
https://doi.org/10.1007/s10664-023-10290-2

Applying declarative analysis to industrial automotive
software product line models

Ramy Shahin1 ·Rafael Toledo2 ·Robert Hackman2 ·Ramesh S3 ·
Joanne M. Atlee2 ·Marsha Chechik1

Accepted: 11 January 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Program analysis of automotive software has several unique challenges, including that the
code base is ultra large, comprising over a hundred million lines of code running on a sin-
gle vehicle; the code is structured as a software product line (SPL) for managing a family of
related software products from a common set of artifacts; and the analysis results (despite
being numerous and despite being variable) need to be presented to the engineer in a way
that is manageable. In previous work, we reported on lifting declarative analyses to apply to
a software product line, rather than to an individual product variant. This paper reports on
milestone results from applying lifted declarative analyses (behaviour alteration, recursion
analysis, simplifiable global variable analysis, and two of their variants) to automotive soft-
ware product lines from General Motors and assessing the scalability of the analyses and
the effectiveness of reporting to engineers conditional analysis results (i.e., results condi-
tioned on SPL program variants). We also reflect on some of the lessons learned throughout
this project.

Keywords Software product lines · Automotive · Declarative analysis · Visualization

1 Introduction

For the past five years, researchers from the University of Waterloo, the University of
Toronto, and General Motors(GM) have been investigating next-generation software analy-
sis tools with the ultimate goal of being able to perform a system-wide analysis of a vehicle’s

Communicated by: Sigrid Eldh, Davide Falessi, Burak Turhan

This article belongs to the Topical Collection: Software Engineering in Practice

� Ramy Shahin
rshahin@cs.toronto.edu

Extended author information available on the last page of the article.

Published online: 4 February 2023

Empirical Software Engineering (2023) 28:40

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10290-2&domain=pdf
http://orcid.org/0000-0001-8724-3934
mailto: rshahin@cs.toronto.edu

software. Although a system-wide analysis is not yet possible, we have been working to
address some of the unique challenges that arise in analysis of automotive software, such as

– automotive software is multi-threaded and distributed across multiple CPUs;
– the code and execution environments in a single vehicle are heterogeneous with respect

to programming languages, language variants, and operating systems;
– the code base is ultra large, comprising over a hundred million lines of code running on

a single vehicle;
– the software is structured as a software product line (SPL) for managing a family of

related software products that are differentiated by their features; and
– the analysis results (despite being numerous and variable) need to be presented to the

engineer in a way that is manageable.

Of these challenges, General Motors has been particularly interested about the last three:
that the tools scale to large software systems (at least a million lines of code (LOC), for
now), that the analyses accommodate an SPL’s program variants, and that the presentation
of analysis results not tax the cognitive load of the engineers.

In previous work (Muscedere et al. 2019), we addressed the challenges of distributed
software components and heterogeneity by extracting models of the components and their
program elements (e.g., functions, variables, function calls, assignments) and linking these
together into a model of the software system. To accommodate variability, we extract a
model of the software product line for analysis (Shahin et al. 2021b).

A software product line (SPL) supports a family of related products, usually developed
together as a common set of mandatory and optional features (Clements and Northrop
2001). A feature is the unit of variation, and products (also called configurations or variants)
are derived from the SPL by selecting among and integrating features from the SPL’s feature
set. Our work focuses on annotative SPLs (and SPL models), in which program elements
and functionality that pertain to specific features or feature combinations are annotated with
expressions that represent those features.

Analyzing separately each product of a non-trivial SPL is infeasible because the number
of potential products grows exponentially with the size of the SPL’s feature set, due to the
combinatorial nature of SPL features (Liebig et al. 2013). Instead, several researchers have
lifted different analyses to be variability-aware (Thüm et al. 2014), such that the analysis
applies to a product line (as opposed to an individual product) and leverages the commonali-
ties among an SPL’s products. Multiple types of analyses have been lifted, including parsing
(Gazzillo and Grimm 2012; Kästner et al. 2011), type checking (Kästner et al. 2012), static
analyses (Bodden et al. 2013; Midtgaard et al. 2015), model checking (Classen et al. 2010),
resulting in significantly faster analyses of the SPL compared to the product-based analyses
of all the SPL’s products. In previous work, we lifted an entire class of analyses by lifting
the Datalog (Ceri et al. 1989b) engine to be variability aware (Shahin et al. 2019; Shahin
and Chechik 2020b). As a result, declarative analyses (Bravenboer and Smaragdakis 2009;
Benton and Fischer 2007; Dawson et al. 1996; Grech and Smaragdakis 2017) that can be
expressed as a set of Datalog rules can be used as-is as input to the variability-aware Datalog
engine to analyze an SPL model (Shahin et al. 2021a).

Another open problem in SPL-based analyses is how to present analysis results, given
that they vary for different sets of products. Most research on SPL visualization focuses on
documenting and viewing variability and configuration choices (Kang et al. 1990; Czarnecki
and Pietroszek 2006). Additional works use configuration views to facilitate the inspection
of consequences of configuration decisions (Botterweck et al. 2008); or visualizations of

40 Page 2 of 29 Empir Software Eng (2023) 28:40

variability-analysis results to support variability restructuring and management (Loesch and
Ploedereder 2007). In contrast, the goals of our visualization work are to help the engineer
understand and explore the results of an SPL analysis from the perspective of different
product sets.

Our work focuses on user-defined declarative program analyses (expressed as Datalog
rules) that are mostly variants of data-flow and control-flow analyses. In this paper, we
leverage our variability-aware Datalog engine to lift five such analyses and apply them to
seven automotive controller product lines provided by General Motors. The paper makes the
following contributions: (1) We outline the design of a pipeline for variability-aware analy-
sis of product lines implemented in C/C++. (2) We present the results of applying a set of
program analyses using our pipeline to a set of automotive software product lines from Gen-
eral Motors. Our evaluation compares the performance of analyzing the whole product line
against analyzing a single configuration that includes all features. (3) We describe our inter-
active visualizer to support the exploration of SPL-analysis results and present the results of
a small user study that assesses General Motors engineers’ feedback on the visualizer. (4)
We discuss the lessons learned throughout the project.

Early results of this work were published in the Practice and Innovation Track of MOD-
ELS 2021 (Shahin et al. 2021b). This paper extends the earlier work by investigating more
program analyses; only one analysis (behaviour alteration) was covered in Shahin et al.
(2021b). This paper reports on applying the extended set of analyses to seven SPL con-
trollers from General Motors. The seventh SPL controller is a new subject system not
described in Shahin et al. (2021b) that was provided by General Motors to stress test our
pipeline: it is significantly larger, has many more features and feature combinations, and
includes a middleware component that leads to an order of magnitude more results than
analyses of the other controllers. This paper also extends and details our interactive visual-
ization and filtering of SPL analysis results and reports on a small user study that provides
engineers’ feedback on the effectiveness of the visualization in reporting and exploring
results that vary by product sets.

The rest of the paper is organized as follows. Section 2 provides a background on
SPLs, Datalog, and lifted declarative analyses. In Section 3, we present our five declara-
tive analyses of interest. In Section 4, we present our interactive visualizer to support the
exploration of SPL analysis results. In Sections 5 and 6, we present our industrial exam-
ples and the results of applying our lifted analyses to them, respectively; and in Section 7
we present feedback on our interactive visualizer from a small user study involving Gen-
eral Motors engineers. We discuss lessons learned in Section 8, present related work in
Section 9, and conclude in Section 10.

2 Background

In this section, we briefly define the concepts we build upon in the rest of the paper. In partic-
ular, this includes backgrounds on software product lines, declarative analyses of relational
models, and variability-aware analyses that can be applied to a entire product line.

2.1 Software Product Lines

A software product line (SPL) is a family of related software products, developed together
from a common set of artifacts (Clements and Northrop 2001). The unit of variability in an

Page 3 of 29 40Empir Software Eng (2023) 28:40

SPL is a feature, where each feature can be either present or absent in each of the SPL’s prod-
ucts. Because of the combinatorial nature of SPL features, the number of products grows
exponentially with the number of features. However, there are typically constraints among
features that preclude all possible feature combinations from generating valid products.

In an annotative SPL (Thüm et al. 2014), feature-specific lines of source code are encap-
sulated in conditional statements that are guarded (annotated) with feature expressions. The
SPL’s features are represented as compile-time Boolean constants (called feature variables),
and feature expressions are Boolean expressions over the feature variables. For example, the
SPL in Fig. 1 has two features, FA and FB; their values true or false indicate whether their
corresponding features are present or absent, respectively, in a product. Consider the code
in Component C1: lines 10-17 are specific to products in which the feature FA is present;

Fig. 1 An example of a Software Product Line with features FA and FB, and components C1 and C2

40 Page 4 of 29 Empir Software Eng (2023) 28:40

line 13 is specific only to products in which features FA and FB are both present; and line
15 is specific only to products in which feature FA is present and feature FB is absent.

A specific value assignment to all of the SPL’s feature variables is called a (feature)
configuration and denotes a single product in the SPL. The configuration whose feature
variables are all true is often referred to as the 150% representation (Beuche et al. 2016)
because this configuration generally does not represent a valid product due to constraints
among feature selections.

