
Vol.:(0123456789)

https://doi.org/10.1007/s10664-023-10364-1

1 3

On the effectiveness of log representation for log‑based
anomaly detection

Xingfang Wu1  · Heng Li1  · Foutse Khomh1 

Accepted: 27 June 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Logs are an essential source of information for people to understand the running status
of a software system. Due to the evolving modern software architecture and maintenance
methods, more research efforts have been devoted to automated log analysis. In particu-
lar, machine learning (ML) has been widely used in log analysis tasks. In ML-based log
analysis tasks, converting textual log data into numerical feature vectors is a critical and
indispensable step. However, the impact of using different log representation techniques
on the performance of the downstream models is not clear, which limits researchers and
practitioners’ opportunities of choosing the optimal log representation techniques in their
automated log analysis workflows. Therefore, this work investigates and compares the
commonly adopted log representation techniques from previous log analysis research.
Particularly, we select six log representation techniques and evaluate them with seven ML
models and four public log datasets (i.e., HDFS, BGL, Spirit and Thunderbird) in the con-
text of log-based anomaly detection.We also examine the impacts of the log parsing pro-
cess and the different feature aggregation approaches when they are employed with log
representation techniques. From the experiments, we provide some heuristic guidelines
for future researchers and developers to follow when designing an automated log analysis
workflow. We believe our comprehensive comparison of log representation techniques can
help researchers and practitioners better understand the characteristics of different log rep-
resentation techniques and provide them with guidance for selecting the most suitable ones
for their ML-based log analysis workflow.

Keywords  Log representation · Anomaly detection · Automated log analysis

Communicated by: Mika Mäntylä

 *	 Xingfang Wu
	 xingfang.wu@polymtl.ca

	 Heng Li
	 heng.li@polymtl.ca

	 Foutse Khomh
	 foutse.khomh@polymtl.ca

1	 Department of Computer Engineering and Software Engineering, Polytechnique Montreal,
Montreal, QC, Canada

Published online: 9 October 2023

Empirical Software Engineering (2023) 28:137

http://orcid.org/0000-0001-7040-3751
http://orcid.org/0000-0001-5441-6763
http://orcid.org/0000-0002-5704-4173
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10364-1&domain=pdf

1 3

1  Introduction

Logs are textual data generated by logging statements in the source code of software sys-
tems. Log data records important runtime information so that software practitioners can use
it to understand the running state of a software system or diagnose a system failure. Tra-
ditionally, developers and operators manually examine logs or use rule-based approaches
to search and analyze log data (Hansen and Atkins 1993; Prewett 2003; Rouillard 2004),
which proves to be very inefficient and error-prone (Oliner et al. 2012). Modern software
systems are large-scale, especially distributed systems that run on thousands of commod-
ity machines, which usually generate large volumes of logs each day (Oliner and Stearley
2007; Schroeder and Gibson 2007). Logs are usually semi-structured and exhibit a mixture
of formats and vocabularies, making the traditional manual or rule-based approaches tre-
mendously challenging, if not infeasible (Dai et al. 2020; Zhu et al. 2019). Furthermore,
structures and maintenance practices of modern software systems change rapidly, which
poses new challenges for log analysis (Shang et al. 2014; Yuan et al. 2012). Automated log
processing has drawn many software engineering researchers’ interest in this context.

Prior studies have proposed various approaches that leverage information retrieval, nat-
ural language processing, traditional machine learning, and deep learning to support auto-
mated log analysis tasks (He et al. 2021). Automated log analysis approaches have been
playing an important role in software maintenance and operation efforts (e.g., anomaly
detection (Chen et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang
2021; Lu et al. 2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al.
2009; Zhang et al. 2019), failure diagnosis (Fu et al. 2013; Yuan et al. 2010), performance
regression analysis (Chow et al. 2014; Liao et al. 2020; Nagaraj et al. 2012)). Many of
these automated log analysis tasks leverage machine learning (ML) techniques. An indis-
pensable step of ML-based log analysis is to transform the textual log data into numerical
formats (e.g., feature vectors or digital sequences) that ML models can consume as fea-
tures. We refer to this step as log representation: the process that transforms textual log
data into numerical formats to be used as features in ML models.

Prior work uses different log representation techniques in their ML-based log anal-
ysis tasks (i.e., downstream tasks), including classical techniques (e.g., counting the
occurrences of log templates or TF-IDF) and (deep) neural network based techniques
(e.g., Word2Vec or FastText). For example, He et al. (2016b) match Message Count
Vector representation with a logistic regression model to detect anomalies in log
sequences. Zhang et al. (2019) leverages pre-trained FastText model to generate log
template embeddings to construct their anomaly detection workflow. However, no work
has focused on evaluating the effectiveness of these representations, thus the impact of
using different log representation techniques on the performance of the downstream
models is not clear. Although there are some ablation studies of automated log analysis
to evaluate the effectiveness of their adopted representations for log data (Chen et al.
2021), researchers can hardly compare the studied log representation techniques with
that of other works to know about the impacts that these techniques may have on the
performance of downstream tasks. Therefore, our work aims to provide a comprehen-
sive investigation of log representation techniques with the goal of providing a refer-
ence for future research on automated log analysis. We select six commonly used log
representation techniques and evaluate them with seven ML models and four public log
datasets in the context of log-based anomaly detection task. We select the context of
log-based anomaly detection as it is the most widely studied topic of automated log

137 Page 2 of 39 Empirical Software Engineering (2023) 28:137

1 3

analysis (Chen et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang
2021; Lu et al. 2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu
et al. 2009; Zhang et al. 2019). Our findings are likely to be generalizable to other auto-
mated log analysis tasks, given the similarity among log representation techniques used
in various downstream tasks (He et al. 2021). Therefore, the key factors we identified
for selecting log representation techniques are expected to hold for other automated log
analysis downstream tasks as well. We achieve our research objectives by answering the
following research questions (RQs):

•	 RQ1: How effective are existing log representation techniques for automated log
analysis?

This research question aims at making a fair comparison of the existing common log
representation techniques. In this research question, we combine different log represen-
tation techniques with different anomaly detection models. By comparing and analyzing
the performances across the combinations, we derive some observations for develop-
ers and researchers to help better choose log representation techniques when designing
automated log analysis frameworks.

•	 RQ2: How does log parsing influence the effectiveness of log representations in
automated log analysis?

Log parsing is a common pre-processing step before the log representation step. It
is not clear how log parsing and log representation together impact the performance
of downstream tasks. Thus, in this RQ, we investigate the potential impacts that log
parsing, when used with different log representation techniques, may have on the per-
formance of downstream models. Findings confirm that the log parsing process has non-
negligible impacts on the performance of the downstream models.

•	 RQ3: How do representation aggregation methods influence the effectiveness of log
representation in automated log analysis?

Log representation techniques can generate the representation at different levels
(e.g., token level or log event level). Sometimes, low-level representations need to be
merged into high-level ones according to the need of the follow-up models. In this RQ,
we aim to explore the potential influence of different aggregation configurations when
used together with different log representation techniques. The findings indicate that the
impacts of aggregation configurations may vary according to different factors, and the
aggregation configurations may have non-negligible influences on the quality of log rep-
resentations. Researchers should be careful when doing feature aggregation as there is
no single best solution for all log data, representation techniques, and models.

Our work makes several important contributions:

1.	 We provide a comprehensive evaluation of the impact of log representation techniques
on log-based anomaly detection task. Our results can be used as a guide for researchers
and software practitioners in selecting the most suitable log representations for their
anomaly detection frameworks or other log analysis workflows.

Page 3 of 39 137Empirical Software Engineering (2023) 28:137

1 3

2.	 We provide an analysis of the impact of log parsing and feature aggregation approaches
when they are used together with different log representation techniques. The insights
obtained through this analysis can help optimize workflows of log analysis.

3.	 We share an implemented pipeline for log-based anomaly detection which supports
convenient configurations of log parsing, different log representations, and different
aggregation methods. Our implementation of the pipeline together the steps to replicate
our main results are included in our replication package.1

Organization  The remainder of this paper is organized as follows: We introduce the back-
ground of our work in Section 2. Section 3 surveys related works. Section 4 describes
the design of our experiments, including the selection and overview of studied log rep-
resentations, the downstream task and the datasets used. The evaluation metrics for the
downstream task are also introduced. Section 5 is organized by the research questions we
proposed. For each research question, we present the corresponding approach and results.
Section 6 discusses our findings from the three research questions and summarizes the
take-home messages. Section 7 identifies the threats to validity of our findings. At last, we
summarize this paper in Section 8.

2 � Background

2.1 � Log Representations

Log representation is a process that converts textual log data into numerical feature vec-
tors. Log representation techniques take semi-structured raw log data or parsed log data
as input and generate representations at different abstraction levels. Figure 1 illustrates an
example of different levels of representation for a log session. Different log representation
techniques may work on different levels. Aggregation is the process that merges low-level

Fig. 1   Different levels of abstraction of log representation

1  Scripts and data files used in our research are available online and can be found in our replication pack-
age: https://​github.​com/​moose​lab/​suppm​ateri​al-​LogRe​pForA​nomal​yDete​ction.

137 Page 4 of 39 Empirical Software Engineering (2023) 28:137

https://github.com/mooselab/suppmaterial-LogRepForAnomalyDetection

1 3

representation into high-level one. Based on these different levels of representations, vari-
ous follow-up models can be designed to perform downstream tasks according to the needs.
Different log analysis tasks may work on different levels of log representation according to
their needs of information.

Token‑Level Representation  One piece of log message itself is a sequence of tokens.
Tokens can be represented as embeddings with pre-trained language models (e.g., word-
2vec). We call this level of abstraction as token-level representation, which is the low-
est level of log representation. Instead of directly feeding the token-level representation to
the follow-up models to fulfill downstream tasks, representations of this level are usually
aggregated into higherlevel ones, where the aggregation techniques are applied. However,
there exist log anomaly detection methods that mainly work on token-level representations.
For example, Logsy (Nedelkoski et al. 2020) tokenizes the preprocessed log messages and
generates embeddings for tokens in log templates. Together with the positional encoding of
the tokens, these representations are fed into a transformer-based structure. By training the
neural network, the token-level representation is updated.

Event‑Level Representation  A log event-level embedding is a vector representation that
encodes a single log message. This level of representation can be merged from token-level
embeddings with different aggregation approaches (Meng et al. 2019). Besides, some lan-
guage models can directly generate this level of representation directly (Devlin et al. 2018;
Le and Zhang 2021). For example, Swisslog (Li et al. 2020) employs pre-trained BERT as
a sentence encoder and directly generates sequence-level embeddings for log templates.

Sequence‑Level Representation  Usually, log data contains a sequence of log entries that
can be sorted according to the chronological order indicated by timestamps. The whole
log data can be grouped into a set of log sequences with different approaches (e.g., fixed
windows, sliding windows, and session windows (Chen et al. 2021; He et al. 2016b; Le and
Zhang 2022) according to the needs of downstream tasks.We call the embedding for this
abstraction level as sequence-level representation. Most of the traditional ML models (e.g.,
SVM, decision tree) work on the representations of this level (He et al. 2016b). Sequence-
level representation can be acquired by aggregating log event-level representations or by
using sequential models (e.g., RNNs, Transformer).

2.2 � Applications of Log Representations in Automated Log Analysis

When log data is represented as vectors or other structured data structures, various auto-
mated log analysis models can be built upon to realize various downstream tasks, such as
anomaly detection (Chen et al. 2021; He et al. 2016b), performance modeling (Liao et al.
2020), predictive analysis (Katkar and Kasliwal 2014), or casual analysis (Jarry et al. 2021).

Anomaly detection is the most representative downstream task of log analysis (Chen
et al. 2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 2021; Lu et al.
2018; Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al. 2009; Zhang
et al. 2019). Log-based anomaly detection approaches identify anomalies inside a log
sequence according to occurrence patterns of log events. With log representation, the
anomaly detection task can be formulated as both unsupervised and supervised methods.
Unsupervised methods adopt unsupervised machine learning algorithms (e.g., isolation
forest) to mine the normal patterns of log data usually with the hypothesis that anomalies

Page 5 of 39 137Empirical Software Engineering (2023) 28:137

1 3

are unusual in the data sequence (Liu et al. 2012), while the supervised methods usually
treat anomaly detection as a classification problem and employ classifiers (e.g., decision
tree) to learn the normal and abnormal modes (He et al. 2016b).

Based on the availability of well-annotated datasets and the richness of related works,
this work adopts the log-based anomaly detection task as our protocol to study the log
representation. According to prior works (Chen et al. 2021; He et al. 2016b), supervised
anomaly detection models usually achieve better performance and have better stability
across datasets than their unsupervised counterparts. Also, the performance of unsuper-
vised models is sensitive to their hyper-parameters. According to our experiments, unsu-
pervised models favour different hyper-parameters when working on different datasets and
need manually tuning. Otherwise, they may generate inferior results that will influence the
comparisons of log representations. Based on these observations, we only focus on super-
vised models in this work to eliminate interference from these factors.

