
https://doi.org/10.1007/s10664-023-10371-2

Adversarial domain adaptation for cross-project defect
prediction

Hengjie Song1 · Guobin Wu1 · Le Ma2 · Yufei Pan1 ·Qingan Huang1 · Siyu Jiang3

Accepted: 24 July 2023 / Published online: 19 September 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Cross-Project Defect Prediction (CPDP) is an attractive topic for locating defects in projects
with little labeled data (target projects) by using the prediction model from other projects
with sufficient data (source projects). However, previous models may not fully capture the
semantic features of programs because of inappropriate feature extraction models. Besides,
researchers may fail to consider the relationship between the decision boundary and target
project data when matching two feature distributions by adopting transfer learning meth-
ods, which would lead to the misclassification of target samples that are near boundary. To
handle these drawbacks, we propose a novel Adversarial Domain Adaptation (ADA) model
for CPDP. Specifically, we leverage a Long Short-Term Memory network with attention
mechanism to extract semantic features that better represent programs. Then, we train two
classifiers to correctly categorize source samples and distinguish ambiguous target instances
that influence prediction accuracy. Next, we treat the classifiers as a discriminator and fea-
ture extraction model as a generator, and train them based on adversarial learning methods
to depict the desired relationship. As the classifiers know this relationship, they should attain
better performance. Extensive experiments on two benchmark datasets are conducted to ver-
ify the effectiveness of the proposed ADAmethods. Experimental and statistical results show
that ADA significantly outperforms other state-of-the-art baseline methods.

Keywords Adversarial learning · Cross-project defect prediction · Domain adaptation ·
Software reliability

1 Introduction

With the development ofmodern software engineering,more andmore resources are allocated
in phase of software testing to keep software projects bug-free, and thus software testing has
become one of the most important phases in the whole software lifecycle. As a result, how

Communicated by Leandro L. Minku.

B Siyu Jiang
jiangsiyu@gdufs.edu.cn

Extended author information available on the last page of the article

123

Empirical Software Engineering (2023) 28:127

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10371-2&domain=pdf
http://orcid.org/0000-0002-1969-807X

(2023) 28:127Empirical Software Engineering

to guarantee software reliability through software testing attracts significant attention. Some
researchers (He et al. 2015; Ni et al. 2019; Balogun et al. 2021; Bal and Kumar 2020)
adopted Software Defect Prediction (SDP) methods to locate defects of software projects.
A program that contains at least one bug (defect), and/or bugs that seriously interfere with
its functionality, is said to be buggy (defective). Otherwise, the program is said to be clean
(non-defective). Most existing SDP methods utilized the historical data of a software project
to train their prediction models, and then employed it to find out future defects in the same
project. However, in practice, it is hard for researchers or developers to build a satisfactory
SDP model in the early stage of a given project because labeled data are hardly available.
Therefore, Cross-Project Defect Prediction (CPDP) (Briand et al. 2002; Herbold et al. 2018;
Hosseini et al. 2019; Khatri and Singh 2021) was proposed, making it feasible to build an
SDPmodel in a new project. CPDP allows us to train defect predictionmodel based onmature
projects with sufficient labeled data (source projects, and then apply it to new projects that
lack labeled data (target projects). A typical CPDP method can be roughly split up into two
modules: how to extract predictive features and how to effectively apply knowledge to target
projects that is learned from source projects.

How to construct predictive features remains a challenge in the research of CPDP. As a
binary classification problem, feature extraction is one of the most important components in
CPDP models. In the early study of software defect prediction, most defect prediction meth-
ods (Watanabe et al. 2008; Turhan et al. 2009; Shepperd et al. 2014; Jing et al. 2014; Zhu et al.
2021; Li et al. 2019) depended on handcrafted features that represent the static characteristic
of programs, including McCabe loop complexity (McCabe 1976), Halstead metric (Halstead
1977) and CK (Chidamber-Kemerer) metric (Chidamber andKemerer 1994). However, these
handcrafted metrics were often designed based on researchers’ statistical analysis or expe-
rience of the software, which might not fully mine the contextual and semantic features
of project source codes (Wang et al. 2016). If CPDP models are constructed based only
on these handcrafted features, they may suffer from losing some prediction performance.
Because of its prominence in feature representation, deep learning is strongly recommended
by researchers (Wang et al. 2016; Li et al. 2017) to capture programs’ hidden contextual and
semantic features and feed them into prediction models for training. Several prevalent deep
learning approaches have been adopted in CPDP, including Deep Bayes Network (DBN)
(Tong et al. 2019; Wang et al. 2020), Long Short-Term Memory (LSTM) network (Li et al.
2019; Deng et al. 2020; Liang et al. 2019) and Convolutional Neural Network (CNN) (Li
et al. 2017; Qiu et al. 2019a, d), etc. To some extent, source code in software project is a kind
of standardized and formal languages which is closely related to NLP context (Huang et al.
2021), and we believe that the LSTMnetwork is more suitable for extracting hidden semantic
features in CPDP tasks. LSTM is a variant of recurrent neural networks, which processes
sequential data by modeling units in sequence and "memorize" long-term dependencies by
computations (Hochreiter and Schmidhuber 1997). In this paper, we extend the LSTM net-
work with Attention Mechanism (AM) (Vaswani et al. 2017) as the feature generator for
fully capturing the hidden semantic features of programs. AM is a method that enables us
to focus on the most important parts to make further decisions by giving different weights
to different parts of the input. Since it can bring significant improvement, AM recently has
almost become an essential standard in many sequential tasks (Veličković et al. 2018; Zeng
et al. 2021). In the field of CPDP, project source codes are also sequential data, andwe believe
we would benefit from LSTM network and AM, too.

Another challenging problem in CPDP tasks is how to effectively transfer knowledge
learned from one project and apply it to other projects. Most fruitful CPDPmethods (Yu et al.
2017; Ryu et al. 2017; Hosseini et al. 2018; Wu et al. 2018; Liu et al. 2019; Gong et al. 2020)

123

127 Page 2 of 44

(2023) 28:127Empirical Software Engineering

adopted transfer learning approaches to bridge the gap between feature distributions of two
different projects. Although inspiring and straightforward, these CPDP models might miss
out the relationship between the target project instances and decision boundary. Chen et al.
(2015) put forward a CPDP method called Double Transfer Boosting, which re-calculated
instances’ weights and reduced the divergence of two distributions based on TrAdaBoost (Dai
et al. 2007). Yu et al. (2017) proposed a feature matching and transfer method to perform
CPDP. They designed an algorithm to match and transfer features in the source and target
project with respect to their distance. Xu et al. (2019) came up with a transfer learning
method, named Balanced Domain Adaptation, to assign different weights to marginal and
conditional distributions of two projects. Through balancing these two kinds of distribution,
their approach was able to effectively overcome the divergence of two projects. However,
these methods might not be capable of mining predictive features since they did not take
the relationship between target data and decision boundary into account when matching two
distributions. Frommathematical point of view, this relationship can be defined as the distance
between the boundary and target data. As shown in Fig. 1, even if the two distributions are
quite similar, the feature generator could generate ambiguous instances near the decision
boundary if we do not take the distance into consideration. Hypothetically, we consider that
these ambiguous targets samples could bemisclassified and therefore result in poor prediction
performance.

In our work, we propose a novel Adversarial Domain Adaptation (ADA) method for
CPDP to handle the drawbacks mentioned above. The proposed approach, as shown in
Fig. 1, adopts a domain adaptationmethod based on adversarial learning to rectify ambiguous
classification data, which not only alleviates the gap in the feature distributions between dif-
ferent projects, but also takes the relationship between the target project instances and learned
decision boundary into account to further enhance performance. The general framework of
the ADA method is presented in Fig. 2. Specifically, we first compile project source files
to generate corresponding abstract syntax trees (ASTs), and then convert ASTs into token
vectors by traversing them. By certain mapping rules, we map the token vectors to integer
vectors and feed them into the following feature extraction network.We adopt a bi-directional
LSTM network with a self-attention layer to capture the programs’ hidden semantic features.
To avoid the overfitting problem and obtain more accurate features, we amalgamate the

source sample space target sample space

(a)

source sample space target sample space

(b)

source sample space target sample space

(c)

Fig. 1 (a) Knowledge learned from source project is directly transferred to target project. (b) Traditional
transfer learning methods may fail to consider the relationship between the decision boundary and the target
samples, which results in performance loss. (c)We train two classifiers simultaneously, which try to categorize
source instances correctly and distinguish ambiguous target instances at the same time. In these figures, dashed
lines represent the boundary between the source and target sample space while the solid lines represent the
decision boundary learned by CPDP models

123

Page 3 of 44 127

(2023) 28:127Empirical Software Engineering

Fig. 2 (a) In the phase of data preprocessing, we first parse the project source files into abstract syntax trees
(ASTs), and then traverse the ASTs to get token vectors. Lastly, we convert the token vectors into integer
vector by pre-defined mapping rules. (b) In the phase of model construction, we first feed the integer vectors
into the generator (LSTM network with AM) to extract preliminary semantic features. Then, we combine the
semantic and handcrafted features to form joint features. Next, we utilize the joint features to simultaneously
train two classifiers based on adversarial learning methods

generated features with the handcrafted features to construct joint features. Inspired by Gen-
erative Adversarial Networks (GAN) (Goodfellow et al. 2014) and an adversarial domain
adaptation method proposed by Saito et al. (2018), we utilize a domain adaptation method
and train it in the manner of adversarial learning to improve the discriminability of the joint
features. In ADA, we simultaneously train two classifiers, and they take joint features as
input, trying to correctly classify source samples and identify the target instances which are
not close to the support of the source at the same time. We presume these target instances
are non-discriminative and ambiguous since they are not categorized explicitly as negative
or positive. Therefore, we see these two classifiers as a discriminator to discriminate whether
the generator (LSTM network with an attention layer) creates discriminative features for the
target instances. In this way, the disagreement of two classifiers can be used to further com-
pute the distance between the decision boundary and the target instances. When we repeat
this procedure, ADA can reduce the divergence of the feature distribution in two projects,
and give information to the classifiers about the relationship mentioned above. As they know
the relationship, the classifiers can correctly categorize those confusing target instances, and
thereby improve defect prediction performance.

To validate the effectiveness of ADA method, we conduct multiple experiments on two
public benchmark datasets, AEEEM (D’Ambros et al. 2010) and PROMISE (Jureczko and
Madeyski 2010). In many experimental settings, the proposed model is superior to other the
state-of-the-artmethods by a significantmargin. The contributions of this work are three-fold.

– We propose a novel CPDP model which integrates transfer learning and adversarial
learning methods to not only bridge the gap between the feature distributions of different
projects, but also fully think of the relationship between the target data and class boundary.

– We extend the LSTM network with Attention Mechanism to learn long-term dependen-
cies in a software project context and extract more meaningful and semantic features of

123

127 Page 4 of 44

(2023) 28:127Empirical Software Engineering

programs. Together withAM, the LSTMnetwork significantly improves the performance
of defect prediction.

– We conduct extensive experiments on two benchmark datasets and the experimental and
statistical results verify the effectiveness of the proposed method.

The rest of this paper consists of six parts. Firstly, we shortly report the related work in
Section 2. Then, we thoroughly illustrate the ADA model in Section 3. In Section 4, we
describe the details of experimental setups. Next, we present the experimental and statistical
results in Section 5. More discussions on the proposed ADAmethod are in Section 6. Lastly,
we conclude our work and talk about future work in Section 7.

2 RelatedWork

In this section, we briefly introduce related work on cross-project defect prediction, adver-
sarial domain adaptation and attention mechanism.

2.1 Cross-Project Defect Prediction

Software Defect Prediction (SDP) (Li et al. 2018; Zou et al. 2018; Thota et al. 2020; Rathore
and Kumar 2021) aims to find out defects in software modules before release so that develop-
ers can allocate limited resources optimally. According to the project data used in the training
and evaluating phase, there are two branches in SDP, namely Within-Project Defect Predic-
tion (WPDP) and Cross-Project Defect Prediction (CPDP). In WPDP, the data are from the
same project in the training and evaluating phase. By contrast, CPDP uses different project
data when training and evaluating. In our work, we concentrate on the problem of CPDP.

To evaluate the feasibility of CPDP, Zimmermann et al. (2009) carried out a total of 622
cross-project experiments on 12 software projects using logistic regression classifiers. Their
experimental results showed that only 3.4%of themwere successful. They came to conclusion
that CPDP was a challenging problem because it was not transitive. Researchers hoped to
improve software defect prediction performance by applying deep learning (LeCun et al.
2015) methods to mine semantic features of programs due to its prominent feature learning
capability.Wang et al. (2016) utilized aDBNmodel to automatically extract semantic features
from AST of programs, and bridged the gap between semantic and defect prediction features
of different projects. Tong et al. (2019) adopted a transfer naive Bayes approach to consider
both class-imbalance and feature importance problems, and used it to make two feature
distributions as similar as possible. Li et al. (2017) applied a CNN to generate effective
features of programs. Combined with traditional handcrafted features, the prediction model
they trained achieved better performance than other baseline methods. Different from the
deep learning methods that adopted in the above CPDP study, Pandey and Tripathi (2021)
employed an LSTM network to mine programs’ semantic features. In the context of CPDP,
project source code is a kind of formal language containing rich structural and semantic
information, which is more closely related to the context of NLP problem (Li et al. 2019).
Therefore, we believe that Recurrent Neural Network (RNN) is more suitable since it excels
at processing sequential input and we leverage a variant of RNN, the LSTM network to mine
the structural and semantic information contained in programs.

To further verify the feasibility of CPDP, He et al. (2012) carried out three experiments
on 34 projects by manually selecting training data. They concluded that CPDP performance
could be better than WPDP tasks in some cases. After further analysis, they concluded that

123

Page 5 of 44 127

(2023) 28:127Empirical Software Engineering

defect prediction results were related with the distributional characteristics which could be
valuable for training data selection. Their research suggested that CPDP tasks were feasible if
the data distributions across two different projects can be made similar. Taking their sugges-
tions, Herbold (2013) put forward a distance-based algorithm for the training data selection
according to the corresponding distributional characteristics. Concretely, they came up with
characteristic vectors to represent each dataset, which consisted of mean and standard devi-
ation, and they adopted the characteristic vectors to stand for the marginal distribution of
each dataset. Herbold conducted experiments on 44 public software projects and witnessed
a 9% improvement in performance over traditional CPDP methods. Apart from training data
selection methods, transfer learning techniques (Nam et al. 2013; Qiu et al. 2019d; Liu et al.
2019; Jin 2021; Huang et al. 2021) were also adopted to make two distributions similar. Liu
et al. (2019) came upwith a CPDPmethod named Two-Phase Transfer Learning. Firstly, they
chose two source projects that are most similar by means of a source project estimator. Sec-
ondly, they leveraged TCA+ (Nam et al. 2013) to construct two defect predictors based on the
two selected project individually, and then combined their prediction probabilities to enhance
performance. Qiu et al. (2019d) proposed a CPDPmodel called Transfer CNN (TCNN). They
adopted CNN to extract the semantic features of project data and added a matching layer
to align feature distribution of two different projects. When matching, they embedded the
source and target data representations into a reproducing kernel Hilbert space and utilized
a classic transfer learning method, Maximum Mean Discrepancy (MMD) (Borgwardt et al.
2006), to bridge the gap between two distributions. Next, they combined generated semantic
features with handcrafted features and trained the predictor based on them. Jin (2021) learned
domain adaptation model by a method called kernel twin support vector machine, trying to
match the feature distributions between the source and target project as much as possible. He
trained the feature generator that aimed to match distributions between two different projects
and assumed that such target features were correctly categorized by the defect predictor for
the reason that they were matched to source instances.