A set of configurations is succinctly expressed as a presence condition (PC), which is a
propositional formula over the feature variables.1 If f is a feature variable and if pc1 and
pc2 are PCs that represent arbitrary sets of configurations in an SPL, then the following are
also PCs:

f ≡ all configurations in which feature f is present

!pc1 ≡ all configurations in the SPL not belonging to pc1

pc1 ∧ pc2 ≡ the intersection of configurations in both pc1 and pc2

pc1 ∨ pc2 ≡ the union of configurations in either pc1 or pc2

Thus given the SPL depicted in Fig. 1, the PC {FA} represents two configurations: (1)
where FA is present and FB is absent, and (2) where both FA and FB are present. Similarly,
the PC {!FA} also represents two configurations.

The primary motivation behind developing a family of products together as an SPL
instead of developing each product independently is to maximize reuse of common soft-
ware artifacts across products, leveraging the potentially high degree of commonality among
them. Different techniques of developing SPLs have been proposed and used in practice
(Gacek and Anastasopoules 2001; Apel and Kaestner 2009; Schaefer et al. 2010).

A typical software development process includes the use of tools to perform a variety
of software analyses for bug-finding, metric generation, and performance assessment. In
most cases, such tools can be applied only to one software product at a time rather than to
an entire SPL. The naı̈ve approach of generating each and every product and applying an
analysis tool to it individually is usually infeasible because of the exponential growth in the
number of products as the number of features increases.

2.2 Datalog-Based Analysis

We express declarative analyses in Datalog. Datalog (Ceri et al. 1989a) is a logic program-
ming language that supports rule-based inference over relational data. Program analyses
written in Datalog are applied to relational facts extracted from programs. A Datalog pro-
gram is a set of rules, with a set of premises (the body of the rule), and a conclusion (the
head of the rule). For example, line 1 of Fig. 2 is a rule with a single clause in the body (the
varWrite clause), and the transVarWrite is the head (conclusion) of the rule.

Figure 2 shows a Datalog program (simplified for presentation purposes) for detect-
ing symptoms of behaviour alteration, in which a variable assignment in one component
affects the behaviour of another component. Lines 1-3 compute the transitive closure of the
varWrite relationship, thereby finding all data-flows in which one variable is used in the

1We use the syntax !, ∧, ∨ for the propositional operators not , and, and or , respectively, to be consistent
with the syntax of PCs used in our interactive visualization tool (please see Section 4).

Page 5 of 29 40Empir Software Eng (2023) 28:40

Fig. 2 Datalog program for detecting symptoms of behaviour alterations

assignment expression of another variable (including parameter assignments). Lines 5-10
define behaviour alteration as a data-flow that starts with a variable assignment (write) in
function f0, which impacts the values of other variables (via transVarWrite), and ends
with a variable whose value influences the invocation of some function f1 (varInfFunc).
As we are interested only in behaviour alterations that cross component boundaries, we
exclude intra-component results (lines 8-10).

Running this analysis on facts extracted from the code in Fig. 1 reports that the func-
tion updateX in component C1 may influence whether the function foo in C2 is called:
(i) write relationship from function updateX to variable GlobVar (line 15 in C1);
(ii) varWrite relationship from the variable GlobVar to itself (line 15 in C1); (iii)
varInfFunc relationship, indicating that variable GlobVar affects whether the function
foo is invoked (lines 12-13 in C2).

2.3 Lifted Declarative Analyses

Several software analyses have been re-designed and implemented to enable efficient anal-
ysis of the whole SPL at once. Such analyses are called variability-aware analyses, and
the process of transforming a single-product analysis into an variability-aware analysis is
referred to as variability-aware lifting (Bodden et al. 2013; Salay et al. 2014; Shahin et al.
2019; Shahin and Chechik 2020a). A lifted analysis is expected to preserve the semantics
of its single-product counterpart, while tracing each of the results of the analysis to the set
of products to which it applies. We use the notation f ↑ to refer to a lifted version of a
product-based analysis f .

Instead of re-implementing a given analysis to make it variability-aware, another
approach is to lift the language in which the analysis has been implemented. This has the
advantage of effectively lifting any and every product-based analysis that can be expressed
in the lifted language. For example, Shahin et al. (2019) lifted Datalog analyses by extend-
ing the Datalog language with optional presence condition annotations at the fact level, and
implementing a variability-aware fact inference algorithm in the Soufflé↑ (lifted Soufflé)
Datalog engine (Shahin and Chechik 2020b). The result is that analyses written in Datalog
are naturally lifted when they are processed by Soufflé↑.

Consider a variability-aware version of the behaviour alteration analysis presented in the
previous section and consider again the results of running this analysis on the example SPL
in Fig. 1; if you recall, the analysis reports that the function updateX in component C1
may influence whether the function foo in C2 is called. The initial write relationship
from function updateX to variable GlobVar (line 15 in C1) exists only in products that

40 Page 6 of 29 Empir Software Eng (2023) 28:40

include feature FA and exclude feature FB (i.e., whose PC is FA∧!FB). Similarly, the inter-
mediate varWrite relationship from the variable GlobVar to itself (line 15 in C1) exists
only in products with the PC FA∧!FB. The varInfFunc relationship that ends the data-
flow (lines 12-13 in C2) exists in all products. The full data-flow path result exists only
in products that satisfy the conjunction of the PCs of all the edges in the path: that is, all
products in the PC FA∧!FB. In general, a variability-aware analysis is expected to report its
results annotated with the products (or PC) for which each result applies.

3 The Analysis Pipeline

We have implemented an end-to-end pipeline for extracting a product line model from
source code, analyzing it, and interactively visualizing the results. The analysis pipeline
integrates components used in previous projects (Shahin et al. 2019; Muscedere et al. 2019),
together with some adapter components for converting data from one format to another.
The overall pipeline design is shown in Fig. 3. The major tools of this pipeline are Rex↑,
Soufflé↑, and the Interactive Visualization/Filtering tool.

An SPL model is extracted from C/C++ source files using a new variability-aware ver-
sion of Rex (Muscedere et al. 2019), which extracts syntactic facts about the source files
(e.g., variable declarations, variable assignments, function declarations, function calls) and
annotates a fact with a presence condition (PC) if the fact relates to code that is present in
a subset of products. Facts and their presence conditions are extracted as tuples and then
converted to Datalog fact format using a simple script (ta2tsv adapter component).

Soufflé↑ takes as input facts annotated with presence conditions and infers additional
facts based on a set of input Datalog rules that express analyses of interest. Soufflé↑’s out-
put is presented as an annotated graph, in which each presented result is annotated with a
presence condition denoting the set of products for which the result applies. The engineer
can then use the Interactive Visualizer to create filters that highlight (with colour) the anal-
ysis results that apply particular product sets of interest. The visualization component is
explained in more detail in Section 4.

3.1 Variability-Aware Fact Extraction

Our analyses operate on extracted facts about C/C++ source code, rather than operating
on the code itself, to improve the scalability of our analyses to large software systems.

Fig. 3 End-to-end fact extraction and analysis pipeline. Source code is provided to Rex↑, which produces
a factbase of program facts that ta2tsv translates into the input expected by the SPL-analyzer Soufflé↑. An
analysis, expressed as Datalog rules, is input to Soufflé↑ along with these facts, and the analysis results are
presented to the user via an interactive visualizer

Page 7 of 29 40Empir Software Eng (2023) 28:40

Fig. 4 The fact extraction of component C1

Specifically, a fact extractor Rex (Muscedere et al. 2019), based on the Clang++ open-
source compiler,2 parses C/C++ source-code files, generates abstract syntax trees (ASTs),
and extracts facts of interest from the AST into an in-memory hierarchical graph. Source-
code entities such as variable declarations and function declarations are the nodes of the
graph; and relations such as variable assignments (in which one variable is used in the
assignment expression for another variable), function calls, and containment (of variable
declarations within functions, function declarations within files, components comprising
files) are the edges of the graph. Additional information about the nodes and edges are
recorded as associated attributes. Rex outputs the resulting graph as a collection of facts
(called a fact model or factbase) about source-code entities, their relations, and their
respective attributes represented as three-tuples (triples).

In order to support analysis of SPL models, we developed a variability-aware version of
Rex↑ that annotates entities and relationships with their presence conditions. A Rex↑ user
can specify, by type and naming convention, which program variables are to be considered
feature variables and thus used in presence conditions (e.g., only constant global bool
or enum type variables). Variability-aware Rex↑ keeps track of all conditions over feature
variables that hold while walking the AST and uses that information to annotate facts with
their PCs as they are extracted.

Figure 4 gives an overview of the Rex↑ extraction process of the component C1 in
Fig. 1a. On the left is the input, in this case C++ code; the middle of the figure depicts
extracted information as an in-memory hierarchical graph; and on the right is the extracted
fact model in tuple format. In this example, Rex↑ creates fact nodes for the class A, function
updateX, and variables x, FA, FB, and GlobVar.3 Each contain edge corresponds to
an entity declaration (e.g., class A contains the declaration of variable x). When one vari-
able appears in an expression that is assigned to another variable (e.g., the use of GlobVar
in an assignment to variable x in C1), a varWrite edge is created from the used variable
to the assigned variable (e.g., varWrite GlobVar x). The creation of the other edges
follows the same pattern. Attributes of entities and relationships are listed at the end of the
fact model. The attribute PC records presence conditions: any entity or relationship that is
annotated with a PC attribute represents a fact that is conditionally present in the model,
depending on the value of the feature variables. Thus, variability-aware Rex↑ extracts a
150% representation that includes facts for all the SPL’s features, where conditional facts

2https://clang.llvm.org/index.html
3The names of the entities are simplified for this example to improve legibility. In practice, Rex creates long
identifier names that capture the entity’s context (i.e., enclosing function, class, etc., up to and including
filename).

