
https://doi.org/10.1007/s10664-022-10234-2

Developers’ perception matters: machine learning
to detect developer-sensitive smells

Daniel Oliveira1 ·Wesley K. G. Assunção1 ·AlessandroGarcia1 ·Baldoino Fonseca2 ·
Márcio Ribeiro2

Accepted: 29 August 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Code smells are symptoms of poor design that hamper software evolution and maintenance.
Hence, code smells should be detected as early as possible to avoid software quality degra-
dation. However, the notion of whether a design and/or implementation choice is smelly
is subjective, varying for different projects and developers. In practice, developers may
have different perceptions about the presence (or not) of a smell, which we call developer-
sensitive smell detection. Although Machine Learning (ML) techniques are promising to
detect smells, there is little knowledge regarding the accuracy of these techniques to detect
developer-sensitive smells. Besides, companies may change developers frequently, and the
models should adapt quickly to the preferences of new developers, i.e., using few training
instances. Based on that, we present an investigation of the behavior of ML techniques in
detecting developer-sensitive smells. We evaluated seven popular ML techniques based on
their accuracy and efficiency for identifying 10 smell types according to individual per-
ceptions of 63 developers, with some divergent agreement on the presence of smells. The
results showed that five out of seven techniques had statistically similar behavior, being
able to properly detect smells. However, the accuracy of all ML techniques was affected by
developers’ opinion agreement and smell types. We also observed that the detection rules
generated for developers individually have more metrics than in related studies. We can
conclude that code smells detection tools should consider the individual perception of each
developer to reach higher accuracy. However, untrained developers or developers with high
disagreement can introduce bias in the smell detection, which can be risky for overall soft-
ware quality. Moreover, our findings shed light on improving the state of the art and practice
for the detection of code smells, contributing to multiple stakeholders.

Keywords Software quality · Machine learning · Code smell detection · Code smell

Communicated by: Foutse Khomh, Gemma Catolino, Pasquale Salza

This article belongs to the Topical Collection: Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE)

� Daniel Oliveira
doliveira@inf.puc-rio.br

Extended author information available on the last page of the article.

Published online: 12 October 2022

Empirical Software Engineering (2022) 27:195

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10234-2&domain=pdf
http://orcid.org/0000-0002-1597-1622
mailto: doliveira@inf.puc-rio.br

1 Introduction

Code smells are considered symptoms of poor design and/or implementation choices that
make software systems hard to evolve and maintain (Fowler 1999). Due to their harmfulness
to software quality (Abbes et al. 2011; Khomh et al. 2011a; Yamashita and Moonen 2013),
code smells should be detected and removed as early as possible. Unfortunately, several
reasons make the code smell detection a challenging task. For instance, code smell detection
usually relies on the expertise and preferences of developers (Mäntylä and Lassenius 2006;
Mäntylä 2005; de Mello et al. 2017). In this practical context, the code smell detection has
a subjective nature. A recent study indicates a high divergence among developers about the
existence of a same code smell into a code fragment (Hozano et al. 2018). Hence, detecting
code smells in practice is much harder than related studies usually discuss (Marinescu 2004;
Palomba et al. 2013; Moha et al. 2009, 2010; Gopalan 2012; Bertran et al. 2013; Bertran
2011; Oizumi et al. 2016; Sousa et al. 2018).

Detection strategies based only on metrics or general-purpose tools are not totally effec-
tive and overload developers with many potential false positives (Arcoverde et al. 2013;
Bertran et al. 2012a, b; Silva et al. 2013; Fernandes et al. 2017; Sousa et al. 2020; Oizumi
et al. 2019). To make matters worse, definitions for some code smells are informal, ambigu-
ous, or insufficient to describe them precisely. For instance, let us consider the definition
of Long Method (LM) code smell, which is a method that is too long and tries to do too
much (Fowler 1999). Although such definition states what a Long Method is, it does not
describe what should be considered as “too long” neither what “to do too much” is. As a
consequence, when developers are focused on detecting Long Methods, they rely on their
perception to reason about the following questions: How to define whether a method is
long? How to define whether a method is doing too much? Is it possible to identify a Long
Method solely based on the lines of code of a method? How many lines of code are required
to characterize a method as a Long Method? Will methods with this number of lines of code
be difficult to maintain or evolve?

Different developers working on the same code base may have different answers to these
questions. As a consequence, while a developer may confirm a code fragment as the host of
a Long Method, other developers may not necessarily agree. Indeed, the literature discusses
this divergence among developers (Hozano et al. 2017b, 2018). In this context, we can
say that smell detection is a developer-sensitive task (Hozano et al. 2017b), i.e., detecting
code-smells relies on developer’s perception for each smell type. In this way, the same
code fragment can be classified as host of a smell or not by different developers. However,
detecting smells taking into account the individual perception of each developer remains a
prevailing challenge (Hozano et al. 2017b).

To extract knowledge from smells observed in real-world projects, a recent systematic
mapping study (Azeem et al. 2019) reveals there are many studies that analyzed the use
of Machine Learning (ML) techniques to identify smells (Hozano et al. 2017a, b; Khomh
et al. 2009, 2011b; Maneerat and Muenchaisri 2011; Maiga et al. 2012; Fontana et al.
2013; Amorim et al. 2015; Arcelli Fontana et al. 2016). In a nutshell, the ML techniques
require a training dataset containing code instances annotated by developers as smelly or
non-smelly. From these training instances, theML techniques generate smell detection mod-
els. Even though such studies indicate that ML techniques are a promising way to detect
smells (Azeem et al. 2019), there is little knowledge of how accurate these generated smell
detection models are when they are used for detecting developer-sensitive smells (Hozano
et al. 2017a). Smell detection based on the perception of a developer enables the automatic

Empir Software Eng (2022) 27:195195 Page 2 of 44

prioritization of smell instances, allowing developers to focus on more relevant tasks. This
prioritization also allows the reduction of false positives within the context of a specific
team, project or system’s module, avoiding unnecessary warnings that deviate developer’s
attention.

In this context, this paper reports a comprehensive study about the accuracy and effi-
ciency of ML techniques on detecting smells based on developers’ perceptions. Accuracy
refers to the number of instances correctly labeled as smelly. For this study, we measure
accuracy through F-measure, which considers both the recall and precision to compute a
score. Efficiency is related to how new validations from different developers with divergent
perceptions affect the accuracy of ML techniques. For instance, high values of efficiency
indicate the ML techniques need a low number of training instances to reach high F-measure
(accuracy).

In order to evaluate the accuracy and efficiency of ML techniques, we assess seven
ML techniques considering their capability of detecting 10 different smell types in accor-
dance with the individual perception of 63 developers. We conducted our study in four main
steps, one step to create the dataset and three steps to evaluate the results. In the first step,
(i) Dataset composition, for each smell type, 63 developers evaluated the presence (or not)
of a code smell. Altogether, we collected a dataset with 1,800 classifications, which were
used to evaluate the sensitivity of the ML techniques. To ensure that the chosen developers
have different perceptions, which is required for our evaluation, we computed the agree-
ment between them using Fleiss’ Kappa measure (Fleiss 1971). This measure confirmed a
slight or fair agreement (for different smells), indicating the reliability of the dataset for the
goal of our study.

The composed dataset was used as input for the seven ML techniques, and the results
were evaluated as follows: (ii) Accuracy evaluation, we initially evaluated the global accu-
racy of the ML techniques on detecting each one of the 10 smell types for all developers
together based on F-measure values. Then, we evaluated the global accuracy regardless
of the smell type. Finally, we applied statistical tests to observe if there is a statistical
difference across the techniques’ results. (iii)Dispersion evaluation, we investigated the dis-
persion of the accuracy for the ML techniques when detecting developer-sensitive smells.
The dispersion is the F-measure variation of the ML technique per developer, i.e., when the
techniques detect smells taking into account the individual perception of each developer. For
(iv) Efficiency evaluation, we assessed the efficiency of the ML techniques by evaluating
the accuracy of each technique on detecting developer-sensitive smells, in which we grad-
ually increase the number of instances provided by different developers used to perform its
training.

The analysis of the results of our study led to the following main findings:

– Five out of seven studied ML techniques (J48, Naive Bayes, OneRule, Random Forest,
and Sequential Minimal Optimization) have a statistically similar behavior, obtaining
high F-measure values when detecting developer-sensitive smells. Only two tech-
niques (JRip and Support Vector Machine) had lower results in comparison to the
other techniques, in contrast to previous studies that do not consider developers’
perceptions (Arcelli Fontana et al. 2016; Azeem et al. 2019).

– The F-measure of all the analyzed ML techniques was influenced by the developers’
perceptions. As a consequence, all the techniques had high dispersion, reaching a max-
imum and minimum F-measure of 1 and 0, respectively, for different developers in the
same smell type.

Empir Software Eng (2022) 27:195 Page 3 of 44 195

– Support Vector Machine is the technique that obtained the most dispersed results,
whereas Naive Bayes reached the least dispersed results. Long method is the code smell
type in which the values of F-measure were the least dispersed.

– When the agreement among the developers decreases, the dispersion of the ML
techniques’ accuracy increases.

– For the majority of techniques, the number of instances used as training does not impact
directly the accuracy of the ML techniques.

These findings indicate that, when detecting developer-sensitive smells, most of the ML
techniques reached high F-measure. However, we could see that no technique obtained the
best results for all the analyzed smells. Therefore, developers need to take into consideration
which smells are most relevant to them when choosing the technique to be used. Finally,
we observed that the techniques needed a low number of instances to reach their maxi-
mum accuracy. This indicates the use of these techniques is a good choice for companies
integrated by developers with different experiences.

We complemented the analysis of the accuracy and efficiency of the ML techniques
to detect developer-sensitive smells with additional observations. First, we also compared
the detection rules generated in our study to the rules reported in related studies. More
specifically, we compare the detection rules generated by J48, JRip, and OR, for individual
developers as well as for all the developers together, to the four most closely related stud-
ies by Arcelli Fontana et al. (2016), Rasool and Arshad (2015), Pecorelli et al. (2020), and
Bigonha et al. (2019). We observed that the detection rules for both individual developers
and all developers together frequently include software metrics proposed by the literature
for specific smell types. However, differently from related studies, we observe that for indi-
vidual developers the rules have a higher amount of metrics, including different types of
metrics not identified or proposed in previous research. Another observation is that ML
techniques commonly create diverse detection rules for individual developers, even in the
cases that developers highly agree about the existence of code smells, e.g., the code smell
Data Class.

Despite the findings and observations of our study, we also highlight the risks of rely-
ing exclusively on the preferences of individual developers. When developers write code
with low quality, they might also lead to the derivation of inappropriate detection rules,
severely harming the overall internal software quality. Furthermore, in real-world projects,
developers often work independently on different parts of the software. In these projects,
developer-sensitive smell detection can lead to nonuniform levels of quality in every part of
the system, which may consequently impact the project quality as a whole. We also discuss
ways to circumvent these potential issues.

Based on the methodology, findings and insights of our study, the contributions and
implications are many-fold and target different stakeholders. For researchers, we make
available a package with supplementary material for replications and new studies. Addi-
tionally, our results reveal the need for approaches that automatically decide which ML
techniques should be applied taking into the agreement of developers and the target smell
type. Another direction is to monitor the perception of developers during the project devel-
opment, identifying (dis)agreements on the fly and using this information to better guide
developers. For practitioners, our results show that ML techniques can quickly adapt to
newcomers entering the project. We also recommend the use of models trained by senior
developers to support junior developers on learning the quality standards of the project
and/or company. For tool builders, there is the opportunity to develop tooling support that
at least enables individual developers to include their preferences in the detection of smells.

Empir Software Eng (2022) 27:195195 Page 4 of 44

For educators, our study can be used as a source of information to initiate the discussion of
trade-offs and divergences that exist when developers discuss internal software quality.

The remaining of this document is structured as follows. Section 2 describes the design
of our study and the research questions. In Section 3 we present the results, answer the
research questions, and discuss the contributions and implications of the study. Section 4
details the threats of the study. Next, Section 5 presents the related work. Finally, Section 6
presents the conclusions observed in our study.

2 Study Design

Previous studies suggest that ML techniques are a promising way to identify code
smells (Hozano et al. 2017a, b). However, in practice, the code smell detection involves the
perception of different developers, usually influenced by their expertise and preferences,
which might lead to divergences on defining whether a code fragment is a smell (Mäntylä
and Lassenius 2006; Mäntylä 2005; Hozano et al. 2018; Schumacher et al. 2010; Santos
et al. 2013). This divergence among developers may considerably influence the set of code
fragments perceived as smelly and, consequently, being identified. In particular, such diver-
gence may impact the accuracy of code smell detection techniques based on ML, which rely
on code smell instances previously annotated by developers as training.

To collect evidence of this phenomenon and advance the knowledge of developer-
sensitive smell detection, we conducted an empirical study that is described in this section.
We follow the Goal/Question/Metric (GQM) approach to design our study (van Solingen
et al. 2002). The goal of our study is to understand the behavior of ML techniques to detect
code smells based on different developers’ perceptions. From this goal, we posed three
research questions (RQs) that guided the evaluation, as follows:

RQ1: How accurate are the ML techniques on detecting developer-sensitive smells?
RQ1 aims at investigating the global accuracy of seven ML techniques, by ana-

lyzing F-measure, when detecting 10 smell types. Even though a recent systematic
literature review study (Azeem et al. 2019) reported that several studies have inves-
tigated the accuracy of ML techniques to detect code smells, they do not discuss the
characteristics of their dataset regarding the divergences among developers. Thus,
differently from previous studies, we analyzed each one of the 10 smell types per-
forming the training of the ML techniques on a small number of different instances.
These instances were classified multiple times by developers with different per-
ceptions (see Section 2.3). This question focuses on understanding how the ML
techniques are affected by different opinions regarding the existence or not of a
smell.

RQ2: How dispersed is the accuracy of ML technique on detecting developer-
sensitive smells?

Different from RQ1 that focus on the global accuracy of each ML technique,
RQ2 investigates the dispersion, i.e., accuracy variation, of ML techniques on
detecting smells in accordance with the individual perceptions of each developer.
To answer this question, we evaluated the accuracy of each technique for each
developer separately. The main motivation for this research question is the fact that
developers have different backgrounds, experiences, and skills. These and other
factors naturally lead developers to have different perceptions about the occurrence
of smells in the same pieces of code. As a consequence of this divergence among

Empir Software Eng (2022) 27:195 Page 5 of 44 195

developers, ML techniques may present a dispersion in their accuracy on detecting
developer-sensitive smells (Hozano et al. 2018).

