
optional, there are some common practices on larger projects as they promote organiza-
tion (Zhang et al. 2023). To construct the dataset for this study, we focused on PRs that are 
tagged with a label explicitly stating that a refactoring has been performed. This approach 
will ensure that our dataset contains changes in files, for which the refactoring was the 
main change that the developer wanted to achieve. To develop our dataset, we filtered 
refactoring-related PRs, and then we assessed the code quality in terms of TD (Principal 
and Interest), before and after the PR merge—characterizing the refactoring as having a 

Table 1  Selected Projects

Project Commits PRs Size (#LOC) Size (# Classes)

antlr/antlr4 9106 1816 98,653 1453
Netflix/conductor 3127 1533 74,443 578
DataDog/dd-trace-java 10,889 4340 171,760 3762
apache/dolphinscheduler 7698 6867 150,826 2027
apache/doris 9387 11,745 403,813 3909
apache/druid 12,534 9058 1,032,837 9276
apache/dubbo 6491 5716 191,728 2976
apache/incubator-seatunnel 3039 2596 95,338 1700
provectus/kafka-ui 1642 1948 48,124 353
apache/pinot 9916 8371 432,607 4405
apache/pulsar 11,396 13,243 567,649 5532
apache/rocketmq 7993 2901 180,792 1823
apache/skywalking 7532 4626 104,817 2089
apache/streampipes 10,027 554 130,938 2344
uima-uimaj 7736 265 372,629 2209
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positive or non-positive impact on TD Principal, on TD Interest, on both. These steps are 
illustrated in Fig. 3 and can be split into the following phases:

Phase 1 First, we had to extract information from the GitHub repository of each project. 
The two main pieces of information that we were interested in were the subset of PRs that 
we will need to analyze, and the list of the changed Java files. For the PRs, we retained only 
the closed PRs that had a specific label, designating that this PR contains a refactoring. So, 
we used the GitHub API to get all the PRs and filter them accordingly. From the GitHub API 
we were also able to retrieve, for each PR that interests us, the previous and merged commit 
along with the changed Java file. The main endpoints that were used are the following:

https://api.github.com/repos/<username>/<project>/pulls?state=closed&per_page 
=100&page=1

https://api.github.com/repos/<username>/<project>/commits/<commit-hash>
The first one retrieves all the closed PRs and the second one retrieves more information 

about the merged PR (i.e., the previous commit, and the changed files). To filter and organ-
ize our results we created a script that can be found online.1

Phase 2 After completing the list of the PRs that concerned refactoring (commits before and 
after the merge), we can analyze the code. So, we automated the process by checking out a spe-
cific commit each time and starting the code analysis. As part of the analysis, we calculated TD 
Principal and TD Interest. For TD Principal, we used SonarQube (Campbell and Papapetrou 
2013), whereas for TD Interest we used FITTED (Ampatzoglou et al. 2015b). Finally, as RIP, 
we assessed several maintainability-related parameters, by calculating 9 structural metrics for 
the commit before the application of the refactoring. The selected metrics (see Table 2) have 
been indicated by previous studies (Riaz et al. 2009a; Van Koten and Gray 2006; Zhou and Xu 
2008) as the optimal maintainability predictors. To calculate the metric scores, we used Metrics 
Calculator,2 a well-tested and stable tool for calculating quality metrics for Java code.

After recording the data, we have developed a dataset, with the following variables. The 
complete dataset can, for replication purposes, be found online.3

[V1] TD Principal Before Refactoring
[V2] TD Principal After Refactoring
[V3] Impact of Refactoring on TD Principal (binary)
[V4] TD Interest Before Refactoring
[V5] TD Interest After Refactoring
[V6] Impact of Refactoring on TD Interest (binary)
[V7] Impact of Refactoring on TD (V3 AND V6)
[V8–V32] RIP aggregated by SUM, MEAN, and MAX (9 RIP * 3 aggregation functions) 
Before Refactoring

4.4  Data Analysis

To answer the RQs posed in this study, a specialized modelling technique belonging to the 
broad category of Mixed Effects Models (MEMs) was adopted. MEMs are a general class 

