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Abstract

Software refactoring is a behavior-preserving activity to improve the source code quality
without changing its external behavior. Unfortunately, it is often a manual and error-prone
task that may induce regressions in the source code. Researchers have provided initial com-
pelling evidence of the relation between refactoring and defects, yet little is known about
how much it may impact software security. This paper bridges this knowledge gap by pre-
senting a large-scale empirical investigation into the effects of refactoring on the security
profile of applications. We conduct a three-level mining software repository study to estab-
lish the impact of 14 refactoring types on (i) security-related metrics, (ii) security technical
debt, and (iii) the introduction of known vulnerabilities. The study covers 39 projects and
a total amount of 7,708 refactoring commits. The key results show that refactoring has a
limited connection to security. However, Inline Method and Extract Interface statistically
contribute to improving some security aspects connected to encapsulating security-critical
code components. Extract Superclass and Pull Up Attribute refactoring are commonly found
in commits violating specific security best practices for writing secure code. Finally, Extract
Superclass and Extract & Move Method refactoring tend to occur more often in commits
contributing to the introduction of vulnerabilities. We conclude by distilling lessons learned
and recommendations for researchers and practitioners.

Keywords Refactoring - Software security - Empirical SE

1 Introduction

In 1999, Fowler defined the term “software refactoring” to indicate the activities develop-
ers perform to improve the internal structure of source code without changing its external
behavior (Martin and Kent 1999). Since then, the research community has investigated
refactoring from multiple perspectives (Al Dallal and Abdin 2017; Azeem et al. 2019;
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de Paulo Sobrinho et al. 2018; Mens and Tourwé 2004), proposed novel recommendation
systems to help developers refactor source code (Bavota et al. 2014; Terra et al. 2018; Tsan-
talis and Chatzigeorgiou 2009), empirically investigated why developers refactor source
code (Bavota et al. 2015; Silva et al. 2016), studied the current barriers preventing refactor-
ing in practice (Murphy-Hill and Black 2008; Kim et al. 2014; Sharma et al. 2015; Vassallo
et al. 2018), and explored the effects of refactoring on source code dependability (Abid et al.
2020; Di Penta et al. 2020; Palomba et al. 2017; Stroggylos and Spinellis 2007).

One of the most worrisome results of these empirical analyses is that refactoring might
induce defects. Bavota et al. (2012) and, more recently, Di Penta et al. (2020) have indeed
shown that refactoring operations can induce faults in a non-negligible number of cases—
this is likely due to refactoring operations done manually rather than supported by semi-
automated tools (Kim et al. 2014).

This study builds on this line of research and investigates the relationship between refac-
toring and software security, defined as the property that allows the software to continue
working correctly under potential risks due to external malicious attacks that may cause
loss or harm (McGraw 2004). Our study is based on the assumption that refactoring opera-
tions performed by developers can lead to variations in the security level of an application.
In the first place, this assumption is justified by early work studying the relation between
refactoring and security measured in various ways. In particular, Abid et al. (2020) recently
proposed a search-based security-aware refactoring recommender that suggests the refac-
toring operations to apply to obtain the best trade-off between code maintainability and
security degradation. While the main focus of such work was the definition of a novel
refactoring recommender, they also conducted a preliminary motivational analysis to corre-
late (i) the presence of 14 automatically-detectable refactoring types (Alizadeh et al. 2018)
and (ii) the QMOOD metrics (Goyal and Joshi 2014) with eight data-access security indi-
cators proposed in literature (Alshammari et al. 2009). The analysis considered a single
snapshot of 30 open-source software systems and revealed that some refactoring types are
negatively correlated to security—i.e., their application caused the worsening of certain
security characteristics. Among their findings, they observed a negative correlation between
the application of Extract Superclass refactoring operation (Martin and Kent 1999) and
data-access security indicators—which is something we also observed in the context of our
research. For instance, let us consider the case of project CONVERSATIONS! at the revision
2067b9bd, where the application of an Extract Superclass has led to the extraction of class
XmppUri from class Invite. This refactoring caused the introduction of new security-
sensitive attributes. Thus, it seems reasonable to believe that refactoring might impact an
application’s security profile. Indeed, Extract Superclass revolves around modifying hier-
archies to create a common superclass for a set of classes. By design, a superclass is more
accessible than subclasses, which might expose previously hidden sensitive parts of the pro-
gram, increasing the chances of introducing vulnerabilities. In a similar manner, Abid et al.
(2020) found correlations between other refactoring operations (e.g., Move Method Martin
and Kent 1999) and other security-related aspects.

Our research identifies a set of refactoring types whose application might actually
lead to variations of the security level of the code being refactored—as detailed later in
Section 2.3.1. In this sense, we build our empirical analysis upon logical reasoning, through
which we hypothesized and verified the extent of the identified relations. For example, we
hypothesize that the Pull Up Attribute refactoring (Martin and Kent 1999)—i.e., moving an

Thttps://github.com/iNPUTmice/Conversations
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Fig. 1 Simplified graphical representation of the changes applied to GraphicsUtil class at the revision
8309088a in project BATIK

attribute from a subclass to a superclass, changing its visibility and external accessibility—
potentially leads to security drifts due to the wider exposition of the attribute. As an
additional example, let us consider a case observed in the context of our research. This per-
tains to project BATIK? at the revision 8309088a. The commit applied a great restructuring
of the classes, as also pointed out by the commit message reported in the following:

“The deepest architectural change is a strong move towards tiling everything [...]”.

Elaborating on the modifications performed in this commit, the GraphicsUtils class
was affected by the various changes, being subject to several Extract Method refactoring
operations. Specifically, the main restructuring involved the long method drawImage (),
whose logic was decomposed into several smaller and more cohesive methods. In the
version before the change, the drawImage () method allocated a new instance of the
AffineTransform class each time it was called. Likely, this was judged as invalid, so
making the commit’s author introduce a new class variable (i.e., a static class field)
pointing to an instance of Aff ineTransform class named IDENTITY having public
visibility. However, they likely ended up leaving it not-f inal, making it modifiable from
any other class that has access to GraphicsUtils—i.e., potentially any project that
includes BATIK library in their classpath. This scenario represents a pointless exposure of
the class variable to any change, likely introducing bugs or even leaking information that
should not be disclosed to clients. Figure 1 shows the GraphicsUtils class before and
after the application of the multiple Extract Method refactoring operations.

Based on these observations and recognizing the significant research advances done by
Abid et al. (2020), we aim to substantially enlarge the knowledge of the relation between
refactoring and security, using different statistical methods and looking at different aspects
characterizing software security. More specifically, we aimed at defining a theory that could
provide quantitative indications of how different refactoring operations may impact security
under different perspectives. Hence, we consider the change history information of 39 soft-
ware projects and conduct a three-level quantitative analysis. We first assess the extent to
which 14 refactoring types extracted by REFACTORINGMINER (Tsantalis et al. 2018) may
affect the source code from a security perspective. As such, we measure the effects of refac-
toring on (i) a set of security metrics available in literature (Alshammari et al. 2009) and
computed with a homemade tool, coined SURFACE (SecURity FlIAws metriCs Extractor),
that we publicly release to the research community, and (ii) security-related technical debt,

2https://github.com/apache/batik
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as computed by SONARQUBE.? In doing so, we use similar statistical instruments as in pre-
vious studies investigating the relation between refactoring and source code quality (Bavota
etal. 2015), program comprehension (Sellitto et al. 2022), and defects (Di Penta et al. 2020).
In particular, statistical models specify mathematical relationships between one or more
independent variables (in our case, the refactoring operations and a set of confounding vari-
ables) and dependent variables (in our case, the source code security level computed using
security metrics and technical debt). As such, statistical modeling allows us to formally
represent our theory (Ader 2008), perfectly fitting the goals of our study. As the last part
of the study, we verified how refactoring could lead to the introduction of known vulner-
abilities mined from the National Vulnerability Database (NVD) (2023b). In this case, we
first measured the number of times refactoring operations are performed in commits where
known vulnerabilities are introduced; then, we conducted a finer-grained manual investiga-
tion to understand the extent to which refactoring operations are actually contributing to the
introduction of vulnerabilities.

The key results of our investigation show a limited connection between refactoring and
security. Indeed, we discover that most of the refactoring operations do not have a signifi-
cant impact on any of the security perspectives considered. At the same time, we highlight
some noticeable exceptions: Inline Method and Extract Interface are the refactoring oper-
ations that appear to be statistically significant when it turns to the improvement of some
security aspects connected to encapsulation, while Extract Superclass, and Pull Up Attribute
are linked to an increase of violations to certain security practices to write secure code.
Furthermore, the Extract Superclass and Extract & Move Method refactoring types tend to
occur more often in commits contributing to the introduction of real vulnerabilities. Based
on our findings, we identify and distill a set of concrete issues and challenges that the refac-
toring community should face to better support developers. To sum up, this study provides
the following contributions:

1. An evidence-based investigation into the relation between refactoring and security
that targets the problem under three different perspectives, such as security metrics,
security-related technical debt, and known vulnerabilities;

2. A research roadmap that researchers in the field can exploit to understand further the
circumstances that lead refactoring to negatively affect security and provide automated
support for practitioners;

3. An online appendix (Iannone et al. 2022) reporting all the data and scripts used in the
study to allow researchers to replicate and conduct additional investigations.

Structure of the Paper Section 2 reports the methodology employed in the study, while
Section 3 discusses the results achieved. In Section 4, we provide an overview of the main
discussion points and implications of the results for the research community and practition-
ers. Section 5 reports on the threats that may have biased our findings. Section 6 discusses
the related literature. Finally, Section 7 concludes the paper.

2 Research Methodology

The goal of this study is to assess the relation between refactoring and security, with
the purpose of understanding how refactoring operations applied by developers introduce

3Link: https://www.sonarqube.org
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security threats. The perspective is of both researchers and practitioners: the former are
interested in understanding which additional support developers would require when per-
forming refactoring; the latter are interested in evaluating the potential consequences of
refactoring on source code dependability. Our study was designed based on the guidelines
proposed by Runeson and Host (Per and Martin 2009) and follows the ACM/SIGSOFT
Empirical Standards recently introduced and discussed by Ralph et al. (2021).4

2.1 Research Questions and Methodological Overview

The empirical study is based on three levels of analysis. Following the preliminary investi-
gation by Abid et al. (2020)—who observed a correlation between the amount of refactoring
operations applied and security metrics—we aimed at assessing the security implications of
refactoring operations on security indicators in an effort to provide insights into the potential
compromise a developer should pay attention to while improving source code quality.

We start facing this research objective using two analyses: the first focused on security-
related metrics that indicate portions of source code whose characteristics may lead the
code to be more exposed to security risks (Alshammari et al. 2009); the second targeting
technical debt (Curtis et al. 2012) that highlights the design and implementation issues that
might represent exploitable security flaws. These two analyses are by nature complemen-
tary: security-related metrics focus on weak constructs implemented in the source code,
while security technical debt measures on higher-level poor design or implementation solu-
tions that might possibly impact the security profile of an application. As further explained
in Section 2.3, we conducted these analyses by measuring developers’ activities, and their
implications for source code security by running tools and analyses on commits where refac-
toring has been applied. These goals led to the formulation of the following two research
questions:

RQ;. To what extent do refactoring operations impact security metrics?

RQ». To what extent do refactoring operations impact security-related technical
debt?