Compared to CPDP, heterogeneous defect prediction (HDP) (Nam and Kim 2015; Chen
et al. 2021) relaxes the limitation of defect data used when predicting, allowing different
metric sets to be contained in the source and target projects. Afterward, many researchers
came upwith fruitful work onHDP. Jing et al. (2015) proposed a unifiedmetric representation
for the defective data, and used them for further canonical correlation analysis (CCA) to
reduce the gap between two domains. Based on CCA, Li et al. (2018) also proposed an HDP
model called cost-sensitive transfer kernel canonical correlation analysis, which can not only
make the data distributions of source and target projects much more similar in the nonlinear
feature space, but also utilize the different misclassification costs for defective and non-
defective classes to alleviate the class imbalance problem. Li et al. (2019) employed multiple
sources to improve the performance of HDP model, putting forward a multi-source selection
based manifold discriminant alignment approach. Their experimental results verified the
performance gain. Bal and Kumar (2023) enhanced the data pre-processing for HDP by
utilizing chi-square test to select the relevant metrics between source and target datasets.
Finally, they performed experiments using their proposed approach with various machine
learning algorithms to various the effectiveness of their model. Note that we only concentrate
on "homogeneous" (non-heterogeneous) defect prediction.

In the above CPDP studies, most of them adopted different approaches (training data
selection (Herbold 2013) or transfer learning (Qiu et al. 2019d; Liu et al. 2019; Jin 2021) to
make the feature distributions of the two different projects as similar as possible. However,
theymight fail to take full consideration of the relationship between the decision boundary and
target data when matching the distributions. They used different transfer learning approaches

123

127 Page 6 of 44

(2023) 28:127Empirical Software Engineering

that canmatch two distribution, hoping the target samples are correctly classified by the defect
predictor. As we mentioned before, even though the two distributions are quite similar, the
classifier would still be confused by the target samples with ambiguous features. In this paper,
we put forward a domain adaptation method based on adversarial learning to fully consider
the relationship between the target instances and decision boundary, which can eliminate the
confusion for predictor.

2.2 Adversarial Domain Adaptation

Domain adaptation is a prevalent type of transfer learning, where the target task remains
the same as the source whereas the domain is different (Pan and Yang 2010). Since gener-
ative adversarial network (GAN) was proposed by Goodfellow et al. (2014), many scholars
have applied it into domain adaptation to solve specific tasks including image classification
(Tzeng et al. 2017; Saito et al. 2018; Ma et al. 2019), object detection (Song et al. 2020; Su
et al. 2020), machine translation (Wang et al. 2021), image semantic segmentation (Li et al.
2019; Yi et al. 2021). Tzeng et al. (2017) proposed an adversarial discriminative domain
adaptation method to classify images. They learned discriminative representation based on
source data at first. Then, they learned a separate encoding based on transfer learning to map
target data to the same feature space as the source. Lastly, they trained the whole model by
minimizing a domain-adversarial loss function. Song et al. (2020) proposed a method for
the salient object detection problem based on adversarial domain adaptation. To evaluate the
effectiveness of their model, they collected a new dataset and made comparison with other
methods on the dataset. In the field of machine translation, Wang et al. (2021) came up with a
counterfactual domain adaptation method to improve target domain translation. By adopting
adversarial learning methods, they used the concatenations of texts in source domain and
tags in target to construct counterfactual representations. Motivated by adversarial learning,
Li et al. (2019) put forward a bidirectional learning model to solve the problem of image
semantic segmentation. They separated their model into two submodules: image-to-image
translation model and segmentation adaptation model, which would be motivated to promote
each other alternatively and gradually reduced the domain gap. Saito et al. (2018) put for-
ward an adversarial domain adaptation method, attempting to match distribution of source
and target by using the task-specific decision boundaries. They have proven that this method
outperformed other methods in the tasks of image classification and semantic segmentation.

Inspired by these fruitful work, we believe that CPDPmodels will benefit from adversarial
learning since it also is an application of domain adaptation. Particularly, we assume that
we can take advantage of the training pattern adopted by Saito et al. (2018), using multiple
task-specific classifiers as discriminators and a feature generator which tries to "fool" them in
order to generate more discriminative features. Different from previous CPDP methods that
apply traditional domain adaptation methods (Jin 2021; Xu et al. 2018; Qiu et al. 2019b; Zou
et al. 2021) which tried to align two distributions by training appropriate distance metrics, in
this work, we develop the domain adaptation method based on adversarial learning like this
to reduce the divergence between two feature distributions of different projects.

3 ProposedMethod

In this section,we elaborate theADAmethod indetails. Firstly,wegive the formal formulation
of CPDP problem. Then, we put forward the overall framework of the proposed approach.

123

Page 7 of 44 127

(2023) 28:127Empirical Software Engineering

A Discussion about the data preprocessing of the software projects is placed in Section 3.2,
including program parsing and data imbalanced learning. In Section 3.3, we elaborately
present how we construct the CPDP model.

3.1 Problem Definition

Let the given source project with labelled data be DS = {(xSi , ySi)}ni=1, where xSi ={
xSi1 , . . . , xSid

} ∈ R
n∗d denotes the i-th source instance, and ySi ∈ {0, 1} is the corre-

sponding defect information (0 for non-defective and 1 for defective). Let the given target
project without labelled data be DT = {xTi }mi=1, where xTi = {

xTi1 , . . . , xTid
} ∈ R

m∗d
denotes the i-th target instance. We assume that both source and target samples share the
same feature space as they come from the same set of metrics (i.e. xS, xT ∈ R

d where
d denotes the dimension of the feature). Let n and m be the numbers of instances in the
source and target projects, respectively. Let PS(XS) and PT(XT) be the marginal probability
distributions of XS = {xSi }ni=1 and XT = {xTi }mi=1 from the source and target projects,
respectively. Generally, the distributions of two distinct projects are different, too, which
implies PS(XS) �= PT(XT). Cross-project defect prediction aims to enhance the perfor-
mance of the target predictor fT (·) in target project DT by utilizing the knowledge learned
from source project DS.

In this paper, we learn the optimal parameters θ∗ of our method by solving the following
minimization problem,

θ∗ = argmin
θ∈Θ

∑

(x,y)∈DS

PT (XT)

PS (XS)
P (XS) �(x, y, θ)

≈ argmin
θ∈Θ

n∑

i=1

PT(xTi)

PS
(
xSi , ySi

)�
(
xSi , ySi , θ

)
,

(1)

where Θ is the parameter space and �(x, y, θ) denotes the error function relying on θ .
Therefore, by assigning distinct weights to each sample (xSi , ySi) with corresponding value

PT(xTi)

PS
(
xSi ,ySi

) , we are able to build an accurate predictor for the target project.

3.2 Data Preprocessing

Figure 2 presents the general framework of the proposedADA approach.We divide thewhole
framework into two steps: data preprocessing and model construction. In this subsection, we
discuss the details of data preprocessing in ADA method.

3.2.1 Generating Input Vectors

An Abstract syntax tree (AST) is a representation of syntactic structure parsed from source
code, contains rich semantic information of the software project, and is considered really
useful in the field of program analysis. Alon et al. (2019); Compton et al. (2020) Early
studies (Wang et al. 2016, 2020; Chen et al. 2016; Balog et al. 2017) have proven that ASTs
can be mined and utilized in software defect prediction, so we choose AST as a high level
representation of the project source codes. Specifically, we use an open source compiling
tool, Javalang1, to parse Java source files and generate corresponding ASTs. There are

1 https://pypi.org/project/javalang/0.13.0/

123

127 Page 8 of 44

https://pypi.org/project/javalang/0.13.0/

(2023) 28:127Empirical Software Engineering

many types of nodes in ASTs, but only a part of them are highly related to the defects of
the code. Following previous work (Wang et al. 2020; Deng et al. 2020; Huang et al. 2021),
we evaluate the AST nodes and select four kinds of nodes: 1) method invocation nodes, 2)
declaration nodes, 3) control flow nodes and 4) other necessary nodes. Then, we employ
depth-first traversal to generate sequence vectors from ASTs. Since the sequence vectors
are a list of string tokens, which cannot be directly used as input of an LSTM network, we
construct a mapping dictionary between nodes and integers. After this step, we convert the
project source files into integer vectors.

3.2.2 Imbalanced Learning

The imbalanced learning problem is one of the challenging problems in machine learning,
where the number of one kind of samples is much more than that of another kind of sam-
ples (He and Garcia 2009). This problem is also faced in the field of SDP (Jing et al. 2017;
Tong et al. 2019; Bal and Kumar 2020), as we will discuss the details of datasets chosen in
this paper in Section 4.1. Qiu et al. (2019c) and Song et al. (2019) carried out large-scale
experiments to explore the characteristic of imbalanced learning problem and systematically
evaluated multiple imbalanced learning methods. Their research proved that class imbal-
ance was omnipresent and would significantly affect the performance of prediction models.
Nevertheless, we can alleviate this problem by adopting appropriate imbalanced learning
approaches.

There are two types of methods coping with class imbalance, over-sampling method and
under-sampling method. The former over-samples the minority class and the latter under-
samples themajority class, both ofwhichmake the numbers of instances in twoclass balanced.
In our approach,we apply aSyntheticMinorityOver-SamplingTechnique (SMOTE) (Chawla
et al. 2002), which is a hybrid method of under-sampling and over-sampling. SMOTE is
capable of handling the skewed class distribution by introducing and learning a bias towards
the minority class, thereby achieves better performance than minority over-sampling with
replacement method.

3.3 Model Construction

In this section, we illustrate how we build the ADA model based on adversarial learning
methods in details. Figure 1 provides a brief introduction to our approach. We first leverage a
bi-directional LSTM network with AM as a feature generator which takes the integer vectors
as input. Then, we concatenate the generated semantic features and the handcrafted features
to construct the joint features. Next, we simultaneously train two classifiers as a discriminator
by feeding the joint features into them. Two classifiers attempt to categorize source samples
properly. In the meanwhile, they are also trained to find out which target instance is distance
to the support of the source. We reckon that these target instances may confuse the classifiers
as most of them are likely to be misclassified, and we consider these target samples as non-
discriminative. Based on adversarial training process (Chen et al. 2020), the generator is
forced to create discriminative target features near the support by considering discriminator
prediction for target samples. In adversarial learningmanner, the generator attempts to fool the
discriminator, and the discriminator feedback to the generator whether the extracted features
are wanted. Through this training pattern, we are able to align two feature distributions of
the source and target project, and in the meanwhile, let the classifiers know how to correctly

123

Page 9 of 44 127

(2023) 28:127Empirical Software Engineering

predict ambiguous target instances. After training, the ADA model can predict whether a
new project instance is defective or not.

3.3.1 Generator

Since source code of software project is a kind of standardized and formal languages (Huang
et al. 2021), we believe CPDP tasks are more related to NLP context. LSTM networks
(Hochreiter and Schmidhuber 1997) are more suitable for dealing with NLP tasks because
they can learn long-term dependencies by sophisticated computations. To mine which code
snippet is the most important in defect prediction, we also adopt attention mechanism to
learn and assign different weights to the sequential data. Together with AM, we suppose the
LSTM network is powerful to extract contextual and semantic features of project data.

The whole network architecture of the generator is described in Fig. 3. The feature gen-
erator is comprised of five parts: an input layer, an embedding layer, a bi-directional LSTM
layer, an attention layer and an output layer. We discuss the latter four layer as follows.

Embedding Layer As a useful technique for encoding semantic information, word embed-
dings have been proven powerful as extra features in many NLP tasks (Almeida and Xexéo
2019). Therefore, we convert each integer vector into the corresponding embedding matrix
by means of a word embedding layer,

ϕ : T → We, (2)

where T ∈ R
N represents the input integer vector after AST parsing, We ∈ R

E∗N is the
embedding matrix to be learned and ϕ is a mapping function between them. We randomly
initialize the embedding matrix and it can be updated when training the whole network. We
assume that the high-dimensional embedding matrix is able to capture more contextual infor-
mation contained in ASTs. Encoded integer vectors represented by the embedding matrices
are then fed into a bi-directional LSTM network to create preliminary semantic features.

LSTM

Cell

...

...

...

...

...

...input layer

embedding layer

LSTM layer

attention layer

output layer

Fig. 3 The network architecture of the generator

123

127 Page 10 of 44

(2023) 28:127Empirical Software Engineering

LSTM Layer LSTM network is good at dealing with sequential data and explores long-term
dependencies in the semantic context. To feed the embedding matrix into LSTM, we split it
into N column vectors with E dimensions,

We = [e1, e2, . . . , eN] , (3)

where ei ∈ R
E (i = 1, 2, . . . , N). There are three types of gates, including input, output and

forget gates, in LSTMnetworks. Based on these gates, LSTMcan control how the information
is processed and memorized in the cell states of LSTM units. The forget gates decide what
information ought to be ignored from the previous moment, which can be described as

ft = σ
(
Wfg · [

ht−1, et
] + bfg

)
, (4)

where σ(·) denotes the sigmoid function used for neural activation, hi (0 ≤ i ≤ N) is the
hidden state of the memory cell at moment i andWfg and bfg are two parameters of the forget
gate. Different from forget gates, input gates decide what to memorize from the current
moment. This includes two parts, one of which is the activation result of the input and the
other of which is the tanh result of the input. We can formulate them as follows.

it = σ
(
Win · [

ht−1, et
] + bin

)
,

C̃t = tanh
(
WC · [

ht−1, et
] + bC

)
,

(5)

where Win, bin,WC , bC are the corresponding weights and biases. C̃t is called candidate
value of moment t , which is a part of updating to the current cell state. We multiply the old
state by ft , trying to forget the information we decide to ignore, and add the candidate value
scaled by the input gate’s result:

Ct = ft ∗ Ct−1 + it ∗ C̃t . (6)

Final output is given by the output gates according to the output from last moment and cell
state from current moment, namely

ot = σ
(
Wout ·

[
ht−1, et

] + bout
)
,

ht = ot ∗ tanh(Ct),
(7)

where Wout, bout are the weights and bias of the output gates. Through the mechanisms of
LSTM networks, we are able to learn the dependencies of defective codes in the context,
which is greatly helpful for defect prediction.

Attention Layer The semantic features generated by the bi-directional LSTM network can
be directly used by classifiers to train the prediction model. Though simple and effective,
however, directly feeding these features into classification model may result in performance
loss. As in natural language, different words have different importance, and people tend to put
more emphasis on more significant words rather than less relevant ones. Since programming
languages conform to the paradigm of natural languages to some extent, we believe different
code snippets contribute distinctly to software defect prediction. To formally depict these
differences, we introduce the attention mechanism (Vaswani et al. 2017) to assign weights
for the generated semantic features. Firstly, we input the hidden state hi and output feature
ot−1 at moment t − 1 into an alignment model ζ(·) to compute the alignment score,

at,i = ζ (ot−1, hi) . (8)

123

Page 11 of 44 127

(2023) 28:127Empirical Software Engineering

We use a multi-layer perceptron as the alignment model, which evaluates how well the
elements of the input sequence align with the current output at moment t . Then, we obtain
the weights αt,i by applying a softmax function to the previously computed alignment scores,

αt,i = softmax
(
at,i

) = exp
(
at,i

)

∑N
i=1 exp

(
at,i

) . (9)

Finally, we obtain a context vector qt at moment t by adding up the corresponding weights
of all moments,

qt =
N∑

i

αt,i hi . (10)

Output Layer The context vector produced by the attention mechanism then is concatenated
with the handcrafted features to construct joint features for further prediction. We can see
the generator as a mapping G from the AST input integer vectors to the joint features,

G : V → R j , (11)

where V ∈ R
N represents the AST input integer vector and R j ∈ R

N j is the joint features
vector with N j dimensions extracted by the generator.