1 https:// github. com/ nikos nikol aidis/ github- pr- labels- filec hanges
2 https:// github. com/ dimiz isis/ metri cs_ calcu lator
3 https:// users. uom. gr/ ~a. ampat zoglou/ aux_ mater ial/ refac toring_ preds. xlsx
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of inferential statistics methodologies, that can be grasped as an extension of the traditional 
Generalized Linear Models (GLMs) allowing the investigation of two types of effects, 
called the fixed and the random effects, on a response variable via the building of a unified 
single model. MEMs are useful in complicated experimental setups, in which the same units 
of analysis are measured multiple times and / or they are naturally grouped into a hierarchi-
cal structure. These two types of experimental designs (repeated measures and hierarchical 
or nested designs) pose significant barriers to the inferential statistics mechanisms, since in 
both cases, the assumption of the independence of observations is evidently violated. As 
the main objective of this study is the investigation of the effect of RIPs on the refactor-
ing impact, it is essential to take into consideration the nested structure of the experimen-
tal setup, since multiple units of analysis (in our case: RCs) are nested into the same case 
(in our case: OSS projects), i.e., not being independent to each other. Hence, the two-level 
inherent hierarchy of the collected data and the dependency of the units of analysis that were 
grouped into nested factors (RC are nested within OSS Projects) were the main reasons for 
taking advantage of the robust MEMs rather than other statistical hypothesis testing pro-
cedures, since they provide an advanced mechanism for the incorporation of the so-called 
random effects and the modeling of the expected variance at different levels of hierarchy.

With respect to the response variable, the main research pillar focuses on the exami-
nation of the effect of RIPs on the refactoring impact on TD Principal and TD Interest. 
For this reason, two dichotomous (or binary) variables, namely [V3] (Eq.  1) and [V6] 
(Eq. 2) were defined, indicating whether refactoring activities were associated to a posi-
tive or non-positive impact on TD Principal and TD Interest, respectively. The basis for 
the categorization of refactoring activities into positive and non-positive groups was the 
quantification of TD Principal [V1, V2] and TD Interest [V4, V5] before and after the 
application of the refactoring. At this point, we must emphasize that due to the qualita-
tive nature of the response variable (i.e., refactoring impact is a dichotomous variable with 
two levels (positive/non-positive)), we based the inferential process on a specific type of 

Fig. 3  Data Collection Flow
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MEMs, namely the Generalized Linear Mixed Models (GLMMs) enabling the examina-
tion of a binary response through the usage of a logit link function. The logit link function 
g(∙) = log(p∕(1 − p)) is defined as the natural logarithm of the odds for success, where p is 
the probability of a successful refactoring activity.

Regarding the fixed effects (independent variables) that may affect the outcome of 
the response variable (refactoring impact), we have used 9 predefined quality metrics 
(Table 2). Since the RIPs were evaluated on a lower level of hierarchy (class- or file-level) 
compared to the response variable (RC-level), there is an imperative need for the aggrega-
tion of class-level metrics at the higher level (RC). For this reason, we investigated the 
effect of three aggregation mechanisms (Mean, Sum and Max) on the response variable, 
with a strong focus on providing directions to practitioners about the most appropriate one 
for guiding their decision-making  (RQ1). Next, we modeled the probability of an RC hav-
ing a positive impact on TD Principal  (RQ2.1) and TD Interest  (RQ2.2) as a function of the 
aggregation function (see  RQ1) and RIPs (fixed effects). Finally, for  RQ2.3, we followed a 
similar approach after the creation of a new response variable: [V7], labeling a given RC as 
positive, if and only if, refactorings were successful in terms of decreasing both TD Prin-
cipal and TD Interest. In RQs, we controlled the variance decomposition, due to the nested 
structure of the experimental setup, by the application of MEMs.

