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Abstract

Context Automated classifiers, often based on machine learning (ML), are increasingly
used in software engineering (SE) for labelling previously unseen SE data. Researchers have
proposed automated classifiers that predict if a code chunk is a clone, if a requirement is
functional or non-functional, if the outcome of a test case is non-deterministic, etc.

Objective The lack of guidelines for applying and reporting classification techniques for
SE research leads to studies in which important research steps may be skipped, key findings
might not be identified and shared, and the readers may find reported results (e.g., precision
or recall above 90%) that are not a credible representation of the performance in operational
contexts. The goal of this paper is to advance ML4SE research by proposing rigorous ways
of conducting and reporting research.

Results We introduce the ECSER (Evaluating Classifiers in Software Engineering
Research) pipeline, which includes a series of steps for conducting and evaluating auto-
mated classification research in SE. Then, we conduct two replication studies where we
apply ECSER to recent research in requirements engineering and in software testing.

Conclusions In addition to demonstrating the applicability of the pipeline, the replication
studies demonstrate ECSER’s usefulness: not only do we confirm and strengthen some find-
ings identified by the original authors, but we also discover additional ones. Some of these
findings contradict the original ones.
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1 Introduction

The increasing adoption of machine learning (ML) and deep learning (DL) techniques in
software engineering (SE) research have brought in research methods that SE researchers
are not yet fully familiar with. In particular, statistical results have become a prevalent
component of many SE papers.

Books such as Darrell Huff’s “How to lie with statistics” (Huff 1993) helped to make the
intricacies and pitfalls of statistical results part of popular culture. Many lay people under-
stand the drawbacks of reporting only the arithmetic mean without variance: for example,
the statement ‘On average, students read two books per year’ is not necessarily informa-
tive, since it could be drawn from very different populations such as {2, 2,2, 2, 2} and
{0, 0,0, 0, 10}.

When we bring this intuition to the machine learning for software engineering field
(MLASE), are we (SE researchers) able to recognize and avoid possible pitfalls when con-
ducting, reviewing, and reading MLASE research? Do we understand which results we can
confidently derive from our research (think of spurious correlation versus causation), and
do we disseminate our results in a fair manner? Also, can SE practitioners have confidence
that the results they read will translate to similar performance in an operational setting, i.e.,
in the software industry?

Motivating Example

A software engineer searching for a solution for automatically identifying
non-functional requirements from a list of requirements encounters a pub-
lished work that reports the Fi-scores of two classifier models as 0.89 and
0.87 on the test data set, without releasing further details on the study. Af-
ter reading the report and checking the related work, the software engineer
raises several questions:

1. Are the hyper-parameters of the models fine tuned?

2. What are the values of other performance metrics, which the software
engineer cares about, such as sensitivity, specificity, and accuracy?

3. Would the Fi-scores be the same with a different training-testing parti-
tioning of the data set?

4. Is the difference between the performance of two models significant? The
software engineer has just read that Light GBM’s implementation of gradient
boosted decision trees is up to 20 times faster than XGBoost’s [45].

5. Would the models perform similarly as good on her private data set?
Could these questions have been avoided if the SE researchers conducted and
reported their work on automated classifiers in a different way?

The SE research community is increasingly aware of these challenges, and some
researchers have started coping with them. For example, de Oliveira Neto et al. (2019) ana-
lyzed the predominant practices in empirical SE and proposed a conceptual model for a
statistical analysis workflow. Kitchenham et al. (2017) discussed the importance of prop-
erly analyzing non-normally distributed data, which are common in SE data. Mahadi et al.
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(2022) studied the effectiveness of classifiers when applied across projects, and they showed
the instability of the conclusion validity results.

In a broader context, the SIGSOFT empirical standards (Ralph et al. 2020) are emerging
as a response to the variety of research methods employed in SE, and to the difficulties of
authors and reviewers when reporting and assessing research. We align with this perspective,
and we focus on the provision of guidelines for conducting and reporting MLASE research.

In this paper, we follow the research approach described in Section 2 to study how to
rigorously conduct and report SE research that makes use of automated classifiers. A classi-
fier is an algorithm that maps each element of a data set to one or more categories (classes)
selected from a pre-defined list. Nowadays, the vast majority of classifiers employ ML and
DL: they learn a classification model from a training set, then they use that model to predict
the categories of a test set.

Our goal is to demonstrate the usefulness of following a simple pipeline that guides the
researcher while conducting and reporting on the research results. In particular, we make
the following contributions:

—  We introduce the ECSER (Evaluating Classifiers in Software Engineering Research)
pipeline for SE researchers to follow when conducting research with automated clas-
sifiers. ECSER adopts and consolidates recommendations from recent literature in MLL
and statistics, and customizes some of them—when necessary—to the context of SE
research. ECSER is specifically aimed to assist SE researchers with limited ML back-
ground to avoid common mistakes and to present their results in a credible and correct
manner.

— We conduct two replication studies—one in software testing, one in requirements
engineering—by applying the ECSER pipeline. In doing so, we illustrate ECSER and
we demonstrate its applicability and usefulness. The replications through ECSER allow
us to strengthen some of the conclusions that the original papers had made, and also to
identify additional findings, some of which contradict the original results.

— As part of ECSER, we include the metrics of overfitting and degradation for assessing
the expected operational performance of the classifiers. The aim of these metrics is that
of providing a credible assessment of ML4SE research results for other researchers and
practitioners.

— We make available a replication package (Dell’Anna et al. 2021) that the interested
reader can use to apply our pipeline in order to learn about it and as a starting point for
comparing their classifiers and/or their data sets.

The rest of the paper is structured as follows. Section 2 describes our research method.
Section 3 discusses related work. Section 4 presents the ECSER pipeline. Section 5 applies
ECSER to the classification of functional and quality requirements, while Section 6 applies
it to test case flakiness prediction. Section 7 discusses the threats to validity; Section 8
concludes the paper by listing the findings and the limitations of ECSER and by outlining
future work.

2 Research Approach
Triggered by the increasing use of classifiers in MLASE research, and by our personal obser-

vation on the varying styles and depth of reporting on the effectiveness of classifiers in SE
research, we set our main research question:
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MRQ. How can we enable SE researchers to accurately conduct and report on the
evaluation of automated classifiers?

To answer this question, we follow the three steps of the design cycle of Wieringa’s
design science research methodology (Wieringa 2014). First, we conduct problem inves-
tigation to discover the problems with the current situation, leading to our first research
sub-question:

RQ1. What are the challenges with the current research practices with classifiers in
SE research?

To identify these challenges, we conduct a review of the existing literature and we rely
on our own observations and experience as researchers in the MLASE field. The answer to
this research question can be found in the challenges that are listed in Section 3.

The second step of Wieringa’s design cycle is to design a treatment to improve the current
situation. This step is mapped to our second research sub-question:

RQ2. What is an easy-to-use, tangible artifact that can assist SE researchers when
conducting and reporting research on classifiers?

We answer this question by proposing ECSER, a pipeline for SE researchers to use when
constructing and evaluating classifiers. The pipeline is detailed in Section 4. The design
process is guided by existing ML literature and by our experience. As evidenced in Table 1,
the design of ECSER is informed both by general literature on machine learning (specif-
ically: classifiers) and by specific SE literature that made use of classifiers. We decided
to create an ML4SE-specific pipeline because we could not find an explicit step-by-step
process in the literature. The main steps are mostly a consolidation of the steps suggested
by major machine learning textbooks (Sheskin 2020; Flach 2012; Bishop 2006). We pay
special attention to statistical techniques for a robust comparison among multiple classi-
fiers (Demsar 2006; Benavoli et al. 2016a, 2017b), a topic that has also been discussed by
prominent ML4SE researchers (Menzies and Shepperd 2019). Significant discussion of the
metrics (S7) occurs both in the general ML (Japkowicz and Shah 2011; Lever 2016) and
in the MLASE (Yao and Shepperd 2020) literature. The interested reader may find detailed
descriptions of the topics in the papers and books listed in Table 1.

Third, Wieringa’s design cycle suggests to perform treatment validation for the design
artifact, which in our case leads to the following sub-questions:

RQ3. How applicable is the pipeline to ML4SE research?
RQ4. How useful is the pipeline when applied to MLASE research?

To answer RQ3 and RQ4, we conduct two replication studies in different sub-fields of
SE: (i) requirements engineering, via the classification of functional and quality require-
ments (Hey et al. 2020a; Kurtanovic and Maalej 2017; Dalpiaz et al. 2019); and (ii) software
testing, via the detection of test case flakiness (Alshammari et al. 2021a; Pinto et al. 2020).
These studies, reported in Sections 5 and 6, respectively, were selected because the authors
provided ready-to-use replication packages, their classifier comparison represents well the
current practice regarding classification in SE research, and these studies did not assess the
operational performance of the classifiers on unseen data. These replications allow us not
only to derive a number of lessons learned regarding the pipeline (the object of our study),
but also to identify findings concerning the replicated studies that were not present in the
original publications.
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Table 1 Overview of the main ML and ML4SE-specific literature that we consulted during the design of
ECSER, referring to the steps presented in Section 4

Step

General ML MLASE-specific

S1. Select an evaluation

method and split the data

S2. Train the model

S5. Test the model

S3. Hyper-parameters
tuning and validation

S4. Re-train with
optimized params

S6. Report the confusion
matrix

S7. Report metrics

S8. Analyze overfitting
and degradation
S9. Visualize ROC

Flach (2012),
Read et al. (2011),
Japkowicz and Shah (2011)

Dalpiaz et al. (2019),
Herbold et al. (2020)

Tran et al. (2020) Fu et al. (2016),
Tantithamthavorn et al. (2019),
Liu et al. (2021),

Agrawal et al. (2021)

Flach (2012), Lever (2016) Hall et al. (2012)

Lones (2021), Adams and Hand (2000),
Stapor (2017), Flach (2012),
Sorower (2010), Japkowicz and Shah (2011),
Lever (2016)

Cawley and Talbot (2010),
Bishop (2006)

Boyd and Eng (2013),

Yao and Shepperd (2020),
Berry (2021),
Cleland-Huang et al. (2010)

Goadrich et al. (2006),
Lever (2016),

Fawcett (20006),

Flach (2012)

Sheskin (2020), Demsar (2006),
Benavoli et al. (2017b, 2016a),
Salzberg (1997), Stapor (2017),
Japkowicz and Shah (2011),
Good (2013)

S10. Apply statistical Menzies and Shepperd (2019)

significance tests

3 Related Work

Software engineering is one of the many fruitful domains for machine learning applications.
In the early 2000s, Menzies’ handbook provided practical examples of the use of machine
learning for software engineering problems (Menzies 2001). Zhang and Tsai (2003) listed
the software engineering tasks that are powered by machine learning as i. prediction and
estimation, ii. property or model discovery, #ii. transformation, iv. generation and synthesis,
v. reuse library and construction, vi. requirements acquisition, and vii. capture development
knowledge.

Over the past 20 years, the application of ML techniques to SE problems has become
increasingly prevalent. Supervised ML techniques for classification can be easily applied by
non-experts using libraries such as scikit-learn (Pedregosa et al. 2011) or Weka (Hall et al.
2009). Similarly, deep learning frameworks such as TensorFlow (Abadi et al. 2015) enable
their users to quickly build large-scale neural networks for machine learning tasks such as
classification, among others.
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The many available tutorials and code snippets allow using classifiers without fully
understanding the differences between the algorithms, the validation and testing options,
or how to interpret the results. Therefore, ML techniques and tools are often used without
proper knowledge, and the lack of understanding of the underlying complexities of the ML
models may lead to poorly reported results.