RQ3: How efficient are the ML techniques for detecting developer-sensitive smells?
Although ML techniques have been considered a promising way to detect code

smells (Arcelli Fontana et al. 2016; Hozano et al. 2017b; Azeem et al. 2019), these
techniques usually require several code smell instances annotated by developers to
perform their training. However, the annotation of a large number of instances may
introduce an unfeasible additional effort to the developers. In this way, RQ3 aims
at analyzing the efficiency of the ML techniques on detecting developer-sensitive
smells, i.e., how the accuracy of the ML techniques are affected while we gradually
increase the number of classified instances used to perform its training. An efficient
technique requires a low number of instances for its training, consequently enabling
its use in a wide number of scenarios.

To achieve the goal of our study and answer the RQs, we evaluated the accuracy and
efficiency of each technique in terms of three aspects: (i) the global accuracy of the ML
techniques, (ii) the individual accuracy of the ML techniques based on the perceptions of
developers about the presence of code smells, and (iii) the number of instances used to
perform the training of the ML techniques. The metrics used for the evaluation are presented
in the next section.

2.1 Metrics and Statistical Tests

To assess the accuracy of the ML techniques, we used F-measure that considers both recall
and precision to compute a score. For our study, the true positive (TP) elements represent
the code fragment classified by the ML techniques as a code smell that are, actually, a real
code smell, as well as the false positive (FP) elements refer to the code fragments wrongly
classified as code smell. Similarly, the true negative (TN) represents the code fragments
correctly classified as not-smell and the false negative (FN) represents the wrong ones. In
this context, we define the recall, precision, and F-Measure as:

– Recall (R): Number of code fragments correctly classified as code smells among the
total of code smell instances in the data collection.

R = T P

T P + FN
(1)

– Precision (P): Number of code fragments correctly classified as code smell among the
total of code fragments classified as code smell by the ML technique.

P = T P

T P + FP
(2)

– F-Measure: Harmonic mean of precision and recall.

F1 = 2 · P · R

P + R
(3)

To ensure that developers that participate in our study have different perceptions regard-
ing the existence or not of smells in the same code fragment, we computed the Fleiss’
Kappa measure (Fleiss 1971). This is a statistical measure for assessing the reliability of
agreement between a fixed number of raters. In this way, we could observe the agreement
among the classifications, i.e., perceptions of different developers. The values for this
measure can range from negative numbers to a max of 1, where less than 0 indicates poor

Empir Software Eng (2022) 27:195195 Page 6 of 44

Table 1 Fleiss’ Kappa
interpretation Fleiss’ Kappa Interpretation

< 0 Poor agreement

0.01–0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

0.81–1.00 Almost perfect agreement

agreement and 1 indicates almost perfect agreement. Table 1 presents the interpretation of
values for this measure.

To statistically compare the ML algorithms, firstly, we used the Shapiro-Wilk statistical
test (Surhone et al. 2010) to investigate the sample distributions. As there is no normal
distribution of the results, Friedman non-parametric test (Friedman 1937) with Nemenyi’s
test as post hoc multiple pairwise comparisons was adopted for the analysis of the results.
We adopt a confidence level of 95% (p-value ≤ 0.05). To further analysis, we also computed
the effect size with the Vargha-Delaney’s Â12 measure (Vargha and Delaney 2000). All
statistical tests were applied using R (Lantz 2019). Finally, to reason about the correlation
between developers’ agreement, namely Fleiss’ Kappa values and the dispersion of the ML
techniques, which was evaluated based on standard deviation, we applied the Spearman
test (Spearman 1904). Spearman’s rank correlation coefficient is a non-parametric measure
of rank correlation, i.e., statistical dependence between the rankings of two variables.

2.2 Projects, Smells and Subjects

We analyzed the code smells on five open-source Java projects, namely GanttProject1

(2.0.10), Apache Xerces2 (2.11.0), ArgoUML3 (0.34), jEdit4 (4.5.1) and Eclipse5 (3.6.1).
We selected such projects because they have been evaluated by existing smell detection
techniques (Lanza et al. 2005; Munro 2005; Khomh et al. 2011b; Marinescu 2004; Moha
et al. 2010; Fontana et al. 2011; Palomba et al. 2014a) and their source code contains a vari-
ety of suspicious code smells (Hozano et al. 2017b, 2018) that provides a rich dataset for
our study.

The next step was to select the smell types to be analyzed. Table 2 presents the smell
types selected for our study. We have chosen these smell types because they affect different
scopes of a program, i.e., classes, methods or parameters. Additionally, they are smell types
recurrently investigated in literature (Khomh et al. 2009; Maiga et al. 2012; Arcelli Fontana
et al. 2016; Khomh et al. 2011b; Amorim et al. 2015).

Finally, we selected developers to collect their different perceptions of code smells. To
recruit developers, we sent invitations for several contacts from companies and academic
institutions. Altogether, 63 developers from different companies and institutions accepted
the invitation. Then, they rated their own experience in development. All of them mentioned

1http://www.ganttproject.biz
2http://xerces.apache.org
3http://argouml.tigris.org
4http://www.jedit.org
5http://eclipse.org

Empir Software Eng (2022) 27:195 Page 7 of 44 195

http://www.ganttproject.biz
http://xerces.apache.org
http://argouml.tigris.org
http://www.jedit.org
http://eclipse.org

Table 2 Types of code smells investigated in this study

Name Description

God Class (GC) Classes that tend to centralize the intelligence of the system.

Data Class (DCL) Classes that have fields, getting and setting methods for the fields, and

nothing else.

Long Method (LM) Methods that are too long and try to do too much.

Feature Envy (FE) Methods that use more attributes from other classes than from its own class,

and use many attributes from few classes.

Message Chains (MC) An object that calls another object, that requests yet another one, and so on.

Inappropriate Intimacy (II) Classes that use internal fields and methods that do not belong to them.

Middle Main (MM) Classes that delegate too much work to other classes and do nothing by

herself.

Primitive Obsession (PO) Using a lot of primitives as a substitute for small objects.

Refused Bequest (RB) Classes inherit from a superclass and do not use any of the inherited

functionality.

Speculative Generality (SG) Unused classes, methods, fields or parameters created to future features that

never get implemented.

having at least three years of experience in Java for software development. Besides, these
developers also have previous experience in code smell detection in software projects. The
composition of the dataset based on the perceptions of these developers is presented next.

2.3 Data Collection

Figure 1 illustrates the steps of the data collection. In the step one, we extracted 15
potentially-smelly code fragments for each type of code smell studied from the projects
analyzed. For this extraction, we used heuristics provided by previous studies to identify
potentially-smelly code fragments (Palomba et al. 2014b; Lanza et al. 2005). A potentially-
smelly code fragment is a set of statements where its behavior indicates a possible existence
of a code smell. The used heuristics rely on software metrics and thresholds to define code
elements as a possible candidate of host code smell. Once the metrics of a code element
overpass predefined thresholds, this element is a potentially-smelly code.

After the extraction was finished, in the second step of the collection, we instructed the
63 participating developers to classify the extracted fragments as a smelly or not. At the
beginning, the developers were informed that they can interrupt and resume the classifi-
cation at any time, to make sure they were able to classify when they felt comfortable.
Then, to turn this classification feasible and to avoid developers’ fatigue during classifica-
tion, we grouped the 63 developers into 10 groups. Each group, composed of 12 developers
(six developers from academy and six from industry), was responsible to classify the same
15 code fragments concerning the existence (or not) of only a specific smell type. This
repetitive classification for the same code fragment enabled us to reason about the same
code fragment classified by different developers with different perspectives. We took into
account that each developer should be allocated at most to three groups to avoid fatigue.
Also, a description of the evaluated smell based on the definition presented by Fowler’s cat-
alog (Fowler 1999) were presented to the developer. Finally, we ensure that each developer
belonging to more than one group only classify one smell type per time.

Empir Software Eng (2022) 27:195195 Page 8 of 44

Repositories Potentially-smelly
Code Fragments

Thresholds
Heuristics

Understand

Manual
Classification

Datataset Scheme

1
3

2

Fig. 1 Data collection steps

The classification process concerns the analysis of a potentially-smelly code fragment by
looking for the specific smell type reported. The code fragments comprehend the scope of
the smell type analyzed, i.e., method, class, package, or project. Developers had to indicate
whether a code fragment contains a smell type or not by providing the following answers:
YES, if the developer agrees that a given code fragment presents the reported smell type; or
NO, otherwise.

Following the classification of code fragments, in the third step illustrated in Fig. 1,
we used Understand6 to extract software metrics. These metrics were used to characterize
each code fragment in terms of features to be used during the training process of the ML
techniques. We also collected popular metrics from literature (Arcelli Fontana et al. 2016;
Palomba et al. 2014b; Lanza et al. 2005; Munro 2005; Gopalan 2012). The complete list
of metrics used is presented in Appendix A. Figure 2 illustrates a table of the dataset’s
schema containing the features, i.e., metrics (M1...Mn), and classifications (True or False)
associated with the code fragments. Altogether, the dataset is composed of 120 tables, one
per each developer in each group. Each table has 15 lines, comprising the 1800 assessments
mentioned above. The complete dataset, including the values for the metrics, labels of the
manual validation, and detection rules is available in the supplementary material (Oliveira
et al. 2022).

2.4 Machine Learning Techniques

To investigate the behavior of different ML techniques, we chose seven techniques to be
evaluated, which are described next. We chose these techniques because of their compre-
hensiveness, different data analysis approaches, i.e., decision trees, regression analysis, and
rule-based analysis that are responsible to create the classifier models. This diversity of the
approach allows us to compare the accuracy and efficiency of them on detecting each stud-
ied smell, this comparison led us to understand the scenarios that each approach can be
better applied. Another reason is regarding that they also are widely evaluated in previous
studies related to code smell detection (Hozano et al. 2017a, b), which is also confirmed by
a recent systematic literature review (Azeem et al. 2019).

6https://scitools.com/features/

Empir Software Eng (2022) 27:195 Page 9 of 44 195

https://scitools.com/features/

Fig. 2 Schema of the dataset

Naive Bayes (NB) Probabilistic classifier based on the application of Bayes’ theo-
rem (Mitchell 1997). NB uses this theorem together with a strong assumption that the
attributes are conditionally independent given the class. This technique employs a mecha-
nism for using the information in sample data to estimate the posterior probability P(y|x)

of each class y given an object x. Then, it uses such estimates for classification. In summary,
the main idea is to describe the probability of an event based on prior knowledge of con-
ditions that might be related to this event. NB is highly scalable and completely disregards
the correlation between the variables in the training set.

Support Vector Machine (SVM) Implementation of integrated software for the classifica-
tion of support vectors (Steinwart and Christmann 2008) that analyzes the data used for
classification and regression analysis. SVM assigns new instances to one of the two cate-
gories introduced in the training set, making it a non-probabilistic binary linear classifier. In
order to make this classification, SVM creates classification models that are a representa-
tion of instances as points in space.These points are mapped in such a way that the instances
in each category are divided by a clear space that is as broad as possible. Each new instance
is mapped in the same space and predicted as belonging to a category based on which side
of space they are placed.

Sequential Minimal Optimization (SMO) An implementation of John Platt’s minimal
sequential optimization algorithm to train a support vector classifier (Platt 1998). Train-
ing a SVM requires the solution of a very large quadratic programming (QP) optimization
problem. To deal with this situation, SMO breaks this large QP problem into small QP
problems. Then, each of these small QP problem are solved analytically, without using a
time-consuming numerical QP optimization as an inner loop. In other words, SMO is a tech-
nique for optimizing the SVM training to turn it faster and less complex than the previous
methods.

OneRule (OneR) Classification technique that generates a rule for each predictor in the
data, then selects the rule with the lowest total error as its “single rule” (Holte 1993). In order
to create this rule, this technique analyzes the training set and associates a single data to a
specific category based on its frequency. For instance, if a specific data is usually classified
as category A, then a rule is created linking them. After creating the rules, the technique
chooses the one with the lowest total error.

Empir Software Eng (2022) 27:195195 Page 10 of 44

Random Forest (RF) A classifier responsible for building numerous classification trees
representing a forest with random decision trees (Ho 1995). In training, the RF algorithm
creates multiple trees (Breiman et al. 1984), each trained on a sample of the original training
data, and searches only across a randomly selected subset of the input variables to deter-
mine a split. For classification, each tree in the Random Forest casts a unit vote for the most
popular class of the input pattern. The output of the classifier is determined by a majority
vote of the trees. The RF technique adds extra randomness to the model during the creation
of the trees. Instead of looking for the best feature when partitioning nodes, it looks for the
best feature in a random subset of features. This process creates a great diversity that gen-
erally leads to the generation of better models, besides that this diversity also reduces the
overfitting effect.

JRip An implementation of an apprentice of propositional rules (Cohen 1995). This tech-
nique is based on association rules with reduced error pruning, a very common and effective
technique found in decision tree algorithms. Differently from the other algorithms, JRip
splits its training stage into two steps, namely a growing phase and a pruning phase. The
first phase grows a rule by greedily adding antecedents (or conditions) to the rule until the
rule is perfect, i.e., 100% of accuracy. The second phase incrementally prune each rule and
allow the pruning of any final sequences of the antecedents.

J48 A Java implementation of the C4.5 decision tree technique (Quinlan 1993). J48 builds
decision trees from a training dataset by, at each node of the tree, choosing the data attribute
that most effectively partitions its set of samples into subsets tending to one category or
another. The partitioning criterion is the information gain. The attribute with the highest
gain of information is chosen to make the decision. This process is repeated on the smaller
partitions.

2.5 Experimental Configurations

Using the datasets containing the different perceptions of developers and the software
metrics for each analyzed code fragment, we performed two different experiments. Each
configuration focusing a specific RQ, as follows:

Assessment of ML techniques accuracy: To answer RQ1, we used the dataset to ana-
lyze the global accuracy of the ML techniques on detecting a specific smell type by
relying on F-measure as the metric. For each smell type, we calculated the global accu-
racy of each technique by applying a 10-fold cross validation procedure on each table of
the dataset associated with that smell type. Then, in order to answer RQ2, we repeated
this experiment, but in this case, analyzing the individual accuracy variation obtained by
each technique on detecting smells to the different developers.
Assessment of ML techniques efficiency: Aiming to answer RQ3, we evaluate the
efficiency of the ML techniques. For that, we evaluated the accuracy by considering the
15 classifications performed by each developer. However, we used sets with different
number of instances for training. These sets ranged from three (20% of the instances) to
12 (80% of the instances), with the goal of guarantying that both, the training and test
sets, were composed of fragments classified as smelly and non-smelly by each developer.

