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Abstract

In microtask programming, developers complete short self-contained microtasks through
the use of a specialized programming environment. For example, given only a short descrip-
tion of the purpose of a function and a partially complete implementation, a developer might
be asked to identify, test, and implement an additional behavior in the function. Adopt-
ing a microtask approach to programming tasks has been envisioned to offer a number of
potential benefits, including reducing the onboarding time necessary for new developers
to contribute to a project and achieving higher project velocity by enabling larger project
teams and greater parallelism. To investigate the potential benefits and drawbacks of micro-
task programming we conducted a controlled experiment. We focused our investigation on
the context in which microtasking is most widely used, implementing and debugging func-
tion bodies, and investigated the impact of microtasking with respect to onboarding, project
velocity, code quality, and developer productivity. 28 developers worked to implement
microservice endpoints, either in the form of traditional programming tasks described in an
issue tracker or as programming microtasks. Our study did not examine the design effort
necessary to prepare for microtask programming or consider how microtask programming
might be applied to maintenance tasks. We found that, compared to traditional program-
ming, microtask programming reduced onboarding time by a factor of 3.7, increased project
velocity by a factor of 5.76 by increasing team size by a factor of 7, and decreased individ-
ual developer productivity by a factor of 1.3. The quality of code did not significantly differ.
Through qualitative analysis of how developers worked, we explore potential explanations
of these differences. These findings offer evidence for the potential benefits that adopting
microtask programming might bring, particularly in cases where increasing project velocity
is paramount.
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1 Introduction

Inspired by microtasking systems for other tasks (Retelny et al. 2017; Kittur et al. 2011;
Bernstein et al. 2010; Hoseini et al. 2018; Kittur et al. 2013; Jiang and Matsubara
2014), microtask programming envisions a form of work in which new contributors join
a software project and begin contributing within a short amount of time by complet-
ing programming microtasks (LaToza et al. 2018; LaToza et al. 2014). A microtask is a
short, self-contained unit of work with a specific objective. Microtask programming divides
individual tasks to implement a use case or fix a bug into numerous smaller microtasks.

Microtasks differ from traditional software issues, as might be found in an issue tracker,
along three dimensions: the time they take to complete, how much context they require to
do, and the specificity of the objective. Microtasks differ from traditional tasks in taking
less time, requiring less context, and having more specific objectives. A traditional task in a
project issue tracker (e.g., fixing a defect, implementing a new feature) might take hours to
complete, whereas a microtask may be completed in under 15 minutes (LaToza et al. 2018;
Aghayi et al. 2021). To fix a defect in a traditional project, a developer might reproduce
the defect by manually running the program, inserting log or debug statements throughout
the program, rerunning the program, examining the output, reading various files in code,
proposing a fix, investigating the implications of this fix on various parts of the code, and
then eventually implementing and testing the fix. In contrast, microtasks have much more
specific objectives than this. For example, a microtask might involve identifying a behavior
in a specific function, writing a few lines of code to implement it, and then testing it. Finally,
in traditional projects, developers need to gain considerable prior knowledge before starting
work on tasks. For example, developers need to understand architecture and design of the
codebase, understanding how the defect that they are working to fix interact with these and,
as a result, what functionality is likely to be relevant, what source files this functionality
is implemented in, and the ways in which this is implemented (Wang and Sarma 2011;
Steinmacher et al. 2015; Von Krogh et al. 2003; Jergensen et al. 2011; Fagerholm et al.
2014; Britto et al. 2020). In a microtask, developers need to know none of this context.
Instead, developers may be given a single function. As part of the microtask itself, there
is a description of the function, describing everything about the function a developer must
know. In this way, the context of a microtask is greatly reduced from the context required in
a traditional task.

Microtask programming adopts three core mechanisms for organizing work and motivat-
ing and supporting contributors. Microtask programming reduces the effort required to (1)
onboard developers onto a project, including understanding the project structure and code
and setting up a workspace (Steinmacher et al. 2015; Wang and Sarma 2011; Britto et al.
2020; Von Krogh et al. 2003; Fagerholm et al. 2013; Fagerholm et al. 2014). To reduce this
traditionally lengthy process, developers work within a specialized preconfigured program-
ming environment (Aghayi et al. 2021; Lasecki et al. 2015; LaToza et al. 2018; LaToza et al.
2015; Goldman et al. 2011a; Goldman 2012; Nebeling et al. 2012; Schiller and Ernst 2012;
LaToza et al. 2014; LaToza et al. 2013; Williams et al. 2019). Preconfigured environments
offer an environment in which code and dependencies are already set up and developers
may immediately begin editing code.

Microtasking changes the nature of (2) coordination, transforming tasks done by a sin-
gle developer into tasks done by multiple contributors. Whereas a single developer might
work to prepare a pull request for a new feature, in microtask programming a number
of crowd workers may contribute. Workers adopt partially completed work, continuing or
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revising it based on their own plan, and continuously offer feedback, through reviews, on
each contribution made.

To incentivize the broader participation that microtasking enables, microtasking systems
adopt (3) gamification mechanisms (Zanatta et al. 2018). Systems may measure fine-grained
progress, recording each microtask completion. From this, they provide feedback at each
step (e.g., review comments) as well as publicly visible signals of contributions (e.g., points
on a leaderboard).

Microtasking programming mechanisms are interdependent, each changing the nature of
programming work in ways that require new techniques to support. For example, by offer-
ing continuous feedback (3), the impact of the reduced context and knowledge developers
have from a shortened onboarding experience may be reduced (1). And by changing the
mechanisms through which coordination occurs (2), the impact of making tasks short and
self-contained may be reduced.

Through these mechanisms, microtask programming has been envisioned to offer impor-
tant potential benefits for software development (LaToza et al. 2018; LaToza and van der
Hoek 2016). First, by reducing the context necessary to program from a whole codebase to
an individual artifact and offering developers a preconfigured environment, microtask pro-
gramming may reduce onboarding barriers. Second, by deconxtextualizing, decomposing,
and reorganizing programming work, microtask programming is envisioned to enable pro-
gramming tasks to be divided and shared among developers, enabling increased team size
to increase project velocity.

At the same time, microtask programming may also bring new challenges managing
contributor knowledge and awareness of specific code modules. Developers work without
awareness of the complete program, potentially increasing the potential for work to go off
track. Conflicts might occur, either from two overlapping changes to the same artifacts,
or from conflicting changes in different artifacts. Lacking a global view of the codebase,
developers may write lower quality code, as they are unaware of code with which to be
consistent. By asking developers to rapidly switch between working on microtasks which
focus on different artifacts within a project, developers may spend more time understanding
new code and less time programming.

Existing studies of microtask programming have demonstrated its feasibility, showing
that it is possible for it to be used to create small programs (Aghayi et al. 2021; LaToza
et al. 2018; LaToza et al. 2013), user interfaces (Lasecki et al. 2015; Nebeling et al. 2012;
Lee et al. 2018), tests,! and other artifacts (Goldman et al. 2012; Goldman et al. 2011b;
Chen et al. 2016). Yet we are aware of no prior work that has offered a direct comparison
of microtask programming to traditional programming.