In the broader ML field, researchers warned about the possible negative consequences of
uninformed classification applications and provided guidelines to follow. Salzberg (1997)
lists what to avoid when comparing classifiers and recommends using multiple algorithms, a
benchmark, cross-validation with parameter optimization within each fold, and the binomial
test to assess statistical validity. Adams and Hand (2000) discuss the use of suitable metrics
for a reliable assessment of classifier performance. Demsar (2006) focuses on comparing
classifiers over multiple data sets in such a way to obtain statistical significance. Benavoli
et al. (2017b) adopt Bayesian Analysis to compare classifiers, and they also argue (Benavoli
et al. 2016a) for the use and selection of post-hoc tests based on mean-ranks when com-
paring classifiers. Stapor (2017) provides the basic steps of classifier evaluation and lists
alternative approaches for each step. Herbold (2020) presents Autorank: a software for non-
experts that automatically ranks classifiers based on their performance. These are just a few
examples of the complexity of conducting a solid evaluation of a classifier’s effectiveness.

Despite the variety of guidelines provided by the ML research community and by
the numerous textbooks on ML and statistics (e.g., Flach 2012; Sheskin 2020; Jap-
kowicz and Shah 2011), researchers and practitioners in domains such as biomedical
research (Luo et al. 2016; Tanwani et al. 2009), combinatorial science (Siebert et al. 2020)
and medicine (Alonso-Betanzos et al. 2015) have raised concerns about the use and report-
ing of ML techniques by non-experts. Luo et al. (2016), for instance, highlight that ML
is often considered a “black magic” by scholars in biomedical research and that this often
leads to difficulties in interpreting the reported results and to spurious conclusions, which
can compromise the credibility of other studies and discourage researchers from adopting
ML techniques. SE is not dissimilar from these domains, for all are heavily affected by the
emergence of ML.

Challenge 1

The easy access to ML techniques and code snippets allows researchers to apply
these techniques as a black boxr without being fully aware of the intricacies of

configuring and evaluating classifiers.
_/

To assess the situation within SE research, we conducted an exploratory mapping study
(raw data in our supplementary materials (Dell’Anna et al. 2021)) of the proceedings of
the International Conference on Software Engineering (ICSE) from the year 2019 through
2021. We aimed to identify those papers that use classifiers and are, therefore, conducting
and reporting research on classifiers in SE.

To conduct this analysis, the three authors of this paper have independently analyzed one
year of the ICSE proceedings by checking relevance through the title, abstract, and full text.
We first looked at the title and we read the abstract when possibly relevant. If the abstract still
indicated potential relevance, we checked the paper. Since our analysis is meant to explore
the problem, we decided to rely on a single annotator per paper for this preliminary task.

For each relevant paper, we collected information regarding the (i) used evaluation met-
rics: precision, recall, accuracy, F-Score, ROC-AUC; an (ii) explicit justification for the
metrics: no, related to previous work, yes, implicit in the type of study (e.g., the RQ
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mentions accuracy); (iii) inclusion of the confusion matrix, which enables the reader to
determine all other metrics; (iv) evaluation over multiple data sets, which is important for
the generalization of the results; (v) type of baseline being used: none, own, external; and
(vi) analysis of statistical significance of the obtained results.

Table 2 summarizes the findings resulting from the exploratory mapping study. The study
confirms the popularity of machine learning, and in particular automated classification via
machine learning, for software engineering research. Out of the 376 papers accepted in the
technical track of ICSE, we have marked 60 as related to classification tasks (circa 16% of
the accepted papers).

Unfortunately, the analysis also confirms that, similarly to other research fields, also in
SE research, the essential details are often omitted or poorly reported in the evaluation of
ML-based solutions, leading to hard-to-reproduce and sometimes misleading results. The
analyzed papers followed various steps for their machine learning pipelines and reported
their results in different ways. Among the 60 marked papers, primarily based on ML or DL,
precision and recall are the most reported performance metrics (38 times each), followed
by F-score (27) and accuracy (24). Only one-fourth of the papers (14/60) do explicitly jus-
tify their selection of the metrics. Many (20/60) refer back to the custom metrics in the field
(thus, if previous authors use inadequate metrics, the problem propagates through the com-
munity) or, in the ML literature. Twenty-three studies do not provide any explanation at all.
For three papers, the justification is implicit in the kind of study, e.g., the title mentions
a study on accuracy and the selected metric is therefore apparent. The confusion matrix,
which provides a comprehensive analysis of the performance of a classifier and can be used
to compute most performance metrics (Flach 2012), is reported only in six papers.

Table 2 Summary of the exploratory mapping study of the proceedings of the ICSE conference from the
year 2019 through 2021

Year 2019 2020 2021 Total
Accepted ICSE papers (Main track) 109 129 138 376
Papers related to classification 19 (1743%) 14 (10.85%) 27 (19.57%) 60 (15.96%)
Evaluation metrics  Precision 15 (78.95%) 7 (50%) 16 (59.26%) 38 (63.33%)
Recall 17 (89.47%) 6  (42.86%) 15 (55.56%) 38 (63.33%)
Accuracy 7 (36.84%) 2 (1429%) 15 (55.56%) 24 (40%)
F-Score 9 (4737%) 6  (42.86%) 12 (44.44%) 27 (45%)
AUC 2 (10.53%) 3 (21.43%) 4  (14.81%) 9 (15%)
ROC plots 2 (1053%) 0  (0%) 1 (3.7%) 3 (5%)
Metrics justification No 8 42.11%) 7 (50%) 8 (29.63%) 23 (38.33%)
Implicit 1 (5.26%) 1 (7.14%) 1 (3.7%) 3 (5%)
Previous work 5 (26.32%) 5 (35.71%) 10 (37.04%) 20 (33.33%)
Yes 5 (26.32%) 1 (7.14%) 8 (29.63%) 14 (23.33%)
Confusion matrix 1 (5.26%) 3 (21.43%) 2 (741%) 6 (10%)
Evaluation over multiple dat sets 9 47.37%) 7 (50%) 20 (74.07%) 36 (60%)
None 1 (5.26%) 1 (7.14%) 3 (11.11%) 5 (8.33%)
. Own 8 (42.11%) 4  (28.57%) 7 (25.93%) 19 (31.67%)
Type of baseline
External 5 (26.32%) 9 (64.29%) 13 (48.15%) 27 (45%)
External and Own 5 (26.32%) 0  (0%) 4 (14.81%) 9 (15%)
Analysis of statistical significance 5 (26.32%) 0 (0%) 1 (3.7%) 6 (10%)
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Challenge 2

For most ML4SE papers, it is unclear why a performance metric was selected,
and it is difficult to verify the metrics or to calculate other metrics due to the

omission of the confusion matrix.
J

Visualization of the results with receiver operating characteristic (ROC) plots is also quite
unpopular: 3/60. Interestingly, even though 55 papers compare their results with an external
baseline or with the authors’ previous work, just six papers report the statistical significance
of the results, a recommended practice by the machine learning community (DemSar 2006)
for drawing solid conclusions.

Challenge 3

Statistical significance of the results is hardly analyzed: from this perspective,

ML4SE research is behind other disciplines, e.g., social sciences or medicine,

where statistical significance is a must. ]

To mitigate these and other challenges, researchers and practitioners of different fields
outlined ML guidelines tailored for the particular domains (Wang et al. 2020; Luo et al.
2016; Greener et al. 2022). The intent and benefit of such guidelines are not only to make
accessible to non-experts the scattered, dense, and non-trivial ML knowledge that is essen-
tial for conducting adequate research but also to present such knowledge via examples and
case studies that are relevant for the particular domain, so to facilitate the transfer of knowl-
edge. We follow the same idea, and to promote better practices in SE research, we devise
guidelines for the conduction and evaluation of classifier research in SE.

Guidelines have already proven helpful for many areas of software engineering research.
Jedlitschka et al. (2008), for example, provide detailed guidelines on planning and reporting
controlled experiments for SE in a level of detail, including the title, keywords, variables,
and the discussion of the experiments. Kitchenham (2004) list the tasks and sub-tasks for
planning, conducting, and reporting systematic reviews targeting the SE researchers as the
audience. Similarly, Kuhrmann et al. (2017) present guidelines on designing literature stud-
ies for SE based on the authors’ experience. Each process step is identified, starting from
preparation, and continuing with the data collection, study selection, and conclusion steps.
Garousi et al. (2019) focus on reporting grey literature and conducting multivocal literature
reviews for SE. Garousi and Felderer (2017) also share their guidelines for data extraction
in systematic reviews based on their experience. Petersen et al. (2015) update their previous
guidelines for conducting systematic mapping studies (Petersen et al. 2008) discovering the
existing guidelines were insufficient and therefore providing additional guidelines to sup-
port SE researchers. Fagerholm et al. (2017) propose guidelines for using empirical studies
in SE education covering learning outcomes, planning, scheduling, and use of empirical
studies for SE research.

Concerning MLASE, however, only limited support exists for SE researchers. The work
of Agrawal et al. (2021), for example, discusses good practices for hyper-parameter opti-
mization. Rajbahadur et al. (2021), instead, focus on the impact of the noise of the dependent
variable introduced by discretization on classifiers. In the context of software analytics,
Menzies and Shepperd (2019) present a list of “bad smells”, a term used in the agile soft-
ware community to denote surface indicators of deeper problems. Examples include the
focus on statistical significance rather than effect size, lack of data visualization, dangers of
overfitting, and partial reporting of results. Yao and Shepperd (2020) discuss the importance
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of metric selection and the issues in using common metrics such as Fj-score. Clear guide-
lines for reporting classification-related SE research are currently missing and scattered in
the literature. We argue that the lack of a standard way to report classification results that we
noted in our exploratory mapping study is partly due to the lack of, and could be mitigated
with, guidelines for reporting classification-related SE research.

4 ECSER: A Pipeline for Evaluating Classifiers in SE Research

We present ECSER (Evaluating Classifiers in Software Engineering Research), our pipeline
for SE researchers to use when conducting and reporting on SE research that evaluates one
or more classifier models (algorithms). ECSER was designed following the research method
described in Section 2, in order to answer RQ2, starting from extensive research into the
literature in ML and our own experience.

Figure 1 illustrates the ten steps of ECSER, which are organized into two macro-
activities: (i) the training, validation & testing of the classifier, and (ii) the analysis of the
obtained results. The steps are presented sequentially for simplicity. Feedback loops are
possible between the macro-activities (see the < arrows), either when one macro-activity
finishes or at any time when an issue is identified. For example, if the performance met-
rics (S7) show high variance, the researcher may want to backtrack to treatment design

Treatment Validation: ECSER pipeline

( Treatment Design ) ﬁaining, Validation, Testila ([ Results Analysis \

R
Dataset selection S1: Select an evah_Jatlon S6: Report confusion
& curation method & split matrix
the data
- J
—_— v
Feature
enginering S2: Train the models S7: Report metrics
—_— i
Algorithms i |
selection <:> 1 S3: Hyper-parameters ; <:::> S8: Analyze overfitting
e ' tuning & validation E and degradation
Sy v
— } St:Retrainwith - $9: Visualize ROC
! optimized parameters :

;/ Ss, Test the models E SlO Apply StatlStlcal

significance tests

Fig.1 The ECSER pipeline for evaluating classifiers in SE research, which can be seen as the treatment vali-
dation phase in Wieringa’s design science research methodology (Wieringa 2014). Steps with a dashed border
are optional. The < arrows indicate that feedback loops are always possible across the macro-activities
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and conduct additional feature engineering, or to change the classifier algorithm, and then
re-execute the pipeline from S1.

