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Abstract
Logs are an essential source of information for people to understand the running status 
of a software system. Due to the evolving modern software architecture and maintenance 
methods, more research efforts have been devoted to automated log analysis. In particu-
lar, machine learning (ML) has been widely used in log analysis tasks. In ML-based log 
analysis tasks, converting textual log data into numerical feature vectors is a critical and 
indispensable step. However, the impact of using different log representation techniques 
on the performance of the downstream models is not clear, which limits researchers and 
practitioners’ opportunities of choosing the optimal log representation techniques in their 
automated log analysis workflows. Therefore, this work investigates and compares the 
commonly adopted log representation techniques from previous log analysis research. 
Particularly, we select six log representation techniques and evaluate them with seven ML 
models and four public log datasets (i.e., HDFS, BGL, Spirit and Thunderbird) in the con-
text of log-based anomaly detection.We also examine the impacts of the log parsing pro-
cess and the different feature aggregation approaches when they are employed with log 
representation techniques. From the experiments, we provide some heuristic guidelines 
for future researchers and developers to follow when designing an automated log analysis 
workflow. We believe our comprehensive comparison of log representation techniques can 
help researchers and practitioners better understand the characteristics of different log rep-
resentation techniques and provide them with guidance for selecting the most suitable ones 
for their ML-based log analysis workflow.
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1  Introduction

Logs are textual data generated by logging statements in the source code of software sys-
tems. Log data records important runtime information so that software practitioners can use 
it to understand the running state of a software system or diagnose a system failure. Tra-
ditionally, developers and operators manually examine logs or use rule-based approaches 
to search and analyze log data (Hansen and Atkins 1993; Prewett 2003; Rouillard 2004), 
which proves to be very inefficient and error-prone (Oliner et al. 2012). Modern software 
systems are large-scale, especially distributed systems that run on thousands of commod-
ity machines, which usually generate large volumes of logs each day (Oliner and Stearley 
2007; Schroeder and Gibson 2007). Logs are usually semi-structured and exhibit a mixture 
of formats and vocabularies, making the traditional manual or rule-based approaches tre-
mendously challenging, if not infeasible (Dai et al. 2020; Zhu et al. 2019). Furthermore, 
structures and maintenance practices of modern software systems change rapidly, which 
poses new challenges for log analysis (Shang et al. 2014; Yuan et al. 2012). Automated log 
processing has drawn many software engineering researchers’ interest in this context.

Prior studies have proposed various approaches that leverage information retrieval, nat-
ural language processing, traditional machine learning, and deep learning to support auto-
mated log analysis tasks (He et al. 2021). Automated log analysis approaches have been 
playing an important role in software maintenance and operation efforts (e.g., anomaly 
detection (Chen et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 
2021; Lu et al. 2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al. 
2009; Zhang et al. 2019), failure diagnosis (Fu et al. 2013; Yuan et al. 2010), performance 
regression analysis (Chow et  al. 2014; Liao et  al. 2020; Nagaraj et  al. 2012)). Many of 
these automated log analysis tasks leverage machine learning (ML) techniques. An indis-
pensable step of ML-based log analysis is to transform the textual log data into numerical 
formats (e.g., feature vectors or digital sequences) that ML models can consume as fea-
tures. We refer to this step as log representation: the process that transforms textual log 
data into numerical formats to be used as features in ML models.

Prior work uses different log representation techniques in their ML-based log anal-
ysis tasks (i.e., downstream tasks), including classical techniques (e.g., counting the 
occurrences of log templates or TF-IDF) and (deep) neural network based techniques 
(e.g., Word2Vec or FastText). For example, He et  al. (2016b) match Message Count 
Vector representation with a logistic regression model to detect anomalies in log 
sequences. Zhang et  al. (2019) leverages pre-trained FastText model to generate log 
template embeddings to construct their anomaly detection workflow. However, no work 
has focused on evaluating the effectiveness of these representations, thus the impact of 
using different log representation techniques on the performance of the downstream 
models is not clear. Although there are some ablation studies of automated log analysis 
to evaluate the effectiveness of their adopted representations for log data (Chen et  al. 
2021), researchers can hardly compare the studied log representation techniques with 
that of other works to know about the impacts that these techniques may have on the 
performance of downstream tasks. Therefore, our work aims to provide a comprehen-
sive investigation of log representation techniques with the goal of providing a refer-
ence for future research on automated log analysis. We select six commonly used log 
representation techniques and evaluate them with seven ML models and four public log 
datasets in the context of log-based anomaly detection task. We select the context of 
log-based anomaly detection as it is the most widely studied topic of automated log 
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analysis (Chen et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 
2021; Lu et al. 2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu 
et al. 2009; Zhang et al. 2019). Our findings are likely to be generalizable to other auto-
mated log analysis tasks, given the similarity among log representation techniques used 
in various downstream tasks (He et al. 2021). Therefore, the key factors we identified 
for selecting log representation techniques are expected to hold for other automated log 
analysis downstream tasks as well. We achieve our research objectives by answering the 
following research questions (RQs):

•	 RQ1: How effective are existing log representation techniques for automated log 
analysis?

This research question aims at making a fair comparison of the existing common log 
representation techniques. In this research question, we combine different log represen-
tation techniques with different anomaly detection models. By comparing and analyzing 
the performances across the combinations, we derive some observations for develop-
ers and researchers to help better choose log representation techniques when designing 
automated log analysis frameworks.

•	 RQ2: How does log parsing influence the effectiveness of log representations in 
automated log analysis?

Log parsing is a common pre-processing step before the log representation step. It 
is not clear how log parsing and log representation together impact the performance 
of downstream tasks. Thus, in this RQ, we investigate the potential impacts that log 
parsing, when used with different log representation techniques, may have on the per-
formance of downstream models. Findings confirm that the log parsing process has non-
negligible impacts on the performance of the downstream models.

•	 RQ3: How do representation aggregation methods influence the effectiveness of log 
representation in automated log analysis?

Log representation techniques can generate the representation at different levels 
(e.g., token level or log event level). Sometimes, low-level representations need to be 
merged into high-level ones according to the need of the follow-up models. In this RQ, 
we aim to explore the potential influence of different aggregation configurations when 
used together with different log representation techniques. The findings indicate that the 
impacts of aggregation configurations may vary according to different factors, and the 
aggregation configurations may have non-negligible influences on the quality of log rep-
resentations. Researchers should be careful when doing feature aggregation as there is 
no single best solution for all log data, representation techniques, and models.

Our work makes several important contributions:

1.	 We provide a comprehensive evaluation of the impact of log representation techniques 
on log-based anomaly detection task. Our results can be used as a guide for researchers 
and software practitioners in selecting the most suitable log representations for their 
anomaly detection frameworks or other log analysis workflows.
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2.	 We provide an analysis of the impact of log parsing and feature aggregation approaches 
when they are used together with different log representation techniques. The insights 
obtained through this analysis can help optimize workflows of log analysis.

3.	 We share an implemented pipeline for log-based anomaly detection which supports 
convenient configurations of log parsing, different log representations, and different 
aggregation methods. Our implementation of the pipeline together the steps to replicate 
our main results are included in our replication package.1

Organization  The remainder of this paper is organized as follows: We introduce the back-
ground of our work in Section  2. Section  3 surveys related works. Section  4 describes 
the design of our experiments, including the selection and overview of studied log rep-
resentations, the downstream task and the datasets used. The evaluation metrics for the 
downstream task are also introduced. Section 5 is organized by the research questions we 
proposed. For each research question, we present the corresponding approach and results. 
Section  6 discusses our findings from the three research questions and summarizes the 
take-home messages. Section 7 identifies the threats to validity of our findings. At last, we 
summarize this paper in Section 8.

2 � Background

2.1 � Log Representations

Log representation is a process that converts textual log data into numerical feature vec-
tors. Log representation techniques take semi-structured raw log data or parsed log data 
as input and generate representations at different abstraction levels. Figure 1 illustrates an 
example of different levels of representation for a log session. Different log representation 
techniques may work on different levels. Aggregation is the process that merges low-level 

Fig. 1   Different levels of abstraction of log representation

1  Scripts and data files used in our research are available online and can be found in our replication pack-
age: https://​github.​com/​moose​lab/​suppm​ateri​al-​LogRe​pForA​nomal​yDete​ction.
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representation into high-level one. Based on these different levels of representations, vari-
ous follow-up models can be designed to perform downstream tasks according to the needs. 
Different log analysis tasks may work on different levels of log representation according to 
their needs of information.

Token‑Level Representation  One piece of log message itself is a sequence of tokens. 
Tokens can be represented as embeddings with pre-trained language models (e.g., word-
2vec). We call this level of abstraction as token-level representation, which is the low-
est level of log representation. Instead of directly feeding the token-level representation to 
the follow-up models to fulfill downstream tasks, representations of this level are usually 
aggregated into higherlevel ones, where the aggregation techniques are applied. However, 
there exist log anomaly detection methods that mainly work on token-level representations. 
For example, Logsy (Nedelkoski et al. 2020) tokenizes the preprocessed log messages and 
generates embeddings for tokens in log templates. Together with the positional encoding of 
the tokens, these representations are fed into a transformer-based structure. By training the 
neural network, the token-level representation is updated.

Event‑Level Representation  A log event-level embedding is a vector representation that 
encodes a single log message. This level of representation can be merged from token-level 
embeddings with different aggregation approaches (Meng et al. 2019). Besides, some lan-
guage models can directly generate this level of representation directly (Devlin et al. 2018; 
Le and Zhang 2021). For example, Swisslog (Li et al. 2020) employs pre-trained BERT as 
a sentence encoder and directly generates sequence-level embeddings for log templates.

Sequence‑Level Representation  Usually, log data contains a sequence of log entries that 
can be sorted according to the chronological order indicated by timestamps. The whole 
log data can be grouped into a set of log sequences with different approaches (e.g., fixed 
windows, sliding windows, and session windows (Chen et al. 2021; He et al. 2016b; Le and 
Zhang 2022) according to the needs of downstream tasks.We call the embedding for this 
abstraction level as sequence-level representation. Most of the traditional ML models (e.g., 
SVM, decision tree) work on the representations of this level (He et al. 2016b). Sequence-
level representation can be acquired by aggregating log event-level representations or by 
using sequential models (e.g., RNNs, Transformer).

2.2 � Applications of Log Representations in Automated Log Analysis

When log data is represented as vectors or other structured data structures, various auto-
mated log analysis models can be built upon to realize various downstream tasks, such as 
anomaly detection (Chen et al. 2021; He et al. 2016b), performance modeling (Liao et al. 
2020), predictive analysis (Katkar and Kasliwal 2014), or casual analysis (Jarry et al. 2021).