We conducted a controlled experiment to answer four research questions:

— RQI: How does microtask programming impact onboarding?

— RQ2: How does parallelism in microtask programming impact velocity?
— RQ3: How does microtask programming impact code quality?

— RQ4: How does microtask programming impact developer productivity?

Table 2 summarizes the definitions of the constructs and measures used to answer these
questions. In this paper, we define onboarding time as the time it takes for developers to
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join a project and complete their first contribution. We measured this by tracking the time
developers required by developers to begin contributing and submit their first task (Fig. 2).
We define project velocity as the amount of programming work that a development team
completes per unit of time. We measured project velocity both as the average number of
lines of code per and the number of correctly implemented behaviors completed by develop-
ers in a 4 hour programming session. The code quality of an implementation encompasses
how maintainable it is and the ease with which other developers may read or make changes
to it. We measured code quality by asking a panel of experienced JavaScript developers to
assess code for its clarity, simplicity, and consistency. We define developer productivity as
the amount of programming work an individual developer completes in a unit of time. We
measured developer productivity as the number of lines of code and correctly implemented
behaviors completed per hour.

28 developers were randomly assigned to one of two conditions. All worked in 4 hours
sessions to implement and debug function bodies of a small microservice in JavaScript for
an online-shopping-application and then completed a post-task survey at the conclusion
of the study. In the control condition, 14 developers worked individually in a traditional
Integrated Development Environment (IDE) to complete issues described in an issue tracker.
In the microtask programming condition, developers worked together as part of 7-person
crowds to complete microtasks in a dedicated microtask programming environment. We
recorded and analyzed developers’ activity by collecting screencasts. We measured the time
developers worked and assessed their output through a hidden unit test suite as well as
through a panel of four anonymous reviewers.

We found that microtask programming significantly reduced onboarding time from 164
minutes to 44 minutes, a factor of 3.7. In increasing team size from an individual developer
to a crowd of 7 developers, project velocity increased by a factor of 5.76. As rated by a
panel of developers anonymous to condition, the quality of code written did not significantly
differ. The productivity of individual developers in the microtask programming condition
decreased by a factor of 1.3.

In the rest of this paper, we survey related work, introduce microtask programming,
describe the study design, and report the results. Finally, we conclude with a discussion of
limitations as well as opportunities and future directions.

2 Related Work

Our investigation of microtask programming builds on a number of prior studies of soft-
ware development and crowdsourcing. In particular, a number of studies have investigated
the challenges developers face in onboarding (RQ1), determinants of velocity for software
projects (RQ2), the quality of code created in software projects (RQ3), and the productivity
impacts of microtasking complex information work (RQ4).

Crowdsourced software engineering is the undertaking of any software engineering tasks
by an undefined, potentially numerous, set of online workers recruited through an open
call (Mao et al. 2017). TopCoder (Lakhani et al. 2010) and open-source software (OSS)
development are two examples of models of crowdsourcing software development (LaToza
and van der Hoek 2016). Crowdsourcing software engineering envisions the potential to
reduce the time to market, generate alternative solutions, utilize specialists, learn via work,
and democratize participation in software engineering (LaToza and van der Hoek 2016).

Software developers, including in OSS development, face barriers that require complet-
ing lengthy joining scripts to begin contributing (Von Krogh et al. 2003). This may dissuade
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the busy or casually committed from contributing and restricts the pool of millions of poten-
tial contributors to only the most committed. One solution to reducing these barriers comes
in the form of microtask programming. Microtask programming decontextualizes the tasks
done by workers, enabling a contribution to be made in isolation from other ongoing work
and with no requirements for prior knowledge (LaToza et al. 2018).

Microtask programming is a specific form of crowdsourced software engineering, uti-
lizing an open call to contribute through a specific form: the microtask. Microtasks are
tasks which are short, self-contained, and with a specific objective. For example, in Appari-
tion (Lee et al. 2018), developers are given a highly specific task (to craft visual behavior
for a specific user interface element in a few lines of code) and may complete this task in a
few minutes. In contrast, other forms of crowdsourcing work utilize tasks which are longer,
not nearly as self-contained, and with broader objectives. For example, on TopCoder, devel-
opers may be asked to participate in a design competition. Developers are given a set of
requirements and asked to create a series of UML diagrams. Developers have access to the
whole codebase. And the competition may last for weeks. In this way, while microtask pro-
gramming systems are examples of crowdsourcing, other forms of crowdsourcing are not
microtasking.

When new developers join a software project, they face a number of onboarding barri-
ers. Onboarding barriers include 1) identifying appropriate contacts and receiving timely
feedback, 2) identifying proper tasks and corresponding artifacts, 3) understanding project
structure and setting up a workspace, 4) outdated and unclear documentation 5) learning
project practices and technical expertise (Wang and Sarma 2011; Steinmacher et al. 2015;
Von Krogh et al. 2003; Jergensen et al. 2011; Fagerholm et al. 2014; Britto et al. 2020).
Onboarding barriers impose a lengthy joining script that dissuades less motivated potential
contributors from becoming a contributor (Steinmacher et al. 2016). These joining barriers
are also an issue for traditional software development projects, requiring a variety of prac-
tices to onboard new software development. For instance, companies such as Google have
extensive mentoring programs that new employees participate in when joining (Johnson and
Senges 2010). However, even after four months, developers have only shallow knowledge
of a software project (Sim and Holt 1998) and may require as much as three years to become
fluent (Zhou and Mockus 2010). However, as the average turnover rate at companies such
as Amazon and Google is around two years (Peterson 2017), many developers will never be
fully onboarded.

To address these barriers, a number of programming environments have been designed to
reduce one or more of these barriers, often as part of a microtask programming environment
where quick onboarding onto a project is crucial. These environments often offer dedicated,
preconfigured, environments, which require much less setup for developers to get started in
a new project (last column of Table 1) (Warner and Guo 2017; Lasecki et al. 2015; LaToza
et al. 2018; Goldman et al. 2011a; Goldman 2012; Nebeling et al. 2012; Schiller and Ernst
2012; Chen et al. 2017; Aghayi et al. 2021).

The velocity of a software project is the rate of progress of the project team. Velocity
measures the amount of work that a project team completes (e.g., a number of requirements
or user stories) in a unit of time (e.g., a sprint). From this definition, it might be reason-
able to expect that, if instead of employing a single developer, a project were to instead
employ several developers, velocity might increase (Perry et al. 2001). However, achieving
this requires overcoming several challenges, including successful coordination, communi-
cation among team members, and orchestration of work (Espinosa et al. 2001). The team
lead or software architect must split work into independent tasks so that developers do not
interfere with each other’s efforts. Managing and coordinating parallel development work
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is hard (Espinosa et al. 2001). One study of 222 open source projects revealed that the inter-
dependence and distribution of teams are key factors in increasing conflict levels (Filippova
and Cho 2016). In many software projects, increasing the degree of parallelism is hard or
impossible due to task inter-dependencies and the context required by tasks (Perry et al.
2001). Microtask approaches to programming have been explored to address some of these
issues, enabling a higher degree of parallelism (Lasecki et al. 2015; Goldman et al. 2011b;
Goldman et al. 2012; LaToza and Van Der Hoek 2015; Nebeling et al. 2012). Achiev-
ing this requires effective mechanisms for distributing work, managing context, generating
microtasks, and minimizing conflicts.