Looking at ECSER from the lens of Wieringa’s design science research methodol-
ogy (Wieringa 2014), it defines the treatment validation phase for SE researchers who are
designing classifiers as their treatment. On the left of the figure, treatment design—outside
the scope of this paper—includes important activities such as data set selection and curation,
feature engineering, and algorithms selection.

Treatment Design This macro-activity corresponds to those steps that the researchers need
to conduct to build their solution and develop their data set. The selection and curation of
a data set focus on identifying real-world or synthetic data to assess the performance of
the classifier(s). Explicit guidelines on how to transparently and credibly conduct this step
are proposed, e.g., by Hutchinson et al. (2021). Algorithm selection involves the choice of
the ML or DL algorithms such as Support Vector Machines, Gradient Boosting, Random
Forests, and Neural Networks. Typically, studies in SE research opt for multiple algorithm
so that a comparison can be made (Ghotra et al. 2015; Agrawal and Menzies 2018; Kur-
tanovic and Maalej 2017; Hey et al. 2020a). When ML algorithms are chosen, feature
engineering is necessary to construct those features that the learning algorithm uses to pre-
dict a given data item’s class(es). This is a broad topic about which entire books were
written (Dong and Liu 2018; Duboue 2020). In ML4SE research, a multitude of feature
types can be derived by using project management data (Montgomery et al. 2018), code met-
rics (Menzies et al. 2010), change metrics (Moser et al. 2008), textual artifacts (Kurtanovic
and Maalej 2017), etc.

4.1 Training, Validation, Testing

S1. Select an Evaluation Method and Split the Data First, a researcher needs to decide on
an evaluation method, i.e., which (and how) input data will be used to evaluate the classi-
fiers, and split the data accordingly. Several alternatives exist. The simplest and one of the
most popular methods is the holdout method where the data is split into training, validation,
and test sets. In this setting, the model is trained using the training set (S2), the model’s
hyper-parameters are fine-tuned utilizing the validation set (S3), and the model is evalu-
ated on the test set (S4-S5). One disadvantage of this method is that the results are possibly
unstable, for the model is validated only once on the validation set. A more robust alterna-
tive is k-fold cross-validation: a test set is extracted from the data set, and the remaining
data is shuffled and split into k groups (folds). k-fold cross-validation (S2-S3) consists of
repeating k times training and validation. Every time one group is held as the validation set,
the remaining k — 1 groups are used to train the model. The model’s hyper-parameters are
fine-tuned with respect to the average performance on the k folds. k-fold cross-validation
can be stratified to keep the positives/negatives ratio roughly even across the groups. The
resulting model is then evaluated on the test set (S4-S5).! Clearly, k-fold cross-validation
requires more computational effort, because k models are trained and tested.

1To make results reproducible, it is good practice to specify a seed number for initializing the random-number
generators used in classifiers, fold generation, sampling, etc. For example, the KFold class from the sklearn
Python library can be created by indicating a RandomState instance and specifying the random seed to
use.

@ Springer



Empir Software Eng (2023) 28:3 Page 110f40 3

Specific to the SE research, projects can be used to partition the data set when the data
consists of multiple sub-sets from different SE projects. This is referred as the p-fold vali-
dation method, to emphasize the by-project splits (Herbold et al. 2020; Dalpiaz et al. 2019).
Different projects can be used as validation and test sets for the holdout method. For p-fold
cross-validation, some projects can be used as test sets and, rather than randomly shuffling
the remaining data into sub-groups, the projects can be taken as a unit. For each of the p iter-
ations, one project is held for validation and the remaining are used for training. One of the
challenges is the existence of unevenly sized projects, e.g., too small projects or extremely
unbalanced projects may lead to not-so-reliable results when used as the validation set. One
special case of the p-fold method is the leave-one-project-out (LOPO) method; similarly to
k-fold cross-validation, the data of a single project is reserved for testing while the rest is
used for training. The p-fold method is more recent and hence less popular. On the other
hand, dividing data per project is a realistic test setting for the software engineering domain
to explore the generality of the results.

When the researchers have a data set that includes data from five distinct projects, they
have several options. The simplest method is the holdout method, where the researchers
would randomly set aside 20% of the data for testing and use the remaining 80% for training
and validation. In this one-shot setting, the results are not so reliable since how the data is
split directly impacts on the results. To reduce this effect, the researchers may opt for k-fold
cross-validation, and if they set k to 10, they would train and test 10 different models and
report the average results. The researchers may also get curious about the generality of the
results and pose the question “How would our classifier model perform on a new project?”.
In this case, they may leave one project out for each fold, train the classifier model with the
data from four projects and test the model on the remaining one. Then, they would report
the average results.

$2-S5. Train, Validate, Test The decisions taken in S1 shape the following four steps: the
traditional train (S2), validation (S3), and test (S5) activities in ML. S4 is introduced to
emphasize the need to re-train the model after hyper-parameter tuning. After separating the
test set in S1, S2 trains the classification model with the part of the data set that is not
used as a test set. To train a classifier means to identify values for its parameters that allow
the classifier to predict the desired output given different inputs correctly. The parameters
that need to be identified depend on the selected algorithm. For example, training a Neural
Network classifier means determining the weights associated with the connections between
neurons. Similarly, training a Support Vector Machine means determining the coefficients
of the variables of the polynomial function that characterizes the classifier.

A difference exists depending on the validation method. For the holdout method, the
training step is executed by excluding the validation set. This set is used in S3 to run
hyper-parameter tuning to identify those (hyper-)parameters that predict the validation set
best. Instead, the optimal hyper-parameters are identified for cross-validation by iterating
across the k folds. Hyper-parameters are different from the parameters of the models that
are trained in S2. While model parameters characterize how the input data should be trans-
formed into the desired output, hyper-parameters define the structure of the model that is
being trained. For example, the hyper-parameters of a Random Forest include the number
of decision trees to be considered in the forest or the maximum depth to allow for each deci-
sion tree. An example of hyper-parameter of Support Vector Machines is the degree of the
polynomial features that characterize the model. For Neural Networks, hyper-parameters
include the number of neurons in every layer and the number of layers. Several methods
can be followed to perform hyper-parameter tuning. The most basic is grid search, where a
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model is built for every possible combination of all of the hyper-parameter values that one
intends to evaluate (e.g., for a Random Forest, one can consider the set {10, 20, 50, 100}
for the number of decision trees, and the set {5, 10, 15, 20} for the maximum depth of each
decision tree, and try all possible combinations of these values), and the architecture which
produces the best results on the validation set is selected. Another common alternative is
random search, where for each hyper-parameter, it is provided a statistical distribution from
which values are randomly sampled instead of giving a discrete set of values to explore for
each hyper-parameter.

In this step, the researchers should be careful not to overfit their model. For details on
hyper-parameter optimization, see Agrawal et al. (2021).

In S4, the model is re-trained using the best hyper-parameters identified in S3. A typ-
ical procedure to execute this is nested cross-validation, in which the model is trained
while hyper-parameters are optimized. In terms of ECSER, this corresponds to executing
S2 and S3 at the same time. The advantage of nested cross-validation is that it might
reduce the model’s bias toward the data set resulting from standard cross-validation. Still,
the researchers should pay special attention to avoiding overfitting when using nested
cross-validation (Cawley and Talbot 2010).

Finally, in S5, the optimized classification model is executed on the test set. S3 and S4
are optional in Fig. 1: although a good practice that may boost classifiers’ performance
and that can lead to simpler (e.g., to a Random Forest with a lower number of decision
trees) tuned classifiers that perform better than more complex untuned ones (Fu et al. 2016;
Tantithamthavorn et al. 2019), hyper-parameter tuning is not always effective and it may
require extensive computational time (Tran et al. 2020).

A recommended practice, which helps to assess the generality of a classification model,
is the inclusion of multiple data sets into the test set. When performing S4, this allows not
only to measure the performance on unseen data but also to run statistical tests across these
multiple data sets. We discuss this topic in S10.

Table 3 summarizes the Training, Validation, Testing phase of ECSER (i.e., steps S1-
S5) by illustrating how the classification model evolves and how the data set is split in the
holdout and cross-validation settings.

Table 3 Classification model and data set splitting in steps S1-S5 of ECSER, showing holdout and cross-
validation

Step Classification model Holdout X-Val

S1 None: the test set is extracted for use in S4 | | | |
S2 Fit non-test set with default hyper-parameters |:|

S3 Search hyper-parameters that predict the validation set best D |:| .

S4 Fit non-test set with optimal hyper-parameters from S3 D

S5 Model from S4
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Predicted Predicted
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Fig.2 Confusion Matrix (a) and an example of confusion matrix with no misclassifications of data points of
a generic data set D of size |D| (b)

4.2 Results Analysis

S6. Report the Confusion Matrix It is common to select a few metrics and to report only
them. We recommend, instead, to present the confusion matrix so to maximize usefulness
and information content of the reported data (Hall et al. 2012). A confusion matrix reports
the number of true positive (TP), false positive (FP), true negative (TN), and false nega-
tive (FN) results of a classifier. These four values comprehensively summarize the results
for all classes. The readers can use them to calculate any other metrics of interest, in addi-
tion to those that the research authors find relevant for the domain. Figure 2 illustrates a
generic confusion matrix alongside an example for a case where a classifier results in no
misclassification, i.e., it accurately classifies every data point in a data set D.

S7. Report Metrics Depending on the domain, the researchers will report the relevant per-
formance metrics; some examples of such metrics are shown in Table 4 (note how they all
follow from the confusion matrix), and examples of their values given different confusion
matrices are reported in Table 5. Precision and recall are complementary. The former evalu-
ates the correctness of the predicted samples and the latter (also known as sensitivity or true
positive rate) assesses the coverage of such predictions over the total number of positives.
The F; score is the harmonic mean of precision and recall.