3 � Related Work

In this section, we discussed existing log representation techniques and their applications
in log analysis tasks. Generally, existing log representation techniques can be classified
into two categories based on the mechanism to generate log representation: the classical
approaches based on handcrafted features and semantic-based approaches. In addition, we
discuss prior art on anomaly detection which is our focused downstream task in this work.

3.1 � Classical Log Representation Techniques and Their Applications

There are several kinds of features manually designed by researches according to their
domain knowledge to represent log data.

Log Template ID  As log data is sequential and log messages are generated by a limited
amount of logging statements, a log sequence can be easily presented as a sequence of
log template id (a.k.a. log key) after being parsed with a log parser (Zhu et al. 2019).
Although this approach ignore a lot of information from logs, it is an effective representa-
tion that reflects occurrence patterns of log templates in a log sequence. Log template ID
is an event-level representation, which can be aggregated into Message Count by a count
vectorizer.

Prior works use log template IDs to detect anomalies, as anomalies may be spotted out
with abnormal occurrence pattern of log templates (Du et al. 2017; Lu et al. 2018). For
example, Du et al. (2017) proposed the DeepLog anomaly detection framework, in which a
sequential anomaly detection model is trained with log keys. Combined with another per-
formance anomaly detection model, the framework achieved the state-of-the-art detection
performance at the time it was proposed.

Message Count  Unlike log template ID representation, Message Count (a.k.a. event
count, log count, log message counter) Vector counts the occurrences of log templates in a
log sequence and the length of representation depends on the amount of log templates in a
whole log data, and thus is unrelated to the length of the log sequence. Message Count is a
sequence-level representation.

137 Page 6 of 39 Empirical Software Engineering (2023) 28:137

1 3

It is one of the most common traditional log representation approach that adopted by
various log analysis frameworks. For example, He et al. (2016b) use the log count as fea-
tures and fed them a logistic regression model to detect anomalies. Xu et al. (2009) adopt
the unsupervised dimension reduction method PCA with event count matrix to detect
anomalies. Lou et al. (2010) input event count to invariant mining algorithm to detect
anomalies.

TF‑IDF  Is a commonly used weighting technique in information retrieval and data min-
ing. For log data, TF-IDF weighting can be either used to weight values in Message Count
Vector or serve as a feature itself to present tokens in a log entry. For example, Wang et al.
(2018) use the TF-IDF values of tokens in a log event to form the feature vectors. Some
researchers modified TF-IDF to better suit the characteristics of log data. For example,
Meng et al. (2021) apply the popular bag-of-words model to generate embedding and
design the Inverse Location Frequency (ILF) method (a modified version of IDF(Salton
and Buckley 1988) designed for logs) to weight the words of logs in feature construction.
When TF-IDF operates on tokens within log events, it produces representations at the event
level. Alternatively, when it processes the sequence of template IDs, it generates represen-
tations at the sequence level.

Combined Features  Also, there are other works that try to combine different features and
representations for log data. Liang et al. (2007) proposed a failure prediction model for
log data generated from IBM Blue Gene/L. In this work, six groups of features are gen-
erated, including the number of events of different severity, event distribution, inter-fail-
ure times, and so on. These sequence-level representations are further processed by four
classifiers(e.g., SVM, KNN) for later anomaly prediction.

3.2 � Semantic‑Based Log Representation Techniques and Their Applications

Unlike classical approaches, semantic-based approaches employ deep-learning techniques
that do not rely on manually designed features. As logs are semistructured texts and log
messages contains semantic information, some studies leveraged deep learning techniques
in natural language processing and information retrieval to represent and analyze log data.

Static Embedding  Some works are inspired by static word embeddings, which have been
demonstrated to be more effective than log keys and log count. Static embedding tech-
niques create embeddings for tokens in log events, resulting in token-level embeddings that
can be further aggregated into higherlevel embeddings. Meng et al. (2019) proposed a log
representation approach named Template2Vec. By embedding the log template with dLCE
(Nguyen et al. 2016) to a vector, this approach presents the first step towards considering
semantic and syntax information in log data.

The subsequent study proposed Logsy (Nedelkoski et al. 2020). In this work, two opera-
tions are applied to input tokens: token embedding and positional encoding. Before being
embedded into vectors, log messages are split into word tokens and numerical characters
and commonly used English words are removed. Then, these vectorized tokens are input
into the subsequent encoder of the Transformer (Vaswani et al. 2017) module with multi-
head selfattention.

Zhang et al. (2019) proposed a log-based anomaly detection approach called LogRo-
bust. They leverage Drain (He et al. 2017) to obtain log templates and encode log templates

Page 7 of 39 137Empirical Software Engineering (2023) 28:137

1 3

with pre-trained FastText model combined with TFIDF weight. Then, an attention-based
Bi-LSTM model is used for anomaly detection. With semantic embeddings, It can identify
unstable log events with similar semantic meaning.

Contextual Embedding  Le and Zhang (2021) proposed NeuralLog, which does not rely
on any log parsing. In NeuralLog, each log message is directly transformed into seman-
tic vectors after removing numbers and special characters. A pre-trained BERT model is
employed to encode log messages into a fixed dimension vector representation. Similar
to static embeddings, contextual embeddings can operate at the token-level. Nonetheless,
pre-trained models may also generate event-level embeddings using their unique structures,
such as the pooler layer in BERT (Devlin et al. 2018).

3.3 � Graph‑Based Log Representation Techniques and Their Applications

Recently, a group of studies introduced Graph Neural Networks (GNNs) (Wan et al. 2021;
Xie et al. 2022) to log anomaly detection. Unlike previouslymentioned approaches, which
mainly utilize the sequential or quantitative patterns of log events in log sequences, GNN-
based methods transform log sequences into graphs and leverage the spatial structural rela-
tionships among logs. Typically, these methods generate representations at the sequence-
level by utilizing features from lower-levels. Some previously-mentioned representations
can be incorporated into the graph structure as features of nodes and encoded by a GNN-
based graph encoder. The experiments show that these approaches achieved promising
results and robustness against the variation of window size. As the representation learning
process is linked to downstream tasks, we are unable to incorporate this type of representa-
tion into our experimental framework. Therefore, it is not included in our experiments.

3.4 � Anomaly Detection

As one of the most studied downstream tasks in the domain of automated log analysis,
anomaly detection aims to detect abnormal system behaviours to help developers and oper-
ators uncover system issues and solve anomalies. Log data is a good source of informa-
tion that can be utilized for anomaly detection models to evaluate the status of a system,
as it may contain the indexes of the availability of system resources and the running sta-
tus of services. The log sequence can also reflect the execution paths of a system. From
these pieces of information, potential failures or unusual execution sequences can be spot-
ted according to the regular pattern. Therefore, as a highly in-demand task of automated
log analysis, log-based anomaly detection has been widely studied, and various approaches
have been developed in the last decades.

Traditionally, developers may check system logs with keywords or use rules to find
anomalies and locate the bugs in systems with their domain knowledge. Manual inspec-
tions are erroneous and unstable for large software systems that generate tons of logs in
a short period. Rule-based approaches demand the manual construction of rules and can
not adapt to fast-evolving software systems. Therefore, machine learning is adopted in
many log-based anomaly detection approaches. In this study, we only focus on super-
vised learning methods, as we discussed in Section 2. Supervised anomaly detection is

137 Page 8 of 39 Empirical Software Engineering (2023) 28:137

1 3

defined as a machine-learning task of deriving a classifier with annotated log sequence.
The annotations mark the normal or anomalous states of log sequences or log events.
Here, we list the most representative related works that utilize supervised learning
methods in anomaly detection.

Traditional Methods  Most of the traditional machine learning methods adopt mes-
sage count vector as their log representation approach. A training instance for traditional
models usually consists of an event count vector for a log sequence and its corresponding
label. With training instances, classifiers can be trained to classify new instances. Logistic
regression is a statistical model that is widely used in anomaly detection. It estimates the
probability of normal and anomalous according to the input vector. The decision tree is a
tree-based model that is constructed in a top-down manner with training data. Each node
presents a split of an attribute with the criteria of information gain. The decision tree was
also applied to log analysis in previous works (Chen et al. 2004). Event count vectors are
used to construct the decision tree, and predictions for new instances are given with tree
structure. Support Vector Machine (SVM) is a common supervised method for classifica-
tion. A hyperplane is constructed by maximizing the distance between the hyperplane and
the closest point(s) of different classes to separate instances in high-dimension space. SVM
was employed to detect failures (Liang et al. 2007) with statistical features of occurrences
of log events.

Deep Learning Methods  Different from traditional methods, the input feature of deep
learning methods for log anomaly detection varies greatly. The most basic model is
based on Multi-layer Perception (MLP). MLP is a feedforward structure that maps a set
of input vectors to a set of output vectors. MLP model serves as a baseline model for
log-based anomaly detection in previous works (Lu et al. 2018). Convolutional Neural
Networks (CNNs) were first adopted for log anomaly detection by Lu et al. (2018). This
work uses convolutional layers containing different kernels to extract features from vec-
tors generated with a codebook that maps the logs to embedding vectors. Long Short-
Term Memory (LSTM) is commonly used for mining the patterns from log data in many
automated log analysis frameworks (Du et al. 2017; Meng et al. 2019). However, the
mechanisms of prior works vary: some works (Du et al. 2017) used log template ID as
input, and LSTM is used to learn the occurrence patterns of log templates in normal and
abnormal log sequences, while there is another line of works that take embedding vec-
tors of log templates as input (Meng et al. 2019). Transformer-based models have been
applied in the log-based anomaly detection task by some recent works (Le and Zhang
2021; Nedelkoski et al. 2020). The transformer blocks in these models can capture con-
textual information from input sequences with the self-attention mechanism. These mod-
els exhibit promising results in log-based anomaly detection tasks. However, the previ-
ous works utilized transformer-based models with different formulations of the log-based
anomaly detection task. For example, Logsy (Nedelkoski et al. 2020) formulates the
anomaly detection problem as discrimination between normal logs from the system of
interest and auxiliary logs from other systems, in which anomalies are detected based
on only their log messages and sequential information is ignored. The best practices for
using transformers in log analysis are still unclear. Therefore, we do not include this sort
of method in our experiments.

Page 9 of 39 137Empirical Software Engineering (2023) 28:137

1 3

4 � Experimental Design

In this section, we introduce the design of our experiments to evaluate the effectiveness
of different log representation techniques by assessing their impact on the performance of
selected automated log analysis tasks. We first give an overview of the workflow of the
experiments. Then, we discuss log representation techniques studied in the experiments to
generate feature vectors for follow-up downstream tasks. Then, our selected downstream
tasks with their corresponding models are introduced. We also review the metrics that we
use to evaluate the performances of each studied downstream tasks.

As our focus is on the impact that log representation techniques have on the perfor-
mances of downstream tasks, we select the most representative automated log analysis task
(i.e., anomaly detection) and combine different models of it with different representation
techniques. Aside from the comparative evaluation of studied representation techniques on
follow-up models, we also look into the log parsing and feature aggregation process that
can affect the effectiveness of log representations.

4.1 � Overview

Figure 2 shows the general workflow of our experiments. Raw log data is unstructured
textual data. As most log representation techniques require structured log data as inputs, a
log parsing step is often applied to obtain structured log data. In this work, the Drain parser
(He et al. 2017) is adopted in our experimental workflow, as it is shown to have superior
parsing performances on most of the datasets (Zhu et al. 2019). However, log parsing may
not be needed for some log representation techniques. For example, log parsing process
is deserted in NeuralLog (Le and Zhang 2021), a recent anomaly detection workflow that
achieved results outperforming the other existing approaches. Then, log data is fed into
representation algorithms to get numerical representation of different abstraction levels.
According to the level of abstraction of the log representation, different models of down-
stream tasks are selected to mine critical information from the data according to the spe-
cific task and yield the analytical results.

4.2 � Studied Log Representations

As our goal is to conduct an evaluation of different log representation techniques, we
selected the most representative techniques for the study. We implemented the studied
techniques following the common practices of previous works (Chen et al. 2021; He et al.
2016b) to better compare their characteristics and quality. However, different previous

Fig. 2   General workflow of our experiments. The variations for each research question are highlighted with
dotted boxes

137 Page 10 of 39 Empirical Software Engineering (2023) 28:137

1 3

works have different implementations with minor alternations for some representation
techniques. We adopt and synthesize these open-source codes or implement them ourselves
from scratch. Existing log representation techniques can be classified into two categories:
classical and semantic-based approaches.

Classical Log Representation Techniques  For classical representation techniques, we
select message count vector, template ID-based TF-IDF (TF-IDF ID) and text-based TF-
IDF (TF-IDF Text) feature representation. The message count takes log template indexes
as input. It presents a log sequence with a vector counting the event occurrences from each
log template. The event template ID-based TF-IDF (TF-IDF ID) weighting weights each
event template ID with their respective TF-IDF value. In template text-based TF-IDF (TF-
IDF Text) representation, we used the TF-IDF values of tokens in the template of a log
event to represent a log message. For a sequence, we calculate the average of feature vec-
tors of its log events to form the representation for the sequence.