5  Results

In this section we present the results of this study, organized by research question. As 
a first step, we investigated the distribution for the response and the independent vari-
ables to derive meaningful conclusions concerning the characteristics of the unknown 

(1)V3 =

{

Positive, ifTDPrincipalBefore > TDPrincipalAfter
Non − positive, otherwise

(2)V6 =

{

Positive, ifTDInterestBefore > TDInterestAfter
Non − positive, otherwise

Table 2  Refactoring Impact Parameters

Metric Metric Suite Description

CC McCabe Complexity based on the number of decisions in the source code
WMC Chidamber & Kemerer Weighted methods per class (Number of methods)
DIT Chidamber & Kemerer Depth of inheritance tree
LCOM Chidamber & Kemerer Lack of cohesion in methods (LCOM1)
NOCC Chidamber & Kemerer Number of Class Children
CBO Chidamber & Kemerer Coupling due to Method invocation, inheritance, exception 

handling, method parameters, field access is considered
MPC Li & Henry Message-passing coupling (Number of Distinct Methods Called)
SIZE1 Li & Henry Lines of code (LOC)
SIZE2 Li & Henry Number of properties
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population. The contingency table (Table  3) displays the marginal and joint distri-
butions of the indicator variables [V3] and [V6] that classify RCs as Non-positive / 
Positive in terms of TD Principal (columns) and TD Interest (rows), for a total set of 
434 refactoring candidates. The nested rows can be interpreted as follows: (a) the first 
nested row shows the absolute frequency of the observations in each intersection (e.g., 
269 corresponds to cases with non-positive effect on both Interest and Principal); (b) 
the second nested row corresponds to the percentage on the aforementioned number 
to the total of the row (e.g., 269 corresponds to 87% of the cases with non-positive 
impact on Interest); and (c) the third nested row corresponds to the percentage of the 
aforementioned number to the total of the column (e.g., 269 stands to 100% of the 
cases with non-positive impact on Principal).

The marginal distributions display that in most cases, refactoring resulted in a Non-
positive impact on TD Principal (row: Total) and TD Interest (column: Total). More 
importantly, the inspection of the joint distribution reveals that the refactoring activi-
ties that led to a Non-positive impact on TD Principal ( N = 269 ), resulted in a Non-
positive impact on TD Interest for most of the cases (87.3%). Furthermore, the Positive 
impact of refactoring on TD Principal is primarily associated to Positive impact on 
TD Interest, as well. This result is considered intuitive in the sense that TD Principal 
and TD Interest are not orthogonal concepts, but (similarly to economics) are related 
(Ampatzoglou et al. 2020). Additionally, the fact that there are cases of RC with Posi-
tive impact on TD Principal, but not on TD Interest ( ∼ 13% of the sample) can be 
attributed to the fact that some TD issues identified by SonarQube (rule-based identi-
fication) are unrelated to structural aspects, but rather on styling or conventions con-
formance (Falessi et al. 2017b). On the other hand, we can observe that all structural 
improvements captured by the Positive impact on TD Interest are also reflected on the 
Positive impact on TD Principal (0% of Positive impact on TD Interest and Non-pos-
itive on TD Principal), validating that SonarQube assesses also structural properties 
through the rule violations (Falessi et al. 2017b).

Regarding the characteristics of the distributions for the set of RIPs, recorded 
through metrics, in Table 4, we summarize their main central tendency and variation 
measures after the application of each aggregation function (Mean, Sum, Max). The 
descriptive statistics, along with the indicative examination of the histograms (Fig. 4) 
computed by the Sum aggregation function, bring to light the heavily right-skewed dis-
tributions for the RIP scores, accompanied by the presence of extreme outlying points.

5.1  Aggregating the results from class to refactoring candidate level  (RQ1)

In Table 5, we summarize the overall results derived from the fitting of each GLMM 
that constitute the basis for further inferential purposes and decision-making related to 
RQs. A first interesting remark concerns the perfect agreement within the experimental 
findings conducted for the identification of the most appropriate aggregation function 
for evaluating a composite metric from class-level to the RC-level in the case of TD 
Principal. More specifically, a total number of 7 out of 9 structural metrics presented 
a statistically significant effect ( p < 0.05 ) on the response variable irrespective of the 
applied aggregation function. In addition, there was noted a perfect agreement concern-
ing the results related to the identification of RC-level metrics that did not present a sta-
tistically significant effect on refactoring impact on TD Principal. In contrast, the above 
general finding does not hold for the experiments regarding TD Interest, since, despite 
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the reasonable high agreement among the three aggregation functions, inconsistent out-
comes for two specific cases are observed. In this regard, the utilization of the Mean 
aggregator did not reveal a statistically significant effect on the response variable for 
the total set of GLMMs, whereas the Sum and Max aggregation schemas designated the 
significant effect of CC and DIT on the refactoring impact on TD Interest. Regarding the 
uniform positive impact of the refactoring on TD Principal and Interest, we can observe 
that MPC can be an important RIP using all aggregation functions, whereas CBO only 
when using MAX, and SIZE1 (i.e., lines of code) only when using MAX and MEAN.

