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Abstract
The opinions and perspectives of software developers are highly regarded in software engi-
neering research. The experience and knowledge of software practitioners are frequently
sought to validate assumptions and evaluate software engineering tools, techniques, and
methods. However, experimental evidence may unveil further or different insights, and in
some cases even contradict developers’ perspectives. In this work, we investigate the correla-
tion between software developers’ perspectives and experimental evidence about testability
smells (i.e., programming practices that may reduce the testability of a software system).
Specifically, we first elicit opinions and perspectives of software developers through a ques-
tionnaire survey on a catalog of four testability smells, we curated for this work. We also
extend our toolDesigniteJava to automatically detect these smells in order to gather empir-
ical evidence on testability smells. To this end we conduct a large-scale empirical study on
1, 115 Java repositories containing approximately 46 million lines of code to investigate the
relationship of testability smells with test quality, number of tests, and reported bugs. Our
results show that testability smells do not correlate with test smells at the class granularity or
with test suit size. Furthermore, we do not find a causal relationship between testability smells
and bugs. Moreover, our results highlight that the empirical evidence does not match devel-
opers’ perspective on testability smells. Thus, suggesting that despite developers’ invaluable
experience, their opinions and perspectives might need to be complemented with empirical
evidence before bringing it into practice. This further confirms the importance of data-driven
software engineering, which advocates the need and value of ensuring that all design and
development decisions are supported by data.
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1 Introduction

The opinions and perspectives of software developers matter significantly in software engi-
neering research. The research in the domain relies on the experience and knowledge of
software practitioners to validate assumptions and evaluate the tools, techniques, and meth-
ods addressing software engineering problems.Numerous studies reveal the importance of the
practitioners’ perspectives (Eck et al. 2019; Ribeiro et al. 2016; Pina et al. 2022; Al-Subaihin
et al. 2021). However, empirical evidence may not always agree with developers’ perspec-
tive, opinions, or beliefs. For example, Devanbu et al. (2016) show that software developers
have very strong beliefs on certain topics, but are often based on their personal experience;
such beliefs and corresponding empirical evidence may be inconsistent. Similarly, despite
developers’ fairly common negative perspectives about code clones, Rahman et al. (2010)
did not find sufficient empirical evidence to prove a strong correlation between code clones
and bug proneness; however, there could be effects of code clones other than bugs. Along
the similar lines, a study by Murphy-Hill et al. (2012) casts doubts on practitioners’ and
researchers’ assumptions related to refactoring. Finally, Janes and Succi (2012) challenge
the practitioners’ perspective on agile process by bringing out the dark side of agility. In this
paper, we present a case study of testability smells, i.e., programming practices that may neg-
atively affect testability of a software system, to investigate whether the software developers’
perspectives about testability smells is backed up by empirical evidence .

Researchers and practitioners have proposed various, yet inconsistent, definitions of soft-
ware testability (Garousi et al. 2019). The most common definition refers to the degree
to which the development of test cases can be facilitated by the software design choices
(Chowdhary 2009; Zhao 2006; Binder 1994). Specifically, several researchers (Chowdhary
2009; Zhao 2006; Payne et al. 1997) define testability as the ease of testing. In addition,
some researchers (Chowdhary 2009; Binder 1994; Zilberfeld 2012) emphasized that testa-
bility is not a binary concept but must be expressed in degree or extent. Additionally, other
researchers (Chowdhary 2009; Zilberfeld 2012; Pettichord 2002) explicitly connect soft-
ware design choices with the definition of software testability. Furthermore, some studies
(Chowdhary 2009; Payne et al. 1997; Zilberfeld 2012) identify the degree of effectiveness
by which test development is facilitated as another characteristic of testability definition.

There has been a significant amount of work on test smells and their effects (Junior et al.
2020; Spadini et al. 2018; Bavota et al. 2012). Test smells are bad programming practices in
test code that negatively affect the quality of test suites and production code (Garousi and
Küçük 2018). Though looks similar, practices that affect testability are completely different
than test smells. Test smells occur in test code while issues affecting testability arise in
production code. Also, test smells indicate the poor quality of test cases whereas testability
impacts the ability to write tests.

Several researchers have proposed frameworks for measuring and empirically evaluat-
ing software testability by considering (1) software design choices, including programming
language features (Voas 1996; Singh et al. 2015), (2) software quality metrics, including
cohesion, depth of inheritance tree, coupling, and propagation rate of methods (Lo and Shi
1998), metrics including the number of method calls, dependencies, and attributes of a class
with testability (Mouchawrab et al. 2005), and other software metrics (Khan and Mustafa
2009; Singh et al. 2015; Bruntinkvan andDeursen 2006), aswell as (3) testing effort (Terragni
et al. 2020). However, there are still various aspects related to software testability that remain
unexplored, including the extent to which specific programming practices (e.g., handling of
dependencies, coding style, and access of modifiers) impact software testability.
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The goal of this study is to find experimental evidence to validate current practitioners’
perspectives about testability smells. To achieve this goal, we first curate a catalog of four pro-
gramming practices which can affect software testability, referred to as testability smells. We
then gather software developers’ perspectives through a questionnaire survey on testability
in general, and our proposed testability smells in particular. Finally, we conduct a large-scale
empirical study guided by three research questions to explore the effect of testability smells
on test cases, their quality, and on reported bugs at different granularity levels. To support
the detection of testability and test smells, we develop a tool named DesigniteJava. To
answer the research questions, we curated a dataset of 1, 115 Java software projects which
are publicly available in GitHub, and analyzed them using our DesigniteJava tool.

Our survey shows that software developers consider testability as a factor that impedes
software testing and overwhelmingly acknowledged the proposed testability smells. Our
results suggest that testability smells show a low positive correlation with test smells at the
repository granularity; however, at the class-level, testability smells and test smells do not
correlate. Our exploration of the relationship between testability smells with test density
reveals no correlation at repository and class granularity. Finally, our observations from our
experiment indicate that testability smells do not contribute to bugs. Therefore, developers’
opinions and perspectives might need to be complemented with empirical evidence before
bringing it into practice.

This study makes the following contributions to the field.

1. We investigate the extent to which developers’ perspectives is in line with the empirical
evidence we found in the context of i.e., testability smells.

2. We consolidate a set of programming practices that affect testability of a software sys-
tem in the form of a catalog of testability smells. This catalog provides a vocabulary
for researchers and practitioners to discuss specific programming practices potentially
impacting the testability of software systems.

3. We extendDesigniteJava to detect the proposed testability smells and eight test smells.
The tool facilitates further research on the topic of testability smells. Also, interested
software developers may use this tool to detect testability smells in their source code to
better understand the impact of design choices on testing.

4. We explore the relationships between testability smells and several aspects relevant to
test development and bugs. Such an exploration improves our understanding, both as
software developers and researchers, of testability and lays the groundwork for devising
new tools and techniques to improve test development.