A number of studies have examined the quality achieved by software projects, specifi-
cally the quality achieved by open source projects. There are several systematic approaches
for evaluating the quality of software (Tian 2005; Ammann and Offutt 2016). Studies com-
paring the quality of code produced in open source projects have found that it is lower than
that what is expected in industrial projects (Stamelos et al. 2002; Basili 2001; Aberdour
2007). There are several potential reasons, including the lack of a formal risk assessment
process, defect discovery from black-box testing late in the process, unstructured and infor-
mal testing, and the quality assurance methodologies used (Aberdour 2007). Some open
source projects do not use systematic quality assurance methods (Zhao and Elbaum 2000).
One study of over 20,000 Open-source software (OSS) projects found that 38% lacked unit
tests (Kochhar et al. 2013).

Measuring and even defining productivity in software engineering is challenging. The
Oxford dictionary defines productivity as “the rate at which a worker, a company or a coun-
try produces goods, and the amount produced, compared with how much time, work and
money is needed to produce them” (University, O.: productivity noun. shorturl.at/gqT69).
Measuring the productivity of software developers is challenging as the output created
by a developer in a development task can be hard to quantify (Meyer et al. 2014; Ker-
sten and Murphy 2006). Software engineering researchers have not reached agreement on
how to accurately measure productivity (Oliveira et al. 2017). Many studies have identi-
fied factors that influence developers’ productivity, such as scope and schedule (Jensen
2014; Kamma and Jalote 2013; Maxwell 2003; Oliveira et al. 2017). Mercury (Williams
et al. 2019) a mobile microtasking system that allows programmers to continue their work
on-the-go is introduced and evaluated by a controlled experiment. Micro-producitivities in
Mercury help programmers continue their work on-the-go and instill comfort in pausing
work unexpectedly.

A number of studies have investigated the impact of microtasking on the productivity of
information workers completing non-programming tasks (Igbal et al. 2018). Microtasking
approaches which offer concrete plans with actionable steps can enable workers to complete
tasks with a higher level of productivity (Teevan et al. 2016; Igbal et al. 2018). Microtasking
may result in more frequent task switches, as workers constantly switch task when beginning
each microtask (LaToza et al. 2018). However, workers in general often face interruptions
and may multi-task and attempt to complete several tasks simultaneously (Czerwinski et al.
2004; Cutrell et al. 2000). Reaching full productivity after an interruption may take 25
minutes (Mark et al. 2005). While interruptions may decrease the productivity of workers
on large tasks, they have less impact on a worker that completes the same task as a series of
microtasks (Cheng et al. 2015). This is because interruptions which occur at task boundaries
are less disruptive and microtasks introduce more task boundaries. In addition, more of the
context needed to resume work is contained in the microtask itself (Trafton et al. 2003; Igbal
and Bailey 2008).
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Other work has begun to investigate the impact of the use of crowdsourcing within soft-
ware projects (Lakhani et al. 2010; Stol and Fitzgerald 2014). Several studies have examined
the use of TopCoder, one of the most mature crowdsourcing platforms, to build software
projects. One study compared TopCoder’s software development process with conventional
software development, finding that TopCoder had a lower defect rate (5 to 8 times lower)
at lower cost and in less time (Lakhani et al. 2010). TopCoder claimed that their crowd-
sourced development approach reduced cost by 30%-80% compared with in-house software
development or outsourcing (Mao et al. 2017). Crowdsourcing platforms such as TopCoder
differ from microtasking in the granularity of tasks (LaToza and van der Hoek 2016), where
tasks are far more larger and require days rather than minutes to complete (Saito et al.
2020; Aghayi 2020). Our work builds on these studies, offering the first study specifically
comparing a microtask style of programming to traditional programming.

3 Microtask Programming

Microtask programming is a form of crowdsourcing programming where work is carried
out in the form of microtasks. In a microtask, a transient crowd worker is given a short and
self-contained task (e.g., label an image, write a one-sentence summary of a paragraph),
and individual contributions are then aggregated together to create a more extensive product
(e.g., a labeled dataset of images, a summary of a news article) (Doan et al. 2011; Weld
et al. 2008; Von Ahn and Dabbish 2004; Ramakrishnan et al. 2004).

Several systems have applied microtasking to programming, devising mechanisms to
decompose traditional programming tasks of implementing features or fixing defects into
microtasks (Table 1). For example, Apparition breaks down the work of building a proto-
type user interface into microtasks (Lee et al. 2018). As a designer describes an interface
in text, crowd workers implement the behavior of individual UI elements. In CodeOn, a
developer working in a programming environment speaks a request for help, automatically
generating a microtask for crowd workers to complete capturing relevant context (Chen
et al. 2017). In CrowdDesign, crowd workers may build a web app (Nebeling et al. 2012).
In Mercury (Williams et al. 2019), a programmer works individually to continue work on-
the-go. All microtasks are completed in a mobile setting. Mercury helps programmers with
individual productivity. It focuses on task resumption instead of the broader aspect of pro-
ductivity. In CrowdCode, programming work is completed through a series of specialized
microtasks (LaToza et al. 2014; LaToza et al. 2018). Workers write test cases, implement
tests, write code, reuse existing functions, and debug. In CrowdMicroservices, crowd work-
ers identify unimplemented behaviors from a description of a function which they then
test, implement, and debug (Aghayi et al. 2021). While these systems vary in a number of
important aspects, they share several important characteristics central to the experience of
microtasking: a streamlined onboarding process, an increase in the degree of parallelism in
work, mechanisms for ensuring quality, and a changed programming experience.

Core to the experience of microtasking systems is the idea of the crowd contributor,
who can receive a microtask and complete it without needing to first complete a lengthy
onboarding process (RQ1). Studies of onboarding find that this can be a substantial bar-
rier (Steinmacher et al. 2015). Microtask programming environments envision reducing
onboarding through several mechanisms, including offering a preconfigured environment
and a self-contained programming task (Aghayi et al. 2021; LaToza et al. 2018). By
offering a preconfigured environment, developers need not spend time installing and con-
figuring necessary tools, downloading code from a server, identifying and downloading
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dependencies, and configuring the build environment. Microtask programming reduces the
need to spend time understanding a codebase before contributing by decontextualizing
programming tasks (Aghayi et al. 2021; LaToza et al. 2018).

Small microtasks bring the possibility of increasing parallelism in software development
(RQ2). By parallelizing work across many developers, microtasks may enable work to be
completed in less time. Key to achieving this is effective mechanisms for coordination and
aggregation. This enables workers to obtain feedback on their contributions early, before
wasting time on dead-end contributions, and to coordinate contributions to reduce conflicts.
For example, Apparition incorporates a todo list and locks access to artifacts by other work-
ers when a microtask is in progress to reduce conflicts (Lee et al. 2018). CodeOn facilities
coordination by ensuring workers always work with the most recent code.