40 Page 8 of 29 Empir Software Eng (2023) 28:40

https://clang.llvm.org/index.html

are annotated with their products’ presence conditions. Because of the nature of static anal-
ysis, the resulting model is an over-approximation of the program’s actual set of facts: it
may contain some facts that are infeasible (e.g., a function call in a conditional branch that
never executes).

The fact model is translated into the input format of the Soufflé↑ reasoner, using a script
ta2tsv that we wrote specifically for that purpose. For example, in a fact model, presence
conditions are listed as attributes at the end of the file rather than being co-located with
their associated facts. Our ta2tsv script associates each fact with its corresponding presence-
condition attribute.

3.2 Analyses of Interest

In collaboration with General Motors, we identified three analyses of interest, behaviour
alteration, recursion, and simplifiable-global variable, and applied them to the industrial
case study. Each of these analyses was originally applicable to a model of a single product,
not a product line. We devised lifted versions of these analyses by expressing each as a set
of Datalog rules and “executing” them using the lifted Datalog engine Soufflé↑. This way
we were able to leverage the flexibility of using Datalog as a query language for expressing
analyses. We were also able to leverage all the optimizations in Soufflé↑ to help ensure that
our analyses scale to industrial-size SPLs.

3.2.1 Behaviour Alteration Analysis

In our work, the primary analyses of interest are those that detect possible component inter-
actions, where a component behaves differently in isolation versus when it is combined
with other components (Muscedere et al. 2019). Such analyses are of particular interest to
General Motors because of the large number of components and component combinations
in their products and product lines. An engineering team will know its components well, but
will not necessarily know all of the ways in which its components can affect the behaviours
of components developed by other teams. One of the most complex types of component
interaction is behaviour alteration (Muscedere et al. 2019), a form of data-flow compo-
nent interaction, in which a change to a variable value made in one component alters the
behaviour of another component. The specific instance of behaviour alteration used in this
paper is (1) an assignment is made in component C1 to a variable v; (2) whose modified
value impacts other variables through variable assignments and impacts other components
through parameter passing; until (3) in another component Cn a variable x, whose value has
been impacted by the modified value of v, is used in the decision condition of some con-
trol structure (i.e., an if, for, while, or switch statement) that (4) guards a function
call. Thus, the analysis looks for a data flow from a variable assignment in one component
to a control structure in another component, where the control-structure’s statement block
includes a function call. Figure 1 gives a simple example where the write to GlobVar in
line 15 of component C1 could affect whether or not the function bar calls the function
foo in component C2.

To analyze the software controllers provided by General Motors, we developed a spe-
cialized version of the behaviour alteration analysis, henceforth called the GM variant. This
analysis has an additional requirement that a particular middleware component, which han-
dles inter-component communications, cannot be the start- or the end-point of a behaviour

Page 9 of 29 40Empir Software Eng (2023) 28:40

alteration path. This component is expected to communicate with multiple other com-
ponents, and thus behaviour alteration paths that start or end with this component are
uninteresting and would clutter the analysis results.

3.2.2 Recursion Analysis

A second analysis of interest to General Motors involves recursion. Automotive software
typically uses little to no recursion in order to guarantee timing requirements. Our work
initially focused on two types of recursion:

(1) function recursion
(2) component recursion

The first analysis detects functions that directly or indirectly call themselves via a cycle
of function calls with in single component; and the second analysis detects a cycle of
function calls involving functions from at least two distinct components. As we discuss in
Section 6, results reported by the recursion analysis led GM engineers to request us to per-
form a followup analysis to help them understand the instances and contexts of the reported
occurrences of recursion. This followup analysis is discussed in Section 8.4.

The recursion analyses exemplify simple coding standards, like MISRA C4 standards
that are used in the automotive and other safety-critical industries. These kinds of code
patterns can be expressed easily as Datalog queries.

3.2.3 Simplifiable Global Variable Analysis

The third analysis of interest detects a code pattern that was of particular interest to a
General Motors engineer for potential code refactorings. Specifically, a simplifiable global
variable is a global variable that is used only to pass data to a single function. If a global vari-
able is simplifiable then it can likely be refactored as a parameter of the function that reads
from it – which is a useful because global variables can introduce unnecessary couplings of
components and potential logical errors in maintaining their state.

Figure 5 illustrates a simplifiable global variable CtrlIdx, where X and Z are the only
functions in the program that call function Y.

4 Interactive Visualization

Our pipeline includes an interactive visualizer that supports inspection of the analysis results
by visually encoding which facts and analysis results belong to which software products.
Because the results of a lifted analysis are inferred paths in the factbase, they can be por-
trayed as edges in a graphical model representing the analysis results. Although a graphical
model can concisely represent the analysis results, the task of understanding how the results
apply to specific SPL configurations requires the engineer to read and compare presence
conditions on multiple edges. To facilitate this, we developed an interactive visualizer that
enables the engineer to apply coloured filters to the results to help identify groups of paths
occurring in related software products.

4https://www.misra.org.uk/

40 Page 10 of 29 Empir Software Eng (2023) 28:40

https://www.misra.org.uk/

Fig. 5 An example of a simplifiable global variable CtrlIdx that may be simplified to be a parameter of
function Y

Our visualizer is implemented on top of the Neo4j Browser,5 the user interface provided
by the open-source graph database Neo4j.6 As a database engine, Neo4j enables the storing
and querying of graphical data like the facts and results of our analyses. As such, we import
our results into an instance of the Neo4j database to be queried and visualized.

Figure 6 shows a pedagogical example of analysis results comprising functions (f1,
f2), variables (v1, v2), their relationships, and their respective presence conditions over
feature variables (FA, FB, FC, FD) in a visualization frame. Each visualization frame has a
central interactive area in which the graphical results are displayed; the user can use native
Neo4j Browser facilities to zoom in and out, and rearrange the layout of the graph. The
visualization frame also includes an expandable sidebar that gives an overview of the data
being represented and provides options to customize the appearance of elements, including
node size, edge thickness, and the information presented on the labels. For each edge in the
graph, the visualizer displays both of the type of the edge and the edge’s presence condition.
The edge type appears in bold whereas the presence condition is located on the opposite
side of the edge. Each presence condition labelling an edge indicates the software products
for which that relationship applies.

We have enhanced the Neo4j Browser to support the exploration of our analysis results
based on user-specified filters (please see Fig. 7). In the textbox on the top right, the engineer
specifies a filter as a presence condition representing a set of SPL configurations, and the
visualizer highlights the subset of results that satisfy the filter’s presence condition. Our
visualizer employs Logic Solver,7 a Boolean satisfiability solver, to reason for each fact
whether the fact’s presence condition satisfies also each filter’s presence condition. The
visualizer automatically assigns a distinct color to the edges that satisfy the filter, thereby
preserving the original results as well as highlighting the filtered results.

5https://neo4j.com/developer/neo4j-browser/
6https://neo4j.com/
7https://github.com/meteor/logic-solver

Page 11 of 29 40Empir Software Eng (2023) 28:40

https://neo4j.com/developer/neo4j-browser/
https://neo4j.com/
https://github.com/meteor/logic-solver

Fig. 6 Neo4j Browser interface

Multiple filters can be applied to the same analysis results, producing a colour-coded
graph visualization that highlights which analysis results pertain to specific configurations.
For example, as shown in Fig. 7, the edge between nodes f1 and f2 reports an alter-
ation behaviour that originates in function f2 and manifests in function f1; this alteration
behaviour is present only in products that satisfy the presence condition FA∧FB∧FC∧FD.
After applying filters, the engineer can inspect the legend at bottom right corner showing
the filters applied and their colours (shown in Fig. 7-B).

Through the application of one or more filters, the engineer can explore and better under-
stand the analysis results. A single filter can be used to determine and visualize which
results apply to a particular set of software products of interest. Alternatively, the engineer
can compare how two or more sets of software products differ in their analysis results by
applying multiple filters, one for each product set. Moreover, the engineer can see the effects
of adding or removing a single feature from a product set by applying filters that include
or exclude the feature of interest and seeing which results are highlighted by the different
filters.

Figure 8(a) shows an example of creating a single filter to identify the analysis results
that apply to a specific set of software products. Figure 8(b) shows the effects of applying
a second filter to the same visualization to assess the impact of adding a feature to the first
filter. The edges coloured yellow highlight the analysis results that satisfy only the first
filter and the edges coloured blue and yellow highlight the analysis results that satisfy both
filters.8

Visualization of numerous analysis results is always a concern (Von Landesberger et al.
2011), but there are several facilities within the tool chain for searching and scoping the
presented results. Firstly, the analysis itself (i.e., the Datalog query) can be used to limit the
number of results returned and in some cases can prioritize results (e.g., prioritize shortest
or longest path results, or prioritize results that involve the largest number of components).
The analysis query can also be refined to focus only on specific components. Secondly,
the engineer’s web browser’s text-search feature can be used to search the graph labels
to localize results related to particular components, functions, or variables. Thirdly, native
Neo4j Browser features can be used to include or exclude node or edge types from the
visualization, to more easily focus on results that pertain to nodes and edges of interest.9

8Node labels and presence conditions on edges have been omitted from Fig. 8(b) to avoid revealing
proprietary information.
9Neo4j Browser manual. https://neo4j.com/docs/browser-manual/current/

40 Page 12 of 29 Empir Software Eng (2023) 28:40

https://neo4j.com/docs/browser-manual/current/

Fig. 7 Three main sections of the analysis result visualizer: (A) the text box allows the user to create filters
with feature expressions, (B) the legend box shows the colour and shape of the edges mapped to each filter,
and (C) the overview sidebar allows the user to customize visual parameters like the colour, size, and shape
of the nodes and edges

Fig. 8 The visualization of a subset of the analysis results and the effects of (a) applying an initial filter
(yellow edges) showing the analysis results that apply to a given program configuration and (b) applying a
second filter (blue edges) that adds a new feature to the initial (yellow) filter

Page 13 of 29 40Empir Software Eng (2023) 28:40

Table 1 Size metrics for the seven product lines analyzed

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

(.h) Files 5431 6277 4702 6292 5243 6115 8137

(.h) LOC 350,102 570,174 285,132 586,985 337,946 572,851 759,160

(.c) Files 5133 6826 4300 6943 4981 6464 8458

(.c) LOC 730,947 1,016,063 750,000 979,466 752,669 1,088,811 1,639,822

For each product line, we list the number of header files (.h) and C source files (.c), together with the total
number of Lines of Code (LOC)

Finally, our extension to Neo4j Browser can be used to highlight the analysis results that
pertain to product sets of interest. In Section 7, we report on a small user study in which GM
engineers evaluate our interactive visualizer for the tasks viewing, searching, highlighting,
and comparing analysis results for different product sets.

