
Vol.:(0123456789)

https://doi.org/10.1007/s10664-023-10412-w

1 3

A metrics‑based approach for selecting among various
refactoring candidates

Nikolaos Nikolaidis1 · Nikolaos Mittas2 · Apostolos Ampatzoglou1 · Daniel Feitosa3 ·
Alexander Chatzigeorgiou1

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Refactoring is the most prominent way of repaying Technical Debt and improving software
maintainability. Despite the acknowledgement of refactorings as a state-of-practice tech-
nique (both by industry and academia), refactoring-based quality optimizations are debata-
ble due to three important concerns: (a) the impact of a refactoring on quality is not always
positive; (b) the list of available refactoring candidates is usually vast, restricting develop-
ers from applying all suggestions; and (c) there is no empirical evidence on which param-
eters are related to positive refactoring impact on quality. To alleviate these concerns, we
reuse a benchmark (constructed in a previous study) of real-world refactorings having
either a positive or negative impact on quality; and we explore the parameters (structural
characteristics of classes) affecting the impact of the refactoring. Based on the findings, we
propose a metrics-based approach for guiding practitioners on how to prioritize refactoring
candidates. The results of the study suggest that classes with high coupling and large size
should be given priority, since they tend to have a positive impact on technical debt.

Keywords Technical Debt · Refactoring · Empirical Quantitative Analysis · Interest ·
Principal

Communicated by: Bibi Stamatia, Maxime Cordy, Bowen Xu, Xiaofei Xie

 * Apostolos Ampatzoglou
 a.ampatzoglou@uom.edu.gr

 Nikolaos Nikolaidis
 nnikolaidis@uom.edu.gr

 Nikolaos Mittas
 nmittas@chem.ihu.gr

 Daniel Feitosa
 d.feitosa@rug.nl

 Alexander Chatzigeorgiou
 achat@uom.edu.gr

1 Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
2 Department of Chemistry, International Hellenic University, Kavala, Greece
3 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University

of Groningen, Groningen, The Netherlands

Empirical Software Engineering (2024) 29:25

Accepted: 18 October 2023 / Published online: 16 December 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10412-w&domain=pdf
http://orcid.org/0000-0002-5381-8418

1 3

1 Introduction

The Technical Debt (TD) metaphor expresses in monetary terms the effort that a software
development team saves or "borrows", by opting for a “quicker” but “non-optimal” devel-
opment approach in terms of quality—implying that consequently, interest will have to be
paid. TD Interest expresses the additional effort that teams will need to pay during software
maintenance, because of the presence of inefficiencies, while the cost to resolve these inef-
ficiencies is called TD Principal. Large amounts of TD Interest are an important concern
for software development teams, as it essentially describes the future cost of ‘sweeping
problems under the carpet’ that are neither evident in the short term and are not easy to
quantify or even accurately predict in the future (Arvanitou et al. 2020). TD Management
(TDM) is the process that systematically assesses TD, monitors its evolution, and when
necessary, suggests actions for reducing the amount of TD Principal, which in turn, is
expected to limit the amount of TD Interest. Current empirical evidence suggests that fol-
lowing the laws of software evolution (Lehman et al. 1997), TD Principal usually increases
in absolute value as a system grows; however, effective TDM can lead to a reduction of TD
density (TD normalized over the total lines of code), as it is evident in software projects
with well-defined quality assurance processes (Digkas et al. 2022).

According to the literature, there are both re-active and pro-active approaches for TD reduc-
tion. On the one hand, the re-active strategy, which is the most common in industry (Smiari
et al. 2022), refers to the application of refactoring to purposefully eliminate code, design or
architectural smells and implementation flaws that may exist. On the other hand, the pro-active
approaches, that seem to be appealing to individual practitioners (Ampatzoglou et al. 2019),
but are not yet well-established, yield for the definition of Quality Gates that impose the merg-
ing in the main development branch, only of code that is “cleaner” compared to the average
quality in the code base (Digkas et al. 2022). Other, stricter policies for quality control impose
the “zero-bug” policy in the main branch: allowing only code commits with limited (under a
defined threshold) or zero violations against a pre-defined set of rules (Falessi et al. 2017a). In
this study, we focus on the re-active strategy, i.e., the application of refactoring, which despite
being well-accepted and recognized as a useful and practical solution, is haunted by empirical
uncertainty, and practical limitations, as outlined in Fig. 1, and discussed below:

Size of the Solution Space: Identifying refactoring candidates can be performed either
manually (Ge et al. 2012) or with tool support (Campbell and Papapetrou 2013; Tsan-
talis et al. 2008; Sharma et al. 2016). For the latter case (which is the most prominent
in the industry (Ivers et al. 2022)), a practical problem is that the list of refactoring
candidates is usually so long that the developer cannot cope with efficiently processing
it. Thus, there is a need for an approach and a tool implementation that could automati-
cally prioritize the refactoring candidates. Uncertainty of Refactoring Impact: Several
studies have investigated the impact of refactorings on various aspects of software qual-
ity, but the results are contradictory: i.e., identify cases that the refactoring has a posi-
tive impact, and others that the refactoring is neutral, or even has a negative impact (see
Section 2). To this end, it is important to provide an approach that can pin-point to
refactoring candidates that will have a positive impact on quality after their application
(TD Principal and TD Interest), relying on information available before the refactor-
ing. Refactoring Impact Parameters: Given the above, the developers need to apply an
automated prioritization approach, relying on the available pieces of information: (a) the
type of the refactoring (e.g., Extract Method, Extract Class, etc.); and (b) the class or

25 Page 2 of 29 Empirical Software Engineering (2024) 29:25

1 3

the set of classes that constitute the candidate for refactoring. According to practitioners
(Smiari et al. 2022; Ampatzoglou et al. 2019; Ivers et al. 2022) refactoring prioritization
would be more efficient, based on “where” the refactoring is applied, given that “design
hotspots” (i.e., parts of code with particularly low quality) should receive more atten-
tion. To this end, there is a need for an approach that prioritizes refactoring candidates,
based on the characteristics of classes (Refactoring Impact Parameters) that would be
involved in the refactoring process. This need leads to a counter problem: “How does
someone aggregate the characteristics of a group of classes to a unified unit of analysis?
In our case: from the class-level to the refactoring candidate-level”.

To alleviate this problem, we provide empirical evidence on which structural metrics
(Refactoring Impact Parameters) can be inspected (after being aggregated to the Refactoring
Candidate level) before the application of a refactoring, to increase the probability of select-
ing a beneficial refactoring, i.e., having a positive impact in terms of TD. To achieve this
goal, we need to rely on past (historical) data, i.e., cases in which a refactoring had a posi-
tive or a non-positive (neutral or negative) impact on TD. To construct this dataset, we reuse
the process proposed by Nikolaidis et al. (Nikolaidis et al. 2023), who identified isolated
(from other maintenance activities) refactoring applications, along the history of various
software projects, relying on the mechanism of labelling Pull Requests (PRs). The process
for constructing the dataset is presented in detail in Section 4.3. Upon the construction of the
dataset, we apply a thorough experimental setup via the fitting of Generalized Linear Mixed
Models (GLMMs), using Refactoring Impact Parameters (a set of structural metrics for the
classes that are Refactoring Candidates) as independent variables; whereas as response vari-
able a binary value for the impact of the refactoring (positive or non-positive) is used. A
similar process of using mixed effects models has also been followed in previous studies
on TDM (Nikolaidis et al. 2023), given their appropriateness for the nested nature of data:
i.e., Refactoring Candidates are grouped by the Project they belong to. The rest of the paper
is organized as follows: In Section 2 we discuss related work, while in Section 3 we briefly
outline the employed quantification approach, which forms the backbone of this quantitative
study. The design of our case study is presented in Section 4, along with the corresponding
research questions. The results are presented and discussed in Section 5, the implications

Fig. 1 Study Motivation and Problem Statement

Page 3 of 29 25Empirical Software Engineering (2024) 29:25

1 3

to both practitioners and researchers are presented in Section 6. We identify threats to the
validity of the study in Section 7; and finally, we conclude the paper in Section 8.

2 Related Work

In this section, we present existing studies and background information for this paper. In
Section 2.1, we focus on the effect of refactorings on software quality. This section aims
at showcasing the need for this study, i.e., by presenting the controversy of empirical find-
ings on the impact of refactorings: some cases positive, others having a negative effect. In
Section 2.2, we present related work that shares a common study setup, in terms of unit of
analysis. Thus, we present studies that analyze Pull Requests, instead of classes, commits,
or projects. Finally, in Section 2.3, we present directly related work, i.e., studies that aim to
estimate the impact that a refactoring could have on software quality.

2.1 Refactoring and Software Quality

Murphy-Hill et al. (Murphy-Hill et al. 2011) investigated the habits of developers in terms
of refactoring and found that developers rarely perform refactoring-related activities. But
when a refactoring does take place, the effect on quality is still uncertain. Various studies
have observed positive and negative impacts. Kataoka et al. (Kataoka et al. 2002) evaluated
the impact of the “Extract Method” and the “Extract Class” refactoring methods on a soft-
ware project’s maintainability, written in C + + , using coupling metrics. The results indi-
cate that refactorings magnify system maintainability from the perspective of code metrics.
Stroulia and Kapoor (Stroulia and Kapoor 2001) investigated the effect on size and cou-
pling measures after the application of refactoring and their results show that the average
LOC of involved classes and coupling metrics decreased after refactoring.

On the other hand, Stroggylos and Spinellis (Stroggylos and Spinellis 2007) inspected
the logs in the version control systems of four open-source software projects to extract
the revisions where software refactoring had taken place. The findings reveal that, despite
the expectation that a refactoring improves the quality of the software, the measurements
in the examined systems show the opposite. In particular, the authors observed that code
refactoring caused a slight increase in cohesion and coupling related metrics. In another
study, Alshayeb (Alshayeb 2009) concluded that the application of refactoring does not
necessarily improve external quality characteristics, such as adaptability, maintainability,
and comprehensibility. By applying refactoring techniques, as defined by Fowler, on three
software systems and measuring the effect on selected software metrics, vast discrepancies
in the effect of refactoring were revealed. The author concluded that it was not possible to
corroborate that software refactoring as a general practice can improve quality.