While the first two research questions allowed us to uncover possible negative effects
given the application of refactoring operations on security, these were not sufficient nor
comprehensive. Both security-related metrics and technical debt focus on potential risks for
source code security; yet, this does not still clarify if and how refactoring has an impact
on the introduction of real security threats. For this reason, we continued our empirical
investigation by assessing how the application of refactoring operations over the change
history of software projects leads to the introduction of known software vulnerabilities. This
reasoning led to our last research question:

RQs3. To what extent do refactoring commits contribute to the introduction of real
software vulnerabilities?

4Given our study and currently available standards, we followed the general guidelines when reporting the
study design and results.
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The study can be configured as a quantitative investigation (Sukamolson 2007) where
we seek to find statistically significant findings from a large amount of data. While the
next sections detail the data collection and analysis procedures used to address our research
questions, Fig. 2 overviews the methodology employed in our study. In short, when address-
ing RQ; and RQ; we first run three tools, namely an automated refactoring detector called
REFACTORINGMINER (Tsantalis et al. 2018), a security metric tool named SURFACE, and
a static code analyzer called SONARQUBE over all the commits of the considered projects.
Afterward, we use the data collected to compute the difference in terms of security metrics
and debt between the refactoring commits and their predecessors to indicate how the refac-
toring operations have changed these measures. Finally, the variation of security metrics
and debt were used as dependent variables of Multinomial Log-Linear regression models
(Theil 1969) that allowed us to identify which refactoring operations are statistically related
to their increase or decrease while controlling for factors like complexity, lines of code, and
code churn.

As for RQ3, we mined the vulnerability-fixing commits of known vulnerabilities affect-
ing the software projects considered in our study and available on a public dataset of
vulnerabilities, namely, the National Vulnerability Database (NVD) (2023b). Then, we

GitHub
.
feee RefactoringMiner Dﬁ
<> _— _— Gl e
> i
39 Projects 41,217 7,708
History Refactorings Refactoring Commits  Control Metrics
(RQ1
O—9-° L 2
\ Surface Security Metrics
(RQ2 A
) 4\ g [ ST
SonarQube Violations
ﬁqs \
4o Yool

103 VCCs Comparison

© —
KZG CVE NVD /

Fig.2 Methodological steps employed in our study
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employed an automated mechanism based on the SZZ algorithm (Sliwerski et al. 2005) to
identify the commits responsible for the introduction of those known vulnerabilities and
combined this information with the one from REFACTORINGMINER to obtain the number
of times refactoring operations are likely to have contributed to a known vulnerability. A
manual qualitative investigation later contextualized the statistical analyses to understand
further and discuss the quantitative results. The detailed methodological steps adopted to
collect the described data are reported in Section 2.3.

2.2 Context of the Study

The context of the study was composed of open-source software projects and, in partic-
ular, their change history information. In this respect, we exploited the Technical Debt
Dataset (Lenarduzzi et al. 2019), which is a curated collection of data coming from 39 Java
projects mainly from the APACHE SOFTWARE FOUNDATION ecosystem. Despite belonging
to a single ecosystem, the majority of such projects were originally selected by following
the diversity guidelines introduced by Nagappan et al. (2013), i.e., they were selected by
addressing the representativeness of projects in terms of age, size, and domain, and the Pat-
ton’s “criterion sampling” (Patton 2002), namely, they are more than four years old, have
more than 200 commits and 100 classes, and have more than 100 issues reported in their
issue tracking system. As such, this dataset minimizes by design possible threats to exter-
nal validity. To further verify the properties of this dataset, we have manually investigated
the corresponding GITHUB repositories and discovered that all of them adhere to a strict
code of conduct (Tourani et al. 2017) and regularly review source code to improve their
quality processes (Pascarella et al. 2018). This analysis further confirmed the suitability
of the dataset. It is important to note that nine of the considered systems also appear in
the National Vulnerability Database (NVD) (2023b), which was initially developed by the
U.S. NIST Computer Security Division (2023a) to collect and provide public information
about known vulnerabilities affecting software systems and their causes. Such a database
includes a comprehensive set of publicly known vulnerabilities: each of them is described
through CVE (Common Vulnerabilities and Exposure 2023a) records and is enriched with
additional pieces of information such as external references, severity (computed using the
Common Vulnerability Scoring System - CVSS), the related weakness type (Common Weak
Enumeration - CWE), and the known affected software configurations (Common Platform
Enumerations - CPEs). NVD aggregates information from multiple data sources and is
widely considered a reliable data source (Alhazmi et al. 2007; Huang et al. 2010; Zhang
etal. 2011).

While all the projects were considered when addressing RQ; and RQ», only the nine
systems overlapping with the NVD could be used for RQj3 as these are the only ones for
which we could obtain data on the known vulnerabilities affecting them. Table 1 reports
the main characteristics of the projects in our context—we report statistics on their change
history with a particular focus on the refactoring operations observed.

2.3 Data Collection
This section describes how we collected each piece of information to address our research

questions: developers’ refactoring operations, security metrics, security-related technical
debt, and known vulnerabilities that affected the projects considered.

@ Springer



89 Page80f46 Empir Software Eng (2023) 28:89

Table 1 Summary of the considered software projects

Project #Commits #Ref.Commits #Refact. NVD
ARCHIVA 4,741 363 2,399 X
BATIK 2,196 197 1,747 X
CAYENNE 1,269 99 384 X
COCOON 10,334 559 2,652 X
COMMONS-BCEL 1,324 37 959 X
COMMONS-BEANUTILS 1,209 41 385 X
COMMONS-CLI 855 26 115 X
COMMONS-CODEC 1,732 53 363 X
COMMONS-COLLECTIONS 2,893 145 1,633 X
COMMONS-CONFIGURATION 2,930 250 1,293 X
COMMONS-DAEMON 982 2 3 X
COMMONS-DBUTILS 603 13 66 X
COMMONS-DIGESTER 2,143 47 373 X
COMMONS-EXEC 616 14 45 X
COMMONS-FILEUPLOAD 914 15 104 X
COMMONS-IO 2,055 88 329 X
COMMONS-JELLY 1,938 73 203 X
COMMONS-JEXL 1,533 101 657 X
COMMONS-JXPATH 597 58 436 X
COMMONS-NET 2,100 63 301 X
COMMONS-OGNL 607 18 298 X
COMMONS-VALIDATOR 1,339 42 150 X
COMMONS-VFS 2,080 133 771 X
FELIX 3,489 247 2,173 X
HIVE 5919 892 5,175 X
HTTPCOMPONENTS-CLIENT 2,714 278 2,822 X
HTTPCOMPONENTS-CORE 2,760 348 2,967 X
SANTUARIO-JAVA 2,755 158 1,038 X
THRIFT 2,912 33 187 X
ZOOKEEPER 1,487 159 979 X
CONVERSATIONS 6,426 566 1,284 v
CANDLEPIN 10,967 696 3,597 v
HAWTIO 8,856 144 521 v
JBOSS-NEGOTIATION 307 20 120 v
JENKINS 30,632 1,315 3,417 v
JOLOKIA 1,695 196 607 v
JUNRAR 233 20 141 v
LITEMALL 1,093 37 135 v
STRUTS1-FOREVER 4,255 163 571 v
OVERALL 133,490 7,708 41,217 —

The last column ‘NVD’ indicates whether the corresponding project has known vulnerability data
“#Ref.Commits.” refers to the number of commits having refactorings

“#Refact.” refers to the number of refactoring instances observed
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Table 2 Set of refactoring types selected in this study collected using REFACTORINGMINER (Tsantalis et al.

2018)

Refactoring
Package-Level
Move Package

Description

Moves a package between the source
roots of the project.

Expected Impact on Security

Changing the package positioning should not affect any
security-related aspect.

Class-Level
Extract Superclass

Extract Interface

Move Class

Creates a shared superclass from a set
of classes with common attributes and
methods.

Creates a shared interface from a set of
classes with common methods.

Moves a class between the packages of
the project.

A superclass is commonly more accessible that subclasses,
so it might expose previously hidden security-sensitive
parts of the program, negatively affecting security.

An interface is commonly more accessible than its sub-
classes, but it should not change anything from imple-
menting classes.

Changing the belonging package should not affect any
security-related aspect.

Method-Level
Extract Method

Inline Method

Move Method

Extract & Move Method

Move & Inline Method

Pull Up Method

Push Down Method

Creates a new method containing part
of the logic of an existing one, which will
call the extracted method.

Deletes a method and integrates its logic
into all calling methods (i.e., the inverse
of Extract Method).

Moves a method between the classes of
the project.

Successive application of Extract
Method and Move Method refactorings.
Successive application of Move Method
and Inline Method refactorings.
Creates a shared method from a set
of classes with common methods and
places it in their superclass.

emoves a method of a superclass to
R thod of 1 t
place it in one of its subclasses.

The new method of the extracted class might expose previ-
ously hidden security-sensitive parts of the program, neg-
atively affecting security.

The removal of a method may hide security-sensitive parts
of the program, positively affecting security.

Changing the belonging class should not affect any
security-related aspect.
Same as Extract Method.

Same as Inline Method.

A new method in the superclass is commonly more ac-
cessible than its subclasses, so it might expose previously
hidden security-sensitive parts of the program, negatively
affecting security.

The removal of a superclass method may hide security-
sensitive parts of the program, positively affecting security.

Attribute-Level
Move Attribute

Pull Up Attribute

Push Down Attribute

Moves an attribute between the classes
of the project.

Creates a shared attribute from a set
of classes with common attributes and
places it in their superclass.

Removes an attribute of a superclass to
place it in one of its subclasses.

Changing the belonging class should not affect any
security-related aspect.

A new attribute in the superclass is commonly accessed
by subclasses through new accessor methods, negatively
affecting security.

The removal of a superclass attribute may remove accessor
methods as well, positively affecting security.

2.3.1 Mining Refactoring Data

We mined the entire change history of the considered projects to identify commits where
developers applied at least one refactoring. To this aim, we run version 2.2 of REFACTOR-
INGMINER (Tsantalis et al. 2018) against each source code change. REFACTORINGMINER
is a publicly available tool’ that can detect a large number of refactoring types through the
analysis of how the Abstract Syntax Tree of a JAVA class/method has changed with respect
to the one of the previous commit. The output of REFACTORINGMINER is formatted as
a JSON file reporting for each commit the set of refactoring operations applied and the
classes/methods subject to them. Despite the existence of alternative refactoring detectors
(e.g., REFDIFF (Silva et al. 2020)), we opted for REFACTORINGMINER since it is publicly
available and has a detection accuracy close to 100%, overcoming the capabilities of other
detectors (Tsantalis et al. 2018).

In the context of this study, we selected a set of common refactoring operations hav-
ing mixed relations with security to uncover possible unexpected and sneaky correlations.
Table 2 reports the 12 basic refactoring operations plus two composite refactoring oper-
ations (i.e., successive application of two elementary refactorings) we deemed worth
investigating. Each row contains a description of how they work and of the possible impact
on security. Such expected impacts derive from the refactoring operations’ definition and
represent the conjectures we aim to verify in our empirical investigation. In this respect, we

SLink: https://github.com/tsantalis/RefactoringMiner
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formulated the hypotheses we posed for this study and described them graphically in column
‘H,’. Anup arrow (‘1) indicates that we hypothesized a certain refactoring has a positive
(good) effect on source code security; a down arrow (‘] ’) indicates that we hypothesized a
negative (bad) effect. In contrast, the symbol ‘—’ indicates a hypothesis of stability, i.e., the
refactoring should not change the security profile of the source code in any way. As further
explained in Section 2.5, these hypotheses were instantiated for the three specific research
questions. All the selected refactoring operations alter the source code’s internal structure
at different granularity levels—ranging from individual attributes to groups of classes.

