
https://doi.org/10.1007/s10664-023-10375-y

Experimental comparison of features, analyses,
and classifiers for Android malware detection

Lwin Khin Shar1 · Biniam Fisseha Demissie2 ·Mariano Ceccato3 ·
Yan Naing Tun1 · David Lo1 · Lingxiao Jiang1 · Christoph Bienert4

Accepted: 24 July 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Android malware detection has been an active area of research. In the past decade, several
machine learning-based approaches based on different types of features that may characterize
Android malware behaviors have been proposed. The usually-analyzed features include API
usages and sequences at various abstraction levels (e.g., class and package), extracted using
static or dynamic analysis. Additionally, features that characterize permission uses, native
API calls and reflection have also been analyzed. Initial works used conventional classifiers
such as Random Forest to learn on those features. In recent years, deep learning-based
classifiers such as Recurrent Neural Network have been explored. Considering various types
of features, analyses, and classifiers proposed in literature, there is a need of comprehensive
evaluation on performances of current state-of-the-art Android malware classification based
on a common benchmark. In this study, we evaluate the performance of different types of
features and the performance between a conventional classifier, Random Forest (RF) and a
deep learning classifier, Recurrent Neural Network (RNN). To avoid temporal and spatial
biases, we evaluate the performances in a time- and space-aware setting in which classifiers
are trained with older apps and tested on newer apps, and the distribution of test samples is
representative of in-the-wild malware-to-benign ratio. Features are extracted from a common
benchmark of 7,860 benign samples and 5,912 malware, whose release years span from 2010
to 2020. Among other findings, our study shows that permission use features perform the
best among the features we investigated; package-level features generally perform better than
class-level features; static features generally perform better than dynamic features; and RNN
classifier performs better than RF classifier when trained on sequence-type features

Keywords Malware detection · Machine learning · Deep learning · Android

Communicated by: Jacques Klein

B Lwin Khin Shar
lkshar@smu.edu.sg

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Published online: 26 September 2023

Empirical Software Engineering (2023) 28:130

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10375-y&domain=pdf
http://orcid.org/0000-0001-5130-0407

1 Introduction

Android platform has dominated the smart phone market for years now. With currently more
than three billion devices running Android, it is the most popular end-user operating system
in the world. Unsurprisingly, its enormous user base, coupled with the popularity of mobile
apps led to the launch of several malicious applications by hackers. Symantec Symantec
(2019) reported that in 2018, it detected an average of 10,573 mobile malware per day; found
that one in 36 mobile devices has high risk apps installed; and one in 14.5 apps accesses high
risk user data.

To detect Android malware, several approaches have been proposed by the research com-
munity. These approaches have built detection models utilizing either sequence of API call
features Tobiyama et al. (2016); Karbab et al. (2018); Onwuzurike et al. (2019), use of API
call features Sharma and Dash (2014); Chan and Song (2014); Yerima et al. (2015); Arp et al.
(2014) or frequency of API call features Aafer et al. (2013); Garcia et al. (2018). API call
features represent invocations of Android APIs. Some approaches Enck et al. (2009); Sanz
et al. (2013); Huang et al. (2013); Liu and Liu (2014); Sharma and Dash (2014); Chan and
Song (2014); Arp et al. (2014); Lindorfer et al. (2015) categorized Android APIs according
to privilege levels (known as Android permissions). In Android, APIs are classified into four
privilege levels — normal, signature, dangerous, and special. These approaches rely on the
concept that malware typically require privileged operations (i.e., dangerous permissions)
such as read/send SMS, read contact, read location, etc. Given that modernmalware often use
reflections and system (native API) calls, to hide their true behaviours and implement their
malicious functionalities, some approaches such as Garcia et al. (2018); Suarez-Tangil et al.
(2017); Afonso et al. (2015) utilized features that represent native API calls and reflections,
in an attempt to further distinguishmalware from benign apps. In addition to permission uses,
Kim et al. Kim et al. (2018) also investigated the use of app components as features. Hence,
a study of the significance of those features for Android malware detection on a common
benchmark would be beneficial.

TheAPI calls can be extracted at various abstraction levels such asmethod, class, package,
and family. Since there are millions of unique methods in Android, some approaches Garcia
et al. (2018); Onwuzurike et al. (2019); Ikram et al. (2019) have proposed to abstract API
calls at class and package levels. This reduced the number of features significantly and yet
produced comparable or even better results Garcia et al. (2018); Onwuzurike et al. (2019);
Ikram et al. (2019) than using API calls at method level.

To extract these features, in general, two types of techniques are used—static analysis Arp
et al. (2014); Chan and Song (2014);Yang et al. (2018);Garcia et al. (2018);Onwuzurike et al.
(2019); Ikram et al. (2019) and dynamic analysis Dini et al. (2012); Tobiyama et al. (2016);
Afonso et al. (2015). Typically, static analysis-based features cover more information since
static analysis can reason with the whole program code whereas dynamic analysis-based
features are limited to the code that is executed. On the other hand, static analysis may have
issues dealing with complex code such as code obfuscation, and modern malware is usually
crafted with obfuscated code Garcia et al. (2018). In general, static analysis and dynamic
analysis complement each other. Hence, some approaches such as Lindorfer et al. (2015)
perform both analyses and use both types of features.

Once these features have been extracted using program analyses, machine learning classi-
fiers, such as Support Vector Machines (SVM), K-Nearest Neighbours, and Random Forest,
are used to train on the features to build malware detectors. For instance, DadiDroid Ikram
et al. (2019) andMamaDroidOnwuzurike et al. (2019) used all the three classifiersmentioned

123

130 Page 2 of 40 Empirical Software Engineering (2023) 28:130

above; RevealDroid Garcia et al. (2018) used SVM; Huang et al. Huang et al. (2013) used
AdaBoost, Naive Bayes, Decision Tree, and SVM. In parallel, other studies Tobiyama et al.
(2016); McLaughlin et al. (2017); Karbab et al. (2018); Xu et al. (2018) have focused on
the use of deep learning classifiers, such as Convolutional Neural Network and Recurrent
Neural Network, to build malware detectors. Deep learning classifiers use several neural
network layers to study various levels of representations and extract higher-level features
from the given lower-level ones. Hence, in general, they have a built-in feature selection
process and are better at learning complex patterns. On the other hand, it generally comes
with a much larger cost in terms of computational resources. Deep learning classifiers also
typically have more parameters to tune and typically require intensive fine-tuning to match
the characteristics of datasets.

In terms of evaluating themalware detection performance, cross validation or random split
schemes are commonly used in literature Lindorfer et al. (2015); Arp et al. (2014); Afonso
et al. (2015); Karbab et al. (2018). But, as reported by Allix et al. (2016) and Pendlebury
et al. (2019), these evaluation schemes are biased because data from the ‘future’ is used in
training the classifier. Fu and Cai (2019) showed that F-measure drops from 90% to 30%
when training and test data are split based on one year gap. Additionally, Pendlebury et al.
(2019) reported an issue with spatial bias where the evaluation does not consider the realistic
distribution between malware and benign samples.

In viewof the proposals of different types of features, different types of underlying analyses
used for feature extraction, and different types of classifiers, there is a need for a com-
prehensive evaluation on the performance of current state-of-the-art in Android malware
classification on a common benchmark. There is also a need to evaluate the performances
in a time- and space-aware setting. Hence, in this study, we evaluate the malware detection
accuracy of features, analyses, and classifiers based on a common benchmark. Our evaluation
includes the comparison between 14 types of features, the comparison between conventional
machine learning classifier and deep learning classifier, the study of the impact of additional
features such as native API calls and reflection, and combined static and dynamic features,
and the robustness of features over Android evolution.

The experiments are conducted on a benchmark of 13,772 apps (7,860 benign apps and
5,912 malware) that are released from 2010 to 2020. Benign samples were collected from
Androzoo repository Allix et al. (2016) while malware samples were collected from both
Androzoo and Drebin Arp et al. (2014) repositories. We extract static features from call
graph of Android package (apk) codes and dynamic features by executing the app in an
Android emulator using our in-house intent-fuzzer combined with Android’sMonkey testing
framework Android (2019).

Our preliminary study, documented in our conference paper Shar et al. (2020), evaluated
the performance between sequence of API calls features and use of API calls features and
evaluated the performance between un-optimized classifiers. This paper extends the previous
work and makes the following new contributions:

– We conduct a more systematic evaluation of the performances of features and classifiers.
More specifically, we evaluate the performances in a time- and space-aware setting in
which classifiers are trained with older apps and tested on newer apps and the distribution
of benign and malware samples is representative of in-the-wild malware-to-benign ratio.
These biases were not considered in our previous work.

– We significantly increase the size of our dataset. Our earlier work used the dataset of
6,971 apps. In this extension, we use the dataset of 13,772 apps collected over a period
of 11 years.

123

Page 3 of 40 130Empirical Software Engineering (2023) 28:130

– We analyze sequence/use/frequency of API calls features at two different abstraction
levels — class and package. We consider additional features that characterize reflection,
native API calls, and permission uses and app component uses in our evaluation.

– We perform a series of optimizations on the deep learning classifier and the conventional
machine learning classifier and compare their performance.

More specifically, the new research questions investigated in this study are:

– RQ1: Features. Which types of features perform the best? Are class-level features or
package-level features better? Are static analysis-based features or dynamic analysis-
based features better?
Finding. Permission use features perform the best; Package-level features generally per-
formbetter than class-level features. Static features generally performbetter than dynamic
features.

– RQ2: Classifiers. When optimized, which type of classifiers — conventional machine
learning (ML) classifier or deep learning (DL) classifier — performs better?
Finding. In our previous work Shar et al. (2020), the un-optimized DL classifiers did not
performaswell as the best conventionalMLclassifier (RandomForest). In this evaluation,
we observed thatwhen optimized, theDL classifier (RecurrentNeuralNetwork) performs
better than the conventional ML classifier (Random Forest) on sequence-type features.

– RQ3: Additional features. Does the inclusion of features that characterize reflection,
native API calls, and API calls that are classified as dangerous (dangerous permissions)
improve the malware detection accuracy? Does combining static analysis-based and
dynamic analysis-based features help?
Finding. Overall, inclusion of reflection feature, native API calls features, dangerous
permission features does not improve the performances significantly; combining static
and dynamic-based features in a naive manner results in a worse performance.

– RQ4: Robustness. How robust are the malware detectors against evolution in Android
framework and malware development?
Finding. Generally, the performance of malware detectors is sensitive to changes in
Android framework and malware development.

Data Availability The scripts used in our experiments and sample datasets are available at
our github page.1 We provide more detailed results and the complete dataset upon request.
The rest of the paper is organized as follows.

Section 2 discusses related work and motivates our work. Section 3 discuses the method-
ology — it explains the data collection and features extraction processes, and the machine
learning and deep learning classifiers we optimized and used. Section 4 presents the empirical
comparisons and discusses the results. Section 5 draws conclusions from this study and pro-
vides insights for Android malware researchers. Section 6 provides the concluding remarks
and proposals for future studies.

2 RelatedWork on AndroidMalware Detection

Surveys citenaway2018review reviewed the use of deep learning in combination with pro-
gram analysis for Android malware detection. Recently, Liu et al. (2022) also reviewed the
use of deep learning for Android malware defenses. In contrast to Naway and Li (2018), Liu

1 https://github.com/Jesper20/msoftx

123

130 Page 4 of 40 Empirical Software Engineering (2023) 28:130

https://github.com/Jesper20/msoftx

et al. additionally reviewed critical aspects of using deep learning to prevent/defend against
malicious behaviors (e.g., malware evolution, adversarial malware detection, deployment,
malware families). However, the contributions of both studies is a literature survey, focusing
on the use of deep learning for Android malware detection, rather than an empirical study
like ours.

Empirical studies There are a few empirical studiesAllix et al. (2015, 2016);Ma et al. (2019);
Cai (2020) in literature, which contrast different types of features and classifiers to detect
Android malware. Among them, Zhuo et al.’s study Ma et al. (2019) is closely related to
ours as it also investigates static sequence/use/frequency features extracted from control flow
graph. The main differences between Zhuo et al.’s study and ours are a) we consider both
static and dynamic analysis, b) we evaluate the use of native calls, reflection, permissions, and
API calls at class level and package level, c) we evaluate a DL algorithmwhereas we evaluate
both conventional ML and DL algorithms, d) most importantly, Zhuo et al’s study applied
cross validation for performance evaluation, which introduces temporal and spatial biases
whereas our evaluation takes measures to address these biases. In general, the other studies
focus on a single dimension such as features, analyses, classifiers, or temporal and spatial
aspects. By contrast, our study look at all those aspects and evaluate them on a common
benchmark.

