
Empirical Software Engineering (2023) 28:128
https://doi.org/10.1007/s10664-023-10381-0

Developers talking about code quality

Jürgen Börstler1 · Kwabena E. Bennin2 · Sara Hooshangi3 · Johan Jeuring4 ·
Hieke Keuning4 · Carsten Kleiner5 · Bonnie MacKellar6 · Rodrigo Duran7 ·
Harald Störrle8 · Daniel Toll9 · Jelle van Assema10

Accepted: 9 August 2023 / Published online: 21 September 2023
© The Author(s) 2023

Abstract
There are many aspects of code quality, some of which are difficult to capture or to measure.
Despite the importance of software quality, there is a lack of commonly accepted measures
or indicators for code quality that can be linked to quality attributes. We investigate soft-
ware developers’ perceptions of source code quality and the practices they recommend to
achieve these qualities. We analyze data from semi-structured interviews with 34 profes-
sional software developers, programming teachers and students from Europe and the U.S.
For the interviews, participants were asked to bring code examples to exemplify what they
consider good and bad code, respectively. Readability and structure were used most com-
monly as defining properties for quality code. Together with documentation, they were also
suggested as the most common target properties for quality improvement. When discussing
actual code, developers focused on structure, comprehensibility and readability as quality
properties. When analyzing relationships between properties, the most commonly talked
about target property was comprehensibility. Documentation, structure and readability were
named most frequently as source properties to achieve good comprehensibility. Some of the
most important source code properties contributing to code quality as perceived by devel-
opers lack clear definitions and are difficult to capture. More research is therefore necessary
to measure the structure, comprehensibility and readability of code in ways that matter for
developers and to relate these measures of code structure, comprehensibility and readability
to common software quality attributes.

Keywords Code quality · Semi-structured interviews · Software development · Source code
properties · Quality perception

Communicated by: Venera Arnaoudova

B Jürgen Börstler
jub@bth.se

Extended author information available on the last page of the article

789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10381-0&domain=pdf
http://orcid.org/0000-0003-0639-4234

128 Page 2 of 31 Empirical Software Engineering (2023) 28:128

1 Introduction

Code quality is a central factor in software development and there is an abundance of advice on
how to write “good code,” e.g. (Green and Ledgard 2011; Martin 2008; Sutter and Alexan-
drescu 2004; Vermeulen et al. 2000). Despite a large body of work on software quality
measurement (Fenton and Bieman 2014; Nuñez-Varela et al. 2017), there is little conclusive
evidence on the relationship between software quality measurements and common soft-
ware quality attributes (Jabangwe et al. 2015; Jørgensen 1999). Furthermore, many common
software measures loose their predictive power when controlled for program size (Gil and
Lalouche 2017; Tahir et al. 2018) and do not capture quality improvements as perceived by
software developers (Al Dallal and Abdin 2018; Pantiuchina et al. 2018).

Research also shows that quality issues at the code level increase the cognitive load of
developers (Fakhoury et al. 2018; Müller and Fritz 2016), which affects their performance
negatively (Ko and Myers 2005; Sweller et al. 2011). Since a considerable amount of effort
is dedicated to software quality during its development (Menzies et al. 2006), a better under-
standing of developers’ perceptions of software quality on code level might help to utilize
this effort more effectively.

In this study, we investigate how software developers perceive code quality, which quality
aspects they perceive as more or less important and what they recommend to achieve high
code quality. The study uses interview data from 34 professional software developers, pro-
gramming teachers and students with an average of 5.8 years of experience as professional
software developer, which we categorized into three groups based on their number of years
of experience as professional programmers. The interviews were carried out in the context
of an earlier study (Börstler et al. 2018), but the majority of the data used here has neither
been coded nor analyzed before (see Section 3.2 for details).

This study makes the following contributions.

1. A qualitative study providing insights on aspects of code quality that are considered
important by developers.

2. A study design package to facilitate the design and execution of similar studies.
3. An anonymized data-set for further analysis.

The organisation of the paper is as follows. Section 2 discusses related work on defining
software quality. The background and experimental methodology are presented in Section 3.
Empirical results are presented and analyzed in Section 4.A discussion of the findings follows
in Section 5. Section 6 summarizes and concludes the paper. Information about the study
design package and the anonymized data-set can be found in Appendix B.

2 RelatedWork

Over the years, several software qualitymodels and standards have been developed to provide
frameworks for defining and evaluating software quality (Nistala et al. 2019; Sadeghzadeh
Hemayati and Rashidi 2018). The most recent ones are ISO/IEC 25010 (ISO/IEC 2011) and
ISO 5055:2021 (Curtis et al. 2022). Whereas ISO/IEC 25010 defines quality in terms of
eight quality characteristics, e.g., maintainability, ISO/IEC 5055 defines quality in terms of
“weaknesses” that threaten the software’s reliability, security, performance efficiency, and
maintainability. Although ISO/IEC 25010 (and its predecessors) provide definitions for the
quality characteristics (and their sub-characteristics), Bakota et al. (2011) argue that the qual-
ity models do not deal with ambiguity which makes it hard to measure these characteristics.

123

Empirical Software Engineering (2023) 28 :128 Page 3 of 31 128

A systematic mapping study on source code metrics (Nuñez-Varela et al. 2017) covering
2010–2015 identified 226 studies using more than 300 source code metrics in total. Although
many of those metrics have been around for a long time, there still is little empirical evidence
that connects source code metrics to software quality attributes. Pantiuchina et al. (2018),
for example, mined commits with messages that clearly showed that the developers aimed to
improve the cohesion, coupling, complexity and readability of the underlying source code.
Their analysis shows that most of the considered code qualitymetrics were not able to capture
the quality improvements as perceived by the developers.

There is evidence, though, showing that there is a relationship between low level code fea-
tures and code quality. Butler et al. (2010), for example, showed that flawed identifier names
are associated with low code quality. Recent research in program comprehension, moreover,
shows that misleading names are more problematic than meaningless names (Avidan and
Feitelson 2017), but that specific one-letter variables still can convey meaning (Beniamini
et al. 2017). It has also been shown that structural differences at code-level affect program
understanding, for example, that for-loops are significantly harder to understand than if-
statements (Ajami et al. 2017) and that “maintaining undisciplined annotations is more time
consuming and error prone” than maintaining disciplined ones (Malaquias et al. 2017).

Several studies have focused on how refactoring improves code quality (Alshayeb 2009;
Chatzigeorgiou and Manakos 2010; Peters and Zaidman 2012; Kim et al. 2014; Tufano et al.
2017; Al Dallal and Abdin 2018). Alshayeb (2009) quantitatively assessed the effect of
refactoring activities on the external quality attributes adaptability, maintainability, under-
standability, reusability and testability and concludes that refactoring does not necessarily
improve these quality attributes. Chatzigeorgiou and Manakos (2010); Peters and Zaidman
(2012); Kim et al. (2014) examine historical software data to evaluate the lifespan and evo-
lution of code smells and the usage of refactoring to remove these code smells. A large-scale
study comprising a survey, interviews and quantitative analysis of historical versions ofWin-
dows 7 (Kim et al. 2014) revealed that only 5% of the studied modules were improved (low
inter-dependencies and complexities) when they were refactored. Similarly, Tufano et al.
(2017) studied the change history of over 200 open source projects and observed that only
9% of the code smells were removed as a result of refactoring operations. Al Dallal and
Abdin (2018) corroborate the findings of Kim et al. and Tufano et al. that refactoring does
not always improve code quality. This indicates that refactoring alone is not effective for
“fixing” bad code.

Research on inspections shows a positive impact on quality (Bavota and Russo 2015;
Kollanus and Koskinen 2009). Several studies have focused on code reviews to check and
improve the quality of code submitted into amaster code repository (Hatton 2008;Kononenko
et al. 2016; Rong et al. 2014). Kononenko et al. (2016) investigated factors that influence the
review time, review decision and review quality as perceived by Mozilla core developers.
Their open coding of the survey questions identified “code quality” and “understanding code
change/base” as the overall most important themes. An exploratory study by Sadowski et al.
(2018) on modern code reviews at Google reveals that “the foremost reason for introducing
code review at Google was to improve code understandability and maintainability.” Google’s
mandatory code reviews involvemanual readability approval of developers having readability
certification (Wintus et al. 2020). This entails an expensive infrastructure. Reliable metrics
for measuring or predicting readability would therefore have a significant positive impact
on code quality and productivity. A recent review on modern code reviews (Davila and
Nunes 2021) corroborates that “code comprehension has been the main challenge faced by
developers when reviewing a code change.”

123

128 Page 4 of 31 Empirical Software Engineering (2023) 28:128

The literature lacks studies exploring practitioners’ opinions and there are few studies
on lower-level aspects of source code quality, like the one presented here. Bakota et al.
(2011) suggest a probabilistic approach for computing maintainability (based on the defini-
tion in ISO/IEC 9126, the predecessor of ISO/IEC 25010) with the help of input from 28
experts. An evaluation on two software systems showed that their results aligned with the
expectations of experts. Correia et al. (2009) interviewed 22 experts consisting of software
engineers, software quality consultants and researchers to define a mapping from 9 system
properties (e.g., system size and unit complexity) to the maintainability sub-characteristics
of ISO/IEC 9126 and observed that there was no consensus on the mapping. Gorla and Lin
(2010) explored organizational, individual and technological factors that impact IS project
managers’ perception of five software quality attributes (reliability, ease-of-use, maintain-
ability, usefulness, and relevance). Based on the questionnaire results from 112 IS project
managers, the authors conclude “that organizational factors are more important than techno-
logical factors in impacting software quality in IS projects.” Antinyan et al. (2017) carried
out an online survey with 100 respondents from industry and academia to investigate how
much certain code characteristics affect 4 predefined internal quality attributes as well
as maintainability time. They conclude that lack of structure and nesting depth substan-
tially increase code complexity, which subsequently influences the maintenance time of
code.

Taken together, existing research may benefit from a better alignment between software
developers’ perceptions of quality and the measures used to assess software quality. In this
work, we therefore want to investigate software developers’ discourse about code quality and
their perceptions of code quality. Our study is unique in asking for practitioners’ opinions
unconditionally, i.e., without a preconceived definition or opinion about code quality.

All studies discussed in the paragraph above aremainly confirmatory andmost are focused
on maintainability. Except Bakota et al., they all suggest predefined models or definitions
of quality characteristics and use close questions. In Bakota et al., the experts are involved
in defining weights for the model. Of the four studies, two are interview-based studies with
fewer respondents than our study. Furthermore, none of the four studies uses open questions
and open coding.

3 Method

Our overall goalwas to investigate the perceptions of code quality held by software developers
and in which ways these perceptions vary with respect to the developers’ background and
experience.

3.1 Research Questions

In this research, we follow an exploratory approach to elicit software developers’ perceptions
of code quality unconditionally, i.e., without preconceived definitions or hypotheses about
quality.We are interested in developers’ “abstract” or general views about code quality (when
they talk about code quality in general terms) as well as their “concrete” views when they
reason about the properties of specific code examples.