Anomaly detection is the most representative downstream task of log analysis (Chen 
et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 2021; Lu et al. 
2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al. 2009; Zhang 
et  al. 2019). Log-based anomaly detection approaches identify anomalies inside a log 
sequence according to occurrence patterns of log events. With log representation, the 
anomaly detection task can be formulated as both unsupervised and supervised methods. 
Unsupervised methods adopt unsupervised machine learning algorithms (e.g., isolation 
forest) to mine the normal patterns of log data usually with the hypothesis that anomalies 
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are unusual in the data sequence (Liu et al. 2012), while the supervised methods usually 
treat anomaly detection as a classification problem and employ classifiers (e.g., decision 
tree) to learn the normal and abnormal modes (He et al. 2016b).

Based on the availability of well-annotated datasets and the richness of related works, 
this work adopts the log-based anomaly detection task as our protocol to study the log 
representation. According to prior works (Chen et al. 2021; He et al. 2016b), supervised 
anomaly detection models usually achieve better performance and have better stability 
across datasets than their unsupervised counterparts. Also, the performance of unsuper-
vised models is sensitive to their hyper-parameters. According to our experiments, unsu-
pervised models favour different hyper-parameters when working on different datasets and 
need manually tuning. Otherwise, they may generate inferior results that will influence the 
comparisons of log representations. Based on these observations, we only focus on super-
vised models in this work to eliminate interference from these factors.

3 � Related Work

In this section, we discussed existing log representation techniques and their applications 
in log analysis tasks. Generally, existing log representation techniques can be classified 
into two categories based on the mechanism to generate log representation: the classical 
approaches based on handcrafted features and semantic-based approaches. In addition, we 
discuss prior art on anomaly detection which is our focused downstream task in this work.

3.1 � Classical Log Representation Techniques and Their Applications

There are several kinds of features manually designed by researches according to their 
domain knowledge to represent log data.

Log Template ID  As log data is sequential and log messages are generated by a limited 
amount of logging statements, a log sequence can be easily presented as a sequence of 
log template id (a.k.a. log key) after being parsed with a log parser (Zhu et  al. 2019). 
Although this approach ignore a lot of information from logs, it is an effective representa-
tion that reflects occurrence patterns of log templates in a log sequence. Log template ID 
is an event-level representation, which can be aggregated into Message Count by a count 
vectorizer.

Prior works use log template IDs to detect anomalies, as anomalies may be spotted out 
with abnormal occurrence pattern of log templates (Du et al. 2017; Lu et al. 2018). For 
example, Du et al. (2017) proposed the DeepLog anomaly detection framework, in which a 
sequential anomaly detection model is trained with log keys. Combined with another per-
formance anomaly detection model, the framework achieved the state-of-the-art detection 
performance at the time it was proposed.

Message Count  Unlike log template ID representation, Message Count (a.k.a. event 
count, log count, log message counter) Vector counts the occurrences of log templates in a 
log sequence and the length of representation depends on the amount of log templates in a 
whole log data, and thus is unrelated to the length of the log sequence. Message Count is a 
sequence-level representation.
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It is one of the most common traditional log representation approach that adopted by 
various log analysis frameworks. For example, He et al. (2016b) use the log count as fea-
tures and fed them a logistic regression model to detect anomalies. Xu et al. (2009) adopt 
the unsupervised dimension reduction method PCA with event count matrix to detect 
anomalies. Lou et  al. (2010) input event count to invariant mining algorithm to detect 
anomalies.

TF‑IDF  Is a commonly used weighting technique in information retrieval and data min-
ing. For log data, TF-IDF weighting can be either used to weight values in Message Count 
Vector or serve as a feature itself to present tokens in a log entry. For example, Wang et al. 
(2018) use the TF-IDF values of tokens in a log event to form the feature vectors. Some 
researchers modified TF-IDF to better suit the characteristics of log data. For example, 
Meng et  al. (2021) apply the popular bag-of-words model to generate embedding and 
design the Inverse Location Frequency (ILF) method (a modified version of IDF(Salton 
and Buckley 1988) designed for logs) to weight the words of logs in feature construction. 
When TF-IDF operates on tokens within log events, it produces representations at the event 
level. Alternatively, when it processes the sequence of template IDs, it generates represen-
tations at the sequence level.

Combined Features  Also, there are other works that try to combine different features and 
representations for log data. Liang et  al. (2007) proposed a failure prediction model for 
log data generated from IBM Blue Gene/L. In this work, six groups of features are gen-
erated, including the number of events of different severity, event distribution, inter-fail-
ure times, and so on. These sequence-level representations are further processed by four 
classifiers(e.g., SVM, KNN) for later anomaly prediction.

3.2 � Semantic‑Based Log Representation Techniques and Their Applications

Unlike classical approaches, semantic-based approaches employ deep-learning techniques 
that do not rely on manually designed features. As logs are semistructured texts and log 
messages contains semantic information, some studies leveraged deep learning techniques 
in natural language processing and information retrieval to represent and analyze log data.

Static Embedding  Some works are inspired by static word embeddings, which have been 
demonstrated to be more effective than log keys and log count. Static embedding tech-
niques create embeddings for tokens in log events, resulting in token-level embeddings that 
can be further aggregated into higherlevel embeddings. Meng et al. (2019) proposed a log 
representation approach named Template2Vec. By embedding the log template with dLCE 
(Nguyen et al. 2016) to a vector, this approach presents the first step towards considering 
semantic and syntax information in log data.

The subsequent study proposed Logsy (Nedelkoski et al. 2020). In this work, two opera-
tions are applied to input tokens: token embedding and positional encoding. Before being 
embedded into vectors, log messages are split into word tokens and numerical characters 
and commonly used English words are removed. Then, these vectorized tokens are input 
into the subsequent encoder of the Transformer (Vaswani et al. 2017) module with multi-
head selfattention.

Zhang et  al. (2019) proposed a log-based anomaly detection approach called LogRo-
bust. They leverage Drain (He et al. 2017) to obtain log templates and encode log templates 
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with pre-trained FastText model combined with TFIDF weight. Then, an attention-based 
Bi-LSTM model is used for anomaly detection. With semantic embeddings, It can identify 
unstable log events with similar semantic meaning.

Contextual Embedding  Le and Zhang (2021) proposed NeuralLog, which does not rely 
on any log parsing. In NeuralLog, each log message is directly transformed into seman-
tic vectors after removing numbers and special characters. A pre-trained BERT model is 
employed to encode log messages into a fixed dimension vector representation. Similar 
to static embeddings, contextual embeddings can operate at the token-level. Nonetheless, 
pre-trained models may also generate event-level embeddings using their unique structures, 
such as the pooler layer in BERT (Devlin et al. 2018).

3.3 � Graph‑Based Log Representation Techniques and Their Applications

Recently, a group of studies introduced Graph Neural Networks (GNNs) (Wan et al. 2021; 
Xie et al. 2022) to log anomaly detection. Unlike previouslymentioned approaches, which 
mainly utilize the sequential or quantitative patterns of log events in log sequences, GNN-
based methods transform log sequences into graphs and leverage the spatial structural rela-
tionships among logs. Typically, these methods generate representations at the sequence-
level by utilizing features from lower-levels. Some previously-mentioned representations 
can be incorporated into the graph structure as features of nodes and encoded by a GNN-
based graph encoder. The experiments show that these approaches achieved promising 
results and robustness against the variation of window size. As the representation learning 
process is linked to downstream tasks, we are unable to incorporate this type of representa-
tion into our experimental framework. Therefore, it is not included in our experiments.

3.4 � Anomaly Detection

As one of the most studied downstream tasks in the domain of automated log analysis, 
anomaly detection aims to detect abnormal system behaviours to help developers and oper-
ators uncover system issues and solve anomalies. Log data is a good source of informa-
tion that can be utilized for anomaly detection models to evaluate the status of a system, 
as it may contain the indexes of the availability of system resources and the running sta-
tus of services. The log sequence can also reflect the execution paths of a system. From 
these pieces of information, potential failures or unusual execution sequences can be spot-
ted according to the regular pattern. Therefore, as a highly in-demand task of automated 
log analysis, log-based anomaly detection has been widely studied, and various approaches 
have been developed in the last decades.

Traditionally, developers may check system logs with keywords or use rules to find 
anomalies and locate the bugs in systems with their domain knowledge. Manual inspec-
tions are erroneous and unstable for large software systems that generate tons of logs in 
a short period. Rule-based approaches demand the manual construction of rules and can 
not adapt to fast-evolving software systems. Therefore, machine learning is adopted in 
many log-based anomaly detection approaches. In this study, we only focus on super-
vised learning methods, as we discussed in Section 2. Supervised anomaly detection is 
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defined as a machine-learning task of deriving a classifier with annotated log sequence. 
The annotations mark the normal or anomalous states of log sequences or log events. 
Here, we list the most representative related works that utilize supervised learning 
methods in anomaly detection.

Traditional Methods  Most of the traditional machine learning methods adopt mes-
sage count vector as their log representation approach. A training instance for traditional 
models usually consists of an event count vector for a log sequence and its corresponding 
label. With training instances, classifiers can be trained to classify new instances. Logistic 
regression is a statistical model that is widely used in anomaly detection. It estimates the 
probability of normal and anomalous according to the input vector. The decision tree is a 
tree-based model that is constructed in a top-down manner with training data. Each node 
presents a split of an attribute with the criteria of information gain. The decision tree was 
also applied to log analysis in previous works (Chen et al. 2004). Event count vectors are 
used to construct the decision tree, and predictions for new instances are given with tree 
structure. Support Vector Machine (SVM) is a common supervised method for classifica-
tion. A hyperplane is constructed by maximizing the distance between the hyperplane and 
the closest point(s) of different classes to separate instances in high-dimension space. SVM 
was employed to detect failures (Liang et al. 2007) with statistical features of occurrences 
of log events.

Deep Learning Methods  Different from traditional methods, the input feature of deep 
learning methods for log anomaly detection varies greatly. The most basic model is 
based on Multi-layer Perception (MLP). MLP is a feedforward structure that maps a set 
of input vectors to a set of output vectors. MLP model serves as a baseline model for 
log-based anomaly detection in previous works (Lu et  al. 2018). Convolutional Neural 
Networks (CNNs) were first adopted for log anomaly detection by Lu et al. (2018). This 
work uses convolutional layers containing different kernels to extract features from vec-
tors generated with a codebook that maps the logs to embedding vectors. Long Short-
Term Memory (LSTM) is commonly used for mining the patterns from log data in many 
automated log analysis frameworks (Du et  al. 2017; Meng et  al. 2019). However, the 
mechanisms of prior works vary: some works (Du et al. 2017) used log template ID as 
input, and LSTM is used to learn the occurrence patterns of log templates in normal and 
abnormal log sequences, while there is another line of works that take embedding vec-
tors of log templates as input (Meng et al. 2019). Transformer-based models have been 
applied in the log-based anomaly detection task by some recent works (Le and Zhang 
2021; Nedelkoski et al. 2020). The transformer blocks in these models can capture con-
textual information from input sequences with the self-attention mechanism. These mod-
els exhibit promising results in log-based anomaly detection tasks. However, the previ-
ous works utilized transformer-based models with different formulations of the log-based 
anomaly detection task. For example, Logsy (Nedelkoski et  al. 2020) formulates the 
anomaly detection problem as discrimination between normal logs from the system of 
interest and auxiliary logs from other systems, in which anomalies are detected based 
on only their log messages and sequential information is ignored. The best practices for 
using transformers in log analysis are still unclear. Therefore, we do not include this sort 
of method in our experiments.
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4 � Experimental Design

In this section, we introduce the design of our experiments to evaluate the effectiveness 
of different log representation techniques by assessing their impact on the performance of 
selected automated log analysis tasks. We first give an overview of the workflow of the 
experiments. Then, we discuss log representation techniques studied in the experiments to 
generate feature vectors for follow-up downstream tasks. Then, our selected downstream 
tasks with their corresponding models are introduced. We also review the metrics that we 
use to evaluate the performances of each studied downstream tasks.