3.3.2 Training Steps

The aim of the ADA method is to minimize the misalignment between feature distributions
of the source and target projects by classifiers which know the relationship about the target
instances and decision boundary. To achieve this goal, we have to distinguish some target
instances from others. Generally, those instances which are near the class boundary are more
likely to be misclassified by classifiers and we say these instances are ambiguous. We exploit
two distinct classifiers to predict whether a given target instance is defective or not, and
then make use of their disagreement to find these target instances. Consider two distinct
classifiers, F1 and F2, which are initialized differently. Since the labeled source samples are
available, we assume that F1 and F2 can correctly classify source samples after training. We
see the two classifiers as a discriminator, telling the generator whether the target features
are discriminative by maximizing the discrepancy of corresponding instances. By doing so,
the two classifiers can be different and be capable of finding ambiguous target instances.
Then, the generator is forced not to create such target features by minimizing the same
discrepancy over the target instances. The discriminator and generator interact with each
other, encouraging the generator to create more predictive features and the discriminator to
classify more precisely. We repeat the above steps in adversarial learning manners.

min
G,F1,F2

L (XS, YS) ,

L (XS, YS) = −E(xS,yS)∼(XS,YS)
[
yS log p (y | xS) + (1 − yS) log (1 − p (y | xS))

]
,

p (y | x) = p1 (y | x) + p2 (y | x)

2

(12)

To sumup,we have to train a generator and two classifiers first, both ofwhich have to correctly
categorize source instances. Then, we apply a discrepancy maximization problem to the two

123

127 Page 12 of 44

(2023) 28:127Empirical Software Engineering

classifiers for filtering out unwanted target instances, forcing the generator to create more
predictive target features. We address this task in the following steps.

Step 1 Firstly, two classifiers and the generator are trained based on source project data.
They have to properly categorize source instances. This step is important because subsequent
derivations are based on this assumption. In our study, we select the Logistic Regression (LR)
classifier as the base classifier. Since a CPDP task is a binary classification task, the binary
cross entropy loss is applied to train the whole CPDP model, which can be written as (12),
where p1 (y | x) and p2 (y | x) denote the output of the two classifiers over instance x.

Step 2 Secondly, the discriminator (F1 and F2) is trained to find out those ambiguous
target instances while the generator is fixed. Given a specific target instance, if one classifier
categorizes it as negative while another classifiers think it as a positive instance, then this
instance ismore likely to be ambiguous.Therefore, in this step,wemaximize the disagreement
between two classifiers to find these target instances, that is,

min
F1,F2

L (XS, YS) − λLdis (XT) ,

Ldis (XT) = ExT∼XT [d (p1 (y | xT) , p2 (y | xT))] ,

d (p1 (y | xT) , p2 (y | xT)) = (
p+
1 − p+

2

)2 + (
p−
1 − p−

2

)2
,

(13)

where p+
1 /p

−
1 and p+

2 /p
−
2 denote the prediction probability of F1 and F2 for negative and

positive class respectively, and λ > 0 is a weighting parameter for adjusting the influence
of the discrepancy loss. The discrepancy loss equals to the expectation of the discrepancy
over all target instances and we choose L2 distance to calculate the discrepancy value of two
classifiers.

Step 3 Finally, the generator is trained to create more discriminative features while the
discriminator is fixed. When two classifiers do not update in this step, we are supposed to
minimize the discrepancy above in order to generate discriminative features. Consider a target
instance with the generated features. If the prediction results of F1 and F2 are the same, then
this instance is unambiguous and more likely to be classified correctly. We formulate the
objective of this step as follows.

min
G

Ldis (XT) . (14)

Ideally, the feature distribution of target data is well-aligned with the source after this step.
As a result, the discriminator is able to achieve comparable performance to the source project
data over target instances.

We repeat these three steps in training phase.Due to that classifiers can correctly categorize
source samples (Step 1), we train them to detect desired target instances (Step 2) and force the
generator to extract more discriminative features (Step 3). The pseudo-code of the proposed
method ADA is described in Algorithm 1. Its approximate time complexity can be given
as O (n × N × T), where n is the number of instances in source project, N is the number
of neurons in LSTM network and T is the maximum training iteration. By applying the
adversarial training method, we can improve the final prediction performance.

123

Page 13 of 44 127

(2023) 28:127Empirical Software Engineering

Algorithm 1 ADA training algorithm.
Required: Source project labeled data XS = {xSi }ni=1, YS = {ySi }ni=1, target project unlabeled data XT =

{xTi }mi=1, parameters of two classifiers and generator θF1 , θF2 and θG , learning rate η, maximum iteration
T .

1: procedure ADA(θF1 , θF2 , θG)
2: Initialize the parameters of two classifiers θF1 , θF2 and generator θG randomly
3: for t := 1 to T do
4: /* Step 1 */
5: Compute the Step 1 loss L1 through (12)

6: θF1 = θF1 − η
∂L1
∂θF1

7: θF2 = θF2 − η
∂L1
∂θF2

8: θG = θG − η
∂L1
∂θG

9: /* Step 2 */
10: Compute the Step 2 loss L2 through (13)

11: θF1 = θF1 − η
∂L2
∂θF1

12: θF2 = θF2 − η
∂L2
∂θF2

13: /* Step 3 */
14: Compute the Step 3 loss L3 through (14)

15: θG = θG − η
∂L3
∂θG

16: Update learning rate η by Adam optimizer
17: end for
18: end procedure
Ensure: θF1 , θF2 and θG

4 Experiment Setups

In this section, we describe our experimental setups in detail, including benchmark datasets,
experimental settings, evaluation metrics, baseline methods, statistical analysis methods and
research questions.

4.1 Benchmark Datasets

To assess the ADA model, we utilize two benchmark datasets, AEEEM (D’Ambros et al.
2010) and PROMISE (Jureczko andMadeyski 2010). These two datasets are readily available
and widely used in recent CPDP research. The projects they contain are rather representative
in the field of software engineering, which can better reflect the realities of defects in general
software programs.

Table 1 5 projects chosen from
the AEEEM dataset

Project name Time period #Instance Defect rate

JDT 2005.01-2008.06 997 20.7%

PDE 2005.01-2008.09 1497 14.0%

Equinox 2005.01-2008.06 324 39.8%

Mylyn 2005.01-2009.03 1862 13.2%

Lucene 2005.01-2008.10 691 9.3%

123

127 Page 14 of 44

(2023) 28:127Empirical Software Engineering

Table 2 10 project chosen from
PROMISE dataset

Project name Project version #Instance Defect rate

Ant 1.7 745 22.3%

Camel 1.6 965 19.5%

Forrest 0.8 32 6.3%

Ivy 2.0 352 11.4%

Log4j 1.2 205 92.2%

Poi 3.0 442 63.6%

Synapse 1.2 256 33.6%

Velocity 1.6.1 229 34.1%

Xalan 2.7 909 98.8%

Xerces 1.4.4 588 74.3%

AEEEM dataset consists of five open-source Java projects: Eclipse JDT Core (JDT),
Eclipse PDEUI (PDE), Equinox framework (Equinox),Mylyn andApache Lucene (Lucene).
There are 61metrics in it, including source codemetrics, entropy-of-changemetrics, entropy-
of-source-code metrics, etc. Table 1 presents the main information of these projects.

PROMISE dataset is comprised of 48 releases of 15 public open-source projects, 27
releases of 6 proprietary projects and 17 releases of 17 academic projects. All of them are
written in Java. In recent CPDP studies (Qiu et al. 2019d,b; Jin 2021), researchers prefer
to use the open-source projects. In our work, we carefully select 10 projects (as shown in
Table 2). PROMISE dataset consists of 20 handcrafted features (metrics), which mainly
concentrate on the programs’ complexity.

Under the conditions of the CPDP tasks, we need to select a source project and a target
project. Therefore,we choose a project as the target project at first, and then treat the remaining
projects as the source project respectively. In this way, we collect 20 and 90 project pairs
in AEEEM and PROMISE datasets, respectively. In the following sections, we conduct our
experiments to perform the CPDP based on these project pairs.

4.2 Experimental Settings

There are many hyper parameters in the proposed ADA model. Different values of these
parameters could have a different influence on the performance of defect prediction. We con-
duct the cross-validation analysis of these parameters to find the optimal ones. There are two
main parameters in our model: the dimension of the embedding E and the penalty coefficient
λ that balances the classification loss and the discrepancy loss in (13). We empirically set E
to 48. More details about tuning λ are discussed in Section 6.2.

We implement the proposed ADA model with PyTorch (Paszke et al. 2019). The hidden
state dimension of bi-directional LSTM is set to 256 and the batch size of training phase is set
to 32. An extension to stochastic gradient descent, Adam Khatri and Singh (2017) is adopted
to optimize the entire model. We set the momentum to 0.9 by default and initial learning rate
to 0.001. The entire model is trained for 100 iterations. Our experimental environment is an
Intel(R) Xeon(R) CPU E5-2618 at 2.20 GHz, 64 GB RAM and 8 GPU (NVIDIA 1080 Ti)
of 80 GB memory server running Ubuntu 20.04.2 LTS.

123

Page 15 of 44 127

(2023) 28:127Empirical Software Engineering

4.3 EvaluationMetrics

To measure the proposed ADA method, we employ the following three metrics, namely
F1 measure, balanced accuracy and geometric mean (G-Mean) which are widely used in the
CPDP research. In binary classification analysis, we often measure a classifier by a confusion
matrix (Table 3). According to its true label and classification result, an instance can be TP
(True Positive), FP (False Positive), TN (True Negative) or FN (False Negative). We can
derive the metrics we use in this work by means of confusion matrix. Sensitivity (or recall)
evaluates the effectiveness of the classifier on the positive class while specificity assesses
negative one. Precision measures how precise a model is, which is a widely-used indicator,
too. The definitions of these metrics are as follows.

Sensitivity = TP

TP + FN
,

Specificity = TN

TN + FP
,

Precision = TP

TP + FP
.

(15)

F1 Measure According to their definition, sensitivity measures the ratio of samples that
are underreported whereas precision measures the ratio of misreported samples. However,
these two metrics usually are in conflict. One classifier with high sensitivity is more likely to
perform poorly on precision, and vice versa. Therefore, we use F1 measure to balance these
two metrics, which equals to the harmonic average of them,

F1 = 2 × Sensitivity × Precision

Sensitivity + Precision

= 2TP

2TP + FN + FP
.

(16)

Balanced Accuracy The most commonly used metric of a balanced classification problem
is accuracy, which evaluates the overall effectiveness of a model. Accuracy equals to the
number of correctly classified instances divided by the total number of all instances,

Accuracy = TP + TN

TP + TN + FP + FN
. (17)

Nevertheless, when the data is skewed and imbalanced, accuracy may not be an appropriate
metric (Bekkar et al. 2013). In CPDP tasks, a classifier that predicts all sample as the major-
ity class is able to perform well on accuracy. Thus, we propose to use balanced accuracy
to measure the performance of CPDP model. Balanced accuracy equals to the average of

Table 3 Confusion matrix for
binary classification tasks

Classified positive Classified negative

Actual positive TP FN

Actual negative FP TN

123

127 Page 16 of 44

(2023) 28:127Empirical Software Engineering

specificity and sensitivity, which comprehensively considers the performance of a classifier
both in the majority and minority classes. Balanced accuracy is formulated as follows.

Balanced Accuracy = 1

2
(Sensitivity × Specificity)

= TP × TN

2 (TP + FN) (TN + FP)
.

(18)

GeometricMean The geometric mean (G-Mean) (Kubat andMatwin 1997) of the sensitivity
and specificity is another metric used in imbalanced classification problem. G-Mean tries to
maximize the performance of both themajority andminority classes, and keep them balanced
at the same time, which is defined as:

G-Mean = √
Sensitivity × Specificity

=
√

TP × TN

(TP + FN) (TN + FP)
.

(19)

4.4 Baseline Models

In order to validate that the proposed ADA model is valid and effective for CPDP tasks,
we conduct extensive comparison experiments to show whether our model can outperform
other state-of-the-art methods. We select 9 baseline models, and summarize them briefly in
Table 4.

Please note that we re-implement all the baseline methods except TCNN (whose source
codes are available online) with PyTorch. All baseline methods are re-trained under roughly
the same experimental settings for fair comparisons.

4.5 Statistical Analysis Methods

To show the statistical significant difference between twomodels, we adopt a non-parametric
test, Wilcoxon signed-rank test (Wilcoxon 1945) at a confidence level of 95%, which is
commonly used in other defect prediction research (Ryu et al. 2016; Wang et al. 2020; Li
et al. 2019). Wilcoxon singed-rank test relaxes the constraints on data distribution which
does not require data to follow any distribution including the normal distribution. At the
confidence level of 95%, we say that two methods are statistically different from each other
if the p-value is less than 0.05. When the p-value equals or is larger than 0.05, we conclude
that the difference between two methods is not statistically significant.

Besides, we utilize a variant of Scott-Knott Effect Size Difference (ESD) test
(Tantithamthavorn et al. 2016) to measure the effect size between two models and rank
all compared models. The Scott-Knott ESD test is a comparison method based on the mean
of data. It partitions the set of means into statistically different groups with non-negligible
difference by a hierarchical clustering algorithm. Table 5 describes the meanings of different
Scott-Knott ESD (denoted by d).

123

Page 17 of 44 127

(2023) 28:127Empirical Software Engineering

Ta
bl
e
4

B
as
el
in
e
m
od

el
s
fo
r
co
m
pa
ri
so
n

M
od
el

Su
m
m
ar
y

E
xt
ra
ct
ed

se
m
an
tic

Im
ba
la
nc
ed

Fe
at
ur
e

R
el
at
io
ns
hi
p
be
tw
ee
n

fe
at
ur
es

le
ar
ni
ng

di
st
ri
bu
tio

n
m
is
m
at
ch

in
st
an
ce
s
an
d
bo
un
da
ry

L
R

L
og
is
tic

R
eg
re
ss
io
n

(L
R
)
cl
as
si
fie
r
is

a
cl
as
si
c
SD

P
m
et
ho

d,
w
hi
ch

on
ly

ta
ke
s
ha
nd

cr
af
te
d
fe
at
ur
es

as
in
pu

t.
L
R
is
a
si
m
pl
e
bu
t
im

po
rt
an
t
ba
se
lin

e
m
od
el
.
Pl
en
ty

of
re
se
ar
ch
er
s,
in
cl
ud
in
g
us
,a
do
pt
L
R
as

th
e
ba
se

cl
as
si
fie
r.

N
o

N
o

N
o

N
o

T
C
A
+

T
C
A
+
(N

am
et

al
.
20

13
)
is

a
C
PD

P
m
et
ho
d
ba
se
d
on

T
ra
ns
fe
r
C
om

po
ne
nt

A
na
ly
si
s
(T
C
A
)
(P
an

et
al
.
20

10
).

T
C
A
+

m
ap
s
th
e
so
ur
ce

an
d

ta
rg
et

da
ta

in
to

a
hi
gh

-
di
m
en
si
on
al
sp
ac
e
an
d
ca
lc
ul
at
ed

th
e
ge
om

et
ri
c
di
st
an
ce

in
th
e
di
st
ri
bu
tio

n.
In

th
e
hi
gh
-d
im

en
si
on
al
fe
at
ur
e
sp
ac
e,

th
e
tw
o
di
st
ri
bu
tio

ns
ar
e
al
ig
ne
d
by

m
in
im

iz
in
g
th
e
di
s-

ta
nc
e.