We have made publicly available our DesigniteJava to identify testability smells as well
as a replication package at https://github.com/SMART-Dal/testability.We hope this facilitate
other researchers to replicate, reproduce and extend the presented study.

The rest of this paper is organized as follows. First, we present related work in Section 2.
Section 3 provides overview of themethods. Section 4 presents the initial catalog of testability
smells, our questionnaire survey targeting to software practitioners and obtained results, and
tool implementation to detect testability and test smells. We present the mechanism followed
to select and download repositories fromGitHub in Section 5.We discuss results in Section 6
and their implications in Section 7. Threats to validity are discussed in Section 8. Finally, we
conclude in Section 9.
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2 Related work

Software testability From existing studies, we found that testability was initially considered
for hardware design (Le Traon and Robach 1995; Vranken et al. 1996; Le Traon and Robach
1997). The concepts of hardware testability were then used for software testability (Nguyen
et al. 2002; Kolb and Muthig 2006). Afterwards, a great deal of studies has been conducted
exploring various aspects of software testability. Tomeasure testability for data-flowsoftware,
Nguyen et al. (2005) suggested an approach that uses the satanmethod,which transforms the
source code into a static single assessment form. The form is then fed into a testability model
to detect source code parts with testability weaknesses. Bruntinkvan and Deursen (2006)
collected a large number of source code metrics (e.g., depth of inheritance tree, fan out, and
lack of cohesion of methods) and test code metrics to explore the relationship with testability.
The analysis focused on open-source Java applications. The results suggest that there is a
significant correlation between class-level metrics (most notably fan out, loc per class,
and response for class) and test-level metrics (loc per class and the number of test cases).
Vincent et al. (2002) investigated software components testability written in C++ and Java
in workstations and embedded systems. Moreover, the authors have suggested an approach
named built-in-test for run-time-testability which can provide more testable, reliable, and
maintainable software components. Filho et al. (2020) used ten testability attributes, proposed
in previous studies, to examine their correlationwith source codemetrics and test specification
metrics (e.g., number of test cases, test coverage) on two Android applications. They found
that testability attributes are correlated with several source code metrics and test specification
metrics. Chowdhary (2009) presented experiences while applying testability concepts and
introduced guidelines to ensure that testability is taken under consideration during software
planning and testing. Based on these findings, the authors introduced a testability framework
called shock. Furthermore, various resources (Human 2022; Zilberfeld 2012) discussed their
interpretation of testability and impact of smells affecting testability.

Assessing testability Voas (Jeffrey 1991) surveyed the factors that affect software testability,
arguing that a piece of software that is likely to reveal faults within itself during testing is said
to have high testability. According to this work, information loss is a phenomenon that occurs
during program execution and increases the likelihood that a fault will remain undetected.
Finally, Voas (1996) compared the testability of both object-oriented and procedural systems,
as well as whether testability is affected by programming language characteristics.

Surveys on testability Various literature surveys on testability have been carried out.
Freedman (1991) investigated the testability of software components. Freedman argued that
the concept of domain testability of software is defined by applying the concepts of observ-
ability and controllability to software.Garousi et al. (2019) examined 208 papers on testability
(published between 1982 and 2017) and also found that the twomost commonly referred fac-
tors affecting testability are observability and controllability. Furthermore, their survey argues
that common ways to improve testability are testability transformation, improving observ-
ability, adding assertions, and improving controllability. Similarly, Hassan (2015) conducted
a systematic literature review on software testability to investigate to what extent it affects
software robustness. Results show that a variety of testability issues are indeed relevant,
with observability and controllability issues being the most researched. They also found that
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fault tolerance, exception handling, and handling external influence are prominent robustness
issues.
Test smells A wide variety of studies explored test smells and their effect and relationship
on various aspects of software development, including change and bug proneness (Spadini
et al. 2018), maintainability (Bavota et al. 2015; Kim et al. 2021; Tufano et al. 2016), and test
flakiness (Fatima et al. 2022). Specifically, Spadini et al. (2018) investigated the relationship
between the presence of test smells and the change-and defect-proneness of test code, as well
as the defect-proneness of the tested production code. Among their findings, they observed
that tests with smells are indeed more change- and defect-prone. Regarding maintainability,
Bavota et al. (2015) presented empirical studies on test smells, and showed that test smells
have a strong negative impact on program comprehension andmaintenance. They, also, found
that comprehension is 30%better in the absence of test smells. Furthermore, Kim et al. (2021)
conducted an empirical study to study the evolution and maintenance of test smells. They
found that the number of test smells increases as a system evolves, and through a qualitative
analysis they revealed that most test smell removal is a maintenance activities. Additionally,
Tufano et al. (2016) showed that test smells are usually introduced when the corresponding
test code is committed in the repository for the first time. Then, those test smells tend to
remain in a system for a long time, hindering software maintenance. Fatima et al. (2022)
developed an approach called Flakify, which is a black-box, language model-based predictor
for flaky test cases.

Despite extensive work on testability, the existing literature does not translate high-level
principles such as observability and controllability into actionable programming practices.
Due to that though the high-level testability principles have been known to the community for
a long time, there has been no tool support to detect them.We provide a tool that supports the
detection of testability smells. Furthermore, we explore the relationship between testability
practices and test quality and size, which is our other contribution.

3 Overview of themethods

In the pursuit of weighing developers’ perceptions with empirical evidence in the context of
testability smells, we formulate the following research questions.

RQ1. To what extent do testability smells and test smells correlate?
Testability smells refer to bad programming practices that are believed to make test
case design and development difficult. Developers may choose to follow non-optimal
practices when it is not easy to write tests, leading to poor-quality test cases. Test
smells refer to bad programming practices in unit test code, compromising test code
quality by violating the best practices recommended for writing test code (Deursen
et al. 2001). This research question explores whether and to which extent testability
smells and test smells correlate.

RQ2. Do testability smells correlate with test suite size?
Bydefinition, testability smellsmake the design and development of test cases difficult.
With this research question, we aim to empirically evaluate whether the presence of
testability smells can hinder test development and consequently lead to a fewer number
of test cases. By answering this research question, we can inform developers about
testability smells that might impede a smooth test development.

RQ3. Do testability smells cause more bugs?
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Testability smells make it harder for developers to test a software system. This implies
that the software under test lacks appropriate testing, leaving more bugs uncovered
during software development. This research questio n aims to investigate whether and
to which extent testability smells can lead to a higher number of reported bugs.

Towards the goal of the study, as outlined in Fig. 1, we first prepared a set of potential
testability smells based on the available literature and recommended practices. We then
carried out an online survey to understand developers’ perspectives on software testability and
to gauge the extent to which they agree that those smells really impact testability negatively.
We extended our tool (DesigniteJava) to detect testability and test smells. We analyzed
1, 115 Java repositories downloaded from GitHub. After identifying the smells, we reported
our observations and findings with respect to each research question.