Semantic‑Based Log Representation Techniques  For semantic-based log representa-
tion techniques, we choose three commonly adopted techniques in existing automated log
analysis frameworks as our objects of study:Word2Vec, FastText, and BERT. For each of
them, we leverage the pre-trained models trained with natural language corpus as related
works do (Le and Zhang 2021; Zhang et al. 2019). For Word2Vec, we use the word vectors
generated by the model pre-trained with Google News dataset.2 Pre-trained Word2Vec can
generate many out-of-vocabulary (OOV) words when processing log data and is unable
to handle them in a proper way. So, we assign the zero vector for OOVs when generat-
ingWord2Vec representations for the studied datasets. For FastText, we leverage the off-
the-shelf word vectors, which were pre-trained on Common Crawl Corpus and Wikipe-
dia (Grave et al. 2018). FastText can handle OOV words by summing up embeddings for
its component char-ngrams. Therefore, FastText is able to generate embeddings for OOV
words in logs, although the embeddings may not be effective. For BERT (Devlin et al.
2018), we utilize the pre-trained base model (Turc et al. 2019). And the sentence embed-
ding are generated by the second-to-last encoder layer of the model, which is 768 dimen-
sions. The second-to-last hidden layer is chosen as the last layer is too closed to the target
functions durning pre-training, which may contain biases.

4.3 � Downstream Models and Datasets

4.3.1 � Anomaly Detection Models and Implementations

We select 7 supervised machine learning anomaly detection models to evaluate the studied
log representation techniques. SVM, decision tree, logistic regression, and random forest
are traditional machine learning models. These models are commonly used and well-stud-
ied in various application scenarios and often serve as baseline in automated log analysis
tasks (He et al. 2016b). For deeplearning models, we choose MLP, CNN, and LSTM mod-
els. The MLP model is selected as a baseline for log-based anomaly detection in prior work
(Lu et al. 2018). CNN and LSTM are widely employed in many automated log analysis
frameworks (Du et al. 2017; Lu et al. 2018; Meng et al. 2019).

2  https://​code.​google.​com/​archi​ve/p/​word2​vec/

Page 11 of 39 137Empirical Software Engineering (2023) 28:137

https://code.google.com/archive/p/word2vec/

1 3

We employ these well-studied machine learning models based on the fact that they are
commonly adopted in anomaly detection workflows or other automated log analysis frame-
works. By selecting these widely adopted models, we believe that the findings of our work
may stand a better chance of generalizing to other log-related automated analysis tasks. We
briefly introduce the implementation of the studied models in the following, while details
can be found in our replication package1.

Traditional Models  For traditional anomaly detection models, we follow the implementa-
tions of Loglizer (He et al. 2016b). However, their implementations only take the event
count matrix generated with session windows as input. In our case, the input dimensions
vary according to the studied log representations. Same as Loglizer, all of our studied tradi-
tional models take sequence-level representation as input. We modify hyper-parameters of
these models according to the input dimensions of our generated log representations.

Multi‑layer Perception (MLP)  We follow the similar implementation of the baseline model
in (Lu et al. 2018), we treat the anomaly detection task as a binary classification problem
and use a MLP with one hidden layer with 200 neurons as a binary classifier. The inputs
are feature vectors of different log representation techniques, and the outputs are the one-
hot encoding of the binary labels. Cross entropy loss is used as the criterion to train the
three-layer network. MLP also takes sequence-level log representation as input.

Convolutional Neural Network (CNN)  In our work, we implement exactly the same net-
work structure as in the original work (Lu et al. 2018). However, instead of taking log
keys as input and using the codebook to map log keys into embeddings, our network sub-
stitutes the codebook with a fully-connected layer with 50 neurons, which maintains the
same embedding size as the original work for the convolutional layers to process. Network
details can be find in our replication package. The CNN models require event-level log
representation as input, and demand the input sequence are of same length. As the sessions
of log data may contain different numbers of log messages, we sliced the sessions with a
sliding window.

Long Short‑Term Memory (LSTM)  There are different mechanisms of using LSTM to
detect anomalies in log sequence in prior works. As the aim is to compare different log rep-
resentations, our implementation treats different log representations as the input feature of
the LSTM model. Similar to CNN models, LSTM models require fixed length event-level
representation as input. Network details can be found in our replication package1.

4.3.2 � Datasets and Preparations

Our experiments evaluate the existing representations with the following four public log
datasets provided by LogHub (He et al. 2020):

•	 The HDFS dataset (Xu et al. 2009) is collected from the Amazon EC2 platform. It con-
tains more than 11 million log events, and each event is associated with a block ID, by
which we slice log data into a set of sessions, which are the sub-sequences of the entire
log sequence. For each session, labels are given to indicate whether there exist anoma-
lies. There are a total of 575,061 log sessions with 16,838 (2.9%) anomalies.

137 Page 12 of 39 Empirical Software Engineering (2023) 28:137

1 3

•	 The BGL dataset (Oliner and Stearley 2007) is recorded from the Blue Gene/L
(BG/L) supercomputer system at Lawrence Livermore National Labs (LLNL) with
a time span of 215 days. This dataset contains 4,747,963 annotated log messages,
where 348,460 (7.3%) are labelled as failures. Unlike HDFS, log messages in BGL
do not have identifiers for separating logs from different job executions, processes
or threads. So, grouping techniques (e.g., time-based, fixed window-based, etc.) are
adopted to form sub-sequences. For uniformity, we also call these sub-sequences in
BGL as sessions.

•	 The Spirit dataset is also a well-used public log dataset (Oliner and Stearley 2007),
which Sandia National Labs collected from their Spirit supercomputing system.
There are more than 272 million log messages in total. As the whole dataset is too
large for us to process, we use a subset containing the first 5 million log messages
in our work, which follows the practice of prior work (Le and Zhang 2022). In the
subset, 15.5% of the log messages are marked as anomalies. The subset is shared in
the replication package.

•	 The Thunderbird dataset (Oliner and Stearley 2007) is also a public log dataset from
Sandia National Labs. There are around 211 million log messages in totalWe fol-
lowed the practices of previous works (Le and Zhang 2021, 2022) and extracted a
continuous chunk of 10 million log messages from the whole dataset, among which
4.1% are labelled as anomalies. We also share the subset in our replication package.

According to the common practices (Chen et al. 2021; He et al. 2016b) of data-
set preprocessing and grouping, we prepared the studied datasets with the following
configurations:

Preparation for the HDFS Dataset  For the HDFS dataset, as the available annotation
labels are based on blocks ID, an identifier that marks the different execution sequences,
we use it as the clue to group logs into sessions. We use 70% of the sessions as training
set and the other 30% as test set by following the common practices of datasets splitting in
supervised learning tasks (e.g., El-Sayed et al. (2017); Lyu et al. (2021)). During splitting,
we shuffle the sessions while maintaining the time-based sequence of log messages inside
each session (Chen et al. 2021). Recent work (Le and Zhang 2022; Lyu et al. 2021) sug-
gests that the random shuffling process can cause data leaking problems. However, as the
main focus of our work is the impact of log representation rather than the performance of
the downstream models, the random shuffling process will not undermine our evaluation.

Preparation for the BGL Dataset  For the BGL dataset, we do not have identifiers to sepa-
rate the log items into different execution sequences. So, we choose to group the log mes-
sages according to the timestamp. We refer to the grouping approaches of prior papers that
adopt the BGL dataset and group the log messages with a fixed window of 6 h (He et al.
2016b). After the time-based grouping, there are 718 sessions. As the number of sessions
is far less than that of the HDFS dataset, we use 80% of the sessions as training set and
20% as test set instead of a 70%/30% splitting, following the practices in prior work (Chen
et al. 2021; Le and Zhang 2021; Meng et al. 2019). Similarly, we shuffle the sessions while
maintaining the time-based sequence within each session. The labels are merged from
that of the log messages inside each session. If any of the log messages inside a session
is labelled as an anomaly, the whole session is recognized as an anomaly, following the
approach used in prior work (He et al. 2016b).

Page 13 of 39 137Empirical Software Engineering (2023) 28:137

1 3

Preparation for the Spirit Dataset  Similar to the grouping configuration of the BGL data-
set, we group the log messages according to their timestamps. However, we adopt a fixed
window of one hour instead of six hours following the configuration in prior work (Le
and Zhang 2022). After grouping, we get 1,173 sessions, with 221 anomaly samples. We
further shuffle and partition the sessions into the training and test sets with an 80%/20%
splitting.

Preparation for the Thunderbird Dataset  Instead of adopting a one-hour fixed-window
grouping, we employed a fix-length grouping to the Thunderbird dataset, as we noticed that
the logs were unevenly distributed in time. If the sessions are grouped by a fixed-length
time window, the number of logs in some sessions may be extremely large. We chose a
window size of 100 lines, which is also a setting employed in experiments from previ-
ous work (Le and Zhang 2022). After grouping, we get 99,717 sessions in total, among
which 33,526 sessions are anomalies. We performed a sequential split of the sessions
using an 80%/20% ratio to obtain the training and test sets. This approach helped improve
the generalizability of our findings and establish their validity across all data selection
configurations.

Window Size for Sequential Models  As CNN and LSTM models require inputs to be of
consistent sequence lengths, we need to further slice each log session with fix-length slid-
ing windows. According to the characteristics of each dataset and the common practices
in other works (Chen et al. 2021), we select the configurations of the sliding window in
Table 1 for the studied datasets as default settings. We further analyze the impacts of the
variation of window size in RQ3.

Log Parsing  Ideally, we would use a log parser that can convert the unstructured raw log
data into structured log data without any error. In practice, however, existing log parsers
cannot successfully parse all the log messages as the formats of log messages are usually
diverse and complex. Continuous updates to existing parsing strategies and configurations
are required due to new log templates and variations in log formats resulting from the evo-
lution of software (Zhang et al. 2019).

In fact, the impact of using different log parsers for automated log analysis has been
explored in prior work (He et al. 2016a). A recent work (Le and Zhang 2022) further inves-
tigated the impacts of data noise introduced by log parsing errors. The authors combined
five anomaly detection models with four commonly-used log parsers and found that pars-
ing errors induced by different parsers have distinctive impacts on downstream models.
However, the patterns of the impacts remain to be explored.

Table 1   Grouping techniques and default window size settings for studied datasets

Dataset Grouping Criterion # of sessions Ave. # of log
per session

Window size Stride

Train Test

HDFS Session ID 402,542 172,519 22 30 1
BGL Time (6h) 575 143 6,565 50 50
Spirit Time (1h) 938 235 4,208 50 50
Thunderbird Line (100l) 79,773 19,944 100 30 10

137 Page 14 of 39 Empirical Software Engineering (2023) 28:137

1 3

As our goal is to achieve the best possible parsing results to serve as input for our
following processes, we do not compare the impacts of using different log parsers which
may lead to different parsing results. According to Zhu et al. (2019)’s benchmarking
work for log parsers, Drain (He et al. 2017) is the most accurate parser among their
studied log parsers, which attains the highest accuracy on 9 out of 16 datasets. There-
fore, we choose Drain as our log parser to preprocess the raw log into structured data
and extract parameters from log messages in our work. However, the Drain parser can
still generate large number of inaccurate templates for our studied datasets when we fol-
low the default configuration indicated in the paper of He et al. (2017). By examining
the templates generated, it becomes apparent that certain parsing errors have occurred.
For example, numerous log templates have been created with slight variations in certain
fields that should be dynamic variables, but have instead been incorrectly identified as
static text. To eliminate the impact of these inaccurate templates on our evaluation, we
iteratively checked and appended the regular expressions designed for handling these
undetected dynamic variables. We were able to decrease the number of resulting wrong
templates. For example, after passing a set of regular expressions to the parser when
parsing the Thunderbird dataset, the amount of log templates decreases from 2,241
to 1,488, in which many duplicate templates are removed. In a prior study (He et al.
2016a), a similar approach was utilized and it was verified that incorporating domain
expertise (such as eliminating IP addresses) can enhance the precision of log parsing.
The details of the regular expressions can be found in our replication package.

4.4 � Evaluation Methods

Anomaly detection is formulated as a binary classification problem in our study. Therefore,
we assess the performance of studied models using precision, recall and F1 score. We label
the outcomes of these models as true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). Further, the precision, recall and F1 score are calculated as fol-
lows: Precision =

TP

TP+FP
 , Recall = TP

TP+FN
 , F1 =

2PrecisionRecall

Precision+Recall
=

2TP

2TP+FP+FN
 . All the metrics

are calculated on the test sets. For some of our results, we only report the F1 metric due to
space limit. We report the the complete results of all the metrics in our replication pack-
age. For sequence-level representations, each sample represents a session, for which clas-
sifiers generate one prediction. We calculate the metrics based on predictions for sessions.
However, for models that demand fixed-length input, we slice each session with sliding
windows and get fixed-length sub-sequences. The labels for these sub-seqences are derived
from the session they are from. And models generate predictions for each sliding window.
We merge the predictions within sessions and use the labels for sessions to calculate the
metrics.