N
o

N
o

Y
es

N
o

T
C
N
N

T
ra
ns
fe
r
C
on
vo
lu
tio

na
l
N
eu
ra
l
N
et
w
or
k
(T
C
N
N
)
(Q

iu
et
al
.2

01
9d

)
us
es

th
e
sa
m
e
da
ta
pr
ep
ro
ce
ss
in
g
ap
pr
oa
ch

to
ob

ta
in

th
e
ne
tw
or
k
in
pu

ta
s
w
e
do

.A
dd

iti
on

al
ly
,t
he
y

ad
d
a
m
at
ch
in
g
la
ye
rt
o
re
du

ce
th
e
di
ve
rg
en
ce

of
tw
o
fe
a-

tu
re

di
st
ri
bu
tio

ns
.
B
y
m
in
im

iz
in
g
th
e
cl
as
si
fic
at
io
n
lo
ss

an
d
di
st
ri
bu
tio

n
di
ve
rg
en
ce
,T

C
N
N

is
tr
ai
ne
d
fo
r
de
fe
ct

pr
ed
ic
tio

n
un
de
r
cr
os
s-
pr
oj
ec
ts
ce
na
ri
os
.

Y
es

Y
es

Y
es

N
o

Se
m
l

L
ia
ng

et
al
.
(2
01

9)
is

an
SD

P
m
et
ho

d
co
m
bi
ni
ng

w
or
d

em
be
dd
in
g
an
d
de
ep

le
ar
ni
ng

te
ch
ni
qu
es
.T

he
y
tr
ai
n
an

un
su
pe
rv
is
ed

w
or
d
em

be
dd

in
g
m
od

el
an
d
le
ve
ra
ge

an
L
ST

M
ne
tw
or
k
to

ex
tr
ac
t
th
e
pr
og
ra
m
s’

se
m
an
tic

fe
a-

tu
re
s.

T
he
n,

th
ey

tr
ai
n
a
cl
as
si
fie
r
th
at

ta
ke
s
se
m
an
tic

fe
at
ur
es

as
in
pu

tt
o
pr
ed
ic
td

ef
ec
ts
in

pr
og

ra
m
s.

Y
es

Y
es

N
o

N
o

T
PT

L
Tw

o-
Ph

as
e
T
ra
ns
fe
rL

ea
rn
in
g
(T
PT

L
)(
L
iu
et
al
.2
01

9)
is

pr
op
os
ed

to
ad
dr
es
s
th
e
lim

ita
tio

n
of

T
C
A
+
.F

ir
st
ly
,t
he
y

ad
op
t
a
pr
oj
ec
t
es
tim

at
or

to
se
le
ct

tw
o
su
ita
bl
e
pr
oj
ec
ts

by
th
e
es
tim

at
io
n
re
su
lts
.
Se
co
nd
ly
,
th
ey

ut
ili
ze

T
C
A
+

m
od

el
to

co
ns
tr
uc
t
tw
o
pr
ed
ic
tio

n
m
od

el
s
an
d
co
m
bi
ne

th
ei
r
re
su
lts

fo
r
fin

al
pr
ed
ic
tio

n.

N
o

N
o

Y
es

N
o

123

127 Page 18 of 44

(2023) 28:127Empirical Software Engineering

Ta
bl
e
4

co
nt
in
ue
d

M
od
el

Su
m
m
ar
y

E
xt
ra
ct
ed

se
m
an
tic

Im
ba
la
nc
ed

Fe
at
ur
e

R
el
at
io
ns
hi
p
be
tw
ee
n

fe
at
ur
es

le
ar
ni
ng

di
st
ri
bu
tio

n
m
is
m
at
ch

in
st
an
ce
s
an
d
bo
un
da
ry

D
B
N

D
ee
p
B
el
ie
fN

et
w
or
k
(D

B
N
)(
W
an
g
et
al
.2
02

0)
is
an
ot
he
r

de
ep

le
ar
ni
ng

m
et
ho
d
w
hi
ch

ca
n
le
ar
n
pr
og
ra
m
s’
se
m
an
-

tic
fe
at
ur
es
.T

he
y
pr
op

os
e
a
re
pr
es
en
ta
tio

n-
le
ar
ni
ng

al
go

-
ri
th
m

to
al
ig
n
th
e
di
st
ri
bu
tio

ns
of

se
m
an
tic

an
d
de
fe
ct

pr
ed
ic
tio

n
fe
at
ur
es
.T

he
n,
th
ey

bu
ild

a
cl
as
si
fie
rb

as
ed

on
th
e
pr
op

os
ed

al
go

ri
th
m
.

Y
es

Y
es

Y
es

N
o

ST
r-
N
N

St
ra
tifi

ca
tio

n
em

be
dd
ed

in
N
ea
re
st

N
ei
gh
bo
r
(S
T
r-
N
N
)

(G
on
g
et

al
.
20

20
)
is

a
C
PD

P
m
od
el

th
at

ut
ili
ze
s
an

im
ba
la
nc
e
le
ar
ni
ng

m
et
ho

d
ba
se
d
on

N
ea
re
st

N
ei
gh

bo
r

al
go

ri
th
m
.
T
he
y
ad
op

t
T
C
A

to
br
id
ge

th
e
ga
p
be
tw

ee
n

tw
o
fe
at
ur
e
di
st
ri
bu
tio

ns
,
an
d
th
en

co
nd

uc
t
th
e
im

ba
l-

an
ce

le
ar
ni
ng

m
et
ho

d
on

tr
an
sf
er
re
d
da
ta
fo
r
fin

al
de
fe
ct

pr
ed
ic
tio

n.

N
o

Y
es

Y
es

N
o

D
M
D
A
_J
FR

D
M
D
A
_J
FR

(Z
ou

et
al
.2

02
1)

is
a
C
PD

P
m
et
ho
d
w
hi
ch

ut
ili
ze
s
tw
o
au
to
-e
nc
od
er
s
to

le
ar
n
fe
at
ur
e
re
pr
es
en
ta
-

tio
ns
.
O
ne

en
co
de
r
ca
pt
ur
es

th
e
lo
ca
l
fe
at
ur
es

an
d
th
e

ot
he
r
on

e
le
ar
ns

th
e
gl
ob

al
re
pr
es
en
ta
tio

ns
.F

or
re
du

ci
ng

di
st
ri
bu
tio

n
di
ve
rg
en
ce
,
th
ey

in
tr
od
uc
e
a
ps
eu
do
-l
ab
el
s

st
ra
te
gy

an
d
ap
pl
y
it
in
to

ev
er
y
tr
ai
ni
ng

ite
ra
tio

n.

N
o

Y
es

Y
es

N
o

M
A
N
N

H
ua
ng

et
al
.(
20

21
)p

ro
po

se
a
C
PD

P
m
et
ho

d
by

m
ea
ns

of
th
e
m
ul
ti-
ad
ap
ta
tio

n
an
d
nu
cl
ea
r
no
rm

(M
A
N
N
),
w
hi
ch

ad
op
ts
a
m
ul
ti-
ke
rn
el
M
M
D
m
et
ho
d
to

al
ig
n
fe
at
ur
e
di
s-

tr
ib
ut
io
ns

of
di
ff
er
en
tp

ro
je
ct
s
am

on
g
m
ul
tip

le
le
ve
ls
.

Y
es

Y
es

Y
es

N
o

123

Page 19 of 44 127

(2023) 28:127Empirical Software Engineering

Table 5 Scott-Knott Effect Size
Difference and corresponding
effectiveness level

Effect Size Difference d Effectiveness Level

|d| < 0.2 Negligible

0.2 ≤ |d| < 0.5 Small

0.5 ≤ |d| < 0.8 Medium

|d| ≥ 0.8 Large

4.6 Research Questions

To assess the effectiveness and performance of the proposed ADA method, we discuss the
following three research questions (RQs).

RQ1: Is ourproposedADAmethodbetter than other state-of-the-artCPDPmodels?
Motivation: To prove the effectiveness of the proposed ADA method, we need to make
comparisons with other state-of-the-art CPDP models. We choose 9 baseline methods
(Section 4.4), and compare the predictive performance of these baseline methods.
RQ2: How effective are the semantic features extracted by the generator that com-
bines an LSTM network and attention mechanisms?
Motivation: To verify that our proposed feature generation model is more suitable for
CPDP tasks, we need to confirm the effectiveness of our feature generation method.
RQ3: How effective is the adversarial domain adaptation method?
Motivation: Transfer learning is a powerful tool dealing with CPDP tasks. We need to
verify the effectiveness of the proposed adversarial domain adaptation method compared
to other transfer learning methods.

5 Experimental Results

In this section, we conduct extensive experiments and present the experimental and statistical
results.

5.1 Rq1: Is our Proposed ADAMethod Better than Other State-of-the-Art CPDP
Models?

Tables 6, 7, 8, 9, 10 and 11 display the comparison results of the three evaluation metrics on
PROMISE and AEEEM dataset, respectively.

On PROMISE dataset, there are 10 projects in this repository, which can form 90 project
pairs. We can observe that, our proposed ADA method achieves 0.666, 0.722 and 0.713 on
average in terms of F1 measure, balanced accuracy and G-Mean, respectively. All of them are
the best average values on the correspondingmetrics compared to the other baselinemethods.
From the perspective of Win/Tie/Lose (W/T/L), our model wins 7 projects, ties 0 project and
loses 3 projects on F1 measure compared to TPTLmethod; and wins 9 projects, ties 0 project
and loses 1 project on balanced accuracy compared to DMDA_JFR. To better illustrate that
our method is better than other baseline model, we quantify the degree of improvement.
Compared with DMDA_JFRmethod, ADAmodel attains average improvements of 12.36%,
5.01% and 3.94% in terms of F1 measure, balanced accuracy and G-Mean, respectively;
compared to DBNmethod, these improvements are 11.30%, 9.40% and 5.34%; compared to