Also noteworthy is the study by Wilking et al. (Wilking et al. 2007), who conducted a
controlled experiment to investigate how refactoring affects the conservation and modi-
fication of projects. The results of their experiment suggest that there is no direct effect
of software refactoring leading to improved maintainability. Most of the findings of the
above studies agree on the limited practical adoption of software refactoring and on a
rather mixed effect on the quality of a project, at least on quality aspects that can be quanti-
fied. Moreover, the study of Moser et al. (Moser et al. 2008) approached the problem from
a perspective closer to the industry. The authors examined whether refactoring increased

25 Page 4 of 29 Empirical Software Engineering (2024) 29:25

1 3

productivity as well as code quality. To achieve that, they relied on a small industrial tool
which captures the productivity and the code metrics of each developer. They found out
that productivity increases after a refactoring takes place and that code metrics improve.

Al Omar et al. (AlOmar et al. 2019) analyzed a total of 1,245 commits from 3,795
Java projects to capture the effect that the developer intended to achieve through a refac-
toring versus the actual effect. To this end, several projects were analyzed looking for
the refactorings that took place with the help of the Refactoring Miner (Tsantalis et al.
2022) and ReffDiff (Silva and Valente 2017) tools. Next, they retained only the commits
where the corresponding message explicitly specified the exact quality attribute that
was the target. By analyzing the before- and after- state of the code for each commit, it
becomes possible to determine if the developer achieved the desired outcome through
the applied refactoring. It was found out that for the quality attributes of cohesion, cou-
pling, and complexity refactorings were able to capture the intention of the developer,
but for the rest of the metrics the refactoring in the commit had not affected them.

Finally, another study with mixed results was conducted by Bois and Mens (Bois
and Mens 2003). They took a different approach from the rest of the previous studies,
in the sense that they based their analysis on the abstract syntax tree (AST) representa-
tion of source code. They examined the change of the metric values defined on the AST
representation for different types of refactorings like Extract Method, Encapsulate Field,
and Pull Up Method. The application of the examined refactorings showed positive and
negative impacts on the studied metrics.

2.2 Pull Requests and Software Quality

In the literature, it is common to explore PRs to find their contributions to the quality of the
submitted code or even their acceptance based on the quality of the new code. This goes to
show the importance of studying PRs since they constitute a cohesive set of commits that
makes a specific bug-fix, addition, or maintenance activity of a given project. Silva et al.
(Silva et al. 2016) analyzed 1,722 PRs and found that 30% of the rejected PRs are due to
the presence of technical debt issues. Also interesting is that the most frequently attributed
rejection reason was code design, which was also identified in the study by Zou et al. (Zou
et al. 2019). Zou et al. analyzed 50,000 PRs from 117 different projects to find whether the
coding style affects the PRs chances from being eventually merged. This study found out
that the more consistent the added code is to the already existing code base, the higher the
probability of a merging the PRs. Another study analyzed PRs from the perspective of code
quality for three projects, namely Spark, Kafka, and React (Karmakar et al. 2022). This
study showed that the discussion of technical debt in PRs appears to be different than in
other software artifacts (e.g., code comments, commits, issues, or discussion forums).

Regarding the more general software quality area, Gousios et al. (Gousios et al. 2015)
conducted a large-scale survey of 749 participants, that act as integrators in many different
systems to find out the factors that affect the decision of accepting or not a PRs. The code
quality was the top factor that influenced the decision of the integrators, along with the
testing and the alignment with the project’s overall idea. The main takeaway was that both
technical and social factors play a significant role in the PRs acceptance. The social aspect
was found (and confirmed) to be a very important aspect in other studies as well (Moreira
Soares et al. 2021), where the developer was the most important factor that influenced the
chances of a PR. Finally, Lenarduzzi et al. (Lenarduzzi et al. 2021) analyzed more than
36,000 PRs from a total of 28 Java projects focusing on whether the quality of the code

Page 5 of 29 25Empirical Software Engineering (2024) 29:25

1 3

that is being introduced is related to the acceptance probability of the PR. In that study,
the PMD tool was used to find code quality defects, and it was evident that quality did not
play a key role in the acceptance or rejection of the PRs. However, it seems that certain
PMD rules are indeed considered by the reviewers for the acceptance of new code. Similar
results were found in other studies (Calefato et al. 2017), where the developers’ trustwor-
thiness was more important as well as the code quality and structure.

2.3 Estimating the Impact of Refactorings

There is a plethora of tools regarding refactoring recommendations. Kurbatova et al. (Kur-
batova et al. 2020) proposed an approach to recommend Move Method refactorings that
relies on the path-based representation of code, and they used this to train a machine learn-
ing classifier. After some evaluation, it was obvious that this approach can stand against,
or even outperform in some cases, the state of the art tools. In another study, Murphy-Hill
et al. (Murphy-Hill and Black 2008) stated the importance of refactoring tools and pre-
sented three new ones. These tools could help developers with Extract Method refactorings
by avoiding selection errors and understanding refactoring precondition violations. These
tools were also assessed by their accuracy and their user satisfaction, which was very high.
Moreover, approaches have been proposed that help developers prioritize and select the
most effective or profitable refactorings (Mavridis et al. 2012; Meananeatra et al. 2011).
Similarly, SEMI, a tool that helps with the prioritization of Extract Method refactorings,
uses a ranking approach, based on the benefits that each refactoring is going to have in the
overall cohesion, based on the single responsibility principle (Charalampidou et al. 2016).

Chaparro et al. (Chaparro et al. 2014) created an approach named RIRE, which can pre-
dict the values of some structural metrics based on the refactoring that is going to take
place. RIPE can calculate the impact of 12 different refactoring operations, on 11 structural
metrics. Even though some of the refactoring operations have very good accuracy for some
metrics, in a test case RIPE was only able to perfectly predict 38% of 8,103 metric scores.
The evaluation took place in 15 Java projects and a total of 504 refactorings. A similar
study, but on a smaller scale, was conducted by Kataoka et al. (Kataoka et al. 2002). They
used only metrics that are related to coupling and refactoring methods that affect coupling,
like Extract Method, Extract Class, and Move Method.

Moreover, Higo et al. (Higo et al. 2008), created a methodology and tool, which can rec-
ommend a refactoring based on its effect on the quality of the project. In that study, 6 metrics
were used from the CK metric suite. To validate the results a real-world example was used,
and the methodology was able to propose a refactoring that was used at the end. The study by
Soetens and Demeyer (Soetens and Demeyer et al. 2010) analyzed the evolution of the com-
plexity of a project. Then, by extracting the commit that explicitly stated that a refactoring
was applied, it was possible to isolate the effect that it had on complexity. The most impor-
tant takeaway was that many times the complexity of the project was not reduced, while at a
closer look it was found that complexity was highly correlated with the type of refactoring.

This paper is the first one that goes a step further than related work, which until now
examined the effect of refactorings on quality or TD. More specifically, we not only
highlight the problem of the controversy of empirical findings, but we also present
actionable rules, and guide the practitioners on when to apply a refactoring and when
not. This is an important advancement compared to state-of-the-art, since it moves from
exploratory analysis to an explanatory level, with actionable results.

25 Page 6 of 29 Empirical Software Engineering (2024) 29:25

1 3

3 Background Information

3.1 Software Quality

Software quality is an ambiguous term depending on the viewpoints of different stakehold-
ers, being characterized as an “elusive target” (Kitchenham and Pfleeger 1996), implying
that developing “perfect quality” software is not feasible in practice, since not all quality
parameters can be optimized, either because of the associated cost or due to the inher-
ent trade-offs among quality attributes. Thus, on the one hand, from the prespective of the
developer, quality is related to the conformance of software to its specification. On the
other hand, from the perspective of the user, quality is whether the software meets its pur-
pose. In general, software quality is assessed through its inherent characteristics. Several
standards have been proposed, but the most popular is ISO/IEC 25010. The first level of
this ISO describes eight quality attributes, i.e., functional suitability, performance/effi-
ciency, compatibility, reliability, usability, security, maintainability, and portability, which
are further divided into several sub-characteristics. For instance, software maintainability
is decomposed to: modularity, reusability, testability, analyzability, and modifiability. To
assess and quantify a quality attribute (of the first or the second level) the development
teams need to define or select a set of metrics, based on the development phase (Arvanitou
et al. 2016), which are going to provide insights for the achieved level of software quality.

3.2 Code (Bad) Smells

The term “code smells” is used to describe parts of code or decisions that are generally asso-
ciated with bad design and bad programming practices. Code smells are used to locate the
places in software that could benefit from refactorings and Fowler et al. (Fowler et al. 1999)
described 22 possible code smells and their associated refactorings. In contrast to bugs, smells
do not cause a fault in the application but may lead to other negative consequences, impact-
ing software maintenance and evolution. Detection of code smells has become an established
method to indicate software design issues that may cause problems for further development
and maintenance, and they are being considered one of the key indicators of TD (Alves et al.
2016b). SonarQube, which is one of the most frequently used tools for estimating TD, relies
on 273 rules associated with code smells (for Java)—e.g., “Boolean expressions should not be
gratuitous”, “Conditionals should start on new lines”, etc. SonarQube rules that are related to
code smells are linked to code understandability, poorly written code, and coding standards.
But there are more rules related to bugs, vulnerabilities, and security hotspots.

3.3 Technical Debt Quantification

The main pillars of the TD metaphor are Principal and Interest, which are borrowed from
economics. TD Principal is the effort that is required to remove inefficiencies from the
current state of a software system to bring it closer to an “optimal” state (Ampatzoglou
et al. 2015a). On the other hand, TD Interest refers to the extra development effort that
is required to maintain the software, due to the presence of inefficiencies (TD Principal)
(Soetens and Demeyer et al. 2010).

In Fig. 2, a hypothetical software system is depicted in a maintenance state of “actual”.
The actual quality is usually at some distance from the “optimum” quality: The effort

Page 7 of 29 25Empirical Software Engineering (2024) 29:25

1 3

required for the development team to close this quality gap, represents the TD Principal.
The consequence of the existence of the principal is TD Interest, which represents the addi-
tional effort required to maintain the software in the actual state, compared to the effort that
would be required if the system was of optimal quality. In other words, for the introduc-
tion of a hypothetical Feature A to the system, the development team would require
less time, if the system had been of an optimal (or at least ‘better than actual’) quality
(Chatzigeorgiou et al. 2015). The estimation of TD Principal is more straightforward as
it is related to the identification of pre-defined inefficiencies, while the estimation of TD
Interest is more challenging as it involves the anticipation of future changes and the assess-
ment of the additional maintenance effort.

