Empirical Software Engineering (2023) 28:111
https://doi.org/10.1007/510664-023-10363-2

®

Check for
updates

A comparison of reinforcement learning frameworks
for software testing tasks

Paulina Stevia Nouwou Mindom' - Amin Nikanjam' - Foutse Khomh'

Accepted: 27 June 2023 / Published online: 24 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Software testing activities scrutinize the artifacts and the behavior of a software product to
find possible defects and ensure that the product meets its expected requirements. Although
various approaches of software testing have shown to be very promising in revealing defects
in software, some of them lack automation or are partly automated which increases the testing
time, the manpower needed, and overall software testing costs. Recently, Deep Reinforce-
ment Learning (DRL) has been successfully employed in complex testing tasks such as game
testing, regression testing, and test case prioritization to automate the process and provide
continuous adaptation. Practitioners can employ DRL by implementing from scratch a DRL
algorithm or using a DRL framework. DRL frameworks offer well-maintained implemented
state-of-the-art DRL algorithms to facilitate and speed up the development of DRL applica-
tions. Developers have widely used these frameworks to solve problems in various domains
including software testing. However, to the best of our knowledge, there is no study that
empirically evaluates the effectiveness and performance of implemented algorithms in DRL
frameworks. Moreover, some guidelines are lacking from the literature that would help prac-
titioners choose one DRL framework over another. In this paper, therefore, we empirically
investigate the applications of carefully selected DRL algorithms (based on the character-
istics of algorithms and environments) on two important software testing tasks: test case
prioritization in the context of Continuous Integration (CI) and game testing. For the game
testing task, we conduct experiments on a simple game and use DRL algorithms to explore
the game to detect bugs. Results show that some of the selected DRL frameworks such as
Tensorforce outperform recent approaches in the literature. To prioritize test cases, we run
extensive experiments on a Cl environment where DRL algorithms from different frameworks
are used to rank the test cases. We find some cases where our DRL configurations outper-
form the implementation of the baseline. Our results show that the performance difference
between implemented algorithms in some cases is considerable, motivating further investi-
gation. Moreover, empirical evaluations on some benchmark problems are recommended for
researchers looking to select DRL frameworks, to make sure that DRL algorithms perform
as intended.

Communicated by: Paolo Tonella

B4 Paulina Stevia Nouwou Mindom
paulina-stevia.nouwou-mindom @polymtl.ca

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10363-2&domain=pdf

111 Page2of76 Empirical Software Engineering (2023) 28:111

Keywords Software testing - Reinforcement learning - Game testing - Test case
prioritization

1 Introduction

Software bugs and failures are costing trillions of dollars every year to the global economy
according to a recent report by a software testing company Tricentis.! In 2017 alone, 606
software bugs costed the global economy about $1.7 trillion dollars, affecting 3.7 billion
people. To alleviate this issue, researchers and practitioners have been striving to develop
efficient testing techniques and tools, to help improve the reliability of software systems
before they are released to the public. Several strategies, such as random testing by Hamlet
and Maciniak (1994), coverage-based testing by Zhu et al. (1997) and search-based testing
by Harman et al. (2015) have been proposed to evaluate that a software product does what it
is supposed to do. More recently, Deep Reinforcement Learning (DRL) is being increasingly
leveraged for software testing purposes as studied by Zheng et al. (2019), Bagherzadeh et al.
(2021), Moghadam et al. (2021), Malialis et al. (2015) thanks to the availability of multiple
DRL frameworks providing implemented DRL algorithms, e.g., Advantage Actor Critic
(A2C), Deep Q-Networks (DQN), Proximal Policy Optimization (PPO). For example, Kim
etal. (2018) leveraged the Keras-rl framework to apply DRL to test data generation. Similarly,
Drozd et al. (2018) used the Tensorforce framework to apply DRL to Fuzzing testing and
Romdhana et al. (2022) used the Stable-baselines framework for black box testing of android
applications.

However, given that these implemented DRL algorithms often make assumptions that
could hold only for certain types of problems and not for others, it could be challenging
for developers and researchers to select the most adequate DRL implementation for their
problem. The choice of a DRL algorithm depends on the nature of the problem to solve,
the available computation budget, and the desired generalizability of the trained models.
Moreover, given the fact that DRL algorithms are often implemented differently in different
DRL frameworks, it is unclear if the same results can be obtained using different frameworks.

To clear up these interrogations and help researchers and practitioners make informed
decisions when choosing a DRL framework for their problem, in this paper, we examine
and compare the applicability of different DRL frameworks for software engineering testing
tasks. Specifically, we apply DRL algorithms from different frameworks to game testing and
test case prioritization. The automation of game testing is critical because of the frequent
requirements changes that occur during a game development process as studied by Santos
et al. (2018). Recently, Yang et al. (2018, 2019), Koroglu et al. (2018), Adamo et al. (2018)
applied different DRL algorithms to automate game testing and improve the fault identifica-
tion process. Test case prioritization improves the testing process by finding optimal ordering
of the test cases and detecting faults as early as possible. Bertolino et al. (2020), Spieker et al.
(2017) successfully applied DRL in prioritizing test cases for various configurations. More-
over, as these tasks have gained a lot of attention recently, by studying them we can provide
meaningful results that can be used by the software engineering community.

In this paper, we perform a comprehensive comparison of different DRL algorithms imple-
mented in three frameworks, i.e., Stable-baselines3 (Raffin et al. 2021), Keras-rl (Plappert
2016), and Tensorforce (Schaarschmidt et al. 2018). We investigate which DRL algo-

1 https://www.techrepublic.com/article/report-software- failure-caused- 1- 7- trillion-in- financial-losses-in-
2017/

@ Springer

https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/

Empirical Software Engineering (2023) 28:111 Page3of76 111

rithms/frameworks may be more suitable for detecting bugs in games and solving the test case
prioritization problem. Results show that the diversity of hyperparameters that each frame-
work provide impacts its suitability for each of the studied software testing tasks. Given
some algorithms, the Tensorforce framework tends to be more suitable for detecting bugs as
it provides hyperparameters that allow a deeper exploration of the states of the environment
while the Stable-baselines framework tends to be more suitable for the test case prioritization
problem.
To summarize, our work makes the following contributions:

— To evaluate the usefulness of DRL on game testing, we utilized three state-of-the-art
DRL frameworks: Stable-baselines, Keras-rl, and Tensorforce. Specifically, we applied
them to the Block Maze game for bug detection and collected the number of bugs,
the state coverage, the code coverage, the cumulative reward, the average training and
prediction times. We have compared a total of seven DRL configurations and some of
them outperform the existing work.

— Based on eight publicly available datasets, we applied state-of-the-art DRL frameworks
on two ranking models and collected results to evaluate their usefulness in prioritizing test
cases. As metrics of comparison, we consider the Normalized Rank Percentile Average
(NRPA), the Average Percentage of Faults Detected (APFD), the average training and
prediction times for each DRL configuration. The results collected are compared with the
baselines and we derive conclusions regarding the most accurate DRL frameworks for test
case prioritization. We found out that in most datasets, the Stable-baselines framework
originally used by Bagherzadeh et al. (2021) performs better than Tensorforce and Keras-
rl.

— We provide some recommendations for researchers looking to select a DRL framework
as we noticed differences in performance when considering the same algorithm among
different frameworks. For example, the same DQN algorithm from different frameworks
show different results.

The rest of this paper is organized as follows. In Sect.2, we review the necessary back-
ground knowledge on the game testing problem, the test case prioritization problem, and
DRL. The methodology followed in our study is described in Sect. 3. We discuss the obtained
empirical results in Sect. 4. Some recommendations for future work are mentioned in Sect. 5.
We review related work in Sect. 6. Threats to validity of our study are discussed in Sect.7.
Finally, we conclude the paper and discuss some future works in Sect. 8.

2 Background
In this section, first we introduce DRL and present some state-of-art DRL frameworks.

Secondly, we describe the terms and notations used to define the test case prioritization and
game testing problems.

2.1 Deep Reinforcement Learning

A DRL agent interacts with the environment that can be modelled as a Markov decision
process (S, A, P,) with the following components:

State of the environment: A state s € S = R" represents the agent perception of the
environment.

@ Springer

111 Page4of76 Empirical Software Engineering (2023) 28:111

Action: Based on the observation (i.e., state of the environment), the agent chooses among
available actions in A.

State transition distribution: P = P(s;41, r¢|s;, a;) a; € A, defines the probability of
the agent to move to the next state s, |, performing action a, receives r; as reward given that
it is in state s;. The goal of the agent is to maximize the expected rewards discounted by y.
To make the decision to move to a state given its observation, the DRL agent follows a policy
7w : S — A which is a mapping from S to A.

Episode: An episode is a sequence of states of the environment, actions performed by an
agent and rewards (an incentive mechanism that tells the agent about the effectiveness of the
action) which ends when the agent has reached a terminal state or has reached a maximum
number of steps.

Policy. Given an agent, a policy m is defined as a function ¥ : § — A mapping each
state s € S to an action a € A. The policy indicates the agent’s decision in each state of
the underlined task. It can be a strategy from a human expert or learned from experiences
accordingly.

DRL algorithms can be classified based on the following properties similar to the work by
Bagherzadeh et al. (2021):

Model-based and Model-free DRL. In model-based DRL, the agent knows the envi-
ronment. It knows in advance the reaction of the environment to possible actions and the
potential rewards it will get from taking each action. During training, the agent learns the
optimal behavior by taking actions and observing the outcomes which include the next state
and the immediate reward. On the contrary, in model-free DRL, the agent has to learn the
dynamics of the environment by interacting with it. From the interaction with the environ-
ment, the agent learns an optimal policy for selecting an action. In this work, we are only
interested in model-free DRL algorithms as some of the test case features (execution time)
are unknown beforehand as well as the location of faults in a game.

Value-based, policy-based, and actor-critic learning. At every state, value-based meth-
ods estimate the Q-value and select the action with the best Q-value. A Q-value shows
how good an action might be given a state. Regarding policy-based methods, an initial pol-
icy is parameterized, then during training, the parameters are updated using gradient-based
or gradient-free optimization techniques. Regarding actor-critic methods, the agent learns
simultaneously from value-based and policy-based techniques. The policy function (actor)
selects the action and the value function (critic) estimates the Q-values based on the action
selected by the actor.

Action and observation space. The action space indicates the possible moves of the agent
inside the environment. The observation space indicates what the agent can know about the
environment. The action and observation space can be discrete or continuous. Specifically, the
observation space can be a real number or high dimensional. While a discrete action space
means that the agent chooses its action among distinct values, a continuous action space
implies that the agent chooses actions among real values vectors. Not all DRL algorithms
support discrete and continuous configurations for both the action and observation space,
which limits the choice of algorithms to implement.

On-policy vs Off-policy. On-policy methods will collect data that is used to evaluate and
improve a target policy and take actions. On the contrary, Off-policy methods will evaluate
and improve a target policy that is different from the policy used to generate the data. Off-
policy learners generally use a replay buffer to update the policy.

@ Springer

Empirical Software Engineering (2023) 28:111 Page50f76 111

DRL methods use Deep Neural Networks (DNNs) to approximate the value function, or
the model (state transition function and reward function) and tend to be a more manageable
solution space in large complex environments.

2.2 State-of-the-Art DRL Frameworks

In recent years, Lillicrap et al. (2015), Mnih et al. (2016) introduced multiple model-free
DRL algorithms; advancing the research around DRL. Different DRL frameworks such as
Stable-baselines (Raffin et al. 2021; Hill et al. 2018) and Tensorforce by Schaarschmidt et al.
(2018) have also been introduced to ease the implementation of DRL-based applications.
These frameworks usually contain implementations of different DRL algorithms. While the
developers may implement their own algorithm, in this work, we focus on comparing the
implemented algorithms of existing DRL frameworks on software testing tasks. Table 1
provides a list of popular DRL frameworks, which are described below.

— OpenAl baselines (Dhariwal et al. 2017) is the most popular DRL framework given its
high GitHub star rating. It provides many state-of-the-art DRL algorithms. After installing
the package, training a model only requires specifying the name of the algorithm as a
parameter.

— Stable-baselines (Raffin et al. 2021; Hill et al. 2018) is an improved version of OpenAl
baselines with a more comprehensive documentation. In this paper, we used the version
3 of this framework, which is reported to be more reliable because of its Pytorch (Paszke
et al. 2019) backend that captures DNN policies. To train an agent, Stable-baselines has
built-in functions that create a model depending on the DRL algorithm chosen.

— Keras-rl (Plappert 2016) provides the dueling extension of the DQN algorithm and
SARSA algorithm that are not offered by Stable-baselines version 3. However, Keras-rl
offers less algorithms than the previous frameworks. The training of an agent requires a
few steps: the definition of the DNN that will be used for the training, the instantiation
of the agent, its compilation, and finally the call of the training function.

— Tensorforce (Schaarschmidt et al. 2018) provides the same algorithms as the Stable-
baselines framework with some additions: Trust-Region Policy Optimization (TRPO),
Dueling DQN, Reinforce, and Tensorforce Agent (TA). Tensorforce offers built-in func-
tions to create and train an agent. Also, it offers the flexibility to train the agent without
using the built-in functions, which allows it to capture the performance metrics of the
agent, such as the reward. Finally, the training starts in a loop function depending on the
number of episodes. Tensorforce relies on TensorFlow (Abadi et al. 2015) as backend.

— Dopamine (Castro et al. 2018) is a more recent framework that proposes an improved
variant of the Deep Q-Networks (DQN) and the Soft Actor-Critic (SAC) algorithm. In
addition to a TensorFlow backend for creating DNNs, Dopamine is configured using
the gin? framework, to specify and configure hyperparameters. The training of an agent
requires instantiating the model and then starting the training with built-in functions.

Based on their popularity and ease of implementation, we choose to rely on Stable-
baselines, Tensorforce, and Keras-rl frameworks. Table 2 summarizes the implemented DRL
algorithms available in theses frameworks.

Stable-baselines, Keras-rl, and Tensorforce have respectively 6, 5, and 10 available imple-
mented DRL algorithms. They all contain the DQN algorithms, which we apply to the test
case prioritization and game testing problems. We also apply the A2C algorithm from Stable-

2 https://github.com/google/gin-config

@ Springer

https://github.com/google/gin-config

Empirical Software Engineering (2023) 28:111

111 Page60f76

120T ‘¥1 92 610C ‘11 AON 120T ‘01 AON 120T ‘6 2 020T ‘1€ uer ajepdn ysey
AT AET 11¢ PigY ATy A0
pasord oz ‘uedo (g pasold oz ‘uedo ¢¢ Pasod ¢z ‘uado () Pasord 66 ‘uado 4 Pasopd 87 uado ¢8 sysanbaux [Ing
SOx ON SOX SOX s9x 310ddns paeoqiosud],
Q0IOJUIY ‘V.IL

VSavSs ‘0dd’'OddL D¢V Oty Od¥Lc0dd 4dH

JVS ‘NOJ 3urend ‘NOAD ‘NOAD ‘Ddad ‘NOd €dL DVS ‘0dd “IIVD ‘NOd ‘Odad
‘NOI ‘moquiey ‘16D ‘NOA ‘DdAd ‘NOJ 219nod ‘NOd 21qnod ‘NOd 3ulong ‘NOd — “¥dH ‘NOd *“Dddd OtV “YLIOV “¥HOV 0TV swyyLI0sy
pasoo g8 ‘uado 9 paso[d g1z ‘uado o Pasord £ 19 ‘uado 4 Pasold €6 ‘uado ¢ Pasold O¢t ‘uado [6¢ sanss|
ol 6¢ 129 99 48! S10JNqLIJUOD JO #
AL'6 ATS Ale A9°C ATCI slejs qnpry

(810¢ (810T 1810 (10T T8 10 (L10T B 12
‘[e 12 onse)) surwedoq (9107 Modde[q) [1-SeIdY IPIWYDISILRYIS) JIA0JI0SUI], uyjey]) €SAUIPSeq-3[qe)S [emLey(]) sdurpseq [yuadQ NI0MIWBI

ssqomowresj T Jeindod | a|qel

pringer

As

Empirical Software Engineering (2023) 28:111 Page70of76 111

Table 2 Comparison between DRL frameworks

RL Frameworks Algorithms Learn. On/Off Act.
Stable-baselines DQN (Mnih et al. 2013) Value Off-policy Dis
DDPG (Lillicrap et al. 2015) Policy Oft-policy Cont
A2C (Mnih et al. 2016) Actor-Critic On-policy Both
TD3 (Fujimoto et al. 2018) Policy Off-policy Cont
SAC (Haarnoja et al. 2018) Actor-Critic Off-policy Cont
PPO (Schulman et al. 2017) Actor-Critic On-policy Both
Keras-rl DQN (Mnih et al. 2013) Value Off-policy Dis
Dueling DQN (Wang et al. 2016) Value Oft-policy Dis
Double DQN (Mnih et al. 2013) Value Oft-policy Dis
SARSA (Sutton et al. 1998) Value On-policy Dis
CDQN (Gu et al. 2016) Value On-policy Cont
DDPG (Lillicrap et al. 2015) Policy Off-policy Cont
Tensorforce DQN (Mnih et al. 2013) Value Off-policy Dis
Double DQN (Mnih et al. 2013) Value Off-policy Dis
CDOQN (Gu et al. 2016) Value On-policy Cont
PPO (Schulman et al. 2017) Actor-Critic On-policy Both
DDPG (Lillicrap et al. 2015) Policy Oft-policy Cont
A2C (Mnih et al. 2016) Actor-Critic On-policy Both
A3C (Mnih et al. 2016) Actor-Critic On-policy Both
TRPO (Schulman et al. 2015) Actor-Critic On-policy Both
TA (Schulman et al. 2015) Actor-Critic On-policy Both
Reinforce (Schulman et al. 2015) Policy On-policy Both

Cont: continuous, Dis: discrete, Both: continuous and discrete

baselines and Tensorforce to both test case prioritization and game testing problems. In
addition to A2C and DQN, we applied the DDPG algorithm to the test case prioritization
problem. Similarly, we applied the PPO algorithm to both test case prioritization and game
testing problems. Stable-baselines framework in its second version offers two versions of
PPO algorithm: PPO1 that requires OPENMPI® for multiprocessing and PPO2 that uses
vectorized environments for multiprocessing. In this work, we chose to leverage PPO2 for
two reasons: First, the version of OPENMPI required by PPOI1 is not compatible with our
experimental environment. Second, PPO from the Tensorforce framework uses vectorized
environments for parallelism. Thus, it is fair to compare PPO from Tensorforce with PPO2
from Stable-baselines. For the sake of reading, we refer to PPO2 as the PPO from Stable-
baselines. Keras-rl does not have an implemented version of the A2C, nor PPO algorithms,
which could be applied to the previously mentioned problems. Moreover, these selected DRL
algorithms are suitable for this paper, as we are capable of comparing their results with the
baselines by Zheng et al. (2019) and Bagherzadeh et al. (2021). Zheng et al. (2019) used
their own implementation of the A2C algorithm to detect bugs on three games. Thus, among
the selected DRL strategies, we consider the A2C algorithm from the DRL frameworks and
evaluate and compare our results with the results reported by Zheng et al. Given that the
applicability of DRL algorithms is limited by the type of their action space, Bagherzadeh

3 https://www.open-mpi.org

@ Springer

https://www.open-mpi.org

111 Page8of76 Empirical Software Engineering (2023) 28:111

et al. (2021) chose DRL algorithms from Stable-baselines that are compatible with the type
of action space of the prioritization techniques they considered (see Sect.3.3.1). We do the
same, and evaluate and compare the obtained results.

2.3 Game Testing

The process of testing a game is an essential activity before its official release. The complexity
of game testing has led researchers to investigate ways to automate it (Alshahwan et al. 2018;
Fraser and Arcuri 2011). In the following, we introduce few concepts that are important to
understand automatic game testing.

Definition 1 : Game. A game G can be defined as a function G : A" — (S x R)", where
A is the set of action that can be performed by the agent, S is the set of states of the game
and R represents the set of rewards that comes from the game, and n is the number of steps
in the game. A player takes a sequence of actions (n actions) based on the observations it
received until the end of the game. If we consider the game as an environment that the agent
interacts with, each state refers to observations of the environment perceived by the agent at
every time stamp. The action is a set of decisions that can be made by the agent which can
be rewarded positively or negatively by the environment.

Figure 1 depicts the overall interaction between a player and a game. Given the state s, at
time step ¢ the agent selects an action a; to interact with the game environment and receives a
reward s; from the environment. The environment moves into a new state s; 1, which affects
the selection of the next action.

Definition 2 : Game state. A state in the game refers to game’s current status and can be
represented as a fixed-length vector (v, vy, ..., v,). Each element v; of the vector represents
an aspect of the state of the game such as the position of a player, its speed or the location of
the gold trophy in case of a Block Maze game.

» Game Environment State
Action S,
a. Reward
Agent (Player) > e
(ag,s0,1m0) —» (..) —» (a;, 5¢, 1) —»(...) —>(a;, s:,17)
t=0 t=1 t=t
timeline

Fig. 1 The interaction between a player and a game environment (inspired by Zheng et al. (2019))

@ Springer

Empirical Software Engineering (2023) 28:111 Page9of76 111

Definition 3 : Game tester. Given a game G, a set of policies IT to interact with G, a
set of states S of G, and a set of bugs B on G, a game tester T is defined as a function
Tg : 11 — S x B.

A sequence of actions is a test case for a game. Since G is often a stochastic function,
a test case may lead to multiple distinct states. A game tester aims to implement different
strategies in order to explore the different states of the game to find bugs. In this paper, the
game tester play the role of oracle to verify the presence or absence of a bug on an output
state. Therefore, it implements different strategies in order to explore the different states of
the game to find bugs. So, a test case generated by a game tester is a series of valid actions
that can reach a state in which a bug might hide.

Definition 4 : Test adequacy criteria. We consider the state coverage and line coverage as
criteria to discover whether the existing test cases have a good bug-revealing ability. The
state coverage measures the number of visited state of the player during the play, and the
code coverage measures the number of lines of code related to the function of the game that
have been covered during the play.

Considering a 5 x 5 Block Maze game where bugs are injected and triggered when the
player reached a location on the maze:

— A player has 4 possible actions (LEFT, RIGHT, UP, DOWN), a state is defined as the
vector (P, B) where P is the player position at each step of the play and B the position
of a bug (the position that triggers a bug on the maze).

— Initially the state of the Block Maze is ((0, 0), (1, 4)).