Depending on the relative human cost of correcting false positives and false negatives,
the weights of precision and recall may change (Berry 2021), leading to adjusted versions
of the F-Score. For example, in their ML-based approach to tracing regulatory codes to
product requirements, Cleland-Huang et al. employ F,, where higher weight is given to
recall (Cleland-Huang et al. 2010). Specificity (true negative rate) is the ratio of the correctly
identified as irrelevant samples to the overall irrelevant samples. Accuracy is the ratio of
correct prediction to the overall cases. This metric is most suitable when the classes are
balanced (Lones 2021). For instance, note that in the first unbalanced example in Table 5,

Table 4 Examples of metrics for classifier performance

Metric Formula

Precision TP/(TP+ FP)

Recall (TPR) TP/(TP+ FN)

Specificity (TNR) TN/(TN + FP)

Accuracy (TP+TN)/(TP+TN+ FP+ FN)

F|-score 2 - (Precision - Recall)/(Precision + Recall)

Fg-score (14 B?)(Precision - Recall)/((B? - Precision) + Recall)

@ Springer



3 Page 14 of 40 Empir Software Eng (2023) 28:3

Table 5 Examples of values of different metrics, given different confusion matrices

Data set TP FP TN FN Precision Recall Specificity Accuracy Fj-score Fj-score
Size: 12, 5 2 4 1 0.71 0.83 0.67 0.75 0.77 0.81
Balanced 4 4 2 2 0.50 0.67 0.33 0.50 0.57 0.63
2 0 6 4 1.00 0.33 1.00 0.67 0.50 0.38
6 0 6 0 1.00 1.00 1.00 1.00 1.00 1.00
4 2 4 2 0.67 0.67 0.67 0.67 0.67 0.67
3 3 3 3 0.50 0.50 0.50 0.50 0.50 0.50
Size: 100 99 1 0 0 0.99 1.00 0.00 0.99 0.99 1.00
Unbalanced 98 1 0 1 0.99 0.99 0.00 0.98 0.99 0.99
0 0 9 1 - 0.00 1.00 0.99 - -
0 1 98 1 0.00 0.00 0.99 0.98 - -

accuracy is almost perfect (0.99), despite the only negative data point has been misclassified,
i.e., 100% of negative data points have been misclassified.

The researchers should choose the metrics based on their research goal and the prob-
lem (Yao and Shepperd 2020). Consider a system that deletes chunks of code if a classifier
labels them as useless. For such a system, precision is crucial, as false positives would
have catastrophic results. The recall metric might be more important for another system that
marks chunks of code as smelly. Other cases may call for combining recall and precision
with different weights, so Fg metric would be suitable. Berry (2021) discusses this issue
specifically for requirements engineering problems.

In addition to reporting the performance of the optimized classifier model, the metrics are
also helpful when comparing multiple classifier models. Although it is common to report
the metrics for the performance of the classification model on the test set, the researchers
should also share the metrics for the train and validation set to demonstrate the evolution
of the classification model performance and to increase the replicability of their results.
Primarily when the k—fold cross-validation method is adopted, presenting the mean and
standard deviation of the metric values for the folds, as well as the cumulative confusion
matrix across the folds (i.e., a confusion matrix where the values of TP, FP, TN, and FN are
the sum of all the corresponding values obtained in every fold), provide a better insight for
the performance of the classification model.

S8. Analyze Overfitting and Degradation This is one of the steps of ECSER that are less
common in current research. Since SE research aims at principled ways of tackling prac-
tical problems, we propose that classification studies should report on the differences in
performance between training, validation, and test sets.

Overfitting. ECSER quantifies overfitting by calculating the difference between the per-
formance on the test set and the performance on the training set, using the metrics that were
employed in S7. Thus, let M be the performance metric of relevance, then overfitting =
M5t — My, If multiple data sets are used for testing, we can compute the average overfitting
as per (1), where 7est is the set of data sets used for testing, and #r is the training set.

> (M — My) (1)

teTest

average overfitting = Tost |
es
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Based on the practical SE task that the classifier means to support, different metrics can
be used to assess overfitting. Standard overfitting metrics include accuracy, mean square
error (MSE) and zero-one loss (Bishop 2006). Accuracy and zero-one loss are suggested
for binary classifiers whose output consists of the label assigned to the data points (e.g., an
automated classifier extracts non-functional requirements from a specification document).
Metrics such as MSE and other continuous loss functions (e.g., logistic or exponential loss),
instead, provide a more fine-grained evaluation of the errors of the classifier, and they are
more relevant for classifiers whose output is a score or a probability that a data point belongs
to a particular class (e.g., a classifier that annotates non-functional requirements with the
likelihood that they refer to one of the qualities from the ISO/IEC 25010 standard). Finally,
when standard overfitting metrics are less relevant for the practical SE task (e.g., if it is
essential that the classifiers have high recall), we recommend using the metrics in S7 also
for overfitting.

As an example, consider the first six confusion matrices from (the first six rows of)
Table 5 relating to six data sets of size 12. Suppose that the first matrix is obtained by a
classifier ¢ on the training set, the second matrix is obtained by ¢ on the validation set, and
the remaining four matrices are obtained on the test sets. Suppose to be interested in the
accuracy metric. The average overfitting w.r.t. the accuracy is therefore %((0.67 —0.75) +
(1.00—-0.75) 4+ (0.67 —0.75) + (0.50 — 0.75)) = —0.04, indicating that the trained classifier
present limited overfitting w.r.t. accuracy, since the average overfitting is close to 0.

Degradation. This metric compares the performance on the test set and that on the val-
idation set, using the metrics of S7. Its calculation depends on the partitioning of the two
sets. If both sets consist of a single project or consist of a data set that is not explicitly
split into projects, degradation is the difference in the considered performance metric M:
degradation = M.t — M, q1iq. In case the test set includes multiple projects or the validation
is conducted via k-fold, we suggest calculating an average degradation, similarly to average
overfitting in (1).

Continuing with the example introduced above, the average degradation w.r.t. the accu-
racy is %((0.67 —0.50) + (1.00 — 0.50) 4 (0.67 — 0.50) + (0.50 — 0.50)) = 0.21, indicating
no degradation of performance (actually an improvement) from the results obtained on the
validation set to the results on the test set.

When the test set consists of multiple projects and the validation is conducted via k-fold,
we recommend calculating degradation by statistically comparing the two distributions: the
metric for the multiple samples of the validation set (e.g., for each of the k folds) and
the metric for the various samples of the test set. If the data are normally distributed, the
independent samples T-Test can be used. Else, the non-parametric alternative is suggested:
Mann-Whitney’s U test. These tests assess whether the degradation is statistically signifi-
cant, i.e., if the p-value is below a given threshold. The researchers shall combine this result
with the effect size, a statistical measure describing a phenomenon’s strength. In line with
Sullivan and Feinn (2012), we recommend reporting on the effect size also when the p-
value is above the threshold in order to better interpret the results. This case may indicate
that the population is too small to derive statistically significant results, and the researcher
may want to increase the number of samples/projects. As an example of effect size, Cohen’s
d (Cohen 2008) computes the difference between two groups of measurements in terms of
their common standard deviation, and a phenomenon has no effect if |d| < 0.2; small effect,
if 0.2 < |d| < 0.5; intermediate effect, if 0.5 < |d| < 0.8; and large, if |d| > 0.8.
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An example of analysis of the degradation via the Mann-Whitney’s U test and the effect
size is provided in Table 14 in Section 6.2 when discussing the degradation of three state-
of-the-art flaky tests automated classifiers.

S9. Visualize ROC. Plotting the receiver operating characteristics (ROC) (Fawcett 2006)
helps the reader to visually comprehend the performance of the model. A ROC plot (an
example is reported in Fig. 3) has the true positive rate (T P/P) on the y axis and the false
positive rate (F P/N) on the x axis.

Each point on a ROC plot summarizes graphically a confusion matrix. Indeed, a ROC
plot is a coverage plot (i.e., a plot with the number of negatives in a data set on the x axis, and
the number of positives on the y axis), with normalized axes. The normalized axes allow to
deal with different class distributions, so that the plot always results squared, and classifiers
can be compared with respect to different data sets on the same plot.

In Fig. 3, we plotted the results obtained with three classifiers on a given data set. We
see that both Classifier 1 and 2 dominate Classifier 3, since Classifier 3 has lower TPR
than both of them but does not have lower FPR than any of them. We also see that neither
Classifier 1 nor 2 dominates the other: no clear winner can be established between them,
and the selection of the classifier will depend on the relative importance of TPs and FPs in
the specific problem that is considered. Since they are on the same diagonal, furthermore,
Classifiers 1 and 2 have the same average recall.

A ROC plot is especially useful for evaluating the performance of multiple classifiers, as
described in the following.

Testing generality across data sets. Every point in the ROC plot represents the perfor-
mance of one classifier on a data set. This can be useful when the test set includes multiple
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Fig.3 An example of ROC plot. The three data points report the results of three classifiers on a given data set
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SE projects. The researcher can identify, via visual analysis, the relative performance of the
models on these data sets. Figure 4 reports, as an example, a ROC plot that shows the per-
formance of four classifiers on 20 different data sets (note that for each classifier, the plot
contains 20 data points). By visually inspecting the plot, we can see that the performance of
Classifier 1 generalizes pretty well across all data sets: all data points are clustered together.
Moreover, since all data points are close to the so-called ROC heaven (the top left corner of
the plot), Classifier 1 performs almost perfectly on all data sets.

Conversely, the performance of Classifier 2 is generally poor, as for all data sets the
TPR is low and the FPR is high. Despite the poor performance, however, all data points are
generally clustered together, indicating that the (poor) results generalize across the data sets.
Classifier 3 illustrates a different case: since the data points are not clustered together, the
performance results do not generalize well across data sets and, while on some data sets the
TPR is high, in other data sets it is low. Visually, however, the FPR appears to be relatively
consistent across data sets, indicating that the lack of generality is mainly due to the TPR.

Exploring the sensitivity-specificity trade-off. In a ML classifier, a threshold ¢ can be
used to discriminate positives and negatives: the higher the threshold, the higher the proba-
bility that the classifier requires in order to associate an item with a class. A ROC plot can
be used to visualize a so-called ROC curve, which shows the performance of the classifier
with different thresholds. The area under the ROC curve (AUC) provides a summary mea-
sure that averages the accuracy across the spectrum of thresholds. It is worth noting that
plotting the ROC curve could sometimes be misleading in case of data imbalance (Boyd
and Eng 2013; Goadrich et al. 2006). In such cases, an alternative preferred visualization is
the precision-recall (PR) curve, and the associated AUPRC (area under the precision-recall
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Fig. 4 An example of ROC plot reporting the performance of three classifiers on 20 different data sets
composing the test set
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curve) measure. The best classifier in a PR curve is as close to the top right as possible (for
the ROC curve, the best classifier is as close to the top left as possible), where there is the
best trade-off of precision and recall (Lever 2016).

$10. Apply Statistical Significance Tests Seeing a difference in the values of the metrics or
on a plot does not entail a statistically significant difference in the performance of different
classifiers. Proper statistical testing must be conducted to confirm that two classifiers indeed
have meaningfully different performance.

Testing on a single data set. The randomization test (Good 2013) can be applied when
only one data set is available for testing. It is a non-parametric method, so it can be applied
even if the data are not normally distributed, or if the researchers do not know the dis-
tribution of the data. It tests the null hypothesis that the two classifiers yield to the same
performance. A randomization test can be conducted using any performance metric. The
idea is to verify if the results obtained with a classifiers are due to random chance by ran-
domly shuffling the data and comparing the performance obtained on the randomized data
with the actual one.

Testing on multiple data sets. Table 6 presents an overview of state-of-the-art methods
for testing statistical significance across multiple data sets. This was assembled based on
the recommendations on comparing multiple classifiers by DemSar (2006), the recent work
on Bayesian statistical analysis by Benavoli et al. (2016a, 2017b), and the documentation
of the Autorank Python package (Herbold 2020).