In the last decade or more, numerous TD Principal quantification tools have been pro-
posed that estimate TD Principal, either in monetary terms or as effort (in time) to repay
TD (Avgeriou et al. 2021). There have also been numerous studies about the proposed tools
and their accuracy (Avgeriou et al. 2021; Li et al. 2015; Lefever et al. 2021). In this study
we rely on SonarQube, which is the most frequently used tool for estimating TD Princi-
pal, according to several studies (Avgeriou et al. 2021; Alves et al. 2016a). SonarQube
can capture the TD Principal by finding the code inefficiencies of the given system and
calculate the required time to resolve the corresponding issues. The platform algorithm was
originally based upon an adopted version of the SQALE method proposed by Letouzey
(Letouzey 2012), in which a remediation index is obtained for requirements of an applica-
ble Quality Model. Moreover, SonarQube supports more than 20 programming languages,
and it performs static analysis against a specified set of rules. For the Java programming
language, that interests us in this study, SonarQube version 9.7.1 checks for violations
against 627 rules. These rules are divided into 4 categories based on their type, namely
bug, vulnerability, code smell, and security hotspot. Finally, apart from the remediation
time of each issue, there is also a severity scale (blocker, critical, major, minor, info).

For TD Interest, the quantification is far more challenging, mainly due to the need
to anticipate the future state of a given system. First, a system can by no means be
characterized as optimal, based solely on the optimization of some structural charac-
teristics. Second, to calculate the TD Interest, the maintenance effort to add a feature
in the actual state and in a hypothetical one, would be needed; the latter cannot be
calculated accurately. In our study, we adopt the FITTED approach (Ampatzoglou
et al. 2015b), which has been proposed and empirically validated in our previous work
(Ampatzoglou et al. 2018; Tsintzira et al. 2019). The proposed TD Interest quantifica-
tion approach is based on historical data, by considering past effort spent on mainte-
nance activities and using the average number of lines of code added between sequen-
tial releases as a maintenance effort indicator. The derivation of an “optimal” peer for
any given class is as follows: (a) find the 5 closest neighbors (classes of the system)
of the class under study, based on structural characteristics—e.g., number of methos,
lines of code, number of attributes, etc., (b) based on them we develop an “artificial”
optimum peer (i.e., being characterized by the best metric scores of peers). The dis-
tance of the class (in terms of maintenance-related metrics) determines the additional
maintenance effort for that class. The FITTED methodology estimates the approximate
additional maintenance effort for each class which can be turned into monetary terms
by multiplying with an average wage. According to Tsintzira et al. (Tsintzira et al.
2019) the FITTED TD Interest quantification approach is correlated at the level of 0.73
to the perception of practitioners in terms of the amount of additional effort required to
maintain an existing industrial system, due to the presence of TD.

25 Page 8 of 29 Empirical Software Engineering (2024) 29:25

1 3

4 Case Study Design

4.1 Objectives & Research Questions

The goal of this study is to identify Refactoring Impact Parameters—RIP (i.e., struc-
tural characteristics of the Refactoring Candidates—RC—before the application of
the refactoring) that can assess the positive or non-positive effect of a refactoring on
the values of TD Principal and/or TD Interest. By considering that quantifying the
structural characteristics at the level of RC (calculated by aggregating the class-level
metrics socres) is not a trivial problem in the software engineering domain (due to
the presence of various aggregation functions), we decompose the goal on two main
research questions:

RQ1: Can the selection of a function to aggregate metric scores (from the class- to
the RC-level) affect the ability to identify the impact of refactoring activities on TD
Principal and TD Interest?

When a developer gets a refactoring suggestion, he/she is not expected to change
the code of only one file. Thus, to be able to compare RCs of different sizes (in terms
of involved classes), there is a need of aggregating the metric scores, from the class
to the RC level. In the software engineering literature (Ampatzoglou et al. 2020), the
most used aggregation functions are Mean, Sum, and Max, each one yielding for a
different interpretation. For example, using Sum as an aggregation function takes into
consideration the number of classes to be refactored, Max focuses only on the worst-
case scenario: i.e., the worst class among those to be refactored, whereas Mean is not
discriminating between large and small RCs, and it does not focus on extreme metric
scores. In RQ1 we investigate if different aggregation functions can lead to different
factors that affect the impact of refactoring on TD Principal and TD Interest.

RQ2: Which Refactoring Impact Parameters (at the level of RC) can affect the
impact of the refactoring on TD?

Fig. 2 TD Principal and Interest
Visualization (Chatzigeorgiou
et al. 2015)

Page 9 of 29 25Empirical Software Engineering (2024) 29:25

1 3

In RQ2, we aim to model the impact of a refactoring on TD Principal and/or Inter-
est, based on the aggregated metrics scores (RIP) of a RC. In other words, we attempt
to identify relations between specific RIPs and positive impact of refactoring, i.e.,
“Which metrics should have high/low values so as for the application of RC to have
better chances for a positive impact on TD?”. To answer this question, as comprehen-
sively as possible, we first examine the effect of RIPs to the impact of applying the RC
on TD Principal (RQ2.1), then to the impact on TD Interest (RQ2.2), and finally to the
impact on both—i.e., positive impact on both Principal and Interest (RQ2.3).

4.2 Case Selection and Units of Analysis

The cases of this study are open-source software (OSS) projects that are subject to sys-
tematic maintenance, including the application of refactoring applications. All of the
selected projects can be found in Table 1, along with some basic characteristics to ini-
tially describe the sample. It becomes evident that 10 out of the 15 projects are part of
the Apache ecosystem, since as an OSS development organization, has a reputation for
high quality projects, emphasizing on process and quality improvement, while having
long maintained projects. The five remaining projects are from other organizations, in an
attempt for more generalizable results. To select the most fitting cases and ensure their
homogeneity, but also their diversity, we navigated and selected projects from the most
frequently maintained and popular projects (from the “explore” tab of GitHub), while
also have defined the following criteria:

[C1] The OSS project is written in Java and uses Maven to ensure that the project can
be analyzed. We note that the FITTED tool for calculating TD Interest is available
only for Java code, and SonarQube can provide better results if it is part of the
build process (since it takes into account rules based on the exact Java version that
is being used).

[C2] The OSS project is currently under development; thus, is still maintained. This
criterion aims at ensuring that the projects included in the analysis are still under-
going development; therefore, the studied practices are not outdated; increasing
the chances for identifying refactorings.

[C3] The OSS project has more than 250 closed pull requests to have enough data
points for each project. The closed pull requests can be either merged or not, and
from the merged ones we do not expect all of them to be labeled as refactorings.
Since we could not find any threshold for the number of PRs in the literature, we
have intuitively set 250 as a threshold, by examining the number of PRs of OSS, as
well as to ensure that we have enough data per project for our analysis.

[C4] The OSS project uses labeling for refactorings in pull requests, which is one of the
most important criteria, as our study requires that a PR is labeled as “refactoring”
to use it.

The study is a multiple case study, in the sense that from each project, multiple PRs
labelled as refactorings (units of analysis) have been identified. Each applied refactoring
(before its application) is considered as an RC that can be assessed as having a positive or
non-positive impact on quality (in terms of TD Principal, TD Interest or both), by analyz-
ing the project before and after the PR.

25 Page 10 of 29 Empirical Software Engineering (2024) 29:25

1 3

4.3 Data Collection

The data collection for this study has been organized around the need to identify the refac-
torings that have been applied along software evolution to mine units of analysis. Tools
such as Refactoring Miner (Tsantalis et al. 2022) can identify past refactoring activities
(and have been adopted in previous related work (Nikolaidis et al. 2022)) but are not fit-
ting to the goals of this study. In particular, the application of a refactoring is not always
the main and only intention of a developer in a commit (e.g., the developer might commit
a feature addition, along with a small refactoring), or a refactoring might be spread in sub-
sequent commits. To create a dataset with changes only aiming at “pure” refactoring (to
avoid construct validity), we rely on information that can be retrieved by studying PRs: an
approach that has already been used in various studies (see Section 2.2) (Silva et al. 2016;
Zou et al. 2019; Karmakar et al. 2022; Gousios et al. 2015, 2017; Moreira Soares et al.
2021; Lenarduzzi et al. 2021). In large projects that take full advantage of collaborative
development environments, PRs are commonly used to submit groups changes, serving a
common goal. PRs allow to contribute one or more commits for a specific functionality
or change, which then must be reviewed before being merged. Because of the controlling
nature of this mechanism, it is common to allow contributions to the production / main
branch, only using PRs and disable the direct commit (also known as branch protection)
(Hastings and Walcott 2022). The intention of a PR is usually denoted by attaching labels
(like keywords) to a PR, and these labels can be customized per project and, although
optional, there are some common practices on larger projects as they promote organiza-
tion (Zhang et al. 2023). To construct the dataset for this study, we focused on PRs that are
tagged with a label explicitly stating that a refactoring has been performed. This approach
will ensure that our dataset contains changes in files, for which the refactoring was the
main change that the developer wanted to achieve. To develop our dataset, we filtered
refactoring-related PRs, and then we assessed the code quality in terms of TD (Principal
and Interest), before and after the PR merge—characterizing the refactoring as having a

Table 1 Selected Projects

Project Commits PRs Size (#LOC) Size (# Classes)

antlr/antlr4 9106 1816 98,653 1453
Netflix/conductor 3127 1533 74,443 578
DataDog/dd-trace-java 10,889 4340 171,760 3762
apache/dolphinscheduler 7698 6867 150,826 2027
apache/doris 9387 11,745 403,813 3909
apache/druid 12,534 9058 1,032,837 9276
apache/dubbo 6491 5716 191,728 2976
apache/incubator-seatunnel 3039 2596 95,338 1700
provectus/kafka-ui 1642 1948 48,124 353
apache/pinot 9916 8371 432,607 4405
apache/pulsar 11,396 13,243 567,649 5532
apache/rocketmq 7993 2901 180,792 1823
apache/skywalking 7532 4626 104,817 2089
apache/streampipes 10,027 554 130,938 2344
uima-uimaj 7736 265 372,629 2209

Page 11 of 29 25Empirical Software Engineering (2024) 29:25

1 3

positive or non-positive impact on TD Principal, on TD Interest, on both. These steps are
illustrated in Fig. 3 and can be split into the following phases:

Phase 1 First, we had to extract information from the GitHub repository of each project.
The two main pieces of information that we were interested in were the subset of PRs that
we will need to analyze, and the list of the changed Java files. For the PRs, we retained only
the closed PRs that had a specific label, designating that this PR contains a refactoring. So,
we used the GitHub API to get all the PRs and filter them accordingly. From the GitHub API
we were also able to retrieve, for each PR that interests us, the previous and merged commit
along with the changed Java file. The main endpoints that were used are the following:

https://api.github.com/repos/<username>/<project>/pulls?state=closed&per_page
=100&page=1

https://api.github.com/repos/<username>/<project>/commits/<commit-hash>
The first one retrieves all the closed PRs and the second one retrieves more information

about the merged PR (i.e., the previous commit, and the changed files). To filter and organ-
ize our results we created a script that can be found online.1

Phase 2 After completing the list of the PRs that concerned refactoring (commits before and
after the merge), we can analyze the code. So, we automated the process by checking out a spe-
cific commit each time and starting the code analysis. As part of the analysis, we calculated TD
Principal and TD Interest. For TD Principal, we used SonarQube (Campbell and Papapetrou
2013), whereas for TD Interest we used FITTED (Ampatzoglou et al. 2015b). Finally, as RIP,
we assessed several maintainability-related parameters, by calculating 9 structural metrics for
the commit before the application of the refactoring. The selected metrics (see Table 2) have
been indicated by previous studies (Riaz et al. 2009a; Van Koten and Gray 2006; Zhou and Xu
2008) as the optimal maintainability predictors. To calculate the metric scores, we used Metrics
Calculator,2 a well-tested and stable tool for calculating quality metrics for Java code.