5 Industrial SPL Examples

To assess scalability, we applied our analyses of interest to SPL models extracted from seven
vehicle controller product lines provided by General Motors, which are abstractly named
SPL-A, SPL-B,..., SPL-G to obfuscate sensitive industrial data. Metrics on the sizes of all
seven product lines are shown in Table 1. For example, SPL-A has 5431 header (.h) files,
with a total of 350,102 lines of code (LOC). It also has 5133 C language source files (.c),
totalling 730,947 lines of code. Of particular interest is controller SPL-G, which provided
a stress test of our tool chain. SPL-G is significantly larger than the other controllers, has
many more features and feature combinations, and includes a middleware component that
leads to an order of magnitude more results than analyses of the other controllers.

The General Motors controllers encode the inclusion or exclusion of features using what
are called configuration parameters. Configuration parameters are represented as global
constants of enumerated types (enum) or Boolean type (bool).10 The values of these
parameters are defined at deployment time during vehicle manufacturing (Young et al.
2017).

Such an encoding of variability means that the source code includes all of the code
relevant to all features. Thus, each controller code-base is a 150% representation of the con-
troller’s SPL, and an individual controller product is configured by setting the values of
these configuration parameters.

For some of our analyses (specifically, behaviour alteration analysis and component
recursion analysis), the most interesting results are the paths between functions that reside in
different components. However, there is no identifiable notion of a component unit in C/C++
source code. Components in the General Motors controllers are made up of collections
of source-code files, so we cannot use compilation units as the delimiters of components.
Instead, General Motors shared with us a high-level decomposition of their code into com-
ponents, and we incorporated this information into a controller’s factbase as additional facts:
we introduced a component entity fact for each distinct component and a contains relation-
ship fact between each component entity and its constituent source files. The additional

10Configuration parameters are feature variables, which were described in Section 2.1.

40 Page 14 of 29 Empir Software Eng (2023) 28:40

facts allowed us to adapt our analyses to avoid reporting intra-component results (please see
the last line in Fig. 2).

6 Applying Analysis to the Industrial Examples

One of the primary goals of this project was to validate that the variability-aware Datalog
analysis approach (Shahin et al. 2019) is scalable to real-world industrial SPLs. We infor-
mally define scalability as having a marginal performance overhead compared to analyzing
the 150% representation of the SPL, which implicitly means having an exponential speedup
compared to product-based analysis of each single product individually.

For each controller SPL, we used Rex↑ to automatically extract both a 150% rep-
resentation (i.e., a model representing a single product with all features present) and
an SPL model, with feature variability represented as presence-condition annotations on
facts. We translated the extracted facts into Datalog facts. For each of the analyses, we
applied Soufflé (version 1.3.1) to the 150% representation and applied Soufflé↑ to the
factbase annotated with presence conditions. To assess performance, we repeated each
analysis experiment five times and removed the minimum and maximum execution times
(to marginalize the effect of noise from the execution environment) and report the mean-
average execution times and standard deviations for both the 150% representation and the
product line. Tables 2, 3, 4, 5 and 6 summarize the results of our experiments, one for
each analysis. For a given SPL, each analysis might depend on a different set of input facts
(Facts). Some of these facts are variational (VFacts), where the percentage of variational
facts to the total number of facts is VFacts (%). The total number of feature variables ref-
erenced by the presence conditions of the variational facts is Features (approximated to the

Table 2 Results of applying the behaviour alteration analysis

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

Features ∼400 ∼500 ∼900 ∼600 ∼600 ∼500 ∼1600

Facts 157303 225538 215120 228185 227241 226640 621714

VFacts 698 1070 2126 1148 2078 955 3944

VFacts (%) 0.44 0.47 0.99 0.50 0.91 0.42 0.63

150% Time (sec.) 3.93 5.14 17.62 4.81 17.76 4.87 175.17

(Std. Dev.) 0.01 0.02 0.04 0.06 0.01 0.06 2.46

150% Outputs 128780 177806 399085 167243 438319 177689 1594370

150% Results 1191 1527 2757 1725 3887 1400 22832

Distinct PCs 198 278 779 318 1123 278 2225

Time (sec.) 6.49 8.29 28.68 7.79 32.63 7.62 427.60

(Std. Dev.) 0.09 0.04 0.37 0.08 1.15 0.01 8.24

Outputs 128759 177801 399027 167241 436740 177684 1592336

VOutputs 505 676 3484 756 19046 924 127279

VOutputs (%) 0.39% 0.38% 0.87% 0.45% 4.36% 0.52% 7.99%

Results 1189 1525 2757 1724 3881 1398 22822

Overhead 64.82% 61.41% 62.71% 61.95% 83.68% 56.46% 144.11%

Page 15 of 29 40Empir Software Eng (2023) 28:40

Table 3 Results of applying the GM variant behaviour alteration analysis

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

Features ∼400 ∼500 ∼900 ∼600 ∼600 ∼500 ∼1600

Facts 173454 241689 231271 244336 243392 242791 637865

VFacts 698 1070 2126 1148 2078 955 3944

VFacts (%) 0.40 0.44 0.92 0.47 0.85 0.39 0.62

150% Time (sec.) 3.99 5.17 17.72 4.83 17.84 4.88 173.06

(Std. Dev.) 0.00 0.03 0.11 0.02 0.07 0.03 0.20

150% Outputs 142457 191403 411397 180496 454691 191423 1607902

150% Results 15 23 109 23 421 23 802

Distinct PCs 197 276 771 317 1111 276 2213

Time (sec.) 6.57 8.30 28.60 7.85 32.05 7.60 410.06

(Std. Dev.) 0.00 0.10 0.09 0.10 0.19 0.04 2.93

Outputs 142436 191398 411339 180494 453095 191418 1605848

VOutputs 527 690 3253 768 18796 938 127522

VOutputs (%) 0.37% 0.36% 0.79% 0.43% 4.15% 0.49% 7.94%

Results 15 23 109 23 421 23 802

Overhead 64.77% 60.72% 61.34% 62.43% 79.69% 55.59% 136.94%

nearest hundreds). For example, when applying the behaviour alteration analysis (Table 2)
to SPL-A, the number of input facts relevant to behaviour alteration is 157303, 698 of which
are variational, corresponding to 0.44% of the relevant input facts.

Table 4 Results of applying the simplifiable global variable analysis

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

Features ∼400 ∼500 ∼900 ∼600 ∼600 ∼500 ∼1800

Facts 228473 333016 285853 334635 303877 338233 769236

VFacts 710 1009 1624 1080 1693 879 3160

VFacts (%) 0.31 0.30 0.57 0.32 0.56 0.26 0.41

150% Time (sec.) 4780.88 9377.31 4672.73 9526.3 5859.57 9615.21 25967

(Std. Dev.) 15.99 62.43 20.54 52.00 51.22 160.96 382.88

150% Outputs 129629 178061 145877 177084 151796 177988 412600

150% Results 89 117 108 106 160 97 459

Distinct PCs 245 355 755 392 557 341 2328

Time (sec.) 5102.92 10032.1 5090.34 10225.2 6280.87 10381.3 28618

(Std. Dev.) 128.82 207.34 95.24 188.95 25.66 327.02 485.86

Outputs 129649 178079 145904 177110 151840 178005 412688

VOutputs 1226 1556 1580 1598 1833 1493 3790

VOutputs (%) 0.95% 0.87% 1.08% 0.90% 1.21% 0.84% 0.92%

Results 89 117 108 106 160 97 459

Overhead 6.74% 6.98% 8.94% 7.34% 7.19% 7.97% 10.21%

40 Page 16 of 29 Empir Software Eng (2023) 28:40

Table 5 Results of applying the function recursion analysis

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

Features ∼300 ∼300 ∼600 ∼300 ∼400 ∼300 ∼1200

Facts 51264 72154 65373 74314 80767 73521 163629

VFacts 292 420 756 426 569 356 1097

VFacts (%) 0.57 0.58 1.16 0.57 0.70 0.48 0.67

150% Time (sec.) 1.46 1.93 2.00 2.01 2.72 1.84 6.56

(Std. Dev.) 0.01 0.02 0.02 0.02 0.02 0.00 0.11

150% Outputs 285229 347712 358868 364255 502085 332209 1244323

150% Results 4 4 0 4 6 4 10

Distinct PCs 199 264 1158 264 360 247 793

Time (sec.) 2.17 2.74 3.39 2.94 3.78 2.57 23.26

(Std. Dev.) 0.06 0.08 0.13 0.13 0.10 0.08 1.25

Outputs 285229 347712 358868 364255 502085 332209 1244323

VOutputs 3533 6960 5503 7223 6224 4328 14119

VOutputs (%) 1.24% 2.00% 1.53% 1.98% 1.24% 1.30% 1.13%

Results 4 4 0 4 6 4 10

Overhead 48.44% 42.22% 69.44% 46.10% 38.93% 40.18% 254.36%

The software of a vehicle has many variation points and thus configuration involves
many configuration parameters (Young et al. 2017). In our SPL examples, the code has sev-
eral hundred configuration parameters (Features in Tables 2–6) in each of the controllers.