123

127 Page 20 of 44

(2023) 28:127Empirical Software Engineering

Ta
bl
e
6

F
1
m
ea
su
re

co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
PR

O
M
IS
E
da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

A
nt

0.
43

3
0.
43

3
0.
42

7
0.
58

7
0.
45

5
0.
63

3
0.
59

3
0.
68

8
0.
53

9
0.
77

4

C
am

el
0.
28

3
0.
32

5
0.
33

2
0.
48

8
0.
35

6
0.
58

0
0.
40

1
0.
58

6
0.
35

9
0.
62

9

Fo
rr
es
t

0.
38

5
0.
47

3
0.
55

3
0.
62

0
0.
60

4
0.
72

2
0.
63

6
0.
71

3
0.
74

9
0.
77

7

Iv
y

0.
27

1
0.
28

3
0.
21

6
0.
44

5
0.
34

9
0.
58

4
0.
32

2
0.
46

6
0.
36

7
0.
61

1

L
og

4j
0.
58

4
0.
60

4
0.
45

8
0.
48

5
0.
60

6
0.
45

2
0.
55

4
0.
51

7
0.
66

2
0.
49

5

Po
i

0.
61

0
0.
62

6
0.
67

7
0.
57

6
0.
78

7
0.
63

6
0.
68

2
0.
51

2
0.
67

2
0.
68

5

Sy
na
ps
e

0.
51

2
0.
57

8
0.
50

5
0.
58

4
0.
57

1
0.
58

4
0.
51

2
0.
61

7
0.
57

1
0.
71

6

V
el
oc
ity

0.
47

2
0.
47

3
0.
52

1
0.
58

3
0.
56

8
0.
60

2
0.
60

6
0.
67

6
0.
55

4
0.
63

9

X
al
an

0.
49

6
0.
57

7
0.
56

7
0.
48

8
0.
61

6
0.
61

6
0.
58

2
0.
55

5
0.
62

1
0.
69

0

X
er
ce
s

0.
30

7
0.
26

2
0.
29

4
0.
53

0
0.
69

0
0.
57

9
0.
61

9
0.
60

0
0.
39

1
0.
64

9

A
ve
ra
ge

0.
43

5
0.
46

3
0.
45

5
0.
53

9
0.
56

0
0.
59

9
0.
55

1
0.
59

3
0.
54

8
0.
66

6

W
/T
/L

9/
0/
1

9/
0/
1

10
/0
/0

10
/0
/0

7/
0/
3

10
/0
/0

9/
0/
1

8/
0/
2

9/
0/
1

-

Im
pr
ov
em

en
t

53
.0
9%

43
.8
0%

46
.4
5%

23
.7
3%

18
.9
6%

11
.3
0%

20
.8
7%

12
.3
6%

21
.5
0%

-

p-
va
lu
e

9.
0E

-3
9.
0E

-3
5.
0E

-3
5.
0E

-3
4.
1E

-2
5.
0E

-3
1.
7E

-2
1.
3E

-2
2.
8E

-2
-

E
SD

2.
22

2
1.
80

6
1.
24

3
1.
77

6
0.
98

3
0.
89

6
1.
17

9
0.
88

9
1.
04

4
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

Page 21 of 44 127

(2023) 28:127Empirical Software Engineering

Ta
bl
e
7

B
al
an
ce
d
ac
cu
ra
cy

co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
PR

O
M
IS
E
da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

A
nt

0.
41

4
0.
45

0
0.
47

5
0.
60

8
0.
50

6
0.
74

2
0.
63

3
0.
77

3
0.
58

3
0.
78

4

C
am

el
0.
31

8
0.
39

7
0.
43

1
0.
51

4
0.
47

3
0.
61

5
0.
46

8
0.
70

1
0.
46

3
0.
66

1

Fo
rr
es
t

0.
40

9
0.
48

8
0.
56

3
0.
64

3
0.
65

4
0.
66

1
0.
69

5
0.
74

0
0.
73

8
0.
77

6

Iv
y

0.
29

1
0.
32

8
0.
41

1
0.
47

8
0.
47

1
0.
73

3
0.
41

4
0.
67

5
0.
51

2
0.
82

8

L
og

4j
0.
51

8
0.
54

8
0.
51

3
0.
51

8
0.
51

3
0.
52

7
0.
57

6
0.
50

3
0.
53

4
0.
55

6

Po
i

0.
59

6
0.
63

3
0.
68

7
0.
60

1
0.
71

3
0.
64

9
0.
77

7
0.
70

8
0.
68

9
0.
71

3

Sy
na
ps
e

0.
54

1
0.
53

9
0.
57

1
0.
55

4
0.
60

9
0.
69

3
0.
56

3
0.
67

9
0.
62

6
0.
72

6

V
el
oc
ity

0.
58

6
0.
49

1
0.
56

4
0.
58

1
0.
63

3
0.
65

1
0.
62

4
0.
70

6
0.
62

3
0.
73

9

X
al
an

0.
47

0
0.
61

0
0.
74

4
0.
55

4
0.
73

5
0.
71

6
0.
61

0
0.
73

7
0.
71

1
0.
77

5

X
er
ce
s

0.
28

7
0.
38

3
0.
40

3
0.
57

8
0.
64

8
0.
60

9
0.
64

1
0.
65

0
0.
55

8
0.
65

8

A
ve
ra
ge

0.
44

3
0.
48

7
0.
53

6
0.
56

3
0.
59

6
0.
66

0
0.
60

0
0.
68

7
0.
60

4
0.
72

2

W
/T
/L

10
/0
/0

10
/0
/0

10
/0
/0

10
/0
/0

9/
1/
0

10
/0
/0

8/
0/
2

9/
0/
1

10
/0
/0

-

Im
pr
ov
em

en
t

62
.9
2%

48
.2
9%

34
.6
1%

28
.1
9%

21
.1
8%

9.
40

%
20

.3
3%

5.
01

%
19

.5
4%

-

p-
va
lu
e

5.
0E

-3
5.
0E

-3
5.
0E

-3
5.
0E

-3
8.
0E

-3
5.
0E

-3
2.
2E

-2
3.
7E

-2
5.
0E

-3
-

E
SD

2.
77

5
2.
61

7
1.
88

6
2.
39

9
1.
41

5
0.
85

2
1.
31

3
0.
44

9
1.
38

8
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

127 Page 22 of 44

(2023) 28:127Empirical Software Engineering

Ta
bl
e
8

G
-M

ea
n
co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
PR

O
M
IS
E
da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

A
nt

0.
44

9
0.
49

0
0.
48

3
0.
59

8
0.
52

2
0.
75

9
0.
59

3
0.
77

3
0.
61

5
0.
78

2

C
am

el
0.
30

3
0.
41

8
0.
42

6
0.
53

5
0.
46

7
0.
68

2
0.
44

0
0.
70

2
0.
49

9
0.
71

7

Fo
rr
es
t

0.
38

8
0.
50

9
0.
55

1
0.
61

6
0.
74

3
0.
71

9
0.
61

8
0.
72

8
0.
67

2
0.
75

1

Iv
y

0.
47

5
0.
36

4
0.
44

4
0.
48

1
0.
53

6
0.
73

9
0.
35

1
0.
67

5
0.
54

8
0.
81

7

L
og

4j
0.
48

1
0.
51

3
0.
50

0
0.
52

9
0.
52

4
0.
49

5
0.
57

6
0.
49

3
0.
56

8
0.
51

9

Po
i

0.
59

7
0.
66

2
0.
68

8
0.
63

6
0.
58

4
0.
73

2
0.
67

3
0.
70

9
0.
65

4
0.
67

4

Sy
na
ps
e

0.
53

9
0.
61

5
0.
58

2
0.
60

9
0.
67

5
0.
66

1
0.
51

2
0.
68

0
0.
69

2
0.
72

0

V
el
oc
ity

0.
44

2
0.
46

7
0.
51

6
0.
59

1
0.
70

1
0.
70

0
0.
63

5
0.
70

7
0.
64

7
0.
72

0

X
al
an

0.
50

2
0.
55

2
0.
70

5
0.
63

8
0.
66

6
0.
69

3
0.
62

6
0.
73

8
0.
72

6
0.
75

3

X
er
ce
s

0.
41

3
0.
40

3
0.
39

6
0.
60

4
0.
62

8
0.
58

8
0.
62

9
0.
65

4
0.
58

3
0.
67

6

A
ve
ra
ge

0.
45

9
0.
49

9
0.
52

9
0.
58

4
0.
60

5
0.
67

7
0.
56

5
0.
68

6
0.
62

0
0.
71

3

W
/T
/L

10
/0
/0

10
/0
/0

9/
0/
1

9/
0/
1

9/
0/
1

9/
0/
1

9/
0/
1

9/
0/
1

9/
0/
1

-

Im
pr
ov
em

en
t

55
.4
0%

42
.7
8%

34
.7
6%

22
.1
7%

17
.9
2%

5.
34

%
26

.1
9%

3.
94

%
14

.9
2%

-

p-
va
lu
e

5.
0E

-3
5.
0E

-3
7.
0E

-3
7.
0E

-3
7.
0E

-3
2.
8E

-2
1.
3E

-2
4.
7E

-2
1.
7E

-2
-

E
SD

3.
12

2
2.
44

4
1.
96

5
1.
90

0
1.
25

3
0.
44

8
1.
60

9
0.
34

4
1.
21

6
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

Page 23 of 44 127

(2023) 28:127Empirical Software Engineering

Ta
bl
e
9

F
1
m
ea
su
re

co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
A
E
E
E
M

da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

JD
T

0.
39

2
0.
47

7
0.
58

6
0.
59

0
0.
58

3
0.
63

0
0.
53

8
0.
59

3
0.
61

5
0.
65

4

PD
E

0.
49

1
0.
48

8
0.
51

3
0.
60

1
0.
67

9
0.
74

2
0.
65

5
0.
64

6
0.
68

1
0.
73

6

E
qu

in
ox

0.
25

2
0.
32

4
0.
48

7
0.
58

0
0.
54

4
0.
49

2
0.
41

8
0.
56

3
0.
56

2
0.
60

0

M
yl
yn

0.
37

8
0.
45

5
0.
50

8
0.
58

8
0.
69

2
0.
66

4
0.
58

6
0.
70

6
0.
65

0
0.
71

7

L
uc
en
e

0.
46

7
0.
47

9
0.
49

9
0.
61

2
0.
60

8
0.
60

7
0.
62

7
0.
62

2
0.
65

5
0.
63

7

A
ve
ra
ge

0.
39

6
0.
44

5
0.
51

9
0.
59

4
0.
62

1
0.
62

7
0.
56

5
0.
62

6
0.
62

5
0.
66

9

W
/T
/L

5/
0/
0

5/
0/
0

5/
0/
0

5/
0/
0

5/
0/
0

4/
0/
1

5/
0/
0

5/
0/
0

4/
0/
1

-

Im
pr
ov
em

en
t

68
.9
8%

50
.4
3%

28
.9
6%

12
.5
7%

7.
67

%
6.
70

%
18

.4
1%

6.
86

%
7.
01

%
-

p-
va
lu
e

4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
3E

-2
3.
9E

-2
4.
3E

-2
4.
3E

-2
3.
9E

-2
-

E
SD

3.
52

4
3.
56

9
3.
09

2
1.
82

1
0.
79

4
0.
55

1
1.
35

1
0.
77

1
0.
80

4
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

127 Page 24 of 44

(2023) 28:127Empirical Software Engineering

Ta
bl
e
10

B
al
an
ce
d
ac
cu
ra
cy

co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
A
E
E
E
M

da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

JD
T

0.
41

2
0.
47

7
0.
56

6
0.
59

3
0.
65

2
0.
70

6
0.
62

4
0.
68

9
0.
69

0
0.
68

7

PD
E

0.
48

8
0.
48

2
0.
49

9
0.
58

6
0.
58

4
0.
50

1
0.
56

6
0.
49

1
0.
58

1
0.
59

0

E
qu

in
ox

0.
30

0
0.
36

0
0.
48

4
0.
60

1
0.
57

1
0.
58

2
0.
48

1
0.
57

1
0.
60

3
0.
64

8

M
yl
yn

0.
39

9
0.
43

4
0.
46

6
0.
60

1
0.
69

7
0.
63

0
0.
57

2
0.
67

3
0.
62

8
0.
70

8

L
uc
en
e

0.
48

6
0.
48

9
0.
50

7
0.
53

3
0.
58

6
0.
55

2
0.
52

3
0.
52

0
0.
57

0
0.
63

6

A
ve
ra
ge

0.
41

7
0.
44

8
0.
50

4
0.
58

3
0.
61

8
0.
59

4
0.
55

3
0.
58

9
0.
61

4
0.
65

4

W
/T
/L

5/
0/
0

5/
0/
0

5/
0/
0

5/
0/
0

5/
0/
0

4/
0/
1

5/
0/
0

4/
0/
1

4/
0/
1

-

Im
pr
ov
em

en
t

56
.8
2%

45
.8
5%

29
.6
5%

12
.2
5%

5.
83

%
10

.0
5%

18
.2
6%

11
.0
8%

6.
45

%
-

p-
va
lu
e

4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
0E

-2
4.
3E

-2
4.
0E

-2
4.
0E

-2
-

E
SD

3.
72

7
4.
10

0
3.
54

8
1.
85

5
0.
71

2
0.
93

0
2.
01

2
0.
91

7
0.
84

1
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

Page 25 of 44 127

(2023) 28:127Empirical Software Engineering

Ta
bl
e
11

G
-M

ea
n
co
m
pa
ri
so
n
re
su
lts

w
ith

9
m
et
ho
ds

on
A
E
E
E
M

da
ta
se
t

Ta
rg
et
Pr
oj
ec
t

L
R

T
C
A
+

T
C
N
N

Se
m
l

T
PT

L
D
B
N

ST
r-
N
N

D
M
D
A
_J
FR

M
A
N
N

O
ur
s

JD
T

0.
38

7
0.
50

5
0.
53

3
0.
60

5
0.
63

6
0.
65

1
0.
61

8
0.
60

4
0.
62

4
0.
70

9

PD
E

0.
47

1
0.
41

5
0.
58

2
0.
62

2
0.
61

8
0.
57

8
0.
54

9
0.
59

2
0.
55

5
0.
66

0

E
qu

in
ox

0.
39

2
0.
38

3
0.
54

3
0.
59

6
0.
60

0
0.
59

7
0.
63

7
0.
61

7
0.
57

2
0.
68

5

M
yl
yn

0.
36

7
0.
40

0
0.
56

1
0.
54

5
0.
62

9
0.
69

6
0.
64

2
0.
63

7
0.
62

9
0.
72

4

L
uc
en
e

0.
44

7
0.
47

8
0.
55

0
0.
60

0
0.
63

8
0.
55

7
0.
56

8
0.
65

0
0.
64

5
0.
62

6

A
ve
ra
ge

0.
41

3
0.
43

6
0.
55

4
0.
59

4
0.
62

4
0.
61

6
0.
60

3
0.
62

0
0.
60

5
0.
68

1

W
/T
/L

5/
0/
0

5/
0/
0

5/
0/
0

5/
0/
0

4/
0/
1

5/
0/
0

5/
0/
0

4/
0/
1

4/
0/
1

-

Im
pr
ov
em

en
t

65
.0
2%

56
.0
7%

22
.9
6%

14
.6
9%

9.
08

%
10

.6
1%

12
.9
4%

9.
83

%
12

.5
4%

-

p-
va
lu
e

4.
3E

-2
4.
3E

-2
4.
3E

-2
4.
3E

-2
3.
9E

-2
4.
3E

-2
4.
3E

-2
3.
9E

-2
3.
9E

-2
-

E
SD

6.
43

7
5.
27

7
4.
14

1
2.
53

6
2.
55

9
1.
33

3
1.
92

8
1.
88

2
1.
44

4
-

T
he

bo
ld

ite
m
s
in
di
ca
te
th
at
th
e
re
su
lts

ar
e
th
e
be
st
re
su
lts

on
th
e
co
rr
es
po
nd
in
g
ta
rg
et
pr
oj
ec
td

at
a

123

127 Page 26 of 44

(2023) 28:127Empirical Software Engineering

TPTL method, these improvements are 18.96%, 21.18% and 17.92%; compared to STr-NN
method, these improvements are 20.87%, 20.33% and 26.19%. In the aspect of p-value given
by Wilcoxon signed-rank test, all p-values are less than 0.05, meaning that the differences
compared to ADA method are statistically significant at the 95% confidence level. From the
perspective of Scott-Knott ESD test, all ESDs are larger than 0.8 on the metric of F1 measure,
which implies that the differences are large according to the Scott-Knott ESD effectiveness
level as described in Table 5. On the metric of balanced accuracy, the ESD of DMDA_JFR
is 0.449, indicating that the effectiveness level is small. The same is true for DBN and
DMDA_JFR on the metric of G-Mean. Notably, our method achieves 0.495 in project Log4j
on themetric of F1 measure, which is only better than 3 other baseline methods. FromTable 2
we can see that the defect rate of Log4j is 92.2%, resulting an imbalanced data distribution
over positive samples. Even though we apply an imbalanced learning method to alleviate this
problem, we may still get poor performance if there are insufficient data. This may be the
reason why we perform poorly in this project. Consider another imbalanced project, Xalan,
with 98.8% defect rate. Since there are far more samples (909 instances) in Xalan project,
our method performs best among baseline models. Therefore, if there are ample samples in
a project, ADA is able to attain considerable performance even though they are imbalanced.
On AEEEM dataset, our model achieves best performance among baseline methods, too.
From these tables we can observe that our method achieves 0.669, 0.654, 0.681 on average
on the metrics of F1 measure, balanced accuracy and G-Mean, respectively. Similarly, all of
them are the best average values among all comparison methods. Experimental and statistical
results on AEEEM dataset also indicate the same fact.

In order to intuitively show the differences among these methods, we draw box charts
based on the Scott-Knott ESD test results, as shown in Fig. 4. These methods are ranked
and grouped according to the results of Scott-Knott ESD test, and the methods in the same
color box have little difference in performance. From the figures we can observe that both the
medians and the means of our model on three different metrics are higher than other baseline
models on two datasets. In the aspect of rankings, the proposed ADA model ranks first in all
three metrics. The second tie models are DMDA_JFR and DBN, which rank second and third
respectively in terms of balanced accuracy andG-Meanmetrics on PROMISE dataset. TPTL,
STr-NN andMANNmethods rank after these twomethods. OnAEEEMdataset, TPTL ranks
second on themetrics of balanced accuracy andG-Mean. By elaborate and comprehensive
observation on the experimental results, we can answer the RQ1: Our proposed ADAmethod
is better than other state-of-the-art baseline models.

5.2 Rq2: How Effective are the Semantic Features Extracted by the Generator
that Combines an LSTMNetwork and AttentionMechanisms?

To answer the RQ2, we first compare different approaches adopted in CPDP research. Among
the baseline models we choose, Seml Liang et al. (2019) uses an LSTMnetwork to extract the
semantic features of the programs while TCNN (Qiu et al. 2019d) utilizes CNN as the base
feature generator. These two methods adopt roughly the same data preprocessing techniques,
and train the model to perform CPDP tasks. From the empirical point of view, Seml performs
better than TCNN. Referring to Fig. 4, Seml ranks sixth while TCNN ranks seventh or eighth,
respectively in terms of F1 measure, balanced accuracy and G-Mean on PROMISE dataset.
As we discussed in Section 1, we are more inclined to consider the CPDP problem as an
NLP problem since the programming language is a kind of standard, formal languages that
follow certain language paradigms. Therefore, recurrent neural networks, which are good at

123

Page 27 of 44 127

(2023) 28:127Empirical Software Engineering

Fig. 4 Box charts of three evaluationmetrics on PROMISE dataset (left-hand side) and AEEEMdataset (right-
hand side). We eliminate the fliers for simplicity, so are that with the following box charts. These methods are
ranked and grouped according to the Scott-Knott ESD test results. The orange lines represent the methods’
average medians and the green triangles stand for the methods’ means annotated by values. Methods in the
same color box are grouped into the same cluster in Scott-Knott ESD test

123

127 Page 28 of 44

(2023) 28:127Empirical Software Engineering

Fi
g.
5

T
he

bo
x
ch
ar
ts
of

di
ff
er
en
tf
ea
tu
re

ge
ne
ra
tio

n
m
od

el
s
in

te
rm

s
of

th
re
e
ev
al
ua
tio

n
m
et
ri
cs

on
PR

O
M
IS
E
da
ta
se
t.
T
he

or
an
ge

lin
es

re
pr
es
en
tt
he

m
et
ho

ds
’
av
er
ag
e
m
ed
ia
ns

an
d
th
e
bl
ue

tr
ia
ng

le
s
st
an
d
fo
r
th
e
m
et
ho

ds
’
m
ea
ns

an
no

ta
te
d
by

va
lu
es

123

Page 29 of 44 127

(2023) 28:127Empirical Software Engineering

Table 12 Ablation study of
different components on the
metric of F1 measure on
PROMISE dataset

Target Project No-IL No-HF No-AM No-DA ADA

Ant 0.433 0.653 0.702 0.522 0.774

Camel 0.419 0.544 0.524 0.472 0.629

Forrest 0.367 0.681 0.661 0.310 0.777

Ivy 0.282 0.501 0.533 0.383 0.611

Log4j 0.193 0.453 0.413 0.248 0.495

Poi 0.622 0.576 0.623 0.424 0.685

Synapse 0.628 0.648 0.679 0.491 0.716

Velocity 0.512 0.546 0.601 0.363 0.639

Xalan 0.273 0.618 0.630 0.511 0.690

Xerces 0.422 0.533 0.600 0.502 0.649

Average 0.415 0.575 0.597 0.423 0.666

Improvement 60.57% 15.84% 11.67% 57.67% -

p-value 2.53E-3 2.53E-3 2.53E-3 2.53E-3

ESD 2.135 1.164 0.826 2.751 -

The bold items indicate that the results are the best results on the corre-
sponding target project data

processing sequential data, may perform better than other deep learning methods like CNN
andDBN. The comparisons between Seml and TCNN, DBN andADA partly prove this point
of view.