5 � Experimental Results

In this section, we present the results of our three research questions, aiming to understand
the effectiveness of different log representation techniques in the context of anomaly detec-
tion, with the hope that our findings can be generalized to other similar automated log
analysis tasks.

Page 15 of 39 137Empirical Software Engineering (2023) 28:137

1 3

5.1 � RQ1. How effective are existing log representation techniques for automated
log analysis?

5.1.1 � Motivation

Prior works have widely used different log presentation techniques in their automated
log analysis workflow. However, no work has comprehensively compared the impact of
the choice of log representation techniques in their workflow. Therefore, this research
question aims to bridge the gap and provide a comprehensive comparison of the com-
monly used log representation techniques in the context of anomaly detection. Through
analyzing the impact of different log representation techniques on the different anomaly
detection models, we hope to provide a reference for future work to choose the appropri-
ate log representation techniques for their specific data, analysis tasks, and use cases.

5.1.2 � Approach

In this RQ, we evaluate our studied six log representation techniques with seven anom-
aly detection ML models and four datasets. For each log representation technique, we
combine it with each ML model applied on each dataset.

Combining Log Representations and ML Models  As our goal is to evaluate the effective-
ness of the existing log representation techniques, we compare the performances of the
models of selected downstream tasks with different inputs of representations generated
with studied representation techniques.

Message count vector and event template ID-based TF-IDF (TF-IDF ID) are based on
the count of log occurrences in log sequences and, thus, can only generate a sequence-
level representation for each log sequence. As mentioned before, CNN and LSTM mod-
els require event-level log representation due to their mechanisms. Therefore, CNN and
LSTM models can not be combined with these two representation techniques. Other rep-
resentation techniques can generate token-level or event-level log representation. More-
over, low-level log representation can be merged with proper aggregation approaches
to higherlevel representations. Therefore, these representation techniques can match
anomaly detection models that demand both event-level and sequence-level input. For
representation techniques that generate token-level representations, we aggregate token-
level representation to form event-level representation for a log message. For models
requiring sequence-level log representations, we further aggregate the event-level log
representations into sequence-level with mean aggregation, which is the most common
practice in previous works.

Using Scott‑Knott Effect Size Difference (SK‑ESD) test to rank log representation tech‑
niques  To understand the relative rank of the different log representation techniques, we
use the SK-EST test (Tantithamthavorn et al. 2017, 2018) to rank these techniques into
statistically distinct groups based on their performances on studied datasets. We conduct
three separate SK-EST tests: One for traditional models, one for deep learning models and
a third one for all models.

137 Page 16 of 39 Empirical Software Engineering (2023) 28:137

1 3

Different datasets and different downstream models can significantly impact the
resulting performance regardless of the chosen log representation techniques. To miti-
gate such impact when ranking the log representation techniques, we first derive a rank
(i.e., initial rank) of each log representation techniques for each downstream model
applied on each dataset based on the F1 score (i.e., a log representation technique
achieving a better F1 score has a higher rank). Each initial rank of a log presentation
technique for each model and each dataset serves as one observation for the log repre-
sentation technique. As we have seven models and four datasets, each log representa-
tion technique has 28 observations in total in the overall test. Then, we use the SK-EST
test to derive statistical ranking of the six log representation techniques based on their
observations (i.e., initial ranks). The level of significance used in the SK-EST test is set
to the default value of 0.05.

As CNN and LSTM models can not be combined with sequence-level representation
techniques (i.e., MCV and TF-IDF by message ID), there are some observations in the
tests (i.e., the MCV and TF-IDF (ID) techniques do not have observations for the CNN
and LSTM models). Specifically, the statistical tests underlying the SK-EST tests would
be performed with unequal sizes of samples, which may impact the power of the statistical
significance (Rusticus and Lovato 2014). Thus, the missing observations may influence the
ranking results. We mark the affected representation techniques in Table 6.

5.1.3 � Results

Tables 2, 3, 4 and 5 compare the results of applying different log representation techniques
to seven anomaly detection models on the four studied datasets. Table 6 shows the statisti-
cal rankings of the different log representation techniques from the SK-EST tests.

•	 The choice of log representation techniques has non-negligible influences on the
performance of the downstream models. As shown in Table 2, nearly all models
achieve very good performance on the HDFS dataset (with F-scores ranging from 0.938
to 0.999), the Spirit dataset (from 0.934 to 0.997), and the thunderbird dataset (from
0.933 to 1.000), while their performance on the BGL dataset is relatively lower (with
F-scores ranging from 0.692 to 0.967). Nevertheless, we observe that different log rep-
resentation techniques can lead to different performance of the downstream models. On
the HDFS dataset, using different log representation techniques causes a Fscore differ-
ences up to 0.061 for the different models; on the BGL dataset, the different log repre-
sentation techniques lead to F-score differences up to 0.275 for the different models; on
the Spirit dataset, the largest discrepancy reach 0.063, which is 0.038 for the Thunder-
bird dataset.

Our SK-EST test results (Table 6) indicate that there exist statistical difference between
the performance of the different log representation techniques. In the overall and tradi-
tional-model-only ranking, the six log representation techniques are ranked into five dis-
tinct groups. The three classical log representation techniques outperformed their seman-
tic-based counterparts, with MCV achieving the best rank, followed by TF-IDF (ID) and
TF-IDF (Text) in the second rank. The BERT embedding is ranked only in the third place,
followed byWord2Vec and FastText. However, the BERT embedding is ranked first in the
deep-model-only ranking, which shows that the deep-learning-based anomaly detection
models can generally work better with BERT embedding than traditional models.

Page 17 of 39 137Empirical Software Engineering (2023) 28:137

1 3

The difference between the performance of different log representation techniques may
be explained by the different information represented by different representation tech-
niques. For example, one can directly tell the number of occurrences of certain log events
in a sequence from the message count vector. Sometimes, this may be the most critical
indicator of an anomaly and lead to a good anomaly detection performance.

•	 There exists no single log representation technique that performs the best across
all models and datasets. As shown in Table 2, 3, 4 and 5, five out of the six log repre-
sentation techniques (except Word2Vec) achieve the best performance for at least one
combination of models and datasets. The best-performing log presentation technique
in the overall ranking, Message Count Vector, achieves the best performance for 12 out
of the 20 (i.e., 3/5) combinations of models and datasets. However, the technique in the
last place (i.e., FastText) achieves the best for only one case out of the 28 combinations.

The findings suggest that researchers and practitioners should be cautious with the
selection of log representation techniques and investigate the mechanism of their models
and the characteristics of log representation techniques. Based on the knowledge, they can
choose the representations that suit their follow-up models best.

Table 2   Evaluation of six log representation techniques applied to seven anomaly detection models on
HDFS dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

Traditional
models

SVM P
R
F1

0.999
0.917
0.956

0.999
0.999
0.999

0.999
0.979
0.989

0.998
0.998
0.998

0.998
0.998
0.998

0.998
0.998
0.998

0.001
0.082
0.043

Decision
Tree

P
R
F1

1.000
0.998
0.999

1.000
0.998
0.999

0.985
0.999
0.992

0.985
0.998
0.992

0.985
0.998
0.992

0.985
0.998
0.992

0.015
0.001
0.007

Logistic
Regression

P
R
F1

1.000
0.996
0.998

0.999
0.997
0.998

1.000
0.900
0.947

0.999
0.901
0.948

1.000
0.884
0.938

0.999
0.999
0.999

0.001
0.115
0.061

Random
Forest

P
R
F1

0.998
1.000
0.999

0.999
1.000
0.999

0.997
0.999
0.998

0.999
0.985
0.992

0.999
0.985
0.992

0.998
1.000
0.999

0.002
0.015
0.007

Deep-learning
models

MLP P
R
F1

0.999
0.999
0.999

0.911
1.000
0.953

0.987
0.999
0.993

0.911
0.999
0.953

0.911
1.000
0.954

0.911
0.999
0.953

0.088
0.001
0.046

CNN P
R
F1

- - 0.982
0.922
0.951

0.985
0.923
0.953

0.990
0.922
0.955

0.992
0.921
0.955

0.010
0.002
0.004

LSTM P
R
F1

- - 0.991
0.922
0.955

0.997
0.921
0.958

0.993
0.920
0.955

0.998
0.923
0.959

0.007
0.003
0.004

137 Page 18 of 39 Empirical Software Engineering (2023) 28:137

1 3

Finding 1: The choice of log representation techniques has a non-negligible influence
on the performance of the downstream models. While there is no single log represen-
tation technique that always performs the best, overall, the simplest message count
vector representation performs the best across various models and datasets.

•	 Traditional models generally perform better with classical log representation
techniques, while deep learning models are able to work well with semantic-
based representation. For traditional anomaly detection models, 3 out of 4 mod-
els achieve the best performance with classical representations on the HDFS dataset
and 4 out of 4 on the BGL, Spirit and Thunderbird datasets. In total, in 15 out of
the 16 cases (four models and four datasets) of traditional machine learning models,
classical log representation techniques perform better. The three classical log rep-
resentation techniques are listed in the first two statistically distinct groups, which
outperformed all their semantic-based counterparts with traditional machine learn-
ing models. However, the results are different for deep anomaly detection models
that can leverage the sequential information (i.e., CNN and LSTM): 7 out of 8 cases
favour semantic-based embeddings rather than the classical counterpart (i.e., TF-
IDF (Text)). But for the MLP, which takes sequence-level representation as input,

Table 3   Evaluation of six log representation techniques applied to seven anomaly detection models on BGL
dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

Traditional
models

SVM P
R
F1

0.958
0.840
0.895

0.828
0.654
0.731

0.855
0.728
0.787

0.853
0.716
0.779

0.869
0.654
0.746

0.871
0.667
0.746

0.130
0.186
0.164

Decision
Tree

P
R
F1

0.959
0.921
0.939

0.959
0.919
0.938

0.971
0.963
0.967

0.781
0.701
0.739

0.734
0.654
0.692

0.812
0.701
0.752

0.237
0.309
0.275

Logistic
Regression

P
R
F1

0.947
0.889
0.917

0.882
0.741
0.805

0.868
0.728
0.792

0.871
0.753
0.808

0.844
0.667
0.745

0.886
0.765
0.821

0.103
0.222
0.172

Random
Forest

P
R
F1

0.830
0.963
0.891

0.810
0.951
0.875

0.872
0.946
0.907

0.667
0.783
0.720

0.681
0.808
0.738

0.694
0.806
0.745

0.205
0.180
0.170

Deep-learning
models

MLP P
R
F1

0.958
0.840
0.895

0.951
0.951
0.951

0.927
0.938
0.933

0.895
0.840
0.866

0.868
0.815
0.841

0.910
0.877
0.893

0.090
0.136
0.119

CNN P
R
F1

- - 0.900
1.000
0.947

0.868
0.975
0.919

0.857
0.963
0.907

0.939
0.951
0.945

0.082
0.049
0.040

LSTM P
R
F1

- - 0.866
0.877
0.871

0.755
0.988
0.856

0.822
0.914
0.865

0.871
1.000
0.931

0.116
0.123
0.075

Page 19 of 39 137Empirical Software Engineering (2023) 28:137

1 3

favours (in 3 out of 4 cases) quantitative count-based representations according to
our experimental results.

The performance difference may be caused by the models’ discrepancy in the ability
to learn the complex and abstract representation of the log data. The classical representa-
tion techniques are based on quantitative or sequential statistics to occurrences of log tem-
plates or tokens, whose patterns are relatively simpler than that of semantic embeddings.
The semantic-based representations carry higher layer information, which may be utilized
by more advanced deep models. The authors of a recent study (Le and Zhang 2021) uti-
lized a transformer-based model and demonstrated the superiority of semantic embedding
over traditional representation. Their comparative experiment indicated that their model
performed significantly better with BERT embedding than with the indexes of the log tem-
plate on some datasets, which confirms our observation.