Table 6 Results of the component recursion analysis

SPL-A SPL-B SPL-C SPL-D SPL-E SPL-F SPL-G

Features ∼300 ∼300 ∼600 ∼300 ∼400 ∼300 ∼1200

Facts 111509 158174 117422 162635 142584 162281 309441

VFacts 292 420 954 426 715 356 1097

VFacts (%) 0.26 0.27 0.81 0.26 0.50 0.22 0.35

150% Time (sec.) 1.60 2.09 2.19 2.17 3.40 2.02 7.86

(Std. Dev.) 0.00 0.00 0.00 0.00 0.03 0.00 0.05

150% Outputs 315726 382327 424390 398987 681000 369020 1565191

150% Results 0 0 0 0 0 0 0

Distinct PCs 140 191 776 192 354 175 643

Time (sec.) 2.29 2.95 3.60 3.01 4.35 2.73 22.78

(Std. Dev.) 0.08 0.08 0.14 0.07 0.01 0.04 1.75

Outputs 315726 382327 424390 398987 680999 369020 1565191

VOutputs 3694 7811 11033 8106 17204 4556 17234

VOutputs (%) 1.17% 2.04% 2.60% 2.03% 2.53% 1.23% 1.10%

Results 0 0 0 0 0 0 0

Overhead 42.57% 40.99% 64.11% 38.42% 27.89% 34.81% 189.91%

Page 17 of 29 40Empir Software Eng (2023) 28:40

Because the number of possible products is exponential in the number of configura-
tion parameters, the large number of configuration parameters makes analyzing individual
product variants infeasible.

As reported in Table 2, the behaviour alteration analysis of the 150% representation of
SPL-A using Soufflé takes 3.93 seconds, and the number of inferred facts (150% Outputs)
is 128780. Among those, 1191 facts are the end results of the analysis (150% Results).
However, applying the same analysis to the variational facts of the same SPL-A prod-
uct line using Soufflé↑ takes 6.49 seconds (an overhead of only 64.82%). Soufflé↑ infers
128759 new facts (Outputs), 505 of which are variational (VOutputs). Among the outputs,
1189 are end results of the analysis (Results). The number of distinct presence conditions
calculated as part of the analysis is 198.

Considering all our analyses, variational analysis time overheads range from 6.74% (sim-
plified global variable analysis applied to SPL-A) to 254.36% (recursion checking applied
to SPL-G). Recall that the cost of product-based analysis, where each product of an SPL is
analyzed separately, grows exponentially with the number of features (Liebig et al. 2013).
Yet the execution-time overhead of our variability-aware analyses does not seem to corre-
late with the number of SPL features. The marginal overheads incurred can be considered
very acceptable, at least in cases like our industry examples, where a system has hun-
dreds of features but sparse variability in terms of the percentage of facts annotated with
presence conditions. We also note that for a computation-intensive analysis like simpli-
fied global variable analysis, the overheads are significantly lower than those of the other,
lighter-weight, analyses – in part because this analysis applied the SPLs’ 150% repre-
sentation models are so costly. This indicates that the extra costs of presence condition
manipulation amortizes over the execution time of the analysis.

In addition to execution time, we also measured the number of facts inferred by the anal-
yses, including all intermediate facts generated as part of the computation of final results.
There are two reasons behind the discrepancy in the number of facts inferred when analyzing
the 150% representation versus applying Soufflé↑ to variational factbases: (1) variability-
aware analysis excludes facts that have unsatisfiable presence conditions, whereas in the
analysis of a 150% representation, all inferred facts are deemed to be feasible; and (2) vari-
ational aggregator operators (e.g., sum, count) might generate multiple results when applied
to a set of facts, whereas a non-variational aggregator always generates a single result.

We also measured the total number of unique presence conditions (Distinct PCs) com-
puted during the inference process.11 To our surprise, the number of unique presence
conditions in each controller was usually smaller than (and in one case roughly equal to) the
number of configuration parameters in the controller – which is far fewer than the number
of possible combinations of features. Thus, although the controller’s SPL technically sup-
ports an exponential number of configurations (2N products given N features), the number
of variants mentioned in the source code as presence conditions is much smaller. Taking
a further look at the presence conditions, we found out that many features always appear
together in a presence condition. This kind of feature correlation is not uncommon in SPLs
(Apel and Beyer 2011).

In summary, with a performance overhead of only 6.74%–254.36% compared to the anal-
ysis of the single product with all features present (the 150% representation), our evaluation

11This measurement was aided by the fact that the presence conditions are stored as Binary Decision
Diagrams (BDDs) (Bryant 1992), and BDDs have canonical representations.

40 Page 18 of 29 Empir Software Eng (2023) 28:40

shows that variability-aware analysis scales to large-scale industrial software product lines
with hundreds of features.

7 GM Engineers’ Feedback on Graph Visualization

Graph visualization tools can include a number of features to help engineers cope with
a large amount of data (see Section 4). In this section, we report on a semi-formal user
survey with General Motors engineers to help evaluate the effectiveness of an extension
we introduced to the Neo4J browser to use in graph visualization to inspect conditional
(product-specific) analysis results. Specifically, we asked for General Motors engineers’
feedback on three aspects of our work: (1) the capacity of associating variability-aware
analyses with product sets, (2) the preferred way to represent results of variability-aware
analyses, and (3) the utility of coloured filters to help engineers explore and focus on subsets
of results.

7.1 Methodology

We began by delivering an online presentation that showed the output of variability-aware
analyses (including presence condition annotations), the graphical and tabular representa-
tion of such results, and the expression of filters to highlight subsets of results that pertain to
specific product sets. We created a video of this same presentation for those engineers who
were unable to attend the presentation. We also provided access to a prototype of our inter-
active interface so that engineers could experiment with the interactive graph visualization
and its coloured filters.

The survey comprised three sections, each asking a set of questions about the partici-
pant’s preferences using a 5-point Likert scale (ranging from a strong preference to a strong
dislike) followed by opportunities to provide free-form answers about the rationale behind
their preferences.

– The first section focuses on the participant’s interest in seeing analysis results annotated
with software variants and contained four questions (including two optional open-ended
questions) which assessed the degree to which the association of analysis results with
product sets is useful in understanding the results.

– The second section asks participants about their preference between graphical and tab-
ular formats. A tabular format that lists results (e.g., program elements or paths that
match some pattern of interest), each annotated with a presence-condition attribute, is
more conventional. A graphical format presents the same information with graph edges
annotated with their respective presence condition. This section of the survey comprises
seventeen questions asking about the participants’ general preference (e.g. “Overall,
which format do you prefer?”) and task-specific preferences (e.g., reading, searching,
understanding). At the end of the section, the respondents were asked to rank how the
presented task-specific scenarios influenced their general preferences.

– The third section of the survey gauges the participants’ interest in using coloured filters
to highlight analysis results. The coloured filters apply to both tabular and graphical
representations, highlighting subsets of results based on user-specified product sets of
interest. Similarly to the previous section, the survey asks seventeen questions about
the participants’ general preference (e.g., “Overall, which visualization (coloured or
uncoloured) would be faster and easier to read, understand, find, and report results

Page 19 of 29 40Empir Software Eng (2023) 28:40

and their associated configuration expressions?”) and task-specific preferences (e.g.,
“to access the impact of analysis results from adding or removing a feature from a
configuration expression”). At the end of the section, participants could also rank the
presented task-specific scenarios with respect to their general preferences.

– The survey concludes with two open-ended questions asking participants about the
general impression of the presented features of the tool and their suggestions for
improvement.

Six senior software engineers from General Motors responded to our survey. The com-
plete set of materials used in this study (e.g., slides, video, survey questions, responses) are
publicly available.12

7.2 Answers: Associating Variability-Aware Analyses Results with Product Sets

All of the respondents reported a preference for associating analysis results with a set of
products. Most respondents (5 out of 6) considered it useful to know which analysis results
belong to a single product. One of the participants explained how the association between
results and product sets could help with understanding the results:

“Configurable software operates in many different ways which is fundamentally hard
to keep clear in doing software tasks, knowing when code is active/inactive is a key
understanding element . . . [products set] knowledge allows you to understand the
shared interactions, I cannot change something as unique to variants if shared across
variants” (P1).

The observed clear preference for understanding sets of results justifies and guides our
efforts for building visualizations of variability-aware analysis results.