Allix et al. (2016) conducts a large-scale empirical study on the dataset sizes used in
Android malware detection approaches. Allix et al. (2015) also investigates the relevance
of timeline in the construction of training datasets. Both studies Allix et al. (2015, 2016)
observed that performance of malware detector significantly dropped when they are tested
against the malware in the wild, i.e., malware that were not seen in the training. Allix et al.
(2015) presents a critical literature review of Android malware classification based on super-
vised machine learning. They define a dataset to be historically coherent when the apps in
the training set are all historically anterior to all the apps in the testing set. According to
their experiment, when the dataset is not historically coherent, classification performances
(e.g., F-measure) are artificially inflated. According to their literature review, a relevant por-
tion of the papers uses historically incoherent datasets, causing results to be biased. Another
study Pendlebury et al. (2019) additionally discussed the importance of space-aware setting
that consider the realistic distribution of malware and benign samples during both training
and testing. We took measure to mitigate these two biases in our evaluations. The need
of retraining an ML-based malware detector is defined by Cai (2020) as the sustainability
problem. Cai (2020) compares five malware detectors, revealing limitations with respect to
sustainability of the learned model. Our results confirm these findings. These existing studies
were conducted on limited types of analyses (static analysis) and features (e.g., sequence of
API calls), and limited span of app released years (≤ 3 years). Our work addresses the gap by
investigating the relevance of timeline in the construction of datasets representing different
types of features extracted from apps released in a wide time span of 11 years. We provide
complementary, additional findings to these existing studies.

Static analysis-based features Several approaches rely on static analysis to extract features
from the app such as permissions Enck et al. (2009); Wu et al. (2012); Sanz et al. (2013);
Huang et al. (2013); Liu and Liu (2014); Sharma and Dash (2014); Chan and Song (2014);
Arp et al. (2014); Suarez-Tangil et al. (2017), the sequence of API calls McLaughlin et al.
(2017); Chen et al. (2016); Shen et al. (2018); Karbab et al. (2018); Onwuzurike et al. (2019);
Shi et al. (2020); Zou et al. (2021), the use of API calls Sharma and Dash (2014); Zhang
et al. (2014); Chan and Song (2014); Yerima et al. (2015); Arp et al. (2014); Suarez-Tangil
et al. (2017); Ikram et al. (2019); Xu et al. (2019); Bai et al. (2020); Wu et al. (2021), or

123

Page 5 of 40 130Empirical Software Engineering (2023) 28:130

the frequency of API calls Aafer et al. (2013); Chen et al. (2016); Fan et al. (2016); Garcia
et al. (2018). A few approaches Garcia et al. (2018); Suarez-Tangil et al. (2017) also relied on
features that characterize native API calls and reflections. Since these approaches evaluate
various types of features independently and majority of these approaches were not evaluated
in a time- and/or space-aware manner, our work addresses this by evaluating all these types of
features on a common benchmark in a time- and space-aware manner. In addition, our study
evaluates features extracted not only with static analysis but also with dynamic analysis and
with both static and dynamic analysis combined. And we evaluate these features on both ML
and DL classifiers. Considering that analysis at method level leads to millions of features,
resulting in long training time andmemory consumption, some approaches Onwuzurike et al.
(2019); Ikram et al. (2019); Yang et al. (2018) abstracted features at class, package, family,
or entity levels, to save memory and time. Our study evaluates features at class level and
package level.

Dynamic analysis-based features Dynamic analysis-based approaches such as Dini et al.
(2012); Tobiyama et al. (2016); Afonso et al. (2015); Spreitzenbarth (2013) have mainly
focused on features at native API calls (system calls). Narudin et al. Narudin et al. (2016)
evaluate the performance of fiveMLclassifiers onnetwork features (API calls that involve net-
work communication) extracted with dynamic analysis. Most dynamic analysis approaches
have largely usedMonkey (UI) test generator Naway and Li (2018). But Monkey test genera-
tor only focuses on exercising UI components and could miss out component interactions. In
contrast to these approaches, our approach employs a combination of Monkey test generator
and intent fuzzing.

Hybrid analysis-based features As reported in Liu et al. Liu et al. (2022), possibly due to
high computational cost, very few approaches Yuan et al. (2014); Lindorfer et al. (2014);
Alshahrani et al. (2019); Spreitzenbarth (2013); Bläsing et al. (2010) combine static analy-
sis and dynamic analysis. And, these approaches focus on extracting specific features that
are generally considered to be dangerous, such as sending SMS and connecting to Inter-
net. For example, Droid-sec Yuan et al. (2014) uses features that characterize permission
requested and permission use, which are coarse-grained and prone to false positives Enck
et al. (2009). DDefender Alshahrani et al. (2019) uses features that are based on permis-
sions, network activities and native API calls. Monkey tool was also used in the dynamic
analysis; thus it may not be able to generate all the events that a malware can make. Mobile-
Sandbox Spreitzenbarth (2013) applies static analysis of manifest file and bytecode to guide
the dynamic analysis process. It then analyzes native API calls during the application’s
execution. AASandbox Bläsing et al. (2010) uses static analysis to extract suspicious code
patterns, such as the use of Runtime.exec() and functions related to reflection. During the
dynamic step, AASandbox runs the app in a controlled environment and monitors system
calls. In contrast to the above-mentioned approaches, we evaluate more types of features, and
evaluate both conventional machine learning and deep learning classifiers. We also employ a
combination ofMonkey test generator and intent fuzzing to cover both UI events and compo-
nent interactions. Marvin Lindorfer et al. (2015) also uses both static analysis and dynamic
analysis to extract features that are similar to the features extracted by our work. The features
extracted include permissions, reflection, native calls, Java classes, etc. But its classifier is
evaluated by randomly splitting training and test data, without considering the timeline in
the construction of training data, which could produce biased results.

Robust classifiers While Zhang et al. (2020) proposes a way to mitigate the problem of model
aging, Fu and Cai (2019), MaMaDroid Onwuzurike et al. (2019), Afonso et al. (2015), and
RevealDroid Garcia et al. (2018) propose the use of features that could be robust against

123

130 Page 6 of 40 Empirical Software Engineering (2023) 28:130

the evolution of apps (timeline). Our empirical study complements their work by evaluating
which combination of features, program analyses, and classifiers produces robust malware
detectors, on a common benchmark.

3 Methodology

This section explains the workflow of our empirical study. As illustrated in Fig. 1, it consists
of three phases. In the first phase, static analysis is used to extract manifest files and call
graphs; dynamic analysis is used to generate execution traces, from benign and malware
apps. In the second phase, various features — sequence/use/frequency of API calls features
at class level and package level, permission uses, and app component uses — are extracted
from call graphs and execution traces. Each type of features forms a distinct dataset. Each
record in the dataset, representing an app, is tagged with its known label. In the last phase,
classifiers — Random Forest (RF) and Recurrent Neural Network (RNN) — are trained and
tested on the labeled datasets in a time- and space-aware setting and produce the evaluation
results.

The following subsections discuss each phase in detail. As a running example, we will
use a malicious app called com.test .mygame released in year 2017, which has been flagged
as malware by 27 anti-viruses. It is a variant of the SmsPay malware where a legitimate app
is repackaged with covert functions to send and receive SMS messages, potentially causing
unexpectedly high phone charges.

3.1 Program Analysis

In this phase, static analysis and dynamic analysis are performed on the given Android
Application Packages (APKs).

Static analysis Given an APK, we use apktool2 to extract Android manifest file and use
FlowDroid Arzt et al. (2014) to extract call graph. Call graph contains paths from public entry
points of the app to the program termination. Those paths contain sequences of API calls.
FlowDroid is based on Soot (2018). Firstly, Soot converts a given APK (i.e., the DEX code)
into an intermediate representation called Jimple and FlowDroid performs flow analysis on
the Jimple code. The analysis is flow- and context-sensitive. FlowDroid also handles common
nativeAPI calls. Using some heuristics, it tracks data flow across some commonly used native
calls.

Dynamic analysis Static call graphs characterize all possible program behaviors, in terms of
API calls. But static analysis has inherent limitations, such as dealing with code obfuscation
and reflection. FlowDroid can only resolve reflective API calls when the arguments used
in the call are all string constants. Dynamic analysis can overcome this limitation. Hence,
the goal of dynamic analysis here is to execute test inputs to observe concrete program
behaviors. Since mobile apps are event driven in general, a good test generator needs to
be able to generate various kinds of events. In Android, events are typically triggered by
means of inter-component communication (intent messages sent by app components) or GUI
inputs. Hence, we use two different test generators — an Intent fuzzer and a GUI fuzzer. Our
Intent fuzzer was developed in our previous work Demissie et al. (2020). Firstly, it analyzes
call graph of the app to extract paths from public entry-points (i.e., inter/intra-component

2 https://ibotpeaches.github.io/Apktool/

123

Page 7 of 40 130Empirical Software Engineering (2023) 28:130

https://ibotpeaches.github.io/Apktool/

Fig. 1 The workflow of our experiments

communication interfaces) to the leaf nodes. Similar to the static analysis phase, we generate
the call graph of the app using Soot with FlowDroid plugin for Android. The call graph is
then traversed forward in depth-first search manner starting from the root node until a leaf
node is reached. The output of this step is paths from component entry points to the different
leaf nodes (method calls without outgoing edges). Once the list of paths is available, the
intent fuzzer generates inputs in an attempt to execute each path (target). The given app is

123

130 Page 8 of 40 Empirical Software Engineering (2023) 28:130

installed and executed on a fresh Android emulator. The generated inputs are Intent messages
that are sent to the app under test via Android Debug Bridge (ADB) commands. With ADB’s
privilege, we can also invoke private components as well as send events that can only be
generated by the system (e.g., BOOT_COMPLETED). Execution traces are then collected
using ADB logcat command. A genetic algorithm is used to guide the test generation, where
fitness function is defined based on the coverage of nodes in the target path. To this end, we
first instrument the app to collect execution traces and install the app on an Android emulator.
We then run our intent fuzzer with statically collected values (such as static strings) from
the app as seed (initial values). The generated inputs are Intent messages that are sent to the
app under test via the Android Debug Bridge (ADB). Our goal is to maximize coverage and
collect as many traces as possible. The traces are also used to guide the test generation.

While the Intent fuzzer exercises code parts that involve inter-/intra-component commu-
nications, it does not address user interactions through GUI. Therefore, to complement our
intent fuzzer, we use Google’s Android Monkey GUI fuzzer Android (2019). Monkey comes
with the Android SDK and is used to randomly generate GUI input events such as tap, input
text or toggleWiFi in an attempt to trigger abnormal app behaviors.We usedMonkey because
the random exploration of Monkey has been found to yield higher statement coverage than
tools utilizing advanced exploration techniques Choudhary et al. (2015). And by comple-
menting Monkey’s approach with other strategies (in this case inter-/intra communication),
we expect that the coverage could be further improved.

We measure the coverage achieved by this approach. Since code coverage is difficult
to measure due to the usage of libraries, we measured component coverage, by measuring
the ratio of the components that are executed when performing dynamic analysis and the
components that are listed in the Android manifest file. Component coverage is shown in
the histogram in Fig. 2. While on average component coverage is approximately 43%, a
remarkable number of apps reach 100% coverage. This degree of coverage is in line with
literature results Choudhary et al. (2015).

3.2 Features Extraction

From the call graphs and the execution traces generated in the previous phase, we extract
sequence features, use features, and frequency features at class level and package level. Each
type of features forms a distinct dataset. From the extracted API calls, we identify API
calls that require dangerous permissions. We also identify native API calls (e.g., API calls
that require system services and access hardware devices). Finally, we identify reflections
(i.e., classes that start with java.lang.re f lect) and mark them as additional features. From
the Android manifest files, we extract features that represent permission uses (permission
requests) and Android component uses as well, which are also considered as distinct datasets.

Note that the API calls that we extract here are abstracted at class level and package level.
The rationale for choosing class and package level features instead of method level features
is to reduce the amount of features, following the recent state-of-the-art approaches Garcia
et al. (2018); Yang et al. (2018); Onwuzurike et al. (2019); Ikram et al. (2019). Method level
features would result in millions of features that cost significantly long training time. Those
recent approaches have reported that, despite the cost, the classifiers may not achieve a better
accuracy since the feature vectors of the samples would be sparse and abstracted API calls
features characterize Android malware even better. The abstraction also provides robustness
against API changes in Android framework because methods are often subject to changes
and deprecation. Figure 3 shows an example of an API at different levels.