In our earlierwork (Börstler et al. 2018),we focusedonparticipants’ “abstract” perceptions
of code quality. Here, we investigate in more detail how participants talk and reason about

123

Empirical Software Engineering (2023) 28 :128 Page 5 of 31 128

code quality when referring to actual code examples, and in which ways this “concrete
discourse” differs from their “abstract perceptions”.

RQ1: Which abstract perceptions of code quality do software developers have?
RQ1.1: Which properties do they focus on when defining code quality?
RQ1.2: Which properties and practices do they focus on when suggesting quality
improvements?
RQ2: Which properties related to code quality do software developers focus on in actual
example code?
RQ3: In which ways do developers’ “abstract” perceptions of code quality (see RQ1)
differ from the specific properties they find relevant in actual code examples (see RQ2)?

3.2 Interview Questions

When designing the interview questions, we took an exploratory approach to get a better
understanding of the perceptions of code quality. Our goal was to explore perceptions of
code quality, not to test preconceived hypotheses. The interview questions were therefore
framed very carefully, so that they did not introduce bias or suggest certain answers.

The interview contained three parts comprising 11 questions in total, most of them with
sub-questions: Part 1 (Q1–Q3) focused on demographics and the participants’ background
and experience; part 2 (Q4) focused on quality aspects of the example(s) of code that the
participants were asked to bring to the interview; and part 3 (Q5–Q11) covered further
questions on code quality that were independent from Q4, and the example(s) discussed
there. All questions in part 2 and part 3 (except Q6) were completely open.

Except for Q4, the questions were short free-text, numeric, or Likert-type questions. All
Likert-type questions used a 7-item scale where only the end values were named explicitly.
For Q4, we asked the participants to bring along example code or code snippets from their
personal experience that they consider exhibit high or low quality. The rationale for this
was to elicit how abstract properties or qualities of code manifest in actual first-hand code
examples.

The full list of questions can be found in Appendix A. An overview of the study process
and how this study relates to our earlier work (Börstler et al. 2018) can be found in Fig. 1. It
should be noted that Q4 (the main part of the interview) as well as Q7 was neither coded nor
analyzed in our previous work.

Earlier work
(Börstler et al. 2018)

Work presented
here

Study design

• See study design
package

Transcribing
interviews

• See transcription
guide

Interviews

• Q1‒Q3: Respondent
info

• Q4: Open question
• Q5‒Q11: Follow-up

Coding

• Thematic coding of
Q5

Analysis

• Q5, Q6, Q8, Q9, Q10
• Relate to main role

(student, educator,
developer)

Coding

• Thematic coding of
Q4

• Coding of Q7

Analysis

• Q4, Q7
• Reanalysis of Q5
• Relate to experience

as professional
software developer

Fig. 1 Overviewof the study process. The lower part of the figure shows the contributions of thework presented
here in relation to our earlier work

123

128 Page 6 of 31 Empirical Software Engineering (2023) 28:128

3.3 Participant Recruiting/Sampling

Ten of the eleven authors participated in interviewing. The interviewers invited candidates to
participate in the study by circulating an information sheet (see the “study design package”
in Appendix B.1) in the channels available to him or her.

We invited students, educators, and professional software developers for participation in
the study. Students should have completed several programming courses. Educators should
have several years of teaching experience with courses covering programming, software
design, or software quality. Professional software developers should dealwith software devel-
opment for a living, i.e. regularly read, write, test or review source code or low-level designs
as a significant part of their work.

Initially, we collected basic information about potential participants (current occupation,
education, level of professional programming experience, gender, and country) in a shared
spreadsheet. The information in the spreadsheet was used by interviewees to facilitate recruit-
ing of participants with varying backgrounds and experience.

According to our study guide (see Appendix B.1), we defined developers as “people who
actually deal with software development for a living, i.e., people who regularly read, write,
test or review source code or low-level designs.” We targeted 3–5 interviews per interviewer
to ensure a good geographical spread and minimize the risk for a common selection bias. The
interviewers came from Sweden, Germany, USA, The Netherlands, and Finland. Other than
the coordination described above, the individual interviewers applied convenience sampling.

3.4 Data Collection

We used a detailed interview guide with predefined and scripted questions. The interviews
took 45–60minutes andwere either conducted in person or through video calls (usingGoogle
Hangouts, Skype, or Zoom).

The first 3 questions (Q1–Q3) were filled in by the interviewers. Question Q4, the main
part of the interview, was recorded and transcribed. The remaining 7 questions (Q5–Q11)
were filled in directly by the interviewees.

If the interviewees brought code examples in electronic form, we captured the screen to be
able to connect the discussion to particular areas of the code. Otherwise, wemade annotations
on the print-outs to connect areas of code to statements in the interview.

For the transcription, we developed transcription guidelines to ensure a uniform transcrip-
tion of the interviews. The guidelines were based on existing guidelines (Humble 2015) that
we adapted to ensure a fluent transcript style. If possible, the interviews were held in the lan-
guage the interviewees felt most comfortable in; either in a language where the interviewer
was a native speaker or a language where the interviewer was highly fluent. All interview
transcripts were translated to English before the analysis.

One of the co-authors of the interview script tested the questions using a pilot interview
with a university teacher with professional programming experience. The pilot interview took
56minutes and was recorded (both audio and computer screen). A part of Q4 was transcribed
to test the transcription guide. After a discussion of the pilot, the co-authors of the interview
guide revised the interview and transcription guides slightly. The data of the pilot study was
discarded and not used for the analysis presented here. The interview script as well as the
transcription guide are available for download and part of the study design package (see
Appendix B.1).

123

Empirical Software Engineering (2023) 28 :128 Page 7 of 31 128

3.5 Coding of Open Questions

We used open coding (Creswell and Creswell 2017) to categorize the data from the open
questions.

In our earlier work (Börstler et al. 2018), two groups of co-authors independently extracted
labels inductively from Q5 (definitions of code quality) and Q8 (factors/indicators of high
quality), respectively. As a next step the initial labels from both groups were merged and
generic categorieswere defined to encompass the specific data.When newcategories emerged
or their definition or labels changed, the whole dataset was re-categorized using the revised
categories. Each label was connected to one category. This was done until all data had been
categorized and no new categories emerged and/or were changed.

For the present work, we used these labels and categories as a starting point for the coding
of Q4 and Q7 described below. For Q7 (recommendations for increasing code quality), we
also categorized the answers into analytical and constructive approaches for quality improve-
ment. Analytical approaches are based on assessing/observing the level of quality (e.g., static
analysis), whereas constructive approaches dealwith ensuring quality “by construction” (e.g.,
design patterns). Approaches that could not be categorized as either analytical or constructive
were categorized as Other.

Question Q7 (recommendations for increasing code quality) was independently coded by
four co-authors. SinceQ7added an activity aspect, new labels emerged and the original coding
scheme was extended to accommodate those with as little as possible changes to existing
labels and categories (see Section 4.3). The independent codings of Q7 were then merged at a
commonmeeting together with the extended coding scheme. Differences and inconsistencies
were discussed and resolved at the meeting. Inter-rater agreement (Krippendorff’s alpha,
computed via ReCal Freelon 2013) for the sub-questions of Q7 were between 0.633 and
0.815 which is considered a substantial agreement.

The extended coding schemewas then used for codingQ4. The codingwas done in several
steps to facilitate further analysis as described below.

1. Mark text passages relating code properties or coding activities to quality attributes.
2. Summarize each such passage by “assertions” of the following form:

< quali t y indicator | activi t y > => <e f f ect>;<arti f act>.

Detailed coding guidelines were described and then piloted independently by two of the
co-authors. Two examples of such “assertions” and their corresponding text passages are
shown in Fig. 2.

All interviews were then coded independently by two co-authors each, and the coding
step was discussed at a common meeting. After the meeting the original coders discussed
their independent codings and merged them into an agreed-upon version that was used for
the analysis described in Section 4.6.

After this validation step, all assertions were imported into a spreadsheet for further
analysis. Composite assertions, i.e., rows listing several quality indicators/ activities and/or
effects, were broken down intomultiple rows such that each combination of quality indicator/
activity and effect was placed on a separate row, i.e., a1, a2 => e1, e2 was replaced by a1 =>

e1, a1 => e2, a2 => e1, a2 => e2. Unclear or missing effects (e.g., “?” or “–”) were replaced
by the generic effect “higher (lower) quality,” since this was the agreed-upon default for
effects that were not made sufficiently specific by an interviewee. Ambiguities and questions
regarding assertions were resolved with the help of the original interviewer.

123

128 Page 8 of 31 Empirical Software Engineering (2023) 28:128

CK2: Very indicative I consider this function. [Select: QuestionReader.php, Line: 28-72] Namely "parseFromFile" which
in retrospective now is way too big. Well I don't think...Good code is code that you can also understand, easily maintain
and extend. This code is not easy to understand, simply because the complexity of this function is way too big. And
instead of adding comments here...well you could comment the different parts explaining what they do. But I would not
consider that reasonable anymore. I would consider it more reasonable to extract methods here that get meaningful
names, so that you could read the code based on the method names which is not possible right now.

Use functions that are too big and complex
=> less understandability;
QuestionReader.php, Line: 28-72

DT2: This "WeaponFiring" like the class is named is unusually bad, let's see how common this is? Otherwise we are
pretty good at dividing it. What we have is very data driven design, and depending of the data type we are instantiating
different classes so it is not... no, it is not so common really. But this particular file is so important and has caused so
much problems so it has really been a problem for many years, in all the games. It has existed for many years and it has
just grown. For every game we are adding more if-statements, and more special-cases, in this one... And, it becomes
messier and messier! So to the next project we need to divide this, like I have described.

dividing into classes
=> easier to modify code;
WeaponFiring.cpp

Fig. 2 Excerpts from the interview transcripts of interviewee CK2 (top) and DT2 (bottom) with marked
passages and corresponding assertions to the right

The quality indicators/ activities (sources) and effects (targets) of all assertions were then
categorized according to Table 3 by the first author and validated as follows:

1. Four interviews (of 34)were selected at randomandcategorized independently by four co-
authors such that each interview’s quality indicator/activity and effectwere independently
categorized by three co-authors each (including the first author). These four interviews
corresponded to 86 of the 721 assertions (12%). Inter-rater agreement was moderate
for the source categories (Krippendorff’s alpha 0.434) and almost perfect for the target
categories (Krippendorff’s alpha 0.848).

2. The independent categorizations were then compiled into one document.
3. Inconsistencies were discussed and resolved by “majority vote” if necessary.
4. The first author revised the coding of the remaining interviews accordingly.

When coding Q4, the wording of an assertion was kept close to the wording of the inter-
viewee, as shown in the examples in Fig. 2. As described above, the assertions were then
categorized according to Table 3 to facilitate further analysis. This categorization could lead
to assertions where source and target belong to the same category. An interview statement
like “concise code leads to better readability” would, for example, be coded as concise code
=> readability and then categorized as readability=> readability since both, conciseness and
readability belong to category Readability.

3.6 Threats to Validity

Internal validity is concerned with the study design, in particular whether the constructs
used to answer the research questions are suitable and sufficient to answer the questions.