Microtask programming approaches use a variety of techniques to ensure the quality of the
resulting software artifacts (RQ3). Low quality contributions may occur due to several reasons,
including workers who do not have sufficient knowledge, workers who put in little effort,
or workers who are malicious (Kim et al. 2017). Commercial crowdsourcing approaches
address these quality concerns through mechanisms including rankings and ratings, report-
ing spam, pre-approving tasks, and skill filtering (Saengkhattiya et al. 2012). CrowdCode
and CrowdMicroservices employ unit tests, code reviews, and gamification techniques to
ensure quality (LaToza et al. 2018; Aghayi et al. 2021). In CrowdDesign, a manager reviews
the contributions of crowd workers and accepts or rejects them (Nebeling et al. 2012).

In decontextualizing work and requiring developers to constantly switch their focus
between different artifacts, microtask programming may potentially reduce developer pro-
ductivity (RQ4). As workers rapidly switch between microtasks, developers may spend
more time understanding specifications and code and less time programming. For exam-
ple, in CrowdMicroservices, workers may read a new function specification, unit tests, and
implementation at the beginning of every microtask.

In our study, we chose to examine the CrowdMicroservices system (Aghayi et al. 2021)
as an example of a microtask programming approach (Fig. 1). In CrowdMicroservices, a

'Write your code in the function editor below Report an issue with the function o o

Ty

2 * A user may compare a browsed item with other similar items, implementing the function to find similar items with a browsed item. The
* function should search among the items in the store that their name includes the name of the browsed item, if similar items are more
* than 20 items, The function only returns top 20 items that have rating higher rating (ex: there exist 35 similar items, The function
* should only return the 20 items which higher rating), if the function could not find any similar item it returns empty collection

3

4

5

6 * . The user already logged in the system and tried to comparing items, the function should store a log from the items that the user

7 * have seen, this can be useful for future item recommendations. The function may make use of a 3rd party persistence library.[The ﬂm(t\cr\l
8 * [Should also check the validity Of input arguments, the function should check the information of the user, information of the item

9 * |to not be empty or null, if it is invalid a 'TypeError' exception should be thrown with a description.

10 *

11 * @param {String} userId - it is a user identification 0

12 * @param {String} itemName - name of an item
13+ ereturn Jiten[1}

15 function fetchTopMostSimilarItemsC g 3

16 //Implementation code here

17 if((itemName===null || itemName==="") || (userId===null || userId=—="")){

18 throw new TypeError("IllegalArgumentException”);

19

20 }

21 var 1istOfTimeinDB - FetchObjectsImplementation('item'); &

@ editTestsinthebellow % Run Tests inthe bellow
- R Remove test

Description of the choosen behavior. Type [ asserton  $| @

throw TypeError for invalid input
code ©

1 var badFn - fetchTopMostSimilarItems(1,null);
2 expect(badFn).to.throw(TypeError);

Fig.1 In the CrowdMicroservices microtask programming system, developers complete microtasks in which
they (1) identify a behavior from the description of a function, (2) write a unit test for the behavior, and (3)
implement and debug code for the behavior
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client, for example, a software design team, first defines a desired behavior of a microser-
vice by authoring textual descriptions of endpoints. Contributors then log in to a web-based
programming environment, view tutorial content explaining the environment, a project sum-
mary, and list of endpoints and their description. Developers fetch microtasks, which are
assigned at random, and complete two types of microtasks. In Implement Function Behav-
ior, developers follow a behavior-driven development methodology to (1) identify a single
behavior from the description of a function that is not yet implemented, (2) write a unit test
for the behavior, and (3) implement and debug the behavior (Fig. 1). To ensure that devel-
opers do not lock contributions to a function by taking too long to complete a microtask,
developers have 15 minutes to submit the microtask; otherwise, the microtask programming
environment skips the microtask. In the Review microtask, developers examine a microtask
completed by another developer, review a diff of the code change, give feedback on the
microtask, and assign it a rating to accept or reject it. To support gamification, contribution
ratings are then used to generate a score for each developer. This score is publicly visible
to the entire project crowd on a leaderboard. After all microtasks have been completed, a
client may publish the microservice, automatically deploying the microservice to a hosting
provider.

4 Method

The goal of our study was investigating the impact of microtasking on programming, focus-
ing on the effects of working as part of a crowd on short, decontextualized, self-contained
microtasks as compared to traditional individual programming work. Specifically, we inves-
tigated the effect of microtasking on onboarding (RQ1), project velocity (RQ2), code quality
(RQ3), and developer productivity (RQ4). To investigate our research questions, we con-
ducted a controlled experiment where participants implemented and debugged function
bodies of a small JavaScript microservice. To compare microtask programming, as embod-
ied in microtask programming environments, to traditional programming, we varied several
aspects between each condition. As microtask programming decomposes a long task into
a number of short tasks which are completed by a crowd, developers in the control condi-
tion worked individually, while developers in the microtask programming condition worked
with other developers as part of a crowd. As microtask programming offers specialized
programming environments to ease onboarding for developers, developers in the microtask
programming condition were furnished with a specialized microtask programming environ-
ment, while developers in the control condition worked with their own preferred IDE and
were responsible for onboarding activities onto the project.

We recruited 28 participants and randomly assigned them to a control or experimental
condition. All worked in 4 hour sessions to implement a small microservice in JavaScript
for an online-shopping application. In the experimental condition, participants worked using
programming microtasks. Experimental participants were organized into two sessions. In
each session, 7 participants worked together simultaneously as a crowd. In the control con-
dition, 14 participants each worked individually, isolated from other participants without
any coordination or exchange of contributions. The study consisted of three main parts: tuto-
rials, a programming task, and a post-task survey. During the study sessions, we recorded
and collected screencasts as well as collecting the code created in each session. We then
evaluated the code produced through a hidden test suite as well as a panel of reviewers
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anonymous to conditions. From this data, we calculated several measures to examine the
impact of microtask programming on onboarding, velocity, code quality and developer
productivity.

4.1 Setting

Participants in both conditions worked within 4-hour study sessions. Control participants
worked individually in 17 4-hour sessions. We excluded the data of 3 participants that
dropped out from the study, leaving 14 participants. Microtask participants worked in a
crowd, taking part in either of two independent 4-hour sessions. We invited 8 participants
for each session, and in each session, one participant dropped from the study. All study ses-
sions were conducted remotely, with all interactions between participants and experimenters
occurring via Skype or email.

Participants in both conditions were free to use the Internet to find code or solutions to
their challenges. We worked to create a setting close to each participants’ everyday environ-
ment. In the registration form, we asked control participants to give us information about
the tools they use in their daily development. We then installed these tools before the experi-
ment. Developers in the control condition connected remotely to our laptop via TeamViewer
or AnyConnect, and they were free to use or install any other tools with which they were
familiar. As developers face lengthy joining scripts in their onboarding process (Von Krogh
et al. 2003), we tried to simulate onboarding barriers. In the control condition, developers
needed to set up the environment, which included installing npm dependencies and building
the code. We chose to ask participants to connect to our laptop to control for potential dif-
ferences between participants in the processing power of their computer. Participants in the
experimental condition worked on their local machine, using the microtask programming
environment through a web browser.