123

Page 9 of 40 130Empirical Software Engineering (2023) 28:130

0

500

1000

1500

0 10 20 30 40 50 60 70 80 90 100
Component coverage %

N
um

be
r o

f a
pp

s

Fig. 2 Histogram of component coverage

Regarding the extraction of dangerous features, we implemented an in-house tool that
crawls the Android permission documentation website3 and maps API calls to dangerous
permissions. This tool is similar to PScout Au et al. (2012) but PScout only supports up to
Andriod 5.11. Our tool supports Android 11 (API 30).4

Sequence Features Extraction.We extract sequence of API calls from call graphs and exe-
cution traces. Given a call graph, we traverse the graph in a depth first search manner and
extract class/package signatures5 as we traverse (hence, sequence). If there is a loop, the sig-
nature is traversed only once. Note that we only extract Android framework classes/packages,
Java classes/packages, and standard org classes/packages (org.apache, org.xml,
etc.). This is because it is common for malware to be obfuscated to circumvent malware
detectors. The obfuscation often involves renaming of custom (user-defined) library and
classes/packages. Hence, a malware detector will not be robust against obfuscation if it is
trained on custom library and classes/packages. A study Rastogi et al. (2013) has shown that
a simple renaming obfuscation can prevent popular anti-malware products from detecting
the transformed malware samples. Hence, we filtered classes/packages that are not from the
above-mentioned standard packages. Similarly, we extract classes/packages from the execu-
tion traces. However, since execution traces are already sequences, depth first search is not

3 https://developer.android.com/guide/topics/permissions/overview
4 our crawling tool is available in https://github.com/Jesper20/msoftx
5 note that package level features and class level features result in distinct datasets.

123

130 Page 10 of 40 Empirical Software Engineering (2023) 28:130

https://developer.android.com/guide/topics/permissions/overview
https://github.com/Jesper20/msoftx

Fig. 3 An example of an API and its package, class, and method

necessary. An excerpt of sequences of API calls extracted from a repackaged malware app
com.test .mygame is shown in Fig. 4.

Next, we discretized the sequence of API calls we extract above so that it can be processed
by the classifiers. More precisely, we replace each unique class/package signature with an
identifier, resulting in a sequence of numbers. We build a dictionary that maps each class to
its identifier. During the testing or deployment phase, we may encounter unknown API calls.
To address this, (1) we consider a large dictionary that covers over 160k class signatures and
4605 package signatures from standard libraries and (2) we replace all unknown signatures
with a fixed identifier.

The length of the sequences varies from one app to another. The sequence length deter-
mines the number of features and to have a fixed number of features, it is necessary to unify the
length of the sequences. Since we have two types of API calls sequences — from call graphs
and from execution traces — we chose two different uniform sequence lengths. Initially, we
extracted the whole sequences.We then took themedian length of sequences from call graphs
as the uniform sequence size, denoted as Lcg , for call graph-based sequence features and
took the median length of sequences from execution traces as the uniform sequence, denoted
as Ltr , for execution traces-based sequence features.6 If the length of a given sequence is
less than L , we pad the sequence with zeros; if the length is longer than L , we trim it to L ,
from the right. Hence, for each app, we end up with a sequence of numbers which is a feature
vector. Each number in the sequence corresponds to the categorical value of a feature. The
number of features is the uniform sequence length L . As a result, we obtain static-sequence
features from call graphs at class level and package level, denoted as ssfc and ssfp, respec-
tively. Likewise, we obtain dynamic-sequence features from execution traces at class level
and package level, denoted as dsfc and dsfp respectively. As an example, Table 1 shows a
sample dataset containing sequence features.

Use Features Extraction We extract use of API calls at class level and package level from
call graphs and execution traces. The extraction process is the same for both call graphs and
execution traces. We initially build a database that stores unique classes and packages. Again
for obfuscation resiliency, we only consider the Android framework, Java, and standard org
classes similar to extracting sequencefeatures. Given call graphs or execution traces, we scan
the files and extract the class signatures and the package signatures (sequence does not matter
in this case). Each unique class or package in our database corresponds to a feature (Table 5).
The value of a feature is 1 if the corresponding class/package is found in a given call graph or
execution trace; otherwise, it is 0. As a result, we obtain static-use features from call graphs
at class level and package level, denoted as sufc and sufp, respectively. Likewise, we obtain
dynamic-use features from execution traces at class level and package level, denoted as dufc
and dufp respectively. Table 2 shows a sample dataset containing use features at class level.

6 Lcg=85000, Ltr=21000

123

Page 11 of 40 130Empirical Software Engineering (2023) 28:130

Fig. 4 An excerpt of sequence of API calls from a malware sample. It shows the sequence of API calls that
require dangerous permissions (Telephony and Sms) and invoke a (potentially malicious) functionality via
reflection

Table 1 An excerpt of sequence
features extracted from static call
graphs. Sequence length L is
fixed at 21,000 for dynamic
features and 85,000 for static
features, which are the median
lengths observed in our datasets

seq1 seq2 … seqL label

benign1 4921 6172 … 84111 0

benign2 29011 4490 … 3923 0

mal1 23712 8122 … 0 1

mal2 213 6311 … 0 1

Fig. 5 AndroidManifest snippet showing permission and component definition

Table 2 An excerpt of use features including additional (native calls and reflection) features

telephony. app. reflect. hardware. label
SmsMessage Dialog AccessibleObject Camera

benign2 0 1 1 1 0

mal1 1 1 1 0 1

mal2 0 0 0 1 1

123

130 Page 12 of 40 Empirical Software Engineering (2023) 28:130

Table 3 An excerpt of frequency features including additional (native calls and reflection) features

telephony. app. reflect. hardware. label
SmsMessage Dialog AccessibleObject Camera

benign1 3 9 0 0 0

benign2 0 10 2 3 0

mal1 4 1 2 0 1

mal2 0 0 0 2 1

Frequency Features Extraction We extract frequency of API calls from call graphs and exe-
cution traces in a similar way to use of API calls features. Except that, for each unique
class/package signature, we record the number of its occurrences in the given call graph or
execution trace, instead of recording the value 1 to denote the presence of a class/package
signature. As a result, we obtain static-frequency features from call graphs at class level and
package level, denoted as sffc and sffp respectively. Likewise, we obtain dynamic-frequency
features from execution traces at class level and package level, denoted as dffc and dffp
respectively. Table 3 shows a sample dataset containing frequency features.

Permission and App Component Features Extraction Androidmanifest file specifies permis-
sions requested and app components used by the app. Some approaches have used features
that characterize permission uses Enck et al. (2009); Chan and Song (2014); Arp et al. (2014);
Lindorfer et al. (2015) and app component uses Kim et al. (2018) to detect Android malware.
Therefore, it is important to analyze those features as well. We wrote a Python script to
extract those features from Android manifest files. Figure 5 shows a snippet of AndroidMan-
ifest file. Line 1 shows the definition of the permission RECEIVE_ BOOT_COMPLETE the
app wishes to be granted to receive system notification when the device completes booting.
Line 3 shows the definition of a Broadcast Receiver app component RestartServiceReceiver
that will handle the system notification for the boot-complete. Table 4 shows a sample dataset
containing permission-use features.

Table 5 shows a summary of the features (datasets) extracted in this study. There are 14
types of features based on Type and Level of features and Analysis method used.

3.3 Classifiers

In the last phase, classifiers are trained and tested on the datasets. The following describes
the classifiers used in our evaluations.

Table 4 An excerpt of permission-use

CAMERA CALL_PHONE READ_SMS INTERNET label

benign1 1 0 1 0 0

benign2 0 1 1 0 0

mal1 0 0 1 0 1

mal2 0 0 0 1 1

123

Page 13 of 40 130Empirical Software Engineering (2023) 28:130

Table 5 Characteristics of the features (datasets) extracted

Dataset Type Level Analysis #features

1 dsfc Sequence Class Dynamic 21,000

2 dsfp Sequence Package Dynamic 21,000

3 ssfc Sequence Class Static 85,000

4 ssfp Sequence Package Static 85,000

5 dufc Use Class Dynamic 28,816

6 dufp Use Package Dynamic 1,255

7 sufc Use Class Static 161,240

8 sufp Use Package Static 4,605

9 dffc Frequency Class Dynamic 28,816

10 dffp Frequency Package Dynamic 1,255

11 sffc Frequency Class Static 161,240

12 sffp Frequency Package Static 4,605

13 pu Use Permission Static 4,242

14 cu Use App Component Static 116822

3.3.1 Deep Learning (DL) Classifier

Deep learning is a class of machine learning algorithms that uses multiple layers to pro-
gressively extract higher level features from raw input features. Deep learning classifiers
typically comprise an input layer, one or more hidden layers, and an output layer. In our pre-
vious work Shar et al. (2020), we studied three kinds of DL classifiers— standard deep neural
network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN).
However, in this work, we decided to use only one DL classifier due to the huge amount of
computation required for tuning and evaluating DL classifiers in general. We chose RNN and
our rationale is as follows:

The main principles behind CNN are sparse interaction, parameter sharing and equiv-
ariant representations to implement filter operators (i.e., kernels), particularly fitting for the
image recognition problem. But, in our context, API calls features hardly enjoy these proper-
ties. Recurrent Neural Network (RNN) is suitable for learning serial events such as language
processing or speech recognitionDeng et al. (2014).Unlike feed-forward neural networks like
standard DNN and CNN, RNN can use their internal memory to process arbitrary sequences
of inputs. More specifically, RNN has memory units, which retain the information of previ-
ous inputs or the state of hidden layers and its output depends on previous inputs, i.e., what
API is used last will impact what API is used next. Hence, by design, RNN is suitable for
sequence-type features. Furthermore, in our previous work Shar et al. (2020), we observed
that RNN performs well for use features. Therefore, we opted for RNN in our evaluation.

For use and frequency features, we use the RNN with one input layer, one LSTM layer,
one hidden layer, and the output layer with Softmax function. The input layer accepts use
or frequency features as vectors (Section 3.2). Each vector represents an app instance.
These vectors are directly fed to the LSTM layer. The LSTM layer is used to avoid the
error vanishing problem by fixing weight of hidden layers to avoid error decay and retain-
ing not all information of input but only selected information which is required for future
outputs.

123

130 Page 14 of 40 Empirical Software Engineering (2023) 28:130

Unlike use and frequency features, sequence features are not suitable for directly feed-
ing to the LSTM layer because numerical values for the features will then be treated as
frequency values by the classifier. As discussed in Karbab et al. (2018); McLaughlin et al.
(2017), it requires an additional vectorization technique that preserves the sequential pat-
terns. Therefore, for sequence features, we add a vectorization step as follows: the RNN
input layer accepts sequence features of each app instance (Section 3.2) as a vector. Each
class/package identifier in the input vector is transformed into a vector using one-hot encod-
ing McLaughlin et al. (2017); Tobiyama et al. (2016). The output from this input layer is
then fed to the LSTM layer. Alternative to one-hot encoding, embedding techniques such
as word2vec Mikolov et al. (2013), apk2vec Narayanan et al. (2018), node2vec Grover and
Leskovec (2016) and graph2vec Narayanan et al. (2017) can also be applied. However, we
leave the problem of evaluating various embedding techniques in Android malware detection
context as future work.

3.3.2 Conventional Machine Learning (ML) Classifier

Random Forest (RF) has been proven to be a highly accurate classifier for malware detec-
tion Eskandari and Hashemi (2012). In our previous work Shar et al. (2020), RF classifier
was evaluated to be the best classifier among ML classifiers. Since we are not comparing
the performance among ML classifiers in this extension work, we use only RF classifier as
the flagship of ML classifiers.7 RF is an ensemble of classifiers using many decision tree
models Barandiaran (1998). A different subset of training data is selected with a replace-
ment to train each tree. The remaining training data serves to estimate the error and variable
importance. We used Scikit-learn Pedregosa et al. (2011) to run the RF classifier. Similar to
RNN, we applied one-hot encoding for sequence features.

3.3.3 Optimizing the Classifiers

We tuned the hyper-parameters of both classifiers to achieve optimal performances as follows.

Tuning the hyper-parameters of RNN For tuning the parameters, we sampled the data from
year 2013 and year 2014 (see Table 8), which is never used as test data in our experiments.
In total, the data contains about 1000 malware and 1000 benign samples. During the prelimi-
nary tuning, we observed that different datasets require different parameter configuration for
improved results. In our preliminary phase, it took about 10 days to tune a relatively small
dataset (dufc). It would take about 30 days each for the larger ones. Since it is intractable
to do the tuning for each of the datasets. We decided to do tuning for only dsfc, dufc and
dffc datasets. We then used the same optimal configuration of dsfc for other sequence-type
datasets, i.e., dsfp, ssfc, and ssfp. The same is done for use and frequency datasets. We used
Optuna, a hyper-parameter optimization framework Akiba et al. (2019), to tune the following
hyper-parameters:

– Optimizer (ADAM, SGD, or RMSprop)
– learning rate (lr)
– number of neurons in hidden layer (hidden_sz)
– dropout ratio (p)
– Epoch

7 To cross validate the results, we also ran Logistic Regression and Support Vector Machines for one of the
datasets. The results are briefly discussed in Section 4.3.