Two of the co-authors developed a thorough study guide including information about the
sampling and recruitment of participants, a detailed interview script with lists of probing
questions, as well as guidelines for transcribing the recorded interviews. This guide was
discussedwith the remaining authors tomake sure that the questions are interpreted uniformly.
Templates for the consent form and an information sheet for recruiting interviewees were
also prepared.

The interview script contained closed and open questions. Question Q4 was intentionally
left open and the interview guide encouraged interviewers to let the interviewees talk freely.
Since interviewees brought code from their personal experience to the interview,wemade sure
that they could relate their personal perceptions about code quality to actual code examples.
Respondents’ discussions might have been different had they brought and talked about other

123

Empirical Software Engineering (2023) 28 :128 Page 9 of 31 128

examples in other programming languages. However, we explicitly asked them “to bring
along example code from your own personal experience” and to share “personal opinions
regarding source code quality and to point out pieces of code that you consider have high or
low quality.” Since the study is exploratory with open questions, we do not consider this a
threat to validity.

Interviewees without professional programming experience (students) were mostly self-
selected, whereas study participants with professional programming experiencewere directly
approached by the researchers. We targeted 3–5 interviews per interviewer and coordinated
the recruitment of interviewees via a shared spreadsheet. Besides this coordination, the indi-
vidual interviewers applied convenience sampling. Since the interviewers come from five
different countries and each interviewer carried out only 3–5 interviews, we consider the risk
for a common selection bias low.

During the coding of the transcripts, chances are that data is misinterpreted or coded
wrongly. To mitigate this threat, we developed and piloted detailed coding guidelines (as
described in Section 3.5). Question Q4 was coded in a two-step process. Step one was
carried out independently by two co-authors and then validated. Step two was carried out by
one author and then cross-validated independently by three co-authors with high inter-rated
agreement. Question Q7 was coded independently of four co-authors with high inter-rater
agreement.We therefore consider the coding reliable. Details about the coding and validation
processes can be found in Section 3.5.

External validity is concerned with the generalizability of the results.
Since the sample size in this study is small and intervieweeswere limited to Europe and the

U.S., we cannot generalize the results to software developers globally. Also, since the authors
are primarily fromacademia, evenmost interviewees fromprofessional software development
have some relationship to academia. So, developers without any academic background might
be underrepresented. However, within these limits we achieved a good spread of interviewees
in terms of relevant experience. Our study design aimed for “theoretical saturation,” i.e., a
sample size where adding more interviews is unlikely to uncover further concepts or aspects.
In a review on sample sizes for saturation in qualitative research (Hennink and Kaiser 2022)
conclude that “saturation can be achieved in a narrow range of interviews (9–17).” With 34
interviews in our study, we believe that the risk for not having reached saturation is low. We
have not validated, though, whether we reached saturation.

There is also a risk that the examples the interviewees brought along and discussed during
the interviews are not representative of what developers actually care about in practice. To
mitigate that risk, we used a standardized “interviewee information sheet” to ensure that all
interviewees receive the same information (see the study design package in Appendix B.1).
As discussed in Section 4.2 (Example Demographics), the interviewees brought many and
varied examples.We have no indications of interviewees discussing topics that did not matter
to them. We therefore consider this risk low.

4 Results and Analysis

4.1 Interviewee Demographics

In total, we analyzed data from 34 semi-structured interviews with students, educators, and
professional software developers from 6 countries. Of the 34 interviewees, 22 (65%) have
experience as a professional software developer (9.6 years on average, median 7.3 years) and

123

128 Page 10 of 31 Empirical Software Engineering (2023) 28:128

11 (32%) have software quality assurance as one of their responsibilities. The developers with
software quality assurance as one of their responsibilities have 13.8 years (median 11 years)
of professional experience on average. All students had completed at least 5 courses with
significant programming components (8.9 on average).A summary of the basic demographics
of the participants can be found in Table 1.

For our analysis, we categorized the interviewees along their experience as professional
software developers (see column Cat-Exp in Table 1): Interviewees without experience as
professional software developers (N), interviewees with some experience (S) but less than
the median years of experience (7.3 years) and interviewees with extensive professional
experience (E), i.e., more than the median years of experience.

4.2 Example Demographics

In total, 31 of the 34 interviewees brought along 130 code examples ranging from short code
snippets on paper over links to guideline documents (containing example code snippets) to
actual running code (single files to whole non-trivial projects). The remaining three did not
bring code examples but referred to specific guidelines from a popular trade-book on code
quality (Martin 2008). Fifteen interviewees discussed (among others) code from professional
code bases, i.e., code that was written by professional software developers or code available
from open source code bases. Twenty interviewees discussed bad as well as good examples.
The examples were written in 14 different programming languages and 12 interviewees
discussed examples from at least two languages, see Table 2.

4.3 Coding Scheme

In our previous work, we analyzed questions Q5 and Q8 by using codes based on key terms
used in the answers and grouping them into related categories. These labels and categories
were used as a starting point for the thematic coding of questions Q4 and Q7. While Q5
and Q8 focus on properties of code, Q7 asks for recommendations to improve code quality.
The answers to Q7 therefore also refer to activities and not just specific code properties.
The activities were eventually categorized as Analysis and Generic, respectively, as shown
in the lower part of Table 3. The discussions around the open question Q4 also provided
more varied answers than the answers to the more specific questions Q5 and Q8. This led
to many extensions but also a few changes to our original coding scheme. We therefore also
re-analyzed Q5 (see Section 4.4).

Some labels in category Miscellaneous are not properties of the code itself. However,
since they have been mentioned in this context by the interviewees, we decided to keep them
for reference. Similarly, labels in the Non-specific category are too general to gain additional
insight. As before, we still kept them to provide a comprehensive picture of the responses.
The total numbers in both categories are so small, that they do not affect our results.

4.4 Definitions of Code Quality (RQ1.1)

In question Q5, we asked interviewees (in writing) about their definition of software quality.

Q5: How would you define code quality? Which properties, features or indicators show
you, personally, something about quality?

123

Empirical Software Engineering (2023) 28 :128 Page 11 of 31 128

Table 1 Basic demographics of the participants in the study

ID Gender Country Role(s)1 Y-Exp2 Cat-Exp3 QA4

BM2 Female USA E 0 N N

BM3 Male USA S 0 N N

BM4 Male USA D 38 E Y

CK1 Male Germany D,E 8 E Y

CK2 Male Germany D 4 S N

CK3 Male Germany S 0 N N

DT1 Male Sweden E 0 N N

DT2 Male Sweden D 17 E Y

DT3 Female Sweden E 0 N N

DT5 Female Sweden D 4 S N

HK1 Male The Netherlands D,E 20 E N

HK2 Male The Netherlands D 8 E Y

HK3 Male The Netherlands D,S 0.5 S N

HS1 Male Germany D 21 E Y

HS2 Male Germany D,E 6.5 S Y

HS3 Male Germany D 11 E Y

HS4 Male Germany D 6 S Y

JA2 Male The Netherlands D,S 1.25 S N

JA3 Male The Netherlands D,S 1 S N

JA4 Male The Netherlands D,E 1.5 S N

JB1 Male United Kingdom D,E 14 E Y

JB4 Male Sweden S 0 N N

JB5 Female Sweden S 0 N N

JJ1 Male The Netherlands D 2.5 S Y

JJ2 Male The Netherlands E 0 N N

JJ3 Male The Netherlands D 20 E Y

RD1 Male Finland D,S 3 S N

RD2 Male Finland S 0 N N

RD3 Female Finland S 0 N N

RD4 Male Finland D,E 2 S N

RD5 Male Finland E 0 N N

SH1 Male USA S 0 N N

SH2 Male USA D,S 9 E N

SH3 Female USA D,E 15 E N

1 Developer, Educator, Student. Multiple roles are possible
2Experience as professional software developer in years
3 Categorization of professional experience: No experience, Some experience, Extensive experience
4 Responsibility for quality assurance (Yes/No)

The answers ranged from short lists of characteristics to more elaborate answers. The
shortest answer was 8 words and the longest 79 words with a median of 22 words. We
categorized the answers into 116 references to defining properties in total. On average, the
answers referred to 3.4 defining properties (1–6; median: 3).

123

128 Page 12 of 31 Empirical Software Engineering (2023) 28:128

Table 2 Overview over the
programming languages of the
example programs discussed by
interviewees (some interviewees
discussed examples in several
languages)

Interviewees Language

14 Java

6 C#

5 Python

4 C++

4 JavaScript

4 PHP

3 Scala

2 C

2 SQL

1 ActionScript, Attribute grammars, Haskell,
Julia, Ruby

Readability and structure were the most commonly used defining properties for code
quality for our sample developers in total (see Fig. 3). Of the 34 developers 28 (82%) and 22
(65%), respectively, referred to readability and/or structure. All other propertieswere referred
to by 27%–38% of our sample developers. When looking at subgroups of developers based
on gender, level of experience as professional developer, or experience with responsibility for
quality assurance, the rankings of properties are very similar (see Fig. 4). A notable difference
is that experienced developers and those with QA responsibility rank correctness higher than
the other groups. Readability and structure are consistently ranked as the topmost and second
most important properties, respectively, by all subgroups.

The spearman rank correlations between groups are insignificant, except between the
groups without (N) and some (S) professional experience in software development, where
we found a high positive relationship (rs=0.74, p=0.022).

Answer to RQ1.1: Readability and structure are the most common defining properties for
quality code.

4.5 Properties Targeted by Quality Improvements (RQ1.2)

In question Q7, interviewees were asked to provide suggestions for improving code quality.

Q7: Please provide your top-3 recommendations for increasing the quality of code. Please
indicate when a recommendation applies in special cases only.

Besides their top-3 recommendations interviewees could also provide “further important
recommendations”. Interviewees provided 116 recommendations in total (2–4; average: 3.4).

When looking at the code properties respondents focused onwithin their recommendations
for increasing code quality (Q7), we can see that structure and readability are again most
commonly referred to (see Fig. 5). Due to the addition of categories generic and analysis,
the answers for Q7 were distributed over more categories than the answers for Q5 and all
“old” categories. Only category documentation increased its percentage. The group without
experience from professional software development (N) accounted for most of the increase
in category documentation.