— A test case that leads to a bug can be

{RIGHT — RIGHT — RIGHT — RIGHT — DOWN},
corresponding to the following states of the game
{((0,0), (1,4)) — (O, 1), @,4) — ((0,2), (1,4)) —
((0,3),14) — (0,4, A4) — (1,4),(1,4)}.

As studied by Zheng et al. (2019), in this work, we consider the testing of large combat
games with one agent.

2.4 Test Case Prioritization

Test Case Prioritization is the process of prioritizing test cases in a test suite. It allows to
execute highly significant test cases first according to some measures, in order to detect faults
as early as possible. In this paper, similar to Bagherzadeh et al. (2021), we study test case
prioritization in the context of Continuous Integration (CI).

Definition 5 : CI Cycles. A CI cycle is composed of a logical value and a set of test cases.
The logical value indicates whether or not the cycle has failed. Failed cycles due to a test case
failure are considered in this work, and we select a test case with at least one failed cycle.

Definition 6 : Test case feature. Each test case has an execution history and code-based
features. The execution history shows a record of executions of test cases over the cycles.
The execution history includes the execution verdict of a test case, the execution time, a
sequence of verdicts from prior cycles, and the test age capturing the time the test case was
introduced for the first time. The execution verdict indicates if the test case has failed or not.

@ Springer

111 Page 10 0f 76 Empirical Software Engineering (2023) 28:111

The execution time of a test case can be computed by averaging its previous execution times.
The code-based features for a test case can indicate the changes that have been made, the
impacted files with the number of lines of code which are relevant to predict the execution
time and can be leveraged to prioritize test cases.

Definition 7 : Optimal ranking (Test Case prioritization). The test case prioritization pro-
cess in this work is a ranking function that produces an ordered sequence based on the optimal
ranking of test cases. The goal of prioritization is to get as close to this order as possible. The
optimal ranking of a set of test cases is an order in which all test cases that fail are executed
before test cases that pass. Furthermore, in this optimal ranking, test cases with a smaller
time of execution should be executed sooner.

Definition 8 : DRL as a ranking process. In this paper, we consider a prioritization approach
that consists of continuously interacting with the CI environment while improving the ranking
strategy. In the CI environment, a DRL agent is used to automatically and continuously learn
aranking strategy as closely as possible to the optimal one. Specifically, the agent is trained
on the CI environment by replaying the execution logs of available test cases from previous
cycles in order to rank test cases in subsequent cycles. The main idea, similar to other studies
(Bagherzadeh et al. 2021), is to formulate the sequential interactions between CI and test case
prioritization algorithm as a DRL problem. This way, state-of-the-art DRL techniques learn
a strategy for test case prioritization, as close as possible to the optimal one, if we consider
a predetermined optimal ranking as the ground truth. Using a CI environment simulator, the
DRL agent is trained on the history of test execution and code-based features from previous
cycles to prioritize test cases in next cycles. We can benefit from an adaptive training process
with DRL, meaning that the agent receives feedback (i.e., reward) at the end of each cycle
(or when the prediction accuracy is below a particular level). To adapt the learned policy, the
execution logs of test cases can be replayed several times to ensure an efficient and continuous
adaptation to changes in the system and regression test suite.

Bagherzadeh et al. (2021) also presented a detailed explanation of the terms CI Cycles,
Test case feature, Test Case prioritization, and Optimal ranking.

3 Study Design

In this section, we describe the methodology of our study which aims to compare different
implemented DRL algorithms from existing frameworks. We also introduce the two problems
that we selected for this comparison.

3.1 Research Questions

The goal of our work is to evaluate and compare implemented algorithms offered by different
DRL frameworks. In order to achieve this goal, we focus on answering the following research
questions.

— RQ1: How does the choice of DRL framework affect the performance of the software
testing tasks?

— RQ2: Which combinations of DRL frameworks-algorithms perform better (i.e., get
trained accurately and solve the problem effectively)?

— RQ3: How stable are the results obtained from the DRL frameworks, over multiple runs?

@ Springer

Empirical Software Engineering (2023) 28:111 Page110of76 111

3.2 Problem 1: Game Testing Using DRL

We aim to employ several DRL algorithms from different DRL frameworks in a game testing
environment. More specifically, we use DRL to explore more states of a game where bugs
might hide. Our work is based on wuji (Zheng et al. 2019), an automated game testing
framework that combines Evolutionary Multi-Objective Optimization (EMOQ) and DRL to
detect bugs on a game. wuji randomly initializes a population of policies (represented by
DNNs), adopts EMOO to diversify the state’s exploration, then uses DRL to improve the
capability of the agent to accomplish its mission. To train wuji on multiple DRL frameworks,
we turn off EMOO and only consider the DRL part of wuji. In this way, we can focus on the
effect of different DRL algorithms on detecting bugs.

3.2.1 Creation of the DRL Environment

A game environment can be mapped into a DRL process by defining the state or observation,
reward, action, end of an episode and the information related to the bug.

Observation space: As mentioned in Definition 2, an observation is a set of features describ-
ing the state of the game. In our case, the observation of the agent is its position inside the
maze.

Action space: The action space describes the available moves that can be made in the game.
We consider a game with 4 discrete actions to choose: north, south, east, west.

Reward function: The reward function is the feedback from the environment regarding the
agent’s actions. It is designed so that the agent can accomplish its mission. The agent gets
negatively rewarded when it reaches a non-valid position in the game or any other position
that is not the goal position of the game, in all other cases it receives a positive reward.

The game testing task is representative of an SE testing task as its representation is similar
to the baseline study work by Zheng et al. (2019) of detecting bugs on a Block Maze game.
In the game testing problem, the observation of the agent captures the state of the game
where a bug might hide. The observation space has the size of a matrix 20 x 20 similar
to the baseline study by Zheng et al. (2019) and it is straightforward to look for bugs in a
matrix. The action space describes the moves (north, south, east, west) available to the agent
to explore the game and find bugs. Finally, the reward function awards the agent based on its
actions so that it can accomplish the game. The usage of a matrix as observation space has
also been used in the literature. To promote the progress of DRL research, OpenAl integrates
a collection of DRL tasks into the gym platform (Brockman et al. 2016a). Among these tasks,
Atari environments have the observation space of a matrix. Our representation can easily be
extended to other games such as 3D games by extending the number of actions available to
the agent or by adding channels to the matrix, forming a 3D image. Further, Tufano et al.
(2022) study how to leverage DRL algorithms to detect performance bugs. Specifically, the
authors injected artificially performance bugs on two 2D games, Cartpole (2016), Mspacman
(2018), and investigated whether or not the DRL agents are able to detect the bugs. Similarly
to our study, the moves available to the agents are left, right, up, and down for the MsPacman
game. The observation space of MsPacman game has the size of a 84 x 84 matrix, which
is also similar to our study. Bergdahl et al. (2020) employed DRL to increase test coverage,
find game exploits, and discover bugs in a game. The authors studied sand-box environments

@ Springer

111 Page 12 0f 76 Empirical Software Engineering (2023) 28:111

where DRL agents receive positive reward for moving towards a goal and negative reward
as a penalty for moving away from it, which is similar to our study.

3.2.2 Experimental Setup

The Block Maze game has a discrete action space that limits the DRL configurations to which
it can be applied. Therefore, we consider the following algorithms: DQN-SB, PPO-SB, A2C-
SB, DQN-KR, DQN-TF, PPO-TF, and A2C-TF during our experiments.

DRL algorithms from the studied DRL frameworks have their own hyperparameters set-
tings. We employ the same values of the optimizer (the Adam optimizer, Kingma and Ba
2014), the DNN model (three fully-connected linear layers with 256, 128, 128 units as the
hidden layers, connected to the output layer), the discount factor (0.99) and the learning rate
(0.25 x 103) as the baseline work (Zheng et al. 2019), they are the ones we could exactly match
with the different studied DRL algorithms. DQN-SB, DQN-TF, DQN-KR, PPO-TF, PPO-
SB, A2C-SB, A2C-TF have respectively 19, 21, 7, 25, 19, 18, and 23 more hyperparameters
whose values are provided in the replication package (Replication package 2022).

We collected the results of each DRL algorithm for a total of 4 million steps and 10,000
steps. To counter the randomness effect during testing, we repeat each run 10 times to average
the results. The experiments are run for approximately 30 days on the Niagara cluster servers
provided by Digital Research Alliance of Canada (the Alliance).* Each server has 40 cores at
2.4GHz with 202GB of main memory. Moreover, the testing experiments for 4 million steps
are run on an ASUS desktop machine running Windows 10 on a 3.6 GHz Intel core i7 CPU
with 16GB main memory. After each episode, the agent is reset before the next one. Zheng
et al. (2019) studied the detection of bugs by implementing a DRL approach. The game is
tested by considering the winning score. We consider their work as a baseline and compare
other DRL approaches with their results.

3.2.3 Training of a DRL Agent

Wuji randomly initializes DNN policies, then uses the A2C algorithm and an evolutionary
multi-objective optimization algorithm to evolve the policies so that the agent can explore
more states of the Block Maze game and accomplish its mission. In this paper, we are going
to apply DQN, A2C, and PPO algorithms from Stable-baselines3 (SB), Keras-rl (KR) and
Tensorforce (TF), respectively, to detect bugs in the Block Maze game. Stable-baselines3
is used here as opposed to Stable-baselines2 because the latter is in maintenance mode
by its developers. Like Zheng et al. (2019), to train the agent, it interacts with the game
(the environment). The DRL agents use the gym interface during training to compute the
best policy to play the game. During testing, the same OpenAl gym interface as the game
environment is used.

Regarding the reward distribution of the DRL agent, if it reaches the goal it receives 10 as
reward. If its position is not valid, not within the environment space it receives —1 as reward
otherwise it receives —0.01.

3.2.4 Datasets

A Block Maze game from Zheng et al. (2019), is selected in the evaluation Fig. 2.

4 https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart

@ Springer

https://docs.scinet.utoronto.ca/index.php/Niagara_Quickstart

Empirical Software Engineering (2023) 28:111 Page 130f 76 111

Fig.2 Block Maze with bugs
(red, green and yellow dots)

In the Block Maze game, the player’s objective is to reach the goal coin. It has 4 possible
actions to choose: north, south, east, west. Every action leads to moving into a neighbor cell
in the grid in the corresponding direction, except that a collision on the block (dark green)
results in no movement. To evaluate the effectiveness of our DRL approaches, 25 bugs are
artificially injected to the Block Maze, and randomly distributed within the environment. A
bug is a position in the Block Maze that is triggered if the robot (agent) reaches its location
as in the map, as shown in Fig. 2. A bug has no direct impact on the game but can be located
in invalid locations of the game environment such as the Block Maze obstacles or outside of
the Block Maze observation space. Invalid locations on the other hand cause the end of the
game. Therefore, in this study we consider 2 types of bugs. Type 1 refers to exploratory bugs
that measure the exploration capabilities of the agent, and Type 2 refers to bugs at invalid
locations of the Block Maze.

3.2.5 Evaluation Metrics

On top of metrics considered by Zheng et al. (2019) including the number of bugs detected,
the state and line coverage performed by the DRL configurations, we also measured average
cumulative reward, training time, and testing time to assess the accuracy and effectiveness
of the game testing process across different DRL approaches.

— Number of bugs detected: the average number of bugs detected by our DRL agents after
being trained.

— The average cumulative reward: obtained by the DRL agents after being trained.

— The line coverage: the lines covered by each DRL approach during testing. We use the
Python library of coverage’ to collect line coverage. This library gives you the result
per Python file. As in our replication package (Replication package 2022), both the
gym environment and the actual game implementation are on the same file. Thus, the
line coverage includes both the lines of code of the gym environment and the game
implementation.

— The state coverage: the number of visited state during testing.

5 https://coverage.readthedocs.io

@ Springer

https://coverage.readthedocs.io

111 Page 140f 76 Empirical Software Engineering (2023) 28:111

— Training time: We collect the time consumed by the DRL agents to train their policy,
which lasts for 10,000 steps.

— Prediction time: We collect the time consumed by the trained DRL agents to detect bugs
for 10,000 steps, 4 million steps, or until reaching the goal coin of the game environment.

3.2.6 Analysis mMethod

We proceeded as follows to answer our research questions. In RQ1, we collected the number
of bugs detected, the average cumulative reward, the state and line coverage obtained by the
player in the Block Maze game by using DRL algorithms from state-of-the-art frameworks
(see Subsection 3.2.2). We also collected the training and testing times performed by these
DRL configurations. We relied on the implementation of algorithms provided by Stable-
baselines3 (Raffin et al. 2021), Keras-rl (Plappert 2016) and Tensorforce (Schaarschmidt et al.
2018) frameworks. Moreover, we collected the training and testing times of the DRL strategies
as well as computed the state coverage and line coverage as adequacy criteria to assess their
performance. To determine the best DRL strategy in RQ2 we use the Welch’s ANOVA
and Games-Howell post-hoc test (Welch 1947; Games and Howell 1976).We compare all
DRL strategies across all runs in terms of bug’s detected and average cumulative reward
earned. Same as the study of Bagherzadeh et al. (2021), the significance level is set to 0.05,
difference with p-value <= 0.05 is considered significant. In RQ3, we investigate how the
same algorithm performs, on average, across different DRL frameworks with multiple runs
of testing. Specifically, the performance of trained agents with the same algorithm across
different DRL frameworks resulting from multiple runs are evaluated based on metrics such
as the number of bugs detected, the average cumulative reward, testing and prediction times
collected in RQI.

Welch’s ANOVA is a statistical test used to compare differences between groups by
analyzing their means and their variances. Games-Howell post-hoc test completes Welch’s
ANOVA process by identifying groups that significantly differ from the others in respect to
the mean. Games-Howell post-hoc test is used with Welch’s ANOVA as the latter does not
assume equal variances between groups (Games and Howell 1976).

3.3 Problem 2: Test Case Prioritization Using DRL

We aim to apply several DRL algorithms from different frameworks for test case prioriti-
zation in the context of CI. To do so, we follow a recent work on using DRL for test case
prioritization by Bagherzadeh et al. (2021). The authors studied different approaches to pri-
oritization techniques that can adapt and continuously improve while interacting with the
CI environment. The interaction between the CI environment and test case prioritization is
modeled as a DRL problem. They use state-of-the-art DRL techniques to learn prioritization
strategies that are close to optimal ranking. The DRL agent is first trained offline on the test
case execution history and code-based features of past cycles to prioritize the next cycles. At
the end of each cycle, if the agent’s accuracy in predicting the next cycles is less than a speci-
fied threshold, the test case execution history is replayed to improve the agent’s policy. After
offline training, the trained agent can be applied to rank the available test cases. Similarly,
our approach for applying DRL techniques in the context of the CI environment is to train a
DRL agent, based on the algorithms designed by Bagherzadeh et al. (2021) that describe the
ranking model in the context of CI and test case prioritization. We train a DRL agent using
various DRL algorithms from popular frameworks, as described in subsection 2.2.

@ Springer

Empirical Software Engineering (2023) 28:111 Page 150f76 111

3.3.1 Creation of the DRL Environment

Test case prioritization can be mapped into a DRL problem by defining the details of the
interaction of the agent with the environment, meaning observation, action, reward, and end
condition of an episode. We map test case prioritization as a DRL problem by considering
two ranking models: pointwise and pairwise, that have been employed by Bagherzadeh et al.
(2021).
Pointwise ranking function Bagherzadeh et al. (2021) designed the pointwise ranking
model as a class on which the observation space, action space, and reward function are
defined. This class consists of determining scores for each test case and then storing them in
a temporary vector. At the end of the learning process, the test cases are sorted according to
their scores stored in the temporary vector.

Observation space: The agent’s observation is a record of the characteristics of a single
test case with 4 numerical values.

Action space: The action describes a score associated with each test case. The agent uses
this score to order the test cases. Each action is a real number between 0 and 1.

Reward function: The reward function is computed here based on the normalized distance
between the assigned ranking and the optimal ranking. The values range between 0 and 1.

Pairwise ranking function Bagherzadeh et al. (2021) designed the pairwise ranking model
as a class on which the observation space, action space, and reward function are defined. This
class uses the selection sorting algorithm (Knuth 1997) to rank the test cases. All test cases
are divided into a pair: the sorted part on the left and the unsorted part on the right. At each
time step, if a test case with high priority is found, its position is changed in the sorted part.
The process continues until all test cases are sorted.

Observation space: An agent observation is a pair of test case records.

Action space: The action space values are O or 1. The first value indicates that the first
test case in the observation has a higher priority.

Reward function: The reward function takes into account whether or not the test case
with a higher priority fails. If it is the case, the agent receives the maximum reward of 1
otherwise it receives 0. In case the test cases in the pair have the same verdicts, the agent
receives 0.5 as a reward when the higher priority is given to the test case with less execution
time otherwise it receives 0.

The test case prioritization task is representative of an SE testing task as its representation
is similar to the baseline study work by Bagherzadeh et al. (2021) of ranking test cases. The
observation spaces of the ranking strategies capture the characteristics of the test cases which
are used to rank them. Based on the score or priority of a test case a subsequent test case
is selected. The reward function evaluates the capacity of the agent to rank test cases w.r.t
the optimal ranking. Spieker et al. (2017) applied DRL for the prioritization of test cases for
various configurations. Similarly to our study, the observation of the environment captures
the characteristics of a test case. The action space represents the priority of a test case for the
current CI cycle which is also similar to this study.

3.3.2 Experimental Setup
We implemented our ranking models using the DRL algorithms of the selected frameworks.

We used the OpenAl gym library (Brockman et al. 2016b) to mimic the CI environment
using logs execution and relied on the implementation of the DRL algorithms provided

@ Springer

111 Page 16 of 76 Empirical Software Engineering (2023) 28:111

by the Stable-baselines2 (Hill et al. 2019), Keras-rl (Plappert 2016) and Tensorforce
(Schaarschmidt et al. 2018) frameworks. Stable-baselines2 is used here as it was originally
used by Bagherzadeh et al. (2021). In any case, Stable-baselines2 and Stable-baselines3 pro-
vide for their implemented DRL algorithms the same hyperparameters. Moreover, to make
sure Stable-baselines3 meets the performance of Stable-baselines2, its developers conducted
experiments® to assess the performance of its implemented DRL algorithms and found them
equivalent. So, a performance drop should not be expected by using either one of them.
When applicable, we employ the default hyperparameters values of Stable-baselines2 for
the experiments similarly to the original work (Bagherzadeh et al. 2021). Specifically, the
architecture of the DNN model, the learning rate and the discount factor have the same values
among all experiments. The details of all hyperparameters settings are documented in the
replication package (Replication package 2022). Regarding the APFD and NRPA metrics,
for each dataset, we performed several experiments that correspond to the two pairwise and
pointwise ranking models. It should be noted that the applicability of the DRL algorithms
is restricted by the type of their action space. The pairwise ranking model involves seven
experiments for each data set, one for each DRL framework with DRL algorithms that can
support a discrete action space (i.e., DQN-SB, DQN-KR, DQN-TF, A2C-SB, A2C-TF, PPO-
TF, PPO-SB). Similarly, the pointwise-ranking model involves seven experiments for each
dataset, one for each DRL framework with DRL algorithms that can support a continuous
action space (i.e., DDPG-SB, DDPG-KR, DDPG-TF, A2C-SB, A2C-TE,PPO-TF, PPO-SB).
The training process begins with training an agent by replaying the execution logs from the
first cycle, followed by evaluating the trained agent on the second cycle. Then the logs from
the second run are replayed to improve the agent, and so on.

Bagherzadeh et al. (2021), trained the agent for a minimum of 200 x n x log, n episodes
and one million steps for training each cycle, where n refers to the number of test cases
in the cycle. Training stops when the budget of steps per training instance is exhausted or
when the sum of rewards in an episode cannot be improved for more than 100 consecutive
episodes. After each episode, the agent is reset before the next one. To answer our questions,
we recorded the rank of each test. Experiments are run 5 times for approximately 30 days
allowing us to account for randomness, on the Niagara cluster servers provided by Digital
Research Alliance of Canada (the Alliance). Each server has 40 cores at 2.4GHz with 202GB
of main memory. The total number of experiments is 320.

3.3.3 Comparison Baselines

Bagherzadeh et al. (2021) applied DRL using state-of-the-art DRL algorithms from the
Stable-baselines framework to solve the test case prioritization problem. We use this work as
abaseline and compare our suggested DRL strategies with their configurations. Bagherzadeh
et al. (2021) also presented the results of three benchmark works RL-BS1 (Spieker et al.
2017), RL-BS2 (Bertolino et al. 2020), MART (Bertolino et al. 2020). RL-BS1 applies DRL
on simple history data sets. RL-BS2 applies DRL Shallow Network, Deep Neural Network,
and Random Forest implementations on enriched datasets. MART is a supervised learning
technique for ranking test cases. RL-BS1 and RL-BS2 show results with runs containing
fewer than five test cases, which can inflate APFD and NRPA values when prioritization is

6 https://stable-baselines3.readthedocs.io/en/master/guide/migration.html

@ Springer

https://stable-baselines3.readthedocs.io/en/master/guide/migration.html

Empirical Software Engineering (2023) 28:111 Page 17 of 76 111

not required. MART, as a deep learning technique, has no support for incremental learning
(Zhang et al. 2019) which is important for dealing with frequently changing CI environments.
We will also compare our results with the mentioned baselines, i.e., RL-BS1, RL-BS2 and
MART.

3.3.4 Training of a DRL Agent

The applicability of DRL algorithms depends on the action space of the ranking models. The
pairwise ranking model has discrete action space while the Pointwise ranking model has a
continuous action space. For the sake of comparison of our selected DRL frameworks (Table
2), DQN and A2C will be applied to the Pairwise ranking model while DDPG will be applied
to the Pointwise ranking model.

Regarding the test case prioritization problem, the agent is trained in a software-production
environment, which is the case for many systems, especially safety-critical systems. During
testing, the same OpenAl gym interface as the game environment is used.Nevertheless, after
the training, the agent can be deployed into a real environment (Dulac-Arnold et al. 2019).
We follow the same procedure as Bagherzadeh et al. (2021). The agent is trained first on the
available execution history. Then at the end of the cycle, the test cases are ranked and new
execution logs are captured. The new logs are used to train the agent at the beginning of the
next cycle.