As our focus is on the impact that log representation techniques have on the perfor-
mances of downstream tasks, we select the most representative automated log analysis task 
(i.e., anomaly detection) and combine different models of it with different representation 
techniques. Aside from the comparative evaluation of studied representation techniques on 
follow-up models, we also look into the log parsing and feature aggregation process that 
can affect the effectiveness of log representations.

4.1 � Overview

Figure  2 shows the general workflow of our experiments. Raw log data is unstructured 
textual data. As most log representation techniques require structured log data as inputs, a 
log parsing step is often applied to obtain structured log data. In this work, the Drain parser 
(He et al. 2017) is adopted in our experimental workflow, as it is shown to have superior 
parsing performances on most of the datasets (Zhu et al. 2019). However, log parsing may 
not be needed for some log representation techniques. For example, log parsing process 
is deserted in NeuralLog (Le and Zhang 2021), a recent anomaly detection workflow that 
achieved results outperforming the other existing approaches. Then, log data is fed into 
representation algorithms to get numerical representation of different abstraction levels. 
According to the level of abstraction of the log representation, different models of down-
stream tasks are selected to mine critical information from the data according to the spe-
cific task and yield the analytical results.

4.2 � Studied Log Representations

As our goal is to conduct an evaluation of different log representation techniques, we 
selected the most representative techniques for the study. We implemented the studied 
techniques following the common practices of previous works (Chen et al. 2021; He et al. 
2016b) to better compare their characteristics and quality. However, different previous 

Fig. 2   General workflow of our experiments. The variations for each research question are highlighted with 
dotted boxes
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works have different implementations with minor alternations for some representation 
techniques. We adopt and synthesize these open-source codes or implement them ourselves 
from scratch. Existing log representation techniques can be classified into two categories: 
classical and semantic-based approaches.

Classical Log Representation Techniques  For classical representation techniques, we 
select message count vector, template ID-based TF-IDF (TF-IDF ID) and text-based TF-
IDF (TF-IDF Text) feature representation. The message count takes log template indexes 
as input. It presents a log sequence with a vector counting the event occurrences from each 
log template. The event template ID-based TF-IDF (TF-IDF ID) weighting weights each 
event template ID with their respective TF-IDF value. In template text-based TF-IDF (TF-
IDF Text) representation, we used the TF-IDF values of tokens in the template of a log 
event to represent a log message. For a sequence, we calculate the average of feature vec-
tors of its log events to form the representation for the sequence.

Semantic‑Based Log Representation Techniques  For semantic-based log representa-
tion techniques, we choose three commonly adopted techniques in existing automated log 
analysis frameworks as our objects of study:Word2Vec, FastText, and BERT. For each of 
them, we leverage the pre-trained models trained with natural language corpus as related 
works do (Le and Zhang 2021; Zhang et al. 2019). For Word2Vec, we use the word vectors 
generated by the model pre-trained with Google News dataset.2 Pre-trained Word2Vec can 
generate many out-of-vocabulary (OOV) words when processing log data and is unable 
to handle them in a proper way. So, we assign the zero vector for OOVs when generat-
ingWord2Vec representations for the studied datasets. For FastText, we leverage the off-
the-shelf word vectors, which were pre-trained on Common Crawl Corpus and Wikipe-
dia (Grave et al. 2018). FastText can handle OOV words by summing up embeddings for 
its component char-ngrams. Therefore, FastText is able to generate embeddings for OOV 
words in logs, although the embeddings may not be effective. For BERT (Devlin et  al. 
2018), we utilize the pre-trained base model (Turc et al. 2019). And the sentence embed-
ding are generated by the second-to-last encoder layer of the model, which is 768 dimen-
sions. The second-to-last hidden layer is chosen as the last layer is too closed to the target 
functions durning pre-training, which may contain biases.

4.3 � Downstream Models and Datasets

4.3.1 � Anomaly Detection Models and Implementations

We select 7 supervised machine learning anomaly detection models to evaluate the studied 
log representation techniques. SVM, decision tree, logistic regression, and random forest 
are traditional machine learning models. These models are commonly used and well-stud-
ied in various application scenarios and often serve as baseline in automated log analysis 
tasks (He et al. 2016b). For deeplearning models, we choose MLP, CNN, and LSTM mod-
els. The MLP model is selected as a baseline for log-based anomaly detection in prior work 
(Lu et  al. 2018). CNN and LSTM are widely employed in many automated log analysis 
frameworks (Du et al. 2017; Lu et al. 2018; Meng et al. 2019).

2  https://​code.​google.​com/​archi​ve/p/​word2​vec/
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We employ these well-studied machine learning models based on the fact that they are 
commonly adopted in anomaly detection workflows or other automated log analysis frame-
works. By selecting these widely adopted models, we believe that the findings of our work 
may stand a better chance of generalizing to other log-related automated analysis tasks. We 
briefly introduce the implementation of the studied models in the following, while details 
can be found in our replication package1.

Traditional Models  For traditional anomaly detection models, we follow the implementa-
tions of Loglizer (He et  al. 2016b). However, their implementations only take the event 
count matrix generated with session windows as input. In our case, the input dimensions 
vary according to the studied log representations. Same as Loglizer, all of our studied tradi-
tional models take sequence-level representation as input. We modify hyper-parameters of 
these models according to the input dimensions of our generated log representations.

Multi‑layer Perception (MLP)  We follow the similar implementation of the baseline model 
in (Lu et al. 2018), we treat the anomaly detection task as a binary classification problem 
and use a MLP with one hidden layer with 200 neurons as a binary classifier. The inputs 
are feature vectors of different log representation techniques, and the outputs are the one-
hot encoding of the binary labels. Cross entropy loss is used as the criterion to train the 
three-layer network. MLP also takes sequence-level log representation as input.

Convolutional Neural Network (CNN)  In our work, we implement exactly the same net-
work structure as in the original work (Lu et  al. 2018). However, instead of taking log 
keys as input and using the codebook to map log keys into embeddings, our network sub-
stitutes the codebook with a fully-connected layer with 50 neurons, which maintains the 
same embedding size as the original work for the convolutional layers to process. Network 
details can be find in our replication package. The CNN models require event-level log 
representation as input, and demand the input sequence are of same length. As the sessions 
of log data may contain different numbers of log messages, we sliced the sessions with a 
sliding window.

Long Short‑Term Memory (LSTM)  There are different mechanisms of using LSTM to 
detect anomalies in log sequence in prior works. As the aim is to compare different log rep-
resentations, our implementation treats different log representations as the input feature of 
the LSTM model. Similar to CNN models, LSTM models require fixed length event-level 
representation as input. Network details can be found in our replication package1.

4.3.2 � Datasets and Preparations

Our experiments evaluate the existing representations with the following four public log 
datasets provided by LogHub (He et al. 2020):

•	 The HDFS dataset (Xu et al. 2009) is collected from the Amazon EC2 platform. It con-
tains more than 11 million log events, and each event is associated with a block ID, by 
which we slice log data into a set of sessions, which are the sub-sequences of the entire 
log sequence. For each session, labels are given to indicate whether there exist anoma-
lies. There are a total of 575,061 log sessions with 16,838 (2.9%) anomalies.
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•	 The BGL dataset (Oliner and Stearley 2007) is recorded from the Blue Gene/L 
(BG/L) supercomputer system at Lawrence Livermore National Labs (LLNL) with 
a time span of 215 days. This dataset contains 4,747,963 annotated log messages, 
where 348,460 (7.3%) are labelled as failures. Unlike HDFS, log messages in BGL 
do not have identifiers for separating logs from different job executions, processes 
or threads. So, grouping techniques (e.g., time-based, fixed window-based, etc.) are 
adopted to form sub-sequences. For uniformity, we also call these sub-sequences in 
BGL as sessions.

•	 The Spirit dataset is also a well-used public log dataset (Oliner and Stearley 2007), 
which Sandia National Labs collected from their Spirit supercomputing system. 
There are more than 272 million log messages in total. As the whole dataset is too 
large for us to process, we use a subset containing the first 5 million log messages 
in our work, which follows the practice of prior work (Le and Zhang 2022). In the 
subset, 15.5% of the log messages are marked as anomalies. The subset is shared in 
the replication package.

•	 The Thunderbird dataset (Oliner and Stearley 2007) is also a public log dataset from 
Sandia National Labs. There are around 211 million log messages in totalWe fol-
lowed the practices of previous works (Le and Zhang 2021, 2022) and extracted a 
continuous chunk of 10 million log messages from the whole dataset, among which 
4.1% are labelled as anomalies. We also share the subset in our replication package.

According to the common practices (Chen et  al. 2021; He et  al. 2016b) of data-
set preprocessing and grouping, we prepared the studied datasets with the following 
configurations:

Preparation for the HDFS Dataset  For the HDFS dataset, as the available annotation 
labels are based on blocks ID, an identifier that marks the different execution sequences, 
we use it as the clue to group logs into sessions. We use 70% of the sessions as training 
set and the other 30% as test set by following the common practices of datasets splitting in 
supervised learning tasks (e.g., El-Sayed et al. (2017); Lyu et al. (2021)). During splitting, 
we shuffle the sessions while maintaining the time-based sequence of log messages inside 
each session (Chen et al. 2021). Recent work (Le and Zhang 2022; Lyu et al. 2021) sug-
gests that the random shuffling process can cause data leaking problems. However, as the 
main focus of our work is the impact of log representation rather than the performance of 
the downstream models, the random shuffling process will not undermine our evaluation.

Preparation for the BGL Dataset  For the BGL dataset, we do not have identifiers to sepa-
rate the log items into different execution sequences. So, we choose to group the log mes-
sages according to the timestamp. We refer to the grouping approaches of prior papers that 
adopt the BGL dataset and group the log messages with a fixed window of 6 h (He et al. 
2016b). After the time-based grouping, there are 718 sessions. As the number of sessions 
is far less than that of the HDFS dataset, we use 80% of the sessions as training set and 
20% as test set instead of a 70%/30% splitting, following the practices in prior work (Chen 
et al. 2021; Le and Zhang 2021; Meng et al. 2019). Similarly, we shuffle the sessions while 
maintaining the time-based sequence within each session. The labels are merged from 
that of the log messages inside each session. If any of the log messages inside a session 
is labelled as an anomaly, the whole session is recognized as an anomaly, following the 
approach used in prior work (He et al. 2016b).
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Preparation for the Spirit Dataset  Similar to the grouping configuration of the BGL data-
set, we group the log messages according to their timestamps. However, we adopt a fixed 
window of one hour instead of six hours following the configuration in prior work (Le 
and Zhang 2022). After grouping, we get 1,173 sessions, with 221 anomaly samples. We 
further shuffle and partition the sessions into the training and test sets with an 80%/20% 
splitting.