The use of different aggregation functions is an irrelevant factor if the quality assur-
ance team is interested only in the monitoring of TD Principal. When TD Interest 
comes into consideration, MAX appears as the optimal choice in the sense that it is 
easier to inspect and pin-point more RIPs.

5.2  Factors affecting the impact of refactoring on TD  (RQ2)

To gain deeper insights into how the aggregated RIPs may affect the impact of RCs, we 
performed an exploratory data analysis through visualization techniques. Due to space 
limitations, we illustrate the boxplots and violin plots for the set of metrics aggregated by 
the Sum function for the experimental setups of both TD Principal (Fig. 5) and TD Inter-
est (Fig. 6). The examination of the distributions for the case of TD Principal provides 
empirical evidence that most of the RIPs can be considered as important, since they 
affect the impact of the refactoring, deserving further investigation. For example, refac-
torings with a Positive impact were associated with higher CC, WMC, LCOM, MPC, 
CBO, SIZE1 and SIZE2 scores compared to refactorings with a Non-positive impact.

In contrast, apart from a minority of cases (e.g., CC and DIT metrics), there are no obvi-
ous differences in the shapes of the distributions between the Non-positive and Positive 
groups representing the impact of refactoring activities on TD Interest. Moreover, the nature 
of the association between CC and the impact on TD Interest seem to be different compared 
to TD Principal, since refactorings with a Positive impact on TD Interest present lower CC 
values compared with refactorings with a Non-positive impact. A possible interpretation for 
this is the fact that in TD Interest calculation, metrics scores do not participate as actual val-
ues, but as distances from the scores of neighboring classes. In that sense, a refactoring that 
lowers the complexity of a class with high CC, might alter its ‘neighborhood”, comparing 

Table 3  Joint Distribution of 
Refactoring Impact on TD 
Principal and TD Interest

Principal Total

Non-positive Positive

Interest Non-positive 269 39 308
87.3% 12.7% 100%
100% 23.6% 71%

Positive 0 126 126
0% 100% 100%
0% 76.4% 29%

Total 269 165 434
62% 38% 100%
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Table 4  Descriptive Statistics of Aggregated RIP (Metrics Before Refactoring)

Aggregation Variable M SD Median Min Max

Mean CC 2.46 1.96 2.00 0.00 17.38
WMC 17.25 24.48 10.00 0.00 327.00
DIT 1.22 1.64 0.89 0.00 12.50
LCOM 636.15 2974.31 57.42 0.00 53,301.00
MPC 69.12 133.23 32.45 0.00 1940.00
NOCC 1.92 10.90 0.00 0.00 140.00
CBO 10.55 16.14 6.34 0.00 213.00
SIZE1 287.73 458.15 152.82 0.00 5922.00
SIZE2 26.65 35.23 16.00 0.00 424.00

Sum CC 34.66 89.11 6.49 0.00 777.80
WMC 215.22 541.21 42.00 0.00 5656.00
DIT 23.47 85.28 2.00 0.00 930.00
LCOM 6233.75 19,880.50 204.50 0.00 160,388.00
MPC 838.01 2223.97 124.50 0.00 24,955.00
NOCC 16.95 61.39 0.00 0.00 368.00
CBO 150.96 386.01 22.00 0.00 3764.00
SIZE1 3686.05 9191.08 651.50 0.00 86,481.00
SIZE2 323.69 805.88 69.00 0.00 8762.00

Max CC 4.95 4.74 3.00 0.00 32.00
WMC 49.50 77.97 19.50 0.00 444.00
DIT 3.24 4.77 1.00 0.00 32.00
LCOM 3957.70 12,891.83 136.00 0.00 87,735.00
MPC 184.42 354.60 68.00 0.00 2029.00
NOCC 13.64 58.02 0.00 0.00 346.00
CBO 25.55 40.77 11.00 0.00 232.00
SIZE1 905.26 1782.12 305.00 0.00 13,434.00
SIZE2 70.85 102.25 31.00 0.00 561.00

Fig. 4  Distributions of Refactoring Impact Parameters (Sum aggregation)
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them to classes with lower levels of CC. This phenomenon cannot heavily apply to low CC 
classes, which cannot significantly deviate from their original score (and change neighbor-
hood). An indicator for this assumption is the fact that the value of CC can change signifi-
cantly by applying the ‘Replace Conditional with Polymorphism’, if the number of branches 
of the conditional statements is high, leading to a drastic decrease in CC (from the number of 
branches to zero)—being a sensitive metric (Arvanitou et al. 2016).