Empir Software Eng (2022) 27:195 Page 11 of 44 195

Table 3 Fleiss’ Kappa per smell
type Smell Fleiss’ Kappa Agreement

GC 0.308 Fair

DCL 0.321 Fair

LM 0.310 Fair

FE 0.246 Fair

MC 0.083 Slight

II 0.088 Slight

MM 0.128 Slight

PO 0.096 Slight

RB 0.078 Slight

SG 0.065 Slight

2.6 Implementation Aspects

The ML techniques presented in the previous section were implemented on top of Weka7

and R Project.8 Weka is an open source ML software, based Java programming language,
containing a plethora of tools and algorithms (Hall et al. 2009). R is a free software envi-
ronment for statistical computing that is widely used for data mining, data analysis, and to
implement ML techniques (Lantz 2019). Finally, we applied these algorithms by following
the same configuration adopted by Arcelli Fontana et al. (2016).

3 Results and Discussion

This section presents and discusses the results of our study. The discussions are organized
in terms of the experimental configurations in order to answer the three research questions
presented in Section 2. As part of the discussions, we also present details of the detection
rules generated by the ML techniques, comparing them with related studies. Furthermore,
we describe potential risks that should be taken into account when considering developer-
sensitive smells. Lastly, the contributions and implications of our work are presented.

As a basis for our analysis, we firstly analyzed the characteristics of the dataset used in
our study (see Section 2.2). For that, we computed the Fleiss’ Kappa measure; its values are
presented in Table 3. In our dataset, the developers had a “Fair agreement” for four different
smell types (i.e., GC, DCL, LM, and FE). For the remaining smell types (i.e., MC, II, MM,
PO, RB, and SG), the developers had a “Slight agreement” on the perception of the exis-
tence (or not) of code smells. That is, the developers often disagree with each other, which
indicates different perceptions regarding the existence of a smell type in the same code
fragment. These characteristics are relevant for our study, as our goal is to understand how
ML techniques behave when learning from a dataset that represents different developers’
perceptions.

The next sections present the results and discussions of global accuracy for separated and
grouped smell types (RQ1—Section 3.1), the dispersion in the accuracy of ML techniques
when considering the individual opinion of each developer (RQ2—Section 3.2), and the

7https://www.cs.waikato.ac.nz/ml/weka/
8https://www.r-project.org

Empir Software Eng (2022) 27:195195 Page 12 of 44

https://www.cs.waikato.ac.nz/ml/weka/
https://www.r-project.org

efficiency of the ML techniques when different number of instances are available for their
training (RQ3—Section 3.3).

3.1 Assessment of Global Accuracy

Figure 3 presents boxplots of the global accuracy, i.e., F-measure, of the ML techniques on
detecting the 10 smell types analyzed. Each boxplots represents 12 values of F-measure.

Fig. 3 Global accuracy reached by the ML techniques on detecting smells

Empir Software Eng (2022) 27:195 Page 13 of 44 195

Table 4 ML techniques with the best value of F-measure per code smell type

Smell DCL FE GC II LM MC MM PO RB SG

ML technique NB SMO J48, NB NB NB OR RF OR SMO RF

RF, SMO

Behavior of ML Techniques Per Smell Type At first, we can observe that the range of
values presented by the boxplots varies for different smell types. This situation is evident
when comparing Long Method (Fig. 3e), for which F-measure values are higher than 0.72,
and Message Chains (Fig. 3f), for which the values range from 0 to 1. Also, the behavior
of the different ML techniques commonly varies for the same smell types. In almost every
boxplot there are some ML techniques with F-measure values higher than 0.6 and other
techniques varying from 0 to 1.

Despite these variations in the range of values, the median values are higher than 0.69
in all cases, except for SVM in three smell types, namely God Class (Fig. 3c), Middle Man
(Fig. 3g), and Speculative Generality (Fig. 3j). Table 4 presents the best ML techniques
for each smell, according to the highest median values of F-measure. God Class (Fig. 3c)
was the only smell type that four ML techniques reached the best value, which is equal to
1. We can also see that there is no predominant technique. From a software engineering
perspective, these results mean that if engineers want to prioritize the detection of specific
smells, some ML techniques may be more indicated than others.

Global Behavior of ML Techniques Table 4 also enables us to observe which are the best
ML techniques across different smell types. NB reached the best median of F-measure for
four smell types, namely Data Class, God Class, Inappropriate Intimacy, and Long Method.
RF was the best for three smell types: God Class, Middle Man, and Speculative Generality.
SMO also was the best for the same number of smell types: God Class, Refused Bequest,
and Feature Envy. Finally, OR reached the best F-measure values for Message Chains, and
Primitive Obsession; and J48 only for God Class. SVM and JRip did not reach the best
values in any case.

To analyze the behavior of the ML techniques independently of code smells, we group
all the values of F-measure for each ML technique. For example, each group is composed
of 120 values of F-measure, i.e., 12 developers times 10 code smell types. Figure 4 presents

Fig. 4 Boxplot with the global accuracy by grouping results of all code smells for each ML technique

Empir Software Eng (2022) 27:195195 Page 14 of 44

Table 5 P-value of the pairwise comparisons grouping results of all code smells for each ML technique. This
comparison uses Nemenyi multiple comparison test with q approximation for unreplicated blocked data

J48 NB SVM OR JRip RF

NB 0.90178 – – – – –

SVM 1.3e-09 2.8e-13 – – – –

OR 0.21554 0.00730 0.00057 – – –

JRip 5.5e-09 1.4e-12 0.99999 0.00146 – –

RF 0.99994 0.75746 8.9e-09 0.37571 3.6e-08 –

SMO 0.99161 0.48195 1.2e-07 0.65392 4.4e-07 0.99959

the boxplot for these groups. In this figure, we can see that SVM and JRip have different
results in comparison to the other techniques. To a in-depth analysis, we performed statis-
tical comparisons (see Section 2.1). Firstly, by using the Shapiro-Wilk statistical test, we
observed that all groups had a non-normal distribution of F-measure. Then, we applied the
Friedman non-parametric test, which resulted in p-value < 2.2e-16, which confirms the
statistical difference among the ML techniques. As the Friedman test has rejected the null
hypothesis, we used the Nemenyi post-hoc test for multiple pairwise comparisons, in order
to see which pairs of techniques are statistically different.

Table 5 presents the p-values of the pairwise comparisons taking into account the groups
per ML technique. P-values lower than 0.05, highlighted in boldface, indicate a difference
with 95% of confidence. At first, we can confirm that J48, NB, OR, RF, and SMO are
statistically better than SVM and JRip, and these latter are similar. Additionally, there is
a difference between NB and OR. To confirm global similarities and differences between
the ML techniques, Table 6 presents the effect size of pair comparisons computed with
the Vargha-Delaney’s Â12 measure. We removed SVM and JRip from this comparison, as
they were already confirmed as worse than the others. As the results confirm, we can only
observe a difference of small magnitude between NB and OR, in which the former is better.
There is no other pairwise comparison that shows differences between the ML techniques;
all other comparisons have a negligible effect size. Such results reinforce the findings of
previous studies (Arcelli Fontana et al. 2016; Azeem et al. 2019) that indicate high accuracy
of the RF, NB, and J48, and low accuracy of the SVM. Interestingly, our results also diverge
from these previous studies, which indicate JRip as one of the best techniques. In our case,
JRip had the worst accuracy when compared to the other ones.

Table 6 Â12 measure computed by grouping results of all code smells for each ML technique. Symbols “≈”
and “±” indicate effect size magnitude negligible and small, respectively

J48 NB OR RF

NB 0.5517014 ≈ – – –

OR 0.4691667 ≈ 0.4212153 ± – –

RF 0.5232639 ≈ 0.4739236 ≈ 0.5498264 ≈ –

SMO 0.5074306 ≈ 0.4571875 ≈ 0.5378472 ≈ 0.4885069 ≈

Empir Software Eng (2022) 27:195 Page 15 of 44 195

3.2 Assessment of ML Techniques Dispersion

As discussed in the previous section, the ML techniques could not reach a global accuracy
above 0.8 in the vast majority of the cases analyzed. Our initial hypothesis was that the tech-
niques had a high dispersion on detecting code smells for each developer. As a consequence,
the techniques obtained a low global accuracy. Hence, we investigate the RQ2 aiming at
analyzing the accuracy dispersion of each ML technique on detecting developer-sensitive
smells. Figure 5 presents violin plots that support the discussions about this RQ. In each
plot, the x-axis describes the ML technique evaluated, together with points that indicate the
F-measure values obtained by the technique on detecting smells for each developer. In our
study, we use the standard deviation (SD) to quantify the dispersion of the accuracy values
obtained by each technique on detecting smells for the developers. We attach the SD to the
top of the bars associated with each ML technique.

All the ML techniques present some dispersion in their accuracy, similarly to what we
discussed in RQ1. Additionally, by analyzing the SD obtained by each technique, we can
observe that the SVM technique presented the highest dispersion in five out of 10 smell
types analyzed. In the previous section, we also observed that the SVM presented the lowest
global accuracy. JRip had the highest value of SD in only one case. RF had the highest
dispersion in two cases, while J48 and OR in one case. Long Method was the code smell
type in which the values of F-measure were the least dispersed. On the other hand, Message
Chain was the one with the highest dispersion. Taking into account the Fleiss’ Kappa values
computed among developers (see Table 3), the smell types with the least dispersion were
the ones with a fair agreement, namely Long Method, Data Class, Feature Envy, and God
Class. The average dispersion per ML technique ranges between 0.2185, for NB, to 0.3681,
for SVM. Across different smell types, the ML techniques have similar behavior in regard
to dispersion, except for smell types Data Class and Long Methods. Finally, for an objective
comparison, we compute the Spearman correlation between the values of agreement and the
average standard deviation per smell type. The p-value of the correlation is equal to 0.02419,
confirming the alternative hypothesis that there is a correlation. The value of the correlation
is -0.721, interpreted as High negative correlation. As expected, this result means that when
the agreement decreases, the dispersion of accuracy increases.

Empir Software Eng (2022) 27:195195 Page 16 of 44

Fig. 5 Accuracy Density Reached by the ML techniques on detecting the smells according to the individual
perception of each developer

Although the ML techniques have presented a dispersion of their accuracy on detecting
code smells for different developers, these techniques were able to reach high accuracy for
specific developers. Hence, we analyze the most accurate techniques to detect smells for
each developer. Figure 6 presents the main results that support the discussions about this
analysis. The x-axis describes the id of a developer that evaluated code fragments related to a
smell type, and the ML techniques that reached the highest accuracy, in terms of F-measure,
on detecting smells for the developer. The y-axis presents the highest accuracy reached by
the ML techniques for the corresponding developer.

Empir Software Eng (2022) 27:195 Page 17 of 44 195

Fig. 6 Accuracy reached by the ML techniques on detecting smells according to the individual perception of
each developer

We observe that different techniques could obtain the highest accuracy in detecting
developer-sensitive smells. For instance, every technique could reach the highest accuracy
for at least one developer for Data Class. Indeed, the results indicated that more than half of
the techniques obtained F-measure equals 1 for at least one developer in each type of smell,

Empir Software Eng (2022) 27:195195 Page 18 of 44

Table 7 Techniques that reached F-measure equals to 1.0 for at least one developer of the respective smell

Data Feature God Inappropriate Long Message Middle Primitive Refuse Speculative Total

class envy class intimacy method chain man obsession bequest generality

NB � � � � � � � � 8

SMO � � � � � � � � � 9

Jrip � � � � � � 6

RF � � � � � � � � � 9

SVM � � � � � 5

J48 � � � � � � � � 8

OR � � � � � � � � 8

except for Long Method. Also, these results suggest that there is no predominant technique
for all cases.

Table 7 highlights which techniques obtained F-measure equals 1 for at least one
developer of the respective smell type. In this table, we can see that for the God Class, Inap-
propriate Intimacy, and Speculative Generality, all techniques obtained F-measure equal to
1 at least once. However, for the Long Method, only RF obtained the highest F-measure.
Also, for Long Method (see Fig. 6e), there is only one best technique for each developer,
with RF and NB being the best techniques for nine out of 12 developers associated with this
smell.

Finally, we also observed that the techniques reached an F-measure above 0.8 for at least
nine out of 12 developers for all smell types. Even in the cases in which the techniques
could not obtain that accuracy, they obtained values of F-measure that varied from 0.67 to
0.79, except for the cases of four different developers with F-measure equals to 0.

A previous study (Hozano et al. 2018) indicates a statistically significant divergence
among the developers’ perceptions about the existence of the same code smell. In our study,
we could observe that this divergence has an impact on the ML techniques. Thus, our results
reinforce such findings, since we observe that ML techniques are accurate in detecting
smells for each developer. Note that the techniques reached an accuracy above 0.8 in the
vast majority of the cases analyzed. Indeed, the techniques obtained an accuracy of 1 in a
high number of the cases analyzed.

Empir Software Eng (2022) 27:195 Page 19 of 44 195

3.3 Assessment of ML Techniques Efficiency

According to the results of the previous RQs, we observed that ML techniques were able
to reach high accuracy in detecting developer-sensitive smells. In RQ3, we investigate the
impact of the percentage of instances used for training on the values of F-measure. Figure 7
presents the results that support the discussions regarding this research question. The sub-
figures represent the efficiency reached by the ML techniques on detecting the smell types

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80
F−

m
ea

su
re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80

F−
m

ea
su

re

J48 NB SVM OR JRip RF SMO

Fig. 7 Efficiency of the ML techniques on detecting the smells

Empir Software Eng (2022) 27:195195 Page 20 of 44

analyzed using different sizes of datasets for training. The x-axis describes the percentage
of the instances used in the training phase of the techniques, while the y-axis represents
the median of the accuracy values obtained by each ML technique on detecting smells for
different developers.

In an overall analysis of Fig. 7, we can observe that using different percentages of the
dataset for the training does not impact the accuracy of the ML techniques. However, the
same behavior of difference across different smell types is still present here. However, in
all cases, the techniques JRip and OR had low values of F-measure with a lower number of
instances but reached results similar to the other ones after around 40% of the instance.