3.3.5 Integration of a DRL Agent into Cl Environments

To integrate the DRL agent into CI environments, the agent must first be trained on the
execution history of available test cases and the history of test case-related code features
(Bagherzadeh et al. 2021). Then, the trained agent is deployed to the production setting
where the test case features can be used in each CI cycle to rank the test cases. During the
testing process, if accuracy decreases, execution logs are captured and passed to the agent so
that it can adapt to the changes.

3.3.6 Datasets

We ran our experiments on datasets used by Bagherzadeh et al. (2021): Simple and enriched
historical data sets. Simple historical datasets represent test situations where source code is not
available and contain the age, average execution time, and verdicts of test cases. Enriched
historical datasets represent test situations where source code is available but due to time
constraints imposed by the CI, complete coverage analysis is not possible. They are enriched
with history data, execution history, and code characteristics from Apache Commons projects
(Bertolino et al. 2020). Table 3 shows the list of datasets that we employ in this study and
their characteristics.

The execution logs contain up to 438 CI cycles, and each CI cycle includes at least 6 test
cases. Less than 6 test cases will not be relevant and can inflate the accuracy of the results
(Bagherzadeh et al. 2021). The logs column indicates the number of test case execution logs
which ranges from 2, 207 to 32, 118. Enriched datasets show a low rate of failed cycles and
failure rate while the failure rates and number of failed cycles in simple datasets are high.
The last column shows the average computation time of enriched features per cycle.

@ Springer

Empirical Software Engineering (2023) 28:111

111 Page 18 0of 76

o6 L 100 [44:%3 LS payoLuy WeN

8¢°¢ C 10°0 ¥88°01 10¢€ paypdLuy Sue

88°C € 900 S86'v 9L1 paypLuy Ol

09°s C 700 (444 Lyl paypuuy SuiSew]

79°¢ L 900 Seeol 8¢y paypLuy ssaxdwo)

8L'1 0 0 LOTT 8LI paypLuy 99pOD

VN €0¢ 99°8¢C 811°C€E 60¢ opdurrg 104401

VN (44 9¢'61 8956 (433 ordurg [onuop-jured

S9INB9,] PAYdLIUF

(3ay) Qi -ore) 3ay S9[9AD) pafreq (9)ey 18] s3o S9[OAD adAg, jesereq

(120T 'Te 10 yopezioyseq) siosered € 3jqe]

pringer

As

Empirical Software Engineering (2023) 28:111 Page 190f76 111

3.3.7 Evaluation Metrics

We use two evaluation metrics to assess the accuracy of prioritization techniques across our
DRL configurations. Bagherzadeh et al. (2021) used both metrics. We present a description
of them in the rest of this section.

Normalized Rank Percentile Average (NRPA) NRPA measures how close a predicted rank-
ing of items is to the optimal ranking independently of the context of the problem or ranking
criteria. The value can range from O to 1. The NRPA is defined as follows: NRP A = II; f; 2((53 .
In this equation s, is the ordered sequence generated by a ranking algorithm R that takes a
set of k items, and s, is the optimal ranking of the items. R P A is defined as:

_ Zmes Zf:idx(s,m)"s" —idx(sp,m) + 1
B K2k +1)/2

RPA

ey
where idx (s, m) returns the position of m in sequence s.

Average Percentage of Faults Detected (APFD) APFD measures the weighted average of
the percentage of the fault detected by the execution of test cases in a certain order. It ranges
from O to 1. Values close to 1 imply fast fault detection. It is defined as follows:

Z,exe idx(se,t) *t.v 1

APFD(s,) =1—
|se| % m 2% se]

(@3

where m is the total number of faults, ¢ is a test case among s, and v its execution verdict,
either O or 1.

However, NRPA can be misleading in the presence of failures as it treats all test cases the
same regardless of their execution verdict. Bagherzadeh et al. (2021) show that NRPA values
contradict APFD values for some datasets, therefore recommending the use of APFD metric
to measure how well a certain ranking can reveal faults early. Both APFD and NRPA metrics
are suitable to measure the accuracy of the DRL ranking strategy, and are calculated during
testing after the agent is trained.

Training time We collect the time consumed by the DRL agents to train their policy, which
lasts for 200 episodes, for the pairwise and pointwise strategies.

Prediction time For both pointwise and pairwise ranking models, we measured the time
consumed by the DRL agents to rank a set of test cases.

3.3.8 Analysis Method

To answer RQ1, we conducted experiments and collected the averages and standard devia-
tions of APFD and NRPA for eight datasets (see Subsection 3.3.6), as well as their training
and prediction times using DRL algorithms from selected frameworks. We relied on the
implementation of algorithms provided by Stable-baselines3 (Raffin et al. 2021), Keras-rl
(Plappert 2016), and Tensorforce (Schaarschmidt et al. 2018) frameworks. Furthermore, we
collected from the study of Bagherzadeh et al. (2021), the averages and standard deviations
of baseline configurations in terms of NRPA and APFD values. For each framework, we
compare its best configuration with the baselines in terms of NRPA or APFD. We calculate
Common Language Effect Size (CLES) (McGraw and Wong 1992; Arcuri and Briand 2014),

@ Springer

111 Page 20 of 76 Empirical Software Engineering (2023) 28:111

between the best configuration of each framework and baselines to assess the effect size of
differences. CLES estimates the probability that a randomly sampled value from one popu-
lation is greater than a randomly sampled value from another population. In RQ2, we use the
Welch’s ANOVA and Games-Howell post-hoc test (Welch 1947; Games and Howell 1976)
to indicate the best DRL algorithm. All configurations across all cycles are compared using
one NRPA or APFD value per cycle. Similar to the game testing problem, a difference with
p-value <= 0.05 is considered significant in our assessments. In RQ3, we investigate how
the same algorithm performs, on average, across different DRL frameworks with multiple
runs of testing. Specifically, the performance of trained agents with the same algorithm across
different DRL frameworks resulting from multiple runs are evaluated based on metrics such
as NRPA, APFD, testing and prediction times collected in RQ1.

3.4 Data Availability

The source code of our implementation and the results of experiments are publicly available
(Replication package 2022).

4 Experimental Results

We now report the results of our experiments.

4.1 Game Testing

RQ1: Figs.3 and 4 show respectively the average number of detected bugs and average
cumulative reward obtained by DQN algorithms from Stable-baselines3 (DQN_SB), Keras-
rl (DQN_KR), and Tensorforce (DQN_TF) frameworks.

In Figs.3 and 4 the x-axis represents the 4 million steps budget of training. In Fig.3,
the y-axis is the average number of bugs detected over 10 runs of the algorithm. In Fig.4,
the y-axis is the average cumulative reward obtained by the DRL strategy over 10 runs of

2.5 -
—— DQN_SB
—— DQN_KR
| — DQN_TF
1.51
1}
(@]
-
@ 1.0
0.5+ (\\/
0.0+

00 05 10 15 20 25 30 35 40
Steps 1e6

Fig. 3 Number of bugs detected by DQN agents from different frameworks

@ Springer

Empirical Software Engineering (2023) 28:111 Page210of76 111

001 pgn_sB
= DQN_KR
2 -0.21 — DQN_TF
[
2
B -0.4
=
E
3 -0.6
Q
o
o
g 0.8 \
< —
-1.04, — : : : : :
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0

Steps le6

Fig.4 Average cumulative reward earned by DQN agents from different frameworks

the algorithm. Among the DQN algorithms, the Stable-baselines performs better in terms of
detecting bugs and Tensorforce performs better in terms of cumulative rewards. To explain
these results, our intuition lies in the diversity of the hyperparameters provided by each DRL
framework which affect the performance, as well as the difference between Tensorflow and
Pytorch as the backend of the frameworks.

Figs. 5 and 6 show respectively the average number of bugs and average cumulative reward
obtained by the A2C algorithm from Stable-baselines3 (A2C_SB), Tensorforce (A2C_TF),
and wuji (Zheng et al. 2019) (A2C_wuji) for a testing time of 4 million steps.

Recall that in this study, given that we compare DRL algorithms, we compare our results
with the number of bugs detected by only the DRL part of wuji. Since the authors of wuji
did not consider the average cumulative reward as a metric in the original work, we did not
report it here. The reason is that we would not have any baselines to compare the results.
A2C_SB performs better than A2C_wuji and A2C_TF in terms of detecting bugs. In terms
of rewards earned, the A2C algorithm from Stable-baselines3 performs better on average as
it detects more bugs of Type 1 (see Table 5).

17.54

15.01
12.5]
%10.0
>
7.5

5.0 — A2C_SB
251 A2C_TF
—— A2C_wuji

0.0

00 05 10 15 20 25 30 35 40
Steps 16

Fig.5 Number of bugs detected by A2C agents from different frameworks

@ Springer

111 Page 22 of 76 Empirical Software Engineering (2023) 28:111

0.0] — mc.sB

— A2C_TF
—0.11 -

—-0.21

—-0.31

—0.4-

—-0.51

Average cumulative reward

—0.61

00 05 10 15 20 25 30 35 40
Steps 1e6

Fig.6 Average cumulative reward earned by A2C agents from different frameworks

Figures 7 and 8 show respectively the average number of detected bugs and average
cumulative reward obtained by the PPO algorithms from Stable-baselines3 (PPO_SB) and
Tensorforce (PPO_TF) frameworks.

PPO_SB has slightly (4.69%) better performance in comparison to PPO_TF in terms of
bugs detected. Similarly, PPO_SB performs better on average, in terms of rewards earned.

Figure 9 shows the statistical results of the number of bugs discovered by all the studied
DRL configurations.

The A2C implementation of wuji (Zheng et al. 2019) detects 19% fewer bugs than the
other A2C_SB, A2C_TF, PPO_TF, PPO_SB after 4 million steps during testing. Among
the studied DQN strategies, DQN_SB, DQN_KR and DQN_TF detect 88%, 92%, and 98%
fewer bugs respectively than the A2C implementation of wuji at the same step number. A2C
algorithm takes advantage of all the benefits of value-based (like DQN) and policy-based
DRL algorithms which explain why it detects more bugs than DQN algorithm.

To assess the bug detection process, we calculate the rate of bug detection as the number
of detected bugs to the number of total bugs. Tables 4 and 5 report the detection rate (in
percentage) of the DRL strategies per type of bugs as defined in Subsection 3.2.4, for each

—— PPO_SB

17.51 PPO_TF

15.0 1

12.5 1
% 10.0 1
=}

5.0
2.51
0.0 A

00 05 10 15 20 25 30 35 40
Steps 1e6

Fig.7 Number of bugs detected by PPO agents from different frameworks

@ Springer

Empirical Software Engineering (2023) 28:111 Page230of76 111

0.07 —— PPO_SB
\ —— PPO_TF

Average cumulative reward

00 05 10 15 20 25 30 35 40
Steps 1e6

Fig.8 Average cumulative reward earned by PPO agents from different frameworks

testing budget (4 million steps and 10,000 steps). The results show that the DQNs detect
Type 2 more effectively, while the PPO strategies detect Type 1 more effectively.

We also analyze the line coverage obtained by each DRL strategy, as well as their state
coverage on the Block Maze game. The line coverage is exactly the same for all strategies:
96 %. The other 4% are mostly related to the code related to the player not reaching the goal
of the Block Maze. Specifically, the lines of code on the Block Maze gym environment where
we check if the player is at the goal location. In addition, the other 4% are also related to
the lines of codes instructing the termination of the game when a player reaches the goal.
Finally, the line of code on the Block Maze gym environment that converts the maze to an
RGB image is not reached either, as during testing we do not require it. The Block Maze has
a total of 400 potential states to be visited by the DRL agent. Table 6 shows the results of the
state coverage obtained by the DRL algorithms from the frameworks we have evaluated.

As expected, A2C_SB, A2C_TF, PPO_TF and PPO_SB have the largest state coverage
as they are able to detect more bugs. The state coverage obtained by the DQNs are lower as
they lead to fewer bugs detected, Stable-baselines framework still has better performance.
Moreover, regarding the bugs that are not detected, the fact is that the DRL configurations

175 M M
. . . *
15.0 . ¢ .
. . . .
. . o o
125 . M M
” ¢ . ¢ . 3
3’10'0 ¢ ¢ .
1 . 1
o 75| ¢ ¢ ¢
: . . . 0
. *
5.0 . .))
. . 0 .
. . .
25| M
.
0.0 [
A2C_SB A2C_TF PPO_SB PPO_TF DQN_KR DQN_TF DQN_SB A2C_wuji
Algorithms

Fig.9 The number of bugs discovered using different strategies after 4 million steps for Block Maze

@ Springer

Empirical Software Engineering (2023) 28:111

111 Page 24 of 76

0°001 00 L6 9C 0'001 00 0°001 00 9'S6 4 v'69 Sog aZeuo1ad uonoate(
T I T I T I T I T I (4 I s8nq jo odAy,
000°0T ot 4 00001 uor[[Iu 4, 00001 ot 4 sdoys ur 103pnq Sunsay,

1 NOd J1L°NOd 4s NOd sa13arens T

(393pnq Sunsay yoeo 1od A391en)s TY(YorS JOJ 9)el 1s9q Y} 2)edIpUl p[oq Ul sanfeA) s3nq Jo adAy 1od SNO(Jo (95ejusoied ur) ojer uonoeq ¢ ajqel

pringer

As

Page 250f76 111

Empirical Software Engineering (2023) 28:111

STy SLS I'ek 895 ¥8 ST9 Yre §S9 00S 00S L'SE TP €IS 9Ly veE S09 a3ejudo1ad uonade(
T I T I 4 I 4 I 4 I 4 I 4 I 4 I s3nq jo odAy,
000°01 oI f 000°0T uorq[Iu 4 000°01 uorIu 000°0T uor[[I ¢ sdajs ur 108pnq Sunsa,

4S”0dd 4170dd o 1A 4LV sa13arens TIA

(393pnq Sunsay yoes 1od A391ens TY(Yord J0J 93kl Js9q Y} 2JedIpUI p[oq Ul sanfea) s3nq Jo adAy 1od Odd pue D7V Jo (eSejusorad ur) oyer uonoodq § djqel

pringer

Qs

111 Page 26 of 76 Empirical Software Engineering (2023) 28:111

Table 6 State coverage of DRL algorithms on the Block Maze game

A2C_SB A2C_TF PPO_SB PPO_TF DQN_SB DQN_TF DQN_KR

State coverage 45.5 % 45.5 % 45.5 % 44.4 % 9.3% 8.8% 9.9%

are not able to cover all the observation state space. The code is relatively easy to cover, as
opposed to the state coverage. Thus, detecting bugs by maximizing the state coverage could
lead to better performance for game testing.

In terms of winning the game (i.e., reaching the gold position of the Block Maze as
illustrated in Fig. 2) none of our strategies are successful. Our results in Fig. 10 show that the
DRL agents earn negative rewards for all steps during testing.

For a richer analysis, we collected our evaluation metrics on a reduced number of steps
during test time (the evaluation metrics are collected on a 10,000 steps budget instead of 4
million) in order to answer RQ1. This analysis does not involve A2C-wuji as with this imple-
mentation the detection of bugs starts at 300000+ steps. Figures 11 and 12 show respectively
the average number of detected bugs and average cumulative reward over 10 runs of the algo-
rithm obtained by DQN algorithms from Stable-baselines3 (DQN_SB), Keras-rl (DQN_KR),
and Tensorforce (DQN_TF) frameworks on a 10,000 budget steps.

Similarly, Figs. 13 and 14 show respectively the average number of detected bugs and
average cumulative reward over 10 runs of the algorithm obtained by A2C algorithms from
Stable-baselines3 (A2C_SB), and Tensorforce (A2C_TF) frameworks on a 10,000 budget
steps.

Finally, Figs. 15 and 16 show respectively the average number of detected bugs and average
cumulative reward over 10 runs of the algorithm obtained by the PPOs algorithms from Stable-
baselines3 (PPO_SB), and Tensorforce (PPO_TF) frameworks on a 10,000 budget steps.

Consistently, among the DQNs algorithms, Stable-baselines3 performs best in terms of
detecting bugs and Tensorforce performs best in terms of rewards earned. Among A2C
algorithms, on average, Tensorforce performs best in terms of detecting bugs, and Stable-

0.0

-02 4? A‘V

Average cumulative reward

L B

A2C_SB A2C_TF PPO_SB PPO_TF DQN_KR DQN_TF DQN_SB
Algorithms

-1.0

Fig. 10 Average cumulative reward obtained by different DRL algorithms after 4 million steps for Block Maze

@ Springer

Empirical Software Engineering (2023) 28:111 Page 27 of 76 111

2.51 —— DQN_KR
—— DQN_TF
2.0, — DQN_SB
o 1.5
o
3
2]
1.0 1
0.5
0.0

0 2000 4000 6000 8000 10000
Steps

Fig. 11 Number of bugs detected by DQN agents from different frameworks on a 10K budget steps

baselines3 performs best in terms of rewards earned. Among the PPOs algorithms, Stable-
baselines3 performs best in terms of detecting bugs, and Tensorforce performs best in terms of
rewards earned. Similarly as with the 4 million steps budget, none of the DRL configurations
is able to win the game.

Similarly as with the 4 million steps budget, none the DRL configurations is able to win
the game.

In terms of training and prediction time, Tables 7 and 8 show the results of Welch’s
ANOVA test and the CLES values for each of the DRL algorithms. In terms of prediction
time, among the DQNs algorithms, Keras-rl and Stable-baselines3 frameworks have the best
performance. Among the PPOs and A2Cs algorithms, Stable-baselines3 has the best results.
In terms of training time, among the PPOs and DQNs algorithms, Stable-baselines3 has the
best results. Among the A2Cs algorithms, Tensorforce has the best results.

—— DQN_KR
DQN_TF
-0.41 —— DQN_SB

—0.31

—0.5 1
—0.6 1
—0.7 1 \“ |
—0.8 1

0.9 f

-1.0— . . . - .
0 2000 4000 6000 8000 10000
Steps

Average cumulative reward

Fig. 12 Average cumulative reward earned by DQN agents from different frameworks on a 10K budget steps

@ Springer

111 Page 28 of 76 Empirical Software Engineering (2023) 28:111

74 — A2C_SB
—— A2C_TF

(6, B o)}

Bugs

w &

0 2000 4000 6000 8000 10000
Steps

Fig. 13 Number of bugs detected by A2C agents from different frameworks on a 10k budget

In terms of state coverage, Table 9 shows the results of state coverage obtained by the
DRL configurations on 10,000 budget steps.

Similarly, as with the 4 million steps budget, PPO_TF, PPO_SB, A2C_SB and A2C_TF
have the largest state coverage. Nevertheless but expected with the fewer budget, all DRL
configurations have lower state coverage. In terms of line coverage, all DRL configurations
fare the same line coverage performance, similar to the 4 million steps budget: 96%.

Summary 1: From the results of RQ1, we can see that Stable-baselines3 and Tensor-
force frameworks provide the best results in terms of bugs detected, reward earned
and state coverage capability. Stable-baselines3 and Tensorforce frameworks provide
a diverse set of hyperparameters for each of their DRL algorithms that contribute
to their performance. For example, Stable-baselines3 with its DQN implementa-
tion provides a soft update coefficient to update the target network frequently and
optimize the network efficiency.

-0.30 —— A2C_SB

A2C_TF
-0.35

-0.40 N/W/wf’—"_-
-0.45 V

-0.50

Average cumulative reward

-0.55

0 2000 4000 6000 8000 10000
Steps

Fig. 14 Average cumulative reward earned by A2C agents from different frameworks on a 10k budget

@ Springer

Empirical Software Engineering (2023) 28:111 Page290of 76 111

—— PPO_SB
PPO_TF

Bugs

8
74
6 A
51
4
34
2
1
0

0 2000 4000 6000 8000 10000
Steps

Fig. 15 Number of bugs detected by PPO agents from different frameworks on a 10k budget

RQ2: We perform Welch’s ANOVA and Games-Howell post-hoc test to check for significant
differences between our results. Tables 10 and 11 show respectively the results of Welch’s
ANOVA and Games-Howell post-hoc test analysis in terms of average cumulative reward
earned and number of bugs detected by the DRL algorithms.

Tables 10 and 11 also report CLES between the DRL configurations. CLES values show
the probability that one configuration detects more bugs than another or earns more rewards.
Table 10 shows that the A2Cs and PPOs earned significantly more rewards than the DQNss.
Table 11 shows that on average the A2Cs and PPOs perform better than the DQNs with
a high bug detection number between 12.23 and 15.28 and CLES values equal to 1. The
A2C algorithms have similar performance, same as the PPO algorithms: while PPOs detect
more bugs, they do not have statistically significant results in comparison to A2Cs. Similarly
Tables 12 and 13 show respectively the results of Welch’s ANOVA post hoc tests regarding
the bugs detected by the DRL algorithms and the rewards earned on 10,000 steps.