4.2 Participants

We recruited participants who met two inclusion criteria: (1) at least six months of expe-
rience in JavaScript and (2) proficiency in English. To simulate the geographically diverse
nature of crowd work, we recruited participants broadly. We distributed an online flyer on
social networks, including Facebook, Twitter, LinkedIn, and Slack groups. One hundred
forty-four responded and completed a registration form, where we gathered demographic
data. Sixty respondents met our inclusion criteria. We invited all 60 to participate, and 33
chose to participate. Two experimental participants and three control participants left the
study due to issues including technical issues in remotely connecting, personal problems,
or feeling overwhelmed. We excluded the data of these 5 in our analysis. We report results
from the remaining 28 participants.

The participants were geographically diverse, residing in Brazil, Canada, India, the
Netherlands, Spain, and the United States. Participants had a median of 4.0 (mean = 5.0)
years experience programming, a median of 2.0 (mean = 2.6) years experience in JavaScript,
and a median of 1.7 (mean = 2.6) years of industry experience. 35.1% reported being a
student in computer science or a related field, and 64.9% reported working as a software
engineer. Throughout this paper, we refer to control participants as C1 to C14 and experi-
mental participants as M1 to M 14. Participants were compensated with $20 in Amazon gift
card credit per hour.
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4.3 Task

Participants in both conditions worked to implement and debug function bodies of an online-
shopping microservice. We chose this application as we expected its main use cases to be
familiar to participants. A task description based on an online-shopping app’s key use cases
was created for a microservice and used in both conditions. In the control condition, this
description was provided through nine GitHub issues. In the experimental condition, this
description was provided through a Client-Request with nine endpoints. Conditions varied
only in that the the experimental condition participants were given a signature of each func-
tion as part of the microtask. The rest of the tasks’ decomposition and task descriptions
were identical for both conditions. We piloted the task to ensure the task was of an appro-
priate size and difficulty. After two pilots, we found it to be too easy, so we added additional
complexity to the service descriptions.

Participants in both conditions worked in a similar context, with several differences aris-
ing from the experimental manipulation. To simulate the conditions of a traditional software
project, participants in the control condition began with a pre-existing microservice project
consisting of 2035 lines of code, implemented using Express.js. It included an HTTP end-
point example, which participants were able to copy and edit to create function signatures.
In the microtask condition, participants could only see the code for the function associ-
ated with each microtask. In microtask programming, the tutorials included an example
unit test. Therefore, a unit test example was included in the codebase of control partici-
pants.Microtask programming makes use of a preconfigured IDE, in which all libraries and
dependencies are installed. Because of that, experimenters for the control group created
all configurations and installed all required dependencies of an Express.js* project before
participants began work.

Participants in both conditions made use of the Firebase persistence APL3 All partici-
pants had access to a wrapper of the API. In the microtask condition, participants could not
see the implementation of the wrapper, as it was embedded in the preconfigured program-
ming environment, while in the control condition the code of the wrapper was included in
the codebase.

4.4 Procedure

In the control condition, each participant worked alone on his or her task in an individual
study session. In the experimental condition, participants worked in shared sessions con-
taining a crowd of 7 participants. All participants completed three steps within a 4 hours
session: tutorials (20 minutes), a programming task (205 minutes), and a post-task survey
(15 minutes).

Step 1: Tutorials:  All participants first completed tutorial materials on the programming
tools used in the study. Control participants completed a three part tutorial. It first
included an IDE tutorial to ensure they understood the basic features of their chosen IDE.
In the second part, as control participants needed to use GitHub to clone, commit, and
push code to a repository, a quick review was given of these steps. Control participants
were also given a quick tutorial of writing unit tests using Mocha. Participants could

2https://expressjs.com/
3https://firebase.google.com/
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choose to skip tutorials they felt they did not need. Experimental participants completed
a tutorial explaining the unfamiliar microtask programming environment they would be
asked to use, including background information about the environment and concepts,
through a 8 minute video and a series of written explanations. All participants had up to
20 minutes to complete this step.

Step 2: Programming Task:  Control participants first opened their desired IDE, cloned
the code from a GitHub repository, installed npm dependencies, and built the codebase.
Control participants then went to the Issues page of the repository and selected issues to
address. Control participants were free to work on issues in any order. Writing unit tests
was not required, but participants were free to write unit tests as they saw fit. Microtask
programming participants used the Crowd Microservices preconfigured web-based IDE
and did not need to install any tools. All participants had 205 minutes to work on the
programming task.

Step 3, Post-task Survey: At the conclusion of the task, all participants completed the
post-task survey containing open-ended questions about their experiences in the study.
Participants were asked to share challenges they experienced in onboarding, working
with tutorials, readme pages, and instruction, setting up and using their programming
environment, and understanding the codebase.

4.5 Data Collection and Analysis

We collected a broad range of quantitative and qualitative data from 6 different data sources
(DS 1-6). Table 2 summarizes the data we collected.

DS1I, Final Code: we collected the final code of control group sessions from the GitHub
repository and from the microtask programming sessions.

DS2, IDE Log: we collected log data generated by the microtask programming environ-
ment, including participant actions fetching, skipping, and submitting microtasks, and
asking or answering questions.

DS3, Screencasts:  we collected screencasts of participants’ work on their tasks, 112 hours
in total. The experimenters watched the screencasts to identify onboarding activity as
well as qualitatively describe how developers worked in the programming tasks.

Table2 Summary of RQs, measures, and data sources

Measures Data source (DS)

RQI: Onboarding time Minutes to complete the first line of code DS3: Screencasts DS2: IDE Log
Minutes to complete the first microtask or issue DS3: Screencasts DS2: IDE log

RQ1: Project Velocity  # correctly implemented behaviors per session ~ DS5: External Test Suite

Lines of code written per session DS1: Final Code
RQ3: Code quality Mean scores of clarity, consistency, DS6: Quality Ratings
simplicity by panel
RQ4: Developer # correctly implemented behaviors DS5:External Test Suite
productivity per developer hour

Final lines of code written
per developer hour DS1: Final Code
RQ 14 Qualitative report DS4: Survey DS3: Screencasts
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DS4, Post-task Survey:  we collected data through a post-task survey which all participants
completed. Each condition had a specialized survey containing open-ended questions
addressing the specific nature of work in each condition. We used thematic analysis in
the analysis of these surveys.

DSS5, External Test Suite:  to measure the output created by participants, we created an
External Test Suite. Working from the nine issues or endpoints given to participants, we
identified 39 distinct behaviors and wrote a unit test for each.

DS6, Quality Ratings:  to assess the quality of the code written in each session, each of the ses-
sion’s final codebases was separately evaluated by four panelists. Panelists were anonymous
to condition. Panelists evaluated 16 codebases (two created by microtask programming
participants and 14 created by control participants) for their clarity, simplicity, and consistency.
We then created an overall quality score by averaging scores across the 3 criteria.