4 Testability smells

We define testability smells as the programming practices that reduce the testability of a
software system. This section presents an initial catalog of testability smells, validates them
by carrying out an online developers’ survey, and discusses the implementation details of our
tool.

4.1 Initial catalog of testability smells

In order to identify specific programmingpractices that negatively affect testability,we carried
out a light-weight multi-vocal literature (mlr) review, which surveys writings, views, and
opinions in diverse form and format (Garousi et al. 2018). The review process has three main
stages: search, selection, and information extraction.

In the search stage, two of the co-authors searched for a set of search terms (including
testability, ease of testing, and software design+test) on Google Scholar and Google Search.
For each search term, we manually searched minimum seven pages of search results. After

Fig. 1 Overview of the study
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the minimum threshold of seven pages, we continued the search until we get two continuous
search pageswithout any newand relevant articles.Adopting thismechanismavoidedmissing
any relevant articles in the context of our study.

We applied inclusion and exclusion criteria to filter out irrelevant sources. The main inclu-
sion criterion was that the source’s content must relate to testability. Examples of exclusion
criteria include dropping gray literature that is too short, written in language other than
English, or presented without objectivity in presentation. These examples map to the Objec-
tivity requirement of mlr process guidelines (Garousi et al. 2018).

In the last stage, we read or observed the selected resources and extracted information
relevant to our study. Specifically, we strived for concrete recommendations in terms of
programming practices that influence testability from the selected sources. We grouped the
practices based on similarity and assigned an appropriate name reflecting the rationale. We
identified four potential testability smells discussed by more than one selected source. We
present the consolidated set of smells below. It is the first attempt, to the best of our knowl-
edge, to document specific programming practices as testability smells. It is by no means
a comprehensive list of testability smells; we encourage the research community to further
extend this initial catalog of testability smells.

4.1.1 Hard-wired dependencies

This smell occurs when a concrete class is instantiated and used in a class resulting in a
hard-wired dependency (Chowdhary 2009; Zilberfeld 2012; Hevery 2008). A hard-wired
dependency creates tight-coupling between concrete classes and reduces the ease of writing
tests for the class (Chowdhary 2009). Such a hard-wired dependencymakes the class difficult
to test because the newly instantiated objects are not replaceable with test doubles (such as
stubs and mocks). Hence, the test will check not only the cut (class under test) but also its
dependencies, which is undesirable.

In Listing 1, the parse1 method creates an object of the BindingOperation class (line 4)
and calls a few methods (lines 6 and 7). The object cannot be replaced at testing execution
due to the concrete object creation and its use within this method. Hence, the hard-coded
dependency is reducing the ease of writing tests for the class.

1 private void parse(String name , String namespace ,
WsdlParser parser) throws WsdlParseException {

2 if (WSDL_NS.equals(namespace)) {
3 if (OPERATION.equals(name)) {
4 BindingOperation operation = new

BindingOperation(definitions);
5 operation.read(parser);
6 operations.put(operation.getQName (), operation)

;
7 }
8 }
9 //rest of the method

10 }

Listing 1 Example of hard-coded dependency

1 https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/ws/wsdl/Binding.java
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4.1.2 Global state

Global variables are, in general, widely discouraged (Marshall and Webber 2000; Sward
and Chamillard 2004). This smell arises when a global variable or a Singleton object is
used (Hevery 2008; Suryanarayana et al. 2014; Feathers 2004; Thomas and Hunt 2019).
Global variables create hidden channels of communication among abstractions in the system
even when they do not depend on each other explicitly. Global variables introduce unpre-
dictability and hence make tests difficult to write by developers.

The Builder2 class in Listing 2 is accessible, and hence can be read/written, within the
entire project. Such practice makes it difficult to predict the state of the object in tests.

1 public static class Builder {
2 // class definition
3 }

Listing 2 Example of global state

4.1.3 Excessive dependency

This smell occurs when the class under test has excessive outgoing dependencies. Depen-
dencies make testing harder; a large number of dependencies makes it difficult to write tests
for the class under test in isolation (Suryanarayana et al. 2014; Lo and Shi 1998; Zhou et al.
2012). For example, the Error3 class in the open-source project wsc refers to nine other
classes within the project — Bind, BulkConnection, TypeInfo, StatusCode, XmlOutput-
Stream, XmlInputStream, ConnectionException, TypeMapper, and Verbose. Such a high
number of dependencies on other classes increases the effort to write tests for this class to
be tested in isolation.

4.1.4 Law of demeter violation

This smell arises when the class under test violates the law of Demeter i.e., the class is
interacting with objects that are neither class members nor method parameters (Lienberherr
1989; Kaczanowski 2013; Thomas and Hunt 2019). In other words, the class has a chain of
method calls such as x.getY().doThat(). Violations of the law of Demeter create additional
dependencies that a test has to take care of. For example, lines 4 and 5 of the snippet4 given
in Listing 3 call a method to obtain an object that in turn calls another method on the obtained
object. Such method chains introduce indirect dependencies that reduce the ease of writing
tests for the class.

2 https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/async/JobInfo.java
3 https://github.com/forcedotcom/wsc/blob/master/src/main/java/com/sforce/async/Error.java
4 bindingURL
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1 public Iterator <Part > getAllHeaders () throws
ConnectionException {

2 HashSet <Part > headers = new HashSet <Part >();
3 for (BindingOperation operation : operations.values ())

{
4 addHeaders(operation.getInput ().getHeaders (),

headers);
5 addHeaders(operation.getOutput ().getHeaders (),

headers);
6 }
7 return headers.iterator ();
8 }

Listing 3 Example of the law of Demeter violation

4.2 Developer survey

We carried out an anonymous online questionnaire survey targeting software developers to
understand their perspectives on software testability. Specifically, we aimed to consolidate
developers’ perspectives w.r.t. the definition of testability as well as the relevance of our
identified testability smells. We divided our survey into three sections. In the first section,
we collected information about developers’ experience. In the second section, we asked
developers how they define testability. The final section presented our initial catalog of
testability smells and asked the respondents whether and to what extent they agree that the
presented practices negatively affect testability. All the questions in this section were Likert-
scale questions. The questionnaire that we used is available online (Sharma et al. 2022).

Before rolling out the survey to a larger audience, we ran a pilot for the survey, collected
feedback, and improved the survey. We shared the survey on all online professional social
media channels (such as Twitter, LinkedIn, and Reddit) and sought participation from the
software development community. We kept the survey open for six weeks. We received 45
complete responses.

4.2.1 Findings from the survey

Figure 2 presents the demographic distribution of participants in terms of years of experience
classified by their roles. We asked them to check all applicable roles and hence the total
number of responses shown in the figure is more than the number of participants. It is evident
that most of the participants belong to the “software developer” role; a significant number of
the participants belong to the highly experienced group (11-20 years).