2.3.2 Mining Security Metrics

We computed a set of metrics that have been previously used to assess source code security
(Abid et al. 2020; Alshammari et al. 2010b; Agrawal and Khan 2014) on all the refac-
toring commits of the projects. Table 3 reports their names and description. The metrics
measure source code against the presence of confidential or sensitive information, e.g., user

Table 3 List of security metrics computed by SURFACE

Metric Acronym  Description

Class-Level

Classified Attributes CA Number of classified attributes of a class, identified
through pattern matching heuristics (e.g. password,
token).

Classified Methods CM Number of classified methods of a class, identified

through (i) pattern matching heuristics (e.g.
validatePassword, generateToken) or (ii)
the check of usages of classified attributes.

Classified Instance Vari ables CIVA Ratio of non-private and non-static classified attributes

Accessibility out of the total number of classified attributes (CA).

Classified Class Variables CCVA Ratio of non-private and static classified attributes out

Accessibility of the total number of classified attributes (CA).

Classified Method Accessibility CMA Ratio of non-private classified methods out of the total
number of classified methods (CM).

Classified Methods Ratio CMR Ratio of the number of classified methods (CM) out of

all class methods.

Classified Attribute Interactions CAI Sum of the number of classified methods that access
each classified attribute, divided by the product of the
number of classified attributes and methods (CA x CM).

Project-Level

Critical Classes CC Number of critical classes, i.e., classes with at least one
classified components (classified attribute or method).

Critical Classes Ratio CCR Ratio of the number of critical classes (CC) out of all
project classes.

Critical Classes Extensibility CCE Ratio of non-final critical classes out of the critical
classes (CC).

Classified Methods Extensibility CME Ratio of non-final critical methods among all classes
out of the critical methods among all classes.

Critical Super Classes Ratio CSCR Mean of the ratios, for each class, of the number of
critical super classes out of all their super classes.

Serializable Critical SCCR Ratio of serializable critical classes out of the critical

Classes Ratio classes (CC).
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IDs, authorization tokens, or passwords, that might potentially worsen the security level.
For instance, over-exposed (in terms of access specifiers) code fragments might lead to
vulnerabilities that can be exploited.

To compute these metrics, we developed a tool, which we named SURFACE, and, for

the sake of verifiability, we made it available in our online appendix (Iannone et al. 2022).
Our tool is a re-implementation of the one built by Abid et al. (2020), as it was not pub-
licly available. Given a source code file, it first verifies the presence of the security-related
keywords identified in Abid et al. (2020) to identify “classified attributes” (i.e., class fields
that contain confidential or sensitive information), that will be used as a basis for applying
further static analyses and computing the other metrics. To this end, we used a set of regular
expressions based on those adopted by Abid et al. (2020) to automatically detect all clas-
sified code elements (i.e., attributes, methods, and classes). The following box reports the
regular expressions used by SURFACE as a comma-separated list of strings.
4 N
logins?, accounts?, auths?, authenticates?, authenticators?, auth[-_\s]?constraints?,
roles?, permissions?, access(es)?, restricted, restricted[-_\s]?access(es)?, admins?,
administrators?, certificates?, digital certificates?, fingerprints?, biometrics?, id,
identifiers?, userid, uuid, client[-_\s]?ids?, user[-_\s]?ids?, username, user|-
\s]?details?, e[-_\s]?mail, passw(or)?ds?, pass[-_\s]?phrases?, pwds?, (secret|-
\s]?)?keys?, (api[-\s]?)?tokens?, (oauth[-_\s]?)?tokens?, otp, credentials?, ip[-
_\s]?address(es)?, ports?, hosts?, hostnames?, address(es)?, hiddens?, hidden|-
_\s]?fields?, secrets?, top[-_\s]?secrets?, confidentials?, confidentiality, classi-
fied, privates?, private[-_\s]?fields?, private[-_\s]?members?, privacy, personals?,
protect(ed)?, signatures?, (under)?cover(ed)?, payments?, credit[-_\s]?cards?([-
\s]?number)?s?, cards?, credits?, phone[-_\s]?’numbers?, social[-_\s]?security[-
\s/?numbers?, date[-_\s]?of[-\s]?birth, safe, (content[-\s]?)?secure, secu-
rity, security[-_\s]?management, security[-_\s]?constraint, sensitive, sensitive[-
_\s]?data, sensitive[-_\s]?information, criticals?, vulnerables?, weaks?, weak-
ness(es)?, backdoors?, (en)?crypt(ed)?, cipher([-_\s]?text)?, hash(ed)?, salt, nonce,
encoded?, transcoded?, lock(ed)?, cach(ed)?, paths?, connection[-_\s]?string, trans-
actions?, jobs?

N )

We are aware that most of the metrics are derived from the set of classified attributes;
hence they capture similar aspects connected to source code security. Yet, to the best of
our knowledge, these are the only ones available that can enable an analysis of the security
profile of object-oriented source code in a fully-automated fashion.

To collect the security metrics values, for each commit having at least one refactoring
instance, we selected only those JAVA files directly involved in one of the refactorings made
in the commit. Then, we run SURFACE twice: one time considering the files’ versions before
the commit, and one more time on the versions after the commit. The resulting metrics for
the previous files’ versions were subtracted from the latest versions, obtaining the delta
(A) that represents how much a metric has changed in that commit. It is worth noting that
for newly-added files the metrics were left as-is, while for the files deleted in the commit
their values resulted to have a negative sign. Afterward, all the class-level security metrics
(Table 3) were aggregated to have individual values expressed at the entire commit level.
Specifically, the deltas pertaining to the security metrics CA (Classified Attributes) and CM
(Classified Methods) were summed together (as they represent counting), while the rest of
the metrics were averaged. In this way, we could outline the magnitude of change in the
security profile after a commit containing refactorings.
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Table 4 Top 10 most recurring SONARQUBE rules violated in the selected projects

Security Rule Description # Severity
Class  Variable Class variable fields should not have public accessibility 10,532  Ceritical
Visibility Check

S1313 IP addresses should not be hardcoded 4,328 Critical
S1148 Throwable.printStackTrace (.. .) should not be called 4,193 Critical
S1444 Public static fields should be constant 3,732 Critical
S52386 Mutable fields should not be public static 1,306  Major
S2755 Fails for DocumentBuilderFactory XXE should be 633 Blocker

disabled

54423 Weak SSL/TLS protocols should not be used 484 Major
S2077 SQL binding mechanisms should be used 426 Major
52068 Credentials should not be hard-coded 371 Critical
S$5542 Encryption algorithms should be used with secure mode 333 Critical

and padding scheme

2.3.3 Mining Security-related Technical Debt

According to recent findings, SONARQUBE is among the most popular automated static
analysis tools employed in practice (Vassallo et al. 2019; Avgeriou et al. 2021), in addi-
tion to being accurate when detecting security violations (Saarimaki et al. 2019). Based on
these observations, we selected SONARQUBE version 7.5 to collect the metrics needed for
RQ>. In particular, we measured the security-related technical debt collecting two kinds of
metrics linked to the security profile of applications. On the one hand, for each refactor-
ing commit, we counted the number of violations of security rules (i.e., those belonging to
the “Vulnerability” group) that SONARQUBE encountered when analyzing the JAVA classes
of the project’s snapshot after the commit. Such violations indicate that the code is likely
to be affected by a software vulnerability, or has laid the foundation for vulnerable code.
Moreover, similarly to what we did for RQ; (Section 2.3.2), we counted the violations
only on those files directly involved in the refactorings that occurred in that commit. On
the other hand, we obtained the so-called “security remediation effort”, i.e., a measure of
how much effort developers would spend when addressing all the detected violations in that
snapshot—based on the violated security rules.

Once we collected all the technical debt-related metrics for all the refactoring commits,
we computed the difference (A) between all the metrics values with their previous version
(i.e., the parent commit) to compute the change in the number of violations and remediation
effort—analogously to what we did for security metrics in RQ;. Overall, SONARQUBE was
able to detect 26 different types of security violations. Table 4 reports the top 10 most recur-
ring violations that were found and resolved within the refactoring commits we analyzed.
Each rule in the table is accompanied by its description, the number of occurrences, and
the corrfésponding severity level. The full list of rules for is available on the SONARQUBE
website.

SLink: https://rules.sonarsource.com
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Table 5 The 26 known vulnerabilities mined from NVD grouped by the 12 vulnerability types

Vulnerability Type Description #CVE
CWE-264 Permissions, Privileges, and Access Controls 4
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 4
CWE-287 Improper Authentication 3
CWE-79 Cross-site Scripting 3
NVD-CWE-noinfo No sufficient information to classify the vulnerability 2
CWE-254 7PK Security Features 2
CWE-22 Path Traversal 2
CWE-352 Cross-Site Request Forgery (CSRF) 2
CWE-326 Inadequate Encryption Strength 1
CWE-310 Cryptographic Issues 1
CWE-20 Improper Input Validation 1
CWE-835 Infinite Loop 1

2.3.4 Mining Known Vulnerability Data

We only considered vulnerabilities in NVD affecting the considered systems (see Table 1)
and specifying the fixing commit (i.e., the one that officially patched a publicly disclosed
vulnerability)—otherwise, we could not address our RQ3, as explained later in Section 2.4.
From an operational perspective, we mined the full dump of NVD exploiting CVE-SEARCH
project (2023b), allowing the download of a JSON file containing all CVE records updated
daily. We obtained the full JSON dump on May 30, 2022. We performed some additional
filtering steps to remove incomplete/incorrect data that might have biased our observations:
(1) we discarded CVEs that reported commits to different GITHUB projects than those con-
sidered since we could not establish where the vulnerability was residing; (2) we filtered out
vulnerabilities whose fixes were marked as merge commits, as these do not apply any real
modification in the project history but simply incorporate the changes (i.e., a set of com-
mits) from a branch into another, i.e., we could not consider them as actual patches since we
were interested in getting precise information about the moment when fixes were added into
the history rather than the moment when they were sent into the main branch. After this fil-
tering, we ended up with a total of 26 known vulnerabilities of 12 distinct types, pertaining
to nine NVD projects. Table 5 reports the 26 vulnerabilities grouped by their vulnerability
type (CWE).

2.4 Data Analysis

After collecting the data required to address our research questions, we proceeded with the
statistical modeling and the subsequent interpretation.

2.4.1 RQq — RQy. Refactoring vs. Security-related Metrics and Technical Debt.
The first two research questions aim at understanding the effect of refactoring on indicators

of longer-term source code security issues. For both RQs, we employed similar analysis
methods.
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Starting from the security metrics (Section 2.3.2) and the security-related technical debt
(Section 2.3.3) variations observed in the refactoring commits, we converted all A values
into categories that could be better interpreted by humans. If a metric m hada A > 0
in one of the refactoring commits analyzed, the variation was converted into the category
“Increased”. Similarly, if m has a A < 0, it was converted to the category “Decreased”.
Otherwise, it was converted to “Stable”. It is worth noting that the interpretation of these
categories depends on the specific metrics. Let us consider CA (Classified Attributes) met-
rics as an example. An increased number of classified attributes is generally deemed as
something negative, as it indicates an increment in the number of fields holding security-
sensitive data. In this case, observing many deltas labeled as “Increased” is a negative
indication of the security profile of the application.

Afterwards, to address RQ; and RQ> we built a statistical model for each security
metric and technical debt in which we relate the number of distinct refactoring opera-
tions applied between c,_1 and ¢, as well as other control variables to the three categories
mentioned above, i.e., “Increased”, “Stable”, and “Decreased”. Approaching the research
questions in this manner allowed us to verify which refactoring types have connections
to security indicators and whether the effect of those refactoring operations is positive or
negative.