123

Page 15 of 40 130Empirical Software Engineering (2023) 28:130

Table 6 Results of RNN before tuning and after tuning, on the benchmark of apps from year 2013 and year
2014. F1 (bf.) represents the results before optimization; F1 (aft.)

Dataset F1 (bf.) F1 (aft.) Optimizer lr hidden_sz p Epoch

dsfc (#1 in Table 5) 0.317 0.556 ADAM 0.0007 120 0.25 30

dufc (#5 in Table 5) 0.86 0.873 ADAM 0.001 30 0.25 30

dffc (#9 in Table 5) 0.748 0.872 ADAM 0.0007 70 0.25 30

represents the results after optimization; Optimizer represents the optimizer used; lr represents the learning
rate; hidden_sz represents the number of neurons used in hidden layer; p represents the drop out ratio; Epoch
defines the number of times that the learning algorithm will work through the training dataset to update the
parameters

– decay weight

Table 6 shows the tuned hyper-parameter values and the F-measure results before and
after hyper-parameter optimization.

Tuning the hyper-parameters of RF. Scikit-learn provides twowidely-used tuning libraries
— Exhaustive grid search and Randomized parameter optimization — for auto-tuning the
hyper-parameters of a given classifier to a given dataset.8 We combined both tuning methods
as follows:

We first apply Randomized parameter optimization, which basically conducts a random-
ized search over parameters, where each setting is sampled from a distribution over possible
parameter values. This gives us a good combination of hyper-parameter values efficiently.
We then widen those hyper-parameter values to a reasonable range9 and use exhaustive grid
search to search for the best hypyer-parameter values among the given range. We followed
the same process of tuning the RNN classifier. That is, we used the same apps from year
2013 and year 2014 as a basis to tune the RF classifier and we only tuned for dsfc, dufc, and
dffc datasets. This results in the optimized hyper-parameters of random forest for Android
malware classification as shown in Table 7.

3.4 Data Preprocessing

Imbalanced data causes the learning algorithm to bias towards the dominant classes, resulting
in misclassification of minority classes. One effective way to improve the performance of
classifiers is the synthetic generation of minority instances during the training phase. In our
experiments, we use synthetic minority oversampling technique (smote) Chawla et al. (2002)
to balance the training data.

4 Evaluation

This section presents the experimental comparison results of features, analyses, and classifiers
for Android malware detection. Specifically, we investigate the following research questions:

– RQ1: Features. Which types of features perform better?
– RQ2: Classifiers. When optimized, which type of classifiers — conventional machine
learning classifier or deep learning classifier — performs better?

8 https://scikit-learn.org/stable/modules/grid_search.html
9 Reasonable range is determined according to the time budget of 5 hours.

123

130 Page 16 of 40 Empirical Software Engineering (2023) 28:130

https://scikit-learn.org/stable/modules/grid_search.html

Table 7 Results of RF before tuning and after tuning, on the benchmark of apps from year 2013 and year
2014. F1 (bf.) represents the results before optimization; F1 (aft.) represents the results after optimization;
n_estimators represents the number of trees used; min_samples_split represents the minimum samples
required for splitting a branch;max_depth represents the maximum depth of the tree.

Dataset F1 (bf.) F1 (aft.) n_estimators min_samples_split max_depth

dsfc (#1 in Table 5) 0.605 0.657 200 5 90

dufc (#5 in Table 5) 0.817 0.823 94 2 60

dffc (#9 in Table 5) 0.827 0.835 10 5 100

– RQ3: Additional features. Does the inclusion of features that characterise reflection,
native API calls, and API calls classified as dangerous (dangerous permissions) improve
the malware detection accuracy? Does combining static analysis-based and dynamic
analysis-based features help?

– RQ4: Robustness. How robust are the malware detectors against evolution in Android
framework and malware development?

4.1 Experiment Design

Dataset Our benchmark consists of 13,772 apps—7,860 benign samples and 5,912malware
samples. The apps are released in a time-period between 2010 and 2020. Benign sampleswere
collected fromAndrozoo repositoryAllix et al. (2016).Malware sampleswere collected from
Androzoo repository Allix et al. (2016) and Drebin repository Arp et al. (2014). The labeling
of malware samples is confirmed by at least 10 antivirus software via VirusTotal.10 Zhao
et al. Zhao et al. (2021) highlighted the importance of considering sample duplication. That
is, a dataset might contain the same or very similar apps withminormodificationwhichmight
cause duplication bias. To avoid this bias, we randomized the download process. Initially,
we downloaded over 50k samples from the repositories. However, as we evaluate the use of
both static and dynamic analysis-based features, we had to filter those samples that can be
analyzed by both static and dynamic analysis tools.Whenwe use FlowDroidArzt et al. (2014)
tool to extract call graphs, some of the apps caused exceptions. But the main bottleneck was
dynamic analysis as our intent-fuzzing test generation tool encountered crashes or exceptions
for several apps. Therefore, we were not able to extract features for those cases. Note that
these are the limitations of the underlying program analysis tools and the objective of this
experiment is to compare features and classifiers and not to assess the feature extraction
components. We took the intersection of the apps that can be commonly analyzed by static
and dynamic analysis tools and ended up with 13,772 apps. Several malware samples from
our datasets are obfuscated. This is important to reflect the real world setting becausemalware
authors heavily rely on obfuscation to hide the true behaviors. Table 8 shows the statistics of
the datasets according to app release years.

In comparison, Table 9 shows the sizes of dataset used by Android malware detection
approaches in related work. But note that in comparison with these studies, we evaluate dif-
ferent types of features and both conventional machine learning and deep learning classifiers.
Hence, it was intractable for us to use a larger dataset size. Yet, our dataset size is comparable
to the sizes used in some recent studies such as Shen et al. (2018); Yang et al. (2018).

10 https://www.virustotal.com

123

Page 17 of 40 130Empirical Software Engineering (2023) 28:130

https://www.virustotal.com

Table 8 Dataset Statistics Year Malware Benign Total

2010 723 352 1075

2011 1407 683 2090

2012 450 470 920

2013 684 512 1196

2014 365 501 866

2015 639 347 986

2016 170 786 956

2017 866 401 1267

2018 467 3552 4019

2019 130 219 349

2020 11 37 48

Overall Total 5912 7860 13772

Performancemeasure We use F-measure (F1) to evaluate the performances, which is a stan-
dard measure typically used for evaluating malware detection accuracy Garcia et al. (2018);
Onwuzurike et al. (2019). F1 score reports an optimal blend (harmonic mean) of precision
and recall, instead of a simple average because it punishes extreme values. A classifier with
a precision of 1.0 and a recall of 0.0 has a simple average of 0.5 but an F1 score of 0. It can
be computed as F1 = 2 ∗ (precision ∗ recall)/(precision + recall).

Evaluation Procedure To avoid temporal bias problem as discussed in Allix et al. (2016);
Pendlebury et al. (2019), we split the data based on their release years. We then train the
classifier on the data released in a sequence of years and test it on the data released in the
subsequent years. To avoid spatial bias problem as discussed in Pendlebury et al. (2019), we
sample the malware instances from the test dataset so that malware-to-benign ratio is 18%.11

We note from Pendlebury et al. (2019) that malware-to-benign ratio in the wild ranges from
6% to 18% and we did evaluate the features and classifiers with both ratios. But we will
discuss the results based on the 18% ratio only.

Our general evaluation procedure to investigate our research questions is as follows: For
a given feature (listed in Table 5), we run 21 training and test experiments with the given
classifier (RF or RNN) as shown in Table 10.

Hardware used The experiments were performed on two Linuxmachines— 1) 40 cores Intel
CPU E5-2640 2.40GHz 330GB RAM and 2) 12 cores Intel CPU E5-2603 1.70GHz 204GB
RAM. It took about three months to extract call graphs and execution traces from all the 50k
plus samples. It took about one month to extract the features from the final benchmark which
contains 13,772 samples in total. It took about three months to conduct the machine learning
experiments.

4.2 RQ1: Comparison among Features

To investigate this research question, we compare the performance of 14 types of features
listed in Table 5. Since we are not comparing the performance of the classifiers in this case,

11 if the size of malware samples does not amount to 18% (which is the case for year 2018 dataset), we use
all available malware instances without sampling.

123

130 Page 18 of 40 Empirical Software Engineering (2023) 28:130

Table 9 Statistics of datasets of
some popular malware detection
approaches

Reference #Benign #Malware

Droid-sec Yuan et al. (2014) 250 250

DroidSift Zhang et al. (2014) 13500 2200

Drebin Arp et al. (2014) 123453 5560

Narudin et al. Narudin et al. (2016) 20 1000

Maldozer Karbab et al. (2018) 37627 33066

RevealDroid Garcia et al. (2018) 24679 30203

Shen et al. Shen et al. (2018) 3899 3899

EnMobile Yang et al. (2018) 1717 4897

MaMadroid Onwuzurike et al. (2019) 8447 35493

DaDiDroid Ikram et al. (2019) 43262 20431

Marvin Lindorfer et al. (2015) 84980 11733

Allix et al. Allix et al. (2015) 200000

we shall use only Random Forest classifier to evaluate the features. For each feature listed in
Table 5, we run 21 training and test experiments with the RF classifier as shown in Table 10.

Figure 6 shows the boxplot, mean, and standard deviation of F1 scores of Random Forest
classifier with 14 different types of features based on the 21 train and test evaluations. We
apply the Wilcoxon rank-sum test to perform pairwise comparison among features. For each

Table 10 Time- and space-aware
train and test procedure used in
our experiments

No Train Years Test Year Malware-to-Benign
Ratio (%) in test dataset

1 2010-2014 2015 18

2 2010-2014 2016 18

3 2010-2014 2017 18

4 2010-2014 2018 18

5 2010-2014 2019 18

6 2010-2014 2020 18

7 2010-2015 2016 18

8 2010-2015 2017 18

9 2010-2015 2018 18

10 2010-2015 2019 18

11 2010-2015 2020 18

12 2010-2016 2017 18

13 2010-2016 2018 18

14 2010-2016 2019 18

15 2010-2016 2020 18

16 2010-2017 2018 18

17 2010-2017 2019 18

18 2010-2017 2020 18

19 2010-2018 2019 18

20 2010-2018 2020 18

21 2010-2019 2020 18

123

Page 19 of 40 130Empirical Software Engineering (2023) 28:130

Fig. 6 Comparison of features based on F1 scores. See Table 5 regarding the feature notations

feature, we perform the Wilcoxon rank-sum test against a different feature and test whether
its F1 scores are statistically the same as the F1 scores of that feature (null hypothesis). The
corresponding p-values are reported in Table 11.

We assume a standard significance level of 95% (α = 0.05), i.e., we reject the null
hypothesis if p-value < 0.05. Table 12 shows the comparison result of each feature against
other features based on the p-values reported in Table 11. Each feature, say f , in a given row
is compared against the features in the ‘columns’. The label < or > in a given cell indicates
whether the feature, f , is worse than or better than the feature listed in the corresponding
column or not. The label ! denotes that there is no significant difference. For example, in the
first row, the feature dsfc is compared against other features. It performs worse than dufc,
dufp, sufc, sufp, dffc, dffp, sffc, sffp, and pu features; it has no statistical difference with other
features.