Tomake this point more convincing, we further conduct a comparison experiment.We use
different feature generator models, including CNN (adopted in TCNN (Qiu et al. 2019d)),
DBN (adopt in Ref. Wang et al. (2020)), Double Marginalized Denoising Auto-Encoders
(DMDA, adopted in DMDA_JFR (Zou et al. 2021)) and LSTM with AM (adopted in this
paper) to extract the semantic features separately, and feed them into LR classifiers. We train
these generators in themanner of adversarial learning, namely bymeans of adversarial domain
adaptation method. We use the PROMISE dataset as it contains more projects than AEEEM
repository. Figure 5 shows the performance differences between these feature generation
models. Our model uses LSTM as the base model for generating features, which performs
best.DMDAwithDA ranks second among thesemethods andDBNorCNNwithDAachieves
theworst performance. Compared toDBNorCNN,DMDAuses two auto-encoders to capture
the semantic features of program, which is also suitable for sequential data. DBN builds
prediction model based on probability calculation and CNN utilizes convolution operation
for feature extraction, which are better at dealing with computer vision tasks. We believe that
this may be the main reason why our feature generation model outperforms other methods.
We fully consider the context of CPDP problem, leveraging an LSTM network with AM to
capture the semantic and contextual information contained in programs.

Based on the above analysis, we can answer the RQ2: Together with AM and LSTM
networks, the feature generator of our proposedmodel ismore effective thanother approaches.

5.3 RQ3: How Effective is the Adversarial Domain AdaptationMethod?

Tables 12, 13 and 14 and Fig. 6 show the results of ablation study. We examine the influence
on the prediction performance of each component, including imbalanced learning techniques

123

127 Page 30 of 44

(2023) 28:127Empirical Software Engineering

Table 13 Ablation study of
different components on the
metric of balanced accuracy on
PROMISE dataset

Target Project No-IL No-HF No-AM No-DA ADA

Ant 0.392 0.643 0.732 0.488 0.784

Camel 0.431 0.590 0.583 0.392 0.661

Forrest 0.358 0.688 0.712 0.423 0.776

Ivy 0.289 0.700 0.538 0.482 0.828

Log4j 0.203 0.496 0.462 0.278 0.556

Poi 0.641 0.591 0.685 0.432 0.713

Synapse 0.664 0.666 0.711 0.423 0.726

Velocity 0.612 0.588 0.643 0.352 0.739

Xalan 0.298 0.629 0.692 0.500 0.775

Xerces 0.399 0.636 0.623 0.537 0.658

Average 0.429 0.623 0.638 0.431 0.722

Improvement 68.29% 15.90% 13.07% 67.50% -

p-value 2.53E-3 2.53E-3 2.53E-3 2.53E-3 -

ESD 2.326 1.409 1.000 3.726 -

The bold items indicate that the results are the best results on the corre-
sponding target project data

(IL), handcrafted features (HF), attention mechanisms (AM) and adversarial domain adap-
tation methods (DA). We now focus on adversarial domain adaptation methods (we discuss
more details about ablation study in Section 6.1). No-DA stands for the model that the feature
generator is not trained by means of adversarial domain adaptation. We train the generator
in an SDP way, that is, we directly feed the output of the generator into the LR classifier
without applying any transfer learning or domain adaptation method. From the tables we can
see that, the performance drops significantly. On the metric of F1 measure, ADA achieves

Table 14 Ablation study of different components on the metric of G-Mean on PROMISE dataset

Target Project No-IL No-HF No-AM No-DA ADA

Ant 0.413 0.594 0.712 0.493 0.782

Camel 0.471 0.569 0.635 0.462 0.717

Forrest 0.377 0.653 0.662 0.452 0.751

Ivy 0.304 0.690 0.554 0.529 0.817

Log4j 0.245 0.485 0.413 0.352 0.519

Poi 0.628 0.575 0.612 0.466 0.674

Synapse 0.673 0.657 0.673 0.482 0.720

Velocity 0.653 0.571 0.669 0.392 0.720

Xalan 0.344 0.609 0.642 0.532 0.753

Xerces 0.428 0.597 0.597 0.492 0.676

Average 0.454 0.600 0.617 0.465 0.713

Improvement 57.17% 18.87% 15.57% 53.21% -

p-value 0.00253 0.00253 0.00253 0.00253 -

ESD 2.141 1.604 1.161 3.544 -

The bold items indicate that the results are the best results on the corresponding target project data

123

Page 31 of 44 127

(2023) 28:127Empirical Software Engineering

0.666 on average while No-DA only achieves 0.423 on average, losing more than one third of
the performance; on the metric of balance accuracy, ADA achieves 0.722 on average while
No-DA only achieves 0.431 on average, dropping 37.45% performance; on the metric of
G-Mean, ADA achieves 0.713 on average while No-DA only achieves 0.465, losing 34.78%
performance. We can observe the obvious differences between ADA and No-DA in the box
charts (Fig. 6).

To further validate how effective our proposed adversarial domain adaptation method
is used in ADA model, we conduct comparison experiments with other transfer learning
methods. We compare our domain adaptation method with the transfer learning method
adopted in TCNN (Qiu et al. 2019d). TCNN leverages a standard CNN to extract the features
of programs and add a matching layer to the CNN model and then embeds both source
and target data representation into a reproducing kernel Hilbert space. Next, TCNN adopts
Maximum Mean Discrepancy (MMD) to reduce the distribution divergence between the
source and target projects. In the comparison experiments, we also add a same matching
layer to our proposed feature generation model, trying to align the two distributions bymeans
of MMD. Table 15 shows the experimental comparison results. The comparative model is
denoted by MMD in the table and figure. From the table and figure, we can observe that
ADA is better thanMMD, which surpasses MMD by 15.29%, 9.34% and 8.23% respectively
in terms of three metrics. Compared to MMD or other transfer learning methods adopted in
CPDP (Jin 2021; Nam et al. 2013), ADA fully consider the relationship between the decision
boundary and the target instances while reducing the distribution divergence, forcing the
feature extraction model to generate more discriminative features. We believe this is the
main reason why the adversarial domain adaptation method we use is more practical than
others.

Through the above discussions, we are able to answer the RQ3: The adversarial domain
adaptationmethodweutilize is themain reason accounting for the performance improvement.
We can say that it is more effective than other transfer learning methods according to the
experimental results.

6 Discussions

In this section, we further discuss the proposed ADAmethod with several questions, and talk
about threats of validity of this work.

6.1 Why does ADAWork?

From the empirical point of view, the experimental and statistical results on two benchmark
datasets of 15 software releases witness that our proposed ADAmethod is generally superior
to other baselinemethods in terms of three different evaluationmetrics including F1 measure,
balanced accuracy andG-Mean. In this section,wediscuss the effectiveness ofADAin aspects
of problem modeling and ablation study.

From the perspective of problem modeling, we believe our model is superior to other
models for two main results. Firstly, we exploit the semantic and contextual features of
programs in a more appropriate way. Because project source code is a kind of standardized,
formalized language that follows certain specifications, we believe that the CPDP problem
is more in line with the context of NLP. Therefore, we extend an LSTM network with
attention mechanism as the feature generator since it is better at coping with sequential data

123

127 Page 32 of 44

(2023) 28:127Empirical Software Engineering

Fi
g.
6

T
he

bo
x
ch
ar
ts
of

ab
la
tio

n
st
ud
y
re
su
lts

in
te
rm

s
of

th
re
e
ev
al
ua
tio

n
m
et
ri
cs

on
PR

O
M
IS
E
da
ta
se
t.
T
he

or
an
ge

lin
es

re
pr
es
en
tt
he

m
et
ho
ds
’
av
er
ag
e
m
ed
ia
ns

an
d
th
e
bl
ue

tr
ia
ng
le
s
st
an
d
fo
r
th
e
m
et
ho
ds
’
m
ea
ns

an
no
ta
te
d
by

va
lu
es

123

Page 33 of 44 127

(2023) 28:127Empirical Software Engineering

Table 15 Comparison results
with MMD transfer learning
method

Metric MMD ADA Improvement

Avg. F1-Measure 0.578 0.666 15.29%

Avg. Balanced Accuracy 0.660 0.722 9.34%

Avg. G-Mean 0.659 0.713 8.23%

The bold items indicate that the results are the best results on the corre-
sponding target project data

like programming languages. AM enables us to assign different weights to distinct tokens.
Just like natural language in daily life, the importance of each word in a single sentence is
different, and we believe that the contribution of different tokens in a program to software
defects is also different. In this way, the feature extraction model we use can produce better
semantic features for prediction. Secondly,we take an effectivemeasure to transfer knowledge
learned from the source project and apply it to the target project. Previous CPDP methods
(Qiu et al. 2019d; Ryu et al. 2017; Liu et al. 2019) utilized transfer learning methods to
reduce the divergence between the feature distributions of different projects. Though simple
and effective, most of them might fail to consider the substantial information about feature
space. In the proposed method, we adopt an adversarial domain adaptation method. By
training the feature generator and defect predictor in the manner of adversarial learning, we
reduce the divergence of the two feature distributions of the source and target project and
fully take the relationship between the decision boundary and target project instance into
consideration. As described in Section 3.3, we train the whole model in three steps. In order
to observe how the adversarial learning method works, we investigate the trend in the value
of the discrepancy at each iteration. Take project pair Xerces→ Ivy (i.e., Xerces is the source
project and Ivy is the target project) as an example. Concretely, we record the discrepancy
value between two classifiers (denoted by d1) as described in (13), and the difference loss
of the feature generator (denoted by d2) as described in (14) when two classifiers are fixed.
d1 reflects the degree of disagreement of the predictions of the two classifiers on the target
project data. If the value is large, it means that the current target instance is near the class
boundaries and considered as ambiguous one. By maximizing d1, the classifiers are more
likely to distinguish these ambiguous target instances and correctly classify non-ambiguous
instances. Once we know about this relationship between decision boundaries and target
instances, we can tell the generator not to generate such ambiguous instances. d2 reflects
the difference loss of the feature generator on the target project. The smaller the value is, it
means that the features generated by the feature generator can be more accurately predicted
by the predictor. We improve the discriminability of the features generated by the feature
generator by minimizing the difference loss d2, so that the features of ambiguous instances
are generated in regions far away from the decision boundary. We repeat this procedure in an
adversarial training manner until convergence. We draw a line chart to show the trends of d1,
d2 and the loss value in (12), as shown in Figs. 7 and 8. From the line charts we can see that
d1 is increasing and d2 is decreasing in general, which is in line with our expectation. In this
example, the loss is stabilized and does not decrease any more after 15 iterations, meaning
that the model is done training and our algorithm has converged.

In order to examine the effectiveness of each component of the proposed model, we
design four ablation models. The first model removes the imbalanced learning techniques
(No-IL) described in Section 3.2. The second model only takes semantic features extracted
by the generator to train the prediction model without combining the handcrafted features.
We define the second model as No-HF. The third model erases the attention mechanisms

123

127 Page 34 of 44

(2023) 28:127Empirical Software Engineering

Fig. 7 The changes of discrepancy d1 and d2

adopted in the generator, namely assigning the same weights to different tokens. The third
model is called No-AM. The final model is designed without adversarial domain adaptation
methods (No-DA). We train both the feature generator and a LR classifier (as the prediction
model) on source project data, and directly apply the model to the target project data without
matching the distribution difference between them. Tables 12-14 show the experimental
results of these models on the metrics of F1 measure, balanced accuracy and G-Mean. Figure
6 visualizes the table results. We can draw some conclusions based on the observation from
the tables and figures. Firstly, the performance of our model drops significantly if we do
not apply techniques to tackle the data imbalance problem. Compared to ADA method, the
performance of No-IL drops from 0.666 to 0.415, from 0.722 to 0.429 and from 0.713 to
0.454 in terms of threemetrics. Secondly, handcrafted features and attentionmechanisms play
important roles in generating crucial features for software prediction.On average, handcrafted

Fig. 8 The change of loss value

123

Page 35 of 44 127

(2023) 28:127Empirical Software Engineering

features can improve the performance by 15.84%, 15.90% and 18.87% on the three metrics.
By assigning more weights to important tokens and less weights to irrelevant ones, attention
mechanisms can bring 11.67%, 13.07% and 15.57% improvement to the ADA model in the
three performance indicators respectively. Last by not least, adversarial domain adaptation
plays a significant role in defect prediction. If we do not take any actions on transferring
knowledge learned from the source projects and utilizing it in target projects, we could suffer
from poor performance in all aspects. By adopting the domain adaptation method, we can
enhance the performance from 0.423 to 0.666, from 0.431 to 0.722 and from 0.465 to 0.713
in terms of F1 measure, balanced accuracy and G-Mean.

6.2 How does the Hyper Parameter � Affect the Performance of ADA?

Hyper parameter λ controls the weight ratio between the classification loss of the prediction
model and the discrepancy loss between two classifiers in (13). If λ is small, we tend to
think less of the discrepancy loss and put more emphasis on the classification loss; if λ

is large, we care more about the discrepancy loss and take less of the classification into
consideration. We set λ = 0.8 in our research through cross-validation experiments. We
select 14 different values of λ (from 0.1 to 1.3 with step 0.1), and see how they influent the
prediction performance of the ADA model.

Figure 9 shows the experimental results of the performance of ADA with the selected
14 λ values in terms of F1 measure, balanced accuracy and G-Mean on PROMISE dataset.
From the figure, we can draw the following two conclusions. First, when λ is relatively small
(less than 0.7), the performance on the three metrics is quite low. This is consistent with our
early discussions. If we think less of the discrepancy, we may not be able to maximize the
discrepancy loss between two classifiers, and thereby they could not distinguish ambiguous
target samples. Thus, the ADA is less effective. Second, when λ is in the interval [0.8, 1.0],
the performance of ADA is the best. If λ is larger than 1.0, the performance starts to drop.
Based on these observations, we choose λ = 0.8. Note that other hyper parameters in the
ADA model are also selected in this way.

Fig. 9 Experimental results of the three metric values of ADA with different λ values on PROMISE dataset

123

127 Page 36 of 44

(2023) 28:127Empirical Software Engineering

(a
)

(b
)

Fi
g.
10

E
xp
er
im

en
ta
lr
es
ul
ts
of

A
D
A
m
od
el
w
ith

fiv
e
di
ff
er
en
tc
la
ss
ifi
er
s
on

th
e
th
re
e
ev
al
ua
tio

n
m
et
ri
cs

on
PR

O
M
IS
E
(l
ef
t)
an
d
A
E
E
E
M

(r
ig
ht
)
da
ta
se
t

123

Page 37 of 44 127

(2023) 28:127Empirical Software Engineering

6.3 HowDifferent Classifiers Affect the Performance of ADA?

We talk about why we choose the Logistic Regression classifier as the base classification
model in this subsection. To evaluate the impact of different classifiers on the prediction
performance, we choose five classic machine learning classifiers, including Logistic Regres-
sion (LR), Support Vector Machine (SVM), Neural Network (NN), Random Forrest (RF)
and Naive Bayes (NB). For SVM, we use the Gaussian radial basis function as the kernel
function. There is one hidden layer in NN, and the number of hidden neural is twice the input
feature dimension.