3.4 Discussion About the Detection Rules

The answers to the RQs allowed us to understand the behavior of the ML techniques to
detect code smells based on different developers’ perceptions. We observed that: (RQ1)
having few developers with the same perception of code smells is enough for training an
ML technique, however, no technique obtained the best results for all the analyzed smells;
(RQ2) ML techniques present disperse results of F-measure when considering individual
perceptions of the developer; and (RQ3) increasing the number of training instances does
not guarantee an improvement in the accuracy.

From these results, we can conclude that it would not be possible to use only one tech-
nique for all smell types. The accuracy of techniques varies per developer and smell. Thus,
for further discussion, we complement our results by investigating the detection rules cre-
ated by some ML techniques and providing insights on their behavior. Additionally, we
compare the detection rules generated in our study with the rules present in the literature.
More specifically, we compare the metrics present in the detection rules provided by related
studies and the detection rules generated in our study.

Comparison of our Detection Rules to Related Studies In the previous sections, we ana-
lyzed the results of seven ML techniques. However, some techniques do not provide an
understandable representation of the detection rules, considering the size and structure of
the rules. For instance, RF provides hundreds of random trees used for the classification,
which is not suitable for this discussion. On the other hand, the techniques J48, JRip, and
OR express rules as a set of metrics and thresholds. J48 provides a pruned tree where the
nodes are the conjunctions of metrics and the thresholds define the path until the leaves rep-
resent the decision label, which is used to classify an instance as (not) a smell. JRip and
OR provide a logical combination of metrics and conditions based on thresholds. If the con-
dition is satisfied, then, the instance receives the decision label. We adjusted the rules to
present only the conditions that label a code fragment as smelly. In addition to the analysis

Empir Software Eng (2022) 27:195 Page 21 of 44 195

presented below, we provided more detailed rules for five different techniques for all smell
types on our supplementary material (Oliveira et al. 2022).

For the analysis of the detection rules created by the ML techniques in our study, in
comparison to what is reported in the literature, firstly we select the related studies. We
choose related studies that (i) use rules based on metrics and thresholds, obtained both
by ML techniques or other approaches; (ii) evaluate metrics and smell types that are also
considered in our study, enabling comparison; (iii) describe rules obtained in a primary
study or rules reported from other studies, i.e., secondary studies; and (iv) reports at least
one detection rule for each smell type. Based on that, we compare the detection rules of
our study to the rules of other four related studies, as follows: Arcelli Fontana et al. (2016)
investigated the use of ML techniques in detecting code smells. Rasool and Arshad (2015)
and Pecorelli et al. (2020) provide a list of metrics from different studies for detecting smell
types. Lastly, Bigonha et al. (2019) use a catalog of metrics and thresholds to detect five
types of code smells.

Table 8 presents the metrics observed in the detection rules that are reported in the four
related studies and the metrics observed in the detection rules created in our study, for
J48, JRip, and OR. The first column of the table shows the smell types, followed by the
metrics reported to detect each respective smell in the related studies. The last two columns
are the metrics used by the ML techniques from our study for individual (i.e., grouping
the metrics of the models generated for each developer) and global (i.e., the model that
considers all developers together) rules, respectively. For individual rules, we present only
the metrics that compose rules for more than one developer independently of technique, to
avoid the noise of very specific metrics. Also, the metrics at the beginning of the list are
the most frequent ones, being present in detection rules for a higher number of developers.
For global rules, we trained the ML techniques using the dataset with all developers. We
could observe that the studies use different names for similar metrics, thus, we adjusted the
name of metrics to ease the comparison. Also, there are pair of metrics that are not exactly
the same metric but are considerably similar based on their description. We identified these
cases with an asterisk (*). For instance, for the smell Refused Bequest (RB), both Pecorelli
et al and Bigonha et al. use a metric similar to BOVR, thus we presented them as BOVR*.

In Table 8, we notice that the detection rules for the individual developers differ from
the related studies, especially for the number of used metrics. The individual detection
rules include metrics presented in the literature and also several other specific metrics. For
instance, for the smell Speculative Generality (SG), on related study reports a detection rule
using only the metric, namely NOC (number of children). This detection rule is similar to
the one provided by J48 and JRip in the global rules: (NOC >= 1). However, in the indi-
vidual detection rules, despite the NOC metric being one of the most frequently observed
metrics (second position in the list), there are other 22 metrics that compose the detection
rules. For instance, J48 produced the following detection rules for the developers 49 and
53, respectively:: (NOC > 0 and CountClassBase <= 1 and LOCactual <= 29) and
(NOC > 0 and NBD > 1).

This behavior of having a larger set of metrics in the individual detection rules is similar
for most of the smells, except for II, in which we do not have the metrics FANIN and
FANOUT in any individual or global rules. For Middle Man (MM) and Primitive Obsession
(PO) we have not observed the exact metrics, however, we observed semantically similar
metrics. For instance, for MM the studies report the metric NOM, which counts the number
of methods without inherited ones, and the individual rules listed the metric RFC, which
counts the number of methods including the inherited ones. The same is observed for PO,
in which the related studies use the metric NOV (number of variables) and our individual
rules include GroupedVariables and Constants metrics that are also related to variables.

Empir Software Eng (2022) 27:195195 Page 22 of 44

Ta
bl
e
8

C
om

pa
ri
so
n
of

m
os
tf
re
qu
en
ts
of
tw
ar
e
m
et
ri
cs

pr
es
en
ti
n
th
e
de
te
ct
io
n
ru
le
s

Sm
el
l

Fo
nt
an
a
el
al
.

R
as
oo
le
ta
l.

Pe
co
re
lli

et
al
.

B
ig
on
ha

et
al
.

O
ur

st
ud
y
(i
nd
iv
id
ua
l)

O
ur

st
ud
y
(g
lo
ba
l)

D
C

W
O
C
,N

O
A
M
,

N
O
A
M
,N

O
V
,

–
N
O
C
,D

IT
,

L
O
C
ac
tu
al
,R

FC
,A

M
W
,W

O
C
,W

M
C
N
A
M
M
,

W
O
C
,I
nt
el
lig

en
tM

et
ho
ds

R
FC

,A
M
W

L
O
C
PR

O
B
,

N
O
A

C
FN

A
M
M
,N

O
A
M
,I
nt
el
lig

en
tM

et
ho
ds
,

C
FN

A
M
M
,

L
O
C
A
C
T
U
A
I,

A
vg
L
in
eB

la
nk
,E

L
O
C
,M

ax
C
yc
lo
m
at
ic
,

N
O
PV

A
,N

IM
,

W
O
C
,

M
ax
C
yc
lo
m
at
ic
St
ri
ct
,N

O
C
,A

vg
L
in
e

W
M
C
N
A
M
M

N
O
PA

,W
M
C

FE
A
T
FD

,L
A
A
,

C
B
O
,L

C
O
M
,

M
C
,A

T
FD

L
C
O
M

L
A
A
,A

T
FD

,F
A
N
IN

,C
ou
nt
L
in
eC

om
m
en
t,

A
T
FD

,L
A
A
,F

D
P,
N
M
O

N
O
A
,F

D
P,

A
T
FD

,L
A
A
,

C
yc
lo
m
at
ic
St
ri
ct
,C

ou
nt
Se
m
ic
ol
on
,

E
ss
en
tia
l,

N
M
O

FD
P

C
ou
nt
L
in
eB

la
nk
,N

M
O
,N

O
A
,

C
ou
nt
L
in
eC

om
m
en
t,

C
ou
nt
St
m
tD
ec
l,
FD

P,
C
yc
lo
,C

ou
nt
St
m
tE
xe
,

C
ou
nt
St
m
tE
xe

C
ou
nt
Pa
th
,L

O
C
ac
tu
al
,C

ou
nt
St
m
t,
L
O
C

G
C

W
M
C
N
A
M
M

–
E
L
O
C
,W

M
C
,

L
C
O
M
,W

M
C
,

W
M
C
,M

ax
E
ss
en
tia
l,
C
ou
nt
D
ec
lM

et
ho
dP

ri
va
te
,

W
M
C
,A

T
FD

,

N
O
A
,L

C
O
M

N
O
A
,N

O
M

M
ax
C
yc
lo
m
at
ic
,A

T
FD

,W
M
C
N
A
M
M
,N

O
V
,

M
ax
E
ss
en
tia
l

C
B
O
,A

vg
C
yc
lo
m
at
ic
,

In
ne
rC
la
ss
,A

vg
L
in
e,

N
Pr
ot
M
*,

C
ou
nt
L
in
eC

om
m
en
t,
D
IT
,

C
ou
nt
C
la
ss
B
as
e

II
–

–
FA

N
IN

,F
A
N
O
U
T

–
A
vg
L
in
eB

la
nk
,C

ou
nt
D
ec
lI
ns
ta
nc
eV

ar
ia
bl
e,
D
IT
,

N
O
V
,A

vg
C
yc
lo
m
at
ic
,

A
vg
E
ss
en
tia
l,
N
Pr
ot
M
*,

A
vg
C
yc
lo
m
at
ic
,

av
gL

in
eC

om
m
en
t

C
ou
nt
C
la
ss
B
as
e,
C
ou
nt
D
ec
lM

et
ho
dD

ef
au
lt,

A
vg
L
in
eC

om
m
en
t,
C
ou
nt
L
in
eB

la
nk
,R

FC
,N

B
D
,

M
ax
C
yc
lo
m
at
ic
St
ri
ct
,L

O
C

L
M

L
O
C
,C

Y
C
L
O

–
L
O
C
,N

P
M
L
O
C
,C

Y
C
L
O
,

FA
N
IN

,C
ou
nt
St
m
tE
xe
,M

L
O
C
,L

O
C
,E

L
O
C
,

M
L
O
C
,E

L
O
C
,

N
B
D

C
ou
nt
L
in
eC

om
m
en
t,
FA

N
O
U
T,

C
yc
lo
,E

ss
en
tia
l,

C
ou
nt
St
m
tE
xe

C
ou
nt
L
in
eB

la
nk
,L

O
C
pr
ob
*,

C
yc
lo
m
at
ic
M
od
if
ie
d

Empir Software Eng (2022) 27:195 Page 23 of 44 195

Ta
bl
e
8

(c
on
tin

ue
d)

Sm
el
l

Fo
nt
an
a
el
al
.

R
as
oo
le
ta
l.

Pe
co
re
lli

et
al
.

B
ig
on
ha

et
al
.

O
ur

st
ud
y
(i
nd
iv
id
ua
l)

O
ur

st
ud
y
(g
lo
ba
l)

M
C

–
L
M
C
,M

C
–

–
E
ss
en
tia
l,
L
O
C
ac
tu
al
,F
A
N
IN

,L
M
C
,F
A
N
O
U
T,

E
ss
en
tia
l,
L
M
C
,F
A
N
IN

R
at
io
C
om

m
en
tT
oC

od
e,
C
ou
nt
L
in
eC

om
m
en
t,

L
O
C
pr
ob
*,

C
ou
nt
St
m
tD
ec
l,
N
B
D
,E

L
O
C

M
M

–
PD

M
,N

O
M

PD
M

–
C
ou
nt
L
in
eB

la
nk
,A

vg
C
yc
lo
m
at
ic
,L

O
C
ac
tu
al
,

L
O
C
ac
tu
al
,C

ou
nt
St
m
t

N
IM

,A
vg
L
in
e,
A
vg
L
in
eC

om
m
en
t,
N
O
C
,

C
ou
nt
D
ec
lM

et
ho
dP

ri
va
te
,R

FC
,

L
C
O
M
,N

B
D
,

R
at
io
C
om

m
en
tT
oC

od
e,
C
B
O
,

C
ou
nt
D
ec
lI
ns
ta
nc
eV

ar
ia
bl
e,
C
ou
nt
D
ec
lM

et
ho
dD

ef
au
lt,

C
ou
nt
L
in
eC

om
m
en
t

PO
–

N
O
V
,V

A
V
G

–
–

G
ro
up
ed
V
ar
ia
bl
es
,C

on
st
an
ts
,A

vg
C
yc
lo
m
at
ic
,

G
ro
up
ed
V
ar
ia
bl
es
,

Pr
im

iti
ve
s,
R
at
io
C
om

m
en
tT
oC

od
e,
N
O
C
,

A
vg
L
in
e,
L
O
C
pr
ob

C
ou
nt
D
ec
lC
la
ss
M
et
ho
d,

C
ou
nt
D
ec
lM

et
ho
dD

ef
au
lt,

D
IT
,N

O
M
,N

B
D
,N

Pr
ot
M
*,

W
M
C
,

Su
m
C
yc
lo
m
at
ic
M
od
if
ie
d,

M
ax
E
ss
en
tia
l

R
B

–
B
U
R
,N

O
A
,

B
O
V
R
*

B
O
V
R
*

A
vg
E
ss
en
tia
l,
N
O
C
,C

ou
nt
D
ec
lM

et
ho
dD

ef
au
lt,

N
Pr
ot
M
*,

C
ou
nt
C
la
ss
B
as
e

N
Pr
ot
M
,

C
ou
nt
D
ec
lC
la
ss
M
et
ho
d,

R
FC

,M
ax
E
ss
en
tia
l,

C
B
O
,A

vg
C
yc
lo
m
at
ic
,R

FC

B
O
V
R
,

Su
m
E
ss
en
tia
l,
N
IM

,C
ou
nt
C
la
ss
B
as
e,

A
M
W
,W

M
C
,

M
ax
C
yc
lo
m
at
ic
M
od
if
ie
d,

N
Pr
ot
M
*,

N
O
M

C
ou
nt
L
in
eC

om
m
en
t,
R
at
io
C
om

m
en
tT
oC

od
e,

L
O
C
ac
tu
al
,A

vg
C
yc
lo
m
at
ic
,L

C
O
M
,

Su
m
C
yc
lo
m
at
ic
M
od
if
ie
d,

C
ou
nt
D
ec
lM

et
ho
dP

ub
lic
,

M
ax
C
yc
lo
m
at
ic
,A

vg
L
in
eB

la
nk

Empir Software Eng (2022) 27:195195 Page 24 of 44

Ta
bl
e
8

(c
on
tin

ue
d)

Sm
el
l

Fo
nt
an
a
el
al
.

R
as
oo
le
ta
l.

Pe
co
re
lli

et
al
.

B
ig
on
ha

et
al
.