When comparing two classifiers, the simplest option is the paired samples T-Test. How-
ever, this requires each of the classifiers’ results to be normally distributed (Herbold 2020),
which is not a common situation when comparing classifiers (Demsar 2006); furthermore,
this test is sensitive to outliers (Benavoli et al. 2016a). Non-parametric tests that make no
assumptions on distribution and variance are an alternative. In particular, the most com-
mon options are Wilcoxon’s Signed-Rank test and the Sign test. They both rely on ranks,
rather than on the absolute difference in performance (as parametric tests do). Wilcoxon’s
Signed-Rank is preferable because of the stronger statistical power (Demsar 2006).

Table 6 A selection of state-of-the-art methods for testing statistical significance across multiple data sets

Test Normal? Same var? Highlights Suggested?

24 Classifiers: Pairwise Comparisons
Paired T . Sensitive to outliers (Demsar 2006),
based on the absolute difference

in performance

Wilcoxon Signed-Rank Based on ranks difference .
Sign Counts of wins, losses, ties. Weaker
than Wilcoxon (Demsar 2006)
Bayesian versions of Less affected by Type I Error. Requires
Wilcoxon or Sign definition of practical equivalence

(Benavoli et al. 2017b)
3+ Classifiers: Omnibus + Post-hoc test
Repeated measures ANOVA o . Post-hoc: Tukey’s HSD

Friedman Post-hoc: Nemenyi .
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An alternative approach is Bayesian analysis, a paradigm shift in statistics. Benavoli
et al. (2017b) explain the limitations of tests based on null-hypothesis testing and suggest
Bayesian variants of the Wilcoxon and Signed tests. While powerful and less affected by
Type I Error, these tests require the researcher to define a region for two classifiers to be con-
sidered as equivalent in practical settings. As the previous tests, Bayesian variants are run
in a pairwise manner. The number of comparisons to make, therefore, grows exponentially
with the number of classifiers.

When comparing a group of three or more classifiers, the most common strategy is to
run an omnibus test that determines whether the group of classifiers differ in a statistically
significant manner, and then a post-hoc test that reveals which pairs of classifiers are signifi-
cantly different. We recommend two cases, in line with Autorank’s documentation (Herbold
2020): (i) if the distributions are multivariate normal (Mardia 1970; Korkmaz et al. 2014),
and they have approximately the same variance (sphericity assumption), the repeated mea-
sures ANOVA test can be executed as an omnibus, followed by the post-hoc test Tukey’s
HSD; (ii) the standard non-parametric alternative is Friedman’s omnibus test, followed by
Nemenyi’s post-hoc (Demsar 2006).

Based on this discussion, SE researchers can safely use non-parametric tests as they
do not make assumptions of normality (unbalanced data sets are likely to break this
assumption). Wilcoxon’s Signed-Rank and Friedman plus Nemenyi’s post-hoc are the go-to
options. The more ML-savvy researchers are invited to consider all the options in Table 6
based on the necessary analyses that need to be conducted prior to employing the tests. In
Sections 5 and 6, we provide several examples of application of the statistical tests described
above in two case studies comparing multiple classifiers on multiple data sets.

In some cases, the available data might be insufficient for providing meaningful
statistical results. This is why step S10 is indicated as optional in ECSER.

4.3 Multi-class and Multi-label Classification

ECSER also applies to multi-class (24 classes) and multi-label (14 labels per sample) clas-
sification tasks. In multi-class problems (e.g., the problem of determining whether an app
review is positive, neutral, or negative), the classes that can be attributed to data points
are mutually exclusive. In multi-label problems, instead, each data point can be attributed
multiple labels (e.g., a non-functional requirement can be related to both performance and
security quality aspects). These problems can be reduced to several binary (2 classes, 1
label per sample) classification tasks by applying a one-vs-rest strategy, consisting in fit-
ting a different binary classifier per each class (or label) against all other classes (labels).
This strategy, applied in Section 5, is computationally efficient (it requires to train n binary
classifiers, n being the number of classes or labels) and it is the most commonly used
and advisable since it provides interpretable results about the specific classes/labels. With
one-vs-rest, all steps of ECSER are only affected in that they need to be repeated for each
class/label. ECSER also applies, with the exception of S9, to those less common multi-label
classification problems where it is relevant to evaluate the classifiers w.r.t. all labels at the
same time. In particular, S1-S5 are analogous, but need to be performed with a model that
produces all labels for a given sample (e.g., classifier chains (Read et al. 2011)). In S6, a
multi-label confusion matrix can be reported. For S7-S8, the literature offers several metrics
such as the Jaccard index, the Hamming loss, or the multi-label generalizations of precision,
recall, F, and accuracy (Sorower 2010). S9 cannot directly be applied for this particular
type of task, unless one-vs-rest is applied. Finally, S10 is identical: the tests described in
Table 6 can be applied w.r.t. the appropriate metrics selected for S7.
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5 Case #1: Functional and Quality Requirements

As a first case study to answer RQ3 and RQ4, we take the well-known problem of clas-
sifying functional and non-functional requirements (Cleland-Huang et al. 2007), which is
motivated by the importance of identifying quality aspects in a requirements specification
starting from the early stages of SE. In line with recent literature (Kurtanovic and Maalej
2017; Dalpiaz et al. 2019; Hey et al. 2020a), we consider two independent classification
tasks: that of identifying if a requirement contains functional (isF’) and non-functional (isQ)
aspects, respectively.

We apply ECSER to three of the most recent classifiers of requirements available in the
field: ling17 (Dalpiaz et al. 2019), km500 (Kurtanovic and Maalej 2017) and norbert (Hey
et al. 2020a). We compare these classifiers for two reasons. First, they adopt different
strategies and NLP approaches for requirements classification. In particular, as we detail
in Section 5.1, while lingl7 leverages 17 high-level linguistic features, km500 is based on
hundreds of low-level word features such as n-grams and POS n-grams, and norbert relies
on a deep learning model. This aspect allows us to illustrate that the application of ECSER
is independent of the type of classifiers and features being evaluated. Second, the three clas-
sifiers were recently compared on the same tasks that we consider by Hey et al. (2020a).
Such comparison, however, is limited to the validation of the trained classifiers, i.e., step S3
of ECSER. We can therefore consider the work by Hey et al. (2020a) as our baseline, and
use it to illustrate the usefulness of following the entire ECSER pipeline.

We make two contributions to the literature:

1. We annotate six additional data sets, four of which are released publicly (see Table 7).
2. We provide additional insights by carrying out the missing steps of ECSER, specifically,
by testing the performance of the trained classifiers on unseen real-world projects.

5.1 Training, Validation, Testing

S1: Select an Evaluation Method and Split the Data Most of the recent literature in
requirements classification (Kurtanovic and Maalej 2017; Li et al. 2014; Hey et al. 2020a)
focused, for evaluation purposes, on validating their results on the PROMISE NFR data
set (Cleland-Huang et al. 2006), a collection of 625 requirements from 15 projects, cre-
ated and classified by graduate students. These works either split the PROMISE NFR data
set into training and validation sets or apply cross-validation to PROMISE NFR. Almost

Table 7 Overview of the data sets of requirements

Data set Public New Size F Q  Dataset Public New Size F Q
Dronology v 97 94 28 OAppT v 140 84 53
DUAP v v 148 138 110 PROMISENFR Vv 625 310 382
ERec mgmt v v 228 163 149 RepReq v 99 40 47
ESA 236 91 211 ReqView v 87 75 32
Helpdesk 172 143 51  Streaming v v 291 135 233
Leeds Library v 8 44 61  User mgmt 138 126 25
NFR-Examples v v 130 15 117 WASP v 62 55 19
Totals 2538 1513 1518
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no work in the literature completed ECSER after S3, i.e., by providing testing results after
validation. The only exception we are aware of is our previous work (Dalpiaz et al. 2019);
however, this study does not run statistical tests nor does it study overfitting and degradation
in depth.

To study the generality of these classifiers in operational contexts, we consider 13 data
sets from real-world projects other than PROMISE NFR: see Table 7 for an overview.
According to existing terminology (Zimmermann et al. 2009), we are therefore investigat-
ing cross-project prediction. At the expense of some replicability, we decided to use private
projects, protected by non-disclosure agreements with industrial partners, to ensure that our
test set consists of real, operational projects.

In line with the literature, we use PROMISE NFR as the training set in S2, and we choose
the holdhout method to test the trained classifiers on the 13 data sets in S5. Since we wish to
explore the effectiveness of the classifiers on unseen data (S5. S5Long), we do not perform
hyper-parameter tuning and validation. We take the classifiers as proposed in the literature,
using the optimal hyper-parameters identified by the authors. Hence, we do not carry out
S3-S4.

$2-S5: Train the Model and Test the Model We use the full PROMISE NFR data set to
train both ling17 and km500. We train each model separately for the two classification tasks
isF and isQ. In the case of norbert, we use the pre-trained models that the authors made
available in the replication package (Hey et al. 2020b), which also used PROMISE NFR as
training set after hyper-parameter optimization.

We do not go into the details of the models and their features, which can be found in the
corresponding papers and our online supplementary material (alongside the code and the
public data sets) (Dell’ Anna et al. 2021). Table 8 provides an overview of the major differ-
ences between the classifiers. We observe that both ling17 and km500 employ SVM. ling17
uses a fixed set of 17 high-level linguistic features (e.g., dependency types), km500 consid-
ers the top 500 low-level word features (e.g., n-grams, or POS n-grams) that characterize
the training set. The norbert classifier, instead, adopts a transfer learning approach and is
grounded on BERT (Devlin et al. 2018), the well-known deep learning model developed by
Google. This step provides us with three different trained and optimized classifiers for each
classification task.

We test the classifiers by studying the predictions made by the trained models for each
of the 13 requirements data sets introduced in Table 7.

Table 8 Overview of the major differences between the considered classifiers of requirements

Classifier Year ML algorithm Distinctive characteristics
km500 (Kurtanovic and Maalej 2017) 2017 SVM 500 lexical and syntactical
features (Word-level)
ling17 (Dalpiaz et al. 2019) 2019 SVM 17 linguistic features
(Sentence-level)
norbert (Hey et al. 2020a) 2020 Transfer Word embedding (max seq.
learning length 128), 10 epochs
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Table 9 Confusion matrices for training and testing (S6)

Data set Classifier isF isQ

TP FP TN FN TP FP TN FN

Training (PROMISE NFR) lingl7 229 83 232 81 315 60 183 67
km500 306 6 309 4 382 5 238 0
norbert 301 10 305 9 382 27 216 0
Test (cumulative) lingl7 1009 321 365 194 673 258 495 463
km500 655 185 501 548 806 377 376 330
norbert 940 159 527 263 998 362 391 138

5.2 Results Analysis

S6-5S7: Report the confusion matrix and Report metrics. Table 9 reports the confusion
matrices obtained with the three classifiers on the training and testing data sets for the tasks
isF and isQ. In addition to giving a comprehensive overview of the performance of the
classifiers, the confusion matrix can be used to derive any metrics that the reader deems
relevant, as a starting point to analyze the classifier’s performance on specific data sets, and
also (as shown later) to study the model’s overfitting to the training data.

Table 10 reports the performance results of the three classifiers w.r.t. the three metrics
that were considered in Hey et al. (2020a): precision, recall and F{-Score. For the test sets,
we report the mean value obtained on the 13 data sets and the standard deviation. The
results reported for the training refer to the performance of the classifiers on the PROMISE
NFR data set. By testing the classifiers on these data sets, we are the first to report on the
performance of all the three state-of-the-art classifiers on previously unseen data.