After recording the data, we have developed a dataset, with the following variables. The
complete dataset can, for replication purposes, be found online.3

[V1] TD Principal Before Refactoring
[V2] TD Principal After Refactoring
[V3] Impact of Refactoring on TD Principal (binary)
[V4] TD Interest Before Refactoring
[V5] TD Interest After Refactoring
[V6] Impact of Refactoring on TD Interest (binary)
[V7] Impact of Refactoring on TD (V3 AND V6)
[V8–V32] RIP aggregated by SUM, MEAN, and MAX (9 RIP * 3 aggregation functions)
Before Refactoring

4.4 Data Analysis

To answer the RQs posed in this study, a specialized modelling technique belonging to the
broad category of Mixed Effects Models (MEMs) was adopted. MEMs are a general class

1 https:// github. com/ nikos nikol aidis/ github- pr- labels- filec hanges
2 https:// github. com/ dimiz isis/ metri cs_ calcu lator
3 https:// users. uom. gr/ ~a. ampat zoglou/ aux_ mater ial/ refac toring_ preds. xlsx

25 Page 12 of 29 Empirical Software Engineering (2024) 29:25

https://github.com/nikosnikolaidis/github-pr-labels-filechanges
https://github.com/dimizisis/metrics_calculator
https://users.uom.gr/~a.ampatzoglou/aux_material/refactoring_preds.xlsx

1 3

of inferential statistics methodologies, that can be grasped as an extension of the traditional
Generalized Linear Models (GLMs) allowing the investigation of two types of effects,
called the fixed and the random effects, on a response variable via the building of a unified
single model. MEMs are useful in complicated experimental setups, in which the same units
of analysis are measured multiple times and / or they are naturally grouped into a hierarchi-
cal structure. These two types of experimental designs (repeated measures and hierarchical
or nested designs) pose significant barriers to the inferential statistics mechanisms, since in
both cases, the assumption of the independence of observations is evidently violated. As
the main objective of this study is the investigation of the effect of RIPs on the refactor-
ing impact, it is essential to take into consideration the nested structure of the experimen-
tal setup, since multiple units of analysis (in our case: RCs) are nested into the same case
(in our case: OSS projects), i.e., not being independent to each other. Hence, the two-level
inherent hierarchy of the collected data and the dependency of the units of analysis that were
grouped into nested factors (RC are nested within OSS Projects) were the main reasons for
taking advantage of the robust MEMs rather than other statistical hypothesis testing pro-
cedures, since they provide an advanced mechanism for the incorporation of the so-called
random effects and the modeling of the expected variance at different levels of hierarchy.

With respect to the response variable, the main research pillar focuses on the exami-
nation of the effect of RIPs on the refactoring impact on TD Principal and TD Interest.
For this reason, two dichotomous (or binary) variables, namely [V3] (Eq. 1) and [V6]
(Eq. 2) were defined, indicating whether refactoring activities were associated to a posi-
tive or non-positive impact on TD Principal and TD Interest, respectively. The basis for
the categorization of refactoring activities into positive and non-positive groups was the
quantification of TD Principal [V1, V2] and TD Interest [V4, V5] before and after the
application of the refactoring. At this point, we must emphasize that due to the qualita-
tive nature of the response variable (i.e., refactoring impact is a dichotomous variable with
two levels (positive/non-positive)), we based the inferential process on a specific type of

Fig. 3 Data Collection Flow

Page 13 of 29 25Empirical Software Engineering (2024) 29:25

1 3

MEMs, namely the Generalized Linear Mixed Models (GLMMs) enabling the examina-
tion of a binary response through the usage of a logit link function. The logit link function
g(∙) = log(p∕(1 − p)) is defined as the natural logarithm of the odds for success, where p is
the probability of a successful refactoring activity.

Regarding the fixed effects (independent variables) that may affect the outcome of
the response variable (refactoring impact), we have used 9 predefined quality metrics
(Table 2). Since the RIPs were evaluated on a lower level of hierarchy (class- or file-level)
compared to the response variable (RC-level), there is an imperative need for the aggrega-
tion of class-level metrics at the higher level (RC). For this reason, we investigated the
effect of three aggregation mechanisms (Mean, Sum and Max) on the response variable,
with a strong focus on providing directions to practitioners about the most appropriate one
for guiding their decision-making (RQ1). Next, we modeled the probability of an RC hav-
ing a positive impact on TD Principal (RQ2.1) and TD Interest (RQ2.2) as a function of the
aggregation function (see RQ1) and RIPs (fixed effects). Finally, for RQ2.3, we followed a
similar approach after the creation of a new response variable: [V7], labeling a given RC as
positive, if and only if, refactorings were successful in terms of decreasing both TD Prin-
cipal and TD Interest. In RQs, we controlled the variance decomposition, due to the nested
structure of the experimental setup, by the application of MEMs.

5 Results

In this section we present the results of this study, organized by research question. As
a first step, we investigated the distribution for the response and the independent vari-
ables to derive meaningful conclusions concerning the characteristics of the unknown

(1)V3 =

{

Positive, ifTDPrincipalBefore > TDPrincipalAfter
Non − positive, otherwise

(2)V6 =

{

Positive, ifTDInterestBefore > TDInterestAfter
Non − positive, otherwise

Table 2 Refactoring Impact Parameters

Metric Metric Suite Description

CC McCabe Complexity based on the number of decisions in the source code
WMC Chidamber & Kemerer Weighted methods per class (Number of methods)
DIT Chidamber & Kemerer Depth of inheritance tree
LCOM Chidamber & Kemerer Lack of cohesion in methods (LCOM1)
NOCC Chidamber & Kemerer Number of Class Children
CBO Chidamber & Kemerer Coupling due to Method invocation, inheritance, exception

handling, method parameters, field access is considered
MPC Li & Henry Message-passing coupling (Number of Distinct Methods Called)
SIZE1 Li & Henry Lines of code (LOC)
SIZE2 Li & Henry Number of properties

25 Page 14 of 29 Empirical Software Engineering (2024) 29:25

1 3

population. The contingency table (Table 3) displays the marginal and joint distri-
butions of the indicator variables [V3] and [V6] that classify RCs as Non-positive /
Positive in terms of TD Principal (columns) and TD Interest (rows), for a total set of
434 refactoring candidates. The nested rows can be interpreted as follows: (a) the first
nested row shows the absolute frequency of the observations in each intersection (e.g.,
269 corresponds to cases with non-positive effect on both Interest and Principal); (b)
the second nested row corresponds to the percentage on the aforementioned number
to the total of the row (e.g., 269 corresponds to 87% of the cases with non-positive
impact on Interest); and (c) the third nested row corresponds to the percentage of the
aforementioned number to the total of the column (e.g., 269 stands to 100% of the
cases with non-positive impact on Principal).

The marginal distributions display that in most cases, refactoring resulted in a Non-
positive impact on TD Principal (row: Total) and TD Interest (column: Total). More
importantly, the inspection of the joint distribution reveals that the refactoring activi-
ties that led to a Non-positive impact on TD Principal (N = 269), resulted in a Non-
positive impact on TD Interest for most of the cases (87.3%). Furthermore, the Positive
impact of refactoring on TD Principal is primarily associated to Positive impact on
TD Interest, as well. This result is considered intuitive in the sense that TD Principal
and TD Interest are not orthogonal concepts, but (similarly to economics) are related
(Ampatzoglou et al. 2020). Additionally, the fact that there are cases of RC with Posi-
tive impact on TD Principal, but not on TD Interest (∼ 13% of the sample) can be
attributed to the fact that some TD issues identified by SonarQube (rule-based identi-
fication) are unrelated to structural aspects, but rather on styling or conventions con-
formance (Falessi et al. 2017b). On the other hand, we can observe that all structural
improvements captured by the Positive impact on TD Interest are also reflected on the
Positive impact on TD Principal (0% of Positive impact on TD Interest and Non-pos-
itive on TD Principal), validating that SonarQube assesses also structural properties
through the rule violations (Falessi et al. 2017b).

Regarding the characteristics of the distributions for the set of RIPs, recorded
through metrics, in Table 4, we summarize their main central tendency and variation
measures after the application of each aggregation function (Mean, Sum, Max). The
descriptive statistics, along with the indicative examination of the histograms (Fig. 4)
computed by the Sum aggregation function, bring to light the heavily right-skewed dis-
tributions for the RIP scores, accompanied by the presence of extreme outlying points.