7.3 Answers: Presentation of Variability-Aware Analysis Results

The respondents expressed clear but diverse preferences for graphical versus tabular results.
One participant (P5) prefers the graphical representation for most of the task-specific sce-
narios presented in the survey. Three participants (P2, P3, P4) prefer the opposite, favouring
the tabular format for the same set of tasks. The other two respondents (P1, P6) prefer dif-
ferent representations for different tasks and showed interest in having an interface that
provides both formats. For example, P6 said they would like a graphical view of results to
read data values and a tabular view to find particular results.

Two participants who favour the tabular format admitted to preferring the graphical for-
mat (or not having a preference) if the data could be further queried to focus on a subset
of the results. Such comments reflect a concern (shared by most participants) that a graph
representation would become difficult to read once it becomes large enough. For the partic-
ipants who prefer the graphical format, the graph helps direct their focus when inspecting
the results:

“I really prefer them both together, the graph provides an easier pattern perspective
of the whole but can be hard to consume details. I would see myself using the graph
to find nodes then the table to dig in on detail” (P1).

12https://github.com/toledorafael/emse2022userSurvey

40 Page 20 of 29 Empir Software Eng (2023) 28:40

https://github.com/toledorafael/emse2022userSurvey

“The graphical format allows me to quickly zoom in to the part of the dataflow I want
to analyze further, without having to stop and mentally connect the individual call
links” (P5).

The received answers provide sufficient evidence for the need to provide support for both
tabular and graphical formats. Further investigation of how the two representations could
cooperate to deliver the best experience to engineers is left for future work.

7.4 Answers: Utility of Coloured Highlighting of Filtered Analysis Results

Most of the respondents indicated that coloured filters are strongly helpful for the overall
understanding of analysis results. They said that the use cases that most benefitted from
the coloured filters were: (a) identifying results associated with a single product instance,
(b) assessing how a change in software configuration impacts the analysis results, and (c)
comparing facts associated with different product sets. P5 explained that the coloured filters
could be especially helpful in understanding the impact of configuration decisions:

“[...]where I really need to do detailed analysis is on product instances within that set
(e.g., if I set one value within a product set a specific way, exactly which subset of the
original filtered set of possible paths is impacted?). This seems like the most useful
case for understanding behaviour, or whether my software design has any gaps in the
conditions I have set up, where I expect a common set of dataflows to be highlighted
for every one [product] of a product set, but for an individual product instance within
that collection there is a difference.”

Another respondent suggested that presence-condition annotations should include the
number of variants in the presence condition’s product set, and we intend to implement this
suggestion in our tool.

Participant (P2) asserted that coloured filters would not be helpful to them because they
are colour-blind: in fact, colour choices could make it hard for them to read and distinguish
between results. This particular respondent may have been influenced by the survey’s use of
specific colours (red, blue, yellow) when showing images of highlighted (filtered) results,
whereas in practice, the choice of filter colours is controllable by the user. In any case, the
participant’s response shows a limitation of this feature for those engineers who experience
full colour blindness.

To summarize, the use of coloured filters to highlight subsets of analysis results looks
promising but should be confirmed by further study. Respondents’ feedback classify
coloured filters as a useful feature but also point out potential improvements and limitations
that should be considered for an optimal experience.

7.5 Threats to Validity

The main threat to validity of our results is the small number of engineers who participated
in our user study. We shared the survey with twelve engineers, and they were invited to share
the materials with other engineers whom they thought would be interested and appropriate.
We received six responses to our survey, all from senior engineers with 20 to 30 years of
work experience as software engineers and 15 to 30 years of experience working with con-
figurable software. We believe that the respondents’ seniority and expertise lend significant
weight to their answers, even if the number of respondents is not enough for study results
to be statistically significant. We are currently working on our next user study that aims to

Page 21 of 29 40Empir Software Eng (2023) 28:40

reach a broader group of engineers. Our evaluation is decidedly semi-formal and qualitative
rather than quantitative. Yet we were able to collect preliminary but consistent results that
the visualization tooling we are building is effective.

8 Lessons Learned

In this section, we reflect on some of the lessons learned by conducting these empirical
studies.

8.1 Variability Annotation

Different techniques have been used to annotate segments of source-code with feature
expressions, effectively deciding which pieces of code belong to which features. For exam-
ple, CIDE (Kästner et al. 2009a) is a colour-based tool that highlights segments of code
with different colours, each of which represents a feature. The most commonly used anno-
tation mechanism in industrial product lines is the C Pre-Processor (CPP) (Ernst et al.
2002; Liebig et al. 2010). The CPP provides a high degree of flexibility when annotat-
ing source code, allowing for lexical rather than syntactic annotation. This means that any
sequence of lexemes (tokens), even if the sequence by itself is not syntactically valid, can
be assigned a presence condition. As a result, the 150% representation of an SPL annotated
with CPP directives is typically not syntactically well-formed, requiring variability-aware
parsing (Gazzillo and Grimm 2012; Kästner et al. 2011).

The product lines from General Motors, however, use a different annotation mechanism.
C-language constants (following a naming convention) are used within the source code to
indicate features. Those constants are assigned values as a part of the product configuration
process. Feature-specific code is thus enclosed within C-language conditional statements,
relying on the compiler to evaluate the compile-time constants at compile time and to
eliminate dead-code corresponding to features not included in the product being built.

This annotation technique has two direct consequences. First, while it is less flexible
than CPP directives, it does not require variability-aware parsing because the entire prod-
uct line is a syntactically well-formed C-program. Secondly, existing analysis tools can be
applied to the entire product line, in the same way as regular parsers can be applied to it.
The downside is that each result of a given analysis is not labeled with the distinct set of
products to which it applies. This draws a clear distinction between analyzing the 150% rep-
resentation of a product line, in the case where it is well-formed and readable by an analysis
tool, and variability-aware analysis, where both inputs and outputs of the analysis need to
be appropriately annotated.

An indirect consequence of the annotation technique used by General Motors is the pos-
sibility of filtering analysis results through user-provided feature expression of interest and
presenting only facts with satisfying presence conditions. This capability has the potential to
improve the readability of the data and support the experience of the user visually inspecting
the analysis results.

8.2 Variability Encoding

Soufflé↑ can only handle binary features; that is, a feature can be either present or absent.
However, the SPLs we analyzed in this project also encode sets of mutually exclusive fea-
tures using C-language enum data types. For example, if Feat0, Feat1, Feat2, and

40 Page 22 of 29 Empir Software Eng (2023) 28:40

Feat3 is a set of four mutually exclusive features, it is a common C-language idiom to
encapsulate them in an enumerated data type:

Enumerated data types in C are integral types, allowing the use of mathematical opera-
tors (e.g., addition, bit-wise disjunction) and comparison operators on their values. We came
across cases where presence conditions included comparison operators on values of enu-
merated data types, and we had to abstract those predicates into propositional symbols. For
example, if x is a constant of type FeatSet, then the expression x < Feat2 is a logically
valid presence condition, but is not acceptable in Soufflé↑. We apply a syntactic transfor-
mation for these kinds of expressions, turning the above expression into a Boolean variable
x LT Feat2, where the LT sub-string stands for less-than. We use similar substitutions
for other comparison operators. These transformations are applied by a post-processing
script that is executed on the facts before they are added to the factbase. The transformations
are limited to comparison operators (not arithemtic or bitwise operators) and the expressions
to which a feature variable is compared is limited to enum constants.

The fact that the four features belonging to FeatSet are mutually exclusive can be
expressed as a constraint on feature variables in the feature model of the product line. The
fragment of the feature model representing this property for FeatSet is:

!(Feat0 ∧ Feat1) ∧ !(Feat0 ∧ Feat2) ∧ !(Feat0 ∧ Feat3) ∧
!(Feat1 ∧ Feat2) ∧ !(Feat1 ∧ Feat3) ∧ !(Feat2 ∧ Feat3)

If a feature from FeatSet is mandatory, we also need to add a disjunction over all four
features to the feature model:

(Feat0 ∨ Feat1 ∨ Feat2 ∨ Feat3)

8.3 Scalability of Lifted Analysis

In theory, the complexity of software product line analysis is expected to grow with respect
to the number of product line features (Liebig et al. 2013). Product variants compose fea-
tures together, thus the number of product variants typically grows exponentially with the
number of features. The idea behind lifting analyses to product lines is to leverage the com-
monality among different product variants as much as possible to keep the cost of product
line analysis reasonable, as opposed to enumerating and analyzing each product variant by
itself, which is intractable in most practical cases.

The product lines we analyzed in this study have hundreds of features each, which means
that enumerating each product is not an option. The variability-aware overhead reported
for Soufflé↑ in earlier work (Shahin et al. 2019) is marginal, but that was reported for rel-
atively small benchmarks of only tens of features each. Results presented in Shahin et al.
(2021b) show that the performance overhead of full product line analysis using Soufflé↑ is
still marginal for industrial product lines, with hundreds of features. Evaluation results
in Section 6 reinforce those findings with a more diverse set of analyses and one more
(significantly bigger in size) benchmark from General Motors.

Looking further into the results, the performance overhead does not seem to correlate
with the size of the code-base, the size of the extracted model (number of facts), or the

Page 23 of 29 40Empir Software Eng (2023) 28:40

number of features of the SPL. This can be explained by differences between the subject
SPLs with respect to the code patterns directly relevant to the particular analysis applied.
Also measuring the unique number of presence conditions generated throughout the anal-
ysis sheds some light on how some features are tightly coupled in industrial product lines,
causing the effective complexity of the analysis to be lower than what might be perceived
given the number of features.