123

Empirical Software Engineering (2023) 28 :128 Page 13 of 31 128

Table 3 Categories and labels used for coding

Category Labels

— quality indicators (properties of code) —

Comprehensibility comprehensible, understandable, clear purpose,
clarity, simplify code, unusual syntax, unusual
use of language features

Correctness runnable/ free of bugs,
language/ model/ framework choice,
functionally correct (meeting business
requirements), exception handling

Documentation documented, commented, self-descriptive codes

Dynamic behavior robust, good performance, secure, good use of
time and resources (during code execution),
optimize code

Maintainability maintainable, adaptable, reusable, used by
others, interoperable, portable, not hardcoding
variables and input, not making errors later,
global variables, using standard
libraries/ functions, use config files, flexibility

Miscellaneous license, suitable data structure, support, tools
and libraries, delivery (in terms of rushing for
it), trust, programming paradigm

Readability readable, no useless code, brevity/ conciseness
(small scale; Structure otherwise),
formatting/ layout, style, indentation, adherence to
naming conventions, code standard, mixing
natural languages, usage of whitespace, use of
idioms, consistency, no useless comments

Structure well structured, modular, cohesion, low
coupling, no duplication, decomposition,
structural complexity, encapsulation,
grouping, elegance, doing one thing

Testability testable, test coverage, automated tests, data
validation, I/O validation, debugging

Non-specific higher/ lower/ good quality, no effect
specified

— activities to improve quality —

Analysis code review, metrics/ measurements,
architecture analysis, static analysis
tools

Generic follow best practices, training and experience,
discuss with team, high quality aspirations, use
version control

When looking at subgroups of developers based on gender, level of professional experi-
ence, or experience with responsibility for quality assurance, the rankings of properties show
few differences (see Fig. 6). Most notably is that developers without professional experience
in software development (N) rank correctness higher than the other groups (S and E). Struc-
ture and readability are ranked among the top-3 most important properties by all subgroups.
The spearman rank correlations between groups are insignificant, except between the groups

123

128 Page 14 of 31 Empirical Software Engineering (2023) 28:128

28 22 13 13 11 10 9 9 1
0

5

10

15

20

25

30

82%

65%

38%
32% 29% 27% 27%

3%

38%

Fig. 3 Categories of terms used to define code quality (Q5). N=116, multiple mentionings were possible

without (N) and with extended (E) professional experience, which have a very high positive
correlation (rs=0.92, p<0.0001).

We also grouped the suggestions for quality improvement into analytical and constructive
approaches as described in Section 3.5, see Fig. 7. Suggestions that could not be categorized
as either analytical or constructive were categorized as Other. Of the 116 recommendations,
69% are constructive, 21.6% analytical and the remaining 8.6% other. The results show a
significant difference between developers without and with responsibility for quality assur-
ance, respectively (χ2 = 11.76, p = .002792) indicating that developers with responsibility
for quality assurance have a stronger focus on analytical approaches.

Answer to RQ1.2: Structure, readability and documentation are the most common target
properties for quality improvement. Developers with responsibility for quality assurance
have a significantly stronger focus on analytical approaches for quality improvement than
developers without such responsibility.

F M N S E N Y
Group size 6 28 12 11 11 23 11
Readability 1 1 1 1 1 1 1

Structure 2 2 2 2 2 2 2
Comprehensibility 7 3 3 4 4 4 2

Documentation 4 4 3 3 7 3 6
Correctness 4 5 6 7 2 8 2

Testability 7 5 8 4 4 6 5
Dynamic behavior 3 8 5 8 6 4 8

Maintainability 4 7 6 4 7 6 6
Miscellaneous 9 9 9 9 9 9 9

Gender Exp from prof sw dev QA responsibilityGroup

Fig. 4 Ranking of categories for defining properties of code quality (Q5) by groups of developers based on
gender (Female,Male), professional experience (No,Some,Extensive) and responsibility for quality assurance
(Yes, No)

123

Empirical Software Engineering (2023) 28 :128 Page 15 of 31 128

23 18 15 7 6 6 4 3 1 17 16
0

5

10

15

20

25

68%

53%

44%

21%
18% 18% 12% 9% 3%

50% 47%

Fig. 5 Categories of terms used for suggestions to improve code quality (Q7). N=116, multiple mentionings
were possible. (Note: Having N=116 for Q5 and for Q7 is a coincidence)

4.6 Properties Focused on in Code Examples (RQ2)

In interview question Q4, interviewees discussed their personal experiences using code they
were asked to bring to the interview. This provided interviewees with opportunities for dis-
cussing aspects of code quality in detail from a personal point of view.

Q4:We will now look at some of the code examples you provided. Please describe in detail,
which properties or features you like or dislike with this code and how these properties
or features affect the quality of the code. Please note that there are no correct or incorrect
answers. We are primarily interested in code features that matter for you and why they do
so.

During the coding phase, the 34 interviews were summarized into 721 “assertions” as
described in Section 3.5. The overall results of this step are summarized in the heat map in
Fig. 8, where the numbers in a cell (row,column) correspond to the numbers of assertions

F M N S E N Y
Group size 6 28 12 11 11 23 11

Structure 1 1 1 2 1 1 2
Readability 3 2 3 3 3 2 2

Documentation 6 3 1 5 6 2 6
Comprehensibility 6 6 6 6 7 5 9

Maintainability 6 8 6 8 7 7 6
Testability 9 6 10 6 5 9 5

Correctness 4 10 4 10 10 7 10
Dynamic behavior 9 9 10 8 7 10 6

Miscellaneous 9 11 9 10 10 10 10
Generic 2 5 4 3 2 4 2
Analysis 4 3 8 1 4 6 1

Group Gender Exp from prof sw dev QA responsibility

Fig. 6 Ranking of categories for suggestions to improve code quality (Q7) by groups of developers based on
gender (Female,Male), professional experience (No,Some,Extensive) and responsibility for quality assurance
(No, Yes)

123

128 Page 16 of 31 Empirical Software Engineering (2023) 28:128

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F M N S E N Y

Analy�cal Construc�ve Other

Gender QA responsibilityExp from prof sw dev

Fig. 7 Suggestions for type of quality improvement approach (Q7, analytical (bottom of column), constructive
(middle) and other (top)) by groups of developers based on (from left to right) gender (Female, Male),
professional experience (No, Some, Extensive) and responsibility for quality assurance (No, Yes)

row => column. E.g., the relationship Documentation => Comprehensibility appeared 61
times, i.e., 8.4% of all relationships.

Since the number of assertions varies substantially from interview to interview (min: 5,
max: 54, avg: 21.2, median: 19), we normalized the results for each interview by dividing
the number of occurrences of an assertion by the number of total assertions for the particular
interview. As can be seen from Fig. 9, the normalized results are very similar to the non-
normalized results in Fig. 8. The top-3- and the bottom-3-ranked categories are identical in
both figures (see row/column RANK).

Figures 10, 11 and 12 show graphical overviews of the categories of the most frequently
named properties in interviewees’ assertions (normalized). The graphs show that structure,
comprehensibility, readability, documentation and maintainability are consistently among
the top-3 for all subgroups. The normalized heat-maps that are the basis for Figs. 10–12 can
be found in Appendix C (Figs. 13, 14 and 15).

ALL Comprehe
nsibility

Correctne
ss

Document
ation

Dynamic
behavior

Maintaina
bility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL RANK

Comprehensibility 15 4 0 2 6 1 8 8 3 1 1 0 49 5
Correctness 17 7 0 4 6 0 9 3 2 9 0 0 57 4

Documentation 61 2 9 2 13 0 26 1 0 6 1 0 121 3
Dynamic behavior 3 1 0 5 2 0 2 0 0 2 0 0 15 9

Maintainability 7 3 0 3 16 1 2 6 1 2 0 0 41 6
Miscellaneous 4 5 0 3 3 0 5 0 0 1 0 0 21 8

Readability 40 6 2 2 12 0 72 9 5 12 2 0 162 2
Structure 52 4 2 15 47 0 31 38 10 12 1 0 212 1

Testability 2 7 2 6 9 0 1 1 8 0 0 0 36 7
Non-specific 0 0 0 0 0 0 0 0 0 0 0 0 0 12

Generic 2 0 1 0 0 0 1 0 0 1 0 0 5 10
Analysis 0 1 0 0 0 0 0 0 0 1 0 0 2 11
TOTAL 203 40 16 42 114 2 157 66 29 47 5 0 721
RANK 1 7 9 6 3 11 2 4 8 5 10 12 721

Fig. 8 Heat map for all 721 “assertions” about quality relationships in the 34 interviews (Q4). The number
in cell (row, column) corresponds to the number of assertions row => column. E.g., assertion documenta-
tion => comprehensibility occurs 61 times, whereas comprehensibility => documentation occurs 0 times

123

Empirical Software Engineering (2023) 28 :128 Page 17 of 31 128

ALL Comprehe
nsibility

Correctne
ss

Document
ation

Dynamic
behavior

Maintaina
bility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL RANK

Comprehensibility 0,67 0,18 0,00 0,06 0,39 0,07 0,35 0,40 0,08 0,07 0,06 0,00 2,35 4
Correctness 0,53 0,27 0,00 0,15 0,22 0,00 0,25 0,11 0,06 0,33 0,00 0,00 1,90 6

Documentation 3,19 0,08 0,52 0,06 0,56 0,00 1,27 0,13 0,00 0,26 0,06 0,00 6,14 3
Dynamic behavior 0,15 0,04 0,00 0,18 0,10 0,00 0,06 0,00 0,00 0,07 0,00 0,00 0,60 9

Maintainability 0,30 0,11 0,00 0,13 0,70 0,04 0,09 0,29 0,06 0,08 0,00 0,00 1,80 7
Miscellaneous 0,16 0,25 0,00 0,16 0,10 0,00 0,20 0,00 0,00 0,02 0,00 0,00 0,90 8

Readability 2,02 0,19 0,09 0,08 0,33 0,00 3,20 0,54 0,22 0,49 0,13 0,00 7,27 2
Structure 2,53 0,14 0,14 0,53 2,29 0,00 1,62 2,46 0,33 0,46 0,06 0,00 10,55 1

Testability 0,11 0,64 0,11 0,26 0,52 0,00 0,04 0,04 0,32 0,00 0,00 0,00 2,03 5
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 12

Generic 0,18 0,00 0,05 0,00 0,00 0,00 0,04 0,00 0,00 0,08 0,00 0,00 0,34 10
Analysis 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,12 11
TOTAL 9,84 1,95 0,92 1,62 5,20 0,11 7,11 3,96 1,07 1,92 0,31 0,00 34
RANK 1 5 9 7 3 11 2 4 8 6 10 12 34

Fig. 9 Heat map for “assertions” about quality relationships after normalization (Q4)

The sources of the assertions for both gender subgroups look very similar. However, the
female subgroup focuses more on maintainability and structure as targets of the assertions
than the male group and less on comprehensibility and readability. Since our sample only
comprised six females, it is difficult to draw general conclusions, though.