5.1 Aggregating the results from class to refactoring candidate level (RQ1)

In Table 5, we summarize the overall results derived from the fitting of each GLMM
that constitute the basis for further inferential purposes and decision-making related to
RQs. A first interesting remark concerns the perfect agreement within the experimental
findings conducted for the identification of the most appropriate aggregation function
for evaluating a composite metric from class-level to the RC-level in the case of TD
Principal. More specifically, a total number of 7 out of 9 structural metrics presented
a statistically significant effect (p < 0.05) on the response variable irrespective of the
applied aggregation function. In addition, there was noted a perfect agreement concern-
ing the results related to the identification of RC-level metrics that did not present a sta-
tistically significant effect on refactoring impact on TD Principal. In contrast, the above
general finding does not hold for the experiments regarding TD Interest, since, despite

Page 15 of 29 25Empirical Software Engineering (2024) 29:25

1 3

the reasonable high agreement among the three aggregation functions, inconsistent out-
comes for two specific cases are observed. In this regard, the utilization of the Mean
aggregator did not reveal a statistically significant effect on the response variable for
the total set of GLMMs, whereas the Sum and Max aggregation schemas designated the
significant effect of CC and DIT on the refactoring impact on TD Interest. Regarding the
uniform positive impact of the refactoring on TD Principal and Interest, we can observe
that MPC can be an important RIP using all aggregation functions, whereas CBO only
when using MAX, and SIZE1 (i.e., lines of code) only when using MAX and MEAN.

The use of different aggregation functions is an irrelevant factor if the quality assur-
ance team is interested only in the monitoring of TD Principal. When TD Interest
comes into consideration, MAX appears as the optimal choice in the sense that it is
easier to inspect and pin-point more RIPs.

5.2 Factors affecting the impact of refactoring on TD (RQ2)

To gain deeper insights into how the aggregated RIPs may affect the impact of RCs, we
performed an exploratory data analysis through visualization techniques. Due to space
limitations, we illustrate the boxplots and violin plots for the set of metrics aggregated by
the Sum function for the experimental setups of both TD Principal (Fig. 5) and TD Inter-
est (Fig. 6). The examination of the distributions for the case of TD Principal provides
empirical evidence that most of the RIPs can be considered as important, since they
affect the impact of the refactoring, deserving further investigation. For example, refac-
torings with a Positive impact were associated with higher CC, WMC, LCOM, MPC,
CBO, SIZE1 and SIZE2 scores compared to refactorings with a Non-positive impact.

In contrast, apart from a minority of cases (e.g., CC and DIT metrics), there are no obvi-
ous differences in the shapes of the distributions between the Non-positive and Positive
groups representing the impact of refactoring activities on TD Interest. Moreover, the nature
of the association between CC and the impact on TD Interest seem to be different compared
to TD Principal, since refactorings with a Positive impact on TD Interest present lower CC
values compared with refactorings with a Non-positive impact. A possible interpretation for
this is the fact that in TD Interest calculation, metrics scores do not participate as actual val-
ues, but as distances from the scores of neighboring classes. In that sense, a refactoring that
lowers the complexity of a class with high CC, might alter its ‘neighborhood”, comparing

Table 3 Joint Distribution of
Refactoring Impact on TD
Principal and TD Interest

Principal Total

Non-positive Positive

Interest Non-positive 269 39 308
87.3% 12.7% 100%
100% 23.6% 71%

Positive 0 126 126
0% 100% 100%
0% 76.4% 29%

Total 269 165 434
62% 38% 100%

25 Page 16 of 29 Empirical Software Engineering (2024) 29:25

1 3

Table 4 Descriptive Statistics of Aggregated RIP (Metrics Before Refactoring)

Aggregation Variable M SD Median Min Max

Mean CC 2.46 1.96 2.00 0.00 17.38
WMC 17.25 24.48 10.00 0.00 327.00
DIT 1.22 1.64 0.89 0.00 12.50
LCOM 636.15 2974.31 57.42 0.00 53,301.00
MPC 69.12 133.23 32.45 0.00 1940.00
NOCC 1.92 10.90 0.00 0.00 140.00
CBO 10.55 16.14 6.34 0.00 213.00
SIZE1 287.73 458.15 152.82 0.00 5922.00
SIZE2 26.65 35.23 16.00 0.00 424.00

Sum CC 34.66 89.11 6.49 0.00 777.80
WMC 215.22 541.21 42.00 0.00 5656.00
DIT 23.47 85.28 2.00 0.00 930.00
LCOM 6233.75 19,880.50 204.50 0.00 160,388.00
MPC 838.01 2223.97 124.50 0.00 24,955.00
NOCC 16.95 61.39 0.00 0.00 368.00
CBO 150.96 386.01 22.00 0.00 3764.00
SIZE1 3686.05 9191.08 651.50 0.00 86,481.00
SIZE2 323.69 805.88 69.00 0.00 8762.00

Max CC 4.95 4.74 3.00 0.00 32.00
WMC 49.50 77.97 19.50 0.00 444.00
DIT 3.24 4.77 1.00 0.00 32.00
LCOM 3957.70 12,891.83 136.00 0.00 87,735.00
MPC 184.42 354.60 68.00 0.00 2029.00
NOCC 13.64 58.02 0.00 0.00 346.00
CBO 25.55 40.77 11.00 0.00 232.00
SIZE1 905.26 1782.12 305.00 0.00 13,434.00
SIZE2 70.85 102.25 31.00 0.00 561.00

Fig. 4 Distributions of Refactoring Impact Parameters (Sum aggregation)

Page 17 of 29 25Empirical Software Engineering (2024) 29:25

1 3

them to classes with lower levels of CC. This phenomenon cannot heavily apply to low CC
classes, which cannot significantly deviate from their original score (and change neighbor-
hood). An indicator for this assumption is the fact that the value of CC can change signifi-
cantly by applying the ‘Replace Conditional with Polymorphism’, if the number of branches
of the conditional statements is high, leading to a drastic decrease in CC (from the number of
branches to zero)—being a sensitive metric (Arvanitou et al. 2016).

After the identification of the RIPs that presented a statistically significant effect on the
refactoring impact on TD Principal, we proceeded to the parameter estimation for this sub-
set of metrics. Table 6 summarizes the estimated parameters of GLMMs along with their
p− values for TD Principal. Concerning the interpretation of the estimated parameters of
GLMMs (i.e., row Estimate), the positive sign of an independent variable indicates that the
likelihood of a Positive impact of refactoring increases, as the value of the RIP increases. In
other words, RCs with higher values of RIP scores are more likely to guarantee a beneficial
refactoring application. Since Odds Ratio (OR) in GLMMs provide an intuitively appeal-
ing and straightforward interpretation regarding the effect of changes in a predictor on the
response variable, we computed the ORs of each RIP from the fitted models (Table 6, row
OR). In our case, an OR > 1 indicates that a positive impact of refactoring activities is more
likely to occur as the RIP score increases. Based on this simple interpretation rule, the total
set of seven RIPs identified as statistically significant predictors seem to positively affect
the outcome of a refactoring opportunity in TD Principal. As an example, an RC whose
aggregate CC metric via the Mean aggregation function is twice as much as the CC metric
of another RC, is associated with a change in the odds of a positive refactoring impact by
a factor of 1.48 (or 48% increase). This finding can be considered intuitive and suggests
that design hotspots with low quality (excessive metric scores) in terms of coupling, lack
of cohesion, complexity, and size are more probable to undergo a refactoring leading to a
positive effect on TD Principal.

A similar analysis process was followed for the closer examination of the subset of
aggregated RC-level RIPs that presented a significant impact on TD Interest, namely CC
and DIT (see Table 7). A first interesting remark concerns CC, which as explained through
the violin charts has a significant effect on the refactoring impact on both TD Principal and
TD Interest, but in an inverse direction. The interpretation for this controversy has already

Table 5 Results of GLMMs for
TD Principal and TD Interest

✘non-significant
✓significant at 0.05

Variable Principal Interest Principal &
Interest

Mean Sum Max Mean Sum Max Mean Sum Max

CC ✓ ✓ ✓ ✘ ✓ ✓ ✘ ✘ ✘
WMC ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
DIT ✘ ✘ ✘ ✘ ✓ ✓ ✘ ✘ ✘
LCOM ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘
MPC ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✓
NOCC ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘
CBO ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✓
SIZE1 ✓ ✓ ✓ ✘ ✘ ✘ ✓ ✘ ✓
SIZE2 ✓ ✓ ✓ ✘ ✘ ✘ ✘ ✘ ✘

25 Page 18 of 29 Empirical Software Engineering (2024) 29:25

1 3

been discussed before. Regarding, DIT the negative relation to TD Interest is intuitive, in
the sense that the lower the aggregate DIT values are, the lower the use of inheritance.
Given the fact that most of the Fowler refactorings (Fowler and Beck 1999) yield for the
introduction of inheritance to benefit from polymorphism, we can anticipate classes out-
side inheritance trees presenting the largest room for beneficial refactoring application. For
example, the estimated ORs (OR < 1) evaluated by the GLMMs fitted through the usage of
the Sum and Max aggregators designate that RCs whose aggregate DIT score is twice as
much as the DIT of another RC, have about 0.20 times less odds of undergoing a refactor-
ing having a Positive impact on TD Interest.

Fig. 5 Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Principal

Fig. 6 Distributions of Metrics (using Sum) for Refactorings with Non-positive / Positive Impact on Interest

Page 19 of 29 25Empirical Software Engineering (2024) 29:25

1 3

Technical Debt The last part of the experimental setup is related to the identification of RIPs
that affect the probability of an RC having a positive impact on both TD Principal and TD
Interest. The results are presented in Table 8. An interesting finding from this analysis is that
the two RIPs that have been identified as significant for TD Interest have not been qualified
as significant for the intersection of TD Principal and TD Interest. A possible explanation is
that high CC increases the chances for a Positive impact on TD Principal but decreases the
chances for a Positive impact on TD Interest. Out of the RIPs that have a significant effect on
the impact of the refactoring either on TD Principal or TD Interest, MPC, CBO, and SIZE1
appear to be able to affect the impact of the refactoring on both pillars of TD. For all cases
the Estimate is positive, which follows the rationale for the design hotspots.

RCs involving classes with excessive MPC, CBO, and/or SIZE1 values need to be pri-
oritized against the rest, since refactoring them can yield improvements in TD Principal
and Interest.

6 Implications to Practitioners and Researchers

Implications to Practitioners In terms of practitioners, based on findings of this study, we
propose a prioritization approach that relies on the “Software Guidebook and Debt Calcula-
tor” (Eisenberg 2012). We adopt the coloring schema that is proposed by Eisenberg (Eisen-
berg 2012) and we use as metrics the important RIPs. Therefore, we propose the development
of a 2D array: rows correspond to the RCs and as columns to the significant RIPs (MPC,
CBO, and SIZE1 aggregated with the MAX function). Then a 3-step approach takes place:

1 we sort the RCs by each metric, and we color the top-10%.
2.1 assign a RED color to RCs that are colored for all metrics.
2.2 assign an ORANGE color to RCs that are colored for 2 out of 3 metrics.
2.3 assign a YELLOW color to RCs that are colored for 1 out of 3 metrics.
3 we explore the RCs whose metric scores exceed by 2-times the mean score of sam-
ples, and for those we upgrade the coloring assignment (e.g., from ORANGE to RED).