Table 11 P-values of the Wilcoxon rank-sum test between each pair of features

dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu

dsfc 0.372 0.097 0.232 0.009 0.009 0.001 0.000 0.005 0.009 0.007 0.002 0.000 0.064

dsfp 0.023 0.831 0.015 0.021 0.007 0.001 0.009 0.014 0.025 0.006 0.000 0.040

ssfc 0.004 0.004 0.001 0.000 0.000 0.001 0.002 0.002 0.000 0.000 0.102

ssfp 0.107 0.155 0.015 0.002 0.076 0.087 0.063 0.031 0.001 0.013

dufc 0.392 0.571 0.054 0.831 0.597 0.580 0.308 0.003 0.002

dufp 0.308 0.021 0.159 0.174 0.314 0.174 0.003 0.003

sufc 0.399 0.642 0.678 0.697 1.000 0.058 0.001

sufp 0.051 0.080 0.170 0.302 0.222 0.000

dffc 0.725 0.529 0.443 0.004 0.002

dffp 0.753 0.505 0.004 0.002

sffc 0.763 0.014 0.002

sffp 0.040 0.000

pu 0.000

123

130 Page 20 of 40 Empirical Software Engineering (2023) 28:130

Table 12 Comparison of features. The label ! denotes no statistical difference; the labels < and > denote
whether the F1 scores of a feature are statistically worse or better than the other feature, respectively

dsfc dsfp ssfc ssfp dufc dufp sufc sufp dffc dffp sffc sffp pu cu

dsfc NA ! ! ! < < < < < < < < < !

dsfp ! NA > ! < < < < < < < < < >

ssfc ! < NA < < < < < < < < < < !

ssfp ! ! > NA ! ! < < ! ! ! < < >

dufc > > > ! NA ! ! ! ! ! ! ! < >

dufp > > > ! ! NA ! < ! ! ! ! < >

sufc > > > > ! ! NA ! ! ! ! ! ! >

sufp > > > > ! > ! NA ! ! ! ! ! >

dffc > > > ! ! ! ! ! NA ! ! ! < >

dffp > > > ! ! ! ! ! ! NA ! ! < >

sffc > > > ! ! ! ! ! ! ! NA ! < >

sffp > > > > ! ! ! ! ! ! ! NA < >

pu > > > > > > ! ! > > > > NA >

cu ! < ! < < < < < < < < < < NA

Overall, we can observe that permission-use feature (see row ‘pu’) significantly out-
performed all other features, except class-level and package-level static-use features (sufc
and sufp). It achieved the best F1 mean score at 0.64. The second best type of features
is package-level static-use feature (sufp) with the F1 mean score of 0.57. Component-use
feature performed the worst with the F1 mean score at 0.24. In general, we observe that
package-level features achieve better or equal F1 scores against their class-level counter-
parts, e.g., sufp=0.57 vs sufc=0.5 and sffp=0.5 vs sffc=0.47, except for the dynamic-use
case. This result is consistent with the observation made in Onwuzurike et al. Onwuzurike
et al. (2019). We also observe that static features achieve better F1 scores against their
dynamic counterparts, e.g., sufp=0.57 vs dufp=0.41 and sufc=0.5 vs dufc=0.45, except for
the dynamic-sequence case. We also observe that Sequence features did not perform well in
general as they all achieved less than 0.35 F1 mean score. All these results (of low F1 scores)
show that Android malware detection is not actually a solved problem even though majority
of the approaches in literature reported near perfect accuracy scores in their experiments.
We believe that this is because those approaches did not take into account the biases that we
considered in our experiments.

Summary-RQ1: permission-use achieved the best F1 mean score at 0.64, followed by
another static analysis-based feature (sufp). In terms of the abstraction level, package-level
featuresmostly performbetter than class-level features. Given that the number of class-level
features are much more than the number of package-level features (see Table 5), class-level
features are also computationally costly. In terms of the analysis, static analysis-based
features mostly perform better than dynamic analysis-based features. Hence, package-level
and static features should be preferred.

4.3 RQ2: Optimized DL Classifier vs Optimized Conventional ML Classifier

In this section, we compare the performance of RF classifier and RNN classifier based on the
following 7 types of features: dsfp, ssfp, dufp, sufp, dffp, sffp, and pu. Essentially we omitted

123

Page 21 of 40 130Empirical Software Engineering (2023) 28:130

class-level features and component use features because a) those datasets contain a large
number of features and it would be computationally intractable to run all those datasets with
deep learning classifier and b) in RQ1, it is already established that those omitted features
do not perform as well as the others. To provide a baseline comparison, we also additionally
compare our classifiers here against a state-of-the-art approach, MaMaDroid Onwuzurike
et al. (2019). The train and test procedure is the same as the one applied in RQ1.

Figure 7 shows the boxplot of F1 scores of Random Forest classifier and RNN classifier
based on the 7 types of features evaluated with the 21 train and test procedure (Table 10).
Assuming a significance level of 95% (α = 0.05), we apply Wilcoxon rank-sum test to
perform the following pairwise comparisons:

1. RF-dsfp vs RNN-dsfp
2. RF-ssfp vs RNN-ssfp
3. RF-dufp vs RNN-dufp
4. RF-sufp vs RNN-sufp
5. RF-dffp vs RNN-dffp
6. RF-sffp vs RNN-sffp
7. RF-pu vs RNN-pu

Table 13 shows the comparison results between RF classifier and RNN classifier based
on the Wilcoxon rank-sum tests. In previous work Shar et al. (2020), we observed that un-
optimized RNN classifier performs badly compared to ML classifiers. Here, we see that the
optimization results in an improved performance for RNN classifier, especially for sequence
features where RNN performed statistically better than RF in terms of F1 means. On the
other hand, RF classifier performed better than RNN on four other features (but not statisti-
cally significant), especially for frequency and permission features. Overall, RNN achieved
statistically better performance than RF on 2 out of 7 cases whereas RF performed better for
4 out of 7 cases though statistically not significant.

For the sake of completeness, we also evaluated RNN classifier using word embedding
for sequence features (dsfp and ssfp). It achieved the F1 means of 0.325 and 0.354 for dsfp
and ssfp datasets, respectively. This result is not better than that of RNN classifier with one-
hot encoding but is still better than the RF classifier. These results align with the general

Fig. 7 Comparison between optimized ML classifier and optimized DL classifier based on F1 scores. RF-dsfp
denotes Random Forest classifier tested with package-level dynamic sequence features; RNN-dsfpdenotes
Recurrent Neural Network classifier tested with package-level dynamic sequence features, and similarly for
the rest. The last box plot shows the F1 scores of MaMaDroid Onwuzurike et al. (2019) which is used as a
baseline comparison

123

130 Page 22 of 40 Empirical Software Engineering (2023) 28:130

Table 13 Wilcoxon test of F1
scores for RF and RNN
classifiers. At significant level of
0.05, RNN performs statistically
better than RF for dsfp and ssfp
datasets

Feature RF RNN p-value
F1 mean F1 mean

dsfp 0.317 0.393 0.020

ssfp 0.350 0.047 0.011

dufp 0.413 0.430 0.763

sufp 0.565 0.481 0.182

dffp 0.460 0.420 0.268

sffp 0.503 0.476 0.538

pu 0.640 0.582 0.466

agreement that RNN is suitable for learning serial events Deng et al. (2014), especially since
we used LSTM-based RNN that has the ability to effectively capture both long-term and
short-term dependencies. On the other hand, we note that word embedding was much more
efficient as it produces more compact vectors compared to one-hot encoding Mikolov et al.
(2013). Time taken to train RNN with word embedding is in the order of hours whereas time
taken to train RNNwith one-hot encoding was in the order of days, for one round of training.

It may be surprising that the DL classifier, the more advanced classifier, does not perform
significantly better than theML classifier, except for sequence-type features. However, recent
empirical studies Xu et al. (2018); Liu et al. (2018) also found that DL classifiers are not
always the overall winner. Even though those studies are conducted on different application
domains (predicting relatedness in stack overflows Xu et al. (2018) and generation of commit
messages Liu et al. (2018)), they also performed similar optimizations of the classifiers as
us and used similar experiment designs. Typically, DL classifier needs thorough fine-tuning
to the characteristics of the data. Although fine-tuning was done, it is only done on year
2013 and year 2014 data. App characteristics change with the evolution of Android, and this
degrades the performance of both types of classifiers. But it seems to affect the DL classifier
more. This is discussed in more detail in Section 4.5. Note that fine-tuning to fit all data is
intractable, as it is computationally expensive. And it would also bias the results.

Note that our previous work observed that Random Forest classifier achieved the best
performance overall. Hence, we chose Random Forest as the Flagship of conventional ML
algorithms for comparing against a DL algorithm. For a sanity check, we also evaluated
Logistic Regression and Linear Support Vector Machines on package-level static-frequency
features using the same training and test procedure. These classifiers achieved the F1 means
of 0.48 and 0.41 , respectively. In comparison, RF classifier achieved 0.503. Hence, RF
classifier achieved a better result.

To provide a baseline comparison,we also additionally compare our classifiers here against
a state-of-the-art malware detector, MaMaDroid Onwuzurike et al. (2019), which is based on
sequence-type features. MaMaDroid builds a model from sequences obtained from the call
graph of an app as Markov chains. Sequences are extracted at class level, package level, and
family level. Four types of classifiers — Random Forest, 1-Nearest Neighbour, 3-Nearest
Neighbor (3-NN), and Support Vector Machines are used to learn on the extracted sequence
features. As a data preprocessing, Principal Component Analysis is applied. Random Forests
achieved the best results in MaMaDroid’s experiments. We used MaMaDroid tool12 (used
as-is) to extract the sequence features from our benchmark apps. For the sake of consistency,

12 https://bitbucket.org/gianluca_students/mamadroid_code/src/master/

123

Page 23 of 40 130Empirical Software Engineering (2023) 28:130

https://bitbucket.org/gianluca_students/mamadroid_code/src/master/

Fig. 8 Comparison of “without” and “with” additional features. dsfp ‘with’ denotes that dynamic-sequence
features are concatenatedwith sequence of native calls features, reflection, andAPI calls that require dangerous
permissions; likewise for the others

we extracted package-level features.13 We then used the same configuration of Random
Forests classifier stated in MaMaDroid Onwuzurike et al. (2019). The last boxplot in Fig. 7
shows the F1 scores of MaMaDroid classifier evaluated on our datasets with the same train
and test procedure in Table 10. As we can observe in Fig. 7, MaMaDroid achieved similar
performance to our classifiers with sequence-type features but generally it does not perform
as well as other classifier+feature configurations we used here.

Summary-RQ2:When optimized, the DL classifier (RNN) performed better than the ML
classifier (RF) on sequence-type features. But DL classifiers do not necessarily always per-
form better than conventional ML classifiers. DL classifiers may be less useful, especially
when the characteristics of test data often change.

4.4 RQ3: Additional Features

In this RQ, we perform two kinds of comparisons: (1) to determine whether additional
features, which represent native calls, reflection, and API calls that require dangerous per-
missions, would improve the performance (2) to determine whether combining the static
analysis-based features and the dynamic analysis-based features (hence “hybrid” features)
would improve the performance. For both comparisons, we use Random Forest as a classifier.

Regarding the first kind of comparison, we evaluate the RF classifiers trained with addi-
tional features based on the datasets: dsfp, ssfp, dufp, sufp, dffp, and sffp. ‘with additional
features’means that a given dataset is concatenatedwith its corresponding additional features.
For example, dsfp ‘with’ denotes dynamic-sequence features concatenated with sequence of
native calls features, reflection, and API calls that require dangerous permissions. The train
and test procedure is the same as the one applied in RQ1.

Figure 8 shows the box plots of the F1 scores for ‘without’ and ‘with’ additional features.
Similar to RQ2, we apply Wilcoxon rank-sum test to perform pairwise comparisons and
Table 14 reports the F1 means and the statistical test results. We observe that the perfor-
mance significantly improved for the dynamic-sequence features when additional features

13 In MaMaDroid’s experiments Onwuzurike et al. (2019), class-level and package-level features produced
comparable performance

123

130 Page 24 of 40 Empirical Software Engineering (2023) 28:130

Table 14 Wilcoxon test of F1
scores for “without” and “with”
additional features. “without” and
“with” columns show the F1
means. Only dynamic-sequence
feature shows statistical
improvement when incorporated
with additional features

Feature without with p-value

dsfp 0.317 0.419 0.004

ssfp 0.350 0.363 0.633

dufp 0.413 0.436 0.385

sufp 0.565 0.448 0.195

dffp 0.460 0.423 0.642

sffp 0.503 0.416 0.268

are included. The F1 mean also increases for static-sequence and dynamic-use features but
the improvements are not statistically significant. The F1 mean actually decreases for other
types of features.

To explain this behavior, we performed principal component analysis of the static-use
datasets containing only the additional features, i.e., use of native API calls, reflection, and
dangerous permissions. Figure 9 shows the PCA plot of six most significant features from
year 2015 to year 2020 datasets. As shown in the figure, the data points of malware samples
largely overlaps with those of benign samples. Therefore, there is no difference between
malware samples and benign samples in terms of the use of additional features.

This can be explained by the fact that it is legitimate for mobile apps to use those features
to implement their services. That is, mobile apps do need to request dangerous permissions
to access camera, microphone, heart rate (body sensor), etc. It is also common to use native
calls to use system services like reading and writing to files, and use reflection to dynamically
load new functionalities. For example, Fig. 10 shows an excerpt of API calls extracted from
a benign app biart .com. f lashlight that we sampled from our dataset. It contains the use
of native API calls for accessing system services and dangerous permissions to use camera
device.

We note that both benign and malware apps use API call features as well. And yet API
call features can still discriminate malware. It is likely because each set of additional features
look at a specific aspect of app behaviors, e.g., whether an app uses dangerous permission
or not, whereas API call features cover the complete app behaviors based on call graphs or
execution traces and thus, specific behaviors covered by additional features may have already
been implicitly covered by API call features. Hence, we believe that API call features better
profile the app behaviors and additional features do not further discriminate malware.

Regarding the second kind of comparison, we combine static analysis-based features and
dynamic analysis-based features to determine whether the hybrid features would improve
the performance. We concatenate static-sequence features and dynamic-sequence features,
let us denote as hsfp = ssfp ‖ dsfp. Table 15 shows an example of hsfp. Likewise, we
concatenate static-use features and dynamic-use features, and concatenate static-frequency
features and dynamic-frequency features, denoted as hufp and hffp, respectively. We then
perform the 21 training and test evaluations on those 3 new types of features using Random
Forest as classifier. Note that we simply concatenate the two types of features without any
data processing.