8.4 Utility of Analysis Results in Practice

Automated analyses help engineers identify underlying facts about the program. For exam-
ple, General Motors engineers were surprised by the results of the recursion analysis and
were interested in tracking down the causes and occurrences of some of them. While recur-
sive code is not necessarily prohibited in automotive software, detected instances are worthy
of inspection as they can be resource intensive (with respect to memory and time). The
followup analyses focused on recursion results detected in SPL-G, in part because we
could collaborate with a General Motors engineer familiar with this controller. The fol-
lowup analyses reported more detailed results including the software components involved,
the function names, and code snippets. For SPL-G, these analyses detected three functions
that directly call themselves (direct recursion) and four pairs of functions that mutually
call each other (indirect recursion). Upon examining these results, the engineer was able
to determine that: (1) all instances of direct recursion and two instances of mutual recur-
sion belong to a component dedicated to testing the system code and thus the recursion was
deemed not harmful to the well-functioning of the system; and (2) the two other instances of
mutual recursion belong to the system code, but their constituent function calls cannot occur
together because they are guarded by mutually exclusive conditions on program variables.

Ultimately, our recursive analyses did not identify any problematic instances of recursion
(at least in SPL-G). However, the original analysis and its followups were still deemed use-
ful: (1) Because our analyses are expressed in a query language, we were able to specialize
both the followup analyses and level of detail reported in the analysis results; and (2) the
engineer increased their confidence in the code.

9 RelatedWork

Variability-Aware Analysis Different kinds of source-code analyses have been re-
implemented to be variability aware (Thüm et al. 2014). For example, the TypeChef project
(Kästner et al. 2011; 2012) implements variability-aware parsing (Kästner et al. 2011) and
type checkers (Kästner et al. 2012) for Java and C. The SuperC project (Gazzillo and Grimm
2012) is another C language variability-aware parser. With respect to model-based analyses,
the Henshin graph-transformation engine (Arendt et al. 2010) was lifted to support product
lines of graphs (Salay et al. 2014). These lifted analyses were written from scratch, without
reusing any components from their respective product-based analyses. Our approach, on the
other hand, lifts an entire class of product-based analyses written as Datalog rules, by lifting
the inference engine (and inferring presence conditions together with facts).

SPLLift (Bodden et al. 2013) extends IFDS (Reps et al. 1995) data-flow analyses to prod-
uct lines. Model checkers based on Featured Transition Systems (Classen et al. 2013) check
temporal properties of transition-system models where transitions can be labeled with pres-
ence conditions. Both of these SPL analyses use almost the same single-product analyses on
a lifted data representation. At a high level, our approach is similar in the sense that the logic

40 Page 24 of 29 Empir Software Eng (2023) 28:40

of the original analysis is preserved, and only data is augmented with presence conditions.
Still, our approach is unique because we do not touch any of the Datalog rules comprising
the analysis logic itself.

In this paper, we use a lifted query language to implement analyses instead of lift-
ing existing analyses. In particular, we use a variability-aware Datalog engine (Shahin
and Chechik 2020b) that implicitly lifts analyses written in Datalog (Shahin et al. 2019).
This approach has also been recently extended to lift analyses written in more expressive,
Turing-complete languages (Shahin and Chechik 2020a).

Variability-Aware Visualization Our work on visualization differs from previous works in
SPL visualization in both the type of information that is visualized and the user’s ability to
filter and highlight information.

The conventional use of colour in SPL visualization is to distinguish features or
variabilities in source code or feature models. Tools like CIDE (Kästner et al. 2009b),
FeatureMapper (Heidenreich et al. 2008), fmp2rsm (Czarnecki and Pietroszek 2006), and
FeatureVISU (Apel and Beyer 2011) enable colouring of model entities or source-code
fragments according to their association with a set of features that the user selects. Visual-
ization tools that employ interactive techniques, such as detail-on-demand and highlighting,
are proven to contribute to the engineer’s comprehension of a product line and to their
productivity in modifying the feature configurations (Asadi et al. 2016).

The visualization presented in Loesch and Ploedereder (2007) similarly supports analy-
sis of the feature configurations of a software product line. The authors use Formal Concept
Analysis to identify and remove obsolete variable features to optimize the task of configur-
ing the product line. Their graph visualization explores the spatial distribution of the nodes
(representing concepts) and the node sizes, to encode the difference between them and the
number of feature variables associated with each node, respectively. The authors use black,
white, and gray colours to indicate the number of features attached to each node and identify
obsolete features. Our work differs in terms of the goal of the analysis and data presented
in the visualization.

Work that is closer to ours are the visualizations provided by VISIT-FC (Botterweck
et al. 2008) to support the understanding of possible consequences of the engineer’s deci-
sions. The tool provides an interactive view connecting three models (decision, feature,
and component models) where the user can select features and visualize the decisions and
components related to their selection and the relations between them. The traceability is
visualized by explicit links connecting the models’ components. The highlighting of those
links is performed by colouring all non-relevant entities in gray, colouring only the infor-
mation relevant to the engineer. Their analyses reflect consequences of decisions about a
single configuration whereas our analyses visualize results for sets of products.

Recently, Strüber et al. (2020) used graph visualization to represent variability of class
diagrams. The authors experimented with three methods to represent variability exploring
colour coding and graphical layout. Our visualizer differs by focusing on program elements
and relationships that are more diverse and detailed than class diagrams. Moreover, our
visualization focuses on encoding the variability of the models as colour-coded edge groups,
not necessarily changing the spatial distribution of nodes.

In summary, previous works use colour or tags to associate portions of an SPL’s code or
models with distinct features to highlight the SPL’s variabilities, or they visualize the con-
sequences of feature selections on the product configuration. Whereas our visualizer uses
colour to highlight subsets of analysis results that belong to sets of products specified by
the engineer: the engineer defines one or more product sets of interest and the visualizer

Page 25 of 29 40Empir Software Eng (2023) 28:40

highlights the corresponding analysis results by painting each result with all the colours rep-
resenting all of the product sets to which the result belongs. Hence, our visualizer supports
exploration, filtering, highlighting, and comparing of analysis results rather than simple
presentation of the results.

10 Conclusion and FutureWork

In this paper, we presented an industrial study of applying a declarative source-code analysis
to relational models of annotative Software Product Lines (SPLs). We integrated source-
code fact extraction and a variability-aware Datalog engine from two prior projects (Shahin
et al. 2019; Muscedere et al. 2019), implementing an analysis pipeline. In addition to adapter
components between pieces coming from different projects, we enhanced the fact extrac-
tion to be variability-aware and added a result-filtering and visualization module for the
interactive inspection of results.

We applied the pipeline to five analyses (behaviour alteration, recursion analysis, sim-
plifiable global variable analysis, and two of their variants) of models of seven automotive
controller SPLs from General Motors, each with hundreds of product line features. Our
results demonstrate the scalability of our variability-aware analysis approach to real-life
industrial SPLs. Our interactive visualization module allows users to filter the analysis
results for a subset of products, allowing for a finer-grained inspection of results per
project or per project set (e.g., enabling comparison of analysis results for different feature
selections and change-impact analysis).

With respect to limitations, (1) our analyses need to be declarative and expressible in
Datalog. So far, this has not posed a limitation on the types of analyses we have tried to per-
form. (2) Our variability-aware analysis incurs a performance overhead of 6.74%-254.36%
to analyze the entire SPL, compared to the time to analyze the superset of all the SPL’s fea-
tures. However, we consider this overhead to be negligible, given that the analysis returns
results for all of the SPL’s products; the runtime of a brute-force approach that applies the
same analysis to each product separately would grow exponentially with the number of the
SPL features. (3) The use of colour to highlight analysis results may be a limitation for users
who suffer from full colour blindness. (4) The visualization of analysis results suffers when
the set of results is very large. A small semi-formal user study of GM engineers provides
preliminary evidence that filtering and highlighting can help the engineer to focus their
attention on subsets of results of interest, but these findings and the impact of other facilities
provided by the visualization environment need to be confirmed with larger studies.

For future work, we plan to integrate our analysis pipeline more tightly to produce a sin-
gle tool that takes SPL code as input and provides an interactive user interface for inspecting
results. We are also in discussions with General Motors to apply the pipeline to other analy-
ses and to more SPLs. In addition, since our pipeline is analysis-agnostic, we are also in the
process of identifying other analyses that might be of value to General Motors and whether
they can be implemented in Datalog.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of Interests The authors have no relevant financial or non-financial interests to disclose.