After the identification of the RIPs that presented a statistically significant effect on the 
refactoring impact on TD Principal, we proceeded to the parameter estimation for this sub-
set of metrics. Table 6 summarizes the estimated parameters of GLMMs along with their 
p− values for TD Principal. Concerning the interpretation of the estimated parameters of 
GLMMs (i.e., row Estimate), the positive sign of an independent variable indicates that the 
likelihood of a Positive impact of refactoring increases, as the value of the RIP increases. In 
other words, RCs with higher values of RIP scores are more likely to guarantee a beneficial 
refactoring application. Since Odds Ratio (OR) in GLMMs provide an intuitively appeal-
ing and straightforward interpretation regarding the effect of changes in a predictor on the 
response variable, we computed the ORs of each RIP from the fitted models (Table 6, row 
OR). In our case, an OR > 1 indicates that a positive impact of refactoring activities is more 
likely to occur as the RIP score increases. Based on this simple interpretation rule, the total 
set of seven RIPs identified as statistically significant predictors seem to positively affect 
the outcome of a refactoring opportunity in TD Principal. As an example, an RC whose 
aggregate CC metric via the Mean aggregation function is twice as much as the CC metric 
of another RC, is associated with a change in the odds of a positive refactoring impact by 
a factor of 1.48 (or 48% increase). This finding can be considered intuitive and suggests 
that design hotspots with low quality (excessive metric scores) in terms of coupling, lack 
of cohesion, complexity, and size are more probable to undergo a refactoring leading to a 
positive effect on TD Principal.

A similar analysis process was followed for the closer examination of the subset of 
aggregated RC-level RIPs that presented a significant impact on TD Interest, namely CC 
and DIT (see Table 7). A first interesting remark concerns CC, which as explained through 
the violin charts has a significant effect on the refactoring impact on both TD Principal and 
TD Interest, but in an inverse direction. The interpretation for this controversy has already 

Table 5  Results of GLMMs for 
TD Principal and TD Interest

✘non-significant
✓significant at 0.05

Variable Principal Interest Principal & 
Interest

Mean Sum Max Mean Sum Max Mean Sum Max

CC ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✘ ✘
WMC ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
DIT ✘ ✘ ✘ ✘ ✓ ✓ ✘ ✘ ✘
LCOM ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
MPC ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✓
NOCC ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
CBO ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✓
SIZE1 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✘ ✓
SIZE2 ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
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been discussed before. Regarding, DIT the negative relation to TD Interest is intuitive, in 
the sense that the lower the aggregate DIT values are, the lower the use of inheritance. 
Given the fact that most of the Fowler refactorings (Fowler and Beck 1999) yield for the 
introduction of inheritance to benefit from polymorphism, we can anticipate classes out-
side inheritance trees presenting the largest room for beneficial refactoring application. For 
example, the estimated ORs ( OR < 1 ) evaluated by the GLMMs fitted through the usage of 
the Sum and Max aggregators designate that RCs whose aggregate DIT score is twice as 
much as the DIT of another RC, have about 0.20 times less odds of undergoing a refactor-
ing having a Positive impact on TD Interest.

Fig. 5  Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Principal

Fig. 6  Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Interest
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Technical Debt The last part of the experimental setup is related to the identification of RIPs 
that affect the probability of an RC having a positive impact on both TD Principal and TD 
Interest. The results are presented in Table 8. An interesting finding from this analysis is that 
the two RIPs that have been identified as significant for TD Interest have not been qualified 
as significant for the intersection of TD Principal and TD Interest. A possible explanation is 
that high CC increases the chances for a Positive impact on TD Principal but decreases the 
chances for a Positive impact on TD Interest. Out of the RIPs that have a significant effect on 
the impact of the refactoring either on TD Principal or TD Interest, MPC, CBO, and SIZE1 
appear to be able to affect the impact of the refactoring on both pillars of TD. For all cases 
the Estimate is positive, which follows the rationale for the design hotspots.