O
ur

st
ud
y
(i
nd
iv
id
ua
l)

O
ur

st
ud
y
(g
lo
ba
l)

SG
–

–
N
O
C

–
A
vg
L
in
eB

la
nk
,N

O
C
,L

O
C
ac
tu
al
,A

vg
L
in
e,

N
O
C
,A

vg
L
in
eC

od
e

A
vg
L
in
eC

om
m
en
t,
A
vg
E
ss
en
tia
l,
C
B
O
,

C
ou
nt
L
in
eB

la
nk
,A

vg
C
yc
lo
m
at
ic
,C

ou
nt
St
m
tD
ec
l,

M
ax
C
yc
lo
m
at
ic
,A

vg
C
yc
lo
m
at
ic
St
ri
ct
,A

vg
L
in
eC

od
e,

C
ou
nt
C
la
ss
B
as
e,
L
O
C
pr
ob
*,

D
IT
,

C
ou
nt
D
ec
lI
ns
ta
nc
eV

ar
ia
bl
e,
C
ou
nt
St
m
t,
L
O
C
,

C
ou
nt
L
in
eC

om
m
en
t,
N
B
D
,M

ax
E
ss
en
tia
l,N

IM

Empir Software Eng (2022) 27:195 Page 25 of 44 195

Detection Rules for Individual Developers Table 9 presents the detection rules created by
the ML techniques J48, JRip, and OR for each developer individually for the smell Data
Class. Despite being a smell with a fair agreement among developers, according to the
Fleiss’ Kappa (Table 3), it is possible to observe that each developer has a unique set of rules.
The detection rules vary among developers and ML techniques. We can observe that several
rules (for at least 5 out of 12 developers) contain popular metrics present in the literature,
such as RFC, WOC, AMW, CFNAMM and WMCNAMM (Table 8). These metrics are
seen especially in the study of Arcelli Fontana et al. (2016), which also evaluated the same
three ML techniques in their study. However, some detection rules include only metrics
not related to the code smell definitions found in the literature. For instance, the detection
rules provided by J48 for developers #2 and #18 are composed only of metrics related
to blank lines, namely AvgLineBlank. These unconventional metrics are also seen in the
detection rules of other smells (Table 8). Fortunately, this is not recurrent when considering
all rules from different techniques for the same developer. When considering the rules from
all techniques for a developer, we obtain high F-measures values, as seen in Fig. 6a.

Global Detection Rules Table 10 presents the detection rules when considering the dataset
with all developers together. In this case, we also observed the same behavior as in the
detection rules for individual developers. The three ML techniques generated detection rules
completely different for the same smell type for the majority of the cases. One exception
is the case of Speculative Generality (SG) for J48 and JRip, already discussed above. Due
to the different developers’ perceptions of the same code snippet, some ML techniques are
more affected than others based on the nature of the technique’s approach. For instance,
OR tends to create a unique and less error-prone detection rule. However, based on this
behavior, the technique OR creates specific rules for the analyzed dataset, since it focused
only on one metric for each type of smell. This impacts the use of the rules generated by
OR in the scenario with a divergence of perceptions among developers.

Empir Software Eng (2022) 27:195195 Page 26 of 44

Ta
bl
e
9

D
at
a
cl
as
s’
de
ve
lo
pe
r-
sp
ec
if
ic
de
te
ct
io
n
ru
le
s

D
ev
el
op
er

J4
8

O
R

JR
ip

2
A
vg
L
in
eB

la
nk

<
=
0

(L
O
C
ac
tu
al

<
68
.0

or
L
O
C
ac
tu
al

>
=
15
2.
5)

or
(N

O
A
M

>
1
an
d
C
ou
nt
D
ec
lM

et
ho
dD

ef
au
lt

<
2)

or

C
FN

A
M
M

<
1.
5

C
FN

A
M
M

<
2

17
C
ou
nt
St
m
tE
xe

<
=
28

C
ou
nt
Se
m
ic
ol
on

<
50
.5

R
FC

<
33

an
d
N
O
C

<
1

18
A
vg
L
in
eB

la
nk

<
=
0.
18

A
vg
L
in
e

<
12
.7
9
or

A
vg
L
in
e

<
11
.2
7
or

C
FN

A
M
M

<
3.
5
or

C
FN

A
M
M

<
5
or

A
M
W

<
2.
14

N
O
A
M

>
0
or

A
M
W

<
2.
64

19
E
L
O
C

<
=
20

or
L
O
C
ac
tu
al

<
68
.0

or
L
O
C
ac
tu
al

<
=
81

or

L
O
C
ac
tu
al

<
=
55

or
A
vg
L
in
e

<
6.
90

or
W
O
C

<
=
0

In
te
lli
ge
nt
M
et
ho
ds

<
=
0

R
FC

<
19
.5

or

W
O
C

<
0.
1

21
M
ax
C
yc
lo
m
at
ic
St
ri
ct

<
=
2
or

L
O
C
ac
tu
al

<
10
9.
5

A
M
W

<
1.
5
or

In
te
lli
ge
nt
M
et
ho
ds

<
=
0

R
FC

<
19
.5

or
W
M
C
N
A
M
M

<
6
or

W
M
C
N
A
M
M

<
5.
0
or

W
O
C

<
0.
2

A
M
W

<
1.
35

or

W
O
C

<
0.
1

22
(W

M
C
N
A
M
M

>
2
an
d
C
FN

A
M
M

<
=
15
)
or

C
ou
nt
D
ec
lM

et
ho
dP

ub
lic

<
5.
5

(W
M
C
N
A
M
M

>
2
an
d
C
FN

A
M
M

<
24
)
or

(W
M
C
N
A
M
M

>
2
an
d
A
M
W

<
=
1.
64
)

(W
M
C
N
A
M
M

>
2
an
d
R
FC

<
34
)
or

(W
M
C
N
A
M
M

>
2
an
d
A
M
W

<
2.
64
)

27
C
ou
nt
L
in
eB

la
nk

<
=
11

or
A
cc
es
so
rs
R
at
io

>
=
94
.4

W
M
C
N
A
M
M

<
=
2
or

E
L
O
C

<
=
17

or
L
O
C
ac
tu
al

<
=
53

W
M
C
N
A
M
M

<
=
2
or

L
O
C
ac
tu
al

<
=
53

Empir Software Eng (2022) 27:195 Page 27 of 44 195

Ta
bl
e
9

(c
on
tin

ue
d)

D
ev
el
op
er

J4
8

O
R

JR
ip

30
E
L
O
C

<
=
17

or
N
O
A
M

>
=
5.
0

E
L
O
C

<
=
17

or

L
O
C
ac
tu
al

<
=
49

or
L
O
C
ac
tu
al

<
=
49

C
ou
nt
L
in
eC

om
m
en
t<

=
4

77
(P
ub
lic
A
ttr
ib
ut
es

<
=
0
an
d
N
O
C

>
0)

or
N
O
A
M

<
7.
0
or

(P
ub
lic
A
ttr
ib
ut
es

>
0)

W
O
C

<
23
1.
0

–

86
M
ax
C
yc
lo
m
at
ic
St
ri
ct

<
=
2
or

L
O
C
ac
tu
al

<
10
9.
5
or

A
M
W

<
1.
5
or

M
ax
C
yc
lo
m
at
ic

<
=
2
or

A
M
W

<
1.
05

or
W
M
C
N
A
M
M

<
6

In
te
lli
ge
nt
M
et
ho
ds

<
=
0

R
FC

<
19
.5

or
W
O
C

<
0.
2

W
M
C
N
A
M
M

<
5.
0
or

A
M
W

<
1.
35

or

W
O
C

<
0.
1

93
C
FN

A
M
M

<
=
0
or

C
FN

A
M
M

<
1.
5

C
FN

A
M
M

<
2

A
vg
L
in
eB

la
nk

<
=
0

10
4

M
ax
C
yc
lo
m
at
ic
St
ri
ct

<
=
2
or

L
O
C
ac
tu
al

<
10
9.
5
or

A
M
W

<
1.
5
or

M
ax
C
yc
lo
m
at
ic

<
=
2)

or
A
M
W

<
1.
35

or
W
M
C
N
A
M
M

<
6
or

In
te
lli
ge
nt
M
et
ho
ds

<
=
0

R
FC

<
19
.5

or
W
O
C

<
0.
2

W
M
C
N
A
M
M

<
5.
0
or

W
O
C

<
0.
1

Empir Software Eng (2022) 27:195195 Page 28 of 44

Ta
bl
e
10

G
lo
ba
ld

et
ec
tio

n
ru
le
s
pe
r
sm

el
lt
yp
e

Sm
el
l

J4
8

O
R

JR
ip

D
C
L

In
te
lli
ge
nt
M
et
ho
ds

<
=
0

W
O
C

<
0.
1

W
O
C

<
0.
2

FE
(F
D
P

>
0
an
d
E
ss
en
tia
l<

=
1
an
d
C
ou
nt
L
in
eC

om
m
en
t<

=
2
an
d

(A
T
FD

>
=
0.
5
an
d
A
T
FD

<
1.
5)

or
L
A
A

<
0.
47

or

N
M
O

<
=
2
an
d
C
ou
nt
St
m
tE
xe

<
=
9)

or
(A
T
FD

>
=
4.
5
an
d
A
T
FD

<
8)

or
(L
A
A

>
0.
56

an
d
L
A
A

<
0.
77
)

(F
D
P

>
0
an
d
E
ss
en
tia
l<

=
1
an
d
C
ou
nt
L
in
eC

om
m
en
t<

=
2
an
d
4

A
T
FD

>
=
12
.5

N
M
O

<
=
2
an
d
C
ou
nt
St
m
tE
xe

>
9
an
d
A
T
FD

>
9)

G
C

M
ax
E
ss
en
tia
l>

3
(A
T
FD

>
42
.5

an
d
A
T
FD

<
77
.0
)
or

w
m
c

>
=
10
1

A
T
FD

>
=
13
0.
5

II
A

N
O
V

>
2
an
d
B

A
vg
C
yc
lo
m
at
ic

>
2.
2

(B
A
vg
C
yc
lo
m
at
ic

>
=
2.
23

an
d
B

A
vg
C
yc
lo
m
at
ic

<
2.
76
)
or

B
A
vg
L
in
eC

om
m
en
t>

=
7.
46

(B
A
vg
C
yc
lo
m
at
ic

>
=
3.
05

an
d
B

A
vg
C
yc
lo
m
at
ic

<
3.
58
)
or

(B
A
vg
C
yc
lo
m
at
ic

>
=
4.
64

an
d
B

A
vg
C
yc
lo
m
at
ic

<
6.
88
)

L
M

C
ou
nt
St
m
tE
xe

>
32

an
d
M
L
O
C

<
=
16
8

(M
L
O
C

>
=
74

an
d
M
L
O
C

<
81
.5
)
or

(E
L
O
C

>
43

an
d
M
L
O
C

<
19
4)

(M
L
O
C

>
=
87
.5

an
d
M
L
O
C

<
18
1)

M
C

(E
ss
en
tia
l<

=
1
an
d
L
M
C

<
=
4)

or
(F
A
N
IN

>
=
15
.5

an
d
FA

N
IN

<
19
.5
)
or

E
ss
en
tia
l>

=
3
or

E
ss
en
tia

l>
1

(F
A
N
IN

>
=
1.
5
an
d
FA

N
IN

<
5.
5)

or
L
M
C

<
=
4

FA
N
IN

>
=
57
.5

M
M

L
O
C
ac
tu
al

<
=
31

an
d
C
ou
nt
St
m
t>

4
C
ou
nt
St
m
t>

=
4.
5
an
d
C
ou
nt
St
m
t<

8
L
O
C
ac
tu
al

<
=
31

Empir Software Eng (2022) 27:195 Page 29 of 44 195

Ta
bl
e
10

(c
on
tin

ue
d)

Sm
el
l

J4
8

O
R

JR
ip

PO
G
ro
up
ed
V
ar
ia
bl
es

>
0

(A
vg
L
in
e

>
=
4.
09

an
d
A
vg
L
in
e

<
16
.0
2)

or
L
O
C
pr
ob

<
=
14
8
or

(A
vg
L
in
e

>
=
22
.1
2
an
d
A
vg
L
in
e

<
25
.1
2)

or
G
ro
up
ed
V
ar
ia
bl
es

>
=
1

(A
vg
L
in
e

>
=
28
.6
7
an
d
A
vg
L
in
e

<
31
.7
5)

or

(A
vg
L
in
e

>
=
34
.4
5
an
d
A
vg
L
in
e

<
35
.7
6)

or

(A
vg
L
in
e

>
=
36
.4
3
an
d
A
vg
L
in
e

<
43
.2
3)

R
B

(A
N
Pr
ot
M
*

<
=
11

an
d

A
A
vg
C
yc
lo
m
at
ic

<
1.
74

or
A

R
FC

<
=
39

A
C
ou
nt
C
la
ss
B
as
e

<
=
1
an
d
B

C
B
O

<
=
2)

or
(A

A
vg
C
yc
lo
m
at
ic

>
=
2.
39

an
d
A

A
vg
C
yc
lo
m
at
ic

<
2.
79
)
or

(A
N
Pr
ot
M
*

<
=
11

an
d
A

C
ou
nt
C
la
ss
B
as
e

>
1)

(A
A
vg
C
yc
lo
m
at
ic

>
=
4.
16

an
d
A

A
vg
C
yc
lo
m
at
ic

<
5.
21
)
or

A
A
vg
C
yc
lo
m
at
ic

>
=
15
.7
9

SG
N
O
C

>
0

(A
vg
L
in
eC

od
e

>
=
1.
16

an
d
A
vg
L
in
eC

od
e

<
3.
93
)
or

N
O
C

>
=
1

(A
vg
L
in
eC

od
e

>
=
4.
5
an
d
A
vg
L
in
eC

od
e

<
5.
25
)
or

(A
vg
L
in
eC

od
e

>
=
8.
93

an
d
A
vg
L
in
eC

od
e

<
9.
93
)

Empir Software Eng (2022) 27:195195 Page 30 of 44

3.5 Risk of the Developer-Sensitive Smell Detection

Creating approaches and tools that learn the preferences of developers can be risky in certain
circumstances. For example, let us assume a case in which developers in a project are not
aware of good development practices to avoid smells, e.g., writing short methods easy to
understand and maintain, or are not able to identify the existence of smells, e.g., Feature
Envy. If the training of ML models relies exclusively on the perception of these developers,
a severe bias will be introduced in the smell detection, directly harming the internal quality
of the software. For instance, based on the examples mentioned above, the source code will
have many occurrences of long methods and feature envies without warning the developers.
On one hand, our study calls attention to the need of taking into account the perception
of developers about the existence of smells. On the other hand, we also stress the risk of
how to use their perception as a unique ground truth. Thus, it is recommended that users
(companies or developers individually) have strategies to mitigate such risks. For example,
users can defined which developers will compose the training step or set minimum quality
standard to be used as a sanity check of the performance of the ML models.