More specifically, we considered the categorical values associated with each refactoring
commit as dependent variables. The number of refactoring operations for each of the 14
considered types were treated as our independent variables in all the models. Furthermore,
we computed three additional metrics that acted as the confounding variables, namely the
factors that might significantly influence a dependent variable regardless of the values of
the independent variables (Kutner et al. 2005). They are:

1. The number of lines of code (LOC) of the files’ versions that underwent to refactor-
ing, i.e., immediately before the commit detected by REFACTORINGMINER. All the
LOC values were averaged to have a single summarized value for an entire commit.
This metric has often been associated with a reduction of source code quality, and
dependability (El Emam et al. 2001; Koru and Liu 2005; Zhang 2009). The inclusion
of this confounding factor was motivated by the assumption that working on files with
many lines of code might have a higher chance of increasing the values of security
indicators or contributing to the introduction of vulnerabilities with respect to smaller
files.

2. The Weighted Methods per Class (WMC) (Chidamber and Kemerer 1994) computed
on the files’ versions that underwent refactoring, i.e., immediately before the commit
detected by REFACTORINGMINER. All the WMC values were averaged to have a single
summarized value for an entire commit. This metric represents the sum of McCabe’s
cyclomatic complexity (McCabe 1976) values computed on the class’s methods. In this
case, the negative impact of code complexity on vulnerabilities has been previously
assessed (Chowdhury and Zulkernine 2011; Shin and Williams 2008).

3. The code churn, i.e., the amount of code added/deleted in the commit that touched the
files’ that underwent to refactoring. All the churn values were summed to have a single
summarized value for an entire commit. Previous work has shown that the higher the
churn of two subsequent commits, the higher the likelihood to introduce issues in the
code (Nagappan and Ball 2005). The negative impact of churn metrics has also been
assessed when considering software vulnerabilities (Shin et al. 2010).
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Such metrics were extracted using PYDRILLER (Spadini et al. 2018), which allows
straightforward analyses of projects’ change history, and LIZARD,” which parses the source
code and automatically extracts a set of common structural metrics from the source code.

Furthermore, we encoded the projects as 39 different binary variables to capture any
possible random effect coming from a specific project.

Having a categorical dependent variable, we fit a mixed-effect Multinomial Log-Linear
model (Theil 1969), a classification method that can generalize logistic regression to multi-
class problems, so fitting our case. The models were built using the R toolkit exploiting the
multinom model of the package nnet.®

The choice of a mixed-effect Multinomial Log-Linear model was driven by multiple
observations. First and foremost, it fits the multiclass problem we intended to model when
building a theory of how refactoring is related to security. Second, it outputs precious pieces
of information that can be used to interpret the results, as detailed in the remainder of the
section. It indeed provides statistical codes through which each individual refactoring type
can be assessed against its statistical relevance for the problem under analysis—as such, we
could identify the refactoring types having a statistically significant connection to security.
Furthermore, it returns the odds ratios (OR) (Bland and Altman 2000)—i.e., the exponential
of the model’s coefficients—that provide a measure of the actual impact of the associated
variables, i.e., the refactoring type. Such interpretation complements the statistical codes,
providing a more practical measure to interpret the effects of refactoring on security. Other
research methods, e.g., correlation analysis, cannot provide such a comprehensive and tan-
gible assessment of our hypotheses. Perhaps more importantly, it is important to remark that
security might and might not be affected by the refactoring; other factors might play a role.
The statistical modeling exercise allowed us to specify a set of confounding variables and,
for this reason, assess the impact of refactoring while keeping other factors into account.

When building the models, we took the problem of multicollinearity into account. This
arises in cases where two or more independent variables are linearly correlated, and one can
be predicted from the other, possibly biasing the model’s fitting capabilities and how the
results are interpreted. In this respect, we first verified the normality of the distributions of
the independent variables employing the Anderson-Darling normality test (Anderson and
Darling 1952). Such a test verifies whether a given sample follows a theoretical distribu-
tion, i.e., the normal one. For each independent variable, we compared its distribution with
a normal distribution having the same mean and standard deviation of the sample. As a
result, all the test runs failed to reject the null hypothesis, hence indicating that our data are
not normally distributed. Because of the non-normality of any of the independent variables
samples, we computed the Spearman’s rank correlation (Spearman 1961) between all pos-
sible pairs of independent variables to determine whether there are strongly correlated pairs
(i.e., variables for which the Spearman’s p > 0.8). This step did not eventually find any cor-
related variables, meaning that the independent variables’ distribution was different enough
to be used together in the statistical models.

As for the interpretation of the results, it is worth noting that the model’s logit coefficients
¢; are relative to a reference category and indicate how the independent variables vary the
chances of the dependent variable being affected with respect to the reference category. We
set such a category to “Stable” to estimate how the various independent variables, i.e., the
refactoring operations, likely change in either a positive or negative direction the stability

7https://pypi.org/project/lizard
8https://cran.r-project.org/web/packages/nnet/nnet.pdf
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of security indicators. For instance, if we have the refactoring type r; that presents a logit
coefficient ¢; = —1.50 in the model built when analyzing the decrease in the security metric
s, this means that a one-unit increase of r; would lead to an increase of the chances of s;
to remain stable.

After obtaining the logit coefficients, we computed the odds ratios (ORs) using the expo-
nential function (e). In our case, the ORs complement the interpretation of the results: for
an independent variable, i.e., a refactoring type, it indicates the increment of chances for a
class to increase/decrease the value of a security metric (RQp) or a technical debt metric
(RQ») as a consequence of a one-unit increase of the refactoring. With the OR values, we
could quantify the extent to which the application of refactoring impacts security metrics
and debt, hence giving a more practical sense to the coefficients obtained when running the
models.

2.4.2 RQj3. Refactoring vs. Known Vulnerabilities

The last research question measures the extent to which refactoring operations contribute
to the introduction of vulnerabilities. To address it, the first challenge was concerned with
mining the commits responsible for the introduction of vulnerabilities.

To obtain these vulnerability-contributing commits (a.k.a. VCCs) (Meneely et al. 2013),
we have followed the idea behind the well-known SZZ algorithm (Sliwerski et al. 2005),
which recovers the set of commits that likely introduced a defect starting from a bug-fixing
commit using the git-blame functionality on the lines deleted during the fix. Despite
SZZ has been envisioned to fetch the commits that induce traditional defects (Rodriguez-
Pérez et al. 2018b), it has also been exploited to fetch vulnerability-contributing com-
mits (Perl et al. 2015; Yang et al. 2017; Iannone et al. 2022). Yet, it has been subject to
adjustments and improvements. In this work, we adopted a set of heuristics to reduce the
amount of noisy results. Specifically, for each JAVA file F; modified in a vulnerability-
fixing commit f, we run the git-diff functionality to obtain the list of added and
deleted lines in F; and then applied two strategies to obtain the VCCs. Firstly, we run the
git-blame command to obtain the commits that last changed the lines deleted in f. Sec-
ondly, we blamed the lines “around” continuous blocks of changes—generally representing
new checks—made only of added lines. The former was done to recover those commits
that have likely added flawed pieces of code—e.g., a call to an improper input validation
function or the use of an obsolete cryptography algorithm. Instead, the latter can reach the
commits touching the code areas that lacked solid control mechanisms. The only excep-
tion was made for blocks made of totally new functions or methods, as they can be placed
anywhere, rendering their contextual lines irrelevant. In addition, we did not blame empty
and comment lines, and irrelevant non-source code files—e.g., documentation, build, blob,
and test files—as they do not generally contribute to a vulnerability. What is more, we did
not consider the VCCs that merged changes from multiple commits, as they do not report
real modifications per se. It is worth noting that vulnerabilities could have been fixed by
multiple fixing commits; in such cases, we united the set of VCCS obtained from each
fixing commit to build the final set. The described procedure was implemented exploiting
PYDRILLER (Spadini et al. 2018) repository mining library with the help of the parsing
library L1ZARD? to apply our heuristics.

https://pypi.org/project/lizard
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Once we had detected the vulnerability-contributing commits, we could verify in how
many cases such commits were also marked as refactoring commits (collected as described
in Section 2.3.1). Therefore, we sought to elicit the amount of vulnerability-contributing
commits for which refactoring might have played a role. When addressing RQs3, we also
reported the results by considering each refactoring type individually, hence assessing if a
particular operation is more likely to contribute to the introduction of a vulnerability.

2.5 Hypotheses and Statistical Verification

Once we completed the statistical modeling, we proceeded with the verification of the high-
level hypotheses formulated in Table 2. More specifically, we first refined them to derive
more concrete null and alternative hypotheses to test the research questions in this study.
In the cases of Move Package, Extract Interface, Move Class, Move Method, and Move
Attribute refactoring, we defined the following null hypothesis:

Hn; The refactoring has a significant impact, either positive or negative, on security
properties.

Our alternative hypothesis was, instead:
Ha; There is no significant impact of the refactoring on security properties.

In the context of RQ; and RQ;, we rejected the null hypotheses if the coefficients of the
statistical models built to understand the increase and decrease of the security properties
were not significant or negative. In the latter case, the coefficients of the Multinomial Log-
Linear model would indicate that refactoring operations tend to increase the likelihood of
security metrics/debt being stable, hence rejecting the null hypothesis in favor of the alterna-
tive one. As for RQ3, we run the non-parametric Mann-Whitney U test (Mann and Whitney
1947) (with o« = 0.5) on the distribution of refactoring operations within VCCs and non-
VCCs commits. We rejected the null hypothesis if @ > 0.05. We also measured the effect
size of the differences identified in the two distributions using Cohen’s d (Cohen 2013). We
followed well-established thresholds for interpretation: 0.2 for Small, 0.5 for Medium and
0.8 for Large effect size (Cohen 2013).

With respect to Extract Superclass, Extract Method, Extract & Move Method, Pull Up
Method, and Pull Up Attribute refactoring, our null hypothesis was:

Hn, There is no significant impact of the refactoring on security properties.
The alternative hypothesis in this case was:
Ha,; The refactoring has a significant negative impact on security properties.

In RQ; and RQ», we rejected the null hypothesis if we observed (i) both significant
coefficients and (ii) positive coefficients in the statistical model built to understand the
increase of security metric/debt values and negative coefficients in the statistical model
built to understand the decrease of security metric/debt values. In the latter case, indeed,
the statistical model coefficients would tell us that the application of refactoring operations
tends to increase the likelihood of the metrics/debt being increased, hence indicating their
deterioration. As for RQs, we still relied on the same outcomes and interpretation of the
Mann-Whitney U test (Mann and Whitney 1947) and Cohen’s d (Cohen 2013).

Finally, when it comes to Inline Method, Move & Inline Method, Push Down Method,
and Push Down Attribute refactoring, the null hypothesis was set to:
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Hnz There is no significant impact of the refactoring on security properties.
The alternative hypothesis in this case was:
Haz  The refactoring has a significant positive impact on security properties.

As for RQ; and RQ;, we rejected the null hypothesis if we observed (i) both signif-
icant coefficients and (ii) positive coefficients in the statistical model built to understand
the decrease of security metric/debt values and negative coefficients in the statistical model
built to understand the increase of security metric/debt values. In the latter case, the sta-
tistical coefficients would indicate that the application of refactoring operations has the
tendency to increase the likelihood of the metrics/debt being decreased, which would mean
that the security profile would improve. In RQs, we relied on the outcomes and inter-
pretation of the Mann-Whitney U test (Mann and Whitney 1947) and Cohen’s d (Cohen
2013).