Moreover, event-level log representations are fed directly to the CNN and the LSTM
models without the feature aggregation process that transforms event-level features
to sequence-level features, which enable them to leverage the sequential information
within a log session. This extra information may further boost the performance of these
two models. Another explanation is that the dimensions of traditional representation

Table 4   Evaluation of six log representation techniques applied to seven anomaly detection models on
Spirit dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

Traditional
models

SVM P
R
F1

0.984
0.968
0.976

0.978
0.963
0.970

0.984
0.963
0.973

0.952
0.963
0.957

0.973
0.952
0.962

0.973
0.968
0.971

0.011
0.016
0.019

Decision
Tree

P
R
F1

1.000
0.995
0.997

1.000
0.995
0.997

1.000
0.995
0.997

0.952
0.947
0.949

0.962
0.907
0.934

0.942
0.952
0.947

0.058
0.088
0.063

Logistic
Regression

P
R
F1

0.989
0.968
0.978

0.989
0.947
0.967

0.994
0.925
0.925

0.989
0.947
0.967

0.988
0.914
0.950

0.984
0.957
0.970

0.010
0.054
0.028

Random
Forest

P
R
F1

0.984
0.984
0.984

0.979
0.984
0.981

0.982
0.994
0.988

0.941
0.954
0.947

0.945
0.957
0.951

0.939
0.958
0.948

0.045
0.040
0.041

Deep-learning
models

MLP P
R
F1

0.984
0.957
0.970

0.989
0.952
0.970

0.989
0.957
0.973

0.978
0.963
0.970

0.968
0.968
0.968

0.978
0.973
0.976

0.021
0.021
0.008

CNN P
R
F1

- - 0.944
1.000
0.971

0.959
1.000
0.979

0.935
1.000
0.966

0.974
1.000
0.987

0.039
0.000
0.021

LSTM P
R
F1

- - 0.940
1.000
0.969

0.943
0.979
0.961

0.929
0.984
0.956

0.944
1.000
0.971

0.015
0.021
0.015

137 Page 20 of 39 Empirical Software Engineering (2023) 28:137

1 3

techniques are usually determined by the vocabulary size or the number of log tem-
plates, which are not enormous in some datasets. Traditional models may perform well
enough on the lowdimension data. However, deep learning models have more model
parameters, which enable the extraction and representation of higher-dimension data,
and therefore they can take advantage of the semantic information.

Table 5   Evaluation of six log representation techniques applied to seven anomaly detection models on
Thunderbird dataset

1 For each model, the highest F1-Score achieved by the representation techniques are highlighted
2 The’Gap’ columns shows the biggest differences between the representation techniques for the dataset

Model Classical Semantic-based Gap

Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

Traditional
models

SVM P
R
F1

0.999
1.000
0.999

0.996
0.999
0.997

0.997
1.000
0.998

0.996
0.992
0.993

0.992
0.977
0.985

0.995
0.983
0.989

0.007
0.023
0.014

Decision
Tree

P
R
F1

1.000
1.000
1.000

1.000
1.000
1.000

1.000
1.000
1.000

0.985
0.972
0.979

0.980
0.952
0.966

0.975
0.963
0.969

0.025
0.048
0.034

Logistic
Regression

P
R
F1

0.999
0.999
0.999

0.998
0.981
0.989

0.997
0.987
0.992

0.996
0.980
0.988

0.996
0.934
0.964

0.995
0.977
0.986

0.004
0.065
0.035

Random
Forest

P
R
F1

0.997
0.999
0.998

0.999
0.999
0.999

0.998
0.999
0.998

0.972
0.993
0.982

0.958
0.987
0.972

0.966
0.994
0.980

0.041
0.016
0.027

Deep-learning
models

MLP P
R
F1

0.998
0.999
0.999

0.995
0.997
0.996

0.995
0.998
0.997

0.995
0.992
0.993

0.972
0.981
0.977

0.989
0.992
0.991

0.026
0.018
0.022

CNN P
R
F1

- - 0.977
1.000
0.989

0.962
1.000
0.980

0.955
1.000
0.977

0.986
1.000
0.993

0.031
0.000
0.016

LSTM P
R
F1

- - 0.878
1.000
0.935

0.910
1.000
0.953

0.875
1.000
0.933

0.948
1.000
0.973

0.073
0.000
0.038

Table 6   Statistical ranking of the different log representation techniques from the SK-EST test

* The ranking of indicated techniques may be influenced by missing observations

Model Statistically Distinct Groups

1 2 3 4 5

Traditional only MCV TF-IDF (Text)
TF-IDF (ID)

BERT Word2Vec FastText

Deep only MCV * 
BERT

TF-IDF (Text) TF-IDF (ID) *  Word2Vec FastText

Overall MCV *  TF-IDF (ID) * 
TF-IDF (Text)

BERT Word2Vec FastText

Page 21 of 39 137Empirical Software Engineering (2023) 28:137

1 3

•	 Among the classical log representation techniques, the simplest Message Count Vec-
tor technique achieves the best performance; among the semantic-based log repre-
sentation techniques, the contextual embedding technique BERT achieves the best
performance. The Message Count Vector technique is the simplest approach and is
widely used in automated log analysis tasks (He et al. 2016b). Our results show that
it achieves the best performance for 12 out of the 20 cases of the models (five mod-
els applied to four datasets) that do not leverage the sequential information of log
messages. This is also confirmed by the ranking generated by the SK-EST test: In the
traditional-only ranking, MCV is ranked in the first place, followed by TF-IDF-based
techniques. The BERT is a contextual embedding. It achieves the best performance
for 7 out of the 8 cases of the models that can leverage sequential information of log
(two models applied to four datasets). In the deep-only ranking, BERT is ranked in
the first group, which is superior to the other two semantic-based techniques by a
large margin. Unlike static embedding, BERT, as a contextual embedding technique,
generates representations based on the surrounding context and, thus, is more able to
capture the semantic information of a log message. Therefore, representations gener-
ated with BERT can achieve good performance with most anomaly detection mod-
els.

Therefore, future work can leverage such general rules to choose the appropriate log
representation techniques for their models. For traditional models that have limited fea-
ture extraction ability, classical representation techniques such as Message Count Vector
could be considered. For more sophisticated models with more parameters, semantic-based
representation techniques could be considered. And among the semantic-based representa-
tions, contextual embeddings may work better than static embeddings.

Impact of Different Grouping Settings  Impact of Different Grouping Settings. Different
log sequence lengths resulting from different grouping settings could impact the repre-
sentations and the performance of models, which was shown in experiments from previ-
ous works (e.g., RQ2 in Le and Zhang (2022)). When grouping the studied datasets, we
adopted different grouping settings, hoping that our findings could be tenable across var-
ying settings. In particular, we follow prior works using the same datasets to config the
group settings. To further examine the impacts that variations of the grouping process may
have, we conduct an additional evaluation, in which we group the Thunderbird dataset with

Fig. 3   Results of logistic
regression model with different
grouping settings on Thunderbird
dataset

137 Page 22 of 39 Empirical Software Engineering (2023) 28:137

1 3

different fixed window settings (i.e., 20 logs, 100 logs, 200 logs, and 0.5-h logs), which are
in accordance with the settings in Le and Zhang (2022). Figure 3 shows the results.

Based on the obtained results, it is evident that performance variations can occur due
to different grouping configurations. In general, the relative ranking among the log repre-
sentation techniques maintains the same for the different lengths of log sequences. There
may be multiple factors contributing to these performance variations, making it challeng-
ing to accurately evaluate the effectiveness of log representation techniques across vari-
ous grouping settings. For example, discrepancies in dataset size can impact performance
variations since the composition and size of the training and test sets are influenced by
different grouping configurations. Furthermore, there is no best-performing setting for all
the studied techniques according to the results. As a result, we believe that the lengths of
log sequences intricately influence both log representations and models through complex
mechanisms. Future evaluations should focus on investigating the effects of grouping set-
tings on log representation techniques.

Finding 2: Traditional anomaly detection models perform well on classical log repre-
sentations. However, deep models can achieve better performance with semantic-based
representations by their stronger feature extraction and representation ability; Among
the classical log representation techniques, Message Count Vector achieves the best per-
formance. Context embedding (BERT) generally performs better among the semantic-
based log representation techniques.

5.2 � RQ2. How does log parsing influence the effectiveness of log representations
in automated log analysis?

5.2.1 � Motivation

Log parsing process transforms semi-structured raw logs into structured data by separat-
ing variables from log messages and retaining the log templates. Log parsing is a common
pre-processing step before the log representation step. Although many log parsers with dif-
ferent mechanisms have been developed and achieved high performance and high accu-
racy (Zhu et al. 2019), the errors introduced by the parsing process may sometimes under-
mine the performances of log analysis according to the empirical study of Le et al. (Le and
Zhang 2021). Essential words may be removed from a parsing error which results in infor-
mation loss. As log parsing may be error-prone and cause information loss, some research-
ers have explored some log analysis frameworks (Le and Zhang 2021) that take row logs
as inputs. It is not clear how log parsing and log representation together impact the perfor-
mance of downstream tasks. Thus, in this RQ, we investigate the potential impacts that log
parsing, when used with different log representation techniques, may have on the perfor-
mance of downstream models.

5.2.2 � Approach

In this RQ, we consider the log representation techniques that are compatible with both
parsed and unparsed log data. Then we compare the performance of the downstream mod-
els that take the representations built from parserd and unparsed log data.

Page 23 of 39 137Empirical Software Engineering (2023) 28:137

1 3

Selection of Log Representation Techniques  From the studied log representation tech-
niques, we select Word2Vec and FastText to answer this research question. The representa-
tion generated by these two techniques can remain the same regardless of the configuration
of log parsing, which is not the case for representation like Log Template Text-based TF-
IDF (TF-IDF Text), whose dimension may vary according to the vocabulary of the corpus
in the dataset. As the dimension can also impact on the performance of models, we choose
techniques that can generate fixed dimension representations for both parsed and unparsed
log data. Also, the high dimension and enormous model size of pre-trained BERT prohibits
us to generate features for unparsed logs in our server.

Comparison of using parsed and unparsed log data to build representations  We com-
pare and analyze the performances of the studied anomaly detection models with the fea-
tures generated by these two representation techniques with both parsed and unparsed logs.
Moreover, we also generate the visualization of embeddings with a dimension reduction
algorithm (t-SNE (Van der Maaten and Hinton 2008)) to get some intuitions from the data
to better explain the varied results.

5.2.3 � Results

Figure 4 shows the comparison of performances of studied models with FastText represen-
tations generated with original and parsed log messages.

•	 In general, log parsing improves the quality of the generated log representations and
thereby the performance of the downstream models. For the HDFS dataset, the two
log representation techniques,Word2Vec and FastText, achieve an average performance
(F1-score) improvements of 0.010 and 0.236 across the seven models, respectively.
For the BGL dataset, the average improvements are 0.017 and 0.034. For Spirit, the
improvements are 0.010 and 0.002, which are 0.012 and 0.016 for Thunderbird.

Fig. 4   Comparison of performances of the studied anomaly detection models using the Word2Vec and Fast-
Text representations that are generated from parsed and unparsed logs

137 Page 24 of 39 Empirical Software Engineering (2023) 28:137

1 3

In particular, for the HDFS dataset with the FastText representation, parsing leads to a
very large difference in the performance of five out of the seven studied models. We ran-
domly sample the FastText representations of 200 positive and negative samples from the
HDFS dataset and use t-SNE (Van der Maaten and Hinton 2008) to visualize them. The
visualization in Fig. 5 shows that representations for parsed logs are more compact than
those of unparsed logs, which means the embeddings generated with the parsed logs are
more distinguishable than those generated from the original log messages. However, deep
learning models may work better with unparsed log data in some cases. For example, on
HDFS and Thunderbird datasets, CNN performs better with unparsed logs by a small mar-
gin. The reason behind this may be that the parsing errors induced by the log parser can
undermine the performance. The impact of log parsing errors was also examined in Le and
Zhang (2021)’s work.

The characteristic of the representation technique can explain the general inferior per-
formances on unparsed logs: There is no proper mechanism to represent numerical values
or special tokens in logs for these representation techniques. The representations generated
for these tokens would be a noise in feature representation if they are not treated as OOVs.

•	 Depending on the datasets, some models (e.g., CNN and LSTM) are less sensitive
to whether the log data is parsed or not. CNN and LSTM perform similarly with
the two different inputs may be a little counterintuitive. One possible explanation is
that these two deep sequential models have strong feature extraction and representation
ability and can offset the impacts of the noise. At the same time, unparsed logs will not
introduce noises caused by the parsing errors.

Although there exist log analysis frameworks that take unparsed logs as input, to our
best knowledge, they adopt preprocessing process to manually remove parameters or other
fields from raw logs (Le and Zhang 2021), which can be regarded as a’vanilla’ parsing
process. If certain fields in logs, such as numerical values, special tokens, and error codes,
are not adequately preprocessed, modelled, and utilized, it may have an adverse effect on
the representation of the log. This finding implies that careful preprocessing and model-
ling of these fields are crucial for optimal log representation. Log parsing is an effective
way to remove these unrecognizable texts for pre-trained language models and thus reduce
the noise in representations. Future researchers and practitioners should pay attention to

Fig. 5   Visualization of representations generated with FastText using t-SNE. 200 positive (red) and nega-
tive (green) samples are randomly sampled from the HDFS dataset

Page 25 of 39 137Empirical Software Engineering (2023) 28:137

1 3

the preprocessing process before adopting log representation techniques, even if they aban-
don the log parsing process when designing a log analysis framework. Additionally, to
improve the overall performance, future researchers and practitioners may also want to take
into account the modelling of certain fields (e.g., component name, CPU usage, the time
elapsed for a certain process, etc.) that cannot be embedded by language models but are
critical to their downstream tasks (Du et al. 2017).