By comparing the average performance of the classifiers on the test sets (7est in
Table 10), we see that norbert consistently outperforms both lingl7 and km500 for both
tasks and all three metrics, with the exception of recall and isF, where lingl7 achieves the
best results. These results confirm the findings reported in Hey et al. (2020a).

The performance of lingl7 and km500 on the test sets, instead, does not seem to indi-
cate a clear winner: the results are comparable for precision, lingl7 outperforms km500 for
recall in isF, while km500 is better than ling17 for recall in isQ. These results deviate from
those reported in Hey et al. (2020a) when comparing lingl7 and km500 on a 75-25 split of
PROMISE NFR: there, the precision and recall of km500 for both tasks were about 10%
higher than those of lingl7, and they were oscillating between 80% and 90%. Here, the
average precision and recall of km500 oscillate between 55% and 76% (about 20% lower
than those reported in Hey et al. (2020a)), and the precision of km500 and ling17 is almost
identical for both tasks, while the recall of ling!7 is higher for isF, and lower for isQ. This
divergence of results can be attributed to the overfitting of km500, an issue which was also
observed in Dalpiaz et al. (2019). Indeed, the performance of km500 on the training data
shows close-to-perfection results, indicating that the top-500 features selected by km500
can almost perfectly characterize the whole set of requirements in PROMISE NFR. In S8,
we will discuss this aspect more in detail.

The colored cells in Table 10 highlight the best-performing models. We note that it is
difficult to identify an overall winner. While in some cases norbert is considerably better
than the others (e.g., recall on the test sets for isQ), in other cases the difference appears
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Table 10 S7-S8, performance and overfitting for the requirements classification case

Task Classifier Training Test Overfitting
(Test - Training)

isF lingl7 0.73 0.74 £0.23 0.01 £0.23
km500 0.98 0.76 £ 0.22 —0.22 +£0.22
norbert 0.97 0.83 £ 0.21 —0.14 £0.21

isQ lingl7 0.84 0.63 £ 0.19 —0.21 +£0.19
km500 0.99 0.61 £0.23 —0.38 £0.23
norbert 0.93 0.67 £ 0.18 —0.27 £0.18

Recall

isF lingl7 0.74 0.82 £ 0.11 0.08 £+ 0.11
km500 0.99 0.55£0.13 —0.44 £0.13
norbert 0.97 0.79 £ 0.16 —0.19 +0.16

isQ lingl7 0.82 0.57 £0.13 —0.26 £ 0.13
km500 1.00 0.67 £ 0.15 —0.33 £0.15
norbert 1.00 0.83 £ 0.17 —0.17 £0.17

Fy

isF lingl7 0.74 0.75 £ 0.11 0.01 £0.11
km500 0.98 0.61 £ 0.09 —0.38 +0.09
norbert 0.97 0.79 £ 0.09 —0.18 +0.09

isQ lingl7 0.80 0.62 £ 0.09 —0.18 = 0.09
km500 0.99 0.60 £ 0.12 —0.39 £0.12
norbert 0.96 0.71 £0.13 —0.25 +£0.13

Green cells indicate the best results

to be negligible (e.g., precision on the test sets for isF). These observations motivate the
execution of the following steps of ECSER in order to further analyze these mixed results.

S8: Analyze Overfitting and Degradation Table 10 reports also overfitting, obtained by
comparing the results on the test and training sets with respect to the metrics from S7.
Since we use pre-optimized classifiers, we do not analyze the performance degradation
from validation to testing. Some overfitting is expected, as the testing is done on previously
unseen data, but the degree of overfitting may reveal insights.

In Table 10, the average reduction of precision, recall and F; of the ling17 classifier for
isF is very close to 0. The trained model does not overfit the training data; in fact, the model
tends to underfit the data. This is in line with the findings reported in Dalpiaz et al. (2019)
and can be explained by the low number (n=17) of features. An overfitting value close to 0,
however, may positively contribute to the generalizability of the classifier’s performance to
unseen requirements sets.

Differently, almost opposite results can be identified for km500, which relies on a large
number (n = 500) of low-level features such as text n-grams and POS n-grams. These
features, which were the most informative when fitting the training set (Kurtanovic and
Maalej 2017), lead to substantial degradation when considering the test sets, reaching over
40% degradation in recall for isF. Similar results emerge for isQ; in that case, however, also
ling17 degrades of circa 20%.
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Finally, although the results obtained with norbert on PROMISE NFR cannot be gen-
eralized to unseen data (differently from the result of lingl7 for isF), its performance on
unseen data is generally better than the performance of lingl7.

S9. Visualize ROC Figure 5 reports the ROC plots for the two tasks isF and isQ. Each point
summarizes, graphically, the confusion matrix of a classifier on a certain data set reported
in Table 9. A quick visual analysis confirms the earlier results: there is no clear-cut winner
when considering the 13 test data sets. The results are mixed. Let us look at isF: norbert
dominates (i.e, higher TPR, the vertical axis, and lower FPR, the horizontal axis) the others
on the Helpdesk data set, while /ing/7 dominates norbert on the Dronology data set. In
other cases, the winner depends on the relative importance of TP and TN: for example, see
the WASP or DUAP data sets.

The ROC plot also visually highlights the degree of overfitting to the training data. For
isQ, for example, the performance on the PROMISE NFR training set for km500 is almost
perfect (close to the ROC heaven, where TPR is 1 and FPR is 0), while /ing/7 has a lower
performance on the training set. However, once tested on different data, we see that the
performance of km500 degrades to values that are considerably lower than those obtained
on the training, and similar, and often even lower, than those of ling/7 (e.g., compare the
results on ReqView, User mgmt, ERec mgmt). This suggests that the km500 classifier faces
some overfitting issues. Conversely, the results of /ing/7 on the test sets are more clustered
in the surroundings of the training data point (PROMISE) on the ROC plot, indicating less
overfitting.

S10: Apply Statistical Significance Tests We check whether the observations made so far
have statistical significance. Table 11 reports the results of the statistical tests when com-
paring the various classifiers. In line with Table 6, we use repeated measures ANOVA and
Tukey’s HSD when the assumptions of multivariate normality? and similar variance are
met; otherwise, we employ Friedman followed by Nemenyi’s post-hoc test. Please check
our online appendix for all the details of the execution of the tests. Here, we only provide a
summary. The yellow-highlighted cells denote statistically significant results with p-value
< 0.05.

Tables 10 and 11 highlight that the only case in which a classifier outperforms another
on all metrics, with statistical significance, is norbert over km500 for the isF task, with a
large effect size for recall and Fy, and small for precision.

Also, by looking at the ROC plot of Fig. 5 and the statistical tests of Table 11, we can
identify a finding concerning the isQ task, which is the one that originated this thread of
research (Cleland-Huang et al. 2006). We can observe that there is no statistically significant
difference between the three classifiers for precision and F; for the isQ task, although the
omnibus test indicates a significant difference: this should be considered as a false positive
and it shows the importance of running a post-hoc after the omnibus (Tian et al. 2018).

Furthermore, while the original paper showed that km500 could outperform ling7 using
cross-validation (Hey et al. 2020a), this difference disappears when considering the test set,
thereby highlighting the importance of extracting the test set and of analyzing the classi-
fier models’ performance against it, and providing evidence for the usefulness of applying
ECSER.

>The Autorank package that we used approximates multivariate normality by checking the univariate nor-
mality of each distribution. For extra caution, we also executed Mardia’s normality (Mardia 1970) test using
R’s package MVN (Korkmaz et al. 2014), which confirmed the results.
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Fig.5 ECSER’s S9: ROC plot for lingl7, km500 and norbert
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Table 11 S10: statistical tests for the performance metrics. pf and p? are the p-values obtained with the
Friedman and repeated measures ANOVA omnibus tests, respectively

Omnibus Post-Hoc/Cohen’s d (magnitude)
ling17 vs km500 ling17 vs norbert km500 vs norbert

isF Prec pf = 0.002%* 0.059 (none) 0.37 (small) 0.314 (small)

Rec p® = 0.0%* 2.152 (large) 0.236 (small) 1.528 (large)

F; p® = 0.0%* 1.39 (large) 0.43 (small) 1.989 (large)
isQ Prec p* = 0.066

Rec pf = 0.0** 0.683 (medium) 1.659 (large) 0.977 (large)

F; p* = 0.014* 0.134 (none) 0.778 (medium) 0.807 (large)

* indicates p < 0.05, ** indicates p < 0.01. When the omnibus test identified no difference, the post-
hoc tests (Nemenyi for Friedman, Tukey’s HSD for ANOVA) were ignored. In the other cases, a yellow

cell indicates significant difference. Values within brackets indicate the interpretation of Cohen’s d for the
measured difference between classifiers. none indicates |d| < 0.2, small indicates 0.2 < |d| < 0.5, medium
indicates 0.5 < |d| < 0.8, and large indicates |d| > 0.8

5.2.1 Summary of Findings from Case #1

In the following, we summarize the key findings from the application of ECSER to the case
of classification of functional and non-functional requirements.

1. S5 of ECSER confirms the findings reported in Hey et al. (2020a): norbert outperforms
both ling17 and km500 for both isF and isQ tasks on unseen data in terms of precision,
recall and F; (column 7est in Table 10). The only exception is recall and isF, where
ling17 achieves the best results.

2. No clear winner, however, can be identified from the analysis of the performance in
Table 10 and of the ROC plots in Fig. 5: km500 fits best the training set, norbert
performs best on the test set, while ling/7 has the smallest overfitting.

3. The only case in which a classifier outperforms another on all metrics with statistical
significance (see Table 11) is norbert over km500 for the isF task. The effect size is
large on recall and F;-score, small on precision.

4. While the original paper (Hey et al. 2020a) shows comparable performance for the
isQ and the isF tasks, our application of ECSER to the test set reveals that the perfor-
mance on isQ is lower than that of isF (Fig. 5) and shows few statistically significant
differences between the classifiers (see Table 11).

6 Case #2: Test Case Flakiness

The second case concerns the classification of test cases as flaky, i.e., if their pass/fail status
is non-deterministic. We apply ECSER to the three flaky test classifiers also compared by
Alshammari et al. (2021a): FlakeFlagger (FF), Vocabulary-Based Approach (Pinto et al. 2020)
(Voc), and a combination of the features from the previous two models (VocFF). The pipeline
suggested by the original work is classifier agnostic. To demonstrate applicability, the orig-
inal paper uses the following shallow machine learning techniques: Decision Trees (DT),
Random Forests (RF), Support Vector Machines (SVM), Multilayer Perceptron (MLP),
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Naive Bayes (NB), Adaboosting (Ada), and K-Nearest Neighbors (KNN). In this paper,
we compare the three classifiers using the algorithm that performed the best according
to the original authors, i.e., Random Forests. Similarly to the requirements classification
case, our replication completes ECSER going beyond the validation step (S3). We rely
on the feature engineering described in the original paper (Alshammari et al. 2021a): we
start from the pre-processed data (which includes populated features) that we could find
in FF’s online appendix (file processed_data-with vocabulary per_test.csv
in Alshammari et al. (2021b)). In the repository for our online materials, we provide a
summary of the steps of ECSER that we completed for both this and the previous case
study (Dell’ Anna et al. 2021).