Definition of software testability We asked the participants a question to elicit the defini-
tion of software testability. Most of the responses point to the degree of ease with which
automated tests can be written. Some of the actual responses are: “The extent to which a
software component can be tested”, “software testability is the degree that software artifacts
support testing”, “easy testing”, and “a measure of how easy it is for the code to be tested
through automated tests”. An interested reader may look at the raw anonymized responses
in our replication package (Sharma et al. 2022).

Programming practices affecting testability The next set of questions presented four pro-
gramming practices corresponding to each potential testability smell and asked the respon-
dents whether and towhat extent these practices negatively affect software testability.We also
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Fig. 2 Demographics (role and experience in number of years) of participants

asked about the rationale for their choice. Figure 3 presents the consolidated responses for all
four considered smells. A very large percentage (84%, 87%, 78%, and 73% respectively for
the four considered smells) of the responses agreed (either completely or somewhat agree)
to mark the presented practices as testability smells.

We looked into the rationale provided by respondents for other options (i.e., neither agree
nor disagree, somewhat and completely disagree). Specifically, for hard-wired dependency,
one of the respondentswhomarked completely disagreedid not offer any justification; another
respondent suggested to use mocking. One respondent with a somewhat disagree option for
the same smell basing his/her answer on the assumption that dependencies are trivial (i.e.,
internal class or trivial class from a library) most of the time. Respondents who opted for
the option “neither agree nor disagree” either expressed their ignorance about the specific
question or left the rationale question unanswered.

The respondents of “somewhat disagree” option for global state smell justify their selec-
tion by providing a workaround to test a unit with global variables; for example, one of the

Fig. 3 Respondents’ perspective of considered testability smells
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respondents provided the following rationale: “Logging where and when the global state is
altered is usually good enough for testing the code I work with”.

Whereas, those who chose the “completely disagree” option for the excessive dependency
smell, seem, however, to agree that it is difficult to test source code containing this smell
based on their open answers (for example, one such an answer states “If designed properly
then testing won’t be difficult but yes more dependencies need extra setups”).

For the law of Demeter violation smell, a considerable number of respondents chose the
“neither agree nor disagree” option; however, they did not provide any fruitful rationale
towards this testability smell.

Additional programming practices affecting testability We also enquired about other pro-
gramming practices that may negatively influence the testability of a software system. The
responses provided us with additional practices such as poor separation of concern (mixing ui
and non-ui aspects), interaction with external resources, such as sockets, files, and databases,
time dependencies, asynchronous operations, reflection, invoking command line from code,
methods that do not return anything but changes internal state, and requirements for authen-
tication credentials that hinder testability. In addition, the respondents mentioned spaghetti
code, highly tangled code, large methods, and non-standard environments as practices that
reduce testability. Some of the indicated practices are covered by the proposed smells. For
example, interactionwith external resources has been captured by the hard-wired dependency
smell since external resources such as a network connection need to be instantiated.

The results from the survey not only suggest that the investigated smells are indeed consid-
ered practices that affect testability negatively but also provide indicators for the community
to extend the proposed catalog.

4.3 The DesigniteJava tool

Weextended our toolDesigniteJava (Sharma 2018), to support for testability and test smells
detection.5 We select DesigniteJava to extend because the tool detects a variety of code
smells and it has been used in various studies (Oizumi et al. 2019; Sharma et al. 2020; Eposhi
et al. 2019; Uchôa et al. 2020; Alenezi and Zarour 2018). Architecturally, DesigniteJava
is structured in three layers as shown in Fig. 4. Eclipse Java Development Toolkit (jdt)
forms the bottom layer. DesigniteJava utilizes jdt to parse the source code, prepare asts,
and resolve symbols. The source model is the middle layer. The model invokes jdt and
maintains a source code model from the information extracted from an ast with the help of
jdt. The top layer of the tool contains the business logic i.e., the smell detection and code
quality metrics computation logic. The layer accesses the source model, identifies smells and
computes metrics, and outputs the generated information in either .csv or .xml files. Due
to the existing support to detect smells and compute metrics, various features (such as the
source model) can be reused in our context. To support testability and test smell detection,
we added code in the code smell detection layer. We also modified the source model layer
to extract additional information required for our purpose. The extended version of the tool
can be downloaded from its website.6

5 https://www.designite-tools.com/blog/understanding-testability-test-smells
6 https://www.designite-tools.com/designitejava/
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Fig. 4 Architecture of DesigniteJava tool

Existing explorations have proposed a few tools to detect test smells.Wefirst tried to utilize
existing tools, specifically JNose (Virgínio et al. 2020) and TsDetect (Peruma et al. 2020).
We were able to use JNose after taking help from its authors and developing a wrapper to use
the tool as a console application. However, a quick analysis of the produced results showed a
considerable number of false positive and false negative smell instances. Similarly, we were
unable to use TsDetect because it is not suitable to analyze a large number of repositories
due to a manual step requiring a mapping of test files and corresponding production files.
Finally, we decided to develop our own test smell detector to identify the following eight
test smells—Assertion roulette, Conditional test logic, Constructor initialization, Eager test,
Empty test, Exception handling, Ignored test, and Unknown test. We selected these smells
because these were commonly known test smells and both the tools, i.e., TsDetect and JNose,
support them.We implemented the support to detect test smells inDesigniteJava alongwith
testability smells.

4.3.1 Detection rules for testability smells

We summarize below the detection strategies used for the testability smells.
Hard-wired dependency: We first detect all the objects created using the new operator in a
class. Then, if the functionality of the newly created object is used (i.e., at least one method
is called) in the same class, we detect this smell.
Global state: If a class or a field in a class is declared with public staticmodifiers, we detect
this smell.
Excessive dependency: We compute fan-out (i.e., total number of outgoing dependencies)
of a class. If the fan-out of the class is more than a pre-defined threshold, we detect the smell.
The literature (Oliveira et al. 2014,b; Ömer Faruk and Yan 2021) suggests a threshold value
for fan-out between 5 and 15 with a varying compliance rate. We adopted 7 as the threshold
value as suggested by Ömer Faruk and Yan (2021). We ensure that the threshold value is
configurable; hence, future studies may change any of the thresholds used.
Law ofDemeter violation:Wedetect all themethod invocation chains of the form aField.get-
Object().aMethod(). We detect this smell when method calls are made on objects that are not
directly associated with the current class.
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4.3.2 Detection rules for test smells

The tool uses the definition of test smells and their detection strategies from existing stud-
ies (Virgínio et al. 2020; Peruma et al. 2020; Aljedaani et al. 2021). We present a summary
of the detection strategies for the considered test smells below.
Assertion roulette:We detect this smell when a test method contains more than one assertion
statement without giving an explanation as a parameter in the assertion method.
Conditional test logic: We detect this smell when there is an assertion statement within a
control statement block (e.g., if condition).
Constructor initialization:We detect this smell when a constructor of a test class initializes
at least one instance variable.
Eager test: We detect this smell when a test method calls multiple production methods.
Empty test:Wedetect this smellwhen a testmethod does not contain any executable statement
within its body.
Exception handling: We detect this smell when a test method asserts within a catch block
or throws an exception, instead of using Assert.Throws().
Ignored test:We detect this smell when a test method is ignored using the Ignore annota-
tion.
Unknown test: We detect this smell when a test method does not contain any assert call or
expected exception.