Figure 11 shows the F1 scores for “without” and “with” combining the static analysis-
based features and the dynamic analysis-based features. Table 16 hows the Wilcoxon test
results. As we can observe, the F1mean actually decreases when the two types of features are
combined, although there is no statistical difference according toWilcoxon tests. This is likely
due to overlapped features from the two analyses since both analyses extract features from

123

Page 25 of 40 130Empirical Software Engineering (2023) 28:130

Fig. 9 Principal component analysis (6 components) of additional features used in malware and benign apps.
Yellow color indicates malware and blue color indicates benign apps

the same app. For example, both analyses extract the package android.net as a feature.
Assuming use features, static analysis will report the value 1 for this feature if it detects
the presence of this package in the call graph. But dynamic analysis will report a value 0
for the same feature if it does not observe the execution of this package at runtime. On
the other hand, static analysis will report the value 0 for android.net feature if it does
not detect the presence of this package in the call graph; but dynamic analysis will report

123

130 Page 26 of 40 Empirical Software Engineering (2023) 28:130

Fig. 10 An excerpt of API calls found in a benign app sample

Table 15 An excerpt of hybrid-sequence features

hsfp
ssfp dsfp
s-seq1 s-seq2 … s-seqL d-seq1 d-seq2 … d-seqL label

benign1 4921 6172 … 84111 74921 567 … 84111 0

benign2 29011 4490 … 3923 12901 4490 … 3923 0

mal1 23712 8122 … 0 23712 6812 … 0 1

mal2 213 6311 … 0 23 63011 … 0 1

Fig. 11 F1 scores for “without” and “with” combining features

Table 16 Wilcoxon test of F1
scores for “without” and “with”
combining features. No statistical
difference was observed at a
significance level of 0.05

Comparison p-value

hsfp vs dsfp 0.195

hsfp vs ssfp 0.074

hufp vs dufp 0.068

hufp vs sufp 0.308

hffp vs dffp 0.385

hffp vs sffp 0.860

123

Page 27 of 40 130Empirical Software Engineering (2023) 28:130

the value 1 for android.net if the app invokes this package using dynamic code loading,
which is not presented in the static call graph. Hence, the conflicting values in the overlapped
featuresmay be confusing to the classifier, resulting in worse performance. Dealingwith such
overlapped features deserves a separate, thorough investigation as it requires to investigate
how to leverage different types of information conveyed by static and dynamic analyses
and extract the semantic meaning provided by these analyses together, rather than simply
concatenating the two types of features.

Summary-RQ3: Including features that characterize reflection, native API calls, and dan-
gerous permissions on top of API-call features does not further discriminate Android
malware from benign apps because benign apps often use those features to implement
their services. Combining the two types of analyses requires a means to deal with over-
lapped features because simply concatenating the two types of features results in worse
performance compared to its static or dynamic counterparts.

4.5 RQ4: Robustness Against Android Evolution

In this research question, we investigate which combination of classifiers and features is
most robust against Android evolution over time. Figure 12 shows the F1 scores of dif-
ferent classifier-feature combinations against time. In Fig 12, we observe that most of the
classifier-feature combinations show similar patterns in terms of F1 scores over time, which
means that those features are all sensitive to changes in Android permissions and API calls,
and malware construction. For example, in late 2015, Google released Android 6 that intro-
duced a redesigned app permission model. As in the previous version, apps are no longer
automatically granted all the permissions they request at install-time. Users are required to
grant or deny the specified permissions when an application needs to use it for the first time.
The user can also revoke these permission at anytime. This caused a shift in the character-
istics of benign apps in terms of permission and API usage. Furthermore, malware authors
are also constantly advancing their malware so as to bypass the detection mechanisms, for
example, by using obfuscation or applying adversarial learning Shahpasand et al. (2019).
Adversarial learning Huang et al. (2011) is a technique that generates samples (e.g., malware
variants) which are carefully crafted/perturbed to evade detection. Clearly, such changes
in Android permissions and API calls, and malware construction affect malware detection
performances.

Based on Fig. 12, among the classifier+feature combinations, the RF classifier with
permission-use (RF-pu), followed by theRNNclassifierwith permission-use (RNN-pu) could
be consideredmost robust.When trained on year 2010-2014 dataset (Fig. 12a), all other com-
binations did not achieve more than 0.65 F1 scores on the datasets from subsequent test years
whereas RF-pu and RNN-pu maintained above 0.65 F1 scores , except for test year 2017
and 2018. We also observe that the RF classifier with static-use (RF-sufp) is an interesting
combination. When trained on year 2010-2014 dataset, it did not perform well; but when
trained with more data, i.e., year 2010-2015 dataset and subsequent ones, it produced a
performance similar to RF-pu and RNN-pu. But its classifier counterpart RNN-sufp did not
perform quite as well and it is likely that RNN needs further fine tuning in this case. When
there is sufficient training data, RF-sufpmay be considered another robust classifier+feature
combination.

123

130 Page 28 of 40 Empirical Software Engineering (2023) 28:130

Fig. 12 Performance vs Time

Fig. 13 Principal Component Analysis of permission use features from malware apps. Yellow color indicates
malware and blue color indicates benign apps

123

Page 29 of 40 130Empirical Software Engineering (2023) 28:130

We expected that the performances of classifiers+features will generally decrease over
time. As observed in Fig. 12a, this is the case from year 2015 to year 2018. But we observe
that the performances actually improve in year 2019 and 2020, especially for RF-pu and
RNN-pu. To understand this behavior, we did the PCA analysis of permission-use features
in malware apps from years 2010-2014 versus malware apps from year 2019 and the PCA
analysis of permission-use features in malware apps from years 2010-2014 versus malware
apps from year 2020. The goal is to analyze the difference in characteristics between mal-
ware from those different released years. The result is shown in Fig. 13. We observe that
malware characteristics in terms of the use of permissions are similar. To further investi-
gate the behavior shown in Fig. 12(a), we extracted the most informative permission-use
features for Random Forest for making classification decisions.14 We found that most infor-
mative features from years 2010-2014 and from year 2019 and year 2020 commonly include
READ_PHONE_STATE, SEND_SMS, READ_SMS, and GET_TASKS. Therefore, it is
likely that those common features improved the detection performance for year 2019 dataset
and year 2020 dataset.

Othercommonly informativepermission-usefeaturesacrossyears (i.e., 2015,2016,2017,2018)
includeACCESS_WIFI_STATE,CHANGE_WIFI_STATE,INSTALL_SHORTCUT,INTERNET,
and WRITE_EXTERNAL_STORAGE. Likewise, we analyzed the most informative static-use
features across years; they include org.apache.http.conn, org.apache.http.client, java.security.cert,
java.lang. annotation, android.net.wifi, android.transition, android.support.v4.accessibility
service, android.media.session, javax.net, android.telephony, com.google.ads. mediation,
and com.google.android.gms.ads. The functionality of these APIs range from network con-
nection and telephony services to media and advertisement services. Hence, these APIs can
be considered as good predictors of malware.

To evaluate whether time-aware and space-aware evaluation setting is important, we also
ran 10-fold cross validation on RF classifier, with all the datasets combined (from year 2010
to year 2020). Table 17 compares the results. As shown in Table 17, the cross validated
results are clearly better than the results of time-aware and space-aware evaluation setting
(Table 10). That is, time and space biases unfairly report improved results. Allix et al. Allix
et al. (2015) reported that the F1 scores of Android malware classifier were lower than 0.7
in a time-aware scenario. Similarly, our best classifier achieved 0.64 F1 mean score. Fu and
Cai Fu and Cai (2019) also reported that the F1 scores dropped from about 90% to below
30% with a span of one year. Our results not only corroborate with the results of previous
studies Allix et al. (2015); Fu and Cai (2019) but also confirm that the biased improvement
occurs regardless of features used. From this observation, we can conclude that timeline is
an important aspect in malware detection. That is, malware detector should be re-trained
whenever possible.

Summary-RQ4:Malware detectors are sensitive to Android evolution. That is, changes in
app characteristics — benign or malware — result in fluctuation in the malware detector’s
performance regardless of the features and the classifiers used. Therefore, we recommend
that malware detector should be re-trained with most relevant training samples whenever
possible. Among the classifier-feature combinations that we investigated, the Random For-
est with permission-use feature can be considered as the most robust.

14 using feature importance library in Scikit-learn

123

130 Page 30 of 40 Empirical Software Engineering (2023) 28:130

Table 17 Comparison of F1
mean scores between ten fold
cross validation and time- and
space-aware classification
settings)

Feature 10-fold CV time- and space-aware
settings

dsfp 0.695 0.317

ssfp 0.670 0.35

dufp 0.797 0.413

sufp 0.824 0.565

dffp 0.795 0.46

sffp 0.796 0.503

pu 0.673 0.64

4.6 Threats to Validity

Here we discuss the main threats to the validity of our findings.
Threats to the conclusion validity are concerned with issues that affect the ability to draw

the correct conclusion. To limit this threat, we applied a statistical test (i.e., Wilcoxon rank-
sum test) that is non-parametric, thus it does not assume experimental data to be normally
distributed. Additionally, to increase heterogeneity of samples in the data set, we considered
apps from multiple markets (Androzoo and Drebin) and released over multiple years (from
2010 to 2020).

Threats to internal validity concern the subjective factors that might have affected the
results. To limit this threat, apps have been randomly selected and downloaded from markets
among those that satisfy our experimental settings (year 2010 to 2020) and experimental
constraints (that they work with FlowDroid static analysis tool and with Monkey testing
tool).

The threats to construct validity concern the data collection and analysis procedures.
Labeling case studies as benign/malware is based on a standard approach, that is (i) relying
on VirusTotal classification available as metadata information for apps from Androzoo; and
(ii)manually recognizedmalicious behavior for apps fromDrebin. Empirical results are based
on F-measure, which is a standard performance measure. Moreover, to limit bias, we split the
training data and the test data based on their release years and a realistic malware-to-benign
distribution. A threat regarding the analysis procedure is the code coverage. As we explained
in Section 3.1, we used a combination of GUI fuzzer and Intent fuzzer so as to cover both
GUI events and inter-component communications which are typical and essential behaviors
in mobile apps. However, like any other test generation-based approach, the code coverage
of our test generator is also limited. Although we apply genetic algorithm, a state-of-the-art
technique for Intent generation developed in our previous work Demissie et al. (2020), it was
not able to generate test cases (Intents) for some of the paths in the call graphs. This could
result in missing information in dynamic features and we acknowledge that this may explain
the reason why static features perform better than dynamic features.

Regarding the analysis of sequence features, we trimmed the call sequences that are too
long, taking into account the variances in sequence length among apps (see Section 3.2). One
may argue that this may result in missing information in sequence features. However, our
rationale is that using a longer sequence length result in many zero-features for most of the
apps, resulting in several redundant features. We did some preliminary experiments using
a longer sequence length and observed that the performance actually decreases. Another
analysis-related threat is regarding the extraction of API-permission mapping (to extract

123

Page 31 of 40 130Empirical Software Engineering (2023) 28:130

dangerous permission features). We looked at the official Android documentation, which
includes the mappings for public APIs only. The mappings for hidden and private APIs
(which can be invoked through reflection) were not included. Thus, we acknowledge that
such APIs, which may be in the dangerous permission category, would be missed by our
approach. However, our argument here is that undocumented APIs change frequently and it
is intractable for us to document them comprehensively, especially since we are dealing with
versions across 11 years. Also from malware detection point of view, we believe that relying
on a more consistent (official) list of APIs to build malware detector is more robust.

Threats to external validity concern the generalization of our findings due to the relatively
smaller size of our dataset compared to the literature (Table 9). This is due to our consideration
of several features and types of analyses (static and dynamic). By contrast, existing work that
uses larger dataset size tends to focus on static analysis. However, as both static analysis- and
dynamic analysis-based features are relevant and useful for malware detection, we decided
to evaluate them in this work. Despite our best efforts, we were able to analyse only 13,772
apps due to the time taken and the computation complexity of our analyses. Especially our
test generation tool took a long time to complete. It also encountered compatibility issues
due to changes in different versions of the Android platform and we had to adapt our tool.
On the other hand, to mitigate the issue, we considered apps from multiple app stores and
released over 11 years.