Preparation for the Thunderbird Dataset  Instead of adopting a one-hour fixed-window 
grouping, we employed a fix-length grouping to the Thunderbird dataset, as we noticed that 
the logs were unevenly distributed in time. If the sessions are grouped by a fixed-length 
time window, the number of logs in some sessions may be extremely large. We chose a 
window size of 100 lines, which is also a setting employed in experiments from previ-
ous work (Le and Zhang 2022). After grouping, we get 99,717 sessions in total, among 
which 33,526 sessions are anomalies. We performed a sequential split of the sessions 
using an 80%/20% ratio to obtain the training and test sets. This approach helped improve 
the generalizability of our findings and establish their validity across all data selection 
configurations.

Window Size for Sequential Models  As CNN and LSTM models require inputs to be of 
consistent sequence lengths, we need to further slice each log session with fix-length slid-
ing windows. According to the characteristics of each dataset and the common practices 
in other works (Chen et al. 2021), we select the configurations of the sliding window in 
Table 1 for the studied datasets as default settings. We further analyze the impacts of the 
variation of window size in RQ3.

Log Parsing  Ideally, we would use a log parser that can convert the unstructured raw log 
data into structured log data without any error. In practice, however, existing log parsers 
cannot successfully parse all the log messages as the formats of log messages are usually 
diverse and complex. Continuous updates to existing parsing strategies and configurations 
are required due to new log templates and variations in log formats resulting from the evo-
lution of software (Zhang et al. 2019).

In fact, the impact of using different log parsers for automated log analysis has been 
explored in prior work (He et al. 2016a). A recent work (Le and Zhang 2022) further inves-
tigated the impacts of data noise introduced by log parsing errors. The authors combined 
five anomaly detection models with four commonly-used log parsers and found that pars-
ing errors induced by different parsers have distinctive impacts on downstream models. 
However, the patterns of the impacts remain to be explored.

Table 1   Grouping techniques and default window size settings for studied datasets

Dataset Grouping Criterion # of sessions Ave. # of log 
per session

Window size Stride

Train Test

HDFS Session ID 402,542 172,519 22 30 1
BGL Time (6h) 575 143 6,565 50 50
Spirit Time (1h) 938 235 4,208 50 50
Thunderbird Line (100l) 79,773 19,944 100 30 10
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As our goal is to achieve the best possible parsing results to serve as input for our 
following processes, we do not compare the impacts of using different log parsers which 
may lead to different parsing results. According to Zhu et  al. (2019)’s benchmarking 
work for log parsers, Drain (He et  al. 2017) is the most accurate parser among their 
studied log parsers, which attains the highest accuracy on 9 out of 16 datasets. There-
fore, we choose Drain as our log parser to preprocess the raw log into structured data 
and extract parameters from log messages in our work. However, the Drain parser can 
still generate large number of inaccurate templates for our studied datasets when we fol-
low the default configuration indicated in the paper of He et al. (2017). By examining 
the templates generated, it becomes apparent that certain parsing errors have occurred. 
For example, numerous log templates have been created with slight variations in certain 
fields that should be dynamic variables, but have instead been incorrectly identified as 
static text. To eliminate the impact of these inaccurate templates on our evaluation, we 
iteratively checked and appended the regular expressions designed for handling these 
undetected dynamic variables. We were able to decrease the number of resulting wrong 
templates. For example, after passing a set of regular expressions to the parser when 
parsing the Thunderbird dataset, the amount of log templates decreases from 2,241 
to 1,488, in which many duplicate templates are removed. In a prior study (He et  al. 
2016a), a similar approach was utilized and it was verified that incorporating domain 
expertise (such as eliminating IP addresses) can enhance the precision of log parsing. 
The details of the regular expressions can be found in our replication package.

4.4 � Evaluation Methods

Anomaly detection is formulated as a binary classification problem in our study. Therefore, 
we assess the performance of studied models using precision, recall and F1 score. We label 
the outcomes of these models as true positive (TP), false positive (FP), true negative (TN), 
and false negative (FN). Further, the precision, recall and F1 score are calculated as fol-
lows: Precision =

TP

TP+FP
 , Recall = TP

TP+FN
 , F1 =

2PrecisionRecall

Precision+Recall
=

2TP

2TP+FP+FN
 . All the metrics 

are calculated on the test sets. For some of our results, we only report the F1 metric due to 
space limit. We report the the complete results of all the metrics in our replication pack-
age. For sequence-level representations, each sample represents a session, for which clas-
sifiers generate one prediction. We calculate the metrics based on predictions for sessions. 
However, for models that demand fixed-length input, we slice each session with sliding 
windows and get fixed-length sub-sequences. The labels for these sub-seqences are derived 
from the session they are from. And models generate predictions for each sliding window. 
We merge the predictions within sessions and use the labels for sessions to calculate the 
metrics.

5 � Experimental Results

In this section, we present the results of our three research questions, aiming to understand 
the effectiveness of different log representation techniques in the context of anomaly detec-
tion, with the hope that our findings can be generalized to other similar automated log 
analysis tasks.
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5.1 � RQ1. How effective are existing log representation techniques for automated 
log analysis?

5.1.1 � Motivation

Prior works have widely used different log presentation techniques in their automated 
log analysis workflow. However, no work has comprehensively compared the impact of 
the choice of log representation techniques in their workflow. Therefore, this research 
question aims to bridge the gap and provide a comprehensive comparison of the com-
monly used log representation techniques in the context of anomaly detection. Through 
analyzing the impact of different log representation techniques on the different anomaly 
detection models, we hope to provide a reference for future work to choose the appropri-
ate log representation techniques for their specific data, analysis tasks, and use cases.

5.1.2 � Approach

In this RQ, we evaluate our studied six log representation techniques with seven anom-
aly detection ML models and four datasets. For each log representation technique, we 
combine it with each ML model applied on each dataset.

Combining Log Representations and ML Models  As our goal is to evaluate the effective-
ness of the existing log representation techniques, we compare the performances of the 
models of selected downstream tasks with different inputs of representations generated 
with studied representation techniques.

Message count vector and event template ID-based TF-IDF (TF-IDF ID) are based on 
the count of log occurrences in log sequences and, thus, can only generate a sequence-
level representation for each log sequence. As mentioned before, CNN and LSTM mod-
els require event-level log representation due to their mechanisms. Therefore, CNN and 
LSTM models can not be combined with these two representation techniques. Other rep-
resentation techniques can generate token-level or event-level log representation. More-
over, low-level log representation can be merged with proper aggregation approaches 
to higherlevel representations. Therefore, these representation techniques can match 
anomaly detection models that demand both event-level and sequence-level input. For 
representation techniques that generate token-level representations, we aggregate token-
level representation to form event-level representation for a log message. For models 
requiring sequence-level log representations, we further aggregate the event-level log 
representations into sequence-level with mean aggregation, which is the most common 
practice in previous works.

Using Scott‑Knott Effect Size Difference (SK‑ESD) test to rank log representation tech‑
niques  To understand the relative rank of the different log representation techniques, we 
use the SK-EST test (Tantithamthavorn et  al. 2017, 2018) to rank these techniques into 
statistically distinct groups based on their performances on studied datasets. We conduct 
three separate SK-EST tests: One for traditional models, one for deep learning models and 
a third one for all models.
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Different datasets and different downstream models can significantly impact the 
resulting performance regardless of the chosen log representation techniques. To miti-
gate such impact when ranking the log representation techniques, we first derive a rank 
(i.e., initial rank) of each log representation techniques for each downstream model 
applied on each dataset based on the F1 score (i.e., a log representation technique 
achieving a better F1 score has a higher rank). Each initial rank of a log presentation 
technique for each model and each dataset serves as one observation for the log repre-
sentation technique. As we have seven models and four datasets, each log representa-
tion technique has 28 observations in total in the overall test. Then, we use the SK-EST 
test to derive statistical ranking of the six log representation techniques based on their 
observations (i.e., initial ranks). The level of significance used in the SK-EST test is set 
to the default value of 0.05.

As CNN and LSTM models can not be combined with sequence-level representation 
techniques (i.e., MCV and TF-IDF by message ID), there are some observations in the 
tests (i.e., the MCV and TF-IDF (ID) techniques do not have observations for the CNN 
and LSTM models). Specifically, the statistical tests underlying the SK-EST tests would 
be performed with unequal sizes of samples, which may impact the power of the statistical 
significance (Rusticus and Lovato 2014). Thus, the missing observations may influence the 
ranking results. We mark the affected representation techniques in Table 6.

5.1.3 � Results

Tables 2, 3, 4 and 5 compare the results of applying different log representation techniques 
to seven anomaly detection models on the four studied datasets. Table 6 shows the statisti-
cal rankings of the different log representation techniques from the SK-EST tests.

•	 The choice of log representation techniques has non-negligible influences on the 
performance of the downstream models. As shown in Table  2, nearly all models 
achieve very good performance on the HDFS dataset (with F-scores ranging from 0.938 
to 0.999), the Spirit dataset (from 0.934 to 0.997), and the thunderbird dataset (from 
0.933 to 1.000), while their performance on the BGL dataset is relatively lower (with 
F-scores ranging from 0.692 to 0.967). Nevertheless, we observe that different log rep-
resentation techniques can lead to different performance of the downstream models. On 
the HDFS dataset, using different log representation techniques causes a Fscore differ-
ences up to 0.061 for the different models; on the BGL dataset, the different log repre-
sentation techniques lead to F-score differences up to 0.275 for the different models; on 
the Spirit dataset, the largest discrepancy reach 0.063, which is 0.038 for the Thunder-
bird dataset.

Our SK-EST test results (Table 6) indicate that there exist statistical difference between 
the performance of the different log representation techniques. In the overall and tradi-
tional-model-only ranking, the six log representation techniques are ranked into five dis-
tinct groups. The three classical log representation techniques outperformed their seman-
tic-based counterparts, with MCV achieving the best rank, followed by TF-IDF (ID) and 
TF-IDF (Text) in the second rank. The BERT embedding is ranked only in the third place, 
followed byWord2Vec and FastText. However, the BERT embedding is ranked first in the 
deep-model-only ranking, which shows that the deep-learning-based anomaly detection 
models can generally work better with BERT embedding than traditional models.
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The difference between the performance of different log representation techniques may 
be explained by the different information represented by different representation tech-
niques. For example, one can directly tell the number of occurrences of certain log events 
in a sequence from the message count vector. Sometimes, this may be the most critical 
indicator of an anomaly and lead to a good anomaly detection performance.