2.6 Verifiability and Replicability

In order to allow our study to be verified and replicated, we have published the complete
raw data, along with the data collection and analysis scripts in our online appendix (Iannone
et al. 2022). The *README .md"’ file contains more precise instructions on how to use our
artifacts to replicate the study.

3 Analysis of the Results

In this section, we report the results of the empirical study, discussing them by research
question.

3.1 RQ;.To What Extent Do Refactoring Operations Impact Security Metrics?

In RQ, we sought to understand the relation between refactoring and security metrics.
Table 6 reports for each refactoring type the sign of the logit coefficients (within a circle) and
the value of the ORs obtained for the Multinomial Log-Linear models built to understand
the decrease and increase of the security metrics considered in the study. The coefficients of
the variables that turned out to be statistically significant are reported with a colored symbol
(green for @, red for ©), otherwise are left white. In addition, the cells with a gray shade
indicate that the impact of that type of refactoring rejects the null hypothesis formulated in
Section 2.5—i.e., the impact turned out to be in line with our expectations. For the sake of
readability, we did not report the coefficient signs and ORs values of the confounding fac-
tors (LOC, WMC, and code churn) considered when building the models, but we discuss
their role in our analysis and report the full results in our online appendix (Iannone et al.
2022). Looking at the table, we can immediately observe that the refactoring types Move
Method, Move Attribute, Extract Superclass, and, to a lesser extent, Push Down Method,
always had positive coefficients in all the 13 models built for the 13 security metrics; this
means that moving code components (i.e., attributes or methods) from a class to another or
optimizing the degree of code reuse (i.e., creating better class hierarchies) have the effect
of varying the security profile of an application, either positively or negatively. Moreover,
the Extract Superclass refactoring had a particularly strong impact on CCR and CSCR met-
ric, i.e., their ORs are the largest among all the other models. As such, extracting new
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classes in hierarchies impacts (i) the ratio of the number of critical classes to the number of
classes in the entire project (ii) and the number of superclasses in all the class hierarchies
(CSCR), respectively. Although these findings suggest that these refactoring types have a
random effect on security metrics, it is reasonable to believe that the impact is determined
by their specific application, i.e., the security profile is affected differently depending on
how developers apply the refactoring operations.

Surprisingly, refactoring types for which we expected no impact, such as Extract Inter-
face and Move Package, still exhibited a statistically significant mixed effect on the security
metrics. Between the two, Extract Interface showed a clearer behavior. On the one hand,
it tends to increase the value of CC, CCE, CCR, and CMR metrics—i.e., increasing the
number of critical classes. On the other hand, it keeps reducing CCVA, CIVA, and CM
metrics—i.e., reducing both the accessibility of instance and class variables, and the num-
ber of classified methods. This means that re-organizing the classes’ interfaces helps keep
the number of critical attributes and methods under control, still increasing the risk of intro-
ducing too many critical classes. Differently, only for the CIVA metric, the Move Package
refactoring matched our expectations: moving classes among packages does not affect this
metric at all. This might be explained by the fact that commits applying package restructur-
ing are generally not done in a fully-isolated manner but are applied in the context of other
changes—which have a mixed impact.

Extract Method, Inline Method, and Move Class still exhibited mixed effects on the var-
ious security metrics, but with much lesser significance than other refactoring types. The
only cases where the null hypotheses were rejected were for Extract Method for CM and
CME metrics, and also for Inline Method for CM metric. This is quite straightforward to
comprehend. Extract Method creates new methods from a piece of code in existing meth-
ods, likely introducing new classified methods if the extracted logic deals with classified
attributes. At the same time, Inline Method refactoring eliminates redundant methods, with
a high chance of removing classified methods and reducing access to classified attributes.
This was the case of project CONVERSATION at the revision 14c£b609. In such a commit,
the utility class CryptoHelper was streamlined into three new classes, all placed in pack-
age crypto/sasl. Additionally, the XmppConnection class—in change or managing
XMPP connections—was refactored to inline the two methods sendSaslAuthPlain ()
and sendSaslAuthDigestMds () into processStreamFeatures (). Indeed, the
two removed methods were only called by processStreamFeatures (), so driving
the developer to apply two Inline Method refactorings—the commit message confirms this
intentions, i.e., ‘Refactor authentication code’. In this respect, sendSaslAuthPlain ()
was a classified method, as it access to security-sensitive data, i.e., account instance vari-
able in this case. Hence, its removal led to the reduction of one from the CM metric. This
variation translates into a reduction of the overall application’s attack surface. Indeed, the
metrics proposed by Alshammari et al. (2012) penalize those classes exposing too many
methods that access classified components, as attackers might leverage them to carry out
attacks. This explains why Inline Method refactorings have been seen as beneficial from
this perspective is beneficial. Such an example also opens an interesting observation. While
a securely-designed class should minimize the number of methods with the responsibility
of accessing security-critical data, good design practices for maintainable code recommend
creating many small and cohesive methods. Thus, creating both maintainable and secure
code demands particular care not to create too many classified methods but still avoid-
ing making poorly cohesive and long methods. In other words, accessing security-critical
data should be reserved for only an essential set of elected classes and methods. Similarly,
in commit 43531113 of the same project, an Extract Method refactoring was applied
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on sendBindRequest () to extract sendIgPacket () method, which happened to
access security-sensitive data—so, it was branded as a new classified method. While this
method is not necessarily a security issue, its presence increases the application’s attack
surface, giving attackers an additional method to leverage for its purpose.

All the other refactoring types, i.e., Move Class, Pull Up Attribute, Push Down Attribute,
and Pull Up Method, appears to have limited or no impact on any security metrics. Perhaps
more interestingly, the composite refactoring types considered in the study, namely Extract
& Move Method and Move & Inline Method, seem to show a “mixture” of the behaviors
of their individual operations. This had the curious effect of having almost no statistical
significance for all 13 models. Yet, this could also be caused by the limited amount of
composite refactorings observed in our dataset.

When considering the impact of the confounding factors, i.e., LOC, WMC, and code
churn, we could notice that only code churn has a statistically significant relationship with
all dependent variables. On the contrary, WMC turned out to have a poor impact on the
security metrics, indicating that the complexity of methods is not related to the number of
critical components in the source code. All in all, the ORs for all confounding factors are
still very low, translating into a very weak effect on security.

Last but not least, we also found that in some cases, the projects themselves turned out to
be significant for the explanation of the dependent variable. From a practical point of view,
this means that the peculiarities of the projects have some influence on the changes to the
global security profile. Our study cannot uncover the reasons behind this finding, as it would
deserve further investigation. Yet, it is reasonable to believe that project-specific properties
exist, e.g., contribution guidelines (Elazhary et al. 2019), code of conducts (Tourani et al.
2017), and more, that make developers more or less prone to introduce vulnerabilities.

Main findings for RQ;

Different refactoring types have a different impacts on security metrics. In most cases,
there are just variations, in either positive or negative ways, without a clear direction.
Refactoring types such as Inline Method or Extract Interface may help keep the num-
ber of classified attributes and methods under control. The application of refactoring
sequences causes a mixture of the effect of the individual components. More in general,
the effect on security seems to depend on how refactoring operations are applied.

3.2 RQ,.To What Extent Do Refactoring Operations Impact Security-Related
Technical Debt?

In RQ;, we investigated the relation between refactoring and security-related technical
debt, measured through the number of security violations detected by SONARQUBE and the
security remediation effort. Similarly to RQ, Table 7 reports the sign of the logit coeffi-
cients (within a circle) and the value of the ORs obtained for the Multinomial Log-Linear
models for each refactoring type. Here too, the coefficients of the variables that turned
out to be statistically significant are reported with a green ®or red O,otherwise are left
white. Whenever the impact of a refactoring type rejects a null hypothesis formulated in
Section 2.5 the related cells are depicted in gray. The table does not report the confounding
factors (LOC, WCM, and code churn), but these are reported in the raw results in our online
appendix (Iannone et al. 2022).
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Looking at the results, we could immediately notice the predominant presence of nega-
tive coefficients associated with both the decrease or increase of rule violations, implying
that the majority of refactoring operations tend to keep the number of violations stable. This
is particularly evident for Extract Interface, Move Package, Push Down Method, and Push
Down Attribute. In other words, these refactoring types generally do not introduce or resolve
any security-related violation. This is in line with their definition. Extract Interface and
Move Package do not overhaul the code structure of the involved classes, so it is reasonable
that they do not affect any security rule. The refactoring operations that push attributes or
methods down to class hierarchies—i.e., Push Down Method, Push Down Attribute—do not
seem to affect security rules in any way. However, both Move Package and Move Attribute
are connected to a variation of the security remediation effort. This could be explained by the
fact that these kinds of changes are made in conjunction with other changes that introduce
security-related technical debt.

Despite these results, there are some notable exceptions worth analyzing. Extract Super-
class refactoring significantly increases the chance of increasing the security remediation
effort. Such a refactoring type also tends to violate rule S2386, i.e., ‘Mutable fields should
not be public static’. Violating such a rule has a security implication, as the pres-
ence of public static fields expose mutable objects or arrays to changes by malicious
users. Such bad practices are also categorized by CWE-582: ‘Array Declared Public, Final,
and Static’, CWE-607: ‘Public Static Final Field References Mutable Object’, and CWE-
766: ‘Critical Data Element Declared Public’, all representing weaknesses in the source
code that attackers can leverage to carry out attacks. In other words, mutable objects
should not be leaked to client programs as they can violate class invariants and disrupt
the normal execution flow of the target application—if they have access to its runtime.

+ InputStream checkGZIP(InputStream)
# URL buildURLY()

+ boolean complete()

+ InputStream openStream()

+ String getPortStr()

# URL buildURL()

+ boolean complete()

+ InputStream openStream()
+ String getPortStr()

Initial State Final State

ParsedURL , DataParsedURLData
' | ParsedURL
+ byte[] GZIP_MAGIC ' + boolean complete()
+ String getPortStr()
+ InputStream checkGZIP() | !
P ; |
E ParsedURLData
URLData ! | + byte[] GZIP_MAGIC
i | + String protocol
+ String protocol 1 | + String host
+ String host i | +int port
+ int port i | + String path
+ String path ' | + String ref
+ String ref :

Fig. 3 Graphical representation of the Extract Superclass refactoring applied in revision e28370d2 in
project BATIK
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Moreover, violations of this rule also imply a degradation of encapsulation, further moti-
vating the importance of resolving it early. Curiously, an increase in security remediation
effort also happens with Extract Interface refactoring. Despite both refactoring operations
aiming to simplify the hierarchical organization of a project, they should be made with
caution as they have a high risk of increasing the remediation effort. Let us consider an
example in project BATIK at the revision e28370d2, also shown in Fig. 3. The com-
mit applied a series of refactorings to reorganize some hierarchical structures in the util
package—as also stated in one paragraph of the full commit description: /...] Cleaned up,
made easier to extend and pulled several inner class out of ParsedURL [...] . In partic-
ular, the class URLData was first promoted from a static nested class to a first-level
public class, renamed to ParsedURLData and then reorganized to have a new sub-
class called DataParsedURLData—hence, an Extract Superclass was applied. In the
end, the ParsedURL class was streamlined to favor the new extension. In applying these
changes, the former nested class had five public attributes left unchanged when the class
was made public. This caused SONARQUBE to recognize a violation to rule S2386 for
the five attributes, as now they can be freely modified by an external client program. In
this case, we observe that the refactoring alone is not the direct cause of the violation, but
the way it was applied led to the creation of extra public static fields. To conclude,
Extract Superclass and Extract Interface refactorings should be applied with particular care
as they have also been seen to disrupt all the security metrics (RQy).