In our study, several developers evaluated the same instance of code, which enable us
to observe the divergence of their perceptions. However, in a real-world scenario, in which
each developer work on their specific pieces of code, each developer will evaluate their own
instances of smells. This can lead to significant divergence in the generated detection rules,
leading to pieces of code with diverse levels of quality within the same project. However, it
is common that certain modules to have similar structural or semantic characteristics within
the same system or across different of the same ecosystem, domain or organization. In these
cases, different developers working on these modules may either have similar or diverging
perceptions about a certain smell type. Thus, a comparison of their generated detection
rules should: (i) either confirm that smell detection is likely to be coherent (and, thus, more
likely to be accurate), or (ii) warn developers about potential inaccurate detection of smells
(even if they are aligned with the individual perception of the developers working on those
structurally or semantically).

Finally, the developer-sensitive smell detection requires smell instances of a specific
developer to be used as training for the ML techniques. However, a developer might not have
enough instances of a certain smell type, in the case of deciding for early detection of code
smells. In this scenario, some harmful smell instances may be introduced at the beginning
of the software development and remain present while the techniques are not completely
trained. The later detection and removal of code smells may require additional efforts as
well as a wast of time. Fortunately, the results of RQ3 indicated that the ML techniques do
not require several instances to obtain a high F-measure.

3.6 Contributions and Implications

The methodology, results, findings, and insights of our study can contribute to different
stakeholders, which are described in what follows.

Researchers: The first contribution of our study is to make available a package of sup-
plemental material to support new studies or replications (Oliveira et al. 2022). Our
supplementary material includes many code snippets, their metrics, and the developers’
opinions on whether or not there are occurrences of 10 different smells types. In addition,

Empir Software Eng (2022) 27:195 Page 31 of 44 195

we provide the detection rules generated by the ML techniques globally or individually
for each developer and for each smell type.
The results of our study also have direct implications for researchers. The result of

RQ1 shows that there is no ML technique that is the best for all smell types. Different
ML techniques can be used to target different smell types. Based on this, a new study
can propose the use of hybrid approaches, i.e., not based on only one ML technique,
that decide which technique among several available should be used based on the target
smells. When considering the entire set of techniques, the results have been improved
considerably for detection per developer (Fig. 6) and per smell type (Table 7).

The results from RQ1 also shows that when the agreement decreases, the dispersion
of accuracy increases. This motivates the conduction of a new study with a focus on
monitoring individual developers to evaluate when the agreement about smells decreases,
and then suggest corrective actions such as creating guidelines or understanding what
is the situation for the disagreement. For RQ3, we observed that the techniques do not
tend to improve their accuracy as we increase the number of training instances. Our
hypothesis is that this is due to the increase in divergence in the dataset that makes it
difficult or even impossible to correctly classify all instances in case there are developers
who totally disagree with each other. These observed side effects lead to the introduction
of a question: Would it be possible to adjust the training to reduce the impact of the
developers’ perception?
Practitioners: The results and insights obtained in our study can support practitioners
from several perspectives. An example is the case of developers’ turnover. Here, the
developer-sensitive smell detection approaches can quickly adapt to represent the per-
ceptions of the new developers. Our results showed that even with a small number of
instances, ML techniques can perform well to detect developer-sensitive smells. This
implies that companies do not need to wait until having a large dataset to start using ML
techniques to detect smells. This can be done since from the early stages of the projects.
Additionally, we have the case of newcomer/novice developers. For this case, ML mod-
els created with the perception of senior/experienced developers can be used for training.
For example, after a novice developer writes a piece of code, an ML model trained with
the preferences of the project can check if the quality standards have been followed.
Thus, one implication of our work is to use expert developer-sensitive trained models to
integrate new developers into ongoing projects.

Another direct implication of our work is to reduce the number of false positives
considering the perception of developers within a company or in a specific project.
For instance, for complex features practitioners might decide to accept a complex
code/design, i.e., with code smells, instead of expending a great number of resources to
refactor such features. Hence, a model trained with this perception can avoid continu-
ously indicating the smells in such features, deviating the attention of the practitioners.

The empirical results of our study revealed that in practice developers have different
perceptions about smells. This implies that companies may focus on having clear and
objective definitions of what are code smells for the projects. This does not mean that
developers cannot have a disagreement, but can lead to a reduction in the divergence of
what should be considered a code/design problem or not.
Tool builders: The first and direct implication of our study to tool builders is that auto-
mated support should consider the individual perception of each developer to reach

Empir Software Eng (2022) 27:195195 Page 32 of 44

higher accuracy. This is related to reducing the number of false positives discussed
above. We understand that not every tool support must focus on detecting only developer-
sensitive smells, but tools may at least offer the option for users to configure/choose
between using traditional smell detection approaches or the one based on developers’
perception.
Certain ML techniques like J48, JRip and OR generate simpler detection rules that can

be easily implemented in plugins for the IDE that already calculates software metrics.
That is, ML techniques like these can be more easily used in practice than techniques
that have more complex representations, making it difficult to implement and directly be
integrated with the IDE.
We discussed the implication of our study to new studies to propose hybrid approaches

that consider different ML techniques depending on the targeted (more severe) smell.
This can also be leveraged by tool builders. Our results support such a case by reporting
which model performs better for which smells. This can serve as a start point for new
tool support.
Educators: Code smells are commonly the subject of software engineering courses as
they provide concrete means for developers to understand recurring opportunities for
refactoring. The literature defines what is a smell type, but there is often no consensus
in the practice on when a piece of code is (or not) a smell given the abstract, subjective
definition of a smell type. Our study highlights this point and provides empirical results
that can be used as illustrative examples of the potential divergence among developers.
Based on that, educators can make their students aware that the notion of what is a smell
is dependent on the context, e.g., domain, module or even certain project or organization
practices.
Another contribution of our results is to call the attention to the trade-off between what

must be detected as a smell and what does not deserve the attention from developers, such
as the case of complex features discussed above for practitioners. Educators can rely on
a discussion like this one to highlight the importance of considering diverse factors and
decide on which is more important for the situation at hand.

4 Threats to Validity

In this section, we discuss the threats to validity in accordance with the criteria defined
in Wohlin et al. (2000).

Construct Validity The datasets that supported our study were built from code fragments
manually evaluated by developers. In this case, the developers evaluated each fragment by
reporting the option “YES” or “NO”, referring to the presence or absence of a given code
smell into the fragment. Providing only these two options may be a threat, since the devel-
opers could not inform the degree of confidence in their answers. However, we adopted
such procedure aiming at ensuring that the developers were able to decide about the exis-
tence of a code smell and we could obtain a set of instances that enables to perform our
study. In addition, code fragments used may contain more than one code smell. Thus, we
ask explicitly to the developers about the existence of a specific smell. Besides, the exis-
tence of several smells types does not change the fact that the type we want to observe still
exists. Finally, the chosen set of metrics used for training the ML techniques are specific for
the studied smell, which improves its detection.

Empir Software Eng (2022) 27:195 Page 33 of 44 195

The developers who classified the code smells are not the same as the project’s develop-
ers. However, it is normal that new developers work on legacy projects. Because of this, the
ML techniques need to be able to evaluate in that context. Besides, it is impracticable for
the project developers to classify all the code fragments since the projects have existed for
years. Finally, often developers work in group in a certain code fragment, so we would not
know which developer did each code fragment to have that correct evaluation.

In our RQ3, we gradually increase the number of instances to measure the efficiency of
the ML techniques. However, once we are not using cross validation, we were susceptible to
a bias based on the order of instances that have been used as training instances. To mitigate
this threat, we trained the ML techniques using random instances. Also, we ensured that
by increasing the dataset, all previous instances would remain present, thus inserting the
perspective of new developers into the training set.

Internal Validity The use of the Weka package of the R platform to implement the tech-
niques analyzed in our study enabled to experiment a variety of configurations, which affect
the training process of the techniques. In such context, the configurations considered in our
experiments may impact in the accuracy and efficiency of the techniques. In order to mit-
igate this threat, we configured all ML techniques according to the better settings defined
in Arcelli Fontana et al. (2016). Indeed, Arcelli Fontana et al. (2016) performed a variety of
experiments in order to find the best adjust for each technique.

External Validity The code fragments evaluated by the developers were extracted from
five Java projects. Such projects have been widely used in other studies about code
smells (Khomh et al. 2009, 2011b; Moha et al. 2010; Maiga et al. 2012). However, although
the implementation of these projects present classes and methods with different character-
istics (i.e. size and complexity), our results might not hold to other projects. In the same
way, even though we have performed our experiments with 63 different developers, our
results might not also hold for other developers since they may have different perceptions
about the code smells analyzed in our study (Mäntylä 2005; Mäntylä and Lassenius 2006;
Schumacher et al. 2010; Santos et al. 2013).

5 RelatedWork

Several machine learning techniques have been adapted to automate the detection of code
smells (Hozano et al. 2017a, b). Although these studies report interesting results concerning
the accuracy and efficiency of ML techniques to detect code smells, there is still little knowl-
edge about the sensitivity of ML techniques to detect smells based on different perception
of developers.

In Khomh et al. (2009), the authors proposed the Bayesian Belief Network (BBN) to
detect instances of God Class. Altogether, the study is composed of four graduate students
that validated several classes. They were instructed to indicate if any of the validated class
contains a God Class instance. For that, they built a dataset containing 15 smell instances.
Then, they applied a 3-fold cross-validation on this dataset in order to evaluate the perfor-
mance of the BBN. They obtained an accuracy of 0.68 on detecting God Class. In Khomh
et al. (2011b), the authors extended the study Khomh et al. (2009) by applying the BBN

Empir Software Eng (2022) 27:195195 Page 34 of 44

to detect instances of Blob, Spaghetti Code, and Functional Decomposition. They involved
seven students to create datasets and then they evaluated the accuracy of BBN to detect
these smell types.

The study described in Maiga et al. (2012) assessed the accuracy of SVM in the detection
of four types of code smell: Blob, Functional Decomposition, Spaghetti Code, and Swiss
Army Knife. The SVM obtained an accuracy up to 0.74. In Amorim et al. (2015) the authors
reported the accuracy of the DT technique to recognize code smells. They applied the tech-
nique in a dataset containing four open source projects. This dataset contains a huge number
of instances validated by few developers. Also, the authors compared the results with a man-
ual oracle containing detected smell from other detection approaches and other machine
learning techniques. The results indicate that DT is able to reach an accuracy up to 0.78.

Arcelli Fontana et al. (2016) presented a large study involving 16 different ML tech-
niques and 74 software systems. The study focused on four code smells, namely Data
Class, Large Class, Feature Envy, and Long Method, comparing different configurations of
machine learning techniques. They used a dataset containing 1986 manually validated code
smell samples. The results indicated that J48 and Random Forest obtained the highest accu-
racy, reaching values up to 0.95 with at least a hundred training examples. However, a recent
study (Di Nucci et al. 2018) indicate that the dataset used by Arcelli Fontana et al. (2016)
had a high bias in the accuracy obtained by the techniques.

Finally, Azeem et al. (2019) presented a systematic literature review. They focused on
provide an overview and discuss the usage ofML techniques on the detection of code smells.
They conclude that God Class, Long Method, Functional Decomposition, and Spaghetti
Code are constantly investigated in literature. Also, Random Forest and JRip are the most
effective classifiers in terms of performance. Finally, they mentioned that there is still room
for the improvement of ML techniques in the context of code smell detection.

Other studies (Di Nucci et al. 2018; Pecorelli et al. 2019, 2020) focus on investigating
the accuracy of ML techniques on detecting code smells through data balancing (Di Nucci
et al. 2018). They investigated whether data balancing is able to improve the accuracy of
machine learning techniques. However, their results indicate that the existing techniques for
data balancing are not capable of significantly improving accuracy.

When considering the use of ML techniques taking into account developers perception,
there are few studies (Hozano et al. 2017a, b, Oliveira et al. 2020). Hozano et al. (2017a)
analyzed the accuracy and efficiency of six techniques in the detection of four smell types
using a set of 600 examples of (non-) smells manually validated by 40 developers. Their
results indicated that RF obtained the best accuracy among the techniques, around 0.63.
Also, Hozano et al. (2017b) proposed the Histrategy, a guided personalization technique
capable of detecting code smells that are sensitive to the perception of each developer. Alto-
gether, four code smells were analyzed and obtained satisfactory results in terms of accuracy
and training needs when compared to the other 6 ML techniques used in the study.

Although previous studies have taken into account the developers’ perspective to verify
the existence of the smells (Hozano et al. 2017a, b). They (i) investigated a smaller dataset,
containing a reduced number of smell types and involved developers, (ii) They have a nar-
row discussion regarding the ML techniques’ dispersion and (iii) They use a unique project
in their dataset, which limits the external validity of their results. In this way, the observed
results are limited to the specific domain of the evaluated project, which may not be truth
for other domains. Finally, in a previous study, we investigated seven ML techniques in a
dataset containing instances of six different code smells from ten active projects (Oliveira

Empir Software Eng (2022) 27:195 Page 35 of 44 195

et al. 2020). Although we considered the perception of the developers, our study was lim-
ited to the few instances of actual developers from considered projects. In other words, we
studied only the smells that were refactored by these developers. The results showed that all
analyzed techniques are sensitive to the type of smell, especially JRip and RF.

In summary, the results of this present paper reinforce and complement the findings of
the previous studies (Hozano et al. 2017a, b; Oliveira et al. 2020). First, we could confirm
that observed that the RF technique is a promising way to identify code smells even when
taking into account developer-sensitive smells. Second, we observed that ML techniques
accuracy are directly affected by different perceptions of the same smell and the smell type,
even when considering a more robust dataset.

6 Conclusion

This paper presented a study to understand the behavior of ML techniques to detect code
smells based on developers’ perceptions. Firstly, we evaluated the overall accuracy of the
ML techniques to recognize smells. Then, we investigated the dispersion (accuracy varia-
tion) of ML techniques on detecting smells for different developers. Finally, we analyzed
the efficiency of the ML techniques by evaluating their accuracy according to the number of
instances used to perform the training process. For a further discussion, we also presented
the detection rules for J48, JRip and OR, described potential risks risk of developer-sensitive
smell detection, and detail the contributions and implications of our work.