6.1 Training, Validation, Testing

S1:Select an Evaluation Method and Split the Data The original paper (Alshammari et al.
2021a) uses stratified k-fold as a validation method. Their data set (from the replication
package) was randomly shuffled and split in 10 folds. Every fold was used as validation set
(S3) and the classifiers were trained using the remaining entries of the data set as training
set (S2). The process was repeated 10 times until results were obtained for all folds. This
method seems suitable, for the available data are unbalanced and stratification combined
with the k-fold method contribute to the reliability of the performance results.

We adopt the same validation method, but we first extract a test set (as recommended by
ECSER) in order to obtain a more credible evaluation. As shown in Table 12, we systemati-
cally select 7 projects for the test set: the one with the 2nd highest number of flaky tests, the
4th, ..., the 14th, leading to the projects {hbase, okhttp, hector, java-websocket,
httpcore, incubator-dubbo, wro4j}. This test set has 5549 test cases, 358 of which
are flaky. Our choice was done without setting additional selection criteria, with the main
aim of keeping a sufficiently high number of samples in the training set. The other projects
are used for training and validating the model via 10-fold cross-validation.

$2: Train the Model To cope with data imbalance in the training set, we use the SMOTE
oversampling technique (as per Alshammari et al. 2021a) before training the classifiers. We
train the three classifiers FF, Voc and VocFF from Alshammari et al. (2021a). They can
be used with different classification models, e.g., Decisions Tree, Random Forest, Support
Vector Machine, Naive Bayes, etc. The features of FF are factors identified in the literature
to affect the flakiness of tests, such as the execution time, the number of covered lines
of code, or the number of covered classes. Voc, instead, is a vocabulary-based approach.
It differs from FF in that it uses lower-level features, such as keywords, APIs or tokens
contained in the test case. VocFF, finally, combines the two approaches.

$3-54: Hyper-parameters Tuning and Validation and Re-train with optimized Params
To validate the model, the classifiers trained in each of the 10 folds are validated on the
corresponding validation sets. In Alshammari et al. (2021a), the authors compared different
sampling strategies and classification algorithms. We do not repeat hyper-parameters tun-
ing; we use their results and apply ECSER with Random Forest as a learning algorithm and
SMOTE oversampling. Therefore, we also do not execute S4, as it existentially depends on
S3.

S5: Test the Model We conduct the following steps of ECSER up to S10, going beyond the
validation step where the original paper (Alshammari et al. 2021a) stopped. In S5, we test
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Table 12 Summary of the projects for the test case flakiness case. The second and third columns quantita-
tively describe the 24 projects based on the counts included in the pre-processed data provided by the authors
of FF (Alshammari et al. 2021a), the last two columns indicate our partitioning into train set and test set

Project Tests Flaky Data splitting
Train set Test set
spring-boot 2,108 160 v
hbase 431 145 v
alluxio 187 116 v
okhttp 810 100 v
ambari 324 52 v
hector 142 33 v
activiti 2,043 32 v
java-websocket 145 23 v
wildfly 1,023 23 v
httpcore 712 22 v
logback 805 22 v
incubator-dubbo 2,174 19 v
http-request 163 18 v
wro4j 1,135 16 v
orbit 86 7 v
undertow 183 7 v
achilles 1,317 4 v
elastic-job-lite 558 3 v
zxing 345 2 v
assertj-core 6,261 1 v
handlebars.java 420 1 v
ninja 307 1 v
commons-exec 55 0 v
jimfs 212 0 v
Train set total 16,397 449
Test set total 5,549 358

the classifiers on the test data we extracted in S1. In the following, we analyze the obtained
results.

6.2 Results Analysis

S6-58: Report the Confusion Matrix, Report metrics and Analyze Overfitting and Degra-
dation Tables 13 and 14 report, respectively, the confusion matrices and the performance
results obtained with the three classifiers on both the training set in S2, the validation set in
S3, and the test sets in S5. For cross-validation and testing, the values reported in the confu-
sion matrices are the cumulative values obtained in the 10 folds, and on the 7 projects in the
test set, respectively. Table 14, additionally, reports an explicit analysis of overfitting and
degradation of the classifiers w.r.t. the metrics from S7.
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Table 13 S6: confusion matrix

Data set Classifier TP FP TN FN
Training FF 449 1 15947 0
Voc 401 2655 13293 48
VocFF 449 1 15947 0
Validation FF 348 143 15805 101
Voc 344 2515 13433 105
VocFF 354 121 15827 95
Tests FF 14 134 5057 344
Voc 120 1669 3522 238
VocFF 29 114 5077 329

The results for the validation step are in line with those reported in the original
paper (Alshammari et al. 2021a). We see that FF and VocFF perform better than Voc w.r.t.
all metrics. In particular, as noted by Alshammari and colleagues, the two versions of
FlakyFlagger provide an increase of precision of circa 60% and of recall of about 2% com-
pared to Voc. VocFF, furthermore, appears to perform better than FF in terms of precision
and F;. The two trained FlakeFlagger classifiers characterize well the training data (note the
almost perfect results on the training data).

Table 14 S7-S8, performance results and analysis of overfitting (as per (1)) and degradation (Mann-Whitney
U test and the effect size n2)

Training

Validation

Tests

Overfitting

(Test - Training)

Degradation
(Test vs Validation)

FF
Voc
VocFF
FF
Voc
VocFF
FF
Voc
VocFF
FF
Voc
VocFF
FF

Voc

VocFF

1.00 1.00
0.13 0.89

1.00 1.00

0.71 £ 0.05 0.78 & 0.07

0.12 & 0.02 0.77 & 0.08

0.75 & 0.04 0.79 £ 0.06

0.09 & 0.19 0.05 % 0.07

0.15 £ 0.17 0.34 £+ 0.18

0.12 4+ 0.23 0.05 & 0.06

—0.91 +0.19 —0.95 + 0.07

0.01 £+ 0.17 —0.55 +0.18
—0.87 +£0.23 —0.95 + 0.06

p = 0.001%* p = 0.001%*

n? = 0.686 (large) n? = 0.686 (large)
p=0.193 p = 0.001%*

n? = 0.11 (medium) — n* = 0.686 (large)
p = 0.001%* p = 0.001%*

n? = 0.686 (large)

n? = 0.686 (large)

1.00
0.23

1.00

0.74 + 0.04

0.21 £ 0.03

0.77 + 0.03

0.03 + 0.04

0.16 £ 0.15

0.06 + 0.09

—0.97 £+ 0.04

—0.07 £ 0.15

—0.94 + 0.09

p = 0.001%*

7% = 0.686 (large)
p=0.161

n? = 0.126 (medium)
p = 0.001%*

7% =0.686 (large)

The effect size is interpreted as none if [n?| < 0.01, small if 0.01 < |?| < 0.06, medium if 0.06 < |n?| <

0.14, and large if \r72| > 0.14. Green indicates best results, yellow statistically significant ones
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The test set results, however, portray a radically different picture. Row 7ests in Tables 13
and 14 summarize the results of the 7 test data sets via, respectively, the cumulative confu-
sion matrix and the macro-average and standard deviation. The mean precision of FF and
VocFF dropped from ~ 70% during validation to 9% and 12%, respectively, during testing.
The average recall dropped from ~80% to ~5%, and the average F; from ~75% to only 6%
and 3% for VocFF and FF, respectively. Notably, Voc, which did not lose in precision on
the test set, had also a more moderate degradation w.r.t. recall and Fy, and the recall of Voc
(the baseline in Alshammari et al. 2021a) is about 30% higher than that of FF and VocFF.

The analysis of overfitting and degradation reported in Table 14 reveals large values of
overfitting (test-train); for example, the precision of VocFF decreased of 0.87 compared
to the training set, and the recall decreased of 0.95. Voc is an exception: for precision,
overfitting is almost zero, while for recall, the decrease is 0.55, much less than for FF and
VocFF. For degradation (test-validation), unlike Section 5, we report the statistical tests
since both the validation set and the test set consist of more than one sample: the validation
set refers to 10 folds, the test set consists of 7 projects. These results are in line with those
of overfitting. The effect size of the degradation is large for all metrics when considering
both FF and VocFF, and they are significantly below the 0.01 threshold. The degradation
of Voc is lesser: while the effect size is large for recall, with statistical significance <0.01,
there is no statistically significant degradation for precision and Fj.

These results illustrate that while the features used by FF and VocFF characterize well
the training set (i.e., they have a good descriptive power), the models trained with those
features do not generalize well on unseen data (i.e., they do not have a good predictive
power). For example, a decision tree that uses the feature execution time (used by FF and
VocFF) could perfectly describe the training set by learning enough rules such as: IF 0.01 ms
< execution time < 0.0199 ms THEN not-flaky, IF 0.02 ms < execution time < 0.0299 ms
THEN flaky, IF 0.03 ms < execution time < 0.04 ms THEN not-flaky, etc. However, the
learned rules will not perform well on unseen data unless the features are actual predictors
of flakiness.

S9: Visualize ROC Figure 6 reports the ROC plot that compares the three classifiers. In addi-
tion to the results obtained on the training and on the test sets, we report also the validation
results. For ease of visualization, we do not report in the figure the labels of the data sets
for which the classifiers resulted in both TPR and FPR equal to O (i.e., for the data points
lying at the origin of the axis). Details can be found in our online appendix (Dell’ Anna et al.
2021). The ROC plot confirms the results about validation presented in Alshammari et al.
(2021a): both VocFF and FF dominate Voc, with VocFF performing slightly better than FF.
Thus, combining the features of FF and Voc allowed to improve the TPR without increasing
too much the FPR, resulting in a slightly better classifier.

Moving to the test set, however, the plot confirms the analysis done in S6-S8: for almost
all projects in the test set, the results obtained by the classifiers, and in particular FF and
VocFF, are clustered around the origin of the axis. This indicates both a low FPR (i.e., they
performed well on the negative class, which however was also the predominant one) and
very low TPR, performing poorly on the positive class (the one of interest for the problem).

$10. Apply Statistical Significance Tests Table 15 reports the results of the Friedman
omnibus test (the data are not normally distributed) and the Nemenyi post-hoc tests that
compare the performance of the three test case flakiness classifiers w.r.t. the different
metrics.
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Fig. 6a
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Table 15 S10, statistical tests for the performance metrics of case #2

Omnibus Post-Hoc/Cohen’s d (magnitude)
FF vs Voc FF vs VocFF Voc vs VocFF
Precision pf =0.698
Recall p/ =0.011%* 2.037 (large) 0.009 (none) 2.062 (large)
F p/ =0.289

pf and p? are the p-values obtained with the Friedman and repeated measures ANOVA omnibus tests,
respectively. * indicates p < 0.05, ** indicates p < 0.01. When the omnibus test identified no difference,
the post-hoc tests (Nemenyi for Friedman, Tukey’s HSD for ANOVA) were ignored. In the other cases, a
yellow cell indicates significant difference. Values within brackets indicate the interpretation of Cohen’s d

for the measured difference between classifiers. none indicates |d| < 0.2, and large indicates |d| > 0.8

The statistical analysis confirms the considerations made in the previous steps and,
together with Table 13, allows us to derive a finding that deviates from the original paper’s
conclusions (in which VocFF was shown to be the best), providing further evidence of the
usefulness of applying ECSER: there is no significant difference in the precision and F;
of the three classifiers when predicting the flakiness of a test. Instead, the recall of Voc is
significantly higher than those of FF and VocFF'.