Another exception occurs with Extract & Move Method refactoring, that (1) negatively
impacts rule S2647, i.e., ‘Basic authentication should not be used’ and (2) increases the
chances of rule S5547, i.e., ‘Cipher algorithms should be robust’ being removed—as it can
be observed from its high OR. The individual refactoring operations, i.e., Extract Method
and Move Method, do not appear to be connected with these rules in any form, while
their combination has observable effects. Analyzing this case further, we could not iden-
tify specific reasons why the combination of multiple refactorings has a higher impact than
individual refactoring types, yet we can suppose that our results represent a reflection of the
number of changes applied, i.e., more changes affect security more than individual ones.
Nonetheless, the effect of refactoring sequences is something that might be worth further
analyzing in future work.

As in RQy, it is worth noting that the results were achieved while controlling for several
confounding factors. Similarly to the previous discussion, the confounding factors are gen-
erally not statistically significant in any model, i.e., they are not correlated with the increase
or decrease of security-related technical debt. Likewise, the projects turned out to be sig-
nificant, somehow confirming that there exist some project-specific attributes that might
influence the security technical debt.

Main findings for RQ»

While most of the refactoring types do not significantly impact security-related vio-
lations, we identified some operations concerning restructuring class hierarchies, i.e.,
Extract Superclass, and Extract Interface, that are statistically related to an increase
of security violations, implying that they should be implemented with caution to avoid
introducing security threats. In the end, refactoring is weakly connected to the violations
detected by SONARQUBE, and other influencing factors should be analyzed.
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3.3 RQs.To What Extent Do Refactoring Commits Contribute to the Introduction
of Real Software Vulnerabilities?

Our third research question investigated the relationship between refactoring and the
introduction of known vulnerabilities reported in the National Vulnerability Database
(NVD).

It is worth recalling that for this research question, we focused on nine of the projects
considered in the study (see Table 1). This subset of projects is affected by 26 known
vulnerabilities, i.e., 26 different CVE records, whereas the number of distinct VCCs was
103—there were some cases of commits contributing to more than one vulnerability. Table 8
reports the descriptive statistics of the distribution of refactoring operations, grouped by
type, in such VCCs. In the first place, our results showed that the number of VCCs with at
least one refactoring was 34, i.e., 33.01% of the VCCs contained at least one instance of a
refactoring operation. While this seems to indicate that refactoring might have a connection
with the introduction of vulnerabilities, a closer look indicates a lack of causal relationship
between the refactoring activities performed by developers and the introduction of vulnera-
bilities, i.e., the fact that refactoring is performed does not imply that it is the root cause of
the vulnerability introduction.

A more in-depth analysis reveals that the refactoring types that occurred the most in the
VCCs were Pull Up Method and Pull Up Attribute with 251 and 126 instances, respectively.
Both refactoring types deal with generalization, hinting that complex restructuring activity
(i.e., modifying hierarchies) are often present when vulnerabilities are introduced—this is
partially in line with the results observed in the context of RQ».

Table8 The main descriptive statistics pertaining to the unique VCCs of the nine projects appearing in NVD.
N =103

Refactoring Total Min Med Max Mean Std. Dev.

PACKAGE-LEVEL
Move Package 0 0 0 0 0.000 0.000

CLASS-LEVEL

Extract Superclass 5 0 0 1 0.049 0.216
Extract Interface 1 0 0 1 0.010 0.099
Move Class 7 0 0 3 0.068 0.377

METHOD-LEVEL

Extract Method 24 0 0 6 0.233 0.819
Inline Method 3 0 0 2 0.029 0.220
Move Method 53 0 0 40 0.515 3.983
Extract & Move Method 14 0 0 3 0.136 0.465
Move & Inline Method 2 0 0 1 0.019 0.139
Pull Up Method 251 0 0 231 2.437 22.785
Push Down Method 2 0 0 1 0.019 0.139
ATTRIBUTE-LEVEL
Move Attribute 17 0 0 14 0.165 1.387
Pull Up Attribute 126 0 0 81 1.223 9.045
Push Down Attribute 0 0 0 0 0.000 0.000
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Nonetheless, we also observed their very high standard deviation values that, combined
with much lower mean values, imply that the distribution of these refactoring types across
the commits is “irregular”—i.e., there are commits with a considerable number of Pull Up
Method and Pull Up Attribute and commits without any of them. For instance, the JENK-
INS’s commit 70c10658 has over 200 instances of Pull Up Method and over 80 of Pull
Up Attribute. Such a commit touches over 300 different files and represents a crucial com-
mit for the project as it marks the moment when JENKINS was forked from HUDSON (its
original project). This suggests that some projects, like JENKINS, are characterized by large
and poorly cohesive commits, which have higher chances to touch critical parts of the code,
possibly introducing defects and security flaws. Hence, a “chaotic” development process
might be the actual reason behind the introduction of vulnerabilities—as part of our future
research agenda on the matter, we plan to investigate this aspect further.

From a different point of view, the nine NVD projects had a total of 7,708 refactoring
commits (i.e., commits with at least one refactoring instance), 34 of which contributed to
the introduction of a vulnerability, accounting for 0.44% of the total. This further supports
the fact that refactoring alone is not the main responsible for the introduction of vulnerabil-
ities, but rather a co-occurring phenomenon that, in some cases, might worsen the situation,
especially when touching several components.

To assess whether the number of a specific refactoring type was statistically significant,
we run a one-tailed Mann-Whitney U test (Mann and Whitney 1947) for each refactoring
type on both the sets (i.e., the refactoring commits contributing to vulnerabilities versus
those that did not contribute), for a total of 14 test runs. We discovered that the distribution of
Extract Superclass and Extract & Move Method instances for VCCs is significantly higher
than the distribution for non-VCCs. (p < 0.05). At the same time, Cohen’s d (Cohen 2013)
is lower than 0.2, indicating a very small effect size. In other words, Extract Superclass
and Extract & Move Method occurs more often in VCCs, but still in a limited way. Extract
Method and Move Method refactorings do not appear to show any connection with VCCs,
hence suggesting that basic refactorings touching few code components are less likely to
contribute to the emergence of a vulnerability. On the contrary, only for Pull Up Method
and Pull Up Attribute the effect size appeared large (d > 1.2), but without any statistically
significant difference highlighted by the Mann-Whitney U test. The full results of such tests
are reported in our online appendix (Iannone et al. 2022).

Going more in-depth, let us consider the example reported in Fig. 4. It shows the diff
of the commit e45d7bda of the project CONVERSATIONS, an XMPP client for Android

44lpublic class ConversationActivity extends XmppActivity implements 46/public class ConversationActivity extends XmppActivity implements
OnAccountUpdate, OnConversationUpdate, OnRosterUpdate { OnAccountUpdate, OnConversationUpdate, OnRosterUpdate {
612 569, € public void onClick v) {

612 getAcuvuy() 1nvallda(eop[10nsMenu() 569 getActivity().invalidateOptionsMenu();

613 updateChatMsgHint (); 570 updateChatMsgHint ();

614 if (lactivity.shouldPaneBeopen()) { 571 if (lactivity.isConversationsoverviewvisable() ||

lactivity.isConversationsOverviewHideable()) {

615 activity.xmppConnectionService.markRead(conversation, true); | 572 activity.xmppConnectionService.markRead(conversation, true);

616 activity.updateConversationList(); 573 activity.updateConversationList();

617, } 574

388, 6 +845, 1€

888 3} 845 3}

889 } 846| }

890, 847,

891 public void setText(String text) { 848 public void appendText(String text) {

892 this.pastedText = text; 849 String previous = this.mEditMessage.getText(). tostrmg();
850, if (previous.length() != 0 && !previous.endsWith(" ")) {
851 text = " " 4+ text;
852 3}
853 this.mEditMessage.append(text);

893 } 854| 1}

Fig.4 Part of the diff of the commit e45d7bda of CONVERSATIONS. The focus is given on the root cause
behind the vulnerability CVE-2018-18467, i.e. caused by the addition of an incomplete appendText ()
method during the refactoring

@ Springer



Empir Software Eng (2023) 28:89 Page 31 0f46 89

that allows the creation of private chats with other users. The commit message states that
a “Ul code refactoring” was applied. The modification impacted three different files. Four
years later, the modification resulted in being one of the causes that led to vulnerability
CVE-2018-18467, which allowed an attacker to append a custom text to an existing con-
versation (with a draft message) by sending an intent from another application. While the
commit message suggests code refactoring as the main activity performed, the vulnerabil-
ity was not due to the refactoring itself, but rather to the addition of the appendText ()
method in the class ConversationFragment. This allowed appending any text to an
existing conversation without adequately checking if an external application was trying to
append a text content to an existing draft message through an Intent, leading to the vul-
nerability described in CVE-2018-18467. In other words, the vulnerability was involuntarily
introduced while the committing author was doing some refactoring and code clean-up. In
the example, REFACTORINGMINER only managed to mine two instances of Inline Method,
which only represent a small part of the total modifications made. Thus, we can conclude
that refactoring is often not the direct cause of vulnerabilities but rather a co-occurring
phenomenon.

Main findings for RQj3

Our results indicate the absence of a clear cause-effect relationship between refactoring
and vulnerability-contributing commits. At the same time, we also observed that some
refactoring operations, such as Extract Superclass and Extract & Move Method co-
occur often in commits where vulnerabilities are introduced.

4 Discussion and Implications

This section further discusses the main results achieved in our study and reports their
implications for researchers and practitioners.

4.1 Discussion: Connecting the Dots

The results of our three research questions allowed us to quantify the role of refactoring on
three critical aspects of software security, such as its impact on security metrics, technical
debt, and introduction of known vulnerabilities. Moreover, the statistical analyses conducted
enable a more general and conclusive discussion of the initial hypotheses formulated in
Table 2.

By summing all up, we can provide three main insights. First of all, when looking at the
big picture, we can conclude that refactoring has only a limited effect on software security.
Most of the refactoring operations considered in the study do not lead any security indicators
to vary consistently and/or significantly.

As we learned from RQy, it is indeed possible that some refactoring operations may
influence security metrics depending on how they are applied, while they rarely have an
impact on technical debt (RQ7) and introduction of known vulnerabilities (RQ3); similarly,
it may happen that a change accompanied by refactoring can contribute to a vulnerability
without affecting any security metrics or increasing the technical debt value. This is the case
of the example shown in Fig. 4 in which neither SURFACE nor SONARQUBE detected any
difference between the commit containing the refactoring (e45d7bda) and its predecessor
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(i.e., the A was mapped to the “Stable” category). Hence, these results partially contradict
the preliminary findings reported by Abid et al. (2020): when studying the matter on a larger
scale, it comes out that most refactoring operations do not directly impact the security of
software systems but are rather co-occurring phenomena.

However, some exceptions have been observed, especially when considering security
technical debt. According to our results, the Extract Interface refactoring provides a sig-
nificant increase in security-related technical debt but might have positive effects on some
security metrics, e.g., reducing the number of classified methods (CM metric). This result
supports and further stimulates the research efforts on the construction of automated refac-
toring recommenders that might balance quality improvements and security threats, as
initiated by Abid et al. (2020).