The results indicated that while most of the ML techniques reached similar F-measure on
detecting smells, the SVM and JRip obtained the lowest values. We also observed that all
the analyzed techniques are sensitive to the developers’ perceptions and SVM is the most
sensitive one. Besides that, we noticed that the agreement among developers’ perceptions
is inversely proportional to the ML techniques’ accuracy. Finally, we could only observe a
relationship between the number of training instances and the accuracy of the techniques for
JRip and OR. For the other techniques, increasing the number of instances in the training
stage does not indicate an improvement in the technique’s accuracy.

In a deeper analysis of the results, we observed that the detection rules generated by the
ML techniques differ for each developer. That is, the same smell type has several detection
rules that reflect one or more developers’ perceptions. Most of these detection rules are
composed of metrics also used in the detection rules reported in the literature. However,
the generated rules have several additional metrics that are specific to each developer. On
the other hand, the detection rules obtained for all developers together (global rules) have
similar metrics to previous studies.

Our findings suggest the increasing need for improving smell detection techniques by
taking into account the individual perception of each developer. In future work, we intend
to investigate a much wider range of smell types. In addition, we also intend to replicate this
study in controlled scenarios, considering developers and projects of the same organization.
In this way, we expect to identify if developers, who work together, have similar (or widely
different) influences on the detection of the same code smells. In this way, we will be able
to verify whether the effort to customize the ML techniques will be reduced (or increased)
by the similarities (or divergences) among the developers. Finally, we intend to investigate
whether experienced developers have a higher agreement than inexperienced developers
when identifying different smell types.

Empir Software Eng (2022) 27:195195 Page 36 of 44

Appendix: List of Metrics

Metric Description

AMW Average method weight.
ATFD Access to foreign data.
BOvR, PRM(similar), SIX(similar) Base-class overriding ratio;BovR is the

ratio of overridden methods to all
methods of the given class’ parent in the
inheritance hierarchy.

BUR BUR is the ratio of used protected
members to all protected members of the
given class’ parent in the inheritance
hierarchy.

CBO, CountClassCoupled Coupling between objects.
CFNAMM Called foreign not accessor or mutator

methods.
CYCLO, VG, Cyclomatic McCabe’s cyclomatic complexity.
FDP Foreign data providers.
LAA Locality of attribute accesses.
LCOM, PercentLackOfCohesion Lack of cohesion between methods.
LMC, chains Length of the message chain.
MLOC Lines of code of a method.
LOC, CountLineCode Lines of code.
LOCactual, CountLine Total line of code.
LOCprob, CountLineCodeDecl Number of lines of code for data fields,

methods, imported packages, and
package declaration.

NIM, CountDeclInstanceMethod Number of instance methods.
NOA, NOP, NOF, CountDeclProperty Number of attributes.
NOAM, NACC Number of accessor methods (getter/setter).
NOC, NSC, CountClassDerived Number of children.
NOM, CountDeclMethod Number of methods without inherited ones.
NOMcalls, MC Number of method calls.
NP Number of parameters.
NOPA Number of public attributes.
NOPVA Number of Private Attributes.
NOV, CountDeclClassVariable Number of class variables.
NProtM, CountDeclMethodProtected Number of protected members.
RFC, CountDeclMethodAll Number of methods, including inherited

ones.
WMC, SumCyclomatic Weighted methods per class.
WMCNAMM Weighted Methods Count of Not Accessor

or Mutator Methods.
WOC Weight of a class.
NMO Number of methods overridden.
ELOC, CountLineCodeExe Effective Lines of Code.

Empir Software Eng (2022) 27:195 Page 37 of 44 195

Metric Description

FANOUT, CountOutput Max number of references from the subject
class to another class in the system

PDM, NFM Number of forwarding methods.
VAVG Average count on the number of variables.
DIT, MaxInheritanceTree Number of classes that are above a certain

class in the inheritance hierarchy.
NBD, MaxNesting Maximum number of nested blocks of a

method.
TCC The cohesion between the public methods

of a class.
IntelligentMethods Number of intelligent methods.
GroupedVariables Number of grouped variables
Constants Number of constants
Primitives Number of primitives
AccessorsRatio Ratio of accessors methods to other

methods
PublicAttributes Number of public attributes
InnerClass Number of inner classes
AltAvgLineBlank Average number of blank lines for all

nested functions or methods, including
inactive regions.

AltAvgLineCode Average number of lines containing source
code for all nested functions or methods,
including inactive regions.

AltAvgLineComment Average number of lines containing
comments for all nested functions or
methods, including inactive regions.

AltCountLineBlank Number of blank lines, including inactive
regions.

AltCountLineCode Number of lines containing source code,
including inactive regions.

AltCountLineComment Number of lines containing comment,
including inactive regions.

AvgCyclomatic Average cyclomatic complexity for all
nested functions or methods.

AvgCyclomaticModified Average modified cyclomatic complexity
for all nested functions or methods.

AvgCyclomaticStrict Average strict cyclomatic complexity for
all nested functions or methods.

AvgEssential Average Essential complexity for all
nested functions or methods.

AvgEssentialStrictModified Average strict modified essential
complexity for all nested functions or
methods.

AvgLine Average number of lines for all nested
functions or methods.

Empir Software Eng (2022) 27:195195 Page 38 of 44

Metric Description

FANIN, CountInput Max number of references to the subject
class from another class in the system.

AvgLineBlank Average number of blanks for all nested
functions or methods.

AvgLineCode Average number of lines containing source
code for all nested functions or methods.

AvgLineComment Average number of lines containing
comments for all nested functions or
methods.

CountClassBase Number of immediate base classes.
[aka IFANIN]

CountDeclClass Number of classes.
CountDeclClassMethod Number of class methods.
CountDeclExecutableUnit Number of program units with executable

code.
CountDeclFile Number of files.
CountDeclFunction Number of functions.
CountDeclInstanceVariable Number of instance variables. [aka NIV]
CountDeclInstanceVariableInternal Number of internal instance variables.
CountDeclInstanceVariablePrivate Number of private instance variables.
CountDeclInstanceVariableProtected Number of protected instance variables.
CountDeclInstanceVariableProtectedInternal Number of protected internal instance

variables.
CountDeclInstanceVariablePublic Number of public instance variables.
CountDeclMethodConst Number of local const methods.
CountDeclMethodDefault Number of local default methods.
CountDeclMethodFriend Number of local friend methods.

[aka NFM]
CountDeclMethodInternal Number of local internal methods.
CountDeclMethodPrivate Number of local private methods.

[aka NPM]
CountDeclMethodProtectedInternal Number of local protected internal

methods.
CountDeclMethodPublic Number of local public methods.

[aka NPRM]
CountDeclMethodStrictPrivate Number of local strict private methods.
CountDeclMethodStrictPublished Number of local strict published methods.
CountDeclModule Number of modules.
CountDeclProgUnit Number of non-nested modules, block data

units, and subprograms.
CountDeclPropertyAuto Number of auto-implemented properties.
CountDeclSubprogram Number of subprograms.
CountLineBlank Number of blank lines. [aka BLOC]
CountLineComment Number of lines containing comment.

[aka CLOC]
CountLineInactive Number of inactive lines.
CountLinePreprocessor Number of preprocessor lines.

Empir Software Eng (2022) 27:195 Page 39 of 44 195

Metric Description

CountPackageCoupled Number of other packages coupled to.
CountPath Number of possible paths, not counting

abnormal exits or gotos. [aka NPATH]
CountPathLog Log10, truncated to an integer value, of the metric

CountPath
CountSemicolon Number of semicolons.
CountStmt Number of statements.
CountStmtDecl Number of declarative statements.
CountStmtEmpty Number of empty statements.
CountStmtExe Number of executable statements.
CyclomaticModified Modified cyclomatic complexity.
CyclomaticStrict Strict cyclomatic complexity.
Essential Essential complexity. [aka Ev(G)]
EssentialStrictModified Strict Modified Essential complexity.
MaxCyclomatic Maximum cyclomatic complexity of all nested

functions or methods.
MaxCyclomaticModified Maximum modified cyclomatic complexity of nested

functions or methods.
MaxCyclomaticStrict Maximum strict cyclomatic complexity of nested

functions or methods.
MaxEssential Maximum essential complexity of all nested

functions or methods.
MaxEssentialKnots Maximum Knots after structured programming

constructs have been removed.
MaxEssentialStrictModified Maximum strict modified essential complexity of all

nested functions or methods.
MaxNesting Maximum nesting level of control constructs.
MinEssentialKnots Minimum Knots after structured programming

constructs have been removed.
PercentLackOfCohesionModified 100% minus the average cohesion for class data

members, modified for accessor methods
RatioCommentToCode Ratio of comment lines to code lines.
SumCyclomaticModified Sum of modified cyclomatic complexity of all nested

functions or methods.
SumCyclomaticStrict Sum of strict cyclomatic complexity of all nested

functions or methods.
SumEssential Sum of essential complexity of all nested functions

or methods.
SumEssentialStrictModified Sum of strict modified essential complexity of all

nested functions or methods.

Acknowledgements This study was partially funded by CNPq grants 434969/2018-4, 312149/2016-6,
309844/2018-5, 421306/2018-1, 427787/2018-1 141276/2020-7 and 408356/2018-9; FAPERJ grants 22520-
7/2016, 010002285/2019, 211033/2019, 202621/2019 and PDR-10 Fellowship 202073/2020; FAPPR grant
51435.

Empir Software Eng (2022) 27:195195 Page 40 of 44

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

References

Abbes M, Khomh F, Gueheneuc YG, Antoniol G (2011) An empirical study of the impact of two antipat-
terns, blob and spaghetti code, on program comprehension. In: 15th European conference on software
maintenance and reengineering (CSMR). IEEE, pp 181–190

Amorim L, Costa E, Antunes N, Fonseca B, Ribeiro M (2015) Experience report: evaluating the effectiveness
of decision trees for detecting code smells. In: Proceedings of the 2015 IEEE 26th international sym-
posium on software reliability engineering (ISSRE), ISSRE ’15. IEEE Computer Society, Washington,
DC, pp 261–269. https://doi.org/10.1109/ISSRE.2015.7381819

Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine
learning techniques for code smell detection. Empir Softw Eng 21(3):1143–1191

Arcoverde R, Guimarães ET, Bertran IM, Garcia A, Cai Y (2013) Prioritization of code anomalies based on
architecture sensitiveness. In: 27th Brazilian symposium on software engineering, SBES 2013, Brasilia,
Brazil, October 1-4, 2013. IEEE Computer Society, pp 69–78. https://doi.org/10.1109/SBES.2013.14

Azeem MI, Palomba F, Shi L, Wang Q (2019) Machine learning techniques for code smell
detection: a systematic literature review and meta-analysis. Inf Softw Technol 108:115–138.
https://doi.org/10.1016/j.infsof.2018.12.009

Bertran IM (2011) Detecting architecturally-relevant code smells in evolving software systems. In: Tay-
lor RN, Gall HC, Medvidovic N (eds) Proceedings of the 33rd international conference on software
engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. ACM, pp 1090–1093.
https://doi.org/10.1145/1985793.1986003

Bertran IM, Arcoverde R, Garcia A, Chavez C, von Staa A (2012a) On the relevance of code anomalies
for identifying architecture degradation symptoms. In: Mens T, Cleve A, Ferenc R (eds) 16th European
conference on software maintenance and reengineering, CSMR 2012, Szeged, Hungary, March 27-30,
2012. IEEE Computer Society, pp 277–286. https://doi.org/10.1109/CSMR.2012.35

Bertran IM, Garcia J, Popescu D, Garcia A, Medvidovic N, von Staa A (2012b) Are automatically-detected
code anomalies relevant to architectural modularity?: an exploratory analysis of evolving systems. In:
Hirschfeld R, Tanter É, Sullivan KJ, Gabriel RP (eds) Proceedings of the 11th International Conference
on Aspect-oriented Software Development, AOSD 2012, Potsdam, Germany, March 25-30, 2012. ACM,
pp 167–178. https://doi.org/10.1145/2162049.2162069

Bertran IM, Garcia A, Chavez C, von Staa A (2013) Enhancing the detection of code anomalies with
architecture-sensitive strategies. In: Cleve A, Ricca F, Cerioli M (eds) 17th European conference on
software maintenance and reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013. IEEE Computer
Society, pp 177–186. https://doi.org/10.1109/CSMR.2013.27

Bigonha MA, Ferreira K, Souza P, Sousa B, Januário M, Lima D (2019) The usefulness of software metric
thresholds for detection of bad smells and fault prediction. Inf Softw Technol 115:79–92

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees, Wadsworth and
Brooks, Monterey

Cohen WW (1995) Fast effective rule induction. In: Twelfth international conference on machine learning.
Morgan Kaufmann, pp 115–123

de Mello RM, Oliveira RF, Garcia A (2017) On the influence of human factors for identifying code smells:
a multi-trial empirical study. In: 2017 ACM/IEEE International symposium on empirical software
engineering and measurement (ESEM), pp 68–77. https://doi.org/10.1109/ESEM.2017.13

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code smells using
machine learning techniques: Are we there yet? In: IEEE 25th international conference on software
analysis, evolution and reengineering (SANER), pp 612–621. https://doi.org/10.1109/SANER.2018.
8330266

Fernandes E, Vale G, da Silva Sousa L, Figueiredo E, Garcia A, Lee J (2017) No code anomaly is an island -
anomaly agglomeration as sign of product line instabilities. In: Botterweck G, Werner CML (eds) Mas-
tering scale and complexity in software reuse - 16th international conference on software reuse, ICSR
2017, Salvador, Brazil, May 29-31, 2017, proceedings. Lecture Notes in Computer Science, vol 10221,
pp 48–64. https://doi.org/10.1007/978-3-319-56856-0 4

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378

Empir Software Eng (2022) 27:195 Page 41 of 44 195

https://doi.org/10.1109/ISSRE.2015.7381819
https://doi.org/10.1109/SBES.2013.14
https://doi.org/10.1016/j.infsof.2018.12.009
https://doi.org/10.1145/1985793.1986003
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1145/2162049.2162069
https://doi.org/10.1109/CSMR.2013.27
https://doi.org/10.1109/ESEM.2017.13
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1007/978-3-319-56856-0_4

Fontana FA, Mariani E, Mornioli A, Sormani R, Tonello A (2011) An experience report on using code
smells detection tools. In: 2011 IEEE Fourth international conference on software testing, verification
and validation workshops, pp 450–457. https://doi.org/10.1109/ICSTW.2011.12. http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=5954446

Fontana FA, Zanoni M, Marino A, Mäntylä MV (2013) code smell detection: towards a machine learning-
based approach. In: 2013 IEEE International conference on software maintenance, pp 396–399. https://
doi.org/10.1109/ICSM.2013.56. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676916

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley, Boston
FriedmanM (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance.