6.2.1 Summary of Findings from Case #2

In the following, we briefly summarize the key findings that resulted from the application
of ECSER to the case of classification of test cases as flaky.

1. Validation (S3) is not always a predictor of operational performance. While FF and VocFF
outperform Voc on the validation set (see Table 13), the predictive power of their features
is low, as overfitting and degradation show a significant decrease (see Table 14).

2. On the test set, there is no significant difference in the precision and F;-score of the
three classifiers when predicting the flakiness of a test. Instead, the recall of Voc is
significantly higher than those of FF and VocFF.

7 Threats to Validity

We discuss the major threats to validity following the taxonomy proposed by Wohlin et al.
(2012).

Conclusion Validity is concerned with the relationship between the treatment (ECSER)
and the outcome: its applicability (RQ3) and usefulness (RQ4). Some of the findings we
obtained via the replications depend on the reliability of the statistical tests. Following the
guidelines of Table 6, we chose robust tests and we derived conclusions only from results
that had strong significance level and large effect size. Another threat concerns the reliability
of the measures; in our case, the labelled data. We minimized this threat by using previously
labelled data, and by involving multiple taggers (including a non-author) for the additional
data sets in the first case. It is obviously possible that, should the data be tagged by other
humans, the results could differ.

Internal Validity affects the independent variable with respect to causality. The selection
of the data to be included in the training, validation, and test sets may affect the causality of
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the findings. To mitigate these risks, we followed different strategies. In the requirements
classification case, we selected PROMISE NFR as the training set, following state-of-the-
art papers in the field, and we obtained data sets from external resources for the test set, like
in Dalpiaz et al. (2019). We annotated the newly introduced data sets (Table 7) with the help
of an external annotator. Each data sample has been tagged by two annotators, and conflicts
have been resolved in discussion meetings. When there was difficulty for conflict resolution,
all annotators discussed the annotation and resolved the conflict. For the flaky test case
classification case, we allocated a subset of the original projects to the test set. We did this
in a systematic way by choosing the 2nd, 4th, ... project with most positives. Although the
selection carries some risks, we believe the effect is negligible, since the performance on
the validation sets is similar to that reported in the original paper (Alshammari et al. 2021a).

Construct Validity concerns the degree to which an experiment can be used to draw gen-
eral conclusions about the concept or theory behind it. ECSER itself aims to be an approach
that can be used to derive more credible conclusions than the current state-of-the-art in SE
research. To such extent, we include steps to report more detailed results (e.g., the confu-
sion matrix in S6), to analyze overfitting and degradation (S8), and to measure the statistical
significance (S10) of the results. The generality of the conclusions, however, also depends
on the input data. ECSER minimizes the effect of the used data to train, validate, and test a
classifier. However, it is possible that the results with different data sets may differ. Minor
threats in this category may derive from our implemented code. Slight differences in the
results for the flaky tests case study may stem from a different seed selection, which were
not reported in Alshammari et al. (2021a). The code of the case studies is taken from the
original studies where applicable, but additional code is written for the missing steps of the
pipeline. All the code is available in Dell’ Anna et al. (2021).

External Validity regards the ability to generalize the results beyond the studied context.
First, ECSER’s applicability is assessed through two cases of classification in software test-
ing and requirements engineering. We are aware of the limited generality that can be derived
from the use of only two cases, which, however, indicate clear directions, and we invite
researchers from different SE areas to apply ECSER to their cases. Furthermore, we could
not study whether the statistically significant differences actually translate into a noticeable
difference in practical settings, and whether statistical significance is necessary for prac-
titioners to perceive that one classifier is better than another. This is beyond the scope of
the present paper, but in-vivo studies are necessary to investigate the practical effectiveness
(w.r.t. work practices) of SE classifiers.

8 Conclusions and Outlook

In this paper, we introduced the ECSER (Evaluating Classifiers in Software Engineering
Research) pipeline to guide SE researchers in accurately evaluating and reporting their
research on automated classifiers. ECSER aims to assist SE researchers in avoiding common
mistakes and in presenting their results credibly and correctly. ECSER adopts and consol-
idates recommendations from recent literature in ML and statistics and presents them for
SE researchers by illustrating the concepts with examples and two case studies from the SE
community.

To demonstrate the applicability and usefulness of ECSER, we conducted two replica-
tion studies, one in software testing and one in requirements engineering, by applying the
pipeline. Our replications allow us to strengthen some of the conclusions in the original
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papers’ and they reveal findings that are not present in the original studies, some of which
contradict the original results.

Our overarching goal is to improve the quality of ML4SE research by proposing more
rigorous ways of conducting and reporting research. To support this, we made available a
replication package (Dell’Anna et al. 2021) for the interested reader to apply ECSER in
order to compare their classifiers across their data sets. The pipeline is not set in stone.
We call upon SE researchers to use ECSER for additional classification problems and we
welcome improvements to it.

In the rest of this section, we discuss the main findings from this research. In Section 8.1,
we answer the research questions that we addressed. In Section 8.2, we discuss the
limitations of ECSER and we outline future work.

8.1 Answering the Research Questions

Our main research question MRQ. How can we enable SE researchers to accurately con-
duct and report on the evaluation of automated classifiers? is decomposed into four
sub-questions, which we address in the following.

RQ1. What are the Challenges with the Current Research Practices with Classifiers in
SE Research? We answer RQI by investigating recent research output in one of the most
prominent software engineering research conferences. In Section 3, we identify several chal-
lenges related to the ML classifiers in software engineering research. These include the risk
for SE researchers of using ML tools without fully grasping the theory behind them due to
the scattered ML knowledge, and the lack of arguments for selecting performance metrics.
Additionally, we note that in several cases (including the two case studies in Sections 5 and
6), the evaluation of classifiers is focused on validation data rather than test data, resulting
in findings and conclusions that might be misleading and not generalize well, because the
validation sets are often extracted from (hence, they often reflect some properties and pat-
terns of) the training set. Finally, we identify the difficulties in verifying and reproducing
the metrics or calculating other metrics. This is due to the omission of the confusion matrix
and the lack of analysis of the statistical significance of the results in most recent studies.

RQ2. What is an Easy-to-Use, Tangible Artifact that can Assist SE Researchers When Con-
ducting and Reporting Research on Classifiers? To mitigate the challenges identified with
RQI, we introduce ECSER, a pipeline for evaluating classifiers in SE research. ECSER is
a tangible artifact, in the form of a 10-step process, that brings together the scattered ML
knowledge and presents it in an organized way. When conducting and reporting research on
automated classifiers, SE researchers can consult the pipeline to identify the key steps to
follow for a reproducible and accurate evaluation. For each step, ECSER provides alterna-
tives to choose from based on particular cases, alongside references for further details. The
pipeline is also accompanied by examples from the SE field, which are typically not part of
general ML guidelines.

RQ3. How Applicable is the Pipeline to ML4SE Research? We apply ECSER for repli-
cating and extending two studies. The first study concerns the automated classification of
functional and quality requirements (Hey et al. 2020a; Dalpiaz et al. 2019; Kurtanovic and
Maalej 2017), while the second study focuses on detecting test case flakiness (Pinto et al.
2020; Alshammari et al. 2021a). Since ECSER is agnostic to the underlying classification
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algorithms and the features used to characterize the data, we successfully apply it to compare
six different classifiers (3 per case study) with different features and underlying models.

RQ4. How useful is the Pipeline When Applied to ML4SE Research? The application of
ECSER to the two case studies allows us to demonstrate also its usefulness. In addition to
solidifying the results from the original papers, through the explicit definition of an inde-
pendent test set (S1), the analysis of overfitting and degradation (S8), and the execution of
statistical significance tests (S10), we identify additional findings that are not mentioned in
the original studies. For the requirements classification task, for example, the norbert clas-
sifier proved to be the best overall, although the statistical results show that the differences
for the isQ task are mostly not significant. For the flaky test classification task, the results
are even more striking: contrary to the original results, they indicate that the baseline clas-
sifier (Voc) achieves significantly higher recall, and comparable precision, on the test set.
By comparing the two cases in terms of overfitting and degradation (Table 10 vs. Table 14),
we conclude that ML-based flaky test identification is an area where more research is nec-
essary. Our results reveal limited predictive power for the used features, especially in terms
of precision (in the 9%-15% range).

8.2 Limitations and Future Work

Applying all the steps of the pipeline might not be trivial. This is particularly true for step
S10: statistical significance tests. In some cases, the available data might be insufficient
for providing meaningful statistical results. This is why step S10 is indicated as optional
in ECSER. However, the lack of sufficient data for providing meaningful statistical results
should not be ignored but reflected in the discussion and conclusions drawn from the results
reported in the paper. Additionally, while we attempted to provide an accessible overview of
the state-of-the-art methods for testing statistical significance (e.g., see Table 6) with both
recommendations and references to available implementations (e.g., the Autorank Python
package (Herbold 2020), and our online appendix (Dell’ Anna et al. 2021)), the selection of
an appropriate statistical test and the interpretation of the results needs a basic understanding
of statistics and of the different tests. Future work should study the applicability of this
step through human evaluations with SE practitioners having different degrees of familiarity
with statistics.

Step S3 (hyper-parameter tuning and validation) might require more computational
power and time from the researchers who apply the pipeline. The degree to which the
classifiers should be optimized depends on the maturity of the evaluated classifiers. This
is why also steps S3-S4 of ECSER are indicated as optional. Hyper-parameter tuning,
however, has been shown to lead to simpler classifiers that perform better than more com-
plex non-tuned ones (Fu et al. 2016; Tantithamthavorn et al. 2019), so additional effort
put in executing these steps might lead to better and more interpretable outcomes. In gen-
eral, applying ECSER requires more effort from the researchers than just reporting, for
example, the performance obtained on the test set. However, we believe that this effort is
necessary for reporting solid, accurate, and non-misleading results and supporting replica-
bility and reproducibility in ML4SE (Liu et al. 2021). In this sense, this paper attempts
to minimize practitioners’ efforts. In the future, we intend to conduct a controlled experi-
ment with SE students about evaluating automated classifiers with and without the help of
ECSER, to provide additional evidence about the pipeline’s usefulness (also in the context
of education).
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ECSER aims to concisely present the steps required to evaluate classifiers. This paper,
however, does not replace ML and statistics textbooks. In terms of completeness, for exam-
ple, ECSER covers the evaluation of multiple classifiers but does not discuss essential
aspects for constructing classifiers, such as data set selection and curation, feature engi-
neering, and algorithm selection. These are currently considered as an input of the pipeline
(leftmost block in Fig. 1). We intend to study if such tasks present a challenge for the SE
practitioners by investigating whether appropriate classifiers and training sets are used for
MLASE research. This may lead to additional guidelines in that direction. Moreover, given
the depth of each technique and concept discussed, the description of the several steps of
ECSER might lack details for curious readers. We provide several references for every step
of ECSER to satisfy their curiosity. Our two case studies also illustrate how the pipeline
is applied. As an empirical evaluation of the pipeline, we intend to assess the most critical
and less obvious steps of the pipeline. In the long run, we aim to construct a comprehensive
resource for researchers. Our online appendix is the first step in this direction.
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