Table 6 GLMMs Estimated Parameters for Significant RIPs (TD Principal)

Aggregation Model CC WMC LCOM MPC CBO SIZE1 SIZE2

Mean Estimate 0.392 0.195 0.092 0.194 0.198 0.205 0.194
SE 0.187 0.096 0.041 0.071 0.105 0.075 0.099
OR 1.479 1.215 1.096 1.214 1.219 1.227 1.214
p 0.036 0.041 0.024 0.006 0.049 0.006 0.049

Sum Estimate 0.122 0.115 0.077 0.119 0.102 0.125 0.118
SE 0.058 0.048 0.030 0.042 0.048 0.044 0.049
OR 1.129 1.121 1.080 1.126 1.107 1.133 1.125
p 0.037 0.017 0.011 0.005 0.033 0.004 0.016

Max Estimate 0.353 0.171 0.076 0.178 0.198 0.170 0.184
SE 0.123 0.068 0.032 0.058 0.077 0.058 0.072
OR 1.423 1.186 1.079 1.194 1.219 1.185 1.202
p 0.004 0.012 0.018 0.002 0.010 0.003 0.011

25 Page 20 of 29 Empirical Software Engineering (2024) 29:25

1 3

As an example, we demonstrate this process on the Apache Pinot project for a specific com-
mit.4 As refactoring candidates, we used five refactoring opportunities obtained through the
Smell Detector Merger (Ichtsis et al. 2022) tool that validates the existence of a smell based
on the intersection of multiple tools. By following the steps, we described above, we end
up with the coloured RCs shown in Table 9. So, given our proposed strategy the refactoring
that has the highest chance of achieving a greater impact is the Duplicate Code #1 (more
details about each step of this example can be found in Appendix A). We need to note that
this study can not answer all the questions that might be stated in the refactoring process.
For inctance: “How many refactorings of this list MUST I apply?”, since the answer to this
question would require additional information, such as the timeframe and the budget that
can be devoted to the refactoring session. However, given the available budget, the team can
opt to apply refactorings, picking from the top of the prioritized list.

Implications to Researchers From this study, we can extract two types of implications to
researchers: (a) from a methodological perspective; and (b) from an outcome perspective.
On the one hand (methodological implications), through this work we have validated that
treating software engineering problems as nested ones is both feasible and fitting, in the

Table 7 GLMMs Estimated
Parameters for Significant RIPs
(TD Interest)

Aggregation Model CC DIT

Sum Estimate -0.220 -0.231
SE 0.099 0.089
OR 0.8025 0.7937
p 0.026 0.009

Max Estimate -0.371 -0.415
SE 0.200 0.154
OR 0.6900 0.6603
p 0.046 0.007

Table 8 GLMMs Estimated
Parameters for Significant RIPs
(TD Principal AND TD Interest)

Aggregation Model MPC CBO SIZE1

Mean Estimate 0.192 – 0.194
SE 0.090 – 0.095
OR 1.212 – 1.214
p 0.033 – 0.042

Sum Estimate 0.109 – –
SE 0.053 – –
OR 1.115 – –
p 0.040 – –

Max Estimate 0.162 0.194 0.147
SE 0.073 0.094 0.074
OR 1.176 1.214 1.158
p 0.026 0.039 0.047

4 https:// github. com/ apache/ pinot/ commit/ 7d094 89c5b 93966 6c056 1b630 1c928 7ef34 ea239

Page 21 of 29 25Empirical Software Engineering (2024) 29:25

https://github.com/apache/pinot/commit/7d09489c5b939666c0561b6301c9287ef34ea239

1 3

sense that an important fraction of mining software repositories studies is extracting infor-
mation from multiple projects, and either report the results per project, or cumulatively
for the complete population. Although such approaches are not faulty, the experimental
setup of this work explicitly considers the nesting of units of analysis within different pro-
jects and does not “hide” the fact that different projects can be a confounding factor. In
that sense, we champion the experimental setup relying on nested statistical analysis, such
as MEMs. The second methodological implication of this work is related to the use of
Pull Requests to extract information from grouped commits that serve a common goal. We
believe that such a data collection approach can be beneficial for various study setups that
currently work on the commit level, which, however, loses the context of the change that
is applied during the commit. The main benefits of working with PRs instead of commits
are: (a) a PR has a specific purpose / goal that can be studied by researchers, and this goals
is not the subjective assessment of the research team, but a characterization of the develop-
ment team based on their expertise; and (b) the fact that since a PR is a change chunk larger
in size than the commit, it has the potential to be related to more meaningful and impactful
changes, which however can still be treated as a unit, since they serve a common purpose.

On the other hand (outcomes-based implications), our study has validated related works
that support that a refactoring is not always having a Positive impact on quality (Alshayeb
2009; Nikolaidis et al. 2022), confirming the motivation of investigating RIPs. The find-
ings on the importance of specific RIPs on TD Principal and TD Interest, opens future
work directions in the sense that following up on this explanatory analysis, prediction and

Table 9 Example for Process

RC MPC CBO SIZE1

Duplicate Code #1

BaseDistinctAggregateAggregationFunction.java

DistinctCountSmartHLLAggregationFunction.java

35 8 845

Duplicate Code #2

TextContainsFilterOperator.java

TextMatchFilterOperator.java

8 10 37

God Class

DataBlockBuilder.java

15 8 487

Long Method

InTransformFunction.java

15 7 207

Duplicate Code #3

MinAggregationFunction.java

14 5 240

We sort the RCs by each metric, and we color the top-10%, 2.1 assign a RED color to RCs that are colored
for all metrics, 2.2 assign an ORANGE color to RCs that are colored for 2 out of 3 metrics, 2.3 assign a
YELLOW color to RCs that are colored for 1 out of 3 metrics. We explore the RCs whose metric scores
exceed by 2-times the mean score of samples, and for those we upgrade the coloring assignment (e.g., from
ORANGE to RED)

25 Page 22 of 29 Empirical Software Engineering (2024) 29:25

1 3

classification models can be built, so that refactoring suggestion tools can prioritize the
extracted opportunities. In this direction, we plan to further work on the current dataset
to train and validate such models, and then integrate them in the Smell Detector Merger
(Ichtsis et al. 2022) to equip it with prioritization functionality. Finally, we aim at an empir-
ical validation on the usability and effectiveness of the proposed approach and tool in an
industrial setting. Such a study would be more relevant if it is conducted as a human study,
in which we would validate that the prioritization offered by the tool would match the “gut
feeling” of experienced software architects and quality managers.

7 Threats to Validity

This section discusses potential threats to our study’s validity, as defined in the guidelines
of Runeson et al. (Runeson et al. 2012).

Construct Validity In any study, the measured phenomena might differ from the actual
ones, leading to construct validity threats. For the current study involving the notions
of TD Principal and Interest threats arise from the tooling employed to assess them. For
measuring principal, we relied on SonarQube which is one of the most frequently used
tools (Avgeriou et al. 2021; Alves et al. 2016a; Martini et al. 2018). Yli-Huumo et al. (Yli-
Huumo et al. 2016) analyzed the practices of 8 development teams and identified Sonar-
Qube as the most used tool for TDM. However, despite its wide acceptance, it focuses only
on code TD ignoring other manifestations of TD such as debt in requirements, architecture,
build processes and tests. We should note that while SonarQube estimates can be config-
ured by modifying the remediation time for individual TD issues, most research studies
have not performed any such configuration (Schnappinger et al. 2019).

The measurement of TD Interest is far more challenging than the quantification of Princi-
pal, primarily because the assessment of Interest requires the anticipation of future modifica-
tions as well as the knowledge of the maintenance effort for an optimal version of the ana-
lyzed system (i.e. one that is debt-free). Both future maintenance activities and the notion of
an ideal state of software are unknown. Therefore, TD Interest can only be assessed through
proxies and by making certain assumptions. In this study, we measured TD Interest through
the use of selected software metrics and by assessing the distance of any system class from
its best peer. The selection of metrics was based on empirical evidence in the literature indi-
cating that a combination of metrics can serve as a reliable maintainability predictor (Riaz
et al. 2009b). The model for synthesizing the values in a unified value for TD Interest relies
on solid mathematical calculations, given the assumption that maintenance effort is inversely
proportional (linearly) to maintainability. This assumption, although it cannot be validated
without a controlled experiment, relies on previous studies (Ampatzoglou et al. 2018; Ampat-
zoglou et al. 2016) and is considered as intuitive by the authors of this paper.

Furthermore, PRs labeled as ‘Refactorings’ have been used as a mechanism for retriev-
ing documented refactorings in the history of a software project. We acknowledge that this
approach might have missed undocumented individual refactoring applications or PRs where
refactoring activities are designated using a different label. Nevertheless, labeled PRs constitute
a reliable source for investigating the impact of systematic and intentional refactoring activities.

External Validity The external validity of the study may be threatened by the possibility
that different projects using different programming languages or build systems may yield

Page 23 of 29 25Empirical Software Engineering (2024) 29:25

1 3

different observations. However, we argue that the chosen projects, due to their size and
complexity, provide a realistic sample of non-trivial, real-world systems. Furthermore,
while the Apache Foundation is a credible organization with diverse projects, their prac-
tices may not fully represent those of other large projects. To address this, one-third of
the analyzed projects comprise non-trivial systems from outside the Apache Foundation.
Lastly, it should be noted that the study’s results are not applicable to non-object-oriented
systems as properties such as inheritance, coupling, and cohesion, which are used to assess
TD, are only applicable to OO software modules.

Reliability To mitigate potential threats to reliability, our study involved three research-
ers in data collection and analysis. Moreover, samples of the analysis output from differ-
ent steps were manually inspected by two additional researchers for irregularities and for
consistency with the proposed study design. Our results showed no irregularities, and all
output from different steps was consistent with the proposed study design. Finally, we
described the procedures of the data collection and analysis in as much detail as possible
and the used tools are publicly available.