RCs involving classes with excessive MPC, CBO, and/or SIZE1 values need to be pri-
oritized against the rest, since refactoring them can yield improvements in TD Principal 
and Interest.

6  Implications to Practitioners and Researchers

Implications to Practitioners In terms of practitioners, based on findings of this study, we 
propose a prioritization approach that relies on the “Software Guidebook and Debt Calcula-
tor” (Eisenberg 2012). We adopt the coloring schema that is proposed by Eisenberg (Eisen-
berg 2012) and we use as metrics the important RIPs. Therefore, we propose the development 
of a 2D array: rows correspond to the RCs and as columns to the significant RIPs (MPC, 
CBO, and SIZE1 aggregated with the MAX function). Then a 3-step approach takes place:

1 we sort the RCs by each metric, and we color the top-10%.
2.1 assign a RED color to RCs that are colored for all metrics.
2.2 assign an ORANGE color to RCs that are colored for 2 out of 3 metrics.
2.3 assign a YELLOW color to RCs that are colored for 1 out of 3 metrics.
3 we explore the RCs whose metric scores exceed by 2-times the mean score of sam-
ples, and for those we upgrade the coloring assignment (e.g., from ORANGE to RED).

Table 6  GLMMs Estimated Parameters for Significant RIPs (TD Principal)

Aggregation Model CC WMC LCOM MPC CBO SIZE1 SIZE2

Mean Estimate 0.392 0.195 0.092 0.194 0.198 0.205 0.194
SE 0.187 0.096 0.041 0.071 0.105 0.075 0.099
OR 1.479 1.215 1.096 1.214 1.219 1.227 1.214
p 0.036 0.041 0.024 0.006 0.049 0.006 0.049

Sum Estimate 0.122 0.115 0.077 0.119 0.102 0.125 0.118
SE 0.058 0.048 0.030 0.042 0.048 0.044 0.049
OR 1.129 1.121 1.080 1.126 1.107 1.133 1.125
p 0.037 0.017 0.011 0.005 0.033 0.004 0.016

Max Estimate 0.353 0.171 0.076 0.178 0.198 0.170 0.184
SE 0.123 0.068 0.032 0.058 0.077 0.058 0.072
OR 1.423 1.186 1.079 1.194 1.219 1.185 1.202
p 0.004 0.012 0.018 0.002 0.010 0.003 0.011
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As an example, we demonstrate this process on the Apache Pinot project for a specific com-
mit.4 As refactoring candidates, we used five refactoring opportunities obtained through the 
Smell Detector Merger (Ichtsis et al. 2022) tool that validates the existence of a smell based 
on the intersection of multiple tools. By following the steps, we described above, we end 
up with the coloured RCs shown in Table 9. So, given our proposed strategy the refactoring 
that has the highest chance of achieving a greater impact is the Duplicate Code #1 (more 
details about each step of this example can be found in Appendix A). We need to note that 
this study can not answer all the questions that might be stated in the refactoring process. 
For inctance: “How many refactorings of this list MUST I apply?”, since the answer to this 
question would require additional information, such as the timeframe and the budget that 
can be devoted to the refactoring session. However, given the available budget, the team can 
opt to apply refactorings, picking from the top of the prioritized list.

Implications to Researchers From this study, we can extract two types of implications to 
researchers: (a) from a methodological perspective; and (b) from an outcome perspective. 
On the one hand (methodological implications), through this work we have validated that 
treating software engineering problems as nested ones is both feasible and fitting, in the 

Table 7  GLMMs Estimated 
Parameters for Significant RIPs 
(TD Interest)

Aggregation Model CC DIT

Sum Estimate -0.220 -0.231
SE 0.099 0.089
OR 0.8025 0.7937
p 0.026 0.009

Max Estimate -0.371 -0.415
SE 0.200 0.154
OR 0.6900 0.6603
p 0.046 0.007

Table 8  GLMMs Estimated 
Parameters for Significant RIPs 
(TD Principal AND TD Interest)