4.3.3 Validation

Wecurated a ground truth of smells in a Java project tomanually validate the tool, as explained
below.
Subject system selection: We used the RepoReapers dataset (Munaiah et al. 2017) and
applied the following criteria to select a subject system.

1. The repository must be implemented mainly in the Java programming language
2. The repository must be of moderate size (between 10K and 15K ) to avoid toy projects

on one side and excessive manual effort on the other
3. The repository must have a unit-test ratio > 0.0 (number of sloc in the test files to the

number of sloc in all source files)
4. The repository must have a documentation ratio> 0.0 (number of comment lines of code

to the number of non-blank lines of source code)
5. The repository must have a community size > 1 (more than one developer).

We applied the criteria and sorted the list by the number of stars.We obtained j256/ormlite-
jdbc, paul-hammant/paranamer, and forcedotcom/wsc as the top three projects satisfying
our criteria. The majority of the source code belonging to j256/ormlite-jdbc and paul-
hammant/paranamerwas in test cases. Hence, we selected j256/ormlite-jdbc,7 as our subject
system for test smells validation. However, such repositories were not suitable for validating
testability smells, since we detect testability smells in non-test code. Hence, we selected
forcedotcom/wsc,8 a project that offers a high performance web service stack for clients, as
our subject system for the manual validation of testability smells.
Validation protocol: Two evaluators manually examined the source code of the selected
subject systems and documented the testability and test smells that they found. Both the

7 https://github.com/j256/ormlite-jdbc
8 https://github.com/forcedotcom/wsc
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Table 1 Results of manual
validation for testability smells

Testability Smells Manually
Verified
Instances

TP FP FN

Hard-wired dependencies 64 63 2 1

Global state 22 22 0 0

Excessive dependencies 20 19 0 1

Law of Demeter violation 66 57 0 9

Total 172 161 2 11

evaluators hold a PhD degree in computer science and have more than 5 years of software
development experience. Before carrying out the evaluation, they were introduced to testa-
bility and test smells. They were allowed to use ide features (such as “find”, “find usage”
(of a variable) and “find definition” (of a class) and external tools to collect code quality
metrics to help them narrow their search space. Both evaluators carried out their analyses
independently. It took approximately three full work days to complete the manual analysis.
After their manual analysis was complete, theymatched their findings to spot any differences.
We used Cohen’s Kappa (Berry et al. 1988) to measure the inter-rater agreement between
the evaluators. The obtained result, 89% and 93% respectively for testability and test smells,
shows a strong agreement between the evaluators. The evaluators discussed the rest of their
findings and resolved the conflicts.
Validation results:We used our tool, DesigniteJava, on the subject systems and identified
testability and test smells. We manually matched the ground truth prepared by the evaluators
and the results produced by the tool. We classified each smell instance as true positive (tp),
false positive (fp), and false negative (fn). We computed precision and recall metrics using
the collected data.

Table 1 presents the results of the manual evaluation for testability smells. The tool identi-
fied 161 instances of testability smells out of a total of 172 manually verified smell instances.
The tool produced two false positive instances and eleven false negative instances. The false

Table 2 Results of manual
validation for test smells

Testability Smells Manually
Verified
Instances

TP FP FN

Assertion roulette 214 212 0 2

Conditional test logic 11 11 0 0

Constructor initialization 0 0 0 0

Eager test 13 13 0 0

Empty test 0 0 0 0

Exception handling 3 2 0 1

Ignored tests 2 2 0 0

Unknown test 58 58 0 0

Total 301 298 0 3
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positive instances were detected mainly because the tool identified the hard-wired depen-
dency even when an object was instantiated in a method call statement. Similarly, the tool
reported false negatives due to an improper resolution of enumeration types; we traced back
the inconsistent behavior to the jdt parser library. The precision and recall of the tool for
testability smells based on the analysis is 161/(161+2) = 0.99 and 161/(161+11) = 0.94,
respectively. Similarly, Table 2 shows the results of the manual evaluation carried out for
test smells. Out of 301 test smells in 428 test methods, the tool correctly detected 298 smell
instances. The cause of three instances of false negative is traced back to inconsistent behavior
of the parser library. The precision and recall of the tool for test smells based on the analysis
is 298/(298 + 0) = 1.0 and 298/(298 + 3) = 0.99, respectively. An interested reader may
find the detailed manual analysis in our replication package (Sharma et al. 2022).
Generalizability of conclusions: The above validation shows that the tool produces reliable
results in almost all cases. Given that the tool has been used by many researchers and practi-
tioners, occasional issues reported by them were promptly fixed, thus further improving the
reliability of the tool. A few known issues and limitations of the tool remain. First, due to
a symbol resolution issue in jdt, in some very peculiar cases, the tool cannot resolve the
symbol that leads to issues such as inability to identify the type of a variable. Also, the tool
can identify test smells only when the tests are written in the JUnit framework.

5 Mining GitHub repositories

We use the following mechanism to select and download repositories from GitHub.

1. We use RepoReapers (Munaiah et al. 2017) to filter out low-quality and too small
repositories on GitHub. We use quality characteristics provided by the RepoReapers
to define a suitable criteria for repository selection. RepoReapers assesses repositories
on eight characteristics and assigns a score typically between 0 and 1. We select all
Java repositories in the RepoReapers dataset where architecture (as evidence of code
organization), community and documentation (as evidence of collaboration), unit tests
(as evidence of quality), history and issues (as evidence of accountability) scores are
greater than zero. Further, we filter out repositories containing less than 1, 000 lines of
code (loc) and having less than 10 stars.

2. We obtain 1, 500 repositories after applying the above selection criteria.
3. We analyze all the selected repositories using theDesigniteJava tool that we developed

to identify testability and test smells.