J Am Stat Assoc 32(200):675–701
Gopalan R (2012) Automatic detection of code smells in java source code. Ph.D. thesis, Dissertation for

Honour Degree The University of Western Australia
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:

an update. ACM SIGKDD Expl Newsl 11(1):10–18
Ho TK (1995) Random decision forests. In: Proceedings of the third international conference on document

analysis and recognition, vol 1. IEEE, pp 278–282
Holte R (1993) Very simple classification rules perform well on most commonly used datasets. Mach Learn

11:63–91
Hozano M, Antunes N, Fonseca B, Costa E (2017a) Evaluating the accuracy of machine learning algorithms

on detecting code smells for different developers. In: Proceedings of the 19th international conference
on enterprise information systems, pp 474–482

Hozano M, Garcia A, Antunes N, Fonseca B, Costa E (2017b) Smells are sensitive to develop-
ers!: on the efficiency of (un)guided customized detection. In: Proceedings of the 25th interna-
tional conference on program comprehension, ICPC ’17. IEEE Press, Piscataway, pp 110–120.
https://doi.org/10.1109/ICPC.2017.32

Hozano M, Garcia A, Fonseca B, Costa E (2018) Are you smelling it? Investigating how similar developers
detect code smells. Inf Softw Technol 93(C):130–146. https://doi.org/10.1016/j.infsof.2017.09.002

Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2009) A bayesian approach for the detection of code and
design smells. In: 9th international conference on quality software. QSIC’09. IEEE, pp 305–314

Khomh F, Penta MD, Guéhéneuc YG, Antoniol G (2011a) An exploratory study of the
impact of antipatterns on class change- and fault-proneness. Empir Softw Eng 17(3):243–275.
https://doi.org/10.1007/s10664-011-9171-y

Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2011b) Bdtex: a gqm-based bayesian approach for the
detection of antipatterns. J Syst Softw 84(4):559–572. https://doi.org/10.1016/j.jss.2010.11.921

Lantz B (2019) Machine learning with R: expert techniques for predictive modeling. Packt Publishing Ltd
Lanza M, Marinescu R, Ducasse S (2005) Object-oriented metrics in practice, Springer, New York
Maiga A, Ali N, Bhattacharya N, Sabane A, Gueheneuc YG, Aimeur E (2012) SMURF: a SVM-based

incremental anti-pattern detection approach. In: 2012 19th Working conference on reverse engineering,
pp 466–475. https://doi.org/10.1109/WCRE.2012.56

Maneerat N, Muenchaisri P (2011) Bad-smell prediction from software design model using machine learning
techniques. In: 2011 Eighth international joint conference on computer science and software engineering
(JCSSE), pp 331–336. https://doi.org/10.1109/JCSSE.2011.5930143. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5930143

Mäntylä MV (2005) An experiment on subjective evolvability evaluation of object-oriented software:
explaining factors and interrater agreement. In: 2005 International symposium on empirical software
engineering, p 10. https://doi.org/10.1109/ISESE.2005.1541837

Mäntylä MV, Lassenius C (2006) Subjective evaluation of software evolvability using code smells: an
empirical study, vol 11, Springer. https://doi.org/10.1007/s10664-006-9002-8

Marinescu R (2004) Detection strategies: metrics-based rules for detecting design flaws. In: Proceedings of
the 20th IEEE international conference on software maintenance, ICSM ’04. IEEE Computer Society,
Washington, DC, pp 350–359. http://dl.acm.org/citation.cfm?id=1018431.1021443

Mitchell TM (1997) Machine learning. McGraw-Hill series in computer science, McGraw-Hill, Boston.
http://opac.inria.fr/record=b1093076

Moha N, Guéhéneuc YG, Meur AFL, Duchien L, Tiberghien A (2009) From a domain analysis to
the specification and detection of code and design smells. Form Asp Comput 22(3):345–361.
https://doi.org/10.1007/s00165-009-0115-x. http://link.springer.com/10.1007/s00165-009-0115-x

Moha N, Gueheneuc YG, Duchien L, Le Meur AF (2010) DECOR: a method for the specification and
detection of code and design smells. IEEE Trans Softw Eng 36(1):20–36. https://doi.org/10.1109/TSE.
2009.50

Empir Software Eng (2022) 27:195195 Page 42 of 44

https://doi.org/10.1109/ICSTW.2011.12
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5954446
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5954446
https://doi.org/10.1109/ICSM.2013.56
https://doi.org/10.1109/ICSM.2013.56
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676916
https://doi.org/10.1109/ICPC.2017.32
https://doi.org/10.1016/j.infsof.2017.09.002
https://doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1016/j.jss.2010.11.921
https://doi.org/10.1109/WCRE.2012.56
https://doi.org/10.1109/JCSSE.2011.5930143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5930143
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5930143
https://doi.org/10.1109/ISESE.2005.1541837
https://doi.org/10.1007/s10664-006-9002-8
http://dl.acm.org/citation.cfm?id=1018431.1021443
http://opac.inria.fr/record=b1093076
https://doi.org/10.1007/s00165-009-0115-x
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00165-009-0115-x
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50

Munro M (2005) Product metrics for automatic identification of “Bad smell” design problems in java
Source-Code. In: 11th IEEE International software metrics symposium (METRICS’05), pp 15–15.
https://doi.org/10.1109/METRICS.2005.38

Oizumi WN, Garcia AF, Sousa LS, Cafeo BBP, Zhao Y (2016) Code anomalies flock together: exploring
code anomaly agglomerations for locating design problems. In: Dillon LK, Visser W, Williams LA (eds)
Proceedings of the 38th international conference on software engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016. ACM, pp 440–451. https://doi.org/10.1145/2884781.2884868

Oizumi WN, Sousa LS, Oliveira A, Carvalho L, Garcia A, Colanzi TE, Oliveira RF (2019) On the density
and diversity of degradation symptoms in refactored classes: a multi-case study. In: Katinka Wolter,
Schieferdecker I, Gallina B, Cukier M, Natella R, Ivaki NR, Laranjeiro N (eds) 30th IEEE International
symposium on software reliability engineering, ISSRE 2019, Berlin, Germany, October 28-31, 2019.
IEEE, pp 346–357. https://doi.org/10.1109/ISSRE.2019.00042

Oliveira D, Assunção WKG, Souza L, Oizumi W, Garcia A, Fonseca B (2020) Applying machine
learning to customized smell detection: a multi-project study. In: 34th Brazilian symposium on
software engineering, SBES ’20. Association for computing machinery, New York, pp 233–242.
https://doi.org/10.1145/3422392.3422427

Oliveira D, Assunção WKG, Garcia A, Fonseca B, Ribeiro M (2022) Supplementary material—
developers’ perception matters: Machine learning to detect developer-sensitive smells. https://github.
com/smellsensitive/smellsensitive.github.io/raw/main/dataset.rar

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D (2013) Detecting bad smells in
source code using change history information. In: 2013 28th IEEE/ACM international conference on
automated software engineering (ASE). IEEE, pp 268–278. https://doi.org/10.1109/ASE.2013.669308.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693086

Palomba F, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D, De Lucia A (2014a) Mining version histo-
ries for detecting code smells. IEEE Trans Softw Eng 5589(c):1–1. https://doi.org/10.1109/TSE.2014.
2372760

Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD (2014b) Do they really smell bad? A study on devel-
opers’ perception of bad code smells. In: 2014 IEEE International conference on software maintenance
and evolution, pp 101–110. https://doi.org/10.1109/ICSME.2014.32

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2019) On the role of data balancing for machine
learning-based code smell detection. In: Proceedings of the 3rd ACM SIGSOFT international work-
shop on machine learning techniques for software quality evaluation, MaLTeSQuE 2019. Association
for Computing Machinery, New York, pp 19–24. https://doi.org/10.1145/3340482.3342744

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020) A large empirical assessment
of the role of data balancing in machine-learning-based code smell detection. J Syst Softw
169:110693. https://doi.org/10.1016/j.jss.2020.110693. http://www.sciencedirect.com/science/article/
pii/S0164121220301448

Platt J (1998) Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf
B, Burges C, Smola A (eds) Advances in kernel methods—support vector learning. MIT Press. http://
research.microsoft.com/∼jplatt/smo.html

Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo
Rasool G, Arshad Z (2015) A review of code smell mining techniques. J Softw: Evol Process 27(11):867–895
Santos JAM, de Mendonça MG, Silva CVA (2013) An exploratory study to investigate the impact

of conceptualization in god class detection. In: Proceedings of the 17th international conference
on evaluation and assessment in software engineering, EASE ’13. ACM, New York, pp 48–59.
https://doi.org/10.1145/2460999.2461007. http://doi.acm.org/10.1145/2460999.2461007

Schumacher J, Zazworka N, Shull F, Seaman C, Shaw M (2010) Building empirical support for automated
code smell detection. In: Proceedings of the 2010 ACM-IEEE international symposium on empirical
software engineering and measurement—ESEM ’10, p 1. https://doi.org/10.1145/1852786.1852797

Silva AL, Garcia A, Cirilo EJR, de Lucena CJP (2013) Are domain-specific detection strategies for
code anomalies reusable? An industry multi-project study. In: 27th Brazilian symposium on soft-
ware engineering, SBES 2013, Brasilia, Brazil, October 1-4, 2013. IEEE Computer Society, pp 79–88.
https://doi.org/10.1109/SBES.2013.9

Sousa LS, Oliveira A, Oizumi WN, Barbosa SDJ, Garcia A, Lee J, Kalinowski M, de Mello RM, Fonseca B,
Oliveira RF, Lucena C, de Paes RB (2018) Identifying design problems in the source code: a grounded
theory. In: Chaudron M, Crnkovic I, Chechik M, Harman M (eds) Proceedings of the 40th international
conference on software engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018. ACM,
pp 921–931. https://doi.org/10.1145/3180155.3180239

Sousa LS, Oizumi WN, Garcia A, Oliveira A, Cedrim D, Lucena C (2020) When are smells indicators of
architectural refactoring opportunities: a study of 50 software projects. In: ICPC ’20: 28th international

Empir Software Eng (2022) 27:195 Page 43 of 44 195

https://doi.org/10.1109/METRICS.2005.38
https://doi.org/10.1145/2884781.2884868
https://doi.org/10.1109/ISSRE.2019.00042
https://doi.org/10.1145/3422392.3422427
https://github.com/smellsensitive/smellsensitive.github.io/raw/main/dataset.rar
https://github.com/smellsensitive/smellsensitive.github.io/raw/main/dataset.rar
https://doi.org/10.1109/ASE.2013.669308
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693086
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/ICSME.2014.32
https://doi.org/10.1145/3340482.3342744
https://doi.org/10.1016/j.jss.2020.110693
http://www.sciencedirect.com/science/article/pii/S0164121220301448
http://www.sciencedirect.com/science/article/pii/S0164121220301448
http://research.microsoft.com/~jplatt/smo.html
http://research.microsoft.com/~jplatt/smo.html
https://doi.org/10.1145/2460999.2461007
http://doi.acm.org/10.1145/2460999.2461007
https://doi.org/10.1145/1852786.1852797
https://doi.org/10.1109/SBES.2013.9
https://doi.org/10.1145/3180155.3180239

conference on program comprehension, Seoul, Republic of Korea, July 13-15, 2020. ACM, pp 354–365.
https://doi.org/10.1145/3387904.3389276

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–
101

Steinwart I, Christmann A (2008) Support vector machines. Springer Science & Business Media
Surhone LM, Timpledon MT, Marseken SF (2010) Shapiro-Wilk test. VDM Publishing
van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal question metric (GQM) approach, Wiley,

New York
Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics

of McGraw and Wong. J Educ Behav Stat 25(2):101–132
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software

engineering: an introduction. Kluwer Academic Publishers, Norwell
Yamashita A, Moonen L (2013) Exploring the impact of inter-smell relations on software maintainability:

an empirical study. In: Proceedings of the 2013 international conference on software engineering, ICSE
’13. IEEE Press, Piscataway, pp 682–691. http://dl.acm.org/citation.cfm?id=2486788.2486878

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Affiliations

Daniel Oliveira1 ·Wesley K. G. Assunção1 ·AlessandroGarcia1 ·Baldoino Fonseca2 ·
Márcio Ribeiro2

Wesley K. G. Assunção
wesleyklewerton@gmail.com

Alessandro Garcia
afgarcia@inf.puc-rio.br

Baldoino Fonseca
baldoino@ic.ufal.br

Márcio Ribeiro
marcio@ic.ufal.br

1 Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
2 Computing Institute, Federal University of Alagoas, Maceió, Brazil

Empir Software Eng (2022) 27:195195 Page 44 of 44

https://doi.org/10.1145/3387904.3389276
http://dl.acm.org/citation.cfm?id=2486788.2486878
http://orcid.org/0000-0002-1597-1622
mailto: wesleyklewerton@gmail.com
mailto: afgarcia@inf.puc-rio.br
mailto: baldoino@ic.ufal.br
mailto: marcio@ic.ufal.br

	Developers' perception matters: machine learning to detect developer-sensitive smells
	Abstract
	Introduction
	Study Design
	Metrics and Statistical Tests
	Projects, Smells and Subjects
	Data Collection
	Machine Learning Techniques
	Naive Bayes (NB)
	Support Vector Machine (SVM)
	Sequential Minimal Optimization (SMO)
	OneRule (OneR)
	Random Forest (RF)
	JRip
	J48

	Experimental Configurations
	Implementation Aspects

	Results and Discussion
	Assessment of Global Accuracy
	Behavior of ML Techniques Per Smell Type
	Global Behavior of ML Techniques

	Assessment of ML Techniques Dispersion
	Assessment of ML Techniques Efficiency
	Discussion About the Detection Rules
	Comparison of our Detection Rules to Related Studies
	Detection Rules for Individual Developers
	Global Detection Rules

	Risk of the Developer-Sensitive Smell Detection
	Contributions and Implications

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusion
	Appendix: : List of Metrics
	References
	Affiliations