Aggregation Model MPC CBO SIZE1

Mean Estimate 0.192 – 0.194
SE 0.090 – 0.095
OR 1.212 – 1.214
p 0.033 – 0.042

Sum Estimate 0.109 – –
SE 0.053 – –
OR 1.115 – –
p 0.040 – –

Max Estimate 0.162 0.194 0.147
SE 0.073 0.094 0.074
OR 1.176 1.214 1.158
p 0.026 0.039 0.047

4 https:// github. com/ apache/ pinot/ commit/ 7d094 89c5b 93966 6c056 1b630 1c928 7ef34 ea239
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sense that an important fraction of mining software repositories studies is extracting infor-
mation from multiple projects, and either report the results per project, or cumulatively 
for the complete population. Although such approaches are not faulty, the experimental 
setup of this work explicitly considers the nesting of units of analysis within different pro-
jects and does not “hide” the fact that different projects can be a confounding factor. In 
that sense, we champion the experimental setup relying on nested statistical analysis, such 
as MEMs. The second methodological implication of this work is related to the use of 
Pull Requests to extract information from grouped commits that serve a common goal. We 
believe that such a data collection approach can be beneficial for various study setups that 
currently work on the commit level, which, however, loses the context of the change that 
is applied during the commit. The main benefits of working with PRs instead of commits 
are: (a) a PR has a specific purpose / goal that can be studied by researchers, and this goals 
is not the subjective assessment of the research team, but a characterization of the develop-
ment team based on their expertise; and (b) the fact that since a PR is a change chunk larger 
in size than the commit, it has the potential to be related to more meaningful and impactful 
changes, which however can still be treated as a unit, since they serve a common purpose.

On the other hand (outcomes-based implications), our study has validated related works 
that support that a refactoring is not always having a Positive impact on quality (Alshayeb 
2009; Nikolaidis et al. 2022), confirming the motivation of investigating RIPs. The find-
ings on the importance of specific RIPs on TD Principal and TD Interest, opens future 
work directions in the sense that following up on this explanatory analysis, prediction and 

Table 9  Example for Process

RC MPC CBO SIZE1

Duplicate Code #1

BaseDistinctAggregateAggregationFunction.java

DistinctCountSmartHLLAggregationFunction.java

35 8 845

Duplicate Code #2

TextContainsFilterOperator.java

TextMatchFilterOperator.java

8 10 37

God Class

DataBlockBuilder.java

15 8 487

Long Method

InTransformFunction.java

15 7 207

Duplicate Code #3

MinAggregationFunction.java

14 5 240

We sort the RCs by each metric, and we color the top-10%, 2.1 assign a RED color to RCs that are colored 
for all metrics, 2.2 assign an ORANGE color to RCs that are colored for 2 out of 3 metrics, 2.3 assign a 
YELLOW color to RCs that are colored for 1 out of 3 metrics. We explore the RCs whose metric scores 
exceed by 2-times the mean score of samples, and for those we upgrade the coloring assignment (e.g., from 
ORANGE to RED)
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classification models can be built, so that refactoring suggestion tools can prioritize the 
extracted opportunities. In this direction, we plan to further work on the current dataset 
to train and validate such models, and then integrate them in the Smell Detector Merger 
(Ichtsis et al. 2022) to equip it with prioritization functionality. Finally, we aim at an empir-
ical validation on the usability and effectiveness of the proposed approach and tool in an 
industrial setting. Such a study would be more relevant if it is conducted as a human study, 
in which we would validate that the prioritization offered by the tool would match the “gut 
feeling” of experienced software architects and quality managers.

7  Threats to Validity

This section discusses potential threats to our study’s validity, as defined in the guidelines 
of Runeson et al. (Runeson et al. 2012).

Construct Validity In any study, the measured phenomena might differ from the actual 
ones, leading to construct validity threats. For the current study involving the notions 
of TD Principal and Interest threats arise from the tooling employed to assess them. For 
measuring principal, we relied on SonarQube which is one of the most frequently used 
tools (Avgeriou et al. 2021; Alves et al. 2016a; Martini et al. 2018). Yli-Huumo et al. (Yli-
Huumo et al. 2016) analyzed the practices of 8 development teams and identified Sonar-
Qube as the most used tool for TDM. However, despite its wide acceptance, it focuses only 
on code TD ignoring other manifestations of TD such as debt in requirements, architecture, 
build processes and tests. We should note that while SonarQube estimates can be config-
ured by modifying the remediation time for individual TD issues, most research studies 
have not performed any such configuration (Schnappinger et al. 2019).