-0.25
— PPO_SB
T PPO_TF
© —
§ -0.30
e
2 035
-
(8]
E ko
E —0.40 -
(9]
&
8 —0.45
g
<
-0.50
0 2000 4000 6000 8000 10000

Steps

Fig. 16 Average cumulative reward earned by PPO agents from different frameworks on a 10k budget

@ Springer

Empirical Software Engineering (2023) 28:111

111 Page 300f76

00+d00°0 00+300°0 SO+HES‘T YO+HTET 4L 0dd 4SS 0dd
10-4069 10-908°9 SO+HES‘1 S0+H98°1 AL 0dd 41L7NOd
00+300°1 00+400°0 YO+HCE T S0+H98°1 ds 0dd 4L7°NOd
00+400°0 00+400°0 SO+HES‘T YO+ALT‘T d1L0dd as NOa
00+500°0 00+400°0 YO+HTET YO+ALT'T 4S 0dd s NOa
00+500°0 00+300°0 SO+H9S’T YO+ALTT J17NOd as NOa
00+d00°0 00+400°0 SO+HES’T $0+H80°1 4L 0dd I NOa
00+d00°0 00+400°0 YO+HCE T Y0+d80°T dS 0dd oI NOa
00+500°0 00+400°0 SO+H98°T PO+HS0T d1L°NOd I NOa
00+d00°0 00+400°0 YO+ALI‘T 0+d80°1 4S NOd W1 NOa
10-90L°€ 10-90€°6 SO+HES’T SO+AIS’T 4L 0dd AL TV
00+H00°1 00+400°0 YO+HTET SO+HI8T 4s 0dd 4L 0TV
20-d00°L 20-900°T SO+H9S‘T SO+AIS’T J1L7NOd AL OV
00+300°1 00+300°0 YO+ALIT SO+AI8T s NOa 4L 0TV
00+300°1 00+400°0 Y0+d80°1 SO+AIST AW NOa 4L 0TV
00+300°0 00+400°0 SO+HES’T YO+HIET d1L70dd i e 4AY
10-306°€ 10-90L°6 YO+HCTE T YO+AIET dS 0dd i eI Y
00+500°0 00+400°0 SO+H98°1 YO+ATET J1L7NOA as oty
00+d00°1 00+400°0 YO+ALIT YO+A1ET as NOd 4s oty
00+400°1 00+400°0 ¥0+d80°1 PO+A1ET W NOa Lo AT
00+d00°0 00+400°0 SO+AI8‘T YO+HHIET 410tV as JTv 000°01
SA1D read (g)ueow (V)ueaw q v sdays ur Jo3pnq Sunsay,

(9218 109539 oy 1 I'm doueuLIoyrad

I0)eaI3 9ARY pue G()'() > SI anfea-d areym suoneInSyuod TY(oI p[oq ul) suonemsyuod TY(JO (Spuodasyu ur) swr uondrpaid Jo 1591 YAONYV S.USTOM JO SInsay / 3jqel

pringer

Ns

Page310f76 111

Empirical Software Engineering (2023) 28:111

sanfea awiny uonoipaid 03 19Ja1 (g)ueaw pue (y)ueowr

20-d10°1 00+d00°0 C1+H68079°1 CI+APYSEY°l 4L0dd 4S 0dd
00+H00°1 00+500°0 CI+H68079°1 TIHAIEEY9‘T AL 0dd J17NOd
00+400°1 00+400°0 TI+APP8E9‘l TIHATEEY9‘T ds 0dd J17NOd
00+d00°0 00+d00°0 T1+d68079°1 TI+A8YLEY'T 4L 0dd as NOa
00+d00°0 00+d00°0 CTI+APY8E9 T CTI+A8YLEY'T 4S 0dd as NOa
00+500°0 00+500°0 TIHATEE'] TIHASYLEY'] 41°NOd 4S"NOd
C0-H98°C €1-dE9'Y C1+a68079°1 CI+AT98E9°] 4L70dd W NOA
00+H00°1 00+400°0 CI+APY8E9‘T CTI+A198€9°1 4s 0dd I NOa
00+500°0 T1-409°C TIHATEEY9‘T T1+d198€9°1 A1L7NOA T NOa
00+400°1 11-306°1 TI+A8YLEYT CTI+A198€9°1 as NOa I NOA
10-905°6 00+d00°0 C1+a68079°1 CTIHATETYY'T AL 0dd 4L 0TV
00+300°1 00+d00°0 CTI+APY8E9‘1 CTIHHTETYY'T ds 0dd 4L 0TV
00+d00°0 00+d300°0 CIHATEEYY T CIHATETYY’] 41L7NOa AL 0TV
00+300°1 11-9ST°1 CI+ASYLEY'T CI+ATETYY'] as NOa EnerAY
00+H00°1 C1-368Y CTI+AT98€9°T CIHHTETYY'T I NOa EnNerAY
00+d00°0 €1-460°L T1+d68079°1 CTI+AEISE9‘T 4L 0dd as otV
00+400°0 00+400°0 TI+HAYP8E9‘l TI+AEISE‘T g5 0dd as otV
00+d00°0 C1-H0€°6 CIHATEEYY‘T CTI+HEISE‘T 417NOa ds otV
00+300°1 CI-ALIS CI+ASYLEYT CIHALISET s NOa gs oy
00+d00°0 11-39¢°1 CI+AT98€9°] CIHACISEY] WINOA as 0TV
00+d00°0 00+d00°0 CIHATETYY T CIHACISEY'T AL JTV :NorAY uotrur 47
SA1D read (g)ueowr (v)ueowr q v sdays ur 3o8pnq Junsay,

panunuod 7 3jqel

pringer

Qs

111 Page320f76

Empirical Software Engineering (2023) 28:111

Table 8 Results of Welch’s ANOVA test of training time (in milliseconds) of DRL configurations on a 10k
steps budget (in bold are DRL configurations where p-value is < 0.05 and have greater performance w.r.t the

effect size)

A B mean(A) mean(B) pval CLES
A2C_SB A2C_TF 1,63E+04 1,46E+04 3,43E-07 1,00E+00
A2C_SB DQN_KR 1,63E+04 6,37E+04 0,00E+00 0,00E+00
A2C_SB DQN_SB 1,63E+04 1,14E+03 0,00E+00 1,00E+00
A2C_SB DQN_TF 1,63E+04 9,28E+04 1,17E-13 0,00E+00
A2C_SB PPO_SB 1,63E+04 1,22E+04 3,50E-12 1,00E+00
A2C_SB PPO_TF 1,63E+04 1,43E+04 1,11E-05 1,00E+00
A2C_TF DQN_KR 1,46E+04 6,37E+04 0,00E+00 0,00E+00
A2C_TF DQN_SB 1,46E+04 1,14E+03 2,55E-15 1,00E+00
A2C_TF DQN_TF 1,46E+04 9,28E+04 4,84E-14 0,00E+00
A2C_TF PPO_SB 1,46E+04 1,22E+04 1,33E-08 1,00E+00
A2C_TF PPO_TF 1,46E+04 1,43E+04 7,69E-01 7,80E-01
DQN_KR DQN_SB 6,37E+04 1,14E+03 0,00E+00 1,00E+00
DQN_KR DQN_TF 6,37E+04 9,28E+04 6,83E-10 0,00E+00
DQN_KR PPO_SB 6,37E+04 1,22E+04 0,00E+00 1,00E+00
DQN_KR PPO_TF 6,37E+04 1,43E+04 0,00E+00 1,00E+00
DQN_SB DQN_TF 1,14E+03 9,28E+04 2,28E-14 0,00E+00
DQN_SB PPO_SB 1,14E+03 1,22E+04 0,00E+00 0,00E+00
DQN_SB PPO_TF 1,14E+03 1,43E+04 5,48E-13 0,00E+00
DQN_TF PPO_SB 9,28E+04 1,22E+04 7,26E-14 1,00E+00
DQN_TF PPO_TF 9,28E+04 1,43E+04 1,27E-14 1,00E+00
PPO_SB PPO_TF 1,22E+04 1,43E+04 4,85E-06 0,00E+00

mean(A) and mean(B) refer to training time values

Same as with the 4 million steps budget, the A2Cs and PPOs algorithms earned signifi-
cantly more rewards than the DQNs algorithms (see Table 13). In terms of number of bugs
detected, Table 12 shows that the A2Cs detect fewer bugs than the PPOs algorithms with
CLES values between [1.80E-01, 4.80E-01]. The following items summarize our results per
DRL algorithm where > denotes greater detected bugs and CLES values are greater than 60:

A2C Algorithms:

— A2C_SB >A2C_TF > A2C_wuji
PPO Algorithms:

— PPO_SB > PPO_TF
DQN Algorithms:

— DQN_SB > DQN_TF

Table 9 State coverage of DRL algorithms on the Block Maze game on a 10K steps budget

PPO_SB

PPO_TF A2C_TF

A2C_SB

DQN_SB DQN_KR

DQN_TF

State coverage

18.5%

17.4%

17%

15.7%

7.4%

2.4%

1.3%

@ Springer

Empirical Software Engineering (2023) 28:111 Page330of76 111

Table 10 Results of Welch’s ANOVA and Games-Howell post-hoc test regarding the average cumulative
reward earned by DRL algorithms (in bold are DRL configurations where p-value is < 0.05 and have greater
performance w.r.t the effect size)

A B mean(A) mean(B) pval CLES
A2C_SB A2C_TF -3,00E-01 -7,20E-01 0,00E+00 9,60E-01
A2C_SB DQN_KR -3,00E-01 -9,70E-01 0,00E+00 1,00E+00
A2C_SB DQN_SB -3,00E-01 -9,60E-01 0,00E+00 1,00E+00
A2C_SB DQN_TF -3,00E-01 -3,20E-01 0,00E+00 5,20E-01
A2C_SB PPO_SB -3,00E-01 -2,90E-01 0,00E+00 3,30E-01
A2C_SB PPO_TF -3,00E-01 -5,20E-01 0,00E+00 7,80E-01
A2C_TF DQN_KR -7,20E-01 -9,70E-01 0,00E+00 8,40E-01
A2C_TF DQN_SB -7,20E-01 -9,60E-01 0,00E+00 8,40E-01
A2C_TF DQN_TF -7,20E-01 -3,20E-01 0,00E+00 2,20E-01
A2C_TF PPO_SB -7,20E-01 -2,90E-01 0,00E+00 4,00E-02
A2C_TF PPO_TF -7,20E-01 -5,20E-01 0,00E+00 3,10E-01
DQN_KR DQN_SB -9,70E-01 -9,60E-01 0,00E+00 3,70E-01
DQN_KR DQN_TF -9,70E-01 -3,20E-01 0,00E+00 7,00E-02
DQN_KR PPO_SB -9,70E-01 -2,90E-01 0,00E+00 0,00E+00
DQN_KR PPO_TF -9,70E-01 -5,20E-01 0,00E+00 7,00E-02
DQN_SB DQN_TF -9,60E-01 -3,20E-01 0,00E+00 8,00E-02
DQN_SB PPO_SB -9,60E-01 -2,90E-01 0,00E+00 0,00E+00
DQN_SB PPO_TF -9,60E-01 -5,20E-01 0,00E+00 7,00E-02
DQN_TF PPO_SB -3,20E-01 -2,90E-01 0,00E+00 4,80E-01
DQN_TF PPO_TF -3,20E-01 -5,20E-01 0,00E+00 6,50E-01
PPO_SB PPO_TF -2,90E-01 -5,20E-01 0,00E+00 7,80E-01

mean(A) and mean(B) refer to average cumulative reward values

— DQN_KR > DQN_TF

In terms of average cumulative reward, the following summarizes our results per DRL
algorithm where CLES values are greater than 60.
A2C Algorithms:

e A2C_SB > A2C_TF
PPO Algorithms:
e PPO_SB > PPO_TF

Following are the results per DRL algorithm where > denotes greater detected bugs based
on 10,000 steps budget and where CLES values are greater than 60.
PPO Algorithms:

e PPO_SB > PPO_TF
DQN Algorithms:
e DQN_SB > DQN_TF

In terms of average cumulative reward, the following summarizes our results per DRL
algorithm on the basis of a 10,000 steps budget where CLES values are greater than 60.
A2C Algorithms:

@ Springer

111 Page 340f 76 Empirical Software Engineering (2023) 28:111

Table 11 Results of Welch’s ANOVA and Games-Howell post-hoc test regarding the number bugs detected
by DRL algorithms (in bold are DRL configurations where p-value is < 0.05 and have greater performance
w.r.t the effect size)

A B mean(A) mean(B) pval CLES
A2C_SB A2C_TF 1,89E+01 1,69E+01 0,00E+00 6,80E-01
A2C_SB A2C_wuji 1,89E+01 1,47E+01 0,00E+00 1,00E+00
A2C_SB DQN_KR 1,89E+01 3,22E+00 0,00E+00 1,00E+00
A2C_SB DQN_SB 1,89E+01 2,96E+00 0,00E+00 1,00E+00
A2C_SB DQN_TF 1,89E+01 3,00E-01 0,00E+00 1,00E+00
A2C_SB PPO_SB 1,89E+01 1,90E+01 9,80E-01 5,00E-01
A2C_SB PPO_TF 1,89E+01 1,81E+01 0,00E+00 6,80E-01
A2C_TF A2C_wuji 1,69E+01 1,47E+01 0,00E+00 9,30E-01
A2C_TF DQN_KR 1,69E+01 3,22E+00 0,00E+00 1,00E+00
A2C_TF DQN_SB 1,69E+01 2,96E+00 0,00E+00 1,00E+00
A2C_TF DQN_TF 1,69E+01 3,00E-01 0,00E+00 1,00E+00
A2C_TF PPO_SB 1,69E+01 1,90E+01 0,00E+00 3,20E-01
A2C_TF PPO_TF 1,69E+01 1,81E+01 0,00E+00 4,00E-01
A2C_wuji DQN_KR 1,47E+01 3,22E+00 0,00E+00 1,00E+00
A2C_wuji DQN_SB 1,47E+01 2,96E+00 0,00E+00 1,00E+00
A2C_wuji DQN_TF 1,47E+01 3,00E-01 0,00E+00 1,00E+00
A2C_wuji PPO_SB 1,47E+01 1,90E+01 0,00E+00 0,00E+00
A2C_wuji PPO_TF 1,47E+01 1,81E+01 0,00E+00 1,00E-02
DQN_KR DQN_SB 3,22E+00 2,96E+00 0,00E+00 5,50E-01
DQN_KR DQN_TF 3,22E+00 3,00E-01 0,00E+00 9,50E-01
DQN_KR PPO_SB 3,22E+00 1,90E+01 0,00E+00 0,00E+00
DQN_KR PPO_TF 3,22E+00 1,81E+01 0,00E+00 0,00E+00
DQN_SB DQN_TF 2,96E+00 3,00E-01 0,00E+00 9,60E-01
DQN_SB PPO_SB 2,96E+00 1,90E+01 0,00E+00 0,00E+00
DQN_SB PPO_TF 2,96E+00 1,81E+01 0,00E+00 0,00E+00
DQN_TF PPO_SB 3,00E-01 1,90E+01 0,00E+00 0,00E+00
DQN_TF PPO_TF 3,00E-01 1,81E+01 0,00E+00 0,00E+00
PPO_SB PPO_TF 1,90E+01 1,81E+01 0,00E+00 6,90E-01

mean(A) and mean(B) refer to the number of bugs detected values

e A2C_SB > A2C_TF
DQN Algorithms:
e DQN_KR > DQN_SB
Moreover, on the basis of a 4 million steps budget, we observe with CLES values equal to
1 that A2Cs and PPOs algorithms detect more bugs than DQN algorithms. Similarly, on the
basis of a 10,000 steps budget, we observe with CLES values greater than 90 that A2Cs and

PPOs algorithms detect more bugs than DQN algorithms. Practically it means for at least
90% of episodes, PPOs algorithms detect more bugs.

@ Springer

Empirical Software Engineering (2023) 28:111

Page350f76 111

Table 12 Results of Welch’s ANOVA and Games-Howell post-hoc test regarding the number of bugs detected
by DRL algorithms on a 10k steps budget (in bold are DRL configurations where p-value is < 0.05 and have
greater performance w.r.t the effect size)

A B mean(A) mean(B) pval CLES
A2C_SB A2C_TF 4,24E+00 5,05E+00 0,00E+00 3,80E-01
A2C_SB DQN_KR 4,24E+00 2,20E-01 0,00E+00 9,90E-01
A2C_SB DQN_SB 4,24E+00 1,74E+00 0,00E+00 9,20E-01
A2C_SB DQN_TF 4,24E+00 2,00E-01 0,00E+00 9,90E-01
A2C_SB PPO_SB 4,24E+00 6,01E+00 0,00E+00 1,80E-01
A2C_SB PPO_TF 4,24E+00 5,23E+00 0,00E+00 3,60E-01
A2C_TF DQN_KR 5,05E+00 2,20E-01 0,00E+00 9,90E-01
A2C_TF DQN_SB 5,05E+00 1,74E+00 0,00E+00 9,20E-01
A2C_TF DQN_TF 5,05E+00 2,00E-01 0,00E+00 9,90E-01
A2C_TF PPO_SB 5,05E+00 6,61E+00 0,00E+00 3,00E-01
A2C_TF PPO_TF 5,05E+00 5,23E+00 0,00E+00 4,80E-01
DQN_KR DQN_SB 2,20E-01 1,74E+00 0,00E+00 4,00E-02
DQN_KR DQN_TF 2,20E-01 2,00E-01 7,00E-02 5,10E-01
DQN_KR PPO_SB 2,20E-01 6,61E+00 0,00E+00 0,00E+00
DQN_KR PPO_TF 2,20E-01 5,23E+00 0,00E+00 1,00E-02
DQN_SB DQN_TF 1,74E+00 2,00E-01 0,00E+00 9,60E-01
DQN_SB PPO_SB 1,74E+00 6,61E+00 0,00E+00 1,00E-02
DQN_SB PPO_TF 1,74E+00 5,23E+00 0,00E+00 7,00E-02
DQN_TF PPO_SB 2,00E-01 6,61E+00 0,00E+00 0,00E+00
DQN_TF PPO_TF 2,00E-01 5,23E+00 0,00E+00 1,00E-02
PPO_SB PPO_TF 6,61 E+00 5,23E+00 0,00E+00 6,70E-01

mean(A) and mean(B) refer to the number of bugs detected values

Finding 1: A2C and PPO algorithms show statistically significant performance
compared to DQN algorithms in finding bugs in the examined game regardless
of the DRL frameworks.

Summary 2: From the results of RQ2, A2Cs and PPOs algorithms from the selected
DRL frameworks provide the best results in terms of bugs detected, reward earned
and state coverage capability. A2Cs and PPOs algorithms take advantage of actor-
critic methods. The actor updates the policy distribution based on the critic’s estimate
of the value function. Therefore, for small search spaces, like the Block Maze, the
faster convergence rate of A2Cs and PPOs can lead to the detection of more bugs
quickly as well as a wider state coverage capability.

RQ3: Our findings show that we do not get similar results from the same DRL algorithm over
the DRL frameworks. We explain this by the fact that each DRL framework that we used in
this study do not provide the same hyperparameters regarding the DRL algorithm. Some of

@ Springer

111 Page 36 of 76 Empirical Software Engineering (2023) 28:111

Table 13 Results of Welch’s ANOVA and Games-Howell post-hoc test regarding the average cumulative
reward on a 10k steps budget (in bold are DRL configurations where p-value is < 0.05 and have greater
performance w.r.t the effect size)

A B mean(A) mean(B) pval CLES
A2C_SB A2C_TF -4.00E-1 -4.20E-1 0.00E+0 7.60E-1
A2C_SB DQN_KR -4.00E-1 -9.30E-1 0.00E+0 1.00E+0
A2C_SB DQN_SB -4.00E-1 -9.60E-1 0.00E+0 1.00E+0
A2C_SB DQN_TF -4.00E-1 -5.90E-1 0.00E+0 7.20E-1
A2C_SB PPO_SB -4.00E-1 -4.00E-1 0.00E+0 5.80E-1
A2C_SB PPO_TF -4.00E-1 -4.00E-1 0.00E+0 5.30E-1
A2C_TF DQN_KR -4.20E-1 -9.30E-1 0.00E+0 1.00E+0
A2C_TF DQN_SB -4.20E-1 -9.60E-1 0.00E+0 1.00E+0
A2C_TF DQN_TF -4.20E-1 -5.90E-1 0.00E+0 6.90E-1
A2C_TF PPO_SB -4.20E-1 -4.00E-1 0.00E+0 2.80E-1
A2C_TF PPO_TF -4.20E-1 -4.00E-1 0.00E+0 2.40E-1
DQN_KR DQN_SB -9.30E-1 -9.60E-1 0.00E+0 9.50E-1
DQN_KR DQN_TF -9.30E-1 -5.90E-1 0.00E+0 1.60E-1
DQN_KR PPO_SB -9.30E-1 -4.00E-1 0.00E+0 0.00E+0
DQN_KR PPO_TF -9.30E-1 -4.00E-1 0.00E+0 0.00E+0
DQN_SB DQN_TF -9.60E-1 -5.90E-1 0.00E+0 1.40E-1
DQN_SB PPO_SB -9.60E-1 -4.00E-1 0.00E+0 0.00E+0
DQN_SB PPO_TF -9.60E-1 -4.00E-1 0.00E+0 0.00E+0
DQN_TF PPO_SB -5.90E-1 -4.00E-1 0.00E+0 2.90E-1
DQN_TF PPO_TF -5.90E-1 -4.00E-1 0.00E+0 2.80E-1
PPO_SB PPO_TF -4.00E-1 -4.00E-1 0.00E+0 4.50E-1

mean(A) and mean(B) refer to average cumulative reward values

the hyperparameters are similar but not all of them. For example, the DQN algorithm from
Stable-baselines has an additional hyperparameter called “gradient_steps” to perform the
gradient process as there are steps done during a rollout, instead of doing it after a complete
rollout is done. These other hyperparameters, even with default values, can slightly improve
efficiency as we observe in our results.

4.2 Test Case Prioritization

Tables 14 and 15 show the averages and standard deviations of APFD and NRPA for the eight
datasets, using different configurations (i.e., combinations of ranking model, DRL frame-
work, and algorithm). The first column reports different DRL algorithms, the second column
reports the ranking models followed by four datasets per table (a total of eight datasets).
Each dataset column is subdivided into the DRL frameworks. In the rest of this section, we
use [ranking model]-[RL algorithm]-[RL framework] to refer to DRL configurations. For
example, Pairwise-DQN-KR corresponds to a configuration of the pairwise ranking model
and the DQN algorithm from the Keras-rl framework. For each dataset (column), the relative
performance rank of configurations in terms of APFD or NRPA are expressed with (n), where

@ Springer

Page37of 76 111

Empirical Software Engineering (2023) 28:111

6)SOF LLO IT)LOFSLO 9)LO'F S8°0 IT)LOF 8L0 €1)80°F 9L0 S)LOF 680 od odaa
S)90F L8O 8)90°F LLO 1)90'F S6°0 L)LOF 980 6)LOF6L0 €)90F +6°0 vd NOa
AL D qs AL D qs NI
(VAIN) (VIIN)
DVINIL Ddd0D
VN VN vd IIVIN
VN VN od s9-1d
YTF ¥LO 9I'F €90 od 1S9-Td
¥1'F 68°0 PIF 6L0 VN rewndo
L)TF6v0 VN S)TF TS0 01) I'Ft¥0 VN S)TF LSO od
1)TF L0 VN €)I'F$S0 S)TF LSO VN 1)TFOLO vd oV
6)80°F 670 VN S)TF TS0 6)I'F6r0 VN S)TFLSO od
L)TF6v0 VN T)I'FSS0 8)8I'F 050 VN T)TF 690 vd 0dd
L)TF6v0 S)TFTS0) I'F €S0 L)TF TS0 S)TF LSO ¥)TFT90 od 0dad
9)I'F 0S50 8) 60'F 6%°0) I'F €S0 9)TF 950 6)I'Fo6r0 €)TF 990 vd NOa
AL oI das AL I das WY
(@4dv) (@4dv)
TO¥401 INIVd

Sunsa) [eonsness uo paseq ‘qAdV 10 VAIAN

JO SWLIR) Ul (UWN[0d) JASBIRP OB I0J SIAYI0 0) 10adsar (im (mo1) uonein3yuod e jo uonisod Y1 smoys [[20 [ora Ul Xpul Y[, "S19serep OVIAT Pue ‘OFA0D “10YJ0I ‘LNIVd
10J (LIVIN Pue ‘7SE-TY ‘1SH-TY) SQUI[aseq 291y} Y} JO SINSAI oY) PIM FuoTe ‘VIIN Pue (IdV JO SULIR) UT suoneInSyuod JuaIejjip jo doueuniograd oSeroae oy, {1 djqel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page 380f 76

SOF 060 €0'F 960 vd LIVIN
60F 680 SOF 060 od S9-Td
VN VN od 1S9-Td
VN VN VN rewndo
9)LOF S8°0 VN €)SOF T60 8)80'F £8°0 VN 9)90'F 680 od
01)OT'F9L0 VN T)SO'F S6°0 I1)LOF 8LO VN) Y0 F 960 vd oty
€1)90'F SL'0 VN ¥)SOF 160 01)80"F 8L0 VN ¥)90"F €60 od
L)90F 8L0 VN T)SOF $6°0 6)LOF6L0 VN 1)SO'F 960 vd 0dd
dL I das AL I das Wd
(@4dv) (@4dv)
TOYA01 INIVd

penunuod | 3jqel

pringer

Ns

Empirical Software Engineering (2023) 28:111 Page390of76 111

a lower rank indicates better performance. Again, we analyze the differences in the results
by using Welch’s ANOVA and Games-Howell post-hoc test.