8 Conclusions

The impact of refactoring activities in software projects can be positive, neutral, or negative,
depending on the context in which the refactoring is applied. In this study, we investigated
the impact of refactoring activities on TD accumulation, focusing on the role of aggregated
metrics at the ‘refactoring candidate’ level as predictors of the refactoring impact. Through
descriptive and exploratory analytics, we found that in most cases, an improvement of TD
Principal through refactoring is usually associated with an improvement of TD Interest as
well. Our exploratory data analysis through visualization techniques revealed that most of
the aggregated RC-level metrics can be considered as important predictors that may affect
the outcome of a refactoring activity, regardless of the aggregation function for TD Prin-
cipal, whereas the MAX function works better for TD Interest assessment (RQ1). Further-
more, we identified a subset of aggregated RC-level metrics that presented a statistically
significant effect on the refactoring impact on TD Principal and TD Interest. By focusing on
metrics, the results suggested that RCs involving classes with excessive MPC, CBO, and/
or SIZE1 values need to be prioritized against the rest, since refactoring them can yield
improvements in TD Principal and Interest (RQ2). Overall, the results of our study highlight
the importance of considering aggregated RC-level metrics when evaluating the impact of
refactoring activities on TD accumulation. Software developers and project managers can
use these findings to make more informed decisions regarding refactoring activities and pri-
oritize refactoring efforts based on the most relevant aggregated RC-level metrics.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10664- 023- 10412-w.

Data Availability The dataset generated and analyzed during the current study is available online.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

25 Page 24 of 29 Empirical Software Engineering (2024) 29:25

https://doi.org/10.1007/s10664-023-10412-w
https://doi.org/10.1007/s10664-023-10412-w

1 3

References

AlOmar EA, Mkaouer MW, Ouni A, Kessentini M (2019) On the Impact of Refactoring on the Relation-
ship between Quality Attributes and Design Metrics, 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), Porto de Galinhas, Brazil, pp. 1-11

Alshayeb M (2009) Empirical investigation of refactoring effect on software quality. Inf Softw Technol
51(9):1319–1326

Alves NSR, Mendes TS, de Mendonça MG, Spínola RO, Shull F, Seaman C (2016) Identification and man-
agement of technical debt: A systematic mapping study. Inf Softw Technol 70:100–121 (Elsevier)

Alves NSR, Mendes TS, Mendonca MGd, Spınola RO, Shull F, Seaman C (2016) Identification and man-
agement of technical debt: A systematic mapping study. Inf Softw Technol 70:100–121

Ampatzoglou A, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2015a) The financial aspect of managing
technical debt: A systematic literature review. Inf Softw Technol. 64:52–73

Ampatzoglou A, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A (2015b) “Establishing a framework for
managing interest in technical debt” in 5th International Symposium on Business Modeling and Soft-
ware Design (BMSD), Italy

Ampatzoglou AA, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A (2016) A Financial Approach for Man-
aging Interest in Technical Debt, 2015 International Symposium on Business Modeling and Software
Design (BMSD). Springer

Ampatzoglou, Michailidis A, Sarikyriakidis C, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2018) A
framework for managing interest in technical debt: an industrial validation, in Proceedings of the 2018
International Conference on Technical Debt, pp. 115–124

Ampatzoglou A, Tsintzira AA, Arvanitou EM, Chatzigeorgiou A, Stamelos I, Moga A, Heb R, Matei O,
Tsiridis N, Kehagias D (2019) Applying the Single Responsibility Principle in Industry: Modularity
Benefits and Trade-offs, 23rd International Conference on the Evaluation and Assessment in Software
Engineering (EASE’ 19), ACM, Copenhagen, Denmark, 14–17

Ampatzoglou A, Mittas N, Tsintzira AA, Ampatzoglou A, Arvanitou EM, Chatzigeorgiou A, Avgeriou P,
Angelis L (2020) Exploring the relation between technical debt principal and interest: an empirical
approach. Inform Software Technol 128:106391. https:// doi. org/ 10. 1016/j. infsof. 2020. 106391

Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2016) Software Metrics Fluctuation: A
Prop-erty for Assisting the Metric Selection Process. Inf Softw Technol 72(4):110–124 (Elsevier)

Arvanitou EM, Argyriadou P, Koutsou G, Ampatzoglou A, Chatzigeorgiou A. "Quantifying TD Interest:
Are we Getting Closer, or Not Even That?", 48th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA’ 22), IEEE Computer Society, August 2020, Gran Canaria, Spain

Avgeriou P, Taibi D, Ampatzoglou A, Arcelli Fontana F, Besker T, Chatzigeorgiou A, Lenarduzzi V, Mar-
tini A, Moschou N, Pigazzini I, Saarimäki N, Sas D, Soares de Toledo S, Tsintzira A (2021) An over-
view and comparison of technical debt measurement tools. Journals and Magazines: IEEE Software
38(3):61–71. https:// doi. org/ 10. 1109/ MS. 2020. 30249 58

Calefato F, Lanubile F, Novielli N (2017) A Preliminary Analysis on the Effects of Propensity to Trust
in Distributed Software Development, 2017 IEEE 12th International Conference on Global Software
Engineering (ICGSE), Buenos Aires, Argentina, pp. 56–60

Campbell GA, Papapetrou PP (2013) SonarQube in action. Manning Publications. https:// www. amazon.
com/ Sonar Qube- Action- G- Ann- Campb ell/ dp/ 16172 90955

Chaparro O, Bavota G, Marcus A, Penta MD (2014) On the Impact of Refactoring Operations on Code
Quality Metrics, 2014 IEEE International Conference on Software Maintenance and Evolution, Victo-
ria, BC, Canada, pp. 456–460

Charalampidou S, Ampatzoglou A, Chatzigeorgiou A, Gkortzis A, Avgeriou P (2016) Identifying extract
method refactoring opportunities based on functional relevance. IEEE Trans Software Eng 43(10):954–974

Chatzigeorgiou, Ampatzoglou A, Ampatzoglou A, Amanatidis T (2015) Estimating the breaking point
for technical debt, 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD),
Bremen, Germany, pp. 53-56

Digkas G, Chatzigeorgiou A, Ampatzoglou A, Avgeriou P (2022) Can Clean New Code Reduce Techni-
cal Debt Density? IEEE Computer Society, Transactions on Software Engineering

Du Bois B and Mens T (2003) Describing the impact of refactoring on internal program quality, in Inter-
national Workshop on Evolution of Large-scale Industrial Software Applications, pp. 37–48

Eisenberg RJ (2012) A threshold-based approach to technical debt. SIGSOFT Softw Eng Notes 37:1–6
Falessi D, Rusfso B, Mullen K (2017) What if i had no smells? in 2017 ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement (ESEM). IEEE, pp. 78–84
Falessi D, Russo B, Mullen K (2017) What if I Had No Smells? 2017 ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM), Toronto, ON, Canada, 2017, pp. 78-84

Page 25 of 29 25Empirical Software Engineering (2024) 29:25

https://doi.org/10.1016/j.infsof.2020.106391
https://doi.org/10.1109/MS.2020.3024958
https://www.amazon.com/SonarQube-Action-G-Ann-Campbell/dp/1617290955
https://www.amazon.com/SonarQube-Action-G-Ann-Campbell/dp/1617290955

1 3

Fowler M, Beck K (1999) “Refactoring: improving the design of existing code”, ser. Addison-Wesley, In
Addison Wesley object technology series

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: Improving the Design of Existing
Code, Addison-Wesley Professional, 1st Edition

Ge X, DuBose QL, Murphy-Hill E (2012) Reconciling manual and automatic refactoring," 2012 34th
International Conference on Software Engineering (ICSE), Zurich, Switzerland, pp. 211–221

Gousios G, Zaidman A, Storey M-A and Deursen AV (2015) Work Practices and Challenges in Pull-
Based Development: The Integrator’s Perspective, 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, Florence, Italy, pp. 358–368

Hastings T and Walcott KR (2022) Continuous Verification of Open-Source Components in a World of
Weak Links, 2022 IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Charlotte, NC, USA, pp. 201-207

Higo Y, Matsumoto Y, Kusumoto S, Inoue K (2008) Refactoring Effect Estimation Based on Complexity Metrics,
19th Australian Conference on Software Engineering (aswec 2008), Perth, WA, Australia, pp. 219–228

Ichtsis A, Mittas N, Ampatzoglou A, Chatzigeorgiou A (2022) Merging Smell Detec-tors: Evidence on
the Agreement of Multiple Tools, 2022 IEEE/ACM International Conference on Technical Debt
(TechDebt), Pittsburgh, PA, USA, pp. 61–65

Ivers J, Nord RL, Ozkaya I, Seifried C, Timperley CS, Kessentini M (2022) Industry experiences with
large-scale refactoring, 30th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, USA, Nov. pp. 1544–1554

Karmakar S, Codabux Z, Vidoni M (2022) An Experience Report on Technical Debt in Pull Requests:
Challenges and Lessons Learned, 16th ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, pp. 295–300

Kataoka Y, Imai T, Andou H, Fukaya T (2002) A quantitative evaluation of maintainability enhancement
by refactoring, International Conference on Software Maintenance, pp. 576–585

Kataoka Y, Imai T, Andou H, Fukaya T (2002) A quantitative evaluation of maintainability enhancement
by refactoring, International Conference on Software Maintenance, 2002. Proceedings., Montreal,
QC, Canada, pp. 576–585

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section]. IEEE Softw 13(1):12–21
Kurbatova Z, Veselov I, Golubev Y, Bryksin T (2020) June. Recommendation of move method refactor-

ing using path-based representation of code. In Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops (pp. 315–322)

Lefever J, Cai Y, Cervantes H, Kazman R, Fang H (2021) On the lack of consensus among technical debt
detection tools. International Conference on Software Engineering (SEIP); 121–130

Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997)Metrics and laws of software evo-
lution-the nineties view. In: Proceedings fourth international software metrics symposium. IEEE,
Albuquerque, NM, USA, pp 20–32. https:// doi. org/ 10. 1109/ METRIC. 1997. 637156

Lenarduzzi V, Nikkola V, Saarimäki N, Taibi D (2021) Does code quality affect pull request acceptance?
An empirical study. J Syst Softw 171:110806

Letouzey J-L (2012) The sqale method for evaluating technical debt, in 2012 Third International Work-
shop on Managing Technical Debt (MTD). IEEE, pp. 31–36

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical debt and its management. J
Syst Softw 101:193–220

Martini A, Besker T, Bosch J (2018) Technical debt tracking: Current state of practice: A survey and
multiple case study in 15 large organizations. Sci Comput Program 163:42–61

Mavridis A, Ampatzoglou A, Stamelos I, Sfetsos P, Deligiannis I (2012) Selecting refactorings: an
option based approach. In 2012 Eighth International Conference on the Quality of Information and
Communications Technology (pp. 272–277). IEEE.