Impact of Refining the Parsing Results  As mentioned in 4.3.2, we utilized additional
regular expressions to improve the parsing results. We then did a sensitivity test to see its
potential impact on the performance.We further evaluated our previously studied represen-
tation techniques using the Thunderbird dataset parsed by the Drain parser with regular
expressions and trained logistic regression models. The results are shown in Table 7.

Although we can tell that the parsing results are refined by the observation that repeti-
tive templates are decreased, we only observed minor accuracy gains for some representa-
tions after passing the regular expressions from the experiment. In contrast to the previous
findings, which demonstrated that parsed and unparsed logs could lead to significant dis-
crepancies, the refinement of parsing outcomes did not have a substantial impact on perfor-
mance. This could be attributed to the ability of machine learning models to learn how to
exclude unimportant features or irrelevant noise.

However, a large number of error templates may greatly increase the dimension of some
representation techniques (e.g., for MCV, the dimension is equal to the number of resulting
templates.). A large number of error templates increases the learning burden when we train
the follow-up models. Sometimes it may even make the model training unprocurable.

Impact of Using Different Log Parsers  Recent studies (Dai et al. 2020; Khan et al. 2022;
Liu et al. 2022) adopt new metrics to evaluate the existing log parsers. Apart from just
reporting the Group Accuracy of the parsing results, these works report other metrics (e.g.,
Parsing Accuracy, Edit Distance and etc.), which may give a more comprehensive evalu-
ation of a parser. While it is true that the Drain parser achieves a high group accuracy, it
presents inferior results in some metrics (i.e., Parsing Accuracy) in some recent works.

A higher Group Accuracy may benefit the representation techniques that rely on
log templates (e.g., MCV). In contrast, a high Message-Level accuracy may contrib-
ute to the quality of representations based on the token-level census or embedding
generation (e.g., TF-IDF (Text)). Therefore, we conducted another sensitivity test to
reduce our evaluation’s potential bias. In this test, we adopt the LogPPT parser (Le and
Zhang 2023), which exhibits superior results over different metrics, including Parsing

Table 7   Performance of logistic regression model on Thunderbird dataset parsed without extra regular
expressions. The values under the F1 Scores indicate differences compared with corresponding results in
RQ1

Technique Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

F1 Score 0.999
( =)

0.989
( =)

0.991
(0.001↓)

0.987
(0.001↓)

0.964
( =)

0.983
(0.003↓)

137 Page 26 of 39 Empirical Software Engineering (2023) 28:137

1 3

Accuracy, to further evaluate the quality of the studied representation techniques using
the Thunderbird dataset and trained logistic regression models. The results are shown
in Table 8.

From the results of this sensitive test, it is evident that there exist slight variations
in performance when parsing the dataset using a different parser. The exploration of
correlations or patterns between the performances of log parsers and the quality of log
representation techniques is yet to be conducted. This presents an avenue for future
evaluations in the realm of log parsers, representation techniques and downstream
models.

Finding 3: In general, log parsing improves the quality of the generated log rep-
resentations and, thereby, the performance of the anomaly detection models. It
reduces the noise in representations and thus alleviates models’ learning burden
by removing dynamic fields in logs. Proper preprocessing and modelling of these
dynamic fields may be crucial for optimal log representation.

5.3 � RQ3. How do representation aggregation methods influence the effectiveness
of log representation in automated log analysis?

5.3.1 � Motivation

For representation techniques that generate word embeddings(e.g., Word2Vec, Fast-
Text) for tokens in log events, we need to merge these token-level representations to
event-level ones. The related works usually used mean aggregation to form the repre-
sentation for log events (Meng et al. 2019), in which information may be lost, as some
keywords that carry essential semantic information and severity in logs may be diluted
by averaging. Therefore, we aim to compare different aggregation methods and evalu-
ate the impacts they have on the quality of log representation.

In addition, for sequential models that take a fixed length of log messages as input,
the event-level representation will be implicitly aggregated by the models to gener-
ate analytical results according to its task. So, we need to partition the session with
a fixed-length window and a pre-defined step size. This implicit aggregation may
also influence the performances of downstream models. Therefore, we investigate the
impact that different configurations of session partition may have on the performance
of downstream tasks. Although results generated with window-based inputs will be
merged to generate the final predictions for log sessions, we want to quantify the
impacts of different configurations of aggregation on the downstream tasks.

Table 8   Performance of logistic regression model on Thunderbird dataset parsed by LogPPT parser. The
values under the F1 Scores indicate differences compared with corresponding results in RQ1

Technique Message
Count
Vector

TF-IDF
(ID)

TF-IDF
(Text)

W2V FastText BERT

F1 Score 0.999
( =)

0.996
(0.007 ↑)

0.992
( =)

0.981
(0.007↓)

0.941
(0.023 ↓)

0.985
(0.001↓)

Page 27 of 39 137Empirical Software Engineering (2023) 28:137

1 3

5.3.2 � Approach

In this research question, we investigate the impact of feature aggregation in log repre-
sentation from two perspectives: 1) method of aggregating token-level representations,
and 2) aggregation window size of sequential models.

Method of aggregating token-level representations. For the first perspective, we
select the two most common aggregation practices, the mean aggregation and the TF-
IDF aggregation (Chen et al. 2021). For mean average aggregation, we aggregate the
token-level representations by averaging the feature vectors by each dimension. While
for TF-IDF aggregation, we calculate the TF-IDF values for each token in log templates
and calculate the weighted average of the token-level representation to form the event-
level representation for log events. Moreover, we use the mean average to aggregate
them into sequence-level representation. We select Word2Vec and FastText as they gen-
erate token-level representations.

Window size for feature aggregation in sequential models  For the second perspective,
we study the implicit aggregation process within the sequential models. From Table 1,
we can find the significant difference in the average size of sessions in the four studied
datasets. So, we conducted some preliminary experiments to broadly define the suitable
range of the window size and further pre-defined some specific window sizes accordingly
to investigate the impacts of implicit aggregation of studied sequential models. The chosen
window size range for the HDFS and the Thunderbird is between 10 to 50, while for the
BGL and the Spirit, whose sessions are usually longer, the range is 20 to 80.We adopt all
studied techniques that can generate event-level representations (i.e., except the Message
Count Vector and TF-IDF (ID) which can only generate sequence-level representations).

Fig. 6   Comparison of performances of FastText Log representation with TF-IDF and Mean aggregation
with LSTM anomaly detection model

137 Page 28 of 39 Empirical Software Engineering (2023) 28:137

1 3

5.3.3 � Results

•	 Different approaches of aggregating representations can cause nonnegligible dif-
ference in the performance of the downstream models. From Fig. 6, we can tell that
there exist some performance gaps between these two aggregation methods on some
combinations of the dataset, model and log representation. For example, the logistic
regression model may favour TF-IDF aggregation with both representation techniques
on all studied datasets: TF-IDF aggregation outperformed the mean aggregation in all
eight cases. However, this conclusion is invalid on other representation techniques and
follow-up models. This finding indicates that the aggregation approaches can have non-
negligible impacts on the effectiveness of log representation and thus influence the per-
formance of log analysis models.

•	 However, there is no clear pattern on which aggregation method performs better,
as the impacts to the performance of aggregation method vary according to the
combination of dataset, model, and representation techniques. From the results, we
can not find a clue to tell which aggregation method works better: For Word2Vec rep-
resentation on the HDFS dataset, 3 out of 7 models perform significantly better with
TF-IDF aggregation. However, this is not the case for other dataset and representation
combinations. Different combinations of the dataset, model and representation favour
different aggregation methods. Moreover, the difference in performance also vary
among the combinations. Some combinations may be more sensitive to the utilization
of aggregation techniques.

•	 Window size for sequential models can significantly affect the performances of
downstream models. Figure 7 shows the F1 scores of CNN and LSTM models with
different representations varying according to the input window size on four studied
datasets. From the graph 7, we can see the fluctuation of the F1 score with the varia-
tion in window size. On the HDFS dataset, the biggest difference in the F1 score for the
CNN model is 0.074, achieved by BERT, which is 0.210, achieved by FastText for the
LSTM model. On the BGL dataset, the biggest difference in F1 score is 0.073, achieved

Fig. 7   The impacts of different window sizes for feature aggregation

Page 29 of 39 137Empirical Software Engineering (2023) 28:137

1 3

by FastText and 0.047, achieved by Word2Vec. On the Spirit dataset, the biggest dif-
ference in F1 score for the CNN model is 0.037, achieved by FastText, and 0.04 for
the LSTM model, achieved by TF-IDF. And on the Thunderbird dataset, the biggest
gaps for CNN and LSTM are 0.068 and 0.079, respectively, both achieved by FastText.
The results show that the window size for feature aggregation can pose nonnegligible
impacts on the performance of anomaly detection task.

•	 The differences in performance may be caused by the intrinsic features of data-
sets. The line charts show an improvement in performance when window size increases
for the HDFS on almost all the studied log representation techniques with two models.
We do not expand the range’s upper bound for HDFS as the F1 score almost reaches
1, and the window size of 50 is larger than the length of most sessions in the dataset.
For the BGL dataset, the peak is generally around 50, and the performances tend to
decrease thereafter. For Spirit and Thunderbird, we also observed growth in perfor-
mance when increasing the window size, while the variations are more stable compared
with the other two datasets.

•	 For the same dataset, window size affects the different representation techniques
in a similar way. The variation trends for different combinations of log representa-
tions and models are generally consistent on the same dataset, with some outliers (e.g.,
BERT with CNN when window size is 40, Word2Vec with LSTM when window size is
20). Therefore, we believe that the intrinsic features of the dataset cause the differences
in performance.

More specifically, the characteristics of anomalies in a log sequence vary according to
datasets. The lengths of abnormal sequences may have different ranges in different data-
sets. The sliding window setting can influence the distribution of anomalies in models’
input windows, and some continuous anomaly log sequences may be truncated into multi-
ple input windows in some input windows. Therefore, the sliding window setting may have
a significant impact on the performance. Similarly to this, the aforementioned grouping
methods, which group a log sequence into sessions, can also have impacts on the perfor-
mance of different anomaly detection models, which were found by recent work (Le and
Zhang 2022). In their work, their finding suggests that the performances of models suffer
when dealing with shorter log sequences.

The impacts of sliding window settings may vary mainly depending on the datasets. It
is a great challenge for the developer to determine the most suitable sliding window set-
ting for their cases, as it may demand onerous experiments. Besides, we notice that recent
studies introduce Graph Neural Networks (GNN) (Wan et al. 2021; Xie et al. 2022) to log
representation, and the experiments from these works show that these models are robust
against the variation of window size. Future researchers may utilize more stable log rep-
resentation techniques, which are less sensitive to the variation of feature aggregation set-
tings, to ensure more stable performances of their models.

Finding 4: Different aggregation configurations can cause non-negligible differences
in the performance of the follow-up models, while there is no clear pattern on which
aggregation settings may generally perform better. The different impact of the aggrega-
tion configurations on the downstream model performance may be caused by the intrin-
sic features of datasets. In particular, for the same dataset, the window size affects the
different representation techniques in a similar way. Future researchers and practitioners
are suggested to explore different feature aggregation settings by considering the charac-

137 Page 30 of 39 Empirical Software Engineering (2023) 28:137

1 3

teristics of the datasets or utilizing log representation techniques that are more stable to
different aggregation settings.

6 � Discussions

In this section, based on our results for answering our research questions, we discuss the
implications of our findings. Additionally, we summarize the key factors to consider when
selecting the most appropriate log representation techniques for log-based anomaly detec-
tion approaches or other automated log analysis tasks. Our recommendations and discov-
eries will be helpful to researchers and practitioners in selecting the optimal log repre-
sentation techniques and achieving favourable outcomes in their automated log analysis
frameworks.

6.1 � Implications

•	 Automated log analysis approaches should pay attention to the choice of log rep-
resentation techniques as they have a non-negligible impact on the follow-up mod-
els. Existing log-based anomaly detection approaches usually consider only a single log
representation technique. For example, in the work that adopts CNN to detect anoma-
lies in log sequences (Lu et al. 2018), only log keys are used to learn the embeddings
for log events, and information from log parameters and messages is lost in this pro-
cess. Our results suggest that the performance of these approaches may be improved
by considering other ways of log representations. Also, new representation approaches
may be developed according to the specific tasks and downstream models. In particular,
classic machine learning models may favour representations generated by traditional
techniques. In contrast, deep-learning-based downstream models can better utilize
semantic embedding to achieve better results. Also, experiments show that contextual
embedding performs the best among the pre-trained language models. Our findings
can provide guidance for future work to choose and design the appropriate log repre-
sentation techniques for their specific tasks. For example, researchers should consider
the capability of feature extraction and representation of the models they adopt when
choosing the log representation techniques. Models of higher complexity (with more
parameters) are more capable of dealing with higher dimensional representations.