Regarding professional experience, we can see that the top-3 source properties are the
same but decrease in weight successively with experience. For the subgroup with no expe-
rience, the top-3 categories account for 82% of the targets of all assertions, whereas they
account for only 70.5% and 57.9%, respectively, for the subgroups with some and extensive
experience. This indicates that more experienced developers have a broader picture of code
quality. An interesting observation is that the subgroup with extensive experience ranks read-
ability higher than comprehensibility. In this subgroup, we can also find a clear relationship
between readability and maintainability, whereas we identified only a single assertion read-
ability => maintainability in the other subgroups. Another observation is that the assertion

Structure
31%

Docu-
mentation

18.1%

Main-
tainability

15.3%

Compre-
hensibility

18.9%

Readability
20.9%

Readability
21.4%

ALL

52%
20.7%

27.8%
44%

15.3%
21.7%

23.9%

Structure
31%

Docu-
mentation

18.6%

Main-
tainability

14.1%

Compre-
hensibility

30.9%

Readability
22.7%

Readability
22.5%

MALE

52.8%
24.5%

27.3%
4487%

15.6%
22.4%

26% Structure
31%

Docu-
mentation

15.6%

Main-
tainability

21%

Compre-
hensibility

19.9%

Structure
18.5%

Readability
16.5%

FEMALE

47.6%
13.3%

30.5%
12.6%

34.7%
18.1%

14.2%

19.8%

The le� and right columns list the top-3 source and
target proper�es, respec�vely, together with their
rela�ve frequency of all source and target proper�es.
Darker colors indicate higher rela�ve frequencies.
Arrows indicate interviewees’ “asser�ons” and their
rela�ve frequency, i.e.

means that p% of all asser�ons with property s as the
source have property t as the target.
In the figures, we only list asser�on with p > 10%.
For easier cross-reference, the ordering of proper�es
within columns is kept constant as far as possible.

ts p

Fig. 10 Graphical overview of top-ranked categories for all interviewees (ALL), and by gender (MALE, n=28;
FEMALE, n=6) for source- and target-properties and their relationships (Q4)

123

128 Page 18 of 31 Empirical Software Engineering (2023) 28:128

Structure
36.4%

Docu-
mentation

22.7%

Structure
14.7%

Compre-
hensibility

29.6%

Readability
20.3%

Readability
22.9%

NO

46.5%
16.2%

25.1%
43.3%

16.7%
31.9%

25.1% Structure
30.4%

Docu-
mentation

18.6%

Main-
tainability

15.1%

Compre-
hensibility

37.7%

Readability
21.6%

Readability
21.6%

SOME

62%
26.1%

40.4%
43.7%

12.9%
26.5%

29.9% Structure
25.8%

Docu-
mentation

12.5%

Main-
tainability

17.2%

Compre-
hensibility

21.4%

Readability
22.9%

Readability
19.5%

EXTENSIVE

48.3%
21.7%

17.2%
45%

16%
24.5%

15.2%

10.5%

Fig. 11 Graphical overview of top-ranked categories grouped by interviewee experience (NO, n=11; SOME,
n=11; EXTENSIVE, n=12) (Q4)

documentation => comprehensibility occurs much less frequent for developers with exten-
sive experience. For this subgroup, documentation => comprehensibility accounts for 6% of
all assertions, whereas it accounts for 10.6%–11.5% for the other experience subgroups and
is the most frequent assertion for both of these groups (ignoring assertions where source and
target belong to the same category).

A similar pattern can be observed between the subgroups with and without responsibility
for quality assurance (see Fig. 12). Since 8 out of 11 QA responsibles also are in the sub-
group with extensive experience (see Table 1), this observation could be related to overall
experience.

When looking at individual labels (see Table 3), we found that 11.1% (80 of 721) of all
labels for quality indicators dealt with comments/commenting, 7.9% (57 of 721) with naming
and 6.8% (49 of 721) with formatting, indentation and whitespace. All other labels amounted
to at most 4.3%.

Answer to RQ2: Structure, comprehensibility, readability, documentation and maintain-
ability are the most commonly focused properties in developers’ discussions about code
examples. Structure is consistently mentioned by all groups as the most common source
property leading to comprehensibility, readability andmaintainability. Themost commonly
named code features are commenting, naming and formatting.

4.7 “Abstract” Perceptions of Code Quality Versus“Concrete” Manifestations
in Code (RQ3)

In RQ3, we investigated in which ways developers’ perceptions and discourses differ (or
not) when talking about code quality in general (i.e., in an “abstract” way) and discussing

Structure
34.9%

Docu-
mentation

19.2%

Main-
tainability

13.8%

Compre-
hensibility

28.2%

Readability
22.1%

Readability
22.4%

NO QA

47.7%
22.3%

27.6%
44.7%

16.7%
19.1%

25% Structure
23%

Docu-
mentation

15.7%

Main-
tainability

18.4%

Compre-
hensibility

30.4%

Readability
18.5%

Readability
19.2%

QA

63.2%
16.7%

28.1%
42.2%

10.9%
29.7%

20.7%

12.7%

13.4%

Fig. 12 Graphical overview of top-ranked categories grouped by responsibility for quality assurance (NOQA,
n=23; QA, n=11) (Q4)

123

Empirical Software Engineering (2023) 28 :128 Page 19 of 31 128

the quality of specific code examples and the trade-offs that might manifest in those. To
answer RQ3, we compared the results regarding code quality categories from results in RQ1
(based on an abstract view of the interviewees; Q5–Q8) with the results from RQ2 (based
on the specific code examples provided by the interviewees; Q4). The results are not directly
comparable as the answers to RQ1 are based on frequencies of occurrences of code quality
aspects, whereas the answers to RQ2 also consider relationships between aspects of quality.
Still, the ranks of the categories in each of the results can be used as importance indicators
for the code quality categories. Thus, a qualitative comparison of the results is possible.

When defining code quality, all groups of developers consistently use readability and
structure as the first and second most frequently named property (see RQ1.1, Section 4.4).
Interestingly, developers with extensive experience and those with QA responsibilities rated
correctness much higher than all other groups while they considered documentation much
less relevant. The suggestions for quality improvements overall are less consistent but focus
mainly on structure, readability and documentation (see RQ1.2, Section 4.5). Again, we
can see that less experienced developers and those without QA responsibilities consider
documentation more important than developers with extensive experience.

When discussing the specific code examples the interviewees brought along, they focused
on structure, readability and documentation, primarily as sources in the assertions. However,
the discussions showed that these properties were not seen as the ultimate quality goals but
rather properties that lead to comprehensibility and maintainability (as well as readability
and structure, see Figs. 10–12). Interestingly, not a single developer without professional
experience mentioned comprehensibility as a source in an assertion (see Fig. 14, at top, first
row), whereas it ranks fourth overall (see Fig. 9). Yet, they rather considered it a consequence
of other properties (see Fig. 14, at top, first column).

Comparing these results to answer RQ3, there are quality categories that are consid-
ered important on both the abstract and the concrete level, such as structure, readability
and documentation. However, the developers with extensive experience and those with QA
responsibility ranked documentation much lower on the abstract level than they did on the
concrete examples.

Due to their high experience, theymight require less documentation and therefore consider
it less important in the abstract view than less experienced developers.

Less experienced developers, on the other hand, did not mention correctness as often
on the abstract level as they did on the concrete examples. The code examples might have
helped them recognize the importance of code correctness, whereas experienced developers
immediately considered this an important aspect.

The previous findings are also reflected in citations from the interviews, e.g., reasoning
about readability:

“Readability! Team projects! Basically, is the only reason. If you are writing code for
yourself doing something only you need and you can do it in a day and you don’t need
to return to the code, which is usually [what you] tell to yourself, but you do need to
return.” (Interviewee RD1)

“You can often further simplify code, optimize, and that can sometimes go on until
you reach a point where it compiles undoubtedly very quickly, but where, as a human
being, you cannot read it easily anymore. So I think it is important that it still is a bit
readable.” (Interviewee JJ3)

Interviewee HK2, for example, explicitly emphasized readability over other quality
attributes when comparing code:

123

128 Page 20 of 31 Empirical Software Engineering (2023) 28:128

“I think I would go for ... because it’s such a simple piece of code, with such low
cyclomatic complexity, so few different paths, that I think readability is more important
in this case than robustness and testability.”(Interviewee HK2)

Several interviewees use terms like simplicity or elegance to describe comprehensibility:

“Describing things as plain, as simple, as well structured as possible. Focus on the
real content as far as possible. ... Understandability doesn’t mean that is necessarily
terse, but it means, you look at it, and you understand very quickly what it is doing.”
(Interviewee HS3)

“There are many things that can be done with very elegant one-liners, that are still
understandable.” (Interviewee RD4)

Answer toRQ3:Comprehensibility andmaintainability becomemore importantwhen inter-
viewees discuss concrete code examples. The abstract properties structure, readability and
documentation are still seen as important but mainly as a prerequisite for comprehensibility
and maintainability.

5 Discussion

The most important and obvious results from the RQs examined above are that developers
strive for comprehensible and maintainable code. These qualities are achieved by structured,
readable and documented code, especially when looking at specific code examples. These
findings are in line with some of the results in the related work (see Section 2). This means
that professionally developed code should be well structured, readable and appropriately
documented. These aspects should be emphasized in programming and software education
to prepare students for their professional careers.

Lesson learned1:Developers strive for comprehensibility andmaintainability,whichmeans
that code should be well structured, readable and appropriately documented. To prepare
students for their professional careers, these aspects should be emphasized in programming
education.

Regarding what appropriately documented codemeans, responses were diverse. Although
comments/commenting was the most frequent label for quality indicators, interviewees did
not generally call for more documentation. On the one hand, comments are seen as important,
e.g.,

“The other thing is comments. They are important. I find that I actually write code
better if I am commenting it, so if I were writing a SQL statement for someone else that
I have explain to, and they need to understand what I am doing, and I actually write
out the comments for it, then I actually write the code better.” (Interviewee SH1)

On the other hand, they can also impede comprehension. For simple code

“...you actually get [a] better idea without reading the comments because when you
read a comment it breaks your idea of what is happening actually in the code.” (Inter-
viewee RD2)

123

Empirical Software Engineering (2023) 28 :128 Page 21 of 31 128

Some interviewees even called for self-documenting code by using appropriate method
names instead of using commenting

“And instead of adding comments here... I would consider it more reasonable to extract
methods here that get meaningful names, so that you could read the code based on the
method names...” (Interviewee CK2)

Finally, commented-out code is described as an issue by several interviewees, e.g.,

“It makes the whole a lot less clear, also there are all these comments, which distracts.
... it is all commented out code. It is just code from which they thought they would later
reuse it, but never removed it. I think this creates quite a lot of confusion.” (Interviewee
JA3)

Summarizing the findings on documentation of code, we can say that while documented
code is considered important, that may not necessarily mean that adding more comments is
always good. Better comprehensibility might also be achieved by meaningful naming and
adequate structuring.

Lesson learned 2: While commenting code is considered important, comments may also be
a distraction. Meaningful names and adequate structuringmight improve comprehensibility
more.

This corroborates the results of Plösch et al. (2014)’s survey on software documentation
results, which showed that people working with software development projects consider
accuracy, clarity, readability, structuredness, and understandability as especially important
for software documentation.

The issue with documentation is complemented by the results across the different experi-
ence groups. While developers without professional experience rated documentation rather
high to improve code quality, experienced and QA-responsible developers rated it much
lower. A possible conclusion might be that while explicit documentation seems to improve
aspects like comprehensibility and maintainability initially, this effect may decrease with
experience. The highly experienced group rated correctness of code more important for high
quality. However, focusing only on correctness might make it more difficult to onboard less
experienced developers.

Another aspect that evolved from the interviews, is concerned with the level of measuring
code quality. While some interviewees were concerned with micro-level quality aspects such
as lines of comments, variable naming or code formatting (among others), others focused
more on higher level quality aspects, like overall structure. These range from encapsulation
and providing a specific, single functionality in one part of the code to the overall structure
of a software project such as low coupling and decomposition.