40 Page 26 of 29 Empir Software Eng (2023) 28:40

References

Apel S, Beyer D (2011) Feature cohesion in software product lines: an exploratory study. In: Proc. of
ICSE’11. ACM, New York, pp 421–430

Apel S, Kaestner C (2009) An overview of feature-oriented software development. J Object Technol 8:49–84
Arendt T, Biermann E, Jurack S, Krause C, Taentzer G (2010) Henshin: advanced concepts and tools for

in-place EMF model transformations. In: Proc. of MODELS’10. Springer-Verlag, Berlin, pp 121–135
Asadi M, Soltani S, Gašević D, Hatala M (2016) The effects of visualization and interaction techniques on

feature model configuration. Empir Softw Eng 21(4):1706–1743
Benton WC, Fischer CN (2007) Interactive, Scalable, Declarative Program Analysis: From Prototype to

Implementation. In: Proc. of PPDP’07. ACM, New York, pp 13–24
Beuche D, Schulze M, Duvigneau M (2016) When 150% is too much: supporting product centric viewpoints

in an industrial product line. In: Proceedings of the 20th international systems and software product line
conference, SPLC ’16. Association for Computing Machinery, New York, pp 262–269

Bodden E, Tolêdo T, Ribeiro M, Brabrand C, Borba P, Mezini M (2013) SPLLIFT: statically analyzing
software product lines in minutes instead of years. In: Proc. of PLDI’13. ACM, pp 355–364

Botterweck G, Thiel S, Nestor D, Bin Abid S, Cawley C (2008) Visual tool support for configuring and
understanding software product lines. In: Proc. of SPLC’08. IEEE, pp 77–86

Bravenboer M, Smaragdakis Y (2009) Strictly declarative specification of sophisticated points-to analyses.
In: Proc. of OOPSLA’09. ACM, New York, pp 243–262

Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput
Surv 24(3):293–318

Ceri S, Gottlob G, Tanca L (1989a) What you always wanted to know about Datalog (And Never Dared to
Ask). IEEE Trans Knowl Data Eng 1(1):146–166

Ceri S, Gottlob G, Tanca L et al (1989b) What you always wanted to know about Datalog (And Never Dared
to Ask). IEEE Trans Knowl Data Eng 1(1):146–166

Classen A, Heymans P, Schobbens PY, Legay A, Raskin JF (2010) Model checking lots of systems: efficient
verification of temporal properties in software product lines. In: Proc. of ICSE’10. ACM, New York,
pp 335–344

Classen A, Cordy M, Schobbens PY, Heymans P, Legay A, Raskin JF (2013) Featured transition systems:
foundations for verifying variability-intensive systems and their application to LTL model checking.
IEEE Trans Softw Eng 39(8):1069–1089

Clements P, Northrop L (2001) Software product lines: practices and patterns. Addison-Wesley Professional,
Reading

Czarnecki K, Pietroszek K (2006) Verifying feature-based model templates against well-formedness OCL
constraints. In: Proc. of GPCE’06, pp 211–220

Dawson S, Ramakrishnan CR, Warrenm DS (1996) Practical program analysis using general purpose logic
programming systems: a case study. In: Proc. of PLDI’96. ACM, New York, pp 117–126

Ernst MD, Badros GJ, Notkin D (2002) An empirical analysis of C preprocessor use. IEEE Trans Softw Eng
28(12):1146–1170

Gacek C, Anastasopoules M (2001) Implementing product line variabilities. In: Proc. of SSR’01
Gazzillo P, Grimm R (2012) SuperC: Parsing all of C by taming the preprocessor. In: Proc. of PLDI’12.

ACM, pp 323–334
Grech N, Smaragdakis Y (2017) P/Taint: Unified points-to and taint analysis. Proc ACM Program Lang

1:1–28
Heidenreich F, Şavga I, Wende C (2008) On controlled visualisations in software product line engineering.

In: Proc. of ViSPLE@SPLC’08, pp 335–341
Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-oriented domain analysis (FODA) feasibility

study. Tech. Rep. CMU/SEI-90-TR-021, Software Engineering Institute Carnegie Mellon University,
Pittsburgh, PA

Kästner C, Apel S, Trujillo S, Kuhlemann M, Batory D (2009a) Guaranteeing syntactic correctness for
all product line variants: a language-independent approach. In: Oriol M, Meyer B (eds) Objects,
components, models and patterns. Springer, Berlin, pp 175–194

Kästner C, Apel S, Trujillo S, Kuhlemann M, Batory D (2009b) Guaranteeing syntactic correctness for all
product line variants: a language-independent approach. In: Proc. of int. conf. on objects, components,
models and patterns. Springer, pp 175–194

Kästner C, Giarrusso PG, Rendel T, Erdweg S, Ostermann K, Berger T (2011) Variability-aware parsing in
the presence of lexical macros and conditional compilation. In: Proc. of OOPSLA’11. ACM, pp 805–824

Page 27 of 29 40Empir Software Eng (2023) 28:40

Kästner C, Apel S, Thüm T, Saake G (2012) Type checking annotation-based product lines. ACM Trans
Softw Eng Methodol 21(3):14:1–14:39

Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An analysis of the variability in forty
preprocessor-based software product lines. In: Proc. of ICSE’10. ACM, New York, pp 105–114

Liebig J, von RheinA, Kästner C, Apel S, Dörre J, Lengauer C (2013) Scalable analysis of variable software.
In: Proc. of ESEC/FSE’13, pp 81–91

Loesch F, Ploedereder E (2007) Optimization of variability in software product lines. In: Proc. of SPLC’07.
IEEE, pp 151–162

Midtgaard J, Dimovski AS, Brabrand C, Wa̧sowski A (2015) Systematic derivation of correct variability-
aware program analyses. Sci Comput Program 105(C):145–170

Muscedere BJ, Hackman R, Anbarnam D, Atlee JM, Davis IJ, Godfrey MW (2019) Detecting feature-
interaction symptoms in automotive software using lightweight analysis. In: Proc. of SANER’19. IEEE,
pp 175–185

Reps T, Horwitz S, Sagiv M (1995) Precise interprocedural dataflow analysis via graph reachability. In: Proc.
of POPL’95. ACM, pp 49–61

Salay R, Famelis M, Rubin J, Di Sandro A, Chechik M (2014) Lifting model transformations to product
lines. In: Proc. of ICSE’14. ACM, New York, pp 117–128

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of software
product lines. In: Bosch J, Lee J (eds) Proc. of SPLC’10. Springer, Berlin, pp 77–91

Shahin R, Chechik M (2020a) Automatic and efficient variability-aware lifting of functional programs. In:
Proc. of OOPSLA’20, pp 1–27

Shahin R, Chechik M (2020b) Variability-aware datalog. In: Komendantskaya E, Liu YA (eds) Proc. of
PADL’20, LNCS, vol 12007. Springer, pp 213–221

Shahin R, Chechik M, Salay R (2019) Lifting datalog-based analyses to software product lines. In: Proc. of
ESEC/FSE’19. ACM, New York, pp 39–49

Shahin R, Akhundov M, Chechik M (2021a) Software Product Line Analysis Using Variability-aware
Datalog. IEEE Transactions on Software Engineering (to appear). https://doi.org/10.36227/techrxiv.
14870187.v1

Shahin R, Hackman R, Toledo R, Ramesh S, Atlee JM, Chechik M (2021b) Applying declarative
analysis to software product line models: an industrial study. In: 2021 ACM/IEEE 24th interna-
tional conference on model driven engineering languages and systems (MODELS), pp 145–155.
https://doi.org/10.1109/MODELS50736.2021.00023

Strüber D, Anjorin A, Berger T (2020) Variability representations in class models: an empirical assessment.
In: Proceedings of the 23rd ACM/IEEE international conference on model driven engineering languages
and systems, pp 240–251

Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014) A classification and survey of analysis strategies for
software product lines. ACM Comput Surv 47(1):6:1–6:45

Von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete JD, Fellner DW (2011)
Visual analysis of large graphs: state-of-the-art and future research challenges. In: Computer graph
forum, Wiley Online Library, vol 30, pp 1719–1749

Young B, Cheatwood J, Peterson T, Flores R, Clements P (2017) Product line engineering meets model based
engineering in the defense and automotive industries. In: Proc. of SPLC’17, New York, pp 175–179

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

40 Page 28 of 29 Empir Software Eng (2023) 28:40

https://doi.org/10.36227/techrxiv.14870187.v1
https://doi.org/10.36227/techrxiv.14870187.v1
https://doi.org/10.1109/MODELS50736.2021.00023

Affiliations

Ramy Shahin1 ·Rafael Toledo2 ·Robert Hackman2 ·Ramesh S3 ·
Joanne M. Atlee2 ·Marsha Chechik1

Rafael Toledo
rftoledo@uwaterloo.ca

Robert Hackman
r2hackma@uwaterloo.ca

Ramesh S
ramesh.s@gm.com

Joanne M. Atlee
jmatlee@uwaterloo.ca

Marsha Chechik
chechik@cs.toronto.edu

1 University of Toronto, Toronto, ON, Canada
2 University of Waterloo, Waterloo, ON, Canada
3 General Motors, Warren, MI, USA

Page 29 of 29 40Empir Software Eng (2023) 28:40

http://orcid.org/0000-0001-8724-3934
mailto: rftoledo@uwaterloo.ca
mailto: r2hackma@uwaterloo.ca
mailto: ramesh.s@gm.com
mailto: jmatlee@uwaterloo.ca
mailto: chechik@cs.toronto.edu

	Applying declarative analysis to industrial automotive software product line models
	Abstract
	Introduction
	Background
	Software Product Lines
	Datalog-Based Analysis
	Lifted Declarative Analyses

	The Analysis Pipeline
	Variability-Aware Fact Extraction
	Analyses of Interest
	Behaviour Alteration Analysis
	Recursion Analysis
	Simplifiable Global Variable Analysis

	Interactive Visualization
	Industrial SPL Examples
	Applying Analysis to the Industrial Examples
	GM Engineers' Feedback on Graph Visualization
	Methodology
	Answers: Associating Variability-Aware Analyses Results with Product Sets
	Answers: Presentation of Variability-Aware Analysis Results
	Answers: Utility of Coloured Highlighting of Filtered Analysis Results
	Threats to Validity

	Lessons Learned
	Variability Annotation
	Variability Encoding
	Scalability of Lifted Analysis
	Utility of Analysis Results in Practice

	Related Work
	Variability-Aware Analysis
	Variability-Aware Visualization

	Conclusion and Future Work
	Declarations
	References
	Affiliations