•	 There exists no single log representation technique that performs the best across 
all models and datasets. As shown in Table 2, 3, 4 and 5, five out of the six log repre-
sentation techniques (except Word2Vec) achieve the best performance for at least one 
combination of models and datasets. The best-performing log presentation technique 
in the overall ranking, Message Count Vector, achieves the best performance for 12 out 
of the 20 (i.e., 3/5) combinations of models and datasets. However, the technique in the 
last place (i.e., FastText) achieves the best for only one case out of the 28 combinations.

The findings suggest that researchers and practitioners should be cautious with the 
selection of log representation techniques and investigate the mechanism of their models 
and the characteristics of log representation techniques. Based on the knowledge, they can 
choose the representations that suit their follow-up models best.

Table 2   Evaluation of six log representation techniques applied to seven anomaly detection models on 
HDFS dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message 
Count
Vector

TF-IDF  
(ID)

TF-IDF  
(Text)

W2V FastText BERT

Traditional 
models

SVM P
R
F1

0.999
0.917
0.956

0.999
0.999
0.999

0.999
0.979
0.989

0.998
0.998
0.998

0.998
0.998
0.998

0.998
0.998
0.998

0.001
0.082
0.043

Decision
Tree

P
R
F1

1.000
0.998
0.999

1.000
0.998
0.999

0.985
0.999
0.992

0.985
0.998
0.992

0.985
0.998
0.992

0.985
0.998
0.992

0.015
0.001
0.007

Logistic
Regression

P
R
F1

1.000
0.996
0.998

0.999
0.997
0.998

1.000
0.900
0.947

0.999
0.901
0.948

1.000
0.884
0.938

0.999
0.999
0.999

0.001
0.115
0.061

Random
Forest

P
R
F1

0.998
1.000
0.999

0.999
1.000
0.999

0.997
0.999
0.998

0.999
0.985
0.992

0.999
0.985
0.992

0.998
1.000
0.999

0.002
0.015
0.007

Deep-learning 
models

MLP P
R
F1

0.999
0.999
0.999

0.911
1.000
0.953

0.987
0.999
0.993

0.911
0.999
0.953

0.911
1.000
0.954

0.911
0.999
0.953

0.088
0.001
0.046

CNN P
R
F1

- - 0.982
0.922
0.951

0.985
0.923
0.953

0.990
0.922
0.955

0.992
0.921
0.955

0.010
0.002
0.004

LSTM P
R
F1

- - 0.991
0.922
0.955

0.997
0.921
0.958

0.993
0.920
0.955

0.998
0.923
0.959

0.007
0.003
0.004
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Finding 1: The choice of log representation techniques has a non-negligible influence 
on the performance of the downstream models. While there is no single log represen-
tation technique that always performs the best, overall, the simplest message count 
vector representation performs the best across various models and datasets.

•	 Traditional models generally perform better with classical log representation 
techniques, while deep learning models are able to work well with semantic-
based representation. For traditional anomaly detection models, 3 out of 4 mod-
els achieve the best performance with classical representations on the HDFS dataset 
and 4 out of 4 on the BGL, Spirit and Thunderbird datasets. In total, in 15 out of 
the 16 cases (four models and four datasets) of traditional machine learning models, 
classical log representation techniques perform better. The three classical log rep-
resentation techniques are listed in the first two statistically distinct groups, which 
outperformed all their semantic-based counterparts with traditional machine learn-
ing models. However, the results are different for deep anomaly detection models 
that can leverage the sequential information (i.e., CNN and LSTM): 7 out of 8 cases 
favour semantic-based embeddings rather than the classical counterpart (i.e., TF-
IDF (Text)). But for the MLP, which takes sequence-level representation as input, 

Table 3   Evaluation of six log representation techniques applied to seven anomaly detection models on BGL 
dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message 
Count
Vector

TF-IDF 
(ID)

TF-IDF 
(Text)

W2V FastText BERT

Traditional 
models

SVM P
R
F1

0.958
0.840
0.895

0.828
0.654
0.731

0.855
0.728
0.787

0.853
0.716
0.779

0.869
0.654
0.746

0.871
0.667
0.746

0.130
0.186
0.164

Decision
Tree

P
R
F1

0.959
0.921
0.939

0.959
0.919
0.938

0.971
0.963
0.967

0.781
0.701
0.739

0.734
0.654
0.692

0.812
0.701
0.752

0.237
0.309
0.275

Logistic
Regression

P
R
F1

0.947
0.889
0.917

0.882
0.741
0.805

0.868
0.728
0.792

0.871
0.753
0.808

0.844
0.667
0.745

0.886
0.765
0.821

0.103
0.222
0.172

Random
Forest

P
R
F1

0.830
0.963
0.891

0.810
0.951
0.875

0.872
0.946
0.907

0.667
0.783
0.720

0.681
0.808
0.738

0.694
0.806
0.745

0.205
0.180
0.170

Deep-learning 
models

MLP P
R
F1

0.958
0.840
0.895

0.951
0.951
0.951

0.927
0.938
0.933

0.895
0.840
0.866

0.868
0.815
0.841

0.910
0.877
0.893

0.090
0.136
0.119

CNN P
R
F1

- - 0.900
1.000
0.947

0.868
0.975
0.919

0.857
0.963
0.907

0.939
0.951
0.945

0.082
0.049
0.040

LSTM P
R
F1

- - 0.866
0.877
0.871

0.755
0.988
0.856

0.822
0.914
0.865

0.871
1.000
0.931

0.116
0.123
0.075
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favours (in 3 out of 4 cases) quantitative count-based representations according to 
our experimental results.

The performance difference may be caused by the models’ discrepancy in the ability 
to learn the complex and abstract representation of the log data. The classical representa-
tion techniques are based on quantitative or sequential statistics to occurrences of log tem-
plates or tokens, whose patterns are relatively simpler than that of semantic embeddings. 
The semantic-based representations carry higher layer information, which may be utilized 
by more advanced deep models. The authors of a recent study (Le and Zhang 2021) uti-
lized a transformer-based model and demonstrated the superiority of semantic embedding 
over traditional representation. Their comparative experiment indicated that their model 
performed significantly better with BERT embedding than with the indexes of the log tem-
plate on some datasets, which confirms our observation.

Moreover, event-level log representations are fed directly to the CNN and the LSTM 
models without the feature aggregation process that transforms event-level features 
to sequence-level features, which enable them to leverage the sequential information 
within a log session. This extra information may further boost the performance of these 
two models. Another explanation is that the dimensions of traditional representation 

Table 4   Evaluation of six log representation techniques applied to seven anomaly detection models on 
Spirit dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message 
Count
Vector

TF-IDF  
(ID)

TF-IDF 
(Text)

W2V FastText BERT

Traditional 
models

SVM P
R
F1

0.984
0.968
0.976

0.978
0.963
0.970

0.984
0.963
0.973

0.952
0.963
0.957

0.973
0.952
0.962

0.973
0.968
0.971

0.011
0.016
0.019

Decision
Tree

P
R
F1

1.000
0.995
0.997

1.000
0.995
0.997

1.000
0.995
0.997

0.952
0.947
0.949

0.962
0.907
0.934

0.942
0.952
0.947

0.058
0.088
0.063

Logistic
Regression

P
R
F1

0.989
0.968
0.978

0.989
0.947
0.967

0.994
0.925
0.925

0.989
0.947
0.967

0.988
0.914
0.950

0.984
0.957
0.970

0.010
0.054
0.028

Random
Forest

P
R
F1

0.984
0.984
0.984

0.979
0.984
0.981

0.982
0.994
0.988

0.941
0.954
0.947

0.945
0.957
0.951

0.939
0.958
0.948

0.045
0.040
0.041

Deep-learning 
models

MLP P
R
F1

0.984
0.957
0.970

0.989
0.952
0.970

0.989
0.957
0.973

0.978
0.963
0.970

0.968
0.968
0.968

0.978
0.973
0.976

0.021
0.021
0.008

CNN P
R
F1

- - 0.944
1.000
0.971

0.959
1.000
0.979

0.935
1.000
0.966

0.974
1.000
0.987

0.039
0.000
0.021

LSTM P
R
F1

- - 0.940
1.000
0.969

0.943
0.979
0.961

0.929
0.984
0.956

0.944
1.000
0.971

0.015
0.021
0.015
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techniques are usually determined by the vocabulary size or the number of log tem-
plates, which are not enormous in some datasets. Traditional models may perform well 
enough on the lowdimension data. However, deep learning models have more model 
parameters, which enable the extraction and representation of higher-dimension data, 
and therefore they can take advantage of the semantic information.

Table 5   Evaluation of six log representation techniques applied to seven anomaly detection models on 
Thunderbird dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message 
Count
Vector

TF-IDF  
(ID)

TF-IDF 
(Text)

W2V FastText BERT

Traditional 
models

SVM P
R
F1

0.999
1.000
0.999

0.996
0.999
0.997

0.997
1.000
0.998

0.996
0.992
0.993

0.992
0.977
0.985

0.995
0.983
0.989

0.007
0.023
0.014

Decision
Tree

P
R
F1

1.000
1.000
1.000

1.000
1.000
1.000

1.000
1.000
1.000

0.985
0.972
0.979

0.980
0.952
0.966

0.975
0.963
0.969

0.025
0.048
0.034

Logistic
Regression

P
R
F1

0.999
0.999
0.999

0.998
0.981
0.989

0.997
0.987
0.992

0.996
0.980
0.988

0.996
0.934
0.964

0.995
0.977
0.986

0.004
0.065
0.035

Random
Forest

P
R
F1

0.997
0.999
0.998

0.999
0.999
0.999

0.998
0.999
0.998

0.972
0.993
0.982

0.958
0.987
0.972

0.966
0.994
0.980

0.041
0.016
0.027

Deep-learning 
models

MLP P
R
F1

0.998
0.999
0.999

0.995
0.997
0.996

0.995
0.998
0.997

0.995
0.992
0.993

0.972
0.981
0.977

0.989
0.992
0.991

0.026
0.018
0.022

CNN P
R
F1

- - 0.977
1.000
0.989

0.962
1.000
0.980

0.955
1.000
0.977

0.986
1.000
0.993

0.031
0.000
0.016

LSTM P
R
F1

- - 0.878
1.000
0.935

0.910
1.000
0.953

0.875
1.000
0.933

0.948
1.000
0.973

0.073
0.000
0.038

Table 6   Statistical ranking of the different log representation techniques from the SK-EST test

* The ranking of indicated techniques may be influenced by missing observations

Model Statistically Distinct Groups

1 2 3 4 5

Traditional only MCV TF-IDF (Text)
TF-IDF (ID)

BERT Word2Vec FastText

Deep only MCV * 
BERT

TF-IDF (Text) TF-IDF (ID) *  Word2Vec FastText

Overall MCV *  TF-IDF (ID) * 
TF-IDF (Text)

BERT Word2Vec FastText
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•	 Among the classical log representation techniques, the simplest Message Count Vec-
tor technique achieves the best performance; among the semantic-based log repre-
sentation techniques, the contextual embedding technique BERT achieves the best 
performance. The Message Count Vector technique is the simplest approach and is 
widely used in automated log analysis tasks (He et al. 2016b). Our results show that 
it achieves the best performance for 12 out of the 20 cases of the models (five mod-
els applied to four datasets) that do not leverage the sequential information of log 
messages. This is also confirmed by the ranking generated by the SK-EST test: In the 
traditional-only ranking, MCV is ranked in the first place, followed by TF-IDF-based 
techniques. The BERT is a contextual embedding. It achieves the best performance 
for 7 out of the 8 cases of the models that can leverage sequential information of log 
(two models applied to four datasets). In the deep-only ranking, BERT is ranked in 
the first group, which is superior to the other two semantic-based techniques by a 
large margin. Unlike static embedding, BERT, as a contextual embedding technique, 
generates representations based on the surrounding context and, thus, is more able to 
capture the semantic information of a log message. Therefore, representations gener-
ated with BERT can achieve good performance with most anomaly detection mod-
els.