•	 Log parsing or other preprocessing are recommended before log representation
process as they usually improve the performance of the downstream log analysis
tasks. Most of the prior works on log-based automated log analysis adopt a log parser
to transform raw log to structured data. Recent work (Le and Zhang 2021) explores
omitting the parsing process and extracting and representing information directly from
the raw log data. However, they usually employ some preprocessing steps to remove
unnecessary fields in log data. We find that the log parsing process generally positively
impacts automated log analysis, although sometimes it may be timeconsuming and
erroneous. Also, log parsing enables template-based log representation techniques and
removes dynamic fields that will hinder the other semantic-based techniques. Thus, we
suggest that researchers should carefully consider whether to employ the log parsing
process in their workflow. As log parsers may sometimes be error-prone and consume

Page 31 of 39 137Empirical Software Engineering (2023) 28:137

1 3

additional computational resources, researchers can consider substituting them with
lightweight preprocessing processes.

•	 Log analysis workflows should consider experimenting with different configura-
tions of feature aggregation. When aggregating low-level log representations to high-
level ones, prior works (e.g., (Chen et al. 2021)) usually adopt a single strategy without
experimenting with other configurations. However, according to our experiments, the
feature aggregation process is essential for log representation. Feature aggregation con-
figurations can significantly impact downstream models’ performances. However, the
impacts are closely related to the characteristics of the datasets. Prior works stand a
good chance of achieving better performances when employing different feature aggre-
gation configurations. Therefore, we advise researchers to consider the intrinsic features
of the studied log data and employ different configurations when designing their auto-
mated log analysis workflow.

6.1.1 � Key factors for selecting log representation techniques

To provide insights for researchers and practitioners in selecting appropriate log represen-
tation techniques, we summarize below the key factors that need to be considered based on
our experiments and findings. We recommend researchers and practitioners consider these
factors in their log-based anomaly detection and potentially other automated log analysis
tasks to achieve optimal performance in such tasks.

•	 Quality of representation The quality of log representations is a crucial factor that
significantly affects the performance of downstream models. In our study, we found that
different models can benefit from different log representations. Across various models
and datasets, we determined that the simplest message count vector representation can
perform well in most cases. In addition, traditional anomaly detection models gener-
ally performed well on classical log representations, while deep models achieved better
performance with semantic-based representations due to their stronger feature extrac-
tion and representation ability. Among the classical log representation techniques, the
Message Count Vector approach achieved the best performance, while Context embed-
ding (BERT) generally performed better among the semanticbased log representation
techniques. Therefore, selecting high-quality log representation techniques is essential
for achieving optimal downstream model performance.

•	 Dimension of representation One of the key factors to consider when selecting rep-
resentation techniques is the dimension of the resulting representation. For some rep-
resentation techniques, their resulting dimensions are data-invariant, which means the
dimension will remain the same when they are applied to different log data. Semantic-
based techniques (e.g., BERT) and graph-based techniques that utilize a neural network
structure to generate embeddings for log data can usually provide fix-length outputs.
By contrast, classical techniques (e.g., message count vector) usually rely on a vocabu-
lary of tokens or log templates and thus, the dimensions are subjective to the data. The
advantages of techniques with fixed output dimensions are obvious: First, they can bet-
ter serve the scenarios when data shifting (e.g., vocabulary changes) exists in system
logs caused by software evolution. When new log templates appear, these techniques
are able to encode new templates while maintaining the feature property. Second, fixed
output dimensions may enable more stable performances over different datasets on
the same model. When working with datasets with a larger number of log templates,

137 Page 32 of 39 Empirical Software Engineering (2023) 28:137

1 3

the anomaly detection models may suffer from a performance loss due to their lim-
ited model capacity. Higher dimension input usually demands a larger model with
more parameters. Classical techniques may generate representations of a wide range of
dimensions over different datasets. For example, MCV generates vectors of 46 dimen-
sions on the HDFS dataset, while for the Thunderbird, the dimension is 1,488 in our
experiments. Higher dimensions may lead to higher computational costs in the training
and prediction stages of follow-up downstream models.

•	 Need for log parsing As we discussed previously in RQ2, the log parsing process
can generally remove noises caused by unprocessed tokens in log data, while errors
induced by log parsers may cause performance loss (Le and Zhang 2022). Besides, the
log parsing process can be time-consuming and require significant manual and compu-
tational resources. While log parsing is not essential for semantic-based representation
techniques since they typically do not require log template information to operate, it
may still be included as a preprocessing step for the logs. In this situation, a complete
parsing process may be substituted by a lightweight preprocess, in which tokens that
can not be processed by vectorizers are removed, when getting log templates is not
mandatory for the representation technique.

•	 Computational cost for representation construction Another important consid-
eration is the computational cost. Besides the log parsing process, log representation
techniques require computational resources (time and space) to convert raw logs, log
templates, or log template IDs to numeric vectors. As the mechanism varies across dif-
ferent techniques, the differences in computational cost are significant. For classical
techniques, much memory may be used to construct dictionaries and vectorize tokens
varying with datasets. For semantic-based techniques, although programmers can uti-
lize the off-theshelf pre-trained models to escape the computational consumption for
training the language models, some techniques still require heavy computations to
acquire embeddings. For example, contextual embedding techniques require more com-
putational resources to construct representations than static embedding techniques. Pre-
trained BERT models process input tokens through transformer blocks, which involve
significant computation and sometimes require specialized hardware (e.g., GPUs,
TPUs), particularly for lengthy texts. By comparison, Word2Vec uses a shallow neural
network, which is computationally efficient, to generate word embeddings. Taking this
factor into account is important when designing anomaly detection workflows that are
targeted for online or real-time application scenarios.

•	 Granularity It is mandatory to ensure that the level of log representation is aligned
with the specific anomaly detection model being used. This is because different mod-
els require varying levels of granularity and types of information from the log data to
perform according to their varying mechanisms. Semantic-based representation tech-
niques (e.g., Word2Vec) can usually generate token-level representations, which can
be aggregated into higher-level ones, while some classical techniques can only work
on higher-level representations (e.g., MCV can only generate sequence-level represen-
tation). Therefore, it is crucial to carefully consider the requirements of the anomaly
detection model being employed and choose the log representation accordingly.

•	 Explainability Finally, explainability is another factor to consider when selecting a log
representation technique. Usually, classical log representation techniques (e.g., MCV),
which represent the quantitative characteristics of log sequences, have better explaina-
bility compared with their semantic-based counterparts, which are learning-based. With
a good explainability of log representation techniques, researchers can better under-
stand the prediction given by the follow-up models and, therefore, are able to trace the

Page 33 of 39 137Empirical Software Engineering (2023) 28:137

1 3

roots when performance is not satisfactory. Poor explainability of log representation
techniques will make the decision-making process a black box, in which the decision-
making process becomes agnostic. Future researchers should consider this factor when
designing a trustworthy automated log analysis system.

In conclusion, selecting an appropriate log representation technique requires careful
consideration of several factors, including the quality of representation, dimension of rep-
resentation, need for log parsing, computational cost for representation construction, gran-
ularity, and explainability.

7 � Threat to validity

We have identified the following threats to the validity of our findings: External validity.
We carried out this research only based on the log anomaly detection task with the hope
that our experimental results and findings can serve as a reference for other automated
log analysis tasks. The conclusions may not apply to other downstream tasks, as different
downstream tasks or models may have different intrinsic characteristics and favour differ-
ent configurations or features of log representation. However, anomaly detection is one of
the most studied downstream tasks in the domain of automated log analysis (Chen et al.
2021; Du et al. 2017; Fu et al. 2009; He et al. 2016b; Le and Zhang 2021; Lu et al. 2018;
Meng et al. 2019; Nedelkoski et al. 2020; Wang et al. 2018; Xu et al. 2009; Zhang et al.
2019), demonstrating its importance and popularity. Due to the fact that many automated
log analysis tasks share similar pipelines that process log data, our work may also inspire
and support the designs of workflows of other tasks, despite the fact that only log-based
anomaly detection is studied in our work.

As the mechanism of anomaly detection approaches differs greatly, we limit our research
to the supervised log-based anomaly detection models to ensure a fair comparison among
studied representations. Therefore, our findings may not apply to unsupervised methods.
Future work that examines the impact of log representations on unsupervised learning
tasks can complement our results.

Recently, new approaches (e.g., Transformer-based (Le and Zhang 2021; Nedelkoski
et al. 2020), graph-based approaches (Wan et al. 2021; Xie et al. 2022)) have been applied
to log-based anomaly detection. However, we did not evaluate them in this work, as the
mechanisms of these approaches differ greatly, which makes it hard for us to fit them into
our research questions. Future works may further examine these new approaches and their
susceptibility to log representation techniques. To compensate for this, we discussed the
most representative transformer-based approaches, and related the findings from these
works with our experimental results and findings.

Construct Validity  We followed some existing works in the experiment to use pre-trained
models trained with natural language models. The experimental results may not reflect the
true capability of these log representation techniques, as the effectiveness of generated log
representations may suffer greatly from OOV issues or incorrect semantics caused by the
different characteristics between log data and natural language.

137 Page 34 of 39 Empirical Software Engineering (2023) 28:137

1 3

Internal Validity  Our configurations for dataset partition may not be optimal and may
influence the accuracy of the evaluation. According to our survey, different log anomaly
detection works adopt different grouping configurations for the studied public datasets. We
referred to previous works and chose the most common grouping configurations to enable
a better comparison. In addition, we employed different grouping configurations for the
four studied datasets with the hope that our results and finding can be invariant to different
grouping settings of datasets. Further study may be carried out to evaluate the impacts of
the data grouping on the log representations. The hyperparameters for the machine learn-
ing models in our studies might not be fully optimized. Instead of aiming for the best per-
formance for each particular model, our main goal was to examine how well alternative
log representation strategies performed across various downstream models. As a result, we
made sure that each representation technique was applied to the same dataset with identical
parameter settings. Besides, our experimental results are generally consistent with those of
prior studies that employed similar datasets, representations, and models. Additionally, we
have included our implementations in our replication package, making it possible to repro-
duce our results. These factors help to mitigate the potential impact of using suboptimal
hyperparameters in our study.Instead of directly assessing the quality of representations,
we rely on the performance of downstream models as an indirect measure. However, the
variables involved in these downstream tasks may affect the internal validity and introduce
potential biases. To mitigate the potential bias, we consider multiple datasets and down-
stream models in our experiments.In addition, while most models performed well on the
four datasets we examined, we found that the choice of log representation technique could
affect downstream model performance. We did observe differences in F-scores when using
different log representation techniques. These variations were statistically significant as
confirmed by our SK-EST analysis.Furthermore, certain techniques’ characteristics in our
SK-Test resulted in some missing observations that could affect the ranking of the stud-
ied representation techniques, which we have indicated by clearly indicating the affected
techniques.

8 � Conclusions

Our work makes a comprehensive evaluation and review of six log representations on
four public datasets with seven supervised anomaly detection models. We also examine
the impacts of log parsing and feature aggregation of features on the effectiveness and
quality of log representations. Our findings suggest that log representation techniques
can significantly impact the performance of downstream models. We provide some gen-
eral guidance and key factors on choosing suitable representation techniques. Also, we
find that log parsing can generally improve the quality of log representation by reduc-
ing noise in some representation techniques. Moreover, the impacts of configuration
for feature aggregation may vary according to the representation, data and downstream
models. When designing an automated log analysis workflow, these factors should be
carefully taken into account by researchers and engineers. For future work, we plan to
evaluate log representation techniques with more automated log analysis downstream
tasks and try to explore different features that different downstream tasks may favour.
Thus, we can provide a more comprehensive direction for researchers to design their
automated log analysis frameworks.

Page 35 of 39 137Empirical Software Engineering (2023) 28:137

1 3

Declarations 

Conflicts of interests  The authors have no competing interests to declare that are relevant to the content of
this article.

References

Chen M, Zheng AX, Lloyd J, Jordan MI, Brewer E (2004) Failure diagnosis using decision trees. In
International Conference on Autonomic Computing, 2004. Proceedings., pages 36–43. IEEE

Chen Z, Liu J, Gu W, Su Y, Lyu MR (2021) Experience report: Deep learning-based system log analysis
for anomaly detection. arXiv preprint arXiv:2107.05908

Chow M, Meisner D, Flinn J, Peek D, Wenisch TF (2014) The mystery machine: End-to-end perfor-
mance analysis of large-scale internet services. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 217–231

Dai H, Li H, Chen CS, Shang W, Chen T-H (2020) Logram: Efficient log parsing using n-gram dic-
tionaries. IEEE Transactions on Software Engineering 48(3):879–892. https://​doi.​org/​10.​1109/​TSE.​
2020.​30075​54

Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert:Pretraining of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805

Du M, Li F, Zheng G, Srikumar V (2017) Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 1285–1298

El-Sayed N, Zhu H, Schroeder B (2017) Learning from failure across multiple clusters: A trace-driven
approach to understanding, predicting, and mitigating job terminations. In 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages 1333–1344. IEEE

Fu Q, Lou J-G, Wang Y, Li J (2009) Execution anomaly detection in distributed systems through
unstructured log analysis. In 2009 ninth IEEE international conference on data mining, pages 149–
158. IEEE

Fu Q, Lou J-G, Lin Q, Ding R, Zhang D, Xie T (2013) Contextual analysis of program logs for under-
standing system behaviors. In 2013 10th Working Conference on Mining Software Repositories
(MSR), pages 397– 400. IEEE.