Table 3 presents the characteristics of the analyzed repositories. We attempted download-
ing and analyzing all the selected repositories; however, we could not download (either due
to deleted or made private) and analyze (due to missing tests developed using JUnit frame-
work) some of the repositories. Specifically, we did not find JUnit tests in 300 repositories.
We successfully analyzed 1, 115 repositories containing approximately 46 million loc. Our
replication package (Sharma et al. 2022) includes the initial set of repositories, the names of
all the successfully analyzed repositories along with the raw data generated by the employed
tool, DesigniteJava.
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6 Results

6.1 RQ1. To what extent do testability smells and test smells correlate?

6.1.1 Approach

The goal of this RQ is to explore the degree of correlation between test smells and testability
smells in a repository. To achieve the above-stated goal, we first detect all the considered
testability and test smells using DesigniteJava in the selected repositories. We calculate
the sum of all testability smells and test smells per repository. Then, we compute smell
density (Sharma et al. 2020) to normalize the total number of smells to eliminate the potential
confounding factor of project size. Testability smell density is defined as the total number
of testability smells per one thousand lines of code (i.e., (number of testability smells ×
1,000)/total lines of code). Test smell density is defined as the total number of test smells in
each test method (i.e., number of test smells/total number of tests). We use the Spearman’s
correlation coefficient (Spearman 1961) to measure the degree of association between these
two smell types.

Furthermore, we explore the relationship at the class-level. By the fine-grained analysis,
we aim to see whether a class C that suffers from testability smells shows a high number of
test smells in the test cases that primarily test the class C, and vice-versa. Testability smells
occur in production (non-test) code and test smells arise in test code. Hence, we require a
mechanism to map a production class with corresponding test classes that test the production
class. We implemented the logic of identifying the production class under test for each test
case in DesigniteJava. For the analysis, we first find out all the method calls in each test
case. Then, we identify the classes of the methods that are called from the test case. It is
possible that a test case calls methods belonging to multiple classes; in that case, we attempt
to identify the primary class that is being tested by the test case. To do so, we match the name
of the test class and the names of candidate primary classes; typically, a test class is named by
appending Test in the class name that the test class is testing. If the test class name does not
follow the specified pattern and there are multiple candidate classes to be designated as the
primary production class, then we pick the first candidate class whose method is called from
the test case. Using the above information, we prepare a reverse index mapping to obtain
a list of test cases corresponding to each production class. We use the mapping to retrieve
the number of test smells corresponding to each production class. As explained above, we
compute the testability smell density and test smell density at the class level. Finally, we

Table 3 Characteristics of the
analyzed repositories

Characteristics Count

Total number of repositories 1,115

Total lines of code 46,176,914

Total number of classes 691,481

Total number of methods 4,031,216

Total number of test cases 415,527

Total number of testability smells 637,118
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Fig. 5 RQ1. Correlation between
testability and test smell density
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compute the Spearman’s correlation coefficient between testability smell density and test
smell density.

6.1.2 Results

Figure 5 shows the scatter plot between testability smell density and test smell density in
the software systems under examination. We obtain the Spearman’s correlation coefficient
ρ = 0.246 (p-value < 2.2e − 16); the coefficient indicates that testability and test smells
share a low positive correlation.

We extend our analysis by computing the correlation between the density of individual
testability smells and the test smell density per repository. We observe that law of Demeter
violation shows the highest correlation ρ = 0.358 (p-value < 2.2e − 16) with test smells.
On the other hand, the global state exhibits the lowest correlation ρ = 0.076 (p-value
< 2.2e−16). Hard-wired dependency and excessive dependency show correlationρ = 0.328
(p-value < 2.2e − 16) and ρ = 0.248 (p-value < 2.2e − 16), respectively.

We also investigate the relationship at the class-level. We identify the test cases and
corresponding test smells for each production class and compute the Spearman’s correlation
between the normalized values of testability smells and test smells. We obtain ρ = 0.050
(p-value = 2.903e − 08). The results indicate that testability smells and test smells do not
share any correlation at the class-level granularity.

Answer to RQ1. Testability smells show a low positive correlation with test smells.
A fine-grained analysis at the class-level reveals that testability smells and test smells
do not correlate with each other.

6.2 RQ2. Do testability smells correlate with test suite size?

6.2.1 Approach

RQ2 investigates whether and to what extent the presence of testability smells leads to
fewer test cases. To study this relationship, we first compute the testability smells in all
the considered repositories using DesigniteJava. In addition to smells, we use the tool to
figure out the total number of test cases in a repository; the tool marks each method as a test
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Fig. 6 RQ2. Correlation of
testability smells with test density
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method or a normal non-test method. For simplicity, we treat each test method (i.e., a method
with a @Test annotation) as a test case. Next, we compute the testability smell density as
described in RQ1 and the test density of each repository. Test density is a normalized metric
that represents the total number of test cases per one thousand lines of code. We compute the
Spearman’s correlation coefficient between the testability smell density and the test density
for each repository.

Similar to RQ1, we explore the correlation at the class-level. For the analysis, as we
explain in RQ1, we first find out the production classes that a test case is testing. With this
information, we prepare a mapping between production classes and their corresponding set
of test cases. We use the mapping to retrieve the number of test smells corresponding to each
production class. We compute testability smell density and test case density at the class level.
We measure the correlation between testability smells and the number of test cases using
Spearman’s correlation coefficient.

6.2.2 Results

Figure 6 presents a scatter plot between the testability smell density and the test density of
the selected repositories. We obtain ρ = −0.033 (p-value= 0.308), which is not statistically
significant. Therefore, testability and test smells do not correlate with each other.

We extend our analysis by segregating the repositories into two categories by size. In the
first set, we put all the repositories that have less than 50, 000 lines of code and, then, we put
the rest of the repositories in the second set. We carry out the same analysis on both of these
sets. We obtain ρ = −0.009 (p-value = 0.789) for the first set and ρ = −0.050 (p-value =
0.492) for the second set between testability smells and test density. The obtained results are
not statistically significant.

Furthermore, we observe the relationship between testability smells and the number of
tests at the class-level granularity. We compute the total number of testability smells for each
non-test class and figure out the total number of tests written for the class. In the computation,
we did not include the classeswhere the number of tests for the entire project is zero indicating
that either the test cases are not written for the project or the test cases are written using a
framework other than JUnit. We perform the above step to reduce the noise in the prepared
data. We obtain ρ = −0.179 (p-value < 2.2e−16) as the correlation coefficient. The results
clearly show that testability smells show a very low correlation with the size of the test suite.
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Answer toRQ2.Testability smells do not exhibit any correlationwith the test density
of a software system.

6.3 RQ3. Do testability smells causemore bugs?

6.3.1 Approach

RQ3 aims to investigatewhether and towhat extent testability smells relate to, and even cause,
bugs in a given software system. To answer this question, we choose five subject systems
manually and perform a trend analysis by extracting information from multiple commits for
each of these subject systems.