Therefore, future work can leverage such general rules to choose the appropriate log 
representation techniques for their models. For traditional models that have limited fea-
ture extraction ability, classical representation techniques such as Message Count Vector 
could be considered. For more sophisticated models with more parameters, semantic-based 
representation techniques could be considered. And among the semantic-based representa-
tions, contextual embeddings may work better than static embeddings.

Impact of Different Grouping Settings  Impact of Different Grouping Settings. Different 
log sequence lengths resulting from different grouping settings could impact the repre-
sentations and the performance of models, which was shown in experiments from previ-
ous works (e.g., RQ2 in Le and Zhang (2022)). When grouping the studied datasets, we 
adopted different grouping settings, hoping that our findings could be tenable across var-
ying settings. In particular, we follow prior works using the same datasets to config the 
group settings. To further examine the impacts that variations of the grouping process may 
have, we conduct an additional evaluation, in which we group the Thunderbird dataset with 

Fig. 3   Results of logistic 
regression model with different 
grouping settings on Thunderbird 
dataset
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different fixed window settings (i.e., 20 logs, 100 logs, 200 logs, and 0.5-h logs), which are 
in accordance with the settings in Le and Zhang (2022). Figure 3 shows the results.

Based on the obtained results, it is evident that performance variations can occur due 
to different grouping configurations. In general, the relative ranking among the log repre-
sentation techniques maintains the same for the different lengths of log sequences. There 
may be multiple factors contributing to these performance variations, making it challeng-
ing to accurately evaluate the effectiveness of log representation techniques across vari-
ous grouping settings. For example, discrepancies in dataset size can impact performance 
variations since the composition and size of the training and test sets are influenced by 
different grouping configurations. Furthermore, there is no best-performing setting for all 
the studied techniques according to the results. As a result, we believe that the lengths of 
log sequences intricately influence both log representations and models through complex 
mechanisms. Future evaluations should focus on investigating the effects of grouping set-
tings on log representation techniques.

Finding 2: Traditional anomaly detection models perform well on classical log repre-
sentations. However, deep models can achieve better performance with semantic-based 
representations by their stronger feature extraction and representation ability; Among 
the classical log representation techniques, Message Count Vector achieves the best per-
formance. Context embedding (BERT) generally performs better among the semantic-
based log representation techniques.

5.2 � RQ2. How does log parsing influence the effectiveness of log representations 
in automated log analysis?

5.2.1 � Motivation

Log parsing process transforms semi-structured raw logs into structured data by separat-
ing variables from log messages and retaining the log templates. Log parsing is a common 
pre-processing step before the log representation step. Although many log parsers with dif-
ferent mechanisms have been developed and achieved high performance and high accu-
racy (Zhu et al. 2019), the errors introduced by the parsing process may sometimes under-
mine the performances of log analysis according to the empirical study of Le et al. (Le and 
Zhang 2021). Essential words may be removed from a parsing error which results in infor-
mation loss. As log parsing may be error-prone and cause information loss, some research-
ers have explored some log analysis frameworks (Le and Zhang 2021) that take row logs 
as inputs. It is not clear how log parsing and log representation together impact the perfor-
mance of downstream tasks. Thus, in this RQ, we investigate the potential impacts that log 
parsing, when used with different log representation techniques, may have on the perfor-
mance of downstream models.

5.2.2 � Approach

In this RQ, we consider the log representation techniques that are compatible with both 
parsed and unparsed log data. Then we compare the performance of the downstream mod-
els that take the representations built from parserd and unparsed log data.
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Selection of Log Representation Techniques  From the studied log representation tech-
niques, we select Word2Vec and FastText to answer this research question. The representa-
tion generated by these two techniques can remain the same regardless of the configuration 
of log parsing, which is not the case for representation like Log Template Text-based TF-
IDF (TF-IDF Text), whose dimension may vary according to the vocabulary of the corpus 
in the dataset. As the dimension can also impact on the performance of models, we choose 
techniques that can generate fixed dimension representations for both parsed and unparsed 
log data. Also, the high dimension and enormous model size of pre-trained BERT prohibits 
us to generate features for unparsed logs in our server.

Comparison of using parsed and unparsed log data to build representations  We com-
pare and analyze the performances of the studied anomaly detection models with the fea-
tures generated by these two representation techniques with both parsed and unparsed logs. 
Moreover, we also generate the visualization of embeddings with a dimension reduction 
algorithm (t-SNE (Van der Maaten and Hinton 2008)) to get some intuitions from the data 
to better explain the varied results.

5.2.3 � Results

Figure 4 shows the comparison of performances of studied models with FastText represen-
tations generated with original and parsed log messages.

•	 In general, log parsing improves the quality of the generated log representations and 
thereby the performance of the downstream models. For the HDFS dataset, the two 
log representation techniques,Word2Vec and FastText, achieve an average performance 
(F1-score) improvements of 0.010 and 0.236 across the seven models, respectively. 
For the BGL dataset, the average improvements are 0.017 and 0.034. For Spirit, the 
improvements are 0.010 and 0.002, which are 0.012 and 0.016 for Thunderbird.

Fig. 4   Comparison of performances of the studied anomaly detection models using the Word2Vec and Fast-
Text representations that are generated from parsed and unparsed logs
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In particular, for the HDFS dataset with the FastText representation, parsing leads to a 
very large difference in the performance of five out of the seven studied models. We ran-
domly sample the FastText representations of 200 positive and negative samples from the 
HDFS dataset and use t-SNE (Van der Maaten and Hinton 2008) to visualize them. The 
visualization in Fig. 5 shows that representations for parsed logs are more compact than 
those of unparsed logs, which means the embeddings generated with the parsed logs are 
more distinguishable than those generated from the original log messages. However, deep 
learning models may work better with unparsed log data in some cases. For example, on 
HDFS and Thunderbird datasets, CNN performs better with unparsed logs by a small mar-
gin. The reason behind this may be that the parsing errors induced by the log parser can 
undermine the performance. The impact of log parsing errors was also examined in Le and 
Zhang (2021)’s work.

The characteristic of the representation technique can explain the general inferior per-
formances on unparsed logs: There is no proper mechanism to represent numerical values 
or special tokens in logs for these representation techniques. The representations generated 
for these tokens would be a noise in feature representation if they are not treated as OOVs.

•	 Depending on the datasets, some models (e.g., CNN and LSTM) are less sensitive 
to whether the log data is parsed or not. CNN and LSTM perform similarly with 
the two different inputs may be a little counterintuitive. One possible explanation is 
that these two deep sequential models have strong feature extraction and representation 
ability and can offset the impacts of the noise. At the same time, unparsed logs will not 
introduce noises caused by the parsing errors.

Although there exist log analysis frameworks that take unparsed logs as input, to our 
best knowledge, they adopt preprocessing process to manually remove parameters or other 
fields from raw logs (Le and Zhang 2021), which can be regarded as a’vanilla’ parsing 
process. If certain fields in logs, such as numerical values, special tokens, and error codes, 
are not adequately preprocessed, modelled, and utilized, it may have an adverse effect on 
the representation of the log. This finding implies that careful preprocessing and model-
ling of these fields are crucial for optimal log representation. Log parsing is an effective 
way to remove these unrecognizable texts for pre-trained language models and thus reduce 
the noise in representations. Future researchers and practitioners should pay attention to 

Fig. 5   Visualization of representations generated with FastText using t-SNE. 200 positive (red) and nega-
tive (green) samples are randomly sampled from the HDFS dataset
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the preprocessing process before adopting log representation techniques, even if they aban-
don the log parsing process when designing a log analysis framework. Additionally, to 
improve the overall performance, future researchers and practitioners may also want to take 
into account the modelling of certain fields (e.g., component name, CPU usage, the time 
elapsed for a certain process, etc.) that cannot be embedded by language models but are 
critical to their downstream tasks (Du et al. 2017).

Impact of Refining the Parsing Results  As mentioned in 4.3.2, we utilized additional 
regular expressions to improve the parsing results. We then did a sensitivity test to see its 
potential impact on the performance.We further evaluated our previously studied represen-
tation techniques using the Thunderbird dataset parsed by the Drain parser with regular 
expressions and trained logistic regression models. The results are shown in Table 7.

Although we can tell that the parsing results are refined by the observation that repeti-
tive templates are decreased, we only observed minor accuracy gains for some representa-
tions after passing the regular expressions from the experiment. In contrast to the previous 
findings, which demonstrated that parsed and unparsed logs could lead to significant dis-
crepancies, the refinement of parsing outcomes did not have a substantial impact on perfor-
mance. This could be attributed to the ability of machine learning models to learn how to 
exclude unimportant features or irrelevant noise.

However, a large number of error templates may greatly increase the dimension of some 
representation techniques (e.g., for MCV, the dimension is equal to the number of resulting 
templates.). A large number of error templates increases the learning burden when we train 
the follow-up models. Sometimes it may even make the model training unprocurable.

Impact of Using Different Log Parsers  Recent studies (Dai et al. 2020; Khan et al. 2022; 
Liu et  al. 2022) adopt new metrics to evaluate the existing log parsers. Apart from just 
reporting the Group Accuracy of the parsing results, these works report other metrics (e.g., 
Parsing Accuracy, Edit Distance and etc.), which may give a more comprehensive evalu-
ation of a parser. While it is true that the Drain parser achieves a high group accuracy, it 
presents inferior results in some metrics (i.e., Parsing Accuracy) in some recent works.

A higher Group Accuracy may benefit the representation techniques that rely on 
log templates (e.g., MCV). In contrast, a high Message-Level accuracy may contrib-
ute to the quality of representations based on the token-level census or embedding 
generation (e.g., TF-IDF (Text)). Therefore, we conducted another sensitivity test to 
reduce our evaluation’s potential bias. In this test, we adopt the LogPPT parser (Le and 
Zhang 2023), which exhibits superior results over different metrics, including Parsing 

Table 7   Performance of logistic regression model on Thunderbird dataset parsed without extra regular 
expressions. The values under the F1 Scores indicate differences compared with corresponding results in 
RQ1

Technique Message 
Count
Vector

TF-IDF  
(ID)

TF-IDF  
(Text)

W2V FastText BERT

F1 Score 0.999 
( =)

0.989 
( =)

0.991 
(0.001↓)

0.987 
(0.001↓)

0.964 
( =)

0.983 
(0.003↓)
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Accuracy, to further evaluate the quality of the studied representation techniques using 
the Thunderbird dataset and trained logistic regression models. The results are shown 
in Table 8.