Grave E, Bojanowski P, Gupta P, Joulin A, Mikolov T (2018) Learning word vectors for 157 languages.
In Proceedings of the International Conference on Language Resources and Evaluation (LREC
2018)

Hansen SE, Atkins ET (1993) Automated system monitoring and notification with swatch. In LISA, volume
93, pages 145–152. Monterey, CA

He S, He P, Chen Z, Yang T, Su Y, Lyu MR (2021) A survey on automated log analysis for reliability engi-
neering. ACM Comput Sur (CSUR) 54(6):1–37

He P, Zhu J, He S, Li J, Lyu MR (2016a) An evaluation study on log parsing and its use in log mining. In
2016a 46th annual IEEE/IFIP international conference on dependable systems and networks (DSN),
pages 654–661. IEEE

He S, Zhu J, He P, Lyu MR (2016b) Experience report: System log analysis for anomaly detection. In 2016b
IEEE 27th international symposium on software reliability engineering (ISSRE), pages 207–218. IEEE

He P, Zhu J, Zheng Z, Lyu MR (2017) Drain: An online log parsing approach with fixed depth tree. In 2017
IEEE international conference on web services (ICWS), pages 33–40. IEEE

He S, Zhu J, He P, Lyu MR (2020) Loghub: a large collection of system log datasets towards automated log
analytics.arXiv preprint arXiv:2008.06448

Jarry R, Kobayashi S, Fukuda K (2021) A quantitative causal analysis for network log data. In 2021 IEEE
45th Annual Computers, Software, and Applications Conference (COMPSAC), pages 1437–1442.
IEEE

Katkar DGS, Kasliwal AD (2014) Use of log data for predictive analytics through data mining. Current
Trends in Technology and Science. Volume: 3, Issue: 3 (Apr-May 2014)

Khan ZA, Shin D, Bianculli D, Briand L (2022) Guidelines for assessing the accuracy of log message tem-
plate identification techniques. In Proceedings of the 44th International Conference on Software Engi-
neering, pages 1095–1106

Le V-H, Zhang H (2021) Log-based anomaly detection without log parsing. In 2021 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pages 492–504. IEEE.

137 Page 36 of 39 Empirical Software Engineering (2023) 28:137

https://doi.org/10.1109/TSE.2020.3007554
https://doi.org/10.1109/TSE.2020.3007554

1 3

Le V-H, Zhang H (2022) Log-based anomaly detection with deep learning: how far are we? In 2022 IEEE/
ACM 44th International Conference on Software Engineering (ICSE), pages 1356–1367. IEEE

Le V-H, Zhang H (2023) Log parsing with prompt-based few-shot learning. arXiv preprint
arXiv:2302.07435.

Li X, Chen P, Jing L, He Z, Yu G (2020) Swisslog: Robust and unified deep learning based log anomaly
detection for diverse faults. In 2020 IEEE 31st International Symposium on Software Reliability Engi-
neering (ISSRE), pages 92–103. IEEE.

Liang Y, Zhang Y, Xiong H, Sahoo R (2007) Failure prediction in ibm bluegene/l event logs. In Seventh
IEEE International Conference on Data Mining (ICDM 2007), pages 583–588. IEEE.

Liao L, Chen J, Li H, Zeng Y, Shang W, Guo J, Sporea C, Toma A, Sajedi S (2020) Using black-box perfor-
mance models to detect performance regressions under varying workloads: an empirical study. Empir
Softw Eng 25(5):4130–4160

Liu FT, Ting KM, Zhou Z-H (2012) Isolation-based anomaly detection. ACM Trans Knowl Discov Data
(TKDD) 6(1):1–39

Liu Y, Zhang X, He S, Zhang H, Li L, Kang Y, Xu Y, Ma M, Lin Q, Dang Y et al (2022) Uniparser: A uni-
fied log parser for heterogeneous log data. Proc ACM Web Conf 2022:1893–1901

Lou J-G, Fu Q, Yang S, Xu Y, Li J (2010) Mining invariants from console logs for system problem detec-
tion. In 2010 USENIX Annual Technical Conference (USENIX ATC 10)

Lu S, Wei X, Li Y, Wang L (2018) Detecting anomaly in big data system logs using convolutional neural
network. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Comput-
ing and Cyber Science and Technology Congress (DASC/PiCom/- DataCom/CyberSciTech), pages
151–158. IEEE

Lyu Y, Li H, Sayagh M, Jiang ZM, Hassan AE (2021) An empirical study of the impact of data split-
ting decisions on the performance of aiops solutions. ACM Trans Softw Eng Methodol (TOSEM)
30(4):1–38

Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y, Chen Y, Zhang R, Tao S, Sun P et al (2019) Loganom-
aly: Unsupervised detection of sequential and quantitative anomalies in unstructured logs. In IJCAI
19:4739–4745

Meng W, Liu Y, Zhang S, Zaiter F, Zhang Y, Huang Y, Yu Z, Zhang Y, Song L, Zhang M et al (2021)
Logclass: Anomalous log identification and classification with partial labels. IEEE Trans Netw Serv
Manage 18(2):1870–1884

Nagaraj K, Killian C, Neville J (2012) Structured comparative analysis of systems logs to diagnose per-
formance problems. In 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 353–366

Nedelkoski S, Bogatinovski J, Acker A, Cardoso J, Kao O (2020) Self-attentive classification-based anom-
aly detection in unstructured logs. In 2020 IEEE International Conference on Data Mining (ICDM),
pages 1196–1201. IEEE

Nguyen KA,Walde SSi, Vu NT (2016) Integrating distributional lexical contrast into word embeddings for
antonym-synonym distinction. arXiv preprint arXiv:1605.07766.

Oliner A, Ganapathi A, Xu W (2012) Advances and challenges in log analysis. Commun ACM 55(2):55–61
Oliner A, Stearley J (2007) What supercomputers say: A study of five system logs. In 37th annual IEEE/

IFIP international conference on dependable systems and networks (DSN’07), pages 575–584. IEEE
Prewett JE (2003) Analyzing cluster log files using logsurfer. In Proceedings of the 4th Annual Conference

on Linux Clusters. Citeseer
Rouillard JP (2004) Real-time log file analysis using the simple event correlator (sec). In LISA 4:133–150
Rusticus SA, Lovato CY (2014) Impact of sample size and variability on the power and type i error rates of

equivalence tests: A simulation study. Pract Assess Res Eval 19(1):11
Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Inf Process Manage

24(5):513–523
Schroeder B, Gibson GA (2007) Disk failures in the real world: What does an MTTF of 1,000,000 hours

mean to you? In 5th USENIX Conference on File and Storage Technologies (FAST 07), San Jose, CA.
USENIX Association

Shang W, Jiang ZM, Adams B, Hassan AE, Godfrey MW, Nasser M, Flora P (2014) An exploratory study
of the evolution of communicated information about the execution of large software systems. J Softw:
Evol Process 26(1):3–26

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model val-
idation techniques for defect prediction models. IEEE Transactions on Software Engineering 43(1):1–
18. https://​doi.​org/​10.​1109/​TSE.​2016.​25840​50

Page 37 of 39 137Empirical Software Engineering (2023) 28:137

https://doi.org/10.1109/TSE.2016.2584050

1 3

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The Impact of Automated Parameter
Optimization on Defect Prediction Models. IEEE Transactions on Software Engineering 45(7):683–
711. https://​doi.​org/​10.​1109/​TSE.​2018.​27949​77

Turc I, Chang M-W, Lee K, Toutanova K (2019) Well-read students learn better: On the importance of pre-
training compact models. arXiv preprint arXiv:1908.08962v2

Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11)
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Atten-

tion is all you need. Advances in Neural Information Processing Systems, volume 30. Curran Associ-
ates, Inc.

Wan Y, Liu Y, Wang D, Wen Y (2021) Glad-paw: Graph-based log anomaly detection by position aware
weighted graph attention network. In Advances in Knowledge Discovery and Data Mining: 25th
Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part I , pages
66–77. Springer

Wang M, Xu L, Guo L (2018) Anomaly detection of system logs based on natural language processing and
deep learning. In 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), pages
140–144. IEEE

Xie Y, Zhang H, Babar MA (2022) Loggd: Detecting anomalies from system logs by graph neural networks.
arXiv preprint arXiv:2209.07869

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 117– 132

Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: error diagnosis by connecting clues
from run-time logs. In Proceedings of the fifteenth International Conference on Architectural support
for programming languages and operating systems, pages 143–154

Yuan D, Park S, Zhou Y (2012) Characterizing logging practices in open-source software. In 2012 34th
International Conference on Software Engineering (ICSE), pages 102–112. IEEE

Zhang X, Xu Y, Lin Q, Qiao B, Zhang H, Dang Y, Xie C, Yang X, Cheng Q, Li Z, et al. (2019) Robust
log-based anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 807–817

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2019) Tools and benchmarks for automated log parsing.
In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP), pages 121–130. IEEE

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Xingfang Wu  is a Ph.D. candidate in the Department of Computer and
Software Engineering at Polytechnique Montreal, Montreal, Canada.
His current research interests are software log analysis and technical
forum data mining.

137 Page 38 of 39 Empirical Software Engineering (2023) 28:137

https://doi.org/10.1109/TSE.2018.2794977

1 3

Heng Li  is an assistant professor in the Department of Computer and
Software Engineering at Polytechnique Montreal, where he leads the
MOOSE lab (moose.polymtl.ca). He holds a PhD in Computing from
Queen’s University (Canada), M.Sc. from Fudan University (China),
and B.Eng. from Sun Yat-sen University (China). Prior to his aca-
demic career, he worked in the industry for years as a software engi-
neer at Synopsys and as a software performance engineer at Black-
Berry. His and his students’ research aims to address the practical
challenges in software monitoring, software quality engineering,
intelligent operations of software systems, and quality engineering of
machine learning applications.

Foutse Khomh  is a Full Professor of Software Engineering at Poly-
technique Montréal, a Canada CIFAR AI Chair on Trustworthy
Machine Learning Software Systems, and an FRQ-IVADO Research
Chair on Software Quality Assurance for Machine Learning Applica-
tions. He received a Ph.D. in Software Engineering from the Univer-
sity of Montreal in 2011, with the Award of Excellence. He also
received a CS-Can/Info-Can Outstanding Young Computer Science
Researcher Prize for 2019. His research interests include software
maintenance and evolution, machine learning systems engineering,
cloud engineering, and dependable and trustworthy ML/AI. His work
has received four ten-year Most Influential Paper (MIP) Awards, and
six Best/Distinguished Paper Awards. He also served on the steering
committee of SANER (chair), MSR, PROMISE, ICPC (chair), and
ICSME (vice-chair). He initiated and co-organized the Software Engi-
neering for Machine Learning Applications (SEMLA) symposium
and the RELENG (Release Engineering) workshop series. He is on
the editorial board of multiple international software engineering
journals (e.g., IEEE Software, EMSE, JSEP) and is a Senior Member
of IEEE.

Page 39 of 39 137Empirical Software Engineering (2023) 28:137

	On the effectiveness of log representation for log-based anomaly detection
	Abstract
	1 Introduction
	2 Background
	2.1 Log Representations
	2.2 Applications of Log Representations in Automated Log Analysis

	3 Related Work
	3.1 Classical Log Representation Techniques and Their Applications
	3.2 Semantic-Based Log Representation Techniques and Their Applications
	3.3 Graph-Based Log Representation Techniques and Their Applications
	3.4 Anomaly Detection

	4 Experimental Design
	4.1 Overview
	4.2 Studied Log Representations
	4.3 Downstream Models and Datasets
	4.3.1 Anomaly Detection Models and Implementations
	4.3.2 Datasets and Preparations

	4.4 Evaluation Methods

	5 Experimental Results
	5.1 RQ1. How effective are existing log representation techniques for automated log analysis?
	5.1.1 Motivation
	5.1.2 Approach
	5.1.3 Results

	5.2 RQ2. How does log parsing influence the effectiveness of log representations in automated log analysis?
	5.2.1 Motivation
	5.2.2 Approach
	5.2.3 Results

	5.3 RQ3. How do representation aggregation methods influence the effectiveness of log representation in automated log analysis?
	5.3.1 Motivation
	5.3.2 Approach
	5.3.3 Results

	6 Discussions
	6.1 Implications
	6.1.1 Key factors for selecting log representation techniques

	7 Threat to validity
	8 Conclusions
	References