Meananeatra P, Rongviriyapanish S, Apiwattanapong T (2011) Using software metrics to select refactoring
for long method bad smell. 8th Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI) Association of Thailand-Conference 2011 (pp. 492–495). IEEE

Moreira Soares D, de Lima Júnior ML, Murta L, Plastino A (2021) What factors influence the lifetime of
pull requests. Softw Pract Exp 51(6):1173–1193

Moser R, Abrahamsson P, Pedrycz W, Sillitti A, Succi G (2008) A Case Study on the Impact of Refac-
toring on Quality and Productivity in an Agile Team, in Balancing Agility and Formalism in Soft-
ware Engineering, Meyer B, Nawrocki JR, Walter B, Eds., in Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, pp. 252–266

Murphy-Hill E, Parnin C, Black AP (2011) How we refactor, and how we know it. IEEE Trans Software Eng 38(1):5–18
Murphy-Hill E, Black AP (2008) Breaking the barriers to successful refactoring: observations and tools for

extract method. In Proceedings of the 30th international conference on Software engineering (pp. 421–430)

25 Page 26 of 29 Empirical Software Engineering (2024) 29:25

https://doi.org/10.1109/METRIC.1997.637156

1 3

Nikolaidis N, Zisis D, Ampatzoglou A, Mittas N, Chatzigeorgiou A (2022) Using Machine Learning
to Guide the Application of Software Refactorings: A Preliminary Exploration, 6th International
Workshop on Machine Learning Techniques for Software Quality Evolution (Maltesque ’22), ACM

Nikolaidis N, Ampatzoglou A, Chatzigeorgiou A, Mittas N, Konstantinidis E, Bamidis P (2023) Explor-
ing the Effect of Various Maintenance Activities on the Accumulation of TD Principal, 6th Interna-
tional Conference on Technical Debt (TechDEBT’ 23), Melbourne, Australia

Nikolaidis N, Mittas N, Ampatzoglou A, Arvanitou EM, Chatzigeorgiou A (2023) Assessing TD Macro-
Management: A Nested Modelling Statistical Approach. Trans Softw Eng

Riaz M, Mendes E, Tempero E (2009b) “A systematic review of software maintainability prediction and
metrics”, 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE,
Florida, USA, pp 367–377

Riaz M, Mendes E, Tempero E (2009) A systematic review of software maintainability prediction and
metrics, 2009 3rd International Symposium on Empirical Software Engineering and Measurement,
Lake Buena Vista, FL, USA, pp. 367-377

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines
and examples. John Wiley & Sons. https:// doi. org/ 10. 1002/ 97811 18181 034

Schnappinger M, Osman MH, Pretschner A, Fietzke A (2019) Learning a classifier for prediction of
maintainability based on static analysis tools Proceedings of the 27th International Conference on
Program Comprehension, IEEE Press, pp. 243–248

Sharma T, Mishra P, Tiwari R (2016) “Designite: a software design quality assessment tool”, 1st Inter-
national Workshop on Bringing Architectural Design Thinking into Developers’ Daily Activities.
NY, USA, May, New York, pp 1–4

Silva D and Valente MT (2017) Refdiff: detecting refactorings in version histories. 14th International
Conference on Mining Software Repositories, pages 269–279. IEEE Press

Silva MCO, Valente MT, Terra R (2016) Does technical debt lead to the rejection of pull requests?,
ArXiv Prepr. ArXiv160401450

Smiari P, Bibi S, Ampatzoglou A, Arvanitou E-M (2022) Refactoring embedded software: A study in
healthcare domain. Inf Softw Technol 143:106760

Soetens QD, Demeyer S (2010) Studying the Effect of Refactorings: A Complexity Metrics Perspective,
2010 Seventh International Conference on the Quality of Information and Communications Technol-
ogy, Porto, Portugal, pp. 313–318

Stroggylos K, Spinellis D (2007) “Refactoring–does it improve software quality?” in Fifth International
Workshop on Software Quality (WoSQ’07: ICSE Workshops. IEEE 2007:10–10

Stroulia E and Kapoor R (2001) Metrics of refactoring-based development: An experience report. In
OOIS 2001, pages 113–122. Springer

Tsantalis N, Ketkar A, Dig D (2022) RefactoringMiner 2.0. IEEE Transact Software Eng 48(3):930–950.
https:// doi. org/ 10. 1109/ TSE. 2020. 30077 22

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: Identification and Removal of Type-
Checking Bad Smells, 2008 12th European Conference on Software Maintenance and Reengineer-
ing, Athens, Greece, pp. 329–331

Tsintzira A-A, Ampatzoglou A, Matei O, Ampatzoglou A, Chatzigeorgiou A, Heb R (2019) Technical debt
quantification through metrics: an industrial validation, in 15th China-Europe International Sympo-
sium on software engineering education

Van Koten C, Gray AR (2006) An Application of Bayesian Network for Predicting Object-Oriented Soft-
ware Maintainability. Inform Software Tech 48(1):59–67

Wilking D, Kahn UF, Kowalewski S (2007) An empirical evaluation of refactoring. e-Informatica 1(1):27–42
Yli-Huumo J, Maglyas A, Smolander K (2016) How do software development teams manage technical

debt?–An empirical study. J Syst Softw 120:195–218 (Elsevier)
Zhang X, Yu Y, Gousios G, Rastogi A (2023) Pull request decisions explained: an empirical overview. IEEE

Transact Software Eng 49(2):849–871. https:// doi. org/ 10. 1109/ TSE. 2022. 31650 56
Zhou Y, Xu B (2008) Predicting the maintainability of open-source software using design metrics. Wuhan

Univ J Nat Sci 13(1):14–20
Zou W, Xuan J, Xie X, Chen Z, Xu B (2019) How does code style inconsistency affect pull request integra-

tion? an exploratory study on 117 github projects, Empir Softw Eng. 24(6)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

Page 27 of 29 25Empirical Software Engineering (2024) 29:25

https://doi.org/10.1002/9781118181034
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2022.3165056

1 3

Nikolaos Nikolaidis is an PhD student at the Department of Applied
Informatics in the University of Macedonia, Greece. He received a
BSc in Applied Informatics from the same university in 2018. He is
currently employed as a research associate in the Software Engineer-
ing group of University of Macedonia, working on multiple research
projects. His research interests are technical debt management, min-
ing software repositories, and software quality assurance.

Dr. Nikolaos Mittas Dr. Nikolaos Mittas is an Associate Professor in
the Department of Chemistry at the International Hellenic University
(IHU), Greece. He received a BSc degree in Mathematics from the
University of Crete and MSc and PhD degrees in Informatics from the
Aristotle University of Thessaloniki (AUTH), Greece. His current
research interests are focused on the application of statistics and data
analytics in the area of software engineering, project management,
and competence management.

Dr. Apostolos Ampatzoglou is an Associate Professor in the Depart-
ment of Applied Informatics in University of Macedonia (Greece),
where he carries out research and teaching in the area of software
engineering. Before joining University of Macedonia, he was an
Assistant Professor in the University of Groningen (Netherlands). He
holds a BSc on Information Systems (2003), an MSc on Computer
Systems (2005) and a PhD in Software Engineering by the Aristotle
University of Thessaloniki (2012). He has published more than 100
articles in international journals and conferences, and is/was involved
in over 15 R&D ICT projects, with funding from national and interna-
tional organizations. His current research interests are focused on
technical debt management, software maintainability, reverse engi-
neering software quality management, open-source software, and
software design.

25 Page 28 of 29 Empirical Software Engineering (2024) 29:25

1 3

Dr. Daniel Feitosa is an Assistant Professor in the University of Gro-
ningen (Netherlands). He holds a B.S. of Computer Science in the
Institute of Mathematics and Computational Sciences of the Univer-
sity of São Paulo, with specialization in Software Engineering. He has
completed his M.Sc. in the Institute of Mathematics and Computa-
tional Sciences of the University of São Paulo, within the Software
Engineering group (LabES) and Mobile Robotics group (LRM).
Finally, Ph.D. in the Department of Computer Science of the Univer-
sity of Groningen, within the Software Engineering and Architecture
group (SEARCH). Doctoral dissertation: Applying Patterns in
Embedded Systems Design for Managing Quality Attributes and their
Trade-offs. He has published numerous articles in international jour-
nals and conferences, and is/was involved in various research projects,
with funding from national and international organizations. His cur-
rent research interests are focused on technical debt management,
software maintainability, reverse engineering software quality man-
agement, open-source software, and software design.

Dr. Alexander Chatzigeorgiou is a Professor of Software Engineering
in the Department of Applied Informatics and Vice Rector of Extro-
version and International Relations at the University of Macedonia,
Thessaloniki, Greece. He received the Diploma in Electrical Engi-
neering and the PhD degree in Computer Science from the Aristotle
University of Thessaloniki, Greece, in 1996 and 2000, respectively.
From 1997 to 1999 he was with Intracom S.A., Greece, as a software
designer. His research interests include object-oriented design, soft-
ware maintenance, technical debt and evolution analysis. He has pub-
lished more than 150 articles in international journals and confer-
ences and participated in a number of European and national research
programs. He is a Senior Associate Editor of the Journal of Systems
and Software and an Associate Editor of the ACM Transactions on
Software Engineering and Methodology.

Page 29 of 29 25Empirical Software Engineering (2024) 29:25

	A metrics-based approach for selecting among various refactoring candidates
	Abstract
	1 Introduction
	2 Related Work
	2.1 Refactoring and Software Quality
	2.2 Pull Requests and Software Quality
	2.3 Estimating the Impact of Refactorings

	3 Background Information
	3.1 Software Quality
	3.2 Code (Bad) Smells
	3.3 Technical Debt Quantification

	4 Case Study Design
	4.1 Objectives & Research Questions
	4.2 Case Selection and Units of Analysis
	4.3 Data Collection
	4.4 Data Analysis

	5 Results
	5.1 Aggregating the results from class to refactoring candidate level (RQ1)
	5.2 Factors affecting the impact of refactoring on TD (RQ2)

	6 Implications to Practitioners and Researchers
	7 Threats to Validity
	8 Conclusions
	Anchor 23
	References