From the results of this sensitive test, it is evident that there exist slight variations 
in performance when parsing the dataset using a different parser. The exploration of 
correlations or patterns between the performances of log parsers and the quality of log 
representation techniques is yet to be conducted. This presents an avenue for future 
evaluations in the realm of log parsers, representation techniques and downstream 
models.

Finding 3: In general, log parsing improves the quality of the generated log rep-
resentations and, thereby, the performance of the anomaly detection models. It 
reduces the noise in representations and thus alleviates models’ learning burden 
by removing dynamic fields in logs. Proper preprocessing and modelling of these 
dynamic fields may be crucial for optimal log representation.

5.3 � RQ3. How do representation aggregation methods influence the effectiveness 
of log representation in automated log analysis?

5.3.1 � Motivation

For representation techniques that generate word embeddings(e.g., Word2Vec, Fast-
Text) for tokens in log events, we need to merge these token-level representations to 
event-level ones. The related works usually used mean aggregation to form the repre-
sentation for log events (Meng et al. 2019), in which information may be lost, as some 
keywords that carry essential semantic information and severity in logs may be diluted 
by averaging. Therefore, we aim to compare different aggregation methods and evalu-
ate the impacts they have on the quality of log representation.

In addition, for sequential models that take a fixed length of log messages as input, 
the event-level representation will be implicitly aggregated by the models to gener-
ate analytical results according to its task. So, we need to partition the session with 
a fixed-length window and a pre-defined step size. This implicit aggregation may 
also influence the performances of downstream models. Therefore, we investigate the 
impact that different configurations of session partition may have on the performance 
of downstream tasks. Although results generated with window-based inputs will be 
merged to generate the final predictions for log sessions, we want to quantify the 
impacts of different configurations of aggregation on the downstream tasks.

Table 8   Performance of logistic regression model on Thunderbird dataset parsed by LogPPT parser. The 
values under the F1 Scores indicate differences compared with corresponding results in RQ1

Technique Message 
Count
Vector

TF-IDF  
(ID)

TF-IDF 
(Text)

W2V FastText BERT

F1 Score 0.999 
( =)

0.996 
(0.007 ↑)

0.992 
( =)

0.981 
(0.007↓)

0.941 
(0.023 ↓)

0.985 
(0.001↓)
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5.3.2 � Approach

In this research question, we investigate the impact of feature aggregation in log repre-
sentation from two perspectives: 1) method of aggregating token-level representations, 
and 2) aggregation window size of sequential models.

Method of aggregating token-level representations. For the first perspective, we 
select the two most common aggregation practices, the mean aggregation and the TF-
IDF aggregation (Chen et al. 2021). For mean average aggregation, we aggregate the 
token-level representations by averaging the feature vectors by each dimension. While 
for TF-IDF aggregation, we calculate the TF-IDF values for each token in log templates 
and calculate the weighted average of the token-level representation to form the event-
level representation for log events. Moreover, we use the mean average to aggregate 
them into sequence-level representation. We select Word2Vec and FastText as they gen-
erate token-level representations.

Window size for feature aggregation in sequential models  For the second perspective, 
we study the implicit aggregation process within the sequential models. From Table  1, 
we can find the significant difference in the average size of sessions in the four studied 
datasets. So, we conducted some preliminary experiments to broadly define the suitable 
range of the window size and further pre-defined some specific window sizes accordingly 
to investigate the impacts of implicit aggregation of studied sequential models. The chosen 
window size range for the HDFS and the Thunderbird is between 10 to 50, while for the 
BGL and the Spirit, whose sessions are usually longer, the range is 20 to 80.We adopt all 
studied techniques that can generate event-level representations (i.e., except the Message 
Count Vector and TF-IDF (ID) which can only generate sequence-level representations).

Fig. 6   Comparison of performances of FastText Log representation with TF-IDF and Mean aggregation 
with LSTM anomaly detection model
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5.3.3 � Results

•	 Different approaches of aggregating representations can cause nonnegligible dif-
ference in the performance of the downstream models. From Fig. 6, we can tell that 
there exist some performance gaps between these two aggregation methods on some 
combinations of the dataset, model and log representation. For example, the logistic 
regression model may favour TF-IDF aggregation with both representation techniques 
on all studied datasets: TF-IDF aggregation outperformed the mean aggregation in all 
eight cases. However, this conclusion is invalid on other representation techniques and 
follow-up models. This finding indicates that the aggregation approaches can have non-
negligible impacts on the effectiveness of log representation and thus influence the per-
formance of log analysis models.

•	 However, there is no clear pattern on which aggregation method performs better, 
as the impacts to the performance of aggregation method vary according to the 
combination of dataset, model, and representation techniques. From the results, we 
can not find a clue to tell which aggregation method works better: For Word2Vec rep-
resentation on the HDFS dataset, 3 out of 7 models perform significantly better with 
TF-IDF aggregation. However, this is not the case for other dataset and representation 
combinations. Different combinations of the dataset, model and representation favour 
different aggregation methods. Moreover, the difference in performance also vary 
among the combinations. Some combinations may be more sensitive to the utilization 
of aggregation techniques.

•	 Window size for sequential models can significantly affect the performances of 
downstream models. Figure 7 shows the F1 scores of CNN and LSTM models with 
different representations varying according to the input window size on four studied 
datasets. From the graph 7, we can see the fluctuation of the F1 score with the varia-
tion in window size. On the HDFS dataset, the biggest difference in the F1 score for the 
CNN model is 0.074, achieved by BERT, which is 0.210, achieved by FastText for the 
LSTM model. On the BGL dataset, the biggest difference in F1 score is 0.073, achieved 

Fig. 7   The impacts of different window sizes for feature aggregation

Page 29 of 39    137Empirical Software Engineering (2023) 28:137



1 3

by FastText and 0.047, achieved by Word2Vec. On the Spirit dataset, the biggest dif-
ference in F1 score for the CNN model is 0.037, achieved by FastText, and 0.04 for 
the LSTM model, achieved by TF-IDF. And on the Thunderbird dataset, the biggest 
gaps for CNN and LSTM are 0.068 and 0.079, respectively, both achieved by FastText. 
The results show that the window size for feature aggregation can pose nonnegligible 
impacts on the performance of anomaly detection task.

•	 The differences in performance may be caused by the intrinsic features of data-
sets. The line charts show an improvement in performance when window size increases 
for the HDFS on almost all the studied log representation techniques with two models. 
We do not expand the range’s upper bound for HDFS as the F1 score almost reaches 
1, and the window size of 50 is larger than the length of most sessions in the dataset. 
For the BGL dataset, the peak is generally around 50, and the performances tend to 
decrease thereafter. For Spirit and Thunderbird, we also observed growth in perfor-
mance when increasing the window size, while the variations are more stable compared 
with the other two datasets.

•	 For the same dataset, window size affects the different representation techniques 
in a similar way. The variation trends for different combinations of log representa-
tions and models are generally consistent on the same dataset, with some outliers (e.g., 
BERT with CNN when window size is 40, Word2Vec with LSTM when window size is 
20). Therefore, we believe that the intrinsic features of the dataset cause the differences 
in performance.

More specifically, the characteristics of anomalies in a log sequence vary according to 
datasets. The lengths of abnormal sequences may have different ranges in different data-
sets. The sliding window setting can influence the distribution of anomalies in models’ 
input windows, and some continuous anomaly log sequences may be truncated into multi-
ple input windows in some input windows. Therefore, the sliding window setting may have 
a significant impact on the performance. Similarly to this, the aforementioned grouping 
methods, which group a log sequence into sessions, can also have impacts on the perfor-
mance of different anomaly detection models, which were found by recent work (Le and 
Zhang 2022). In their work, their finding suggests that the performances of models suffer 
when dealing with shorter log sequences.

The impacts of sliding window settings may vary mainly depending on the datasets. It 
is a great challenge for the developer to determine the most suitable sliding window set-
ting for their cases, as it may demand onerous experiments. Besides, we notice that recent 
studies introduce Graph Neural Networks (GNN) (Wan et al. 2021; Xie et al. 2022) to log 
representation, and the experiments from these works show that these models are robust 
against the variation of window size. Future researchers may utilize more stable log rep-
resentation techniques, which are less sensitive to the variation of feature aggregation set-
tings, to ensure more stable performances of their models.

Finding 4: Different aggregation configurations can cause non-negligible differences 
in the performance of the follow-up models, while there is no clear pattern on which 
aggregation settings may generally perform better. The different impact of the aggrega-
tion configurations on the downstream model performance may be caused by the intrin-
sic features of datasets. In particular, for the same dataset, the window size affects the 
different representation techniques in a similar way. Future researchers and practitioners 
are suggested to explore different feature aggregation settings by considering the charac-
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teristics of the datasets or utilizing log representation techniques that are more stable to 
different aggregation settings.

6 � Discussions

In this section, based on our results for answering our research questions, we discuss the 
implications of our findings. Additionally, we summarize the key factors to consider when 
selecting the most appropriate log representation techniques for log-based anomaly detec-
tion approaches or other automated log analysis tasks. Our recommendations and discov-
eries will be helpful to researchers and practitioners in selecting the optimal log repre-
sentation techniques and achieving favourable outcomes in their automated log analysis 
frameworks.

6.1 � Implications

•	 Automated log analysis approaches should pay attention to the choice of log rep-
resentation techniques as they have a non-negligible impact on the follow-up mod-
els. Existing log-based anomaly detection approaches usually consider only a single log 
representation technique. For example, in the work that adopts CNN to detect anoma-
lies in log sequences (Lu et al. 2018), only log keys are used to learn the embeddings 
for log events, and information from log parameters and messages is lost in this pro-
cess. Our results suggest that the performance of these approaches may be improved 
by considering other ways of log representations. Also, new representation approaches 
may be developed according to the specific tasks and downstream models. In particular, 
classic machine learning models may favour representations generated by traditional 
techniques. In contrast, deep-learning-based downstream models can better utilize 
semantic embedding to achieve better results. Also, experiments show that contextual 
embedding performs the best among the pre-trained language models. Our findings 
can provide guidance for future work to choose and design the appropriate log repre-
sentation techniques for their specific tasks. For example, researchers should consider 
the capability of feature extraction and representation of the models they adopt when 
choosing the log representation techniques. Models of higher complexity (with more 
parameters) are more capable of dealing with higher dimensional representations.

•	 Log parsing or other preprocessing are recommended before log representation 
process as they usually improve the performance of the downstream log analysis 
tasks. Most of the prior works on log-based automated log analysis adopt a log parser 
to transform raw log to structured data. Recent work (Le and Zhang 2021) explores 
omitting the parsing process and extracting and representing information directly from 
the raw log data. However, they usually employ some preprocessing steps to remove 
unnecessary fields in log data. We find that the log parsing process generally positively 
impacts automated log analysis, although sometimes it may be timeconsuming and 
erroneous. Also, log parsing enables template-based log representation techniques and 
removes dynamic fields that will hinder the other semantic-based techniques. Thus, we 
suggest that researchers should carefully consider whether to employ the log parsing 
process in their workflow. As log parsers may sometimes be error-prone and consume 
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additional computational resources, researchers can consider substituting them with 
lightweight preprocessing processes.