Table 16 and 17 show the overall training times for the first 10 cycles across datasets.
Similarly, Tables 18 and 19 show the averages and standard deviations of prediction time
(ranking) for the first 10 cycles across datasets. Each cell value represents a configuration
as mentioned before. For each dataset, the relative performance ranks of configurations in
terms of training/prediction time are expressed with (n), where a lower rank (n) indicates
better performance.

RQ1: As shown in Table 14, pairwise configurations perform best across Stable-
baselines’s algorithms. Pairwise-A2C-SB yields the best averages. Based on the post-hoc test,
Pairwise-A2C-SB performs best across all datasets. Similarly, the Stable-baselines frame-
work performs best regarding the pointwise ranking model. While Pairwise-A2C-SB has
the best performance overall, Tensorforce has good performance on IOFROL dataset when
implementing Pairwise-A2C configuration. IOFROL is a simple dataset with a high number
of execution logs. When using this dataset, the training time of the DRL agent is long, which
might explain why Tensorforce configurations perform well. Specifically, despite the high
number of execution logs of the IOFROL dataset, Tensorforce still has good performance.

To show the importance of selecting the best DRL configuration, we measured the effect
size of the differences between pairs of configurations based on CLES. As shown in Table 20,
the CLES values among one of the worst and best cases for the six enriched datasets are over
80%, whereas they are 66% and 71% for the simple Paint-Control and IOFROL datasets,
respectively. These results show that, for each dataset, we have, with high probability, a DRL
configuration that has adequately learned a ranking strategy.

In terms of training time, as shown in Tables 16 and 17, both pairwise and pointwise con-
figurations perform well for some datasets/frameworks. Figures 17 and 18 show the statistical
analysis of the training time involving Pairwise-DQN and Pointwise-DDPG configurations,
respectively.

The results show that Pointwise-DDPG-SB performs best followed by Pointwise-DDPG-
KR. Regarding the DQN configurations, similarly, the Stable-baselines framework performs
best. It is worth mentioning that, since DRL agents are trained offline, the training time does
not add any delay to the CI build process.

In terms of prediction time, as shown in Table 18 and 19, similar to the training time, both
configurations (pairwise or pointwise) perform well for some of the datasets/frameworks.
Based on the post-hoc test, Pairwise-DQN-SB performs best on average followed by Pairwise-
DQN-KR. The prediction time among pointwise and pairwise configurations goes up to 11,
notably for Pairwise-DQN-TF, which is non-negligible for CI builds.

The last three rows of Table 14 and 15 show the averages and standard deviations of
baselines configurations in terms of NRPA and APFD values collected from (Bagherzadeh
et al. 2021), for the datasets on which they were originally experimented. Tables 21, 22, and
23 show the results of CLES between the best configuration of each framework and selected
baselines for all datasets, to assess the effect size of differences.

The row RL-BS1 in Table 14 and 15 shows the results of an RL-based solution reported
by Bagherzadeh et al. (2021). For the Paint-Control dataset, Pairwise-A2C-SB fares slightly
better than RL-BS1 with a CLES of 60.2. Also, both solutions (RL-BS1, Pairwise-A2C-SB)
are close to the optimal ranking (the row labeled as “Optimal” in Tables 14 and 15). For dataset
IOFROL, RL-BS1 performs better than Pairwise-A2C-SB: however, both solutions do not
perform well as their values are lower than the optimal ranking. RL-BS1 performs better
than Pairwise-DQN-KR for both simple datasets. Moreover, RL-BS1 and Pairwise-A2C-TF
perform equivalently on the IOFROL dataset. This is justified with CLES values reported in

@ Springer

Empirical Software Engineering (2023) 28:111

111 Page 400f76

I1)SO'F9LO T1)90 F ¥L'0 9)90'F L8'0 I1)90"F 9L0 SOF9L0 L)80F #8°0 od odad
(¥)LOF 880 6)SOFLLO €)SOF €60 9)90"F 98°0 SOF 8L0) Y0 F ¥6°0 vd NOa
AL ol gs AL ol gs NI
(VAIN) (VAIN)
HLVIN ONV'I
20 F 960 T0F €60 vd LIVIN
SOF 060 SI'F +8°0 od Sad-Td
VN VN od 1S9-Td
VN VN VN rewndo
9)LOF S8°0 VN ¥)SOF 680 9)90F L8O VN ¥) ¥0"F 260 od
01)80"F 9L0 VN T)T0F L60 01) 60"F SLO VN 1)20'F 860 vd oty
8)90 F LL'O VN €)v0F €60 8)LOF T80 VN €)H0F €60 od
6)SOF LLO VN T)T0F L60 6)SOFLLO VN T)T0F L60 vd 0dd
I1)90"F9L0 90'F ¥L'0 S)LOF 980 I1)SOF SLO LOFTLO S)LOF 060 od odad
L)90'F $8°0 SOF LLO 1)€0F L60 L)90'F $8°0 SOF9L0 T)T0F L60 vd NOa
dL o gs AL o gs WY
(VIIN) (VIIN)
dINOD (o)1

Surnsa) [eonsness uo paseq ‘qidVv

10 VYN JO SuLId) ur (Uwnjod) Jaserep Yoea Ioj S1yIo 03 10adsal yiim (mol) uoneIn3yuod e jo uonisod ay) smoys [[90 Yoea Ul Xapul ay], ‘s1aserep HIVIA Pue ‘ONVT dINOD
‘0110 (DIVIA PUe ‘7SE-TY ‘1SH-T¥) Seurfaseq 231y) 2y} JO SN) YPIm Suoe ‘YN Pue qAJV JO SWIL) UT SUONeINSYUod JUIIp Jo oouewrofrod aferoae oy, gL 3jqel

pringer

Ns

Page 410f 76 111

Empirical Software Engineering (2023) 28:111

0"F $6°0 0 F ¥6°0 vd LIVIN
T0"F $6°0 LOF 68°0 od Sg-Td
VN VN od 1S9-Td
VN YN VN rewndo

8)90 F 780 VN S)SOF 880 8) LOTF €870 VN ¥)SOF 680 od
€L)EF LSO VN) ¥0'F S6°0 T TFELO VN 1)€0°F S60 vd oy

01)90°F 9L0 VN L)90'F #8°0 6)L0'F 080 VN S)90"F 880 od
6)SOF LLO VN 1)¥0'F S6'0 01)SO'F LLO VN €)E0F ¥6°0 vd 0dd

dL ol gs AL o das IR

(VAIN) (VIIN)
dINOD oI

penunuod G| ajqel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page42of76

IT)Sel F0vl VN 9)SF L1 I1)6'6 F8¥I VN S)TFLI Od
€L)8 YL F LVI VN C)¥VF90 0l)8F S8 VN C)eF90 vd oy
or)v1F1¥ VN 1)EFero L)SF Ve VN 1)TFSS0 Od
6)6F 1'¢ VN S)6F LI 8)LF Ve VN V)SFET vd 0Odd
cL)ovI F I'vl 8)TeF e €)LF80 ¥1)801 F 891 6)CCFLE £€)9F80 Od Hddaa
Y1)v'0CF L'eT L)6'CF 8T ¥)9TF+60 €L) T'TT F 991 8)VeFve 9)VIFITC vd NOd
4L a1 as 4L a1 as
OVIAI L (e(0)0] NI
81) 1'CEe F +¥'C8C VN I)eFel Cl)8 1T F09¢ VN 1)eF¢1 Od
L1)T66C F €'1CC VN V)TCIF 111 Y1)LCTF 1’6V VN C)6F 91 vd ora
91)9'69 F 8°0CI VN €)V8FCSL 9)LTFLS VN ¥)TEFOT Od
Sl)€LTCF 1°0CC VN C)I'LFT9 8)1I'C+89 VN §)0TF8E vd 0Odd
¥l) ¥'86€ F 6'LYE 8)¥V98F99L S)ecCF ol 6)cF 18 IT)vy9F+ 501 €)VIFTT Od Ddaa
€1)89s¢ F 1'6l¢e L)89LF €89 9)¥CS FI9Sy €L)SLCF €Yy 01)8SFT6 L)6'€F09 vd NOa
AL a1 as AL €A qs
104401 LNIVd N

sjeseIep OVIAL PUt “DFA0D “TOYAOI ‘LNIVd SS01oe Sa[94d (] 151 oy} J0j suoneInSyuod Ty JO (senurwr ur) own Sururer) oSe1oay 9| djqel

pringer

As

Page430f76 111

Empirical Software Engineering (2023) 28:111

11)TIELF SPII VN €)6EF9E TL)STEFI'IT VN OULFOL od
T1)90€El FTIIL VN vYYFOY VLTI F ey VN ETIFIL vd oty
8)9°6 F 881 VN 1)6TFLT 8)6TFIS VN 1)80F L0 od
L)E6F LE VN T)IEF8T 6)6TF99 VN vETFEI vd 0dd
€1)091 F 6°I€1 01) €6 F 09T S)IVLFVY €1)SLEFVIE L)T8F LY S)8TFSI od 0daa
9)6SFLII 6)1'9T F 0°€T 6)LLLF LST 01)9TF¢8 1) LLITFEL 9)LYFOY vd NOd
dL ol €as dL Wl gas
HIVIA ONVT Wi
T)S6F €81 VN €)EFLO T L6F S8l VN v)EFLO od
PL)VILF 1°TC VN v)EF 80 vL) LTI FHTT VN €)EF 80 vd oty
1) IEF LI VN 1)TF S0 01)81F¢8 VN 1)TF S0 od
01)1I'TF €6 VN T2)TF90 11)0TF88 VN T)TF 90 vd 0dd
€T F 61T 8)VTF6F SISFIL €1)01 FL0T 8)VTF6F SISFIL od ndaa
6)6F¢8 L)TTFTY 9)¥1F8C 6)LF 8L L)TTFTY 9)¥1F8T vd NOa
dL o €s dL Wl gas
dINOD o1 Wi

sjeseiep HIVIA PUB ‘ONV'T ‘dINOD ‘Ol SS0Io® SI[9Ad ()] 111 9 J0J suonemsyuod T Jo (senurtwr ur) swn Sururer) oSe1oay /| 3|qel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page 44 of 76

6)8F L'L VN 8)SF L1 Cl)6 F '8 VN 8)TF LI Od
Cl)8F €8 VN L)VFIL IT)LFv'8 VN 9)€F ¢Sl vd oy
€l)0l F¢'8 VN V)I'F11 01)V+T8 VN S)IFIT Od
IT)SF €8 VN S)EFIT €l)L'F 98 VN v)0F I'1 vd 0Odd
v1)8F L8 I)20+ S0°0 €)I'FLO vl)LF V6 I)€0F S0°0 €)E0F L0 Od Hdda
ol)6+ LL)0+ S00 9)I'F¢1 6)8F VL C)c0F 900 L)60F ST vd NOd
4L <0 as 4L <0 as
OVIAIL L (e(0)0] NI
6)€TF8L VN S)EFCET 6)9F VL VN 9)cFC1 Od
o)L TF18 VN L)0CTFO0¢C OL)TI'TF6L VN 8)SF 81 vd oy
SL)9LFTIC VN V)TFTL vl)€1F68 VN S)SF VI Od
Y1)TSY Fv'LO VN 9)€T+TC S1)8FT6 VN V)EFTT vd 0Odd
IT)0CF+ €0l 1)TFT0 C)I'F60 cL)eF 18)€+ L0O0 £)EF 80 Od Ddaa
Cl)S I F991)T FI1 8)TEFSY €1)6’ F 1'8 C)LOF 10 L)TF L vd NOQ
4L R | as 4L $A as
109401 INIVd NY

sjeserep OVIAI Pue ‘DHA0D “TOYAOI ‘LNIVd $s010e s9[0£d ()] ISIy oy} J0J suonemsyuod T JO (Spuodas ur) awr (Suryuer) uonorpaid jo oSeroae oy, 8| d|qel

pringer

As

Page450f76 111

Empirical Software Engineering (2023) 28:111

6)6F €8 VN SFOI 6)9FLL VN EF S od
1)V TF06 VN 6F0C 11)TTF 18 VN PFOI vd oy
01)T1F68 VN IF T 01)9F I8 VN I'FTl od
€1)0TF €01 VN PFPI € ITFS6 VN IF Il vd 0dd
T ITF 96 1)LOF 10 €F 80 v1)8F 96 1)€0°F 900 I'F L0 od ndada
v1)6'SF LI T)EFE0 6FTT T)9TF S8 SIETFVI TFLL vd NOa
a AL W €s AL W €s
HIVIA ONVT W
8)LFEL VN EF P 8)8F9L VN €F 91 od
0L) v F+'8 VN EF S 11)SF838 VN EF I vd oy
11)01F68 VN IF T 01)SF L VN IF 1T od
€1)8F 901 VN IF T €1)8F T0l VN IFIl vd 0dd
1) 6F 86 1)€0°F S0°0 I'F L0 T LF 68 1)20°F 00 I'F L0 od ndada
6)6F €8 T)E0F LOO IF Ol 6)LF 8L T)E0F LOO I'Fol vd NOa
dL W €s dL W €s
dINOD ol WY

sjeselep HIVIA PUt ‘ONV'T ‘dINOD ‘Ol SSOIO SI[0Ad ()] 18I) J0J suonemn3yuod TY(JO (Spuodas ur) awn (Suryuer) uonorpaid jo oSeroae oy], 6l d|qel

pringer

Qs

111 Page 46 of 76

Empirical Software Engineering (2023) 28:111

Table 20 Common Language Effect Size between one of the worst and best configurations for each dataset

based on accuracy

Dataset

Best Conf

Worst Cons

CLES

Paint-Control
IOFROL
Codec
Compress
Imaging

10

Lang

Math

PAIRWISE-A2C-SB
PAIRWISE-A2C-TF
PAIRWISE-A2C-SB
PAIRWISE-A2C-SB
PAIRWISE-DQN-SB
PAIRWISE-A2C-SB
PAIRWISE-A2C-SB
PAIRWISE-A2C-SB

POINTWISE-A2C-TF
PAIRWISE-DQN-KR
POINTWISE-DDPG-KR
POINTWISE-DDPG-KR
POINTWISE-DDPG-KR
POINTWISE-DDPG-KR
PAIRWISE-A2C-TF
PAIRWISE-DQN-TF

.66
71
97
99
.98
99
81
.81

Fig. 17 Training time of Pairwise-DQN configuration accross DRL frameworks for enriched datasets

Fig. 18 Training time Pointwise-DDPG configuration accross DRL frameworks for enriched datasets

@ Springer

350
300
250
200
150
100

Training time (in minutes)

w
o

300 -

50 1

Training time (in minutes)
[}
(9,]
o

Il Tensorforce

1 mmm Keras-rl

[Stable-baselines

:-I-_.; _i 'I'.d. 'I'A}. L

CODEC COMPRESS IMAGING

Datasets

Il Tensorforce : ¢ ¢

[Stable-baselines ¢ ¢ ¢
mm Keras-rl

] *] ¢]

- $ $ $ $ $

]] ¢]

] L] L] ‘

i'j :
L -—j T_..i _& B
CODEC COMPRESS IMAGING 10 LANG MATH
Datasets

Empirical Software Engineering (2023) 28:111

Page 47 of 76 111

Table 21 Common Language
Effect Size between
Pairwise-A2C-SB and selected
baselines

Table 22 Common Language
Effect Size between
Pairwise-DQN-KR and selected
baselines

Table 23 Common Language
Effect Size between
Pairwise-A2C-TF and selected
baselines

RL-BS1 RL-BS2 MART
CLES CLES CLES
10 NA 792 762
CODEC NA 743 857
IMAG NA 17 724
COMP NA 910 .639
LANG NA 766 .699
MATH NA 773 .588
PAINT .607 NA NA
IOFROL 344 NA NA
RL-BS1 RL-BS2 MART
CLES CLES CLES
10 NA 238 .627
CODEC NA 244 761
IMAG NA 242 599
COMP NA 348 458
LANG NA 321 495
MATH NA 272 .568
PAINT 282 NA NA
IOFROL 268 NA NA
RL-BS1 RL-BS2 MART
CLES CLES CLES
10 NA 238 .619
CODEC NA 237 766
IMAG NA 224 .583
COMP NA 335 451
LANG NA 264 451
MATH NA 163 429
PAINT 409 NA NA
IOFROL 559 NA NA

@ Springer

111 Page 48 of 76 Empirical Software Engineering (2023) 28:111

Tables 22 and 23. These results are anyway lower than the optimal ranking. As pointed out
by Bagherzadeh et al. (2021), the test execution history provided by simple datasets is not
sufficient enough to learn an accurate test prioritization policy.

The row of RL-BS2 in Tables 14 and 15 shows the results of an RL-based solution reported
by Bagherzadeh et al. (2021). For all datasets, Pairwise-A2C-SB fares significantly better than
RL-BS2 with CLES values between 71.7 and 91.0 as shown in Table 21. In contrast, RL-BS2
performs better than Pairwise-A2C-TF and Pairwise-DQN-KR for all datasets: CLES values
between Pairwise-A2C-TF and RL-BS2 range between 16.3 and 33.5, and between 23.8 and
34.8 for Pairwise-DQN-KR and RL-BS2. Thus, according to these results, Pairwise-A2C-SB
improves the baselines in the use of DRL for test case prioritization.

The row labeled by MART (MART ranking model) in Table 14 and 15 provides the results
of the best ML-based solution reported by Bagherzadeh et al. (2021). For MATH dataset,
Pairwise-A2C-SB performs equivalently as MART. We observe 58.8 as CLES value for
MATH dataset. For other datasets, Pairwise-A2C-SB fares better than MART. The CLES
of Pairwise-A2C-SB vs. MART ranges between 58.8 to 85.7 with an average of 0.711, i.e.,
in 71.1% of the cycles, Pairwise-A2C-SB fares better than MART. Then, we can conclude
that Pairwise-A2C-SB advances state-of-the-art compared to the best ML-based ranking
technique (MART). Pairwise-A2C-TF and Pairwise-DQN-KR solutions perform similarly
to MART with 0.549 and 0.584 CLES averages respectively.

Finding 2: The performance of DQN algorithms is close to the A2C algorithms
in all evaluated DRL frameworks when applying to the Pairwise ranking model.

Summary 3: When it comes to the test case prioritization problem, where we have
to take into account the ranking function and the size of the dataset, Stable-baselines
leads in terms of accuracy followed by Tensorforce. In terms of inference time, Keras-
rl provides the best results. Keras-rl with its DQN implementation is the lightest one
in terms of implementation, hyperparameters it provides, and APIs it provides to
evaluate the DRL agent.

J

RQ2: Fig. 19 shows the statistical results of APFD and NRPA metrics for the Pairwise-
DQN configuration.

1.01 " 1.01
? T T . T T ¥
! § o
0.8 T : 0.8 $
5 vl | 5 o |
Z064"* [Z064"* ¢
5 5
204 204
a a
< <
‘. .
0.2 0.2 o
I Stable-baselines M I Stable-baselines ® .
Keras-rl ¢ @ Tensorforce ‘e
00{ ! 0.0
CODEC COMP MATH [0 IMAG LANG PAINT IOFROL CODEC COMP MATH [0 IMAG LANG PAINT IOFROL
Datasets Datasets

Fig. 19 APFD (simple datasets) or NRPA (enriched datasets) of DQN-PAIRWISE configuration accross DRL
frameworks for all datasets: Stable-baselines vs. Keras-rl (left) and Stable-baselines vs. Tensorforce (right)

@ Springer

Empirical Software Engineering (2023) 28:111 Page49of76 111

The results show that the Stable-baselines framework performs better for all enriched
datasets. Similarly, Fig. 20 shows the statistical results of APFD and NRPA metrics regarding
the DDPG-Pointwise configuration.

According to the reported results, Stable-baselines perform best. Moreover, to analyze the
accuracy of DRL algorithms w.r.t the relative performance, we performed two sets of Welch’s
ANOVA and Games-Howell post-hoc tests corresponding to the pairwise and pointwise
ranking models, based on the result of all algorithms across datasets. Tables 24 and 25 show
for each configuration the calculated mean, p-value and CLES.

The results show that for the enriched datasets A2C-SB has better performance on both
the pairwise and pointwise ranking models. Regarding the simple datasets, none of the DRL
configurations has learned an adequate ranking strategy, as the highest CLES value is 0.63.
This is explained by the fact that it cannot always be possible to learn a proper policy from
simple data.

To compare the DRL configurations based on their training time, we performed two sets
of Welch’s ANOVA and Games-Howell post-hoc tests corresponding to the pairwise and
pointwise ranking models, based on the result of all algorithms across datasets.for the 10 first
cycles. The results are reported on Tables 26 and 27.