To answer RQ1 (onboarding), we measured the time developers spent onboarding. In both
conditions, we manually watched the screencasts (DS3: Watching Screencasts) and identified the
points of time at which developers began activities strongly related to onboarding (Fig. 2). In
addition, we used the microtask programming IDE’s logs (DS2) to identify when developers
completed the tutorials, fetched the first microtask, and finished the first microtask.

To answer RQ2 (project velocity) and RQ4 (developer productivity), we used the Exter-
nal Test Suite (DSS) and measured the lines of code developers wrote (DS1). We used the
External Test Suite to measure the behaviors successfully implemented at the end of each
session. In addition, we counted the lines of code written in each session.

The quantitative data collected to answer RQ1, RQ3, and RQ4 were normally distributed,
based on a Kolmogorov-Smirnov test. To answer research questions RQ1, RQ3, and RQ4, we
used a Welch test, as the two conditions were non-overlapping and had unequal variances.

5 Results
5.1 RQ1: How does Microtask Programming Impact Onboarding?

To investigate how a microtask style of work impacts the time necessary to onboard onto a
new project, we measured the time developers spent onboarding. We define onboarding as

Onboarding time to finish first microtask or issue
Onboarding time to finish first LOC .

\ 4

A

ﬂk

Writing first LOC

Learning programming
environment

Writing first microtask or issue

D>
TO T1 T2 T3 T4

Onboarding activities and time

Fig. 2 Activities related to onboarding. Developers read tutorials until cloned code or open microtask pro-
gramming environment (TO to T1), explored and learned programming environments (T1 to T2), began work
on the first task until writing first line of code (T2 to T3), and began work on the first task until writing their
first microtask or issue (T3 to T4)
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the orientation time in which a new developer adjusts to and becomes productive within a
project (Begel and Simon 2008). We conservatively identified the points of time at which
developers began activities strongly related to onboarding (Fig. 2): time spent working in
tutorials until participants first cloned code or opened the microtask programming environ-
ment (TO to T1), time spent exploring and interacting with the programming environment,
and other resources such as readme pages until participants began work on their first task
(T1 to T2), time from beginning work on their first task until writing their first line of code
(T2 to T3), and additional time completing their first implementation microtask or issue
(T3 to T4). In characterizing onboarding bellow, we focus on reporting the time required
to write the first line of code (TO to T3) and the time needed to finish the first implemen-
tation microtask or issue (TO to T4). In some cases, participants were toggling back and
forth, such as rereading tutorials. In these corner cases, we considered the first checkpoint
developers reached. For instance, we measured T4 as the time developers completed micro-
tasks or issues regardless of developers’ time spent rereading tutorials or searching on the
Internet.

Overall, microtask programming significantly reduced onboarding time, measured both
from the beginning of the session to the writing the first line of code (TO to T3) and to com-
pleting the first task (TO to T4) (Fig. 3). The time for microtask programming participants to
finish the first line of code (TO to T3) was significantly less (Welch’s t(26) = 3.03, p = 0.002,
data was normally distributed), reducing onboarding time by a factor of 1.3 to 39 minutes
(SD = 13) compared to 52 minutes (SD = 8) for control participants. Microtask program-
ming participants completed their first task (TO to T4) significantly faster (Welch’s t(26)
= 15.2, p = 0.00001, data normally distributed) in 44 minutes (SD = 11) compared to 164
minutes (SD = 25) for control participants, reducing time by a factor of 3.7. Microtask par-
ticipants spent 18 minutes interacting with the tutorials (TO to T1), 13 minutes learning the
programming environment (T1 to T2), 7 minutes writing their first line of code (T2 to T3),
and 12 minutes completing their first task (T2 to T4). In contrast, control participants spent
8 minutes on the tutorials (TO to T1), O minutes learning the programming environment
(T1 to T2), 45 minutes writing their first line of code (T2 to T3), and 156 minutes to com-
plete their first issue (T2 to T4). One cause of the shortened time to complete a microtask
is the smaller granularity, as compared to a traditional issue. On average, the first submit-
ted microtask had seven lines of code, including four in the function body and three in unit
tests. Control participant’s first issue included 51 lines of code in functions and O in unit
tests.

To identify potential explanations of the differences in onboarding times, we analyzed
the 112 hours of screencasts and data from the post-task interviews to identify challenges
faced by participants in each group and how participants chose to address these challenges.
Both control and microtask programming participants experienced challenges getting up to
speed with their programming environment. Control participants faced several challenges
and spent substantial time configuring their programming environment. While free to use
any IDE or tool they desired, they still experienced challenges cloning code from GitHub,
building code, and installing dependencies. In contrast, the preconfigured environment
available to microtask participants enabled them to not spend time on these activities. How-
ever, microtask participants instead reported being overwhelmed by the many new concepts
in the programming environment presented in the tutorials, including the behavior-driven
development process.

“There was a lot of feature involved and it was hard to understand it all and remember
it without having ever used the service.” - (M5)
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Fig.3 Onboarding time for control (C1 to C14) and experimental (M1 to M14) participants, including mean
onboarding time by condition

As a result, they initially reported being confused and unsure of how to contribute. Never-
theless, after microtask programming participants worked on their first tasks, they gradually
learned how to use the novel workflow. In contrast, control participants did not have prob-
lems with how to start and spent 0 minutes initially learning the programming environment
(T1 to T2). In resolving challenges, control participants generally used Internet searches
while microtask programming participants instead used code documentation, the readme,
and tutorials.

Despite the modest 2035 LOC size of the codebase, understanding the structure of the
codebase took substantial time for control participants, replicating existing findings (Wang
and Sarma 2011; Fagerholm et al. 2014). Control participants tried to understand the
codebase by opening various files and reading code.

“At first I was trying to determine how the project has been structured in terms of
its architecture. The reason was it is going to help me to better locate the code and
methods I would write...” - (C1)

Most reported that the codebase was standard and straightforward. We did not observe
challenges by microtask participants understanding the structure of the codebase, as each
microtask focused on only a single function.

Learning how to work with an API (the Firebase persistence API) was a challenge
for control participants but not microtask programming participants. Participants in both
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conditions had access to a simple wrapper for the API, but the microtask programming envi-
ronment hid its implementation and exposed only its signatures while control participants
could see its implementation. Control participants also had access to more extensive docu-
mentation. While control participants could simply use the wrapper to complete their tasks,
they instead spent time reading documentation on the Internet to understand the underlying
implementation.

“... not knowing the FireBase was and still is the biggest challenge. I had no experi-
ence..., so [ was like, “How am I gonna do this;* ... At these points, my productivity
decreased very much...” - (C3)

The choice of the first task may also have impacted the necessary onboarding activi-
ties. Microtask programming participants were randomly assigned tasks, which they could
skip if they desired. While familiarizing themselves with the environment, they preferred to
skip hard microtasks until they found microtasks focusing on simple implementation logic
like checking corner cases. After starting with simple microtasks, they were able to submit
their first tasks quickly. In contrast, control participants choose issues by reading issue titles
and did not exhibit any clear pattern in selecting issues. They sometimes worked on their
first issue for hours.