“But, of course, you see if you look into it more deeply, that the structure is completely
different...I basically do not have a real application layer there.” (Interviewee CK1)

We can conclude that code quality has to be assessed and maintained on several levels.
Assuring high quality on one level does not guarantee high quality on others, e.g., nicely
formatted and named code which is correct may still be arranged inappropriately within the
whole software system. Similarly, a nicely decomposed and layered software architecture

123

128 Page 22 of 31 Empirical Software Engineering (2023) 28:128

does not assure comprehensible andmaintainable codewithin a single unit. Thus code quality
is a complex and diverse property to achieve for a software project.

Lesson learned 3:Code quality is a complex property that should be assessed andmaintained
on several levels. Assuring high quality on the micro-level (e.g., statements) does not
guarantee high quality on system level.

Another interesting observation is that testability of code has not been rated as high as
one might have expected. More experienced developers and those with QA-responsibility
mentioned this slightly more than others. Yet, it still remains in the middle to lower ranges
in all groups. This also holds true when looking at the abstract perception level.

Miguel et al. (2014) reviewed common software quality models and provide a list of
50+ terms used in those models to describe qualities together with their definitions. This
list only captures maintainability with a definition that is in line with our results. Further-
more, comprehensibility is captured as “appropriateness recognizability” (with the synonym
“understandability”). Structure, readability and documentation are not covered. One reason
might be that common software quality standards/models target software systems as prod-
ucts rather than the code these systems comprise. This may make it difficult for developers
to relate their work to those standards in practice (Al-Kilidar et al. 2005).

6 Summary and Conclusions

In this study, we investigated how software developers perceive or understand source code
quality. Overall, we analyzed and discussed data from 34 semi-structured interviews with
software developers from Europe and the US. To facilitate the discussion of first-hand expe-
riences of code quality, study participants brought along their own code examples.

Perceptions of code quality were grouped into eleven categories or themes: readability,
structure, comprehensibility, maintainability, correctness, documentation, dynamic behavior,
testability, correctness, maintainability, analysis, generic and miscellaneous. Since there are
no empirically based categories for (developers’ perceptions of) code quality, our categories
could be a good starting point for other researchers who want to study perceptions of code
quality.

Our results show that developers consistently focus on structure, readability and docu-
mentation as important qualities of code to make it comprehensible and maintainable for
other developers. In doing so, developers establish themselves as a group of stakeholders
that might need to be considered more thoroughly in common software quality models or
standards. Common quality models or standards focus on “product quality” and “quality in
use” (as, e.g., ISO 25010 ISO/IEC 2011) targeting the customers or end users of software.
This issue has also been noted by a study group on the ISO/IEC 25000 family of software
quality standards (also known as SQuaRE) (Nakajima 2019, p. 1): “Most of the measures in
ISO/IEC 25023 are quality-in-use measures since the specified measures are about external
properties at runtime. There are several coding standards such as MISRA, AUTOSAR, and
CISQ, which provide the checklists or rules for code to entail quality measures. For SQuaRE
to be considered a strong guide for measurement of software and systems product quality, it
must improve how it guides for quality measurement of internal properties.”

123

Empirical Software Engineering (2023) 28 :128 Page 23 of 31 128

More research is therefore necessary to (a) define indicators that capture code properties
that matter for developers, to (b) develop software quality models that are relevant for devel-
opers and to (c) define metrics that reliably measure the quality attributes that are relevant
for developers. Metrics for, e.g., readability (Buse and Weimer 2010) and comprehensibility
(Scalabrino et al. 2019) have been defined and studied before. However, we see a need for
further empirical research in professional software development contexts.

Appendix A: Interview Questions

ID Question text Answer format

Q1 Gender? M/F
Q2 In which country did you get most of your experience? Short text
Q3-1 What is your current occupation and job title (if applicable)? Student, professional

programmer, educator
Q3-2 How many years of experience as a professional

programmer do you have and how recent is that
experience?

Number

Q3-3 How many years of teaching software development do you
have, in terms of full-time years?

Number

Q3-S1 What is your study program and level (e.g., Bachelor of
Software Engineering)?

Short text

Q3-S2 Which study year are you in, in terms of full-time study
equivalents?

Number

Q3-S3 Is programming one of your main study subjects? Y/N
Q3-S4 How many programming courses did you take, i.e. courses

with a significant programming component?
Number

Q3-S5 How many programming languages can
you program in?

List of names

Q3-S6 How large was the largest program you developed? Number
Q3-P1 What is your job title? Short text
Q3-P2 Do your formal responsibilities involve quality

assurance?
Y/N

Q3-P3 Which programming languages do
you use most?

List of names

Q3-E1 How many courses related to programming do you
teach per year on average?

Number

Q3-E2 Which courses related to programming did you teach
during the last five years?

List of names

Q3-E3 Do you talk about code quality in those courses? Y/N
Q3-E4 If yes, in which courses? List of names
Q3-4 Which programming languages do

you prefer most?
List of names

Q3-5 On a scale from strongly disagree to strongly agree, how much
do you agree or disagree with the following statements
regarding your personal experience related to software
development?

Q3-5a I read and modify source code from other
programmers.

Likert-type scale

Q3-5b Other people are reading and modifying the code
that I write.

Likert-type scale

Q3-5c I review or comment other people’s code. Likert-type scale

123

128 Page 24 of 31 Empirical Software Engineering (2023) 28:128

ID Question text Answer format

Q3-5d Other people review or comment the
code that I write.

Likert-type scale

Q4 We will now look at some of the code examples you
provided. Please describe in detail, which properties
or features you like or dislike with this code and how
these properties or features affect the quality of the
code. Please note that there are no correct or incorrect
answers. We are primarily interested in code features
that matter for you and why they do so.

Audio-recorded
and transcribed

Q5 How would you define code quality? Which properties,
features or indicator show you, personally, something
about quality?

Text

Q6 On a scale from strongly disagree to strongly agree, how much do
you agree or disagree with the following statements regarding
your personal experience related to source code quality?

Q6a Code quality is of high importance in my
work/studies/teaching.

Likert-type scale

Q6b I can easily tell good from bad code. Likert-type scale
Q6c I regularly work with code quality issues. Likert-type scale
Q6d I know how to measure code quality. Likert-type scale
Q6e I have learned a lot about code quality during my education. Likert-type scale
Q6f I have learned a lot about code quality from my colleagues. Likert-type scale
Q6g I have learned a lot about code quality from the Internet. Likert-type scale
Q7 Please provide your top-3 recommendations for increasing the

quality of code. Please indicate when a recommendation
applies in special cases only.

Q7-1 My top recommendation for achieving high code quality. Short text
Q7-2 My second most important recommendation for achieving

high code quality.
Short text

Q7-3 My third most important recommendation for achieving
high code quality.

Short text

Q7-4 Any further important recommendations you want to
mention?

Short text

Q8 According to your experience, what are the three topmost
quality factors or indicators of high quality code?

Q8-1 The most important quality factor/indicator for high quality
code.

Short text

Q8-2 The second most important quality factor/indicator for high
quality code.

Short text

Q8-3 The third most important quality factor/indicator for high
quality code.

Short text

Q8-4 Any further highly important factors you want to mention? Short text
Q9 According to your experience, what are the three most

useful sources of information about code quality? Are
these sources reliable and trustworthy?

Q9-1 The most useful source of information about software
quality.

Short text

Q9-2 The second most useful source of information about
software quality.

Short text

Q9-3 The third most useful source of information about software
quality.

Short text

Q9-4 Any further highly useful resources you want to mention? Short text
Q10 According to your experience, what are the three most

useful tools for improving code quality or achieving high
quality code?

123

Empirical Software Engineering (2023) 28 :128 Page 25 of 31 128

ID Question text Answer format

Q10-1 The most useful tool for improving code
quality.

Short text

Q10-2 The second most useful tool for improving
code quality.

Short text

Q10-3 The third most useful tool for
improving code quality.

Short text

Q10-4 Any further highly useful tools you
want to mention?

Short text

Q11 Is there anything more you would
like to bring up?

Text

Appendix B: Supplementary Materials

B.1 Study Design Package

To ensure that all researchers follow the same procedures, two of the co-authors developed
a study design package with common guidelines, instructions and templates including the
following:

– a study guide describing the overall study design;
– a detailed interview script with instructions regarding the phrasing of interview questions
including suggestions for probing questions;

– a participant information sheet to ensure that all participants receive the same information
about the study and the example code they should bring along;

– a consent form that participants need to sign;
– a transcription guide with guidelines for transcribing the interviews; and
– an analysis guide for the coding of Q4.

The complete studydesignpackage canbedownloaded at https://10.5281/zenodo.8233989.

B.2 Data

The raw data for questions Q1–Q3 & Q5–Q11 and the assertions for question Q4 can be
downloaded at https://10.5281/zenodo.8233989.

Appendix C: Heat Maps

Normalized heat-maps for all subgroups of developers based on gender (see Fig. 13), level of
professional experience (see Fig. 14) and experience with responsibility for quality assurance
(see Fig. 15).

123

https://doi.org/10.5281/zenodo.8233989
https://doi.org/10.5281/zenodo.8233989

128 Page 26 of 31 Empirical Software Engineering (2023) 28:128

MALE Comprehe
nsibility

Correctnes
s

Document
ation

Dynamic
behavior

Maintainab
ility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,62 0,18 0,00 0,06 0,34 0,07 0,35 0,40 0,08 0,07 0,00 0,00 2,17 4
Correctness 0,53 0,14 0,00 0,06 0,12 0,00 0,19 0,06 0,06 0,22 0,00 0,00 1,38 6

Documentation 2,75 0,04 0,48 0,06 0,37 0,00 1,27 0,00 0,00 0,17 0,06 0,00 5,20 3
Dynamic behavior 0,15 0,04 0,00 0,18 0,10 0,00 0,06 0,00 0,00 0,07 0,00 0,00 0,60 9

Maintainability 0,30 0,06 0,00 0,00 0,31 0,04 0,04 0,16 0,06 0,04 0,00 0,00 0,99 7
Miscellaneous 0,16 0,20 0,00 0,07 0,05 0,00 0,20 0,00 0,00 0,02 0,00 0,00 0,71 8

Readability 1,72 0,19 0,09 0,08 0,33 0,00 2,82 0,41 0,22 0,31 0,13 0,00 6,29 2
Structure 2,26 0,09 0,14 0,49 1,95 0,00 1,36 1,82 0,33 0,24 0,00 0,00 8,69 1

Testability 0,11 0,59 0,11 0,17 0,38 0,00 0,04 0,00 0,24 0,00 0,00 0,00 1,64 5
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 12

Generic 0,05 0,00 0,05 0,00 0,00 0,00 0,04 0,00 0,00 0,08 0,00 0,00 0,22 10
Analysis 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,12 11
TOTAL 8,64 1,61 0,87 1,17 3,94 0,11 6,36 2,85 0,99 1,27 0,19 0,00 28

1 5 9 7 3 11 2 4 8 6 10 12 28

FEMALE Comprehe
nsibility

Correctnes
s

Document
ation

Dynamic
behavior

Maintainab
ility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,06 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,18 8
Correctness 0,00 0,13 0,00 0,09 0,10 0,00 0,06 0,04 0,00 0,11 0,00 0,00 0,52 5

Documentation 0,45 0,04 0,04 0,00 0,19 0,00 0,00 0,13 0,00 0,10 0,00 0,00 0,94 3
Dynamic behavior 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10