To broaden the scope of the discussion, our overall findings do not match with the
results previously obtained when studying the relation between refactoring and defects
(Bavota et al. 2012; Di Penta et al. 2020). In particular, this is the case of the refactor-
ing types dealing with the generalization: while Bavota et al. (2012) and Di Penta et al.
(2020) found these operations to be sometimes defect-inducing, we discovered that they
can instead provide some benefits to security aspects connected to attribute encapsulation.
We see two main points here. On the one hand, these differences corroborate the conclu-
sions drawn by previous researchers on the need of considering and treating vulnerabilities
differently from defects (Canfora et al. 2020; Camilo et al. 2015; Joshi et al. 2015; Mer-
caldo et al. 2018; Morrison et al. 2018; Russo et al. 2019). On the other hand, our results
indicate that the same refactoring can have multiple, contrasting effects on code quality and
dependability.

4.2 Implications of the Study

The results of our study provide us with several actionable items and implications for both
researchers and practitioners that we discuss in the following.

Novel Refactoring Optimization Techniques. According to our results, refactoring is
generally not connected to software vulnerabilities. However, we pointed out that refac-
toring operations dealing with generalization can contribute to the improvement of
software systems’ security profile under certain perspectives. By connecting the previous
research on the effect of refactoring on defects introduction with the results of our study,
we could conclude that the definition of novel strategies that recommend refactoring
operations—while minimizing the negative impact on source code attributes—should be
devised and further investigated. In particular, the key example is represented by search-
based refactoring recommendations (Mariani and Vergilio 2017; O’Keeffe and Cinnéide
2008), where search-based algorithms are used to recommend developers the best refac-
toring operation (or sequence of operations) to apply based on the potential impact that
such a refactoring may have on various properties of source code. These recommenders
might be potentially enhanced by means of the addition of further security-related objec-
tive functions so that they could recommend refactoring operations that optimize the
compromise between quality and security metrics/technical debt. For instance, let us con-
sider the case of Extract Superclass, which we found to appear among the most disruptive
refactorings for security according to our results. The refactoring consists of finding a
subset of methods of a class that can be extracted in order to create a new superclass. As
such, there are multiple ways to perform the refactoring based on how the subset of meth-
ods to extract is identified. An Extract Superclass refactoring recommender might use,
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as an objective function, a weighted combination of quality and security metrics so that it
can identify the subset of methods to extract that optimize both quality and security. Sim-
ilarly, multi-objective search algorithms might be used to solve the problem, for instance
by combining information coming from quality metrics, security metrics, and technical
debt. Some preliminary studies on these aspects have been recently published (Abid et al.
2020), yet we believe that further studies are needed, especially concerning the granular-
ity of the recommendations. Indeed, our RQ3 shows that developers would benefit from
just-in-time solutions that can provide advice while committing new changes to software
repositories.

Exploiting Security Variations to Drive Refactoring. The results coming from RQ;
and RQ» also pointed out the existence of refactoring operations having high correla-
tions with both increase or decrease of security metrics and technical debt. In these cases,
our findings suggest that the positive or negative effect on security is due to the spe-
cific operation performed when refactoring code. In a real-case scenario, these results
may be exploited to devise automated mechanisms that alert developers of the potential
effects of refactoring on security. As an example, we may envision the definition of novel
bots/conversational agents (Alizadeh et al. 2019) that monitor the development and drive
the developer toward the application of an operation that has higher chances to improve
security metrics or reduce security technical debt when recognizing he/she is applying a
refactoring operation. The research in this respect is rapidly gaining interest (Erlenhov
et al. 2019; Lebeuf et al. 2017; Beschastnikh et al. 2017), though actionable solutions are
still not widely spread, and so representing a potentially interesting use case.

Refactoring Verification and Validation. As a complimentary discussion of the previ-
ous one, we can foresee two main implications for the testing community. First and
foremost, the importance of having robust verification and validation techniques is fur-
ther corroborated by our study. Practitioners and security managers can indeed exploit
our findings to put in place additional preventive mechanisms aimed at verifying the out-
come of each modification, possibly improving both the code review process (Pascarella
et al. 2018), e.g., by integrating stricter security checks when refactoring operations are
applied, and the regression testing activities (Wong et al. 1997) of their systems. Sec-
ondly, our results shed light on the need for more research on techniques to verify the
correctness of refactoring operations. This is an overly neglected angle of the refactor-
ing process (Soares et al. 2010) that has been only tangentially touched by the research
community in the past (Bladel and Demeyer 2018; Soares et al. 2012). We hope that our
investigation would stimulate research on this topic.

Homogenizing Refactoring Operations. As noticed in RQ;, some refactoring opera-
tions, e.g., Extract Superclass, tend to have different effects for security depending on
how they are applied. This finding—which we believe would deserve further attention—
possibly suggests that practitioners approach refactoring in different manners, perhaps
because of their different expertise or level of knowledge on the classes subject to refac-
toring. As such, they could benefit from automated solutions that can recommend how to
apply the refactoring, namely what are the steps that may lead to the safe improvement of
source code quality and homogenize the refactoring process toward the definition of stan-
dard guidelines that might favor both newcomers and developers with limited knowledge
on security.

The Link between Composite and Elementary Refactorings. In this empirical study
we investigated the effect of two composite refactoring operations, namely Extract
& Move Method and Move & Inline Method. We suspected that they might behave
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differently from the isolated application of the basic refactoring operations they are com-
posed of—i.e., Extract Method, Move Method, and Inline Method. The results of RQ
show that composite refactoring operations appear to behave as if they are a “mixture”
of their basic operations; conversely, in RQ, we observed that they have some effects
on a restricted subset of SONARQUBE violations, while their basic operations do not.
Similarly, in RQ3 Extract & Move Method tends to occur more often in vulnerability-
contributing commits than individual Extract Method and Move Method refactorings.
Based on these results, we could not outline a precise trend regarding composite refactor-
ings. In any case, the number of instances in our dataset was limited, hence demanding
further in-depth investigations with a larger number of observations to derive more pre-
cise conclusions on how these composite refactoring operations are connected to their
individual refactoring operations.

Value of The Currently Available Security Metrics. When collecting the data required
to address RQq, we observed that the security metrics previously proposed in the litera-
ture (Abid et al. 2020; Alshammari et al. 2010b; Agrawal and Khan 2014) capture similar
aspects, being all computed based on the number of security-sensitive attributes that a
class exposes. We consider it a limitation that does not enable a comprehensive analy-
sis of the source code’s security profile. As such, a side outcome of our study suggests
that more effort should be invested in the definition of novel security metrics that may
adequately complement the analysis of the attributes. This represents a challenge for the
software engineering community and researchers in closely related fields, e.g., program-
ming languages, which are called to elicit specific properties that make programming
languages more or less prone to security weaknesses.

Refactoring Has A Poor Impact on Security Technical Debt. From the results achieved
in the context of RQ», we could observe that most refactoring operations do not signif-
icantly vary the amount of security-related technical debt. The Extract Superclass and
Extract Interface refactoring types represent exceptions to this discussion, along with
composite refactoring operations. As such, we can claim that refactoring is mostly safe
with respect to security technical debt, yet verification and validation mechanisms might
represent useful additions to assess the refactored code against security regressions.

Software Vulnerabilities: A Social Perspective? The results given by our statistical
modeling exercise revealed that, in most cases, the projects themselves turn out to sig-
nificantly influence the increase/decrease of security-related metrics and technical debt.
While this aspect deserves ad-hoc investigations to better understand the underlying
reasons leading to these findings, our study seems to suggest that there exist specific
properties or standards implemented within those projects that have effects on software
dependability. In other words, our results seem to be in line with recent studies uncover-
ing relations between developer’s collaboration/coordination—elaborated and controlled
through the definition of development contribution guidelines (Elazhary et al. 2019) and
code of conducts (Tourani et al. 2017)—and the implications they have for software qual-
ity (Palomba et al. 2018; Kwan et al. 2011). In this sense, our results can serve as a base
for investigations into the role of social aspects on vulnerabilities.

5 Threats to Validity

Several factors might have biased our results. This section discusses them and reports the
mitigation strategies we employed.
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Construct Validity The subjects of our study were the commits having refactoring oper-
ations, that we could detect using the tool REFACTORINGMINER (Tsantalis et al. 2018).
The main threat associated with this granularity level is the impossibility to isolate the
refactored code elements and study how their security profile has changed. Despite the fact
that REFACTORINGMINER allows the identification of the refactored code regions, we still
had trouble in selecting a reasonable set of metrics capturing the security profiles at such
a granularity level. In other words, there are no metrics that can measure the security of
partial code snippets: the minimum unit of work is the file/class. Nevertheless, we strove
for addressing at our best this issue by removing the amount of noise from refactoring
commits—whenever the metrics and tools allowed. Specifically, the computation of the
security metrics (RQq), the number of violations (RQ>), and the confounding variables
(both RQ; and RQ») did not involve the files not subject to any of the refactoring oper-
ations occurred in a commit. Unfortunately, we could not do the same for the security
remediation effort metric (RQ;) as the tool SONARQUBE is only able to compute it at
the entire project’s snapshot level. In spite of everything, this mitigation mechanism still
does not exclude any form of changes unrelated to refactorings. Currently, this is the best
possible solution to the best of our knowledge.

In the context of RQ; and RQ», we employed automated tools to compute security met-
rics and technical debt. As for the security metrics, we re-implemented the tool by Abid
et al. (2020) as it was not publicly available. When developing SURFACE, we followed the
exact steps reported in Abid et al. (2020), other than conducting follow-up automated and
manual testing sessions to assess the results produced by the tool. For the sake of verifia-
bility, we made SURFACE publicly available in our online appendix (Iannone et al. 2022).
Among the technical debt detectors available in the literature, the selection of SONARQUBE
was driven by the results reported by Saarimaki et al. (2019), who showed that it is accurate
when considering security violations. Moreover, these tools were supported by the libraries
PYDRILLER (Spadini et al. 2018) and LIZARD to facilitate the recovery of the change his-
tory and the computation of the confounding variables (LOC, WCM, and code churn),
respectively. Both are widely applied in several software repository mining studies.

We expressed the security-related metrics for the commits by aggregating the deltas we
computed on all the files directly involved in refactorings. In particular, the metrics CA
(Classified Attributes) and CM (Classified Methods) were summed, while the rest of the
metrics were averaged. CA and CM count the number of security-sensitive code components
(attributes or methods), so the sum suits well to count the amount of changed security-
sensitive code components within the commit. On the contrary, all the other security metrics
ranged between O and 1, expressing “no exposure” to “maximal exposure”, respectively.
Despite the existence of other aggregators, such as the median, we opted to use the average
as it well summarizes the change in the exposure levels of all the refactored files without
reducing the effect of outliers (i.e., sharp changes in the security metrics).

As for RQs, our results might have been affected by the erroneous identification of
vulnerability-fixing and vulnerability-contributing commits. In the first case, we mined the
fixing commits from the references reported in the CVE records description in the National
Vulnerability Database (NVD). Despite being considered a reliable source of information
that is continuously monitored and updated, we cannot exclude the case in which the CVE
record fails at reporting the entire set of patches—indeed, an insufficient set of fixing
commits would have reduced the amount of contributing commits our algorithm fetched.