5 Insights

For Antivirus vendors In RQ1, we found that features at permission level or package level
produce the best performances, while they are also computationally more efficient compared
to more fine-grained features at class level. Deep learning algorithms have recently been used
in the context of Android malware detection. They have the ability to learn hierarchical fea-
tures and complex sequential features. But this usually comes at the cost of careful fine-tuning
the hyper-parameters, which may take some time. On the other hand, conventional machine
learning classifiers have been shown to be effective at Androidmalware detection. Especially,
ensemble classifiers like Random Forest aggregates multiple classifiers to learn complex pat-
terns. It achieves good classification results without much hyper-parameter tuning. In our
experiments, we tuned both types of classifiers. But in RQ2, we observed that tuning Ran-
dom Forest takes much less time and effort compared to RNN, the deep learning classifier.
Yet the results are comparable, except for sequence features. Hence, our recommendation
to antivirus vendors is that it is more cost-effective to use conventional machine learning
classifiers for Android malware detection when using other types of features. In RQ4, we
learnt that malware detectors’ performance is sensitive to changes in Android framework
and malware construction. Our recommendation to antivirus vendors is to take these findings
into consideration when building and evaluating malware detectors and update them often.
For research community In RQ1, we observed that dynamic features do not perform as well
as static features in general. We discussed in Section 4.6, this could be due to code coverage
issue by our test generator. Essentially, the test generator fails to generate test inputs when
the target path requires satisfying certain conditions in the application logic or if the path
involves user interaction (e.g., a click action). Researchers could improve on this aspect
by combining dynamic test generation with static constraint solving techniques such as
Thome et al. Thomé et al. (2017) for more effective test generation. In RQ3, we learnt that
features that characterize reflection, native API calls, and dangerous permissions on top
of API calls features do not further discriminate Android malware from benign apps. In

123

130 Page 32 of 40 Empirical Software Engineering (2023) 28:130

Android, all the features, including native API calls, reflection and dangerous permissions
are designed to be used, to serve their various functional purposes. However, malicious
apps often abuse this to conduct malicious activities like accessing sensitive information.
Hence, the empirical study conducted in this work is not complete. Distinct apps might
have very different functionalities. What is considered legitimate of a particular set of apps
(e.g., sharing contacts for a messaging app) can be considered a malicious behavior for
other apps (e.g., a piece of malware that steals contacts, to be later used by spammers). A
more accurate ML model should also take into consideration the main functionalities that
are declared by an app, such as the ones proposed in Yang et al. (2017); Demissie et al.
(2018). Hence, the future study should investigate the use of clustering to group apps with
similar functionalities and evaluate based on clusters of those similar apps. In another note,
we found that combining static-based features and dynamic-based features does not result
in better performance. But in this case, we simply concatenated the two types of features
without any data preprocessing to filter overlapped or redundant features. Future studies could
consider applying an appropriate feature reduction technique, such as Principal Component
Analysis, t-distributedStochasticNeighborEmbedding,Multidimensional Scaling, Isometric
mapping, etc., to deal with overlapped features.

In RQ4, we learnt that cross validation, which is typically used in Android malware
detection approaches, allow malware “from the future” to be part of the training sets and
thus, produce biased results. Allix et al. Allix et al. (2015) observed that such a biased
construction of training datasets has a positive impact on the performance of the classifiers
and thus, the results are unreliable. In addition, Pendlebury et al. Pendlebury et al. (2019)
also reported an issue with spatial bias where the evaluation does not consider the realistic
distribution betweenmalware and benign samples.Our studies also produced similar findings,
despite different types of features we used. Therefore, researchers from Android malware
detection community should validate their proposed state-of-the-art approaches again, taking
into consideration the temporal and spatial biases.

6 Conclusion

In this work, we evaluated various techniques commonly used for building Android malware
detectors. More specifically, we evaluated 14 types of features. We applied both static and
dynamic analyses to extract those features. We evaluated two types of classifiers (conven-
tional machine learning classifier and deep learning classifier). We also evaluated additional
features (native API calls, reflection, and APIs that require dangerous permissions) and com-
bined (static+dynamic) features. We investigated which types of features perform better;
evaluated which types of classifiers perform better when optimized; evaluated whether addi-
tional features can improve the performance; and evaluated which combination of features
and classifiers are more robust against the evolution of Android. We conducted the experi-
ments in a time- and space-aware setting. We conducted all the experiments on a common
benchmark containing 7,860 benign samples and 5,912 malware samples, collected over
a period of 11 years (from year 2010 to 2020). We observed that permission-use features
performed the best among features, followed by static-use package-level features; package-
level features represent a good abstraction level as they performwell and are computationally
efficient; static features perform better than dynamic features. We also observed that even

123

Page 33 of 40 130Empirical Software Engineering (2023) 28:130

when optimized, deep learning algorithm does not always perform better than conventional
machine learning algorithm. Due to the tendency of benign apps to use reflection, native
API calls, and APIs that require dangerous permissions, inclusion of those features does
not further improve the accuracy of malware classification. Lastly, we found that malware
classifier needs to be updatedwhenever applicable, regardless of features and classifiers used,
as they are sensitive to changes in Android APIs and malware construction. In future work,
we intend to further investigate other deep learning classifiers, given that we only evaluated
one deep learning classifier in this work due to the time and resource required for optimiza-
tion and evaluation. We also intend to investigate the effect of clustering the apps based on
their functional similarities and performing the training and testing according to the clusters
of apps.

Funding The work of Lwin Khin Shar, Yan Naing Tun, Lingxiao Jiang, and David Lo is supported by the
National Research Foundation, Singapore, and Cyber Security Agency of Singapore under its National Cyber-
security R&D Programme, National Satellite of Excellence in Mobile Systems Security and Cloud Security
(NRF2018NCR-NSOE004-0001). Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not reflect the views of National Research Foundation, Singa-
pore and Cyber Security Agency of Singapore. The work of Mariano Ceccato is partially supported by project
MIUR 2018-2022 “Dipartimenti di Eccellenza”.

Declarations

Conflicts of interests The authors declare that they have no conflict of interest.

References

AaferY,DuW,YinH (2013)Droidapiminer:Mining api-level features for robustmalware detection in android.
In: International conference on security and privacy in communication systems, pp. 86–103. Springer

Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL (2015) Identifying android malware
using dynamically obtained features. Journal of Computer Virology and Hacking Techniques 11(1):9–17

Akiba T, Sano S, Yanase T, Ohta T, KoyamaM (2019) Optuna: A next-generation hyperparameter optimization
framework. In: Proceedings of the 25th ACMSIGKDD international conference on knowledge discovery
& data mining, pp. 2623–2631

Allix K, Bissyandé TF, Jérome Q, Klein J, Le Traon Y et al (2016) Empirical assessment of machine learning-
based malware detectors for android. Empirical Software Engineering 21(1):183–211

Allix K, Bissyandé TF, Klein J, Le Traon Y (2015) Are your training datasets yet relevant? In: International
Symposium on Engineering Secure Software and Systems, pp. 51–67. Springer

Allix K, Bissyandé TF, Klein J, Le Traon Y (2016) Androzoo: Collecting millions of android apps for the
research community. In: Proceedings of the 13th International Conference on Mining Software Reposi-
tories, pp. 468–471. ACM

Alshahrani H, Mansourt H, Thorn S, Alshehri A, Alzahrani A, Fu H (2019) Ddefender: Android application
threat detection using static and dynamic analysis. In: 2018 IEEE International Conference on Consumer
Electronics (ICCE), pp. 1–6. IEEE (2018)

Android (2019) UI/Application Exerciser Monkey. https://developer.android.com/studio/test/monkey
Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014) Drebin: Effective and explainable

detection of android malware in your pocket. Ndss 14:23–26
Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014) Flow-

droid: Precise context, flow, field, object-sensitive and lifecycle-awaretaint analysis for Android apps. In:
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI’14, pp. 259-269. ACM, New York, NY, USA. https://doi.org/10.1145/2594291.2594299

Au KWY, Zhou YF, Huang Z, Lie D (2012) Pscout: analyzing the Android permission specification. In:
Proceedings of the 2012 ACM conference on Computer and communications security, pp. 217–228.
ACM

123

130 Page 34 of 40 Empirical Software Engineering (2023) 28:130

https://developer.android.com/studio/test/monkey
https://doi.org/10.1145/2594291.2594299

Bai Y, Xing Z, Li X, Feng Z, Ma D (2020) Unsuccessful story about few shot malware family classification
and siamese network to the rescue. In: 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 1560–1571. IEEE

Barandiaran I (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal
Mach Intell 20(8):1–22

Bläsing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sandbox system
for suspicious software detection. In: 2010 5th International Conference on Malicious and Unwanted
Software, pp. 55–62. IEEE

Cai H (2020) Assessing and improving malware detection sustainability through app evolution studies. ACM
Transactions on Software Engineering and Methodology (TOSEM) 29(2):1–28

Chan PP, Song WK (2014) Static detection of android malware by using permissions and api calls. In: 2014
International Conference on Machine Learning and Cybernetics, vol. 1, pp. 82–87. IEEE

ChawlaNV,BowyerKW,HallLO,KegelmeyerWP(2002)Smote: syntheticminority over-sampling technique.
Journal of artificial intelligence research 16:321–357

Chen S, Xue M, Tang Z, Xu L, Zhu H (2016) Stormdroid: A streaminglized machine learning-based system
for detecting android malware. In: Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pp. 377–388

Choudhary SR, Gorla A, Orso A (2015) Automated test input generation for android: Are we there yet?(e).
In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp.
429–440. IEEE

Demissie BF, Ceccato M, Shar LK (2018) Anflo: Detecting anomalous sensitive informa41 tion flows in
android apps. In: 2018 IEEE/ACM 5th International Conference on Mobile Software Engineering and
Systems (MOBILESoft), pp. 24–34. IEEE

Demissie BF, Ceccato M, Shar LK (2020) Security analysis of permission re-delegation vulnerabilities in
android apps. Empir Softw Eng 25(6):5084–5136

Deng L, Yu D et al (2014) Deep learning: methods and applications. Foundations and Trends® in Signal
Processing 7(3–4):197–387

Dini G,Martinelli F, Saracino A, Sgandurra D (2012)Madam: a multi-level anomaly detec tor for android mal-
ware. In: International Conference on Mathematical Methods, Models, and Architectures for Computer
Network Security, pp. 240–253. Springer

Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone application certifi51 cation. In: Pro-
ceedings of the 16th ACM conference on Computer and communications security, pp. 235–245. ACM

Eskandari M, Hashemi S (2012) A graph mining approach for detecting unknown malwares. J Vis Lang &
Comput 23(3):154–162

Fan M, Liu J, Luo X, Chen K, Chen T, Tian Z, Zhang X, Zheng Q, Liu T (2016) Frequent subgraph based
familial classification of android malware. In: 2016 IEEE 27th International Symposium on Software
Reliability Engineering (ISSRE), pp. 24–35. IEEE

Fu X, Cai H (2019) On the deterioration of learning-based malware detectors for android. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 272–273. IEEE

Garcia J, Hammad M, Malek S (2018) Lightweight, obfuscation-resilient detection and family identification
of android malware. ACM Transactions on Software Engineering and Methodology (TOSEM) 26(3):11

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864

Huang CY, Tsai YT, Hsu CH (2013) Performance evaluation on permission-based detection for android
malware. In: Advances in Intelligent Systems and Applications-Volume 2, pp.111–120. Springer

Huang L, JosephAD,Nelson B, Rubinstein BI, Tygar JD (2011)Adversarial machine learning. In: Proceedings
of the 4th ACM workshop on Security and artificial intelligence, pp. 43–58

IkramM, Beaume P, KaafarMA (2019) Dadidroid: An obfuscation resilient tool for detecting androidmalware
via weighted directed call graph modelling. arXiv:1905.09136

Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: Automatic framework for android malware
detection using deep learning. Digital Investigation 24:S48–S59

Kim T, Kang B, Rho M, Sezer S, Im EG (2018) A multimodal deep learning method for android malware
detection using various features. IEEE Transactions on Information Forensics and Security 14(3):773–
788

Lindorfer M, Neugschwandtner M, Platzer C (2015) Marvin: Efficient and comprehensive mobile app classifi-
cation through static and dynamic analysis. In: 2015 IEEE39th annual computer software and applications
conference, vol. 2, pp. 422–433. IEEE

Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Van Der Veen V, Platzer C (2014)
Andrubis-1,000,000 apps later: A view on current androidmalware behaviors. In: 2014 third international

123

Page 35 of 40 130Empirical Software Engineering (2023) 28:130

http://arxiv.org/abs/1905.09136

workshop on building analysis datasets and gathering experience returns for security (BADGERS), pp.
3–17. IEEE

Liu X, Liu J (2014) A two-layered permission-based android malware detection scheme. In: 2014 2nd IEEE
International Conference on Mobile Cloud Computing, Services, and Engineering, pp. 142–148. IEEE

Liu Y, Tantithamthavorn C, Li L, Liu Y (2022) Deep learning for android malware defenses: a systematic
literature review. ACM Journal of the ACM (JACM)