Takeaways from RQ1: microtask programming reduced the onboarding time
required by a developer to write their first line of code by a factor of 1.3 and the
time to complete their first task by a factor of 3.7. The preconfigured but novel
programming environment, reduced task size, and reduced need to understand the
codebase structure and implementation may have contributed to these differences.

5.2 RQ2: How does Parallelism in Microtask Programming Impact Velocity?

The project velocity is the rate of progress of a software development team. By decomposing
larger programming tasks (e.g., implement a feature) into parallelizable microtasks, micro-
task programming is envisioned to increase the velocity of programming work within a
software project (LaToza and Van Der Hoek 2015). Measuring project velocity is a chal-
lenge, as it is difficult to recruit participants with professional experience who are willing
to work for an unbounded amount of time. Therefore, rather than fix the amount of work
to complete (i.e., the whole application) and measure time, we instead fixed time (i.e., 205
minutes) and measured the work completed. That is, we examined the impact of increasing
the number of participants per session on the output generated by the session. We measured
the work completed through two complimentary measures: lines of code and the number
of correctly implemented behaviors, as measured by executing the External Test Suite. We
assumed that if developers can correctly implement more software logic in a session, they
would deliver a completed project in less time. Therefore, a larger number of lines of code
or correctly implemented behaviors in a session indicates a higher project velocity.
Increasing the number of participants per session from 1 in the control condition to 7 in
the microtask programming condition increased the amount of work completed per session,
as measured both by the number of behaviors implemented and the lines of code written
in each session. As Fig. 4 indicates, the number of behaviors successfully implemented
increased by a factor of 5.7, from 13% (5.28 of 39) to 75% (29.5 of 39). The mean number
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Fig.4 The number of correctly implemented behaviors by session. The total number of behaviors was 39

of lines of code implemented increased by a factor of 9.1, from 115 lines of code (115 in
functions and 0.4 in unit tests) to 1050 (275 in functions and 775 in unit tests).

Takeaways from RQ2: Increasing the number of developers by a factor of 7 in
the microtask programming condition increased the number of behaviors success-
fully implemented by a factor of 5.7 and the number of lines of code written by a
factor of 9.1.

5.3 RQ3: How does Microtask Programming Impact Code Quality?

The code quality of an implementation encompasses how maintainable it is and the ease
with which other developers may read or make changes to it. This includes following con-
ventions such as meaningful variable names, appropriate code structures, and appropriate
formatting (Martin and McClure 1983). To assess the quality of the implementation created
in each session, a panel of four was assembled, with a median of 4 years of industry expe-
rience and a median of 2 years experience with JavaScript. Each of the 16 session’s final
implementation was evaluated by four panelists separately. Panelists evaluated 16 codebases
(two created by microtask programming participants and 14 created by control participants)
for their clarity, simplicity, and consistency. Panelists were anonymous to condition. For
each metric, panelists gave a score from 1 to 5: 1: poor, 2: fair, 3: satisfactory, 4: very good,
5: excellent. We then calculated a mean score for each codebase by averaging across all 4
panelists. Finally, we created an overall quality score by averaging the 3 metrics.

Overall, we found that panelists rated code created through microtask programming as
higher in quality, with a quality score of 3.7 (SD = 0.12) vs. 3.3 (SD = 0.33) for control par-
ticipants (Table 3). However, this difference was not significant (Welch’s t(14) = 1.35 and p
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Fig. 5 The percentage of panel ratings of code quality for clarity, consistency, and simplicity for control
and microtask programming codebases

= 0.09, data normally distributed). The effect size for Glass’s delta is 2.14 and for Cohen’s
d = 0.99. This indicates that the mean quality score of the microtask programming code-
bases were at the 76, percentile of the control group. For each quality metric, microtask
programming codebases were rated by panelists as being higher quality, with 3.8 vs. 3.2 for
clarity, 3.6 vs 3.4 for simplicity, and 3.6 vs. 3.5 for consistency. The diverging stacked bar
chart in Fig. 5 shows the percentage frequency of panelists’ scores, where each stack rep-
resents the frequency of each score. For instance, the “Consistency(M)” bar for microtask
programming indicates scores of 12.5% poor, 12.5% fair, 0% satisfactory, 50% very good,
and 24% excellent.

One difference between the microtask programming and control conditions which may
have led to differences in quality was the presence of Review microtasks in the microtask
programming condition. In Review Microtasks, participants gave feedback on each contri-
bution made by others and accepted or rejected those contributions. We counted the number
of submitted Review microtasks. Participants submitted 94 (48 accepted, 46 rejected) in
the first session and 130 (87 accepted, 43 rejected) in the second. In the post-task survey,
participants reported that the review microtasks were helpful.

Writing unit tests facilitate maintenance activities (Bavota et al. 2012). Participants in
the microtask programming condition wrote substantially more unit tests than those in the
control condition. microtask programming significantly increased the lines of test code writ-
ten per developer (Welch’s t(26) = 5.1, p < 0.00001) from 0.5 lines (SD = 1.5) to 97 lines
(SD = 68). In the control condition, only one developer implemented one unit test.

Takeaways from RQ3: Code quality, as assessed by a panel anonymous to
condition, did not significantly differ between traditional and microtask program-
ming. Microtask programming participants made judgments about code quality
through reviews and wrote significantly more unit tests.
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5.4 RQ4: How does Microtask Programming Impact Developer Productivity?

Software productivity is the amount of useful output created per unit of time. Output may be
directly created, such as by implementing software logic or writing unit tests, or indirectly
created, such as by reviewing the contributions of other developers or answering questions
on Q&A forums (Sadowski and Zimmermann 2019). Developers are more productive when
they create more direct and indirect output in less time. We measured output through two
complimentary measures: lines of code and the number of correctly implemented behaviors,
as measured by executing the External Test Suite.

We measured direct productivity by considering developers’ contributions to the final
output. As all developers in each session contributed to the final output, we divided the final
project velocity of each session by the number of developers in each session. The direct
productivity of developers in the microtasking condition decreased by 25% in behaviors per
hour and increased by 29% in lines of code per hour. In the control condition, individual
developer’s productivity ranged from 0.3 to 3.5 behaviors per hour, with an average of 1.6
behaviors per hour. In the microtask programming condition, developers had productivity
of 1.2 behavior per hour (29.5 behaviors in 205 minutes by seven developers). Develop-
ers in the control condition implemented on average between 5 and 58 lines of code per
hour, with a mean of 34. 99.6% of the lines written were implementing functions and 0.4%
in unit tests. Developers in the microtask programming condition implemented 44 lines
of code per hour. 26% of the lines written were implementing functions and 74% in unit
tests.

One difference in the microtask condition was that developers wrote code in microtasks,
which other developers may later have edited or deleted. To investigate the impact of this
on productivity, we computed a measure of incremental direct productivity. For each micro-
task, we created a diff and measured the total number of lines of code updated, added or
deleted. In addition, we ran the unit test suite to assess the delta in behaviors correctly
implemented.