We use the following protocol to identify the subject systems for this research question.
First, we obtain a sorted list of repositories by their number of commits in descending order
from our selected initial set of repositories (see Section 5) using the GitHub api. The intent
here is to choose repositories with a rich commit history to facilitate detailed trend analysis.
Then, we manually check these repositories one by one to assess whether a repository uses
GitHub issues and whether these issues are labelled as “bugs”. In addition, we execute
DesigniteJava on the latest commit of each of these repositories to ensure that it does
not take too long to run, as, otherwise, it might be prohibitive for us to run it to analyze
the entire repository containing multiple (hundreds of) commits. Finally, we select the first
five repositories that satisfy the above criteria, which are: Magarena,9 XP,10 Rundeck,11

MyRobotlab,12 and Ontrack.13

In order to perform a trend analysis, it is crucial to select a suitable set of commits from
each of these repositories. One common way is to select commits at a fixed interval either
by commit number (for example, every 100th commit) or by commit date (for example, one
commit per month). However, such a mechanism may result in a skewed set of commits
where either significant changes in the commits are missed or commits with hardly any
change are analyzed. To overcome this limitation, Sharma et al. (2020) proposed a commit
selection algorithm where commits are selected based on the amount of changes introduced
in a commit w.r.t. the previous selected commit. In this work, we follow this strategy to
select commits for each of the five identified repositories. Specifically, we first obtain all
the commits in a repository in the main branch, and then we choose the first and the last
commit to get started. Then, we compute five code quality metrics (i.e., weighted methods
per class (wmc), number of children (NC), lack of cohesion among methods (lcom), fan-in,
and fan-out) and identify changed classes based on the changes in any of these metrics. If
the changed number of classes between two analyzed commits differ by a threshold (set to
5%), we consider the commit having significant changes (Sharma et al. 2020). We then pick
the middle commit (i.e., the commit between the currently selected two commits) and repeat
the process until we find commits with non-significant changes (Sharma et al. 2020).

Once we identify the set of commits for the trend analysis, we detect testability smells in
each of the selected commits for each repository by using our DesigniteJava tool. Also, we

9 https://github.com/magarena/magarena
10 https://github.com/enonic/xp
11 https://github.com/rundeck/rundeck
12 https://github.com/MyRobotLab/myrobotlab
13 https://github.com/nemerosa/ontrack
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identify the total number of open and closed issues that has the tag “bugs” when the commit
was made. The GitHub api does not provide a direct way to figure out issues at the time of a
specific commit. To identify issues at the time of a specific commit, we first fetch the issues
that are open (or closed) since the time of a commit and subtract them from the total open (or
closed) issues at present. It gives us the total number of open (or closed) issues at the time of
a specific commit. We record this information along with the total detected testability smells
for each selected commit. Using this information, we compute the Spearman’s correlation
coefficient between the total detected testability smells and the total number of issues (i.e.,
the sum of open and closed for each considered commit).

We also carry out a causal analysis to figure out whether testability smells cause bugs. We
use Granger’s causality (Granger 1969) analysis for this purpose. The method has been used
in similar studies (Couto et al. 2013; Palomba et al. 2018; Sharma et al. 2020) to explore the
causal relationship within the software engineering domain. Equation (1) presents Granger’s
method mathematically.

a(t) =
k∑

j=1

f (st− j ) +
k∑

j=1

f (bt− j ) (1)

In our context, time series S and B represent the testability smell density i.e., total number
of testability smells per one thousand lines of code, and reported bugs computed over a period
of time. Variables st and bt represent testability smell instances and total reported bugs at
time t . If the predictions of variable b with the past values of both s and b are better than the
predictions using only the past values of b, then testability smells cause the bugs.

In such analysis, we must ensure the stationary property of a time-series before analyzing
it and drawing conclusions based on that. A time-series is stationary if its statistical properties,
such as mean, variance, and autocorrelation, are constant over time (Cox andMiller 1965). A
non-stationary time-series shows seasonal effects, trends, and fluctuating statistical properties
changing over time. Such effects are undesired for the causality analysis and thus a time-
series must be made stationary before we perform the causality analysis. We carried out the
augmented Dickey-Fuller unit root test (Fuller 1976) to check the stationary property of our
time-series. Initially, our time-series was non-stationary. There are a few techniques to make
a non-stationary time-series a stationary one (Kwiatkowski et al. 1992). We addressed this
issue by applying a difference transformation, i.e., subtracting the previous observation from
the present observation for all columns. Techniques such as differencing, that we applied,
help stabilize the mean of a time series by removing changes in the time series, and therefore
eliminate or reduce the non-stationary nature of the series (Kwiatkowski et al. 1992). After
the transformation, we obtain a stationary time-series that we confirmed by performing the
augmented Dickey-Fuller unit root test again. Finally, we carry out the causality analysis
using (1).

6.3.2 Results

Table 4 presents the results of the experiment. The number of analyzed commits ranges
between 38 (for XP) and 180 (for Rundeck). The size of the selected repositories varies
between ≈ 71 kloc (for Magarena) to ≈ 181 kloc (for XP) as measured for the most
recent analyzed commit. We compute the total number of testability smells in each selected
commit as well as the total reported (open and closed) issues marked as bugs at the time
of the corresponding commits for each of the selected repositories individually. The table
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Table 4 RQ3. Correlation and causation relationships between testability smell density with the number of
reported bugs

Repository #Commits LOC Testability
Smells

Correlation Coef-
ficient (p-value)

Causality
p-value

Magarena 66 71, 567 1, 425 0.482(4.4e − 4) 0.119

MyRobotlab 76 118, 532 2, 643 0.761(< 1.4e − 15) 0.661

Ontrack 107 17, 009 72 0.105(< 0.280) 0.708

Rundeck 180 81, 198 1, 570 0.193(< 0.009) 0.825

XP 38 181, 278 2, 143 0.937(< 2.2e − 16) 0.249

shows the total number of testability smells detected in the most recent analyzed commit.
We compute the Spearman correlation coefficient between the reported issues and testability
smell density. We observe mixed results for the correlation analysis; two repositories show
strong, one repository showsmoderate, and one repository shows low correlation.We observe
that the correlation coefficient is not statistically significant for the Ontrack repository.

The last column of Table 4 presents the results of the causality test. Each cell in the column
shows the p-value computed for the causal relationship of testability smells with the reported
bugs. The results for all the analyzed repositories show that testability smells do not cause
bugs as all the obtained p-values are greater than 0.05.

Answer to RQ3: The causality analysis reveals that testability smells do not cause
bugs.

Fig. 7 Box-plots of the categories of testability smell density with test density
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7 Implications and Discussion

The results of our first research question reveal that there is no correlation between testability
smells and test smells. This suggests that writing good-quality test code is possible even with
poor testability, at least for all testability smells considered herein. The results also indicate
that either the difficulty in writing tests due to the considered testability smells is orthogonal
to test smells, or existing testing frameworks, e.g., mocking frameworks, make it easier to
overcome the challenges posed by poor testability. Researchers may investigate further the
influence of tools’ features, such as mocking, to facilitate testing despite poor testability.