Maintainability 0,00 0,05 0,00 0,13 0,40 0,00 0,06 0,13 0,00 0,05 0,00 0,00 0,81 4
Miscellaneous 0,00 0,05 0,00 0,10 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,19 7

Readability 0,30 0,00 0,00 0,00 0,00 0,00 0,38 0,13 0,00 0,18 0,00 0,00 0,99 2
Structure 0,26 0,04 0,00 0,04 0,34 0,00 0,26 0,64 0,00 0,21 0,06 0,00 1,86 1

Testability 0,00 0,04 0,00 0,08 0,13 0,00 0,00 0,04 0,09 0,00 0,00 0,00 0,39 6
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10

Generic 0,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,13 9
Analysis 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10
TOTAL 1,20 0,35 0,04 0,44 1,26 0,00 0,76 1,11 0,09 0,64 0,12 0,00 6

2 7 10 6 1 11 4 3 9 5 8 11 6

Fig. 13 Normalized heat maps for all “assertions” (Q4) grouped by gender (male at the top)

123

Empirical Software Engineering (2023) 28 :128 Page 27 of 31 128

NO Comprehe
nsibility

Correctnes
s

Document
ation

Dynamic
behavior

Maintainab
ility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10
Correctness 0,19 0,16 0,00 0,13 0,12 0,00 0,00 0,00 0,04 0,20 0,00 0,00 0,82 4

Documentation 1,27 0,08 0,33 0,00 0,26 0,00 0,44 0,13 0,00 0,16 0,06 0,00 2,72 3
Dynamic behavior 0,15 0,00 0,00 0,00 0,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,23 8

Maintainability 0,00 0,08 0,00 0,00 0,23 0,00 0,04 0,00 0,00 0,05 0,00 0,00 0,39 5
Miscellaneous 0,00 0,08 0,00 0,10 0,05 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,26 6

Readability 0,69 0,00 0,06 0,00 0,06 0,00 1,19 0,25 0,13 0,24 0,13 0,00 2,75 2
Structure 1,10 0,04 0,14 0,04 0,70 0,00 0,73 1,39 0,10 0,13 0,00 0,00 4,37 1

Testability 0,04 0,04 0,00 0,08 0,09 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,25 7
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10

Generic 0,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,08 0,00 0,00 0,20 9
Analysis 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 10
TOTAL 3,55 0,49 0,54 0,34 1,58 0,00 2,43 1,77 0,26 0,85 0,19 0,00 12

1 7 6 8 4 11 2 3 9 5 10 11 12

SOME Comprehe
nsibility

Correctnes
s

Document
ation

Dynamic
behavior

Maintainab
ility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,34 0,00 0,00 0,00 0,32 0,07 0,11 0,17 0,03 0,07 0,06 0,00 1,18 4
Correctness 0,10 0,00 0,00 0,00 0,06 0,00 0,11 0,00 0,00 0,06 0,00 0,00 0,33 7

Documentation 1,27 0,00 0,05 0,00 0,19 0,00 0,54 0,00 0,00 0,00 0,00 0,00 2,04 3
Dynamic behavior 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11

Maintainability 0,24 0,00 0,00 0,00 0,20 0,00 0,06 0,07 0,06 0,00 0,00 0,00 0,63 6
Miscellaneous 0,06 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,12 8

Readability 0,96 0,13 0,00 0,00 0,04 0,00 1,04 0,07 0,03 0,11 0,00 0,00 2,37 2
Structure 1,00 0,00 0,00 0,18 0,89 0,00 0,43 0,40 0,11 0,27 0,06 0,00 3,34 1

Testability 0,07 0,45 0,11 0,00 0,12 0,00 0,00 0,00 0,06 0,00 0,00 0,00 0,82 5
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11

Generic 0,00 0,00 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,05 10
Analysis 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,12 8
TOTAL 4,03 0,64 0,22 0,18 1,82 0,07 2,35 0,72 0,29 0,57 0,12 0,00 11

1 5 8 9 3 11 2 4 7 6 10 12 11

EXTENSIVE Comprehe
nsibility

Correctnes
s

Document
ation

Dynamic
behavior

Maintainab
ility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,33 0,18 0,00 0,06 0,08 0,00 0,24 0,22 0,05 0,00 0,00 0,00 1,17 4
Correctness 0,24 0,11 0,00 0,02 0,04 0,00 0,14 0,11 0,02 0,07 0,00 0,00 0,75 7

Documentation 0,66 0,00 0,14 0,06 0,11 0,00 0,30 0,00 0,00 0,10 0,00 0,00 1,37 3
Dynamic behavior 0,00 0,04 0,00 0,18 0,02 0,00 0,06 0,00 0,00 0,07 0,00 0,00 0,37 9

Maintainability 0,06 0,03 0,00 0,13 0,28 0,04 0,00 0,22 0,00 0,04 0,00 0,00 0,78 6
Miscellaneous 0,10 0,17 0,00 0,07 0,05 0,00 0,11 0,00 0,00 0,02 0,00 0,00 0,52 8

Readability 0,37 0,06 0,03 0,08 0,23 0,00 0,97 0,21 0,06 0,14 0,00 0,00 2,15 2
Structure 0,43 0,09 0,00 0,32 0,70 0,00 0,46 0,67 0,12 0,06 0,00 0,00 2,84 1

Testability 0,00 0,14 0,00 0,17 0,30 0,00 0,04 0,04 0,27 0,00 0,00 0,00 0,96 5
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11

Generic 0,05 0,00 0,00 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,09 10
Analysis 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11
TOTAL 2,25 0,83 0,16 1,10 1,80 0,04 2,33 1,48 0,52 0,50 0,00 0,00 11

2 6 9 5 3 10 1 4 7 8 11 11 11

Fig. 14 Normalized heat maps for all “assertions” (Q4) grouped by professional experience (no experience at
the top, some experience in the middle, extensive experience at the bottom)

123

128 Page 28 of 31 Empirical Software Engineering (2023) 28:128

NO QA Comprehe
nsibility

Correctne
ss

Document
ation

Dynamic
behavior

Maintaina
bility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,22 0,00 0,00 0,03 0,06 0,07 0,14 0,21 0,03 0,07 0,06 0,00 0,89 7
Correctness 0,19 0,21 0,00 0,13 0,17 0,00 0,11 0,04 0,04 0,29 0,00 0,00 1,17 5

Documentation 2,11 0,08 0,47 0,00 0,32 0,00 0,99 0,13 0,00 0,26 0,06 0,00 4,42 3
Dynamic behavior 0,15 0,04 0,00 0,09 0,08 0,00 0,00 0,00 0,00 0,03 0,00 0,00 0,39 9

Maintainability 0,11 0,08 0,00 0,13 0,60 0,00 0,09 0,25 0,06 0,05 0,00 0,00 1,37 4
Miscellaneous 0,06 0,08 0,00 0,10 0,08 0,00 0,09 0,00 0,00 0,00 0,00 0,00 0,41 8

Readability 1,43 0,13 0,06 0,08 0,06 0,00 2,31 0,36 0,16 0,45 0,13 0,00 5,16 2
Structure 2,00 0,09 0,14 0,33 1,54 0,00 1,34 1,88 0,21 0,44 0,06 0,00 8,02 1

Testability 0,11 0,09 0,05 0,26 0,26 0,00 0,00 0,04 0,09 0,00 0,00 0,00 0,90 6
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11

Generic 0,13 0,00 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,08 0,00 0,00 0,25 10
Analysis 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 11
TOTAL 6,49 0,80 0,78 1,14 3,17 0,07 5,07 2,91 0,58 1,67 0,31 0,00 23

1 7 8 6 3 11 2 4 9 5 10 12 23

QA Comprehe
nsibility

Correctne
ss

Document
ation

Dynamic
behavior

Maintaina
bility

Miscellane
ous

Readabilit
y Structure Testability Non-

specific Generic Analysis TOTAL

Comprehensibility 0,46 0,18 0,00 0,03 0,34 0,00 0,21 0,19 0,05 0,00 0,00 0,00 1,45 4
Correctness 0,34 0,06 0,00 0,02 0,04 0,00 0,14 0,06 0,02 0,04 0,00 0,00 0,73 6

Documentation 1,09 0,00 0,05 0,06 0,23 0,00 0,29 0,00 0,00 0,00 0,00 0,00 1,72 3
Dynamic behavior 0,00 0,00 0,00 0,10 0,02 0,00 0,06 0,00 0,00 0,03 0,00 0,00 0,21 9

Maintainability 0,19 0,03 0,00 0,00 0,10 0,04 0,00 0,04 0,00 0,04 0,00 0,00 0,43 8
Miscellaneous 0,10 0,17 0,00 0,07 0,02 0,00 0,11 0,00 0,00 0,02 0,00 0,00 0,48 7

Readability 0,59 0,06 0,03 0,00 0,27 0,00 0,89 0,17 0,06 0,04 0,00 0,00 2,12 2
Structure 0,52 0,05 0,00 0,20 0,75 0,00 0,27 0,58 0,12 0,02 0,00 0,00 2,53 1

Testability 0,00 0,54 0,06 0,00 0,26 0,00 0,04 0,00 0,24 0,00 0,00 0,00 1,13 5
Non-specific 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 12

Generic 0,05 0,00 0,00 0,00 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,09 11
Analysis 0,00 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,00 0,12 10
TOTAL 3,34 1,15 0,14 0,48 2,02 0,04 2,04 1,05 0,49 0,24 0,00 0,00 11

1 4 9 7 3 10 2 5 6 8 11 11 11

Fig. 15 Normalized heat maps for all “assertions” (Q4) grouped by responsibility for quality assurance (No
responsibility at the top)

Acknowledgements Thiswork has in parts been supported byELLIIT; the Swedish StrategicResearchArea in
IT andMobile Communications. The authors thank all interviewees for sharing their examples and experience.

Author Contributions Jürgen Börstler and Daniel Toll contributed to the study conception, design and mate-
rial preparation. Data collection and preparation were performed by Jürgen Börstler, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, Bonnie MacKellar, Harald Störrle, Daniel Toll
and Jelle vanAssema. Data analysis was performed byKwabena EboBennin, JürgenBörstler, SaraHooshangi,
Johan Jeuring, Hieke Keuning, Carsten Kleiner and Bonnie MacKellar. The first draft of the manuscript was
written by Kwabena Ebo Bennin and Jürgen Börstler and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding Open access funding provided by Blekinge Institute of Technology.