We summarize the results as follows:

Pairwise and simple datasets:

— DQN-SB > DQN-KR > DQN-TF
— A2C-SB > A2C-TF

— Pairwise and enriched datasets:

— DQN-SB > DQN-KR > DQN-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

Pointwise and simple datasets:

— DDPG-SB > DDPG-KR > DDPG-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

Pointwise and enriched datasets:

1.0 TT 1.0 T
! by E
D R
0.8 0.8 ‘
é ‘. é L]
Z061* Z06°*
5 5
2 04 2 o4
a a
< < .
0.2 - 0.2 - "
I Stable-baselines B Stable-baselines ‘
L ‘.
0.0 [Keras-rl ee L1 0.0 mmm Tensorforce MR S
COMP 10 IMAG CODEC LANG MATH [OFROL PAINT COMP 10 IMAG CODEC LANG MATH IOFROL PAINT
Datasets Datasets

Fig. 20 APFD (simple datasets) or NRPA (enriched datasets) of DDPG-POINTWISE configuration accross
DRL frameworks for all datasets: Stable-baselines vs. Keras-rl (left) and Stable-baselines vs. Tensorforce
(right)

@ Springer

Empirical Software Engineering (2023) 28:111

111 Page 50 of 76

10-918°6 €1-d0€'e 10-36L°L 10-9¥9°6 J1-0dd 4S-0dd
10-996°L 00+300°0 10-H6L°L 10-42H'8 J1-0dd AL-NOd
T0-A6°L 00+900°0 10-9+9°6 10-d2H'8 4S-0dd A1L-NOd
10-92L6 00+300°0 10-96L°L 10-985°6 Jd1-0dd 4S-NOa
10-92L'y 00+300°0 10-9+9°6 10-985°6 4S-0dd gs-NOd
10-986°8 00+300°0 10-92¥°8 10-985°6 41-NOd 4S-NOd
10-H80°S 00+400°T 10-36L°L 10-908°L J1-0dd WI-NOA
TO-FLS‘T 00+900°0 10-3+9°6 10-308°L 4S-0dd WI-NOA
10-366°1 00+400°0 10-9Cv'S 10-908°L AL-NOd WI-NOA
20-96¥°C 00+900°0 10-985°6 10-908°L as-NOd WI-NOA
10-9£9° 00+300°0 10-96L°L 10-90S°L AL-0dd A1-0TV
20-99%°1 00+300°0 10-9+9°6 10-90S°L 4S-0dd A1-0TV
10-348°1 00+300°0 10-92¥°8 10-90S°L AL-NOd A1-0TV
TO-HIET 00+900°0 10-985°6 10-90S°L as-NOd AL-0TV
10-95S*Y 00+900°0 10-H08°L 10-90S°L WI-NOA AL-0TV
10-9¥8°6 00+300°0 10-H6L°L 10-489°6 J1-0dd as-0tv
10-99¢°S 90-9ST°1 10-9¥9°6 10-989°6 4S-0dd as-0tv
10-91€°6 (48154 10-92¥°8 10-989°'6 J1-NOd 4s-0Tv
10-9£9°S 00+300°0 10-985°6 10-989°'6 4S-NOd as-0Tv
10-398°6 TI-ave'l 10-908°L 10-989°6 WI-NOA as-0Tv
10-HL8°6 T1-d8C'y 10-30S°L 10-989°6 J1-0¢V as-0tv SJOSEIEP PAYDLIUS PUE ASIMITE]
1D [ead (g)ueowr (V)ueow q v

(715 199139 ay) ¥I'm douewIofIad 19)eaIs aAry pue ¢O°(> st anfea-d

Springer

Q1oym suoneInSyuod T I8 P[oq UI) S)aSeIep PAYILIUL 10] spopowr Suryuel astmjutod pue osimired uo s3sa) 00y-1sod [[omoH-sowren) pue VAONYV UM JO SINSaY T djqel 4l

Page510f76 111

Empirical Software Engineering (2023) 28:111

son[eA VAN 01 19JaI (g)ueaw pue (y)uedw

10-950°6 00+400°0 10-9L8°L 10-gv1°6 41-0dd 4S-0dd
10-98C°v 00+400°0 10-9L8°L 10-8¥S°L dL-0dd 41-Ddad
C0-HE8°S 00+400°0 10-9r1°6 10-9¥S°L 4sS-0dd 41-Ddad
10-98S°L €1I-H9T'Y 10-HL8'L 10-9S+°8 41L-0dd das-ddad
10-36T°€ 00+400°0 10-971°6 10-9S+°8 4S-0dd 45-Ddad
10-921°8 YI-ASL'E 10-3vS°L 10-4S+°8 41-5dad 4as-bdad
10-9€9°¢ CI-d8L1 10-9LS8°L 10-30S°L dL-0dd dA-H4dad
20-d10°S CI-d8S°E 10-9v1°6 10-90S°L 4S-0dd AI-HdAd
10-3vCTy 10-98S°Y 10-9vS°L 10-90S°L JAL-Dddd AA-HdAd
10-9¥9°1 00+400°0 10-9S%°8 10-50S°L 4s-9dad AA-HIAd
10-9H90°L 00+300°0 10-9LS'L 10-91€°8 41-Odd HL-0TV
10-912°C 00+400°0 10-9v1°6 10-41€°8 4sS-0dd 41L-0¢V
10-9SL°L 00+400°0 10-3vS°L 10-41€°8 41-5dad HAL-JDTV
10-960°t €0-AvT'E 10-9St°8 10-91€°8 as-Hdda 4L-0¢V
10-990°8 CI-d61C 10-30S°L 10-91€°8 dA-Hdad AL-DTV
10-918°6 00+400°0 10-9L8°L 10-989°6 AL-0dd qs-0tv
10-9¢T°8 00+400°0 10-971°6 10-989°6 45-0dd qs-0¢v
10-968°6 00+300°0 10-9vS°L 10-989°6 41-Dddd qs-0¢v
10-9L6°8 00+400°0 10-9S+°8 10-489°6 4S-Ddada qs-0¢v
10-406°6 CI-dS8°E 10-40S°L 10-489°6 dA-Ddad as-0tv
10-9¢5°6 CI-d89°¢ 10-91€°8 10-989°6 41-0¢V as-0tv SI9SBIBP PAYOLIUD pUB asIMIUIod
SHIO [ead (g)ueow (V)ueow dq v

penunuod g ajqel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page 52 0f 76

10-4.8°9 TI-ATET 10-H00°S 10-9S€°9 41-0dd 4s-0dd
10-90L°S 01-92C'1 10-900°S 10-90S°S 41-0dd AL-NOd
10-988°¢ €I-dL9'S 10-9S€'9 10-90S°S 4S-0dd 41-NOd
10-9+€'9 cr-dicy 10-900°S 10-990°9 41-0dd 4s-NOa
10-959't 20-96T°C 10-9S€°9 10-990°9 4S-0dd as-NOd
10-91L°S LO-AS8'T 10-90S°S 10-990°9 J1-NOA 4S-NOa
10-388'f T0-HLT'8 10-H00°S 10-9£6'Y AL-0dd WI-NOA
10-996'C TI-H0E'T 10-4S€°9 10-9€6'Y dS-0dd WI-NOA
10-481t 00+d00°0 10-90S°S 10-9€6'Y AL-NOd WI-NOd
10-95S°€ 00+300°0 10-490°9 10-9£6'% 4S-NOd WI-NOA
10-912'9 00+d00°0 10-900°S 10-900°9 41-0dd AL-0TV
10-309't Y0-H61'1 10-9S€°9 10-900°9 4S-0dd d1-0¢V
10-919°S L0-98T'T 10-H0S'S 10-900°9 J1-NOA AL-0TV
10-HE6'Y 10-996°'6 10-390°9 10-H00°9 4s-NOd AL-0TV
10-9€€°9 CI-dEL'E 10-9€6't 10-9400'9 WI-NOA AL-0TV
10-98L°S TI-dIS'T 10-900°S 10-9¥t'S 41-0dd as-0Tv
10-99S°€ €1-d9L'8 10-9S€°9 10-ar+'s 4S-0dd 4s-0tv
10-916'% 10-96L°6 10-90S°S 10-at+'s AL-NOd 4s-0tv
10-991 % €1-d$8'8 10-990°9 10-at+'S 4S-NOd 4s-0tv
10-486'S 00+d00°0 10-9€6'% 10-at+'S WI-NOA gs-0Tv
10-H9C' 1 TI-ALT'T 10-400°9 10-9t'S AL-DTV gs-0tv sjosejep ofdurs pue asimireq
1D [ead (g)ueowr (V)ueoaw q v

(9715 199139 9y} 1I'm douewIofIad 19)eaId aAry pue ¢O°(> st anfea-d

Springer

d1oyMm suoneIn3yuod Y 218 p[oq ul) sjaserep [dwrs 10j spepowr Junjuer astmjutod pue asimired Uo s3se) 00y-1sod [[PMOH-Seuren) pue YVAONY UI[OM JO SINSAY ST djqel 4l

Page 53 0f 76 111

Empirical Software Engineering (2023) 28:111

=
&
&l
sanfeA 4V 01 19Ja1 (g)uedw pue (y)ueawr
10-906°S cl-gese 10-d¢6'v 10-9d€S°S 41-0dd 4S-0dd
10-9dee’S c0-ds0v 10-d¢6'v 10-9dvl's 41-0dd JdL-9ddd
10-dev'y LO-HST'C 10-9ES°S 10-gav1°¢ 4S-0dd 41-5ddd
10-408°S 60-d6L'1 10-d¢6't 10-9LS°S 4L-0dd 4s-dddda
10-950°S 10-466'6 10-9€S°S 10-9LS°S dS-0dd 4s-dddda
10-95S°S YO-d8L'Y [0-3v1°S 10-9LS’S 41-5dad 4s-dddd
10-9L9°¢ [1-H8¢°1 10-HC6'Y 10-H6¢°S 41-0dd SA-0ddd
10918y 10-9dS¥'¢ 10-d€S°S 10-d6¢°S q4S-0dd d-ODdAd
10-99¢°¢ €0-d6v'9 10-9rl's 10-d6¢°S 41-5ddd SIA-0ddd
10-98LY 10-d€6't 10-9LS°S 10-46¢°S qas-d5dada A-DdAd
10-d8¥'v 90-9¢CI'C 10-d¢6'Y 10-409'% AL-0dd AL-D¢V
10-9¥9°¢ Cl1-des’l 10-9€S°S 10-409°'t 4S-0dd 4L-0¢V
10-991°¥ VI-d8¢'1 [10-9v1°S 10-409'% JAL-9ddd 4L-0¢V
10-9¢€8°¢ 00+400°0 10-9LS°S 10-409'v das-bdad 4L-0¢V
10-d88°¢ Cl-dLre 10-d6¢°S 10409y WBI-OdAd AL-0¢V
10-488°S CI-dL8'1 10-926't 10-91¢°S 4L-0Odd qas-0tv
10-9L6'Y 00+d00°T 10-9ES°S 10-91¢°¢ 4S-0dd 45-0¢v
10-99¢5°S 90-94S0°1 10-9v1°s 10-91S°S 41-5dad qs-0tv
10-9¢6't 10-956'6 10-9LS°S 10-918°S das-Hdada qS-0¢v
10-991°¢ [0-HCEY [0-H6¢€°S 10-H1S°S IA-Ddada as-0tv
10-9v¢'9 cl-goL'1 10-909v 10-4I¢°S 4L-0¢V qs-0tv sjosejep a[duwts pue asimiutog
SHTO [ead (g)uesw (V)ueowr q v

penunuod Gz ajqel

Empirical Software Engineering (2023) 28:111

111 Page 54 of 76

T0-9T6'E LO-H68°C SO+H0E'S YO+ATT9 J41-0dd d4s-0dd
10-96£°8 TI-AIv'e SO+H0E'S 90+atYT AL-0dd A1-NOd
10-9¢6°6 00+300°0 FO+ATT'9 90+atHT 4S-0dd 41-NOd
10-968°T 10-920°T SO+H0¢E'S SO+AL6'T J41-0dd as-NOa
10-489°8 TT-L8T YO+ATT'9 S0+dL6T 4S-0dd 4s-NOd
TO-AST'L CI-av8’l 90+d+t°C S0+dL6'T J1-NOd 4s-NOa
10-HL6°T 00+H00°T SO+H0E'S SO+d8T'S 41-0dd WI-NOA
10-960°6 €1-a¥9'¢ YO+ATT9 SO+d8T'S ds-0dd WI-NOA
10-9£T°1 €1-d08°6 90+d'C S0+dS8T'S J1-NOd WI-NOA
10-9LC°9 €0-dr6°'8 SO+AL6'T SO+d8T'S 4s-NOd WI-NOA
10-95S°8 00+300°0 So+d0¢g'S 90+d61°C AL-0dd 41-0¢V
10-9£6°6 00+d00°0 FO+ATT'9 90+d61°T 4S-0dd d1-0°V
10-H0T‘S T0-HLL6 90+d¥1C 90+H61°C J1-NOd AL-0TV
10-H0€6 00+H00°0 SO+IL6'T 90+H61°T 4s-NOd A1-0TV
10-98L°8 00+H00°0 SO+48T'S 90+H61°T WI-NOA J1-0TV
T0-9SS*S 90-96S‘1 SO+H0E'S YO+HET'S J41-0dd e YA
10-H0€°9 10-980°¢ FO+ATT'9 YO+HET'S 4S-0dd 4s-0tv
T0-999°1 00+d00°0 90+d+t°C YO+HET'S J1-NOd 4s-0Tv
T0-H0LT 60-966°T SO+AL6'T YO+HET'S 4S-NOd 4s-0Tv
10-HCT°T TI1-989°9 SO+AST'S YO+HET'S WI-NOA 4s-0Tv
20-ah'1 PI-HSTT 90+d61°C YO+HET'S J1-0TV 4s-0tv SJOSEIEP PAYDLIUD UL ASIMITE]
Neg) Tead (g)ueowr (v)ueowr q v

(9718 193132 oy} ¥I'm douruLIo}Iad 19)8aIT 9ARY pue G()'() > SI an[ea-d axoym suoneInSyuod TY(21

Springer

PIOq UT) S)aSeIep PAYOLIUL I0] S[opowt Suryuel asimiutod pue asimared Uo (SPUOIISI[IW UT) dwn Sururen Jo s3sa) 90y-1sod [[oMOH-souren) pue YAONYV UITOM JO SINsay 97 d|qel 4l

Page 550f 76 111

Empirical Software Engineering (2023) 28:111

=

&

&l

san[eA awiny Jururen) o} 19Ja1 (g)ueaw pue (y)ueauwr
C0-der'e 00+300°0 SO+A9I°S 0+d86°S 41-0dd 4S-0dd
10-961°8 60-481'C SO+A9I°S 90+d6£°C AL-Odd 41-5ddd
10-9¥6°6 EI-HSET Y0+d86°S 90+d6€C 4S-0dd 41-5ddd
20-d19°L S1-H499°8 SO+H9T'S SO+AITT 4L-0Odd 4s-ddda
10-468°9 10-499°¢ $0+486°S SO+AITT 4S-0dd 4s-5dad
C0-H28C €1-480°¢ 90+d6£°C SO+AIT] 41-5dad as-dddda
10-9v1°¢ 00+400°1 SO+A9I°S S0+dT0°S 41-0dd SA-0ddd
10-9£€°6 00+400°0 Y0+d86°S S0+dT0°S 4S-0dd A-Ddad
10-9€T°1 60-9LLT 90+d6€C S0+dT0°S 41-5ddd SIA-0ddd
10-959°8 60-98L9 SO+AITT S0+dT0°S 4s-d5dad A-DdAd
10-HE6°L 01-96S°¢ SO+H9T'S 90+dT1°C JAL-0dd AL-D¢V
10-416°6 00+400°0 $0+486°S 90+dz1°C 4sS-0dd AL-0¢V
10-40Ly 10-468°6 90+d6£°C 90+d21°C 41-5dad AL-DTV
10-90L°6 PI-H9€ Y SO+AIT] 90+d21°C das-bdad AL-0¢V
10-959°8 O1-HELY S0+AT0°S 90+d21°C WI-OdAd AL-0¢V
C0dTr'y EI-HLET SO+A9I°S YO+ASYL dL-0dd q5-0¢v
10-918°S 10-9¥5$°9 Y0+d86°S YO+ASYL 4S-0dd q5-0¢v
0-dI€T €I-H0ET 90+d6€CT PO+ASY'L 41-5dad qs-0tv
10-H6L°€ 10-9869 SO+HIT] YO+ASYL 4S-Ddad as-0tv
C0-dIE'8 €1-d18C S0+d20°S YO+ASYL IA-Ddada qs-0tv
C0-dLST 00+400°0 90+d21°C YO+AS'L 41L-0¢V qs-0tv S19SEIEP PAYDLIUD pue SIMIUIOq

SHTO [ead (g)uesw (v)ueowt q v

penunuod 9z ajqel

Empirical Software Engineering (2023) 28:111

111 Page 56 of 76

10-HCIT €0-901°¥ 90+d9¢°S SO+ATLT A1-0dd 4S-0dd
10-98T°L 10-309°1 90+d9¢°S LO+HS0‘T AL-0dd AL-NOd
10-906°6 LO-A88°¢ SO+HTLT LO+HS0‘1 4s-0dd A1L-NOd
10-At¥°¢ T0-A9°L 90+H9€°S 90+39¢°T 41-0dd 4S-NOd
10-90S°8 S0-d8€‘C SO+ATL'T 90+396°T 4S-0dd 4s-NOd
10-98%°1 S0-arTl LO+980°T 90+396°T J1-NOA 4S-NOd
10-3£9't 10-968°C 90+d9¢°S 90+dEET AL-0dd WI-NOA
10-908°8 90-A¥9°S SO+ATLT 90+dEET 4s-0dd WI-NOA
10-399°1 S0-d0L'6 LO+H80°1 90+dEET 41L-NOd WI-NOa
10-48¢°9 10-916°S 90+d95°1 90+d€£€°C as-NOd WI-NOA
10-98¢C°L 10-9+0°C 90+H9¢°S LO+EY0°T AL-0dd A1-0TV
10-458°6 L0-9S0'% SO+dTLT LO+EY0°T 4S-0dd A1-0TV
10-399° 00+300°T LO+d80°T LO+EP0°T J1-NOA AL-OTV
10-909°8 SO-ASH' 90+d95°1 LO+AY0'T as-NOd AL-0TV
10-961°8 YO-HIT1 90+dEET LO+AYO‘T WI-NOA AL-0TV
10-902°1 €0-90t'S 90+d9¢°S SO+AP8‘E d1-0dd as-0tv
10-92S$°9 10-91¢C°L SO+ITL'T SO+ar8°e 4S-0dd g4s-0tv
T0-dEEY LO-A¥T'S LO+I80°T So+ar8°e J1-NOA as-0Tv
10-950°C Y0-9€8°1 90+H96°T So+ar8°e 4s-NOd 4s-0Tv
10-30S°T S0-dET'T 90+HEET So+ar8‘e WI-NOA as-0Tv
T0-FEYS LO-HTS'S LO+AYO‘T So+arse AL-0TV as-0tv sjosejep ofdurs pue asimireq
Nege) [ead (g)ueowr (v)ueowr q v

(9218 193132 oy} ¥I'm douruLIo}Iad 10)8aIT 9ARY pue G()'() > SI an[ea-d axoym suoneInSyuod TY(21

Springer

proq ur) syesejep o[dwrs 10y sfepowr Suryuer asimjurod pue asimIred Uo (SPUOOISI[[TW UT) dwr) SUTUTED) JO $159) 00Y-1s0d [[OMOH-souren) pue VAONY UI[OM JO SINSAY /T d|qel 4l

Page 57 of 76 111

Empirical Software Engineering (2023) 28:111

=

&

4ll

san[eA awiny Jururen) o} 19Ja1 (g)ueaw pue (y)ueauwr
10-9€0°1 80-49¢°C 90+d08°¢ S0+dS6'C 4L-0dd 4S-0dd
10-469°9 €0-dI19°1 90+d08°¢ LO+H6TT AL-Odd 4L-Dddd
10-9€6°6 LO-AS9'S SO+AS6'T LO+HO6T T q4s-0dd AL-Dddd
10-962°T 90-9SS°¢E 90+H08°¢ SO+d15°9 4L-0Odd qas-ddada
10-95S°9 10-99S°L S0+dS6°'T SO+d15°9 dsS-0dd 4S-dddd
20-90%'L 90-d8%°1 LO+H61°T SO+HIS9 41-5ddd qas-9ddada
10-410°Y 10-d¥v'S 90+d08°¢ 90+d279°C 4L-0dd II-HdAd
10-9€S°8 90-466% SO+dS6'T 90+d29°C q4S-0dd WI-DJAA
10-908°1 ¥0-40%°1 LO+HO6T'T 90+d29°C 41-Hddd DI-OdAA
10-960°8 €0-dpS’T SO+I1S9 90+d29°C qas-d5dad AA-DJAA
10-99L°9 20-9TT’S 90+d08°¢ LO+ESO'T AL-Odd AL-D¢V
10-9¢8°6 YO-dLY'Y S0+dS6'T LO+ESOT dS-0dd AL-O¢V
10-4SS‘Y 00+400°1 LO+H61°T LO+I80°1 41-5ddd AL-JTV
10-91T°6 ¥0-498°L SO+H1S9 LO+E80°] 4s-9dada d4L-0¢V
10-9+0°8 0-9€T°1 90+d279°C LO+E80°T PPI-HdAd dL-0¢V
10-9S0°T 80-HIL'S 90+d08°¢ S0+dT6'e 4L-0Odd qas-0¢v
10-98L°S 10-96+°8 SO+AS6'T SO+dT6'E 4S-0dd qS-0¢v
0-dvy'y LO-HTCIL LO+H6T°T S0+dc6'c 41-5ddd qas-0¢v
10-998°¢ 10-d7€6 SO+d1S‘9 SO+dT6'E dS-bddd qas-0¢v
10-30S°T S0-d6t'1 90+d279°C S0+dT6'E dA-OHdad qas-0¢v
20-96%°S ¥0-dS1°S LO+ES0°T S0+dT6'e dL-0¢V qas-0¢v sjosejep o[dwis pue asImiuIog

S0 [ead (g)ueowr (v)ueaw q v

penunuod /g ajqel

111 Page 58 of 76 Empirical Software Engineering (2023) 28:111

— DDPG-KR > DDPG-SB > DDPG-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

To compare the DRL configurations based on their prediction time, we again performed
two sets of Welch’s ANOVA and Games-Howell post-hoc tests corresponding to the pairwise
and pointwise ranking models. The results are reported on Tables 28 and 29.