Liu Z, Xia X, Hassan AE, Lo D, Xing Z, Wang X (2018) Neural-machine-translation based commit mes-
sage generation: how far are we? In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 373–384

Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method for android malware detection based on
control flow graphs and machine learning algorithms. IEEE access 7:21235–21245

McLaughlin N,Martinez del Rincon J, Kang B, Yerima S,Miller P, Sezer S, Safaei Y, Trickel E, Zhao Z, Doupé
A et al (2017) Deep android malware detection. In: Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pp.301–308. ACM

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases
and their compositionality. Advances in neural information processing systems 26

Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017) graph2vec: Learning dis-
tributed representations of graphs. arXiv:1707.05005

Narayanan A, Soh C, Chen L, Liu Y, Wang L (2018) apk2vec: Semi-supervised multi-view representation
learning for profiling android applications. In: 2018 IEEE International Conference on Data Mining
(ICDM), pp. 357–366. IEEE

Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation of machine learning classifiers for mobile
malware detection. Soft Computing 20(1):343–357

Naway A, Li Y (2018) A review on the use of deep learning in android malware detection. arXiv preprint
arXiv:1812.10360

Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2019) Mamadroid: Detecting
android malware by building markov chains of behavioral models (extended version). ACMTransactions
on Privacy and Security (TOPS) 22(2):14

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12:2825–2830

Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L et al (2019) Tesseract: Eliminating experimental
bias in malware classification across space and time. In: Proceedings of the 28th USENIX Security
Symposium, pp. 729–746. USENIX Association

Rastogi V, Chen Y, Jiang X (2013) Droidchameleon: evaluating android anti-malware against transformation
attacks. In: Proceedings of the 8th ACM SIGSAC symposium on Information, computer and communi-
cations security, pp. 329–334

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG, Álvarez G (2013) Puma:Permission usage to
detect malware in android. In: International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special
Sessions, pp. 289–298. Springer

Shahpasand M, Hamey L, Vatsalan D, Xue M (2019) Adversarial attacks on mobile malware detection. In:
2019 IEEE 1st International Workshop on Artificial Intelligence for Mobile (AI4Mobile), pp. 17–20.
IEEE

Shar LK, Demissie BF, Ceccato M, Minn W (2020) Experimental comparison of features and classifiers for
android malware detection. In: Proceedings of the IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems, pp. 50–60. IEEE/ACM

Sharma A, Dash SK (2014) Mining api calls and permissions for android malware detection. In: International
Conference on Cryptology and Network Security, pp. 191–205. Springer

Shen F, Del Vecchio J, Mohaisen A, Ko SY, Ziarek L (2018) Android malware detection using complex-flows.
IEEE Transactions on Mobile Computing 18(6):1231–1245

Shi L,Ming J, Fu J, PengG, XuD, GaoK, PanX (2020) Vahunt:Warding off new repackaged androidmalware
in app-virtualization’s clothing. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, pp. 535–549

Soot (2018) Soot - a java optimization framework, https://github.com/sable/soot
Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J (2013) Mobile-sandbox: having a deeper look

into android applications. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pp. 1808–1815

Suarez-Tangil G, Dash SK, AhmadiM, Kinder J, Giacinto G, Cavallaro L (2017) Droidsieve: Fast and accurate
classification of obfuscated android malware. In: Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, pp.309–320

123

130 Page 36 of 40 Empirical Software Engineering (2023) 28:130

http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1812.10360
https://github.com/sable/soot

Symantec (2019) Internet Security Threat Report. https://www.symantec.com/content/dam/symantec/docs/
reports/istr-24-2019-en.pdf

Thomé J, Shar LK, Bianculli D, Briand L (2017) Search-driven string constraint solving for vulnerability
detection. In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), pp.
198–208. IEEE

Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016) Malware detection with deep neural network
using process behavior. In: 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, pp. 577–582. IEEE

Tobiyama S, Yamaguchi Y, Shimada H, Ikuse T, Yagi T (2016) Malware detection with deep neural network
using process behavior. In: 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, pp. 577–582. IEEE

Wu B, Chen S, Gao C, Fan L, Liu Y, Wen W, Lyu MR (2021) Why an android app is classified as mal-
ware: Toward malware classification interpretation. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30(2):1–29

Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection through manifest
and api calls tracing. In: 2012 Seventh Asia Joint Conference on Information Security, pp. 62–69. IEEE

Xu B, Shirani A, Lo D, Alipour MA (2018) Prediction of relatedness in stack overflow: deep learning vs. svm:
a reproducibility study. In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1–10

Xu K, Li Y, Deng R, Chen K, Xu J (2019) Droidevolver: Self-evolving android malware detection system. In:
2019 IEEE European Symposium on Security and Privacy (EuroSP), pp. 47–62. https://doi.org/10.1109/
EuroSP.2019.00014

Xu K, Li Y, Deng RH, Chen K (2018) Deeprefiner: Multi-layer android malware detection system applying
deep neural networks. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
473–487. IEEE

YangW, Prasad M, Xie T (2018) Enmobile: Entity-based characterization and analysis of mobile malware. In:
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp. 384–394. IEEE

Yang X, Lo D, Li L, Xia X, Bissyandé TF, Klein J (2017) Characterizing malicious android apps by mining
topic-specific data flow signatures. Information and Software Technology 90:27–39

Yerima SY, Sezer S, Muttik I (2015) High accuracy android malware detection using ensemble learning. IET
Information Security 9(6):313–320

Yuan Z, Lu Y,Wang Z, Xue Y (2014) Droid-sec: deep learning in android malware detection. In: ACMSIG-
COMMComputer Communication Review, vol. 44, pp. 371–372. ACM

Zhang M, Duan Y, Yin H, Zhao Z (2014) Semantics-aware android malware classification using weighted
contextual api dependency graphs. In: Proceedings of the 2014 ACM SIGSAC conference on computer
and communications security, pp. 1105–1116

Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang Y, Zhang M, Yang M (2020) Enhancing state-of-the-art
classifiers with api semantics to detect evolved android malware. In: Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pp. 757–770

Zhao Y, Li L, Wang H, Cai H, Bissyandé TF, Klein J, Grundy J (2021) On the impact of sample duplication
in machine-learning-based android malware detection. ACM Transactions on Software Engineering and
Methodology (TOSEM) 30(3):1–38

Zou D,WuY, Yang S, Chauhan A, YangW, Zhong J, Dou S, Jin H (2021) Intdroid: Android malware detection
based on api intimacy analysis. ACMTransactions on Software Engineering andMethodology (TOSEM)
30(3):1–32

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

Page 37 of 40 130Empirical Software Engineering (2023) 28:130

https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://doi.org/10.1109/EuroSP.2019.00014
https://doi.org/10.1109/EuroSP.2019.00014

Lwin Khin Shar is an Associate Professor in the School of Computing
and Information Systems at Singapore Management University, Sin-
gapore. He received his Ph.D. degree in Software Engineering from
Nanyang Technological University (NTU), Singapore in 2014. He was
a postdoctoral research associate at SnT of the University of Lux-
embourg and then a research scientist at NTU. His research interests
span software engineering, security & privacy, and machine learn-
ing, while specializing in analysis of web & mobile applications and
recently cyber-physical systems for detecting security vulnerabilities,
privacy issues, malware, and anomalies. He is author or coauthor of
more than 40 research papers published in international journals and
conferences/workshops, including top venues (e.g., IEEE-TSE, IEEE-
TDSC, EMSE, ICSE, FSE, ASE). In his research, he often collabo-
rates with industry partners spanning from healthcare and traffic man-
agement to Government sectors.

Biniam Fisseha Demissie received the MSc and PhD degrees in com-
puter science from the University of Trento, in 2014 and 2019, respec-
tively. He is currently a Senior Security Researcher in the AI & Digital
Science Research Center at the Technology Innovation Institute (TII)
research center in Abu Dhabi, UAE. His research interest includes
web and mobile security, software security testing, malware analysis,
and IoT security.

Mariano Ceccato is associate professor in the Computer Science
department in University of Verona, Italy. He is principal investigator
of several competitive publicly funded research projects and several
industrial funded projects. He was recently visiting research scientist
in the Software Verification and Validation Laboratory led by Lionel
Briand, University of Luxembourg. Mariano received the Best Paper
Award in ICPC-2017, ICST-2022 and ICST-2020; and Distinguished
Paper Award in ICPC-2017 and ASE-2016. He is author or coauthor
of more than 90 research papers published in international journals
and conferences/workshops, including top venues (e.g., IEEE-TSE,
ACM-TOSEM, EMSE, ICSE, ASE). His research interests include
software testing, security testing, code hardening and empirical stud-
ies.

123

130 Page 38 of 40 Empirical Software Engineering (2023) 28:130

Yan Naing Tun is a Research Engineer at Singapore Management
University. He obtained his bachelor’s degree from the University
of Computer Studies (Mandalay, Myanmar). His research focuses on
empirical studies in software testing and security, more specifically in
the context of Android, IoT, and AI systems.

David Lo received his PhD degree from the School of Computing,
National University of Singapore in 2008. He is currently a Professor
in the School of Information Systems, Singapore Management Univer-
sity. He has more than 10 years of experience in software engineering
and data mining research and has more than 200 publications in these
areas. He received the Lee Foundation and Lee Kong Chian Fellow
for Research Excellence from the Singapore Management University
in 2009 and 2018, and a number of international research and ser-
vice awards including multiple ACM distinguished paper awards for
his work on software analytics. He has served as general and pro-
gram co-chair of several prestigious international conferences (e.g.,
IEEE/ACM International Conference on Automated Software Engi-
neering), and editorial board member of a number of high-quality
journals (e.g., Empirical Software Engineering).

Lingxiao Jiang is an Associate Professor in the School of Comput-
ing and Information Systems at Singapore Management University,
Singapore. He received his Ph.D. degree in Computer Science from
the University of California, Davis in 2009, a Master’s and a Bach-
elor’s degree from the School of Mathematical Sciences at Peking
University in 2003. His research interests span software engineering,
programming languages, systems, security & privacy, and machine
learning, while specializing in software testing and debugging, pro-
gram analysis, code search & reuse, software repository mining, and
deep learning of code. He worked as a Test Strategist at Nvidia before
joining SMU. He is currently a Deputy Director of the Center for
Research on Intelligent Software Engineering at SMU. He explores
combinations of static and dynamic analysis with machine learning
techniques across diverse languages at various abstraction levels, aim-
ing to provide practical techniques and tools for enhancing software
reliability, increasing development productivity, reducing maintenance

cost, and improving user experience.

123

Page 39 of 40 130Empirical Software Engineering (2023) 28:130

Christoph Bienert is a student in the Computer Science department at
the Technical University of Munich (TUM), Germany, with a diverse
background in Cybersecurity. Christoph holds a Bachelor’s degree in
Management and Technology and is currently on track to complete his
Bachelor’s degree in Computer Sciences from TUM. He has gained
valuable experience in various fields of Cybersecurity and has a keen
interest in exploring cutting-edge technologies such as the intersection
of Cybersecurity and Artificial Intelligence.

Authors and Affiliations

Lwin Khin Shar1 · Biniam Fisseha Demissie2 · Mariano Ceccato3 ·
Yan Naing Tun1 · David Lo1 · Lingxiao Jiang1 · Christoph Bienert4

Biniam Fisseha Demissie
biniam.demissie@tii.ae

Mariano Ceccato
mariano.ceccato@univr.it

Yan Naing Tun
yannaingtun@smu.edu.sg

David Lo
davidlo@smu.edu.sg

Lingxiao Jiang
lxjiang@smu.edu.sg

Christoph Bienert
christoph.bienert@tum.de

1 Singapore Management University, Singapore, Singapore
2 Technology Innovation Institute, 9639, Masdar City, Abu Dhabi, UAE
3 University of Verona, Verona, Italy
4 Technical University of Munich, Munich, Germany

123

130 Page 40 of 40 Empirical Software Engineering (2023) 28:130

http://orcid.org/0000-0001-5130-0407

	Experimental comparison of features, analyses, and classifiers for Android malware detection
	Abstract
	1 Introduction
	2 Related Work on Android Malware Detection
	3 Methodology
	3.1 Program Analysis
	3.2 Features Extraction
	3.3 Classifiers
	3.3.1 Deep Learning (DL) Classifier
	3.3.2 Conventional Machine Learning (ML) Classifier
	3.3.3 Optimizing the Classifiers

	3.4 Data Preprocessing

	4 Evaluation
	4.1 Experiment Design
	4.2 RQ1: Comparison among Features
	4.3 RQ2: Optimized DL Classifier vs Optimized Conventional ML Classifier
	4.4 RQ3: Additional Features
	4.5 RQ4: Robustness Against Android Evolution
	4.6 Threats to Validity

	5 Insights
	6 Conclusion
	References