In the second case, we employed a set of heuristics built on top of SZZ (Sliwerski et al.
2005) to recover the VCCs. While the performance of the algorithm has been criticized in
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the past (Rodriguez-Pérez et al. 2018a), a recent study (Rosa et al. 2021) has shown that
(i) the performance of SZZ depends on the dataset to which it is applied and (ii) the orig-
inal version of SZZ is the one providing the best performance, overall. Moreover, it has
been seen as one of the best possible strategies for recovering VCCs. For this reason, we
were careful to adopt all possible recommended precautions to greatly reduce the amount
of noise and improve the precision, e.g., ignoring irrelevant files, blaming the context of
blocks of new code, etc. To be even more confident about the suitability of our VCCs min-
ing algorithm, we manually validated its results, observing a precision of 71%, which we
considered acceptable for our purposes. Lastly, our strategy is also robust to most cases of
files renamings. As a matter of fact, the git -blame functionality can automatically detect
file renamings when traversing the project’s history, further reducing the risk of blaming
wrong commits.

Internal Validity When building statistical models in RQ; and RQ;, we selected three
confounding factors, i.e., LOC, WMC, and code churn, to control our findings for aspects
that might have explained the (in)stability of security metrics and violations better than the
number of instances of refactoring operations. We acknowledge the existence of additional
factors that were not considered in our study, and, as such, replications of our work would
be desirable. Nonetheless, our manual follow-up analysis (see Section 4.1) had the goal
of further investigating the underlying reasons behind the relation between refactoring and
vulnerabilities, possibly mitigating threats to internal validity and also explaining the role
of confounding factors on our results.

Different implementations of refactoring operations might affect the level of security of
source code differently or may even represent explicit compromises between quality and
security made by a developer. For example, a Pull Up Attribute refactoring typically leads
to a visibility change of a private attribute: this might be either performed by modify-
ing the visibility into protected or public so that the attribute can be accessible by
child classes. While the protected visibility would be essential to apply the refactor-
ing, the public visibility might potentially induce unnecessary risks for security—unless
developers consciously opt for this choice and favor it because of other contextual factors
or requirements. In this respect, it is worth remarking that our empirical study does not aim
at questioning the way developers may apply refactoring, but rather what effect refactoring
types may have on the security profile of source code. Furthermore, the specific design deci-
sions taken by a developer when performing refactoring cannot be automatically detected
through the refactoring mining tools currently available. Therefore, we encourage repli-
cations of our study conducted with different research methods, e.g., through controlled
experiments that verify how the refactoring choices done by developers impact security.

Conclusion Validity Concerning the relation between treatment and outcome, a threat is
related to the statistical methods adopted to address our RQs. In RQ; and RQ;, we opted
for a Multinomial Log-Linear statistical model (Theil 1969) as our problem was a multi-
class problem involving both categorical and continuous independent variables. In addition,
it allowed us to interpret the results from various perspectives, i.e., by considering both
statistical codes and odds ratios. Before interpreting the results, we also verified the nor-
mality of the independent variable distributions through the Anderson-Darling normality
test (Anderson and Darling 1952) before computing the Spearman’s rank-correlation coeffi-
cients (Spearman 1961) to identify pairs of correlated independent variables that might lead
to multicollinearity.
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External Validity Our study targeted 39 projects from the Technical Debt Dataset (Lenar-
duzzi et al. 2019) involving 7,708 commits containing refactorings. While almost all the
systems belong to the APACHE SOFTWARE FOUNDATION, they were originally selected
to meet guidelines that ensure diversity and representativeness (Nagappan et al. 2013; Pat-
ton 2002). We cannot exclude that different results could be obtained when considering
systems of other ecosystems developed using different programming languages and with
different maturity levels. In addition, it is worth remarking that RQ3 could only target nine
of those projects, namely the ones connected to the NVD dataset of known vulnerabilities.
Replications targeting a larger set of projects would be, therefore, desirable. In any case, in
our online appendix (Iannone et al. 2022), we made available the data and scripts to favor
researchers interested in replicating our study in other contexts.

6 Related Work

The impact of refactoring on source code dependability has been explored from different
perspectives, which we overview herein.

6.1 Impact of Refactoring on Software Quality

Many studies have investigated the impact of refactoring on software quality either directly
or from the perspective of defect proneness, change proneness, or code smells.

Bavota et al. (2015) mined the history of 63 releases of Java Open Source Projects
(OSPs) to investigate refactoring operations on code components, which indicate a need for
refactoring through indicators such as metrics and smells. They concluded that most refac-
toring operations take place on code with no quality metrics indication for the need to
refactor, and although 40% of refactoring operations were performed on smelly code, only
7% removed the smells. Their findings were corroborated by Yoshida et al. (2016) who
revisited the relationship between code smells and refactoring by using the same refactoring
dataset by Bavota et al. (2015). Cedrim et al. (2017) had similar findings when they ana-
lyzed more than 16K+ refactoring instances from 23 OSPs to investigate whether refactoring
reduces the code smell density. They reported that even though almost 80% of refactor-
ings touched smelly code, 57% of refactorings did not impact them, and roughly 10% of
them removed the smells while 33% introduced new smells. Tufano et al. (2017) conducted
an empirical study on 200 projects from the Android, Apache, and Eclipse ecosystems
to investigate, among other aspects, whether developers’ actions, e.g., refactoring, resolve
smells. They reported that only a low number (9%) of code smells are removed following
refactoring operations.

Palomba et al. (2017) investigated the relationship between refactoring operations and
code changes (namely fault repairing modification, general maintenance modification, and
feature introduction modification) by analyzing the dataset by Bavota et al. (2015). They
concluded that code duplication and Self-Admitted Technical Debt (SATD) are the main
reasons behind refactoring instances, and refactoring also helps increase code readabil-
ity. The impact of refactoring on code readability was the subject of the study by Sellitto
et al. (2022), who partially confirmed previous findings, showing that refactoring can also
negatively impact code readability metrics.

Kim et al. (2012) investigated the refactoring benefits and challenges at Microsoft by
conducting a survey, semi-structured interviews, and historical data analysis. They found
that refactoring is beneficial, leading to reduced inter-module dependencies and post-release
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defects. An empirical study was conducted by Bavota et al. (2012) to investigate the impact
of refactoring on defects. They found that generally, refactoring instances do not induce
defects. However, in specific cases, some specific refactoring types (e.g., Pull Up Method
and Extract Subclass) tend to introduce defects in code.

6.2 Impact of Refactoring on Software Security

Mumtaz et al. (2018) investigated whether removing code smells through refactoring
resulted in improved security for a system. They conducted a study to identify a subset of
code smells and calculated security metrics on five systems. Then they applied refactoring
to remove the smells and then re-calculated the same metrics as before. They concluded
that generally, refactoring improved the quality of the studied systems from a security
standpoint. Ghaith and Cinnéide (2012) were interested in finding out whether automated
search-based refactoring improved software security. They achieved an improvement of
15% in the metrics of industrial software after applying search-based refactoring. However,
their study is based on a small project, and the results are not generalizable.

An empirical study was conducted by Abid et al. (2020) to determine the relationship
between quality and security and the impact of refactoring types on security. The results
of the study were used to implement a tool, which was then evaluated on OSPs. They con-
cluded that their tool improved the security of the systems with little impact on the quality.
They further validated their results by conducting a survey with practitioners. Similarly,
Alshammari et al. (2010a) assessed the impact of refactoring at the design level on security
using a case study. Their findings indicate that about 20 refactoring rules improve security,
12 rules made security worse, and four rules had no impact on security. In a follow-up study
(Alshammari et al. 2012), the authors evaluated the impact of refactoring on information
security using a case study. 8 out of 16 refactoring rules used improved the software’s secu-
rity while the remaining made it worse. Again, both studies being focused on one case study
cannot be generalized. Maruyama and Omori (2011) proposed a tool, implemented as an
Eclipse plug-in, to help developers assess the impact of their refactoring operations on soft-
ware vulnerabilities during software implementation. Currently, the tool supports only two
refactoring types, namely, Pull Up Method and Push Down Method, and measure security
using access levels (private, public, protected, and default) of fields. A downgrade in the
access level signifies that the software becomes more vulnerable. However, they evaluated
the tool using an artificial experiment (on one version of Eclipse) and not on real software.

6.3 Impact of Refactoring on Security-Related Technical Debt

Refactoring has been recognized in many studies as one of the most common ways to man-
age technical debt (Pérez et al. 2020; Codabux and Williams 2013; Codabux et al. 2014). In
this subsection, we review some studies to understand the impact of refactoring on security
debt (TD).

Zabardast et al. (2020) investigated the impact of various software development activi-
ties, including refactoring on TD by analyzing 2K+ commits in a large industrial project.
Their empirical study shows that refactoring removes 22% of TD but introduces an addi-
tional 22% TD. However, in most cases, refactoring did not impact TD. Search-based
automated refactoring using four different approaches was used by Mohan et al. (2016)
to determine the impact of refactoring on TD, among other aspects of development, on
six OSPs. They concluded that automated refactoring help decrease TD in software. How-
ever, these studies do not focus on security-related TD. Similarly, there are some studies on
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security smells, which are symptoms in the code that signals the prospect of a security vul-
nerability (Ghafari et al. 2017). Such studies investigate whether the security smells have
an impact on vulnerabilities and are conducted in specific domains (Ghafari et al. 2017;
Rahman et al. 2019).

6.4 Reflecting on Previous Work and Our Contribution

To summarize, the studies that investigate the impact of refactoring on software quality have
mixed results. Some reported a positive impact whereas others concluded that refactoring
increased TD or had no impact on it. Most existing studies focus on the impact of refac-
toring on software quality but very few investigate TD specifically. Similarly, the studies
which investigate the impact of refactoring on software security do not include security-
related technical debt. The studies are also limited, often focusing on one software system,
thereby making their results not generalizable. Despite refactoring being commonly used
to reduce technical debt, most existing research focuses on code smell as an indication of
debt, thereby explaining the lack of refactoring studies that focus on technical debt directly.
Similarly, security smells have been investigated in the context of vulnerabilities but not
refactoring. Abid et al. (2020) conducted a preliminary study to investigate the impact of
refactoring types on security but, to the best of our knowledge, investigating the actual
impact of refactoring on technical debt from a security standpoint has not been studied and
therefore represents a premier of our research.

7 Conclusion

The potential adverse effects of refactoring on software dependability have been previously
assessed concerning its relation to software defects (Bavota et al. 2012; Di Penta et al. 2020).
In this study, we went a step forward by considering the extent to which refactoring affects
software security. We have conducted a three-level analysis that considered the effects of
refactoring on (i) security metrics, (ii) security-related technical debt, and (iii) contribu-
tion to the introduction of known vulnerabilities. Our study had a primarily quantitative
connotation where we employed statistical methods on a set of 39 open-source projects.
Yet, we conducted additional manual analyses to extract qualitative insights and possible
motivations explaining the statistical findings. The core results of the study reported that
refactoring has a limited impact on security. Nevertheless, some exceptions indicate that
some particular types of refactoring operations might lead to significant variations of soft-
ware systems’ security profiles under different perspectives. Particularly interesting, in this
respect, was the case of refactoring operations dealing with the generalization that appeared
to disrupt the source code security.

Based on our findings, we identified several open issues and challenges for researchers,
especially related to the lack of automated mechanisms to balance multiple dependability
attributes. These outcomes represent our future research agenda, which is focused on the
definition of novel just-in-time vulnerability detectors, technical debt linters, and testing
methods to verify the presence and exploitability of software vulnerabilities. Addition-
ally, we plan to extend the study by considering a more comprehensive range of software
projects, refactoring operations (e.g., “big” or architectural refactoring (Martin and Kent
1999)), and security-related indicators (e.g., security smells (Ghafari et al. 2017)), other than
triangulating our findings with different research methods, e.g., through controlled studies
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able to reveal how different refactoring implementations may lead to a variation of software
security indicators.
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