Here is the result for the 10 first cycles:

— Pairwise and simple datasets:

- DQN-KR > DQN-SB > DQN-TF
- A2C-SB > A2C-TF
- PPO-SB > PPO-TF

— Pairwise and enriched datasets:

— DQN-KR > DQN-SB > DQN-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

— Pointwise and simple datasets:

— DDPG-KR > DDPG-SB > DDPG-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

— Pointwise and enriched datasets:

— DDPG-KR > DDPG-SB > DDPG-TF
— A2C-SB > A2C-TF
— PPO-SB > PPO-TF

Based on the results presented, we can conclude that both pairwise and pointwise config-
urations perform well with Stable-baselines and Keras-rl frameworks in terms of prediction
times. Nevertheless, Tensorforce configurations need more time for training and prediction
times.

Finding 3: Overall Stable-baselines framework has better performance than
Keras-rl and Tensorforce framework, therefore can be recommended when
using DRL for test case prioritization.

Summary 4: In terms of accuracy, both pairwise and pointwise ranking strategies
have good performance when applied to the DRL algorithms for enriched datasets.
Nevertheless, none of the DRL algorithms learn a qualified strategy when it comes
to simple datasets. A possible reason is the nature of simple datasets (see Subsection
3.3.6). It cannot be expected that learning an accurate policy for complex software
systems is always possible on the basis of simple data.

RQ3: Figure 21, 22, 23 show the results of the Pairwise-DQN configurations from
Tensorforce and Keras-rl frameworks in terms of NRPA, accumulated reward obtained by
agents during training and accumulated reward obtained by agents during testing on CODEC
dataset.

@ Springer

Page 59 0of 76 111

Empirical Software Engineering (2023) 28:111

00+H00°0 00+H00°0 €0+HS6°6 €0+a61°1 J41-0dd 4S-0dd
10-99L‘T S0-d¥8°c €0+dS6°6 €0+HTE'S 41-0dd AL-NOd
00+H00°T PI-dITY €0+H61°1 €0+HCE'S 4S-0dd J1-NOa
00+300°0 YI-4E0°Y €0+9$6°6 €0+dTL’] 41-0dd 4s-NOd
10-992°6 YI-a18°1 €0+d61°1 €0+dTLT 4S-0dd 4s-NOd
00+d00°0 P1-A48°L €0+97E'8 €0+dTLT A1-NOd 4S-NOd
00+H00°0 00+H00°0 €0+HS6°6 20+406°C J41-0dd WIA-NOA
20-9pE‘e 00+H00°0 €0+H61°1 20+d06°C 4S-0dd WI-NOA
€0-469°1 00+400°0 €0+dCE's 20+406°C 41-NOd WI-NOA
T0-9EE'E €1-dS0°T €0+HTL'T 20+d06°C 4S-NOd WI-NOA
10-910°C LO-FFT'L €0+9$6°6 €0+d1C'8 41-0dd AL-OTV
00+H00°T 00+300°0 €0+d61°1 €0+d1C'8 4S-0dd J1-0TV
10-916°S 10-9£6°6 €0+d7e’8 €0+d1C'8 A1-NOd AL-OTV
00+H00°T PI-AST°L €O+ATLT €O+AIT'8 4s-NOd A1-0¢V
10-966°6 €I-d19°¢ 20+H06°C €0+AIT'8 WI-NOA A1-0¢V
00+H00°0 Y1-486°'C €0+H56°6 €0+HLY‘T J1-0dd as-0tv
10-929°8 00+300°0 €0+d61°1 €0+dL9°T 4S-0dd 4s-0cv
00+d00°0 00+300°0 €0+d7e’8 €0+dL9°T A1-NOd as-0Tv
10-9€TY 10-369°8 €0+dTLT €0+dL9°T gs-NOd as-0Tv
10-9L9°6 00+300°0 20+d06°C €0+dL9°T WI-NOA 4s-0tv
00+H00°0 00+H00°0 €0+d1T'8 €O+ALY‘T J1-0¢V as-0tv SJOSEIEP PAYDLIUS PUE ASIMITE]
NCgie) [ead (g)ueowr (v)ueowr q v

(9718 199132 oy} ¥I'm douruLIo}Iad 10)8aIT 9ARY pue G()'() > SI an[ea-d axoym suoneInSyuod TY(21
PIOq UT) S}aseIep payoLIud 10§ s[opowr Suryuer astmjutod pue asimared uo (Spuodasiru ur) swr Sunsa) Jo s3s9) 00y-jsod [[OMOH-sawen) pue YAONY YOO JO SINsoy 8T 3|qel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page 60 of 76

san[eA Qwin) Juryse) 0y 19Jal (g)uedw pue (y)ueaw

00+300°0 00+300°0 €0+d95°8 €0+d9T1°T A1-0dd 4S-0dd
10-9€1°9 Y0-A1S°C €0+d95°8 €0+d86°8 AL-0dd 41-5dad
00+d00°T 00+300°0 €0+d91°1 €0+d86°8 4S-0dd 41-5dad
00+H00°0 91-d47C‘C €0+d95°8 0+dE8°L AL-Odd as-9dada
20-992°9 00+900°0 €0+H91°T 0+dE8°L 4S-0dd as-9dad
00+H00°0 00+300°0 €0+d86°8 0+dEs°L d1-0dad as-5dad
00+300°0 00+300°0 €0+d95°8 10+8¥L9 A1-0dd WI-HdAd
00+300°0 €I-dS0°T €0+d91°1 10+avL9 4S-0dd WI-94ad
00+d00°0 00+300°0 €0+d86°8 10+avL'9 41-5dad AI-9dada
00+d00°0 S1-d499°6 T0+d€E8’L 10+aPL'9 4s-0dad WI-9dada
10-H06°C 00+H00°0 €0+d95°8 €0+A98°L AL-Odd AL-0TV
00+H00°T 00+900°0 €0+H91°T €0+A98°L 4S-0dd J1-0¢V
10-96%'C 00+300°0 €0+d86°8 €0+A98°L J1-0dad AL-DTV
00+H00°T 00+300°0 TO+AES’L €0+998°L as-9daa d1-0¢V
00+d00°T P1-ASE'L 10+avL'9 €0+998°L WI-9daa d1-0¢V
00+d00°0 00+300°0 €0+d95°8 €0+d68°T A1-0dd 4s-0Tv
10-989°8 00+300°0 €0+d91°1 €0+d65°T 4S-0dd gs-0tv
00+H00°0 00+H00°0 €0+d86°8 €0+d66'T J1-5dad ds-0tv
10-908°6 S1-9CTT CO+AES’L €0+d66°1 as-9daa 4s-0¢v
00+H00°T 00+900°0 10+8PL9 €0+d66°1 WI-HdAd 4s-0¢v
00+d00°0 00+300°0 €0+998°L €0+d6S T AL-0¢V as-0cv $JOSEIEP PAYDILIUD PUE ASIMIUIO]
SATO Tead (g)ueowr (V)ueow q v

pringer

w
panunuod g ajqeL 4l

Page 610f 76 111

Empirical Software Engineering (2023) 28:111

00+H00°0 90-A¥E‘1 $0+d0T°€ €O+AEL'T d1-0dd 4S-0dd
10-9¢1°C €0-9CT'Y Y0+d0T°€ YO+are’1 d1-0dd AL-NOA
00+H00°T 00+400°0 €O+AEL'] YO+are1 4S-0dd 41-NOd
[{acibal 90-At6°'E Y0+H0C°E €0+9L0°E d41-0dd 4S-NOd
10-d1+'8 S0-9¥S‘E €0+aELT €0+9L0°¢ 4S-0dd as-NOd
TO-HET'S PI-ATHT YO+aVTT €0+9L0°€ 41-NOd 4S-NOd
00+H00°0 LO-FES'S $0+d0T°€ T0+dET9 J1-0dd WI-NOA
10-379°1 11-901°S €O+AEL'T T0+dET9 4S-0dd WI-NOA
00+d00°0 P1-ASLT YO+AYT1 0+dET9 41-NOd WI-NOa
10-36€°T YI-HEL'T €0+dLO0°E T0+dET9 4S-NOd WI-NOA
10-9ST°C Y0-dL6'T Y0+H0C°E €0+d6L'8 d41-0dd AL-0TV
00+d00°T ¥1-429°€ €0+aEL'T €0+d6L'8 4S-0dd d1-0¢V
10-908°S €0-9L6C YO+aVTT €0+d6L'8 41-NOd AL-0TV
10-97H°6 P1-4SS°E €0+dLO'E €0+H6L'S 4s-NOa J1-0¢V
00+H00°T ¥1-466°C 0+dET9 €0+H6L'S WI-NOA J1-0¢V
00+H00°0 90-H0%C $0+d02°€ €0+H9Y'T Jd1-0dd as-0tv
10-92S°L €0-902°9 €O+HIEL T €0+99%'C 4s-0dd g4s-0tv
€0-906°¢ SI-dec'y YO+aVTT €0+d9%'C 41-NOd 4s-0Ttv
10-dLLE 10-919°¢ €0+dL0°€ €0+d9%'C gs-NOd 4s-0Tv
10-95S°8 00+300°0 20+d€T9 €0+99%'C WI-NOA gs-0tv
$0-H00°¢ P1-HS8T €0+A6L'8 €0+H9T'T J1-0TV ds-0tv sjosejep o[durs pue asimireq
NCgie) [ead (g)ueowr (V)ueaw q v

(9218 199132 oy} ¥I'm douruLIo}Iad 10)8aIT 9ARY pue G()'() > SI an[eA-d axoym suoneInSYuod TY(21
proq ur) sjaseyep arduurs 1oy sfepow Sunjuer asimjutod pue asimired uo (SpuodIsIf[Iw ur) duir Sunsa) Jo s3sa) 00y-1sod [[PMOH-seweD) pue VAONYV UM JO SINSAY 62 3|qel

pringer

Qs

Empirical Software Engineering (2023) 28:111

111 Page 62 of 76

san[eA Qwin) Juryse) 0y 19Jal (g)uedw pue (y)ueaw

00+d00°0 00+d00°0 YO+d6t'1 €0+HLE'T 41-0dd 4S-0dd
10-99¢€°€ 90-HST8 YO+a61'1 €0+HEL'6 41-0Odd JdL-9ddd
00+H00°1 00+400°0 €0+HLE'T €0+HEL6 4S-0dd 41-Ddad
00+d00°0 00+400°0 Y0+d61°1 20+Hd78°8 41-0Odd das-ddada
10-980°1 LO-HETE €0+HLE'T 20+d28°8 4S-0dd qs-ddad
00+d00°0 Y1-dS1°9 €0+HEL'6 20+d28°8 41-5dad qas-bdada
00+d00°0 SI-95S°6 Yo+d6v'1 C0+HELT 41-0dd SIA-0dAdd
00+400°0 00+300°0 €0+HLE'T 0+aELT 45-0dd SIA-OdAdd
00+500°0 ST-HLL'6 €0+HEL'6 T0+IELT 41-5ddd SIA-OdAd
00+500°0 01-901°C 20+HT8°8 TO+HELT ds-ddad WI-DHdAd
10-9LY'T 60-390°S Yo+d6v'1 €0+d80°8 dL-Odd HAL-0TV
00+300°1 P1-40€°1 €0+HLE'T €0+H80°8 4S-0dd 41-0¢V
10-4L0°C LO-ATY'Y €0+HEL'6 €0+H80°8 41-5dad HAL-JTV
00+300°1 YI-9L0°1 20+d¢8‘8 €0+H80°8 as-bdada 4L-0¢V
00+H00°1 91-499°9 TO+HELT €0+H80°8 WI-ODdAd 4L-0¢V
00+500°0 00+500°0 YO+a6t'1 €0+H0V°1 41-0Odd qs-0tv
10-96€°S 10-466°6 €0+HLE'T €0+H0V'1 4S-0dd aS5-0¢v
00+d00°0 SI-HEE'S €0+HEL'6 €0+d0P'1 41-Dddd qs-0¢v
10-4¥0°6 80-H08°€ 20+d28‘8 €0+H0Y‘1 qas-Hdada dS-0¢v
00+300°1 S1-9TT'8 CO+HELT €0+H0Y‘1 WI-ODdAdad qS-0¢v
00+400°0 PI-AIET €0+H80°8 €0+H01°1 41-0¢V as-0tv sjoseiep o[dwrs pue asimiutod
SHID fead (gueouwr (v)ueaw d v

pringer

w
panunuod 6z 3jqeL 4l

Empirical Software Engineering (2023) 28:111 Page630f76 111

140009 Pairwise_DQN_TF

120001 Pairwise_DQN_KR
10000

8000

6000

Accumulated reward

40004

2000

2 4 6 8 10
Cl cycles

Fig.21 Accumulated reward during training of the Pairwise-DQN configurations for the first 10 CI cycles on
CODEC dataset

The results are collected for the first 10 CI cycles over 5 different runs. Regarding the
DQN algorithm, Keras-rl and Tensorforce have the same performance in terms of reward but
perform differently in terms of NRPA. Similarly as with the others DRL algorithms, we do
not observe stable results across the DRL frameworks.

5 Recommendations About Frameworks/Algorithms Selection

In this section, we discuss our recommendations regarding the selection of DRL frame-
works/algorithms for researchers and practitioners. To derive some of the recommendations
below and to investigate which hyperparameters are the most critical for the game testing
problem, we conducted a manual hyperparameters tuning. Since the goal was not finding

40{ —— Pairwise_DQN_TF
Pairwise_DQN_KR

351

Accumulated reward

T T

2 4 6 8 10
Cl cycles

Fig.22 Accumulated reward during testing of the Pairwise-DQN configurations for the first 10 CI cycles on
the CODEC dataset

@ Springer

111 Page 64 of 76 Empirical Software Engineering (2023) 28:111

1.00
—— Pairwise_DQN_TF
0.95 1 Pairwise_DQN_KR
0.90
< 0.85 1
o
/
0.751
0.70
2 4 6 8 10
Cl cycles

Fig. 23 NRPA of the Pairwise-DQN configurations for the first 10 CI cycles on the CODEC dataset

the best hyperparameters for each DRL algorithm in each DRL framework, we do not use
automatic hyperparameter tuning.

The results of our analysis indicate that there are some differences in using the same
algorithm from different DRL frameworks. This is due to the diversity of hyperparameters
that are offered by different DRL frameworks. Among the studied DRL frameworks, the DQN
algorithm from Keras-rl has the least number of hyperparameters (13 in total), leading to less
flexibility in improving the agent’s training process thus explaining its poor performance.
Moreover, Table 30 shows the results of the tuning of some hyperparameters provided by
DQN-KR.

In bold are the values of the hyperparameters we initially use for our experiments. Then
every time we vary each of them individually (see Column “Values” for their values) and
collect the average number of bugs and state coverage. The results show that fine tuning the
hyperparameters do not make DQN-KR significantly more performant. DQN-SB still has
better performance. A DRL framework should offer a large number of hyperparameters to
provide flexibility for tuning DRL agents and improve its efficiency.

Recommendation 1: When applying a DRL algorithm from a DRL framework
to an SE problem, we recommend choosing the DRL framework that offers the
largest number of hyperparameters to have the flexibility to improve the agent
efficiency.

In this paper, we studied two problems whose characteristics can be found in Table 31.

Regardless of the studied frameworks, PPO’s and A2C’s algorithms have shown good
performance when applied on the game testing problem. The PPO has shown slightly better
performance as it has detected 1 to 2 more bugs than the A2C when used to detect bugs in the
Block Maze game. Regarding the studied test case prioritization problem, Pairwise-A2C-SB
yields the best performance. The implementations of PPO and A2C algorithms show good
performance on discrete action space.

The studied problems have been implemented using both kinds of reward distribution
(see Table 31). In the game testing problem, the agent is positively rewarded only when it

@ Springer

Page 65 0f 76 111

Empirical Software Engineering (2023) 28:111

¥'9 90 §20'0
8 0 §co
40! o 660 eururen)
88 70 uewzyjoq
76 70 Apoa13 uofisdg
01 0 O £310dOApaaIn Korjod 3597,
! 80 Jareu=ad4) Surponp ‘onif,
96 I xew=ad£) Surfonp ‘oniy,
89 0 Sae=adK) Surenp ‘onuiy,
ol TT0 asfeq ubp Surjenp 9[qeug
vy 70 uewzjjog
ol 0 Ap3213 uoyisdy Korjog
9 0 [43
4! 70 9
(40! o 871 az1s yoreg
9 90 100°0
PPl 1 100
ol 7o S7000°0 qjel Jurured|
93BI0A00 9)B)S 9FeIoAY s3nq Jo 1oquInu 95BIAY anfeA s1ojowreredrodA

sunI ¢ 1940 193pnq sdajs ()| & uo wajqoid Funse) aure3 oy 10§ uoneI3yuod Y-NOJ £q pawrogiad ‘pa1dalop sSnq Jo Ioquinu oY) pue 93eISA0D RIS JO SINSAY € d|qel

pringer

Qs

111 Page 66 of 76 Empirical Software Engineering (2023) 28:111

Table 31 General characteristics of the studied DRL environments

Game Testing Test case prioritization
Pairwise strategy Pointwise strategy
action space Discrete Discrete Continuous-1D
observation space Continuous-2D Continuous-2D Continuous-2D
Reward distribution Negative and positive values Positive values Positive values
Environment type Deterministic Deterministic Deterministic

reaches the goal otherwise it is rewarded with small negative values. The results have shown
that this kind of reward does not incentivize the agent to reach the goal regardless of the
DRL implementation applied. In the test case prioritization problem, the agent is positively
rewarded with small values even when it fails to rank test cases. Some DRL configurations
have performed very well in terms of APFD or NRPA, close to the optimal value.

Recommendation 2: When designing a DRL problem, we recommend keeping
the cumulative reward of the agent positive for better performance.

To showcase the difference between employing a simple DRL algorithm from the two
frameworks, we performed some additional analysis of the hyperparameters offered by
Stable-baselines and Tensorforce regarding the DQN algorithm and conducted some exper-
iments. Here are our findings:

— Stable-baselines3 provides a total of 25 hyperparameters while Tensorforce provides
22 hyperparameters.

— Table 32 describes for Stable-baselines3 and Tensorforce, the hyperparameters that differ

from each other.
An interesting hyperparameter is the variable noise from Tensorforce, which adds Gaus-
sian noise (Such et al. 2017) to all trainable variables as an exploration strategy. Adding
noise to DRL agents during training has been shown to improve their exploration of the
environment and their gains of reward throughout training (Fortunato et al. 2017).

— We consider the variable noise=0.5 as an additional hyperparameter for the DQN algo-
rithm from Tensorforce. Therefore, we collected the number of detected bugs and average
reward of the DQN agent from Tensorforce for 50, 000 steps of training on the Block
Maze game. Figures24 and 25 show that the DQN agent from Tensorforce is able to
detect more bugs than initially (see Fig.3 and 4), with more gained reward.

— Furthermore we conducted more experiments to assess the effects of hyperparameters

tuning on DQN-TF implementation regarding the game testing problem. Table 33 shows
the number of bugs and state coverage resulting from the hyperparameters tuning.
As other results, in bold are the values of the hyperparameters we initially use for our
experiments. Then every time we vary each of them individually (see Column “Value”
for their values). As shown on Table 33, the only parameter that stands out is the variable
noise which boosts DQN-TF performance. Such results indicate that a DRL framework
with effective exploration strategies could improve the agent performance.

— Similarly, Tables 34 and 35 show the results of hyperparameters tuning regarding PPO-TF
and A2C-TF implementations.

@ Springer

Empirical Software Engineering (2023) 28:111

Page 67 of 76 111

Table 32 DQN algorithm hyperparameters: differences between Stable-baselines3 and Tensorforce

Frameworks Hyperparameters Definitions
Stable-baselines3 Soft Update Coefficient The target network of the DQN
algorithm is updated frequently by
a little amount
Gradient Step Number of gradient steps to do after

Tensorforce

Exploration Fraction

Gradient Clipping
Tensorboard Log
Evaluate Environment
Seed

Device

Model Setup

Variable Noise

State Preprocessing
Reward Preprocessing
Return of processing

L2 Regularization

Entropy Regularization

Huber Loss

each rollout

Fraction of the training period over
which the exploration rate is
reduced

The maximum value for the gradient
clipping

The log location for tensorboard

Whether to create a second
environment that will be used for
evaluating the agent periodically

Seed for the pseudo random
generators

Device on which the code should be
run

Whether or not to build the network
at the creation of the instance

Alternative exploration mechanism
by adding Gaussian noise to all
trainable variables

State preprocessing as layer or list of
layers

Reward preprocessing as layer or list
of layers

Return processing as layer or list of
layers

L2 regularization loss weight

To discourage the policy distribution
from being too certain

Threshold of the Huber loss function

The results on these tables show up to 2 more bugs detected when applying different
values of the hyperparameters that the Tensorforce framework offers (i.e., variable noise,
discount factor, entropy/12 regularization, and exploration).

Recommendation 3: In the context of testing through exploration, we recom-
mend an DRL framework that offers effective exploration strategies such as
Tensorforce.

The performance of A2Cs and PPOs algorithms from the selected DRL frameworks indi-
cate that their faster convergence rate led to the detection of bugs quickly, as well as a wider

state coverage capability.

@ Springer

111 Page 68 of 76 Empirical Software Engineering (2023) 28:111

8.
7 /\‘
61
5{ /
0 (
Sai |
o
3..
2.
14 —— DQN_SB
0 —— DQN_TF

n

0 10000 20000 30000 40000 50000
Steps

Fig. 24 Number of bugs detected by DQN Stable-baselines and DQN (with Gaussian noise) Tensorforce

Recommendation 4: For small search space environments, we recommend A2Cs and
PPOs algorithms for a faster convergence rate and a wider state coverage capability
of DRL agents.

The performance of the DRL algorithms when applying to the datasets of the test case
prioritization problem indicates that the DRL agents are not able to learn an accurate policy
when it comes to simple datasets.

Recommendation 5: For the DRL agents to learn an accurate policy for complex
software systems, we recommend enriched datasets.