The measurement of TD Interest is far more challenging than the quantification of Princi-
pal, primarily because the assessment of Interest requires the anticipation of future modifica-
tions as well as the knowledge of the maintenance effort for an optimal version of the ana-
lyzed system (i.e. one that is debt-free). Both future maintenance activities and the notion of 
an ideal state of software are unknown. Therefore, TD Interest can only be assessed through 
proxies and by making certain assumptions. In this study, we measured TD Interest through 
the use of selected software metrics and by assessing the distance of any system class from 
its best peer. The selection of metrics was based on empirical evidence in the literature indi-
cating that a combination of metrics can serve as a reliable maintainability predictor (Riaz 
et al. 2009b). The model for synthesizing the values in a unified value for TD Interest relies 
on solid mathematical calculations, given the assumption that maintenance effort is inversely 
proportional (linearly) to maintainability. This assumption, although it cannot be validated 
without a controlled experiment, relies on previous studies (Ampatzoglou et al. 2018; Ampat-
zoglou et al. 2016) and is considered as intuitive by the authors of this paper.

Furthermore, PRs labeled as ‘Refactorings’ have been used as a mechanism for retriev-
ing documented refactorings in the history of a software project. We acknowledge that this 
approach might have missed undocumented individual refactoring applications or PRs where 
refactoring activities are designated using a different label. Nevertheless, labeled PRs constitute 
a reliable source for investigating the impact of systematic and intentional refactoring activities.

External Validity The external validity of the study may be threatened by the possibility 
that different projects using different programming languages or build systems may yield 
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different observations. However, we argue that the chosen projects, due to their size and 
complexity, provide a realistic sample of non-trivial, real-world systems. Furthermore, 
while the Apache Foundation is a credible organization with diverse projects, their prac-
tices may not fully represent those of other large projects. To address this, one-third of 
the analyzed projects comprise non-trivial systems from outside the Apache Foundation. 
Lastly, it should be noted that the study’s results are not applicable to non-object-oriented 
systems as properties such as inheritance, coupling, and cohesion, which are used to assess 
TD, are only applicable to OO software modules.

Reliability To mitigate potential threats to reliability, our study involved three research-
ers in data collection and analysis. Moreover, samples of the analysis output from differ-
ent steps were manually inspected by two additional researchers for irregularities and for 
consistency with the proposed study design. Our results showed no irregularities, and all 
output from different steps was consistent with the proposed study design. Finally, we 
described the procedures of the data collection and analysis in as much detail as possible 
and the used tools are publicly available.

8  Conclusions

The impact of refactoring activities in software projects can be positive, neutral, or negative, 
depending on the context in which the refactoring is applied. In this study, we investigated 
the impact of refactoring activities on TD accumulation, focusing on the role of aggregated 
metrics at the ‘refactoring candidate’ level as predictors of the refactoring impact. Through 
descriptive and exploratory analytics, we found that in most cases, an improvement of TD 
Principal through refactoring is usually associated with an improvement of TD Interest as 
well. Our exploratory data analysis through visualization techniques revealed that most of 
the aggregated RC-level metrics can be considered as important predictors that may affect 
the outcome of a refactoring activity, regardless of the aggregation function for TD Prin-
cipal, whereas the MAX function works better for TD Interest assessment  (RQ1). Further-
more, we identified a subset of aggregated RC-level metrics that presented a statistically 
significant effect on the refactoring impact on TD Principal and TD Interest. By focusing on 
metrics, the results suggested that RCs involving classes with excessive MPC, CBO, and/
or SIZE1 values need to be prioritized against the rest, since refactoring them can yield 
improvements in TD Principal and Interest  (RQ2). Overall, the results of our study highlight 
the importance of considering aggregated RC-level metrics when evaluating the impact of 
refactoring activities on TD accumulation. Software developers and project managers can 
use these findings to make more informed decisions regarding refactoring activities and pri-
oritize refactoring efforts based on the most relevant aggregated RC-level metrics.
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