•	 Log analysis workflows should consider experimenting with different configura-
tions of feature aggregation. When aggregating low-level log representations to high-
level ones, prior works (e.g., (Chen et al. 2021)) usually adopt a single strategy without 
experimenting with other configurations. However, according to our experiments, the 
feature aggregation process is essential for log representation. Feature aggregation con-
figurations can significantly impact downstream models’ performances. However, the 
impacts are closely related to the characteristics of the datasets. Prior works stand a 
good chance of achieving better performances when employing different feature aggre-
gation configurations. Therefore, we advise researchers to consider the intrinsic features 
of the studied log data and employ different configurations when designing their auto-
mated log analysis workflow.

6.1.1 � Key factors for selecting log representation techniques

To provide insights for researchers and practitioners in selecting appropriate log represen-
tation techniques, we summarize below the key factors that need to be considered based on 
our experiments and findings. We recommend researchers and practitioners consider these 
factors in their log-based anomaly detection and potentially other automated log analysis 
tasks to achieve optimal performance in such tasks.

•	 Quality of representation The quality of log representations is a crucial factor that 
significantly affects the performance of downstream models. In our study, we found that 
different models can benefit from different log representations. Across various models 
and datasets, we determined that the simplest message count vector representation can 
perform well in most cases. In addition, traditional anomaly detection models gener-
ally performed well on classical log representations, while deep models achieved better 
performance with semantic-based representations due to their stronger feature extrac-
tion and representation ability. Among the classical log representation techniques, the 
Message Count Vector approach achieved the best performance, while Context embed-
ding (BERT) generally performed better among the semanticbased log representation 
techniques. Therefore, selecting high-quality log representation techniques is essential 
for achieving optimal downstream model performance.

•	 Dimension of representation One of the key factors to consider when selecting rep-
resentation techniques is the dimension of the resulting representation. For some rep-
resentation techniques, their resulting dimensions are data-invariant, which means the 
dimension will remain the same when they are applied to different log data. Semantic-
based techniques (e.g., BERT) and graph-based techniques that utilize a neural network 
structure to generate embeddings for log data can usually provide fix-length outputs. 
By contrast, classical techniques (e.g., message count vector) usually rely on a vocabu-
lary of tokens or log templates and thus, the dimensions are subjective to the data. The 
advantages of techniques with fixed output dimensions are obvious: First, they can bet-
ter serve the scenarios when data shifting (e.g., vocabulary changes) exists in system 
logs caused by software evolution. When new log templates appear, these techniques 
are able to encode new templates while maintaining the feature property. Second, fixed 
output dimensions may enable more stable performances over different datasets on 
the same model. When working with datasets with a larger number of log templates, 
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the anomaly detection models may suffer from a performance loss due to their lim-
ited model capacity. Higher dimension input usually demands a larger model with 
more parameters. Classical techniques may generate representations of a wide range of 
dimensions over different datasets. For example, MCV generates vectors of 46 dimen-
sions on the HDFS dataset, while for the Thunderbird, the dimension is 1,488 in our 
experiments. Higher dimensions may lead to higher computational costs in the training 
and prediction stages of follow-up downstream models.

•	 Need for log parsing As we discussed previously in RQ2, the log parsing process 
can generally remove noises caused by unprocessed tokens in log data, while errors 
induced by log parsers may cause performance loss (Le and Zhang 2022). Besides, the 
log parsing process can be time-consuming and require significant manual and compu-
tational resources. While log parsing is not essential for semantic-based representation 
techniques since they typically do not require log template information to operate, it 
may still be included as a preprocessing step for the logs. In this situation, a complete 
parsing process may be substituted by a lightweight preprocess, in which tokens that 
can not be processed by vectorizers are removed, when getting log templates is not 
mandatory for the representation technique.

•	 Computational cost for representation construction Another important consid-
eration is the computational cost. Besides the log parsing process, log representation 
techniques require computational resources (time and space) to convert raw logs, log 
templates, or log template IDs to numeric vectors. As the mechanism varies across dif-
ferent techniques, the differences in computational cost are significant. For classical 
techniques, much memory may be used to construct dictionaries and vectorize tokens 
varying with datasets. For semantic-based techniques, although programmers can uti-
lize the off-theshelf pre-trained models to escape the computational consumption for 
training the language models, some techniques still require heavy computations to 
acquire embeddings. For example, contextual embedding techniques require more com-
putational resources to construct representations than static embedding techniques. Pre-
trained BERT models process input tokens through transformer blocks, which involve 
significant computation and sometimes require specialized hardware (e.g., GPUs, 
TPUs), particularly for lengthy texts. By comparison, Word2Vec uses a shallow neural 
network, which is computationally efficient, to generate word embeddings. Taking this 
factor into account is important when designing anomaly detection workflows that are 
targeted for online or real-time application scenarios.

•	 Granularity It is mandatory to ensure that the level of log representation is aligned 
with the specific anomaly detection model being used. This is because different mod-
els require varying levels of granularity and types of information from the log data to 
perform according to their varying mechanisms. Semantic-based representation tech-
niques (e.g., Word2Vec) can usually generate token-level representations, which can 
be aggregated into higher-level ones, while some classical techniques can only work 
on higher-level representations (e.g., MCV can only generate sequence-level represen-
tation). Therefore, it is crucial to carefully consider the requirements of the anomaly 
detection model being employed and choose the log representation accordingly.

•	 Explainability Finally, explainability is another factor to consider when selecting a log 
representation technique. Usually, classical log representation techniques (e.g., MCV), 
which represent the quantitative characteristics of log sequences, have better explaina-
bility compared with their semantic-based counterparts, which are learning-based. With 
a good explainability of log representation techniques, researchers can better under-
stand the prediction given by the follow-up models and, therefore, are able to trace the 
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roots when performance is not satisfactory. Poor explainability of log representation 
techniques will make the decision-making process a black box, in which the decision-
making process becomes agnostic. Future researchers should consider this factor when 
designing a trustworthy automated log analysis system.

In conclusion, selecting an appropriate log representation technique requires careful 
consideration of several factors, including the quality of representation, dimension of rep-
resentation, need for log parsing, computational cost for representation construction, gran-
ularity, and explainability.

7 � Threat to validity

We have identified the following threats to the validity of our findings: External validity.
We carried out this research only based on the log anomaly detection task with the hope 
that our experimental results and findings can serve as a reference for other automated 
log analysis tasks. The conclusions may not apply to other downstream tasks, as different 
downstream tasks or models may have different intrinsic characteristics and favour differ-
ent configurations or features of log representation. However, anomaly detection is one of 
the most studied downstream tasks in the domain of automated log analysis (Chen et al. 
2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 2021; Lu et al. 2018; 
Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al. 2009; Zhang et al. 
2019), demonstrating its importance and popularity. Due to the fact that many automated 
log analysis tasks share similar pipelines that process log data, our work may also inspire 
and support the designs of workflows of other tasks, despite the fact that only log-based 
anomaly detection is studied in our work.

As the mechanism of anomaly detection approaches differs greatly, we limit our research 
to the supervised log-based anomaly detection models to ensure a fair comparison among 
studied representations. Therefore, our findings may not apply to unsupervised methods. 
Future work that examines the impact of log representations on unsupervised learning 
tasks can complement our results.

Recently, new approaches (e.g., Transformer-based (Le and Zhang 2021; Nedelkoski 
et al. 2020), graph-based approaches (Wan et al. 2021; Xie et al. 2022)) have been applied 
to log-based anomaly detection. However, we did not evaluate them in this work, as the 
mechanisms of these approaches differ greatly, which makes it hard for us to fit them into 
our research questions. Future works may further examine these new approaches and their 
susceptibility to log representation techniques. To compensate for this, we discussed the 
most representative transformer-based approaches, and related the findings from these 
works with our experimental results and findings.

Construct Validity  We followed some existing works in the experiment to use pre-trained 
models trained with natural language models. The experimental results may not reflect the 
true capability of these log representation techniques, as the effectiveness of generated log 
representations may suffer greatly from OOV issues or incorrect semantics caused by the 
different characteristics between log data and natural language.
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Internal Validity  Our configurations for dataset partition may not be optimal and may 
influence the accuracy of the evaluation. According to our survey, different log anomaly 
detection works adopt different grouping configurations for the studied public datasets. We 
referred to previous works and chose the most common grouping configurations to enable 
a better comparison. In addition, we employed different grouping configurations for the 
four studied datasets with the hope that our results and finding can be invariant to different 
grouping settings of datasets. Further study may be carried out to evaluate the impacts of 
the data grouping on the log representations. The hyperparameters for the machine learn-
ing models in our studies might not be fully optimized. Instead of aiming for the best per-
formance for each particular model, our main goal was to examine how well alternative 
log representation strategies performed across various downstream models. As a result, we 
made sure that each representation technique was applied to the same dataset with identical 
parameter settings. Besides, our experimental results are generally consistent with those of 
prior studies that employed similar datasets, representations, and models. Additionally, we 
have included our implementations in our replication package, making it possible to repro-
duce our results. These factors help to mitigate the potential impact of using suboptimal 
hyperparameters in our study.Instead of directly assessing the quality of representations, 
we rely on the performance of downstream models as an indirect measure. However, the 
variables involved in these downstream tasks may affect the internal validity and introduce 
potential biases. To mitigate the potential bias, we consider multiple datasets and down-
stream models in our experiments.In addition, while most models performed well on the 
four datasets we examined, we found that the choice of log representation technique could 
affect downstream model performance. We did observe differences in F-scores when using 
different log representation techniques. These variations were statistically significant as 
confirmed by our SK-EST analysis.Furthermore, certain techniques’ characteristics in our 
SK-Test resulted in some missing observations that could affect the ranking of the stud-
ied representation techniques, which we have indicated by clearly indicating the affected 
techniques.

8 � Conclusions

Our work makes a comprehensive evaluation and review of six log representations on 
four public datasets with seven supervised anomaly detection models. We also examine 
the impacts of log parsing and feature aggregation of features on the effectiveness and 
quality of log representations. Our findings suggest that log representation techniques 
can significantly impact the performance of downstream models. We provide some gen-
eral guidance and key factors on choosing suitable representation techniques. Also, we 
find that log parsing can generally improve the quality of log representation by reduc-
ing noise in some representation techniques. Moreover, the impacts of configuration 
for feature aggregation may vary according to the representation, data and downstream 
models. When designing an automated log analysis workflow, these factors should be 
carefully taken into account by researchers and engineers. For future work, we plan to 
evaluate log representation techniques with more automated log analysis downstream 
tasks and try to explore different features that different downstream tasks may favour. 
Thus, we can provide a more comprehensive direction for researchers to design their 
automated log analysis frameworks.
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