We explore the effect of testability smells on test suite size, represented by the number
of test cases, in RQ2. Figure 7 shows box-plots of the categories of testability smell density
with test density. We divide the repositories into four categories C1 to C4 based on the value
of the testability smell density. For example, repositories with a testability smell density of
less than five are put into category C1. We observe that the median test density for the first
category is the highest among all the categories and the test density dips for the category
C2. However, against the common belief of developers, test density rises again in categories
C3 and C4. The analysis further reaffirms that testability smells do not share a linear
monotonic relationship with test density.

Our experiment to investigate the correlation of testability smell density with the number
of reported bugs does not show a consistent strong relationship. The strong correlation in two
repositories and the moderate correlation in a repository show that the density of testability
smell increases as the size of the software grows since the total number of reported bugs
always increases with time. Hence, a strong correlation implies that the rate of testability
smells increases as the software systems grow.

In the context of our study, one might wonder about the relationship of testability smells
with traditional code smells. Given the definition and scope, it is likely that some code smells
are also considered testability smells if they impact testability. However, this interpretation
is not uniquely applicable only in this context. For example, a violation of the ‘single respon-
sibility principle’ may introduce incohesive class (or multifaceted abstraction) at design and
‘feature concentration’ smell at architecture granularity. Nevertheless, we perform an anal-
ysis of testability smell density with code smell density not only at the repository-level but
also at a fine-grained granularity of class-level (where we compute the total number of smells
for each class of the considered repositories). We use the DesigniteJava tool to detect code
smells and testability smells. We compute the Spearman’s correlation coefficient between
the normalized total number of smells. At the repository-level, we obtain ρ = 0.851 (p-value
< 2.2e−16) as the Spearman’s correlation coefficient. Similarly, we get ρ = 0.857 (p-value
< 2.2e−16) when we compute the correlation at the class-level. The strong correlation indi-
cates that the presence of a large population of code smells is associated with the presence
of a large number of testability smells and vice versa.

The elicited developers’ perspective clearly emphasizes the importance of testability
smells and the potential negative impact on testing aspects. However, the empirical evi-
dence observed in the study does not agree with the perspective. We observed that testability
smells, at the class-level fine-grained granularity, do not correlate with test smells. Also, the
smells do not show any influence on test density. Furthermore, the results show that testability
smells do not contribute to a higher number of bugs. The results suggest that despite develop-
ers’ invaluable experience, their opinions and perspectives might need to be complemented
with empirical evidence before bringing it into practice.

123

120   Page 22 of 29



(2023 ) 28:120Empirical Software Engineering

8 Threats to Validity

This section discusses the potential threats to the validity (construct, internal, and external)
of our reported results.

Construct validity Construct threats to validity are concerned with the degree to which
our analyses measure what we claim to analyze. In our study, we used our DesigniteJava
tool to identify the four testability smells. However, the strategies used to identify testability
smells may not capture all testability cases. To mitigate this threat, we thoroughly tested the
tool using different cases for each smell, and also fine-tuned the tool based on testing. Then,
we performed a manual analysis of the four testability smells on a complete project, namely
wsc. The results of the manual validation show a very high recall and precision. Similarly,
we also implemented support to detect test smells by following detection strategies proposed
in the existing literature to identify test smells.
Internal validity Internal threats to validity are concerned with the ability to draw conclu-
sions from our experimental results. We carried out an online anonymous survey targeting
developers by posting our survey on social media professional channels (Twitter, LinkedIn,
and Reddit). Given the anonymity of the survey, we do not have any mechanism to verify
the level of experience claimed by the participants. However, based on the quality of the
responses provided by the participants, we believe that such a threat is mild. In addition, soft-
ware developers participated in our online survey were not selected based on the repositories
we analyzed. As a result, opinions of developers could be influenced by the repositories they
usually contribute to and might not agree with our empirical results. To mitigate this, we did
not target developers from specific repositories but rather expanded our participation range
by posting invitations on online professional social media channels.

Agreement bias (or acquiescence bias) refers to the participants’ tendency to agree with
a statement rather than disagreeing with it Toner (1987). We design our questionnaire in a
neutral tone and provide options by using a Likert-scale to mitigate this threat. A similar
threats to validity is participants’ acquaintance to the authors. To avoid this threat, we did
not circulate the survey in our internal organization groups. Also, we restricted the sharing to
professional social media channels and hence did not sharing the survey on our, for example,
Facebook profiles or groups.

RQ3 investigates causality between testability smells and the number of reported bugs; the
analysis reveals that the testability smells do not cause bugs. There are two possible threats
to the conclusion. First, it is possible that the testability smells other than those considered in
the study have a larger impact on bugs. However, though there could bemany other testability
smells, the considered smells are representative as shown by our developers’ survey. Second,
the study only considered reported known bugs. It is possible that there are many more
unknown bugs that may influence the results and conclusion of the experiment.

External validity External threats are concerned with the ability to generalize our results.
The 1, 115 GitHub repositories analyzed in this paper were selected using well-defined
criteria from the RepoReapers dataset. However, some repositories might have switched
from public to private or no longer exist on GitHub, which might affect the criteria used
to select repositories in this paper. In addition, all the selected repositories contain software
written in Java, which might affect the generalizability of our findings. The major reason for
focusing on Java is that themajority of research on software quality analysis has been done on
Java code, and hence we can leverage existing tools to achieve the goals of our study. Along
the same lines, the implemented test smell detection works only if the tests are written using
JUnit. The rationale behind this decision is that JUnit is the most commonly used testing
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framework for Java. We encourage future research to expand the analyses conducted in this
paper to software written in different programming languages.

9 Conclusions

This study explores practitioners’ perspectives about testability smells aswell as experimental
evidence gathered via a large-scale empirical study on 1, 115 Java repositories containing
approximately 46 million lines of code in order to better understand the relationship of
testability smells with test quality, number of tests, and reported bugs.

Specifically, the study surveyed software developers to elicit their opinions and perspec-
tives about testability smells. The survey showed that software developers consider testability
a factor that impedes software testing; the survey also revealed their strong agreementwith the
proposed testability smells. Then, we conducted an extensive empirical evaluation to observe
the relationship between testability smells and test-related aspects such as test smells and
test suit size. Our results show that testability smells do not correlate with test smells at the
class granularity and with test suit size. Furthermore, we did not find evidence that testability
smells cause bugs.

Our study has implications for both the research and industrial communities. Software
developers often have strong opinions about software engineering concepts; however, exper-
imental evidence may not support them in general. Specifically, this study shows that
developers’ opinions about testability do not concur with the experimental evidence. Hence,
opinions and perspectives must be complemented with empirical evidence before bringing
into practice. This also highlight the importance of data-driven software engineering, which
advocates the need and value of adopting design and development decisions supported by
data. Researchers can use our tool to detect testability smells to further evaluate and confirm
our observations. Also, researchers may propose additional testability smells and investigate
their collective impact on other relevant testing aspects, such as testing efforts.
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