Figure 10 displays the results of the performance of the proposedmethodwith five different
classifiers on the three evaluationmetrics on PROMISE andAEEEMdataset. From the figure
we can observe that the performance of these models is not very different. On PROMISE
dataset, they all achieve the performance of about 0.65 in the F1 metric; LR achieves the best
performance among five models in terms of balanced accuracy and G-Mean. On AEEEM
dataset, the performance of SVM, NN and RF in the balanced accuracy is relatively low
compared to LR and NB; RF achieves comparable, even better performance to LR in terms
of F1 measure andG-Mean, but it fails to competewith LRon themetric of balanced accuracy.

To sum up, all kinds of classifiers we choose do not differ greatly in performance indica-
tors. Among them, the Logistic Regression classifier is able to consistently achieve the best
performance in terms of the three metrics on two benchmark datasets.

6.4 Threats to Validity

Threats to Construct Validity We carefully choose three commonly used performance met-
rics, including F1 measure, balanced accuracy and G-Mean, as our evaluation criteria. F1
measure equals to the harmonic average between the sensitivity and precision, seeking a
balance between the underreporting rate and misreporting rate. Balanced accuracy and G-
Mean are two commonly used metrics when the data distribution is imbalanced and skewed.
However, these metrics might not be the only appropriate metrics. There are other measures
(e.g., Area under the ROC (receiver operating characteristic) Curve (AUC) and Matthews
Correlation Coefficient (MCC)) that can be used for performance measurement in binary
classification tasks.

Threats to Internal Validity We implement some baseline models that are with open-access
source code (such as TCNN) by utilizing the provided source code to reduce the poten-
tial impact of the improper implementations. For those models whose source code is not
provided, we cautiously implement the models following the details described in the cor-
responding papers. However, our implementation might not fully reveal the details in the
baseline methods. For a fair comparison, we apply consistent implementations of overlapped
parts including data preprocessing, LR implementation, etc.

Threats to External Validity We try to reduce the bias by carefully selecting two public
benchmark datasets of 15 open-source projects. These projects may not represent all software
projects. Additionally, all selected projects are written in Java programming language. The
results of our proposed method in some commercial software projects or projects that are
written in other programming languages may be better or worse. Validating the effectiveness
of ADA on more diversity and datasets with more projects is needed.

123

127 Page 38 of 44

(2023) 28:127Empirical Software Engineering

7 Conclusions

Themain challenges ofCPDPproblem lie in how to constructmoremeaningful and contextual
features that can represent programs and how to effectively transfer knowledge learned from
source projects and apply it to target projects. In this paper, we proposed a novel ADA
method to tackle these two challenges. For the feature generation, we extend a variant of
Recurrent Neural Networks, Long Short-TermMemory networkswithAttentionMechanism.
Compared to other deep learning methods, LSTM is better at dealing with sequential data
like project source codes. With attention mechanism, the feature generator can capture more
important parts and further improve the prediction performance. Moreover, to effectively
transfer knowledge learned from source projects to target projects, we propose an adversarial
domain adaptation method to bridge the gap between two feature distributions. Besides, our
proposed method takes full consideration of the relationship between the target instances
and class boundary when aligning the distributions. We treat the feature extraction model
as the generator, and train two classifiers as the discriminator. By training the whole model
in the manner of adversarial learning, we first maximize the discrepancy of two classifiers
over target samples to distinguish the ambiguous ones, and then train the generator to create
more discriminative features according to the information about the relationship between the
target instances and class boundary.

We conduct extensive experiments on two benchmark datasets of 15 open-source Java
projects. The classification performance of ADA is measured on the evaluation metric of
F1 measure, balanced accuracy and G-Mean. We compare ADA with the state-of-the-art
CPDP models by using Wilcoxon signed-rank test and Scott-Knott Effect Size Difference
test. Experimental and statistical results show that ADA is effective and outperforms other
baseline models by a significant margin.

There are several problems needed to be investigated in the future. Firstly, our proposed
method may not generalize well on other datasets. We will conduct experiments on more
projects and extend our method to other programming language to make ADA more gen-
eralizable. Secondly, transfer learning is a powerful tool in dealing with CPDP tasks. More
precise and appropriate transfer learning methods which can align two or more feature dis-
tributions without losing the information of the source domain is needed to be explored in
the future.

Acknowledgements This work was supported by the Science and Technology Planning Project of Guangzhou
(Grant No. 202102020637).

Data Availability Statements The PROMISE dataset we use in this work is available at https://doi.org/https://
doi.org/10.1145/1868328.1868342. The AEEEM dataset we use in this work is available at https://doi.org/
10.1109/MSR.2010.5463279. The implementation of the proposed ADA model is available from the corre-
sponding author on a reasonable request.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Almeida F, Xexéo G (2019) Word embeddings: A survey

123

Page 39 of 44 127

https://doi.org/https://doi.org/10.1145/1868328.1868342
https://doi.org/https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1109/MSR.2010.5463279

(2023) 28:127Empirical Software Engineering

Alon U, Zilberstein M, Levy O, Yahav E (2019) Code2vec: Learning distributed representations of code. Proc
ACM Program Lang 3 (POPL). https://doi.org/10.1145/3290353

Bal PR, Kumar S (2020) Wr-elm: Weighted regularization extreme learning machine for imbalance learn-
ing in software fault prediction. IEEE Trans Reliab 69(4):1355–1375. https://doi.org/10.1109/TR.2020.
2996261

Bal PR, Kumar S (2023) A data transfer and relevant metrics matching based approach for heterogeneous
defect prediction. IEEE Trans Softw Eng 49(3):1232–1245. https://doi.org/10.1109/TSE.2022.3173678

BalogM,GauntAL,BrockschmidtM,NowozinS, TarlowD (2017)Deepcoder: Learning towrite programs. In:
Proceedings of the 5th International Conference onLearningRepresentations (ICLR). https://openreview.
net/forum?id=ByldLrqlx

Balogun AO, Basri S, Capretz LF, Mahamad S, Imam AA, Almomani MA, Adeyemo VE, Kumar, G (2021)
An adaptive rank aggregation-based ensemble multi-filter feature selection method in software defect
prediction. Entropy 23(10). https://doi.org/10.3390/e23101274

BekkarM,DjemaaHK,AlitoucheTA (2013) Evaluationmeasures formodels assessment over imbalanced data
sets. J Inf Eng Appl 3(10):27–38. https://eva.fing.edu.uy/pluginfile.php/69453/mod_resource/content/1/
7633-10048-1-PB.pdf

Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Schölkopf B, Smola AJ (2006) Integrating structured
biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57. https://doi.org/
10.1093/bioinformatics/btl242

Briand LC, Melo WL, Wust J (2002) Assessing the applicability of fault-proneness models across object-
oriented software projects. IEEE Trans Softw Eng 28(7):706–720. https://doi.org/10.1109/TSE.2002.
1019484

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: Synthetic minority over-sampling tech-
nique. J Artif Intell Res 16:321–357. https://doi.org/10.1613/jair.953

Chen H, Jing XY, Li Z, Wu D, Peng Y, Huang Z (2021) An empirical study on heterogeneous defect prediction
approaches. IEEE Trans Softw Eng 47(12):2803–2822. https://doi.org/10.1109/TSE.2020.2968520

Chen L, Fang B, Shang Z, Tang Y (2015) Negative samples reduction in cross-company software defects
prediction. Inf Softw Technol 62:67–77. https://doi.org/10.1016/j.infsof.2015.01.014

Chen L, Li J, Peng J, Xie T, Cao Z, Xu K, He X, Zheng Z (2020) A survey of adversarial learning on graphs
Chen X, Liu C, Shin R, Song D, ChenM (2016) Latent attention for if-then program synthesis. In: Proceedings

of the 30th International Conference onNeural Information Processing Systems,NIPS’16, pp 4581–4589.
Red Hook, NY, USA. https://dl.acm.org/doi/pdf/10.5555/3157382.3157609

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493. https://doi.org/10.1109/32.295895

Compton R, Frank E, Patros P, Koay A (2020) Embedding java classes with code2vec: Improvements from
variable obfuscation. In: Proceedings of the 17th International Conference onMining Software Reposito-
ries, pp 243–253. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3379597.3387445

Dai W, Yang Q, Xue GR, Yu Y (2007) Boosting for transfer learning. In: Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pp 193–200. Association for Computing Machinery, New
York, NY, USA. ewblock https://doi.org/10.1145/1273496.1273521

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: 2010
7th IEEEWorking Conference on Mining Software Repositories (MSR 2010), pp 31–41. https://doi.org/
10.1109/MSR.2010.5463279

Deng J, Lu L, Qiu S (2020) Software defect prediction via lstm. IET Software 14(4):443–450. https://doi.org/
10.1049/iet-sen.2019.0149

Gong L, Jiang S, Bo L, Jiang L, Qian J (2020) A novel class-imbalance learning approach for both within-
project and cross-project defect prediction. IEEE Trans Reliab 69(1):40–54. https://doi.org/10.1109/TR.
2019.2895462

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)
Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pp 2672–2680. MIT Press, Cambridge, MA, USA. https://
proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Halstead MH (1977) Elements of Software Science (Operating and Programming Systems Series). Elsevier
Science Inc

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284.
https://doi.org/10.1109/TKDE.2008.239

He P, Li B, Liu X, Chen J, Ma Y (2015) An empirical study on software defect prediction with a simplified
metric set. Inf Softw Technol 59:170–190. https://doi.org/10.1016/j.infsof.2014.11.006

123

127 Page 40 of 44

https://doi.org/10.1145/3290353
https://doi.org/10.1109/TR.2020.2996261
https://doi.org/10.1109/TR.2020.2996261
https://doi.org/10.1109/TSE.2022.3173678
https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.3390/e23101274
https://eva.fing.edu.uy/pluginfile.php/69453/mod_resource/content/1/7633-10048-1-PB.pdf
https://eva.fing.edu.uy/pluginfile.php/69453/mod_resource/content/1/7633-10048-1-PB.pdf
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1093/bioinformatics/btl242
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1109/TSE.2002.1019484
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/TSE.2020.2968520
https://doi.org/10.1016/j.infsof.2015.01.014
https://dl.acm.org/doi/pdf/10.5555/3157382.3157609
https://doi.org/10.1109/32.295895
https://doi.org/10.1145/3379597.3387445
https://doi.org/10.1145/3379597.3387445
https://doi.org/10.1145/1273496.1273521
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1109/MSR.2010.5463279
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.1049/iet-sen.2019.0149
https://doi.org/10.1109/TR.2019.2895462
https://doi.org/10.1109/TR.2019.2895462
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1016/j.infsof.2014.11.006

(2023) 28:127Empirical Software Engineering

HeZ, Shu F, YangY, LiM,WangQ (2012)An investigation on the feasibility of cross-project defect prediction.
Autom Softw Eng 19(2):167–199. https://doi.org/10.1007/s10515-011-0090-3

Herbold S (2013) Training data selection for cross-project defect prediction. In: Proceedings of the 9th Inter-
national Conference on Predictive Models in Software Engineering, pp 1–10. https://doi.org/10.1145/
2499393.2499395

Herbold S, Trautsch A, Grabowski J (2018) A comparative study to benchmark cross-project defect prediction
approaches. IEEE Trans Softw Eng 44(9):811–833. https://doi.org/10.1109/TSE.2017.2724538

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.
org/10.1162/neco.1997.9.8.1735

Hosseini S, Turhan B, Gunarathna D (2019) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Softw Eng 45(2):111–147. https://doi.org/10.1109/TSE.2017.2770124

Hosseini S, TurhanB,MäntyläM (2018)A benchmark study on the effectiveness of search-based data selection
and feature selection for cross project defect prediction. Inf Softw Technol 95:296–312. https://doi.org/
10.1016/j.infsof.2017.06.004

Huang J, Guan X, Li S (2021) Software defect prediction model based on attention mechanism. In: 2021
InternationalConference onComputer Engineering andApplication (ICCEA), pp 338–345. IEEE. https://
doi.org/10.1109/ICCEA53728.2021.00073

Huang Q, Ma L, Jiang S, Wu G, Song H, Jiang L, Zheng C (2021) A cross-project defect prediction method
based on multi-adaptation and nuclear norm. IET Softw pp 1–14. https://doi.org/10.1049/sfw2.12053

Jin C (2021) Cross-project software defect prediction based on domain adaptation learning and optimization.
Expert Syst Appl 171:114637. https://doi.org/10.1016/j.eswa.2021.114637

Jing X, Wu F, Dong X, Qi F, Xu B (2015) Heterogeneous cross-company defect prediction by unified metric
representation and cca-based transfer learning. In: Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, pp 496-507. Association for Computing Machinery. https://doi.org/10.
1145/2786805.2786813

Jing XY, Wu F, Dong X, Xu B (2017) An improved sda based defect prediction framework for both within-
project and cross-project class-imbalance problems. IEEE Trans Softw Eng 43(4):321–339. https://doi.
org/10.1109/TSE.2016.2597849

Jing XY, Ying S, Zhang ZW, Wu SS, Liu J (2014) Dictionary learning based software defect prediction. In:
Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp 414–423.
Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2568225.2568320

JureczkoM,Madeyski L (2010) Towards identifying software project clusters with regard to defect prediction.
In: Proceedings of the 6th International Conference on Predictive Models in Software Engineering, pp
1–10. https://doi.org/10.1145/1868328.1868342

Khatri Y, Singh SK (2021) Cross project defect prediction: A comprehensive survey with its swot analysis.
Innovations Syst Softw Eng pp 1–19. https://doi.org/10.1007/s11334-020-00380-5

Kingma DP, Ba J (2017) Adam: A method for stochastic optimization
Kubat M, Matwin S (1997) Addressing the curse of imbalanced training sets: One-sided selection. In: In

Proceedings of the 14th International Conference onMachine Learning, pp 179–186.Morgan Kaufmann.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.4487&rep=rep1&type=pdf

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/
nature14539

Li H, Li X, Chen X, Xie X, Mu Y, Feng Z (2019) Cross-project defect prediction via asttoken2vec and blstm-
based neural network. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp 1–8.
https://doi.org/10.1109/IJCNN.2019.8852135

Li J, He P, Zhu J, Lyu MR (2017) Software defect prediction via convolutional neural network. In: 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS), pp 318–328. https://doi.
org/10.1109/QRS.2017.42

Li Y, Yuan L, Vasconcelos N (2019) Bidirectional learning for domain adaptation of semantic segmentation.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 6929–6938.
https://doi.org/10.1109/CVPR.2019.00710

Li Z, Jing XY, Wu F, Zhu X, Xu B, Ying S (2018) Cost-sensitive transfer kernel canonical correlation analysis
for heterogeneous defect prediction. Autom Softw Eng 25:201–245. https://doi.org/10.1007/s10515-
017-0220-7

Li Z, Jing XY, Zhu X (2018) Progress on approaches to software defect prediction. IET Softw 12(3):161–175.
https://doi.org/10.1049/iet-sen.2017.0148