—— DQN_SB
0.7 DQN_TF

Average cumulative reward

-1.0— X " r . -
0 10000 20000 30000 40000 50000

Steps

Fig. 25 Average cumulative reward earned by DQN Stable-baselines and DQN (with Gaussian noise) Ten-
sorforce

@ Springer

Empirical Software Engineering (2023) 28:111 Page 69 of 76 111

Table 33 Results of State coverage and the number of bugs detected, performed by DQN-TF configuration
for the game testing problem on a 10k steps budget over 5 runs

Hyperparameters Value Average number of bugs Average state coverage
Learning rate 0.00025 0.2 44
0.01 1.6 19.6
0.001 0.4 12.6
Batch size 128 0.2 44
64 0.4 7.4
32 0 34
Variable noise 0 0.2 4.4
0.5 8 74
1 7.8 73.8
Gamma 0.99 0.2 4.4
0.5 0 3.8
0.1 0 2.8

Table 34 Results of State coverage and the number of bugs detected, performed by A2C-TF configuration for
the game testing problem on a 10k steps budget over 5 runs

Hyperparameters Value Average number of bugs Average state coverage
Learning rate 0.00025 6.6 57.4
0.01 1.8 26.8
0.001 1.6 18
Batch size 128 6.6 574
64 5 55.4
32 32 444
Variable noise 0 6.6 57.4
0.5 8 74
1 8 74
Gamma 0.99 6.6 574
0.5 8 74
0 8 74
Entropy regularization 0 6.6 57.4
0.5 8 74
1 8 74
L2 regularization 0 6.6 57.4
0.5 7.8 73.5
1 7.2 72
Exploration 0 6.6 574
0.5 7 72
1 8 74

@ Springer

111 Page 70 of 76 Empirical Software Engineering (2023) 28:111

Table 35 Results of State coverage and number of bugs detected, performed by PPO-TF configuration for the
game testing problem on a 10k steps budget over 5 runs

Hyperparameters Value Average number of bugs Average state coverage
Learning rate 0.00025 6.2 68.4
0.01 4 52
0.001 5.8 63.4
Batch size 128 6.2 68.4
64 5.6 64.8
32 8 71.4
Variable noise 0 6.2 68.4
0.5 8 74
1 8 74
Gamma 0.99 6.2 68.4
0.5 7.2 71.4
0.1 7 70.6
Entropy regularization 0 6.2 68.4
0.5 8 74
1 8 74
L2 regularization 0 6.2 68.4
0.5 8 74
1 8 71.4
Exploration 0 6.2 68.4
0.5 6.8 68.8
1 8 74
Likelihood ratio clipping 0.25 6.2 68.4
0.5 7.8 73.8
1 72 69.8

6 Related Work

Incorporating DRL algorithms in software engineering tasks has long been an active area
of research (Singh and Sharma 2013; Bahrpeyma et al. 2015; Chen et al. 2020; Vuong and
Takada 2018).

In the case of SE testing, wuji by Zheng et al. (2019), is a framework that applies EA,
MOO, and DRL to facilitate automatic game testing. EA and MOO are designed to explore
states and DRL ensures the completion of the mission of the game. Further, the authors
use the Block Maze game and two commercial online games to evaluate wuji. This work is
used as a baseline in this paper. We compare the DRL part of wuji to state-of-the-art DRL
algorithms from DRL frameworks. Specifically, we implement DRL algorithms from DRL
frameworks to detect bugs in the Block Maze game and assess their performance against the
DRL part of wuji.

Bagherzadeh et al. (2021) leveraged state-of-the-art DRL algorithms from the Stable-
baselines framework in CI regression testing. They investigate pointwise, pairwise, and
listwise ranking models as DRL problems to find the optimal prioritized test cases. The
authors also conducted experiments on eight datasets and compared their solutions against a

@ Springer

Empirical Software Engineering (2023) 28:111 Page710f76 111

small subset of non-standard DRL implementations. Again, we use this work as a baseline
and implement DRL algorithms from DRL frameworks to rank test cases in a CI environ-
ment. As the authors implement the Stable-baselines framework, we leverage 2 other DRL
frameworks (Tensorforce and Keras-rl) and compare them to Stable-baselines.

Koroglu et al. (2018) proposed QBE, a Q-learning framework to automatically test mobile
apps. QBE generates behavior models and uses them to train the transition prioritization
matrix with two optimization goals: activity coverage and the number of crashes. Its goal
is to improve the code coverage and the number of detected crashes for Android apps.
Bottinger et al. (2018) introduced a program fuzzer that uses DRL to learn reward seed
mutations for testing software. This technique obtains new inputs that can drive a program
execution towards a predefined goal, e.g., maximizing code coverage. Kim et al. (2018),
leveraged DRL to automatically generate test data from structural coverage. Particularly, a
Double DQN agent is trained in a Search-based Software Testing (SBST) environment to
find a qualifying solution following the feedback from the fitness function. Chen et al. (2020)
proposed RecBi, the first compiler bug approach via structural mutation that uses DRL. RecBi
uses the A2C algorithm to mutate a given failing test program. Then, it uses that failed test
program to identify compilers’ bugs.

Adamo et al. (2018), Reichstaller and Knapp (2018), and Dai et al. (2019) used DRL to
generate test cases. Adamo et al. (2018), build a DQN-based testing tool that generates test
cases for Android applications. The tool is guided by the code coverage to generate suitable
test suites. Reichstaller and Knapp (2018), proposed a framework to test a Self-Adaptive
System (SAS) where the tester is modeled as a Markov Decision Process (MDP). The MDP
is then solved by using both model-free and model-based DRL algorithms to generate test
cases that will adapt to SAS as they have the ability to take decisions at runtime. Soualhia
et al. (2020) leveraged DRL algorithms to propose a dynamic and failure-aware framework
that adjusts Hadoop’s scheduling decisions based on events occurring in a cloud environment.
Each of these previous approaches from the literature either implements a DRL algorithm
from scratch or uses an implemented one from a DRL framework. None of them has evaluated
the performance of DRL frameworks on software testing tasks. Moreover, it is not clear what
motivates the choice of DRL frameworks in the literature, as there are several of them. In our
work, we investigate various state-of-the-art DRL algorithms from popular DRL frameworks,
to assess DRL configurations on a game and regression testing environments.

7 Threats to Validity

Conclusion validity Conclusion limitations concern the degree to which the statistical con-
clusions about which algorithms/frameworks perform best are accurate. We use Welch’s
ANOVA and Games-Howell’s post-hoc test as statistical tests. The significance level is set
to 0.05 which is standard across the literature as shown by Welch (1947), Games and Howell
(1976). The non-deterministic nature of DRL algorithms can threaten the conclusions made
in this work. We address this by collecting results from 10 independent runs in the case of the
game testing problem. Regarding the test case prioritization problem, the results are collected
from 5 independent runs and on multiple cycles (the MATH dataset has 55 cycles which is
the least number of cycles among all datasets).

Internal validity Regarding the game testing problem, the fact that we only consider the DRL
part of the wuji framework for comparison with the DRL strategies we studied, might threaten

@ Springer

111 Page 72 of 76 Empirical Software Engineering (2023) 28:111

the validity of this work. Although we only compare the algorithms on sub-optimal solutions,
itis necessary to make a fair comparison among the DRL algorithms. A potential limitation is
the number of frameworks used and the algorithms chosen among these frameworks. We have
chosen to evaluate some of the available frameworks and have not evaluated all the algorithms
they offer. However, the frameworks used are among the most popular on GitHub, as well
as the algorithms (see Sect.2.1). This ensures good coverage in terms of the usage of DRL
in SE. In the future, we plan to expand our study to cover more algorithms.

Construct validity A potential threat to validity is related to our evaluation metrics, which
are standard across the literature. We use these metrics to make a fair comparison amongst
framework/algorithms under identical circumstances. We discussed some of their limitations
and how they can be interpreted in Sects. 3.2 and 3.3.

External validity Since our goal is to compare DRL frameworks and their implemented
algorithms for SE testing tasks, a potential limitation is the choice of the testing tasks for
comparing frameworks. We address this threat by choosing game testing and test case prior-
itization problems that are totally different in SE testing to achieve enough diversity. While
test case prioritization focuses on optimizing the order of test cases, one needs to find bugs in
the game testing as early as possible. The results we found on the two studied problems might
mitigate this threat as we consistently found some algorithms performing similarly among
the frameworks. For example, the A2C algorithm had good performance whether applied to
the game testing problem or test case prioritization problem.

Reliability validity To allow other researchers to replicate or build on our research, we
provide a detailed replication package (Replication package 2022) including the code and
obtained results.

8 Conclusion and Discussions

In this paper, we study the application of state-of-the-art implemented DRL algorithms from
well-known frameworks on two important software testing tasks: test case prioritization and
game testing. We rely on two baseline studies to apply and evaluate the performance of DRL
algorithms from several frameworks (i) in terms of detecting bugs in a game, and (ii) in the
context of a CI environment to rank test cases. Our results show that the same algorithm from
different DRL frameworks can have different performances. Each framework provides hyper-
parameters unique to its implementation, therefore depending on the underlying SE tasks,
the framework that has the most suitable hyperparameters will lead to better performance.
We formulate recommendations to help SE practitioners to make an informed decision when
leveraging DRL frameworks for the development of SE tasks. In the future, we plan to expand
our study to investigate more DRL algorithms/frameworks, and more SE activities.
Regarding the game testing problem, the DQN algorithm among all the studied frameworks
has poor performance when detecting bugs, implying poor exploration capability of DQN.
For the test case prioritization problem, Table 24 shows that for the pairwise configuration
and some enriched datasets DQN’s performance is close to the A2C. It shows that DQN has
a good ranking capability. The DQN algorithm computes the Q-values of each state-action
pair in order to predict the next action to take. So, it is suitable for the pairwise ranking model

@ Springer

Empirical Software Engineering (2023) 28:111 Page730f76 111

as its action space is discrete (0 or 1), half the size of the action space of the game testing
problem (0, 1, 2 or 4). This makes us wonder whether the discrete nature of the action space
could be a factor in the obtained results. In the future, we plan to investigate it in more detail.

Regardless of the studied frameworks, PPO and A2C algorithms have shown good perfor-
mance when applying on the game testing problem. The PPO has performed slightly better
as it has detected 1 to 2 more bugs than the A2C when used to detect bugs in the Block Maze
game. The PPO from Stable-baselines framework has detected 1 to 2 more bugs than the PPO
algorithm from Tensorforce. Nevertheless, the hyperparameters tuning that was reported in
Sect. 5 by changing the variable noise parameter in PPO-TF has increased its detection capa-
bility to be better than PPO-SB. Therefore, in the future we plan to investigate PPO-SB and
PPO-TF implementations in more detail.

Data Availability The source code of our implementation and the results of experiments are publicly available
Replication package (2022). https://github.com/npaulinastevia/DRL_se

Declarations

Conflict of interest The authors declared that they have no conflict of interest.

References

Cartpole (2016). https://gym.openai.com/envs/CartPole-v0/

Mspacman (2018). https://gym.openai.com/envs/MsPacman-v0/

Replication package (2022). https://github.com/npaulinastevia/DRL_se

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat
S, Goodfellow I, Harp A, Irving G, Isard M, Jozefowicz R, Jia Y, Kaiser L, Kudlur M, Levenberg J, Mané
D, Schuster M, Monga R, Moore S, Murray D, Olah C, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker
P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X
(2015) Tensorflow, large-scale machine learning on heterogeneous systems. 10.5281/zenodo.4724125

Adamo D, Khan MK, Koppula S, Bryce R (2018) Reinforcement learning for android gui testing. In: Proceed-
ings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation, pp 2-8

Alshahwan N, Gao X, Harman M, Jia Y, Mao K, Mols A, Tei T, Zorin I (2018) Deploying search based
software engineering with sapienz at facebook. In: International Symposium on Search Based Software
Engineering, Springer, pp 3-45

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw Test Verification Reliab 24(3):219-250

Bagherzadeh M, Kahani N, Briand L (2021) Reinforcement learning for test case prioritization. IEEE Trans-
actions on Software Engineering

Bahrpeyma F, Haghighi H, Zakerolhosseini A (2015) An adaptive rl based approach for dynamic resource
provisioning in cloud virtualized data centers. Computing 97(12):1209-1234

Bergdahl J, Gordillo C, Tollmar K, Gisslén L (2020) Augmenting automated game testing with deep rein-
forcement learning. In: 2020 IEEE Conference on Games (CoG), IEEE, pp 600-603

Bertolino A, Guerriero A, Miranda B, Pietrantuono R, Russo S (2020) Learning-to-rank vs ranking-to-learn:
strategies for regression testing in continuous integration. In: Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering, pp 1-12

Bottinger K, Godefroid P, Singh R (2018) Deep reinforcement fuzzing. In: 2018 IEEE Security and Privacy
Workshops (SPW), IEEE, pp 116-122

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016a) Openai gym.
arXiv:1606.01540

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J, Zaremba W (2016b) Openai gym.
arXiv:1606.01540

Castro PS, Moitra S, Gelada C, Kumar S, Bellemare MG (2018) Dopamine: A research framework for deep
reinforcement learning. arXiv preprint arXiv:1812.06110

@ Springer

https://github.com/npaulinastevia/DRL_se
https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/MsPacman-v0/
https://github.com/npaulinastevia/DRL_se
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1812.06110

111 Page 74 of 76 Empirical Software Engineering (2023) 28:111

Chen J, Ma H, Zhang L (2020) Enhanced compiler bug isolation via memoized search. In: Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering, pp 78-89

Dai H, Li Y, Wang C, Singh R, Huang PS, Kohli P (2019) Learning transferable graph exploration. Advances
in Neural Information Processing Systems 32

Dhariwal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman J, Sidor S, Wu Y, Zhokhov P
(2017) Openai baselines. https://github.com/openai/baselines

Drozd W, Wagner MD (2018) Fuzzergym: A competitive framework for fuzzing and learning. arXiv preprint
arXiv:1807.07490

Dulac-Arnold G, Mankowitz D, Hester T (2019) Challenges of real-world reinforcement learning. arXiv
preprint arXiv:1904.12901

Fortunato M, Azar MG, Piot B, Menick J, Osband I, Graves A, Mnih V, Munos R, Hassabis D, Pietquin O,
et al. (2017) Noisy networks for exploration. arXiv preprint arXiv:1706.10295

Fraser G, Arcuri A (2011) Evosuite: automatic test suite generation for object-oriented software. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pp 416-419

Fujimoto S, Hoof H, Meger D (2018) Addressing function approximation error in actor-critic methods. In:
International Conference on Machine Learning, PMLR, pp 1587-1596

Games PA, Howell JF (1976) Pairwise multiple comparison procedures with unequal n’s and/or variances: a
monte carlo study. J Educ Stat 1(2):113-125

Gu S, Lillicrap T, Sutskever I, Levine S (2016) Continuous deep g-learning with model-based acceleration.
In: International conference on machine learning, PMLR, pp 2829-2838

Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In: International conference on machine learning, PMLR, pp
1861-1870

Hamlet R, Maciniak J (1994) Random testing, encyclopedia of software engineering. Wiley, New York, pp
970-978

Harman M, Jia Y, Zhang Y (2015) Achievements, open problems and challenges for search based software
testing. 2015 IEEE 8th International Conference on Software Testing. Verification and Validation (ICST),
IEEE, pp 1-12

Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, Dhariwal P, Hesse C, Klimov O, Nichol A,
Plappert M, Radford A, Schulman J, Sidor S, Wu Y (2018) Stable baselines. https://github.com/hill-a/
stable-baselines

Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, Dhariwal P, Hesse C, Klimov O, Nichol A
et al (2019) Stable baselines. 2018. https://github.com/hill-a/stable-baselines

Kim J, Kwon M, Yoo S (2018) Generating test input with deep reinforcement learning. In: 2018 IEEE/ACM
11th International Workshop on Search-Based Software Testing (SBST), IEEE, pp 51-58

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

Knuth DE (1997) The art of computer programming, vol 3. Pearson Education

Koroglu Y, Sen A, Muslu O, Mete Y, Ulker C, Tanriverdi T, Donmez Y (2018) Qbe: Qlearning-based exploration
of android applications. 2018 IEEE 11th International Conference on Software Testing. Verification and
Validation (ICST), IEEE, pp 105-115

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971

Malialis K, Devlin S, Kudenko D (2015) Distributed reinforcement learning for adaptive and robust network
intrusion response. Connect Sci 27(3):234-252

McGraw KO, Wong SP (1992) A common language effect size statistic. Psychol Bull 111(2):361

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing atari
with deep reinforcement learning. arXiv preprint arXiv:1312.5602

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchronous
methods for deep reinforcement learning. In: International conference on machine learning, PMLR, pp
1928-1937

Moghadam MH, Saadatmand M, Borg M, Bohlin M, Lisper B (2021) An autonomous performance testing
framework using self-adaptive fuzzy reinforcement learning. Softw Qual J 1-33

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J,
Chintala S (2019) Pytorch: An imperative style, high-performance deep learning library. In: Wallach H,
Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., pp 8024-8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Plappert M (2016) keras-rl. https://github.com/keras-rl/keras-rl

@ Springer

https://github.com/openai/baselines
http://arxiv.org/abs/1807.07490
http://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1706.10295
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/keras-rl/keras-rl

Empirical Software Engineering (2023) 28:111 Page750f76 111

Raffin A, Hill A, Gleave A, Kanervisto A, Ernestus M, Dormann N (2021) Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine Learning Research 22(268):1-8. http://jmlr.
org/papers/v22/20-1364.html

Reichstaller A, Knapp A (2018) Risk-based testing of self-adaptive systems using run-time predictions. In:
2018 IEEE 12th international conference on self-adaptive and self-organizing systems (SASO), IEEE,
pp 80-89

Romdhana A, Merlo A, Ceccato M, Tonella P (2022) Deep reinforcement learning for black-box testing of
android apps. ACM Transactions on Software Engineering and Methodology

Santos RES, Magalhdes CVC, Capretz LF, Correia-Neto JS, da Silva FQB, Saher A (2018) Computer games
are serious business and so is their quality: Particularities of software testing in game development from
the perspective of practitioners. In: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, Association for Computing Machinery, New York,
NY, USA, ESEM ’18. https://doi.org/10.1145/3239235.3268923

Schaarschmidt M, Kuhnle A, Ellis B, Fricke K, Gessert F, Yoneki E (2018) Lift: Reinforcement learning in
computer systems by learning from demonstrations. arXiv preprint arXiv:1808.07903

Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In: International
conference on machine learning, PMLR, pp 1889-1897

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347

Singh L, Sharma DK (2013) An architecture for extracting information from hidden web databases using
intelligent agent technology through reinforcement learning. In: 2013 IEEE conference on Information
& Communication Technologies, IEEE, pp 292-297

Soualhia M, Khomh F, Tahar S (2020) A dynamic and failure-aware task scheduling framework for hadoop.
IEEE Trans Cloud Comput 8(2):553-569. https://doi.org/10.1109/TCC.2018.2805812

Spieker H, Gotlieb A, Marijan D, Mossige M (2017) Reinforcement learning for automatic test case prioriti-
zation and selection in continuous integration. In: Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp 12-22

Such FP, Madhavan V, Conti E, Lehman J, Stanley KO, Clune J (2017) Deep neuroevolution: Genetic algorithms
are a competitive alternative for training deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567

Sutton RS, Barto AG, et al. (1998) Introduction to reinforcement learning, vol 135. MIT press Cambridge

Tufano R, Scalabrino S, Pascarella L, Aghajani E, Oliveto R, Bavota G (2022) Using reinforcement learn-
ing for load testing of video games. In: Proceedings of the 44th International Conference on Software
Engineering, pp 2303-2314

Vuong TAT, Takada S (2018) A reinforcement learning based approach to automated testing of android appli-
cations. In: Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, pp 31-37

Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling network architectures for deep
reinforcement learning. In: International conference on machine learning, PMLR, pp 1995-2003

Welch BL (1947) The generalization of ‘student’s’ problem when several different population varlances are
involved. Biometrika 34(1-2):28-35

Yang T, Meng Z, Hao J, Zhang C, Zheng Y, Zheng Z (2018) Towards efficient detection and optimal response
against sophisticated opponents. arXiv preprint arXiv:1809.04240

Yang T, Hao J, Meng Z, Zheng Y, Zhang C, Zheng Z (2019) Bayes-tomop: A fast detection and best response
algorithm towards sophisticated opponents. In: AAMAS, pp 2282-2284

Zhang C, Zhang Y, Shi X, Almpanidis G, Fan G, Shen X (2019) On incremental learning for gradient boosting
decision trees. Neural Process Lett 50(1):957-987

Zheng Y, Xie X, Su T, Ma L, Hao J, Meng Z, Liu Y, Shen R, Chen Y, Fan C (2019) Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, pp 772-784

Zhu H, Hall PA, May JH (1997) Software unit test coverage and adequacy. ACM Computing Surveys (CSUR)
29(4):366-427

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/10.1145/3239235.3268923
http://arxiv.org/abs/1808.07903
http://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TCC.2018.2805812
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1809.04240

111 Page 76 of 76 Empirical Software Engineering (2023) 28:111

Authors and Affiliations

Paulina Stevia Nouwou Mindom’ - Amin Nikanjam' - Foutse Khomh'

Amin Nikanjam
amin.nikanjam @polymtl.ca

Foutse Khomh
foutse.khomh@polymtl.ca

Polytechnique Montréal, Québec, Canada

@ Springer

	A comparison of reinforcement learning frameworks for software testing tasks
	Abstract
	1 Introduction
	2 Background
	2.1 Deep Reinforcement Learning
	2.2 State-of-the-Art DRL Frameworks
	2.3 Game Testing
	2.4 Test Case Prioritization

	3 Study Design
	3.1 Research Questions
	3.2 Problem 1: Game Testing Using DRL
	3.2.1 Creation of the DRL Environment
	3.2.2 Experimental Setup
	3.2.3 Training of a DRL Agent
	3.2.4 Datasets
	3.2.5 Evaluation Metrics
	3.2.6 Analysis mMethod

	3.3 Problem 2: Test Case Prioritization Using DRL
	3.3.1 Creation of the DRL Environment
	3.3.2 Experimental Setup
	3.3.3 Comparison Baselines
	3.3.4 Training of a DRL Agent
	3.3.5 Integration of a DRL Agent into CI Environments
	3.3.6 Datasets
	3.3.7 Evaluation Metrics
	3.3.8 Analysis Method

	3.4 Data Availability

	4 Experimental Results
	4.1 Game Testing
	4.2 Test Case Prioritization

	5 Recommendations About Frameworks/Algorithms Selection
	6 Related Work
	7 Threats to Validity
	8 Conclusion and Discussions
	References