Declarations

Conflicts of interest All authors certify that they have no affiliations with or involvement in any organization
or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this
manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2023) 28 :128 Page 29 of 31 128

References

Ajami S,Woodbridge Y, Feitelson DG (2017) Syntax, predicates, idioms: what really affects code complexity?
In: Proceedings of the 25th international conference on program comprehension, pp 66–76

Al Dallal J, Abdin A (2018) Empirical evaluation of the impact of object-oriented code refactoring on quality
attributes: a systematic literature review. IEEE Trans Softw Eng 44(1):44–69

Al-Kilidar H, Cox K, Kitchenham B (2005) The use and usefulness of the iso/iec 9126 quality standard. In:
Proceedings of the 4th international symposium on empirical software engineering, pp 126–132

Alshayeb M (2009) Empirical investigation of refactoring effect on software quality. Inf Softw Technol
51(9):1319–1326

Antinyan V, Staron M, Sandberg A (2017) Evaluating code complexity triggers, use of complexity measures
and the influence of code complexity on maintenance time. Empir Softw Eng 22(6):3057–3087

AvidanE, FeitelsonDG (2017) Effects of variable names on comprehension an empirical study. In: Proceedings
of the 25th international conference on program Comprehension, pp 55–65

Bakota T, Hegedűs P, Körtvélyesi P, Ferenc R, Gyimóthy T (2011) A probabilistic software quality model. In:
Proceedings of the 27th IEEE international conference on software maintenance, pp 243–252

Bavota G, Russo B (2015) Four eyes are better than two: On the impact of code reviews on software quality.
In: Proceedings of the 31st IEEE international conference on software maintenance and evolution, pp
81–90

Beniamini G, Gingichashvili S, Orbach AK, Feitelson DG (2017) Meaningful identifier names: the case of
single-letter variables. In: Proceedings of the 25th international conference on program comprehension,
pp 45–54

Börstler J, Störrle H, Toll D, van Assema J, Duran R, Hooshangi S, Jeuring J, Keuning H, Kleiner C,MacKellar
B (2018) “I know it when I see it” – Perceptions of code quality: ITiCSE’17 Working Group Report. In:
Proceedings of the 2017 ITiCSE conference working group reports, pp 70–85

Buse RP, Weimer WR (2010) Learning a metric for code readability. IEEE Trans Softw Eng 36(4):546–558
Butler S, Wermelinger M, Yu Y, Sharp H (2010) Exploring the influence of identifier names on code quality:

An empirical study. In: Proceedings of the 14th european conference on software maintenance and
reengineering, pp 156–165

Chatzigeorgiou A, Manakos A (2010) Investigating the evolution of bad smells in object-oriented code. In:
2010 seventh international conference on the quality of information and communications technology,
IEEE, pp 106–115

Correia JP, Kanellopoulos Y, Visser J (2009) A survey-based study of the mapping of system properties to
iso/iec 9126 maintainability characteristics. In: Proceedings of the 27th IEEE international conference
on software maintenan, pp 61–70

Creswell JW, Creswell JD (2017) Research design: Qualitative, quantitative, and mixed methods approaches.
Sage publications

Curtis B, Martin RA, Douziech PE (2022) Measuring the structural quality of software systems. Computer
55(3):87–90

Davila N, Nunes I (2021) A systematic literature review and taxonomy of modern code review. J Syst Softw
177:110951

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source code lexicon and readability
on developers’ cognitive load. In: Proceedings of the 26th conference on program comprehension, pp
286–296

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC Press
Freelon D (2013) Recal oir: ordinal, interval, and ratio intercoder reliability as a web service. International

Journal of Internet Science 8(1):10–16
Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Empir Softw Eng 22(5):2585–

2611
Gorla N, Lin SC (2010) Determinants of software quality: A survey of information systems project managers.

Inf Softw Technol 52(6):602–610
Green R, Ledgard H (2011) Coding guidelines: Finding the art in the science. Communications of the ACM

54(12):57–63
Hatton L (2008) Testing the value of checklists in code inspections. IEEE Software 25(4):82–88
Hennink M, Kaiser BN (2022) Sample sizes for saturation in qualitative research: A systematic review of

empirical tests. Social Science & Medicine 292:114523
Humble Á (2015) Guide to transcribing. https://www.msvu.ca/wp-content/uploads/2020/05/GuideTrans

cribing.pdf, Accessed 29 Nov 2021

123

https://www.msvu.ca/wp-content/uploads/2020/05/GuideTranscribing.pdf
https://www.msvu.ca/wp-content/uploads/2020/05/GuideTranscribing.pdf

128 Page 30 of 31 Empirical Software Engineering (2023) 28:128

ISO/IEC (2011) Systems and software engineering – Systems and software quality requirements and evalu-
ation (SQuaRE) – system and software quality models. Tech. Rep. ISO/IEC 25010:2011, International
Organization for Standardization, Geneva, Switzerland

Jabangwe R, Börstler J, Šmite D, Wohlin C (2015) Empirical evidence on the link between object-oriented
measures and external quality attributes: a systematic literature review. Empir Softw Eng 20(3):640–693

Jørgensen M (1999) Software quality measurement. Adv Eng Softw 30(12):907–912
Kim M, Zimmermann T, Nagappan N (2014) An empirical study of refactoring challenges and benefits at

Microsoft. IEEE Transactions on Software Engineering 40(7):633–649
Ko AJ, Myers BA (2005) A framework and methodology for studying the causes of software errors in pro-

gramming systems. Journal of Visual Languages & Computing 16(1–2):41–84
Kollanus S, Koskinen J (2009) Survey of software inspection research. TheOpen Software Engineering Journal

3(1):15–34
Kononenko O, Baysal O, Godfrey MW (2016) Code review quality: How developers see it. In: Proceedings

of the 38th international conference on software engineering, pp 1028–1038
Malaquias R, Ribeiro M, Bonifácio R, Monteiro E, Medeiros F, Garcia A, Gheyi R (2017) The discipline of

preprocessor-based annotations – does #ifdef tag n’t #endif matter. In: Proceedings of the 25th interna-
tional conference on program comprehension, pp 297–307

Martin RC (2008) Clean code: a handbook of agile software craftsmanship. Prentice-Hall
Menzies T, Greenwald J, Frank A (2006) Data mining static code attributes to learn defect predictors. Trans

Softw Eng 33(1):2–13
Miguel JP, Mauricio D, Rodríguez G (2014) A review of software quality models for the evaluation of software

products. International Journal of Software Engineering & Applications 5(6):31–53
Müller SC, Fritz T (2016) Using (bio) metrics to predict code quality online. In: Proceedings of the 38th

international conference on software engineering, pp 452–463
Nakajima T (2019) Study group report on SQuaRE future direction. In: Proceedings of the 1st international

workshop on experience with square series and its future direction (co-located with 26th Asia-Pacific
Software Engineering Conference), pp 1–5

Nistala P, Nori KV, Reddy R (2019) Software quality models: A systematic mapping study. In: Proceedings
of the 13th IEEE/ACM international conference on software and system processes, pp 125–134

Nuñez-Varela AS, Pérez-Gonzalez HG, Martínez-Perez FE, Soubervielle-Montalvo C (2017) Source code
metrics: A systematic mapping study. J Syst Softw 128:164–197

Pantiuchina J, Lanza M, Bavota G (2018) Improving code: The (mis)perception of quality metrics. In: Pro-
ceedings of the 34th IEEE international conference on software maintenance and evolution, pp 80–91

Peters R, Zaidman A (2012) Evaluating the lifespan of code smells using software repository mining. In:
Proceedings of the 16th european conference on software maintenance and reengineering, pp 411–416

Plösch R, Dautovic A, Saft M (2014) The value of software documentation quality. In: Proceedings of the 14th
International conference on quality software, pp 333–342

Rong G, Zhang H, Shao D (2014) Investigating code reading techniques for novice inspectors: an industrial
case study. In: Proceedings of the 18th international conference on evaluation and assessment in software
engineering, p 33

Sadeghzadeh Hemayati M, Rashidi H (2018) Software quality models: A comprehensive review and analysis.
Journal of Electrical and Computer Engineering Innovations 6(1):59–76

Sadowski C, Söderberg E, Church L, SipkoM,Bacchelli A (2018)Modern code review: a case study at Google.
In: Proceedings of the 40th international conference on software engineering: software engineering in
practice, pp 181–190

Scalabrino S, Bavota G, Vendome C, Linares-Vasquez M, Poshyvanyk D, Oliveto R (2019) Automatically
assessing code understandability. IEEE Trans Softw Eng 47(3):595–613

Sutter H, Alexandrescu A (2004) C++ coding standards: 101 rules, guidelines, and best practices. Pearson
Education

Sweller J, Ayres P, Kalyuga S (2011) Cognitive load theory. Springer
Tahir A, Bennin KE, MacDonell SG, Marsland S (2018) Revisiting the size effect in software fault predic-

tion models. In: Proceedings of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, p 23

Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, Poshyvanyk D (2017) When and why
your code starts to smell bad (and whether the smells go away). Trans Softw Eng 43(11):1063–1088

Vermeulen A, Ambler SW, Bumgardner G, Metz E, Misfeldt T, Thompson P, Shur J (2000) The Elements of
Java (TM) Style. Cambridge University Press

Wintus T, Manshreck T, Wright H (2020) Software Engineering at Google. O’Reilly, Sebastopol, CA, USA

123

Empirical Software Engineering (2023) 28 :128 Page 31 of 31 128

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Jürgen Börstler1 · Kwabena E. Bennin2 · Sara Hooshangi3 · Johan Jeuring4 ·
Hieke Keuning4 · Carsten Kleiner5 · Bonnie MacKellar6 · Rodrigo Duran7 ·
Harald Störrle8 · Daniel Toll9 · Jelle van Assema10

Kwabena E. Bennin
kwabena.bennin@wur.nl

Sara Hooshangi
shoosh@vt.edu

Johan Jeuring
J.T.Jeuring@uu.nl

Hieke Keuning
h.w.keuning@uu.nl

Carsten Kleiner
carsten.kleiner@hs-hannover.de

Bonnie MacKellar
mackellb@stjohns.edu

Rodrigo Duran
rodrigo.duran@aalto.fi

Harald Störrle
Harald.Stoerrle@qaware.de

Daniel Toll
daniel.toll@lnu.se

Jelle van Assema
J.vanAssema@uva.nl

1 Blekinge Institute of Technology, Karlskrona, Sweden
2 Wageningen University and Research, Wageningen, The Netherlands
3 Virginia Tech, Falls Church, VA, USA
4 Utrecht University, Utrecht, The Netherlands
5 University of Applied Sciences & Arts Hannover, Hannover, Germany
6 St John’s University, Queens, NY, USA
7 Aalto University, Helsinki, Finland
8 QAware GmbH, Munich, Germany
9 Linnæus University, Kalmar, Sweden
10 University of Amsterdam, Amsterdam, The Netherlands

123

http://orcid.org/0000-0003-0639-4234

	Developers talking about code quality
	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Research Questions
	3.2 Interview Questions
	3.3 Participant Recruiting/Sampling
	3.4 Data Collection
	3.5 Coding of Open Questions
	3.6 Threats to Validity

	4 Results and Analysis
	4.1 Interviewee Demographics
	4.2 Example Demographics
	4.3 Coding Scheme
	4.4 Definitions of Code Quality (RQ1.1)
	4.5 Properties Targeted by Quality Improvements (RQ1.2)
	4.6 Properties Focused on in Code Examples (RQ2)
	4.7 ``Abstract'' Perceptions of Code Quality Versus ``Concrete'' Manifestations in Code (RQ3)

	5 Discussion
	6 Summary and Conclusions
	Appendix A: Interview Questions
	Appendix B: Supplementary Materials
	B.1 Study Design Package
	B.2 Data

	Appendix C: Heat Maps
	Acknowledgements
	References