Li Z, JingXY, ZhuX, ZhangH, XuB, Ying S (2019) Heterogeneous defect predictionwith two-stage ensemble
learning. Autom Softw Eng 26:599–651. https://doi.org/10.1007/s10515-019-00259-1

123

Page 41 of 44 127

https://doi.org/10.1007/s10515-011-0090-3
https://doi.org/10.1145/2499393.2499395
https://doi.org/10.1145/2499393.2499395
https://doi.org/10.1109/TSE.2017.2724538
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1016/j.infsof.2017.06.004
https://doi.org/10.1016/j.infsof.2017.06.004
https://doi.org/10.1109/ICCEA53728.2021.00073
https://doi.org/10.1109/ICCEA53728.2021.00073
https://doi.org/10.1049/sfw2.12053
https://doi.org/10.1016/j.eswa.2021.114637
https://doi.org/10.1145/2786805.2786813
https://doi.org/10.1145/2786805.2786813
https://doi.org/10.1109/TSE.2016.2597849
https://doi.org/10.1109/TSE.2016.2597849
https://doi.org/10.1145/2568225.2568320
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1007/s11334-020-00380-5
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.4487&rep=rep1&type=pdf
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/IJCNN.2019.8852135
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/QRS.2017.42
https://doi.org/10.1109/CVPR.2019.00710
https://doi.org/10.1007/s10515-017-0220-7
https://doi.org/10.1007/s10515-017-0220-7
https://doi.org/10.1049/iet-sen.2017.0148
https://doi.org/10.1007/s10515-019-00259-1

(2023) 28:127Empirical Software Engineering

Li Z, Jing XY, Zhu X, Zhang H, Xu B, Ying S (2019) On the multiple sources and privacy preservation issues
for heterogeneous defect prediction. IEEETrans SoftwEng 45(4):391–411. https://doi.org/10.1109/TSE.
2017.2780222

Liang H, Yu Y, Jiang L, Xie Z (2019) Seml: A semantic lstm model for software defect prediction. IEEE
Access 7:83812–83824

Liu C, Yang D, Xia X, Yan M, Zhang X (2019) A two-phase transfer learning model for cross-project defect
prediction. Inf Softw Technol 107:125–136. https://doi.org/10.1016/j.infsof.2018.11.005

Ma X, Mou X, Wang J, Liu X, Geng J, Wang H (2021) Cross-dataset hyperspectral image classification based
on adversarial domain adaptation. IEEE Trans Geosci Remote Sens 59(5):4179–4190. https://doi.org/
10.1109/TGRS.2020.3015357

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320. https://doi.org/10.1109/
TSE.1976.233837

Nam J, Kim S (2015) Heterogeneous defect prediction. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, pp 508–519. Association for Computing Machinery. https://doi.
org/10.1145/2786805.2786814

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: 2013 35th International Conference on Software
Engineering (ICSE), pp 382–391. https://doi.org/10.1109/ICSE.2013.6606584

Ni C, Chen X,Wu F, Shen Y, GuQ (2019) An empirical study on pareto based multi-objective feature selection
for software defect prediction. J Syst Softw 152:215–238. https://doi.org/10.1016/j.jss.2019.03.012

Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans
Neural Networks 22(2):199–210. https://doi.org/10.1109/TNN.2010.2091281

Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://
doi.org/10.1109/TKDE.2009.191

Pandey SK, Tripathi AK (2021) Dnnattention: A deep neural network and attention based architecture for cross
project defect number prediction. Knowl-Based Syst 233:107541. https://doi.org/10.1016/j.knosys.2021.
107541

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J,
Chintala S (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in
Neural Information Processing Systems, 32, pp 8024–8035. https://proceedings.neurips.cc/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Qiu S, Lu L, Cai Z, Jiang S (2019a) Cross-project defect prediction via transferable deep learning-generated
and handcrafted features. In: The 31st International Conference on Software Engineering and Knowledge
Engineering, pp 431–436. https://doi.org/10.18293/SEKE2019-070

Qiu S, Lu L, Jiang S (2019) Joint distribution matching model for distribution-adaptation-based cross-project
defect prediction. IET Softw 13(5):393–402. https://doi.org/10.1049/iet-sen.2018.5131

Qiu S, Lu L, Jiang S, Guo Y (2019) An investigation of imbalanced ensemble learning methods for cross-
project defect prediction. Int J Pattern Recogn Artif Intell 33(12):1959037. https://doi.org/10.1142/
S0218001419590377

Qiu S, Xu H, Deng J, Jiang S, Lu L (2019) Transfer convolutional neural network for cross-project defect
prediction. Appl Sci 9(13):2660. https://doi.org/10.3390/app9132660

Rathore SS, Kumar S (2021) An empirical study of ensemble techniques for software fault prediction. Appl
Int 51:3615–3644. https://doi.org/10.1007/s10489-020-01935-6

Ryu D, Choi O, Baik J (2016) Value-cognitive boosting with a support vector machine for cross-project defect
prediction. Empir Softw Eng 21(1):43–71. https://doi.org/10.1007/s10664-014-9346-4

Ryu D, Jang JI, Baik J (2017) A transfer cost-sensitive boosting approach for cross-project defect prediction.
Softw Qual J 25(1):235–272. https://doi.org/10.1007/s11219-015-9287-1

Saito K, Watanabe K, Ushiku Y, Harada T (2018) Maximum classifier discrepancy for unsupervised domain
adaptation. In: Proceedings of the IEEEConference onComputerVision and PatternRecognition (CVPR)
(2018). https://doi.org/10.1109/CVPR.2018.00392

Shepperd M, Bowes D, Hall T (2014) Researcher bias: The use of machine learning in software defect
prediction. IEEE Trans Softw Eng 40(6):603–616. https://doi.org/10.1109/TSE.2014.2322358

Song Q, Guo Y, Shepperd M (2019) A comprehensive investigation of the role of imbalanced learning for
software defect prediction. IEEETrans SoftwEng 45(12):1253–1269. https://doi.org/10.1109/TSE.2018.
2836442

Song S, Yu H, Miao Z, Fang J, Zheng K, Ma C, Wang S (2020) Multi-spectral salient object detection by
adversarial domain adaptation. Proceedings of theAAAIConference onArtificial Intelligence 34:12023–
12030. https://doi.org/10.1609/aaai.v34i07.6879

123

127 Page 42 of 44

https://doi.org/10.1109/TSE.2017.2780222
https://doi.org/10.1109/TSE.2017.2780222
https://doi.org/10.1016/j.infsof.2018.11.005
https://doi.org/10.1109/TGRS.2020.3015357
https://doi.org/10.1109/TGRS.2020.3015357
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/2786805.2786814
https://doi.org/10.1145/2786805.2786814
https://doi.org/10.1109/ICSE.2013.6606584
https://doi.org/10.1016/j.jss.2019.03.012
https://doi.org/10.1109/TNN.2010.2091281
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1016/j.knosys.2021.107541
https://doi.org/10.1016/j.knosys.2021.107541
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.18293/SEKE2019-070
https://doi.org/10.1049/iet-sen.2018.5131
https://doi.org/10.1142/S0218001419590377
https://doi.org/10.1142/S0218001419590377
https://doi.org/10.3390/app9132660
https://doi.org/10.1007/s10489-020-01935-6
https://doi.org/10.1007/s10664-014-9346-4
https://doi.org/10.1007/s11219-015-9287-1
https://doi.org/10.1109/CVPR.2018.00392
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1609/aaai.v34i07.6879

(2023) 28:127Empirical Software Engineering

Su JC, Tsai YH, Sohn K, Liu B, Maji S, Chandraker M (2020) Active adversarial domain adaptation. In: 2020
IEEEWinter Conference on Applications of Computer Vision (WACV), pp 728–737. https://doi.org/10.
1109/WACV45572.2020.9093390

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) An empirical comparison of model val-
idation techniques for defect prediction models. IEEE Trans Softw Eng 43(1):1–18. https://doi.org/10.
1109/TSE.2016.2584050

Thota MK, Shajin FH, Rajesh P (2020) Survey on software defect prediction techniques. Int J Appl Sci Eng
17:331–344. https://doi.org/10.6703/IJASE.202012_17(4).331

Tong H, Liu B, Wang S, Li Q (2019) Transfer-learning oriented class imbalance learning for cross-project
defect prediction

Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-
company data for defect prediction. Empir Softw Eng 14(5):540–578. https://doi.org/10.1007/s10664-
008-9103-7

Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 2962–2971. https://doi.org/
10.1109/CVPR.2017.316

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin, I (2017) Attention
is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp 6000-6010. Curran Associates Inc., Red Hook, NY, USA. https://proceedings.
neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Veličković P, Cucurull G, Casanova A, Romero A, Lió P, Bengio Y (2018) Graph attention networks. In:
Proceedings of the 6th International Conference onLearningRepresentations (ICLR). https://openreview.
net/forum?id=rJXMpikCZ

Wang K, Chen G, Huang Z, Wan X, Huang F (2021) Bridging the domain gap: Improve informal language
translation via counterfactual domain adaptation. In: Proceedings of the AAAI Conference on Artificial
Intelligence, 35, pp 13970–13978. https://ojs.aaai.org/index.php/AAAI/article/view/17645

Wang S, Liu T, Nam J, Tan L (2020) Deep semantic feature learning for software defect prediction. IEEE
Trans Softw Eng 46(12):1267–1293. https://doi.org/10.1109/TSE.2018.2877612

Wang S, Liu T, Tan L (2016) Automatically learning semantic features for defect prediction. In: 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), pp 297–308. https://doi.
org/10.1145/2884781.2884804

Watanabe S, Kaiya H, Kaijiri K (2008) Adapting a fault prediction model to allow inter languagereuse. In:
Proceedings of the 4th International Workshop on Predictor Models in Software Engineering, PROMISE
’08, pp 19–24. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
1370788.1370794

Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83. https://doi.org/10.
2307/3001968

Wu F, Jing XY, Sun Y, Sun J, Huang L, Cui F, Sun Y (2018) Cross-project and within-project semisupervised
software defect prediction: A unified approach. IEEE Trans Reliab 67(2):581–597. https://doi.org/10.
1109/TR.2018.2804922

Xu Z, Pang S, Zhang T, Luo XP, Liu J, Tang YT, Yu X, Xue L (2019) Cross project defect prediction via
balanced distribution adaptation based transfer learning. J Comput Sci Technol 34(5):1039–1062. https://
doi.org/10.1007/s11390-019-1959-z

Xu Z, Yuan P, Zhang T, Tang Y, Li S, Xia Z (2018) Hda: Cross-project defect prediction via heteroge-
neous domain adaptationwith dictionary learning. IEEEAccess 6:57597–57613. https://doi.org/10.1109/
ACCESS.2018.2873755

YiL,GongB, Funkhouser T (2021)Complete& label:Adomain adaptation approach to semantic segmentation
of lidar point clouds. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp 15363–15373. https://doi.org/10.1109/CVPR46437.2021.01511

Yu Q, Jiang S, Zhang Y (2017) A feature matching and transfer approach for cross-company defect prediction.
J Syst Softw 132:366–378. https://doi.org/10.1016/j.jss.2017.06.070

Zeng J, Wu S, Yin Y, Jiang Y, Li M (2021) Recurrent attention for neural machine translation. In: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pp 3216–3225. https://
doi.org/10.18653/v1/2021.emnlp-main.258

Zhu K, Ying S, Zhang N, Zhu D (2021) Software defect prediction based on enhanced metaheuristic feature
selection optimization and a hybrid deep neural network. J Syst Softw 180:111026. https://doi.org/10.
1016/j.jss.2021.111026

Zimmermann T, Nagappan N, Gall H, Giger E,Murphy B (2009) Cross-project defect prediction: A large scale
experiment on data vs. domain vs. process. In: Proceedings of the 7th Joint Meeting of the European

123

Page 43 of 44 127

https://doi.org/10.1109/WACV45572.2020.9093390
https://doi.org/10.1109/WACV45572.2020.9093390
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.6703/IJASE.202012_17(4).331
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1007/s10664-008-9103-7
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/CVPR.2017.316
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://ojs.aaai.org/index.php/AAAI/article/view/17645
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.1145/1370788.1370794
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968
https://doi.org/10.1109/TR.2018.2804922
https://doi.org/10.1109/TR.2018.2804922
https://doi.org/10.1007/s11390-019-1959-z
https://doi.org/10.1007/s11390-019-1959-z
https://doi.org/10.1109/ACCESS.2018.2873755
https://doi.org/10.1109/ACCESS.2018.2873755
https://doi.org/10.1109/CVPR46437.2021.01511
https://doi.org/10.1016/j.jss.2017.06.070
https://doi.org/10.18653/v1/2021.emnlp-main.258
https://doi.org/10.18653/v1/2021.emnlp-main.258
https://doi.org/10.1016/j.jss.2021.111026
https://doi.org/10.1016/j.jss.2021.111026

(2023) 28:127Empirical Software Engineering

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp 91–100. https://doi.org/10.1145/1595696.1595713

Zou Q, Lu L, Yang Z, Gu X, Qiu S (2021) Joint feature representation learning and progressive distribution
matching for cross-project defect prediction. Inf Softw Technol 137:106588. https://doi.org/10.1016/j.
infsof.2021.106588

Özakıncı R, Tarhan A (2018) Early software defect prediction: A systematic map and review. J Syst Softw
144:216–239. https://doi.org/10.1016/j.jss.2018.06.025

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Authors and Affiliations

Hengjie Song1 · Guobin Wu1 · Le Ma2 · Yufei Pan1 ·Qingan Huang1 · Siyu Jiang3

Hengjie Song
sehjsong@scut.edu.cn

Guobin Wu
wugb2020@163.com

Le Ma
80796487@qq.com

Yufei Pan
yufpan2021@163.com

Qingan Huang
huangqa1001@126.com

1 School of Software Engineering, South China University of Technology, Guangzhou, China
2 Guangzhou City University of Technology, Guangzhou, China
3 Guangzhou Key Laboratory of Multilingual Intelligent Processing, School of Information Science

and Technology, Guangdong University of Foreign Studies, Guangzhou, China

123

127 Page 44 of 44

https://doi.org/10.1145/1595696.1595713
https://doi.org/10.1016/j.infsof.2021.106588
https://doi.org/10.1016/j.infsof.2021.106588
https://doi.org/10.1016/j.jss.2018.06.025
http://orcid.org/0000-0002-1969-807X

	Adversarial domain adaptation for cross-project defect prediction
	Abstract
	1 Introduction
	2 Related Work
	2.1 Cross-Project Defect Prediction
	2.2 Adversarial Domain Adaptation

	3 Proposed Method
	3.1 Problem Definition
	3.2 Data Preprocessing
	3.2.1 Generating Input Vectors
	3.2.2 Imbalanced Learning

	3.3 Model Construction
	3.3.1 Generator
	3.3.2 Training Steps

	4 Experiment Setups
	4.1 Benchmark Datasets
	4.2 Experimental Settings
	4.3 Evaluation Metrics
	4.4 Baseline Models
	4.5 Statistical Analysis Methods
	4.6 Research Questions

	5 Experimental Results
	5.1 Rq1: Is our Proposed ADA Method Better than Other State-of-the-Art CPDP Models?
	5.2 Rq2: How Effective are the Semantic Features Extracted by the Generator that Combines an LSTM Network and Attention Mechanisms?
	5.3 RQ3: How Effective is the Adversarial Domain Adaptation Method?

	6 Discussions
	6.1 Why does ADA Work?
	6.2 How does the Hyper Parameter λ Affect the Performance of ADA?
	6.3 How Different Classifiers Affect the Performance of ADA?
	6.4 Threats to Validity

	7 Conclusions
	Acknowledgements
	References