As measured through incremental contributions, microtask programming did not
decrease productivity, measured either through behaviors per hour or lines of code. Micro-
task programming increased the number of behaviors successfully implemented per hour by
a factor of 1.4, although this difference was not significant (Welch’s t(26) = 1.54, p-value =
0.067, data normally distributed). Microtask participants completed 2.3 behaviors per hour
(SD = 1.3) compared to 1.6 (SD = 1.0) for control participants (Fig. 6). microtask program-
ming significantly increased the number of lines of code implemented per hour (Welch’s
t(26) = 2.5, p < 0.010, data normally distributed), increasing the lines of code written from
34 per hour (SD = 13) to 60 per hour (SD = 36). However, only 54% of the code developers
initially submitted in a microtask still existed at the end of the session.

To understand how differences in what developers did might have impacted productivity,
we analyzed the screencasts to identify the fraction of participants that engaged in specific
activities. Microtask participants spent their time reading tutorials (92% of participants),
coding (100%), debugging (14%), reviewing (100%), reading Newsfeed messages (100%),
and reading and answering questions (100%). In contrast, control participants spent their
time overcoming onboarding barriers (100%), understanding the codebase (100%), search-
ing the Internet (42%), coding (100%), and debugging (7%). In addition, we used the log
data in the microtask programming condition to assess how microtask participants spent
their time. Microtask participants spent 60% (mean = 117 mins) of their time working on
microtasks, 20% (mean = 34 mins) on Review Microtasks, and 40% (mean = 83 mins) on
Implement Function Behavior Microtasks). They spent the remaining 40% of their time
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Fig.6 The number of correctly implemented behaviors per hour by condition

on non-coding activities such as skipping tasks, reading and answering questions, read-
ing Newsfeed messages, reading content on the dashboard, context switching, and taking
breaks.

Task switching might potentially impact the productivity of developers. Microtask
programming developers switched tasks 12.7 times more often than with traditional pro-
gramming. Microtask programming developers worked on an average of 31.78 microtasks,
while developers in the traditional condition addressed 2.5 different GitHub issues.

Some participants reported that the gamification elements in the microtask program-
ming condition may have increased their motivation, which might have also impacted their
productivity. This finding is consistent with the previous studies that found humans use dif-
ferent sets of nonverbal behaviors to express their prestige and dominance (Witkower et al.
2020). Microtask programming participants had differing opinions about the Leaderboard,
viewing it as stressful, a source of motivation, or helpful gamification. Participants reported
that before fetching a microtask, they looked at the Leaderborad, and that by watching the
scores of others, they were motivated to increase their score and ranking. Participants could
achieve this by submitting more microtasks with higher quality scores.

“I like the competitiveness feel it brings with the points system, rating and all that. It
definitely made me to contribute more.” - (M13)

Takeaways from RQ4: The direct productivity of developers in the microtasking
condition decreased by 25% in behaviors per hour and increased by 29% in lines of
code per hour. Only 54% of the code initially written by microtask participants still
existed at the end of the session.
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6 Limitations and Threats to Validity

As with any empirical study, our study has several important limitations and potential threats
to the internal and external validity of the results.

Our study had several potential threats to internal validity. The first potential threat to
internal validity was that participants in the control condition remotely connected to our
laptop to work. Although they were free to install any tool-set they desired, the remote
connection might have reduced their productivity. Because of connectivity problems, two
control participants in the middle of the study switched from TeamViewer to the AnyCon-
nect tool. This switch distracted participants. In addition, several participants were unable to
use their standard shortcuts. Microtask programming participants worked in the web-based
IDE in the Chrome browser on their local devices.

A second potential threat to internal validity was the novelty of the microtask program-
ming concepts and the environment for participants. Microtask programming participants
had no prior experience with the programming environment. In contrast, control partici-
pants were working in programming environments with which they were already familiar.
The unfamiliarity of the programming environment may have increased the onboarding bar-
riers for microtask programming participants or made them less productive throughout the
tasks. Our study results simulate a setting in which developers are working using micro-
task programming for the first time. because of that as Fig. 3 shows microtask programming
developers spent 13 minutes on learning programming environment but control participants
spent 0 minutes.

A third potential threat to internal validity is the study setting of observing participants
as they worked. If experimenters did not observe the participants, they might be more pro-
ductive. In the control condition, participants were observed synchronously while in the
experimental condition participants were observed asynchronously. Being observed might
change the work style of the participants. The experimenter tried to mitigate this risk
by emphasizing that the goal of the study was was to evaluate the approach and by not
interacting with participants during the study.

Our study also had potential threats to external validity. To imitate the open-call process
of microtask systems, we recruited participants with a wide range of of backgrounds from
our university and globally via social networks like Facebook, Twitter, LinkedIn, and Slack.
The results might vary for developers who are exclusively more experienced or more novice.

The second threat to external validity is that the tasks given to participants might differ
from those used in traditional development projects. To ensure that the task descriptions in
both conditions were the same, the control condition task descriptions were more detailed
than typical in traditional development. For example, they included descriptions of how to
handle specific error messages. More detailed descriptions of the task may have made the
task in the traditional programming condition easier, as developers had less design work
to do. In this way, our results may underestimate the differences between microtasking
and traditional development. Simultaneously, developers in both conditions benefited from
the design work done to create the more detailed task descriptions. In addition, we did
not measure the time required to do this work to create these task descriptions. In another
study (Saito et al. 2020), we measured the effort needed to prepare function descriptions
and method signatures in an industrial project making use of microtask programming. One
designer and one dedicated software engineer worked for two weeks to analyze require-
ments and prepare the design materials, which were then used by a crowd of 6 workers
to implement a web app over the course of 4 weeks. Of course, this encompassed both
doing the design work itself, including writing the function signatures, and is not directly
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comparable to the effort required only to translate an existing design into function sig-
natures. So it is not currently possible to accurately measure the time required to create
function signatures from a completed function description. In principle, more of this design
work might potentially be done by the crowd. Crowd design workflows have begun to be
explored, which might potentially be adopted for this purpose (Weidema et al. 2016).

Another potential threat to external validity is the choice of the programming task. We
chose a synthetic task designed to reflect typical microservice backends. For a more chal-
lenging programming task or with a larger codebase, our results might vary. In particular,
onboarding barriers might be larger and the variance between participants might be higher
for more challenging tasks. This might impact the effect of microtasking on project velocity
and developer productivity either positively or negatively.

7 Discussion

Microtask programming envisions a software development process in which large crowds
of transient developers build software through short and self-contained microtasks, reduc-
ing barriers to onboarding and increasing participation in software projects. To achieve
this, microtask programming adopts four core mechanisms: a preconfigured IDE, decom-
position of tasks into microtasks, new coordination mechanisms, and gamification and
feedback. We conducted the first direct comparison between microtask programming and
traditional programming in implementing and debugging function bodies of a microservice.
We investigated the impact of microtask programming on onboarding, velocity, quality of
code, and individual developer productivity. Table 3 summarizes the main findings.

Open source projects have a number of substantial barriers that discourage developers
from joining and incur high costs for those who participate. These high costs can prevent
developers from ever joining a project. Even for a modest project of just over 2000 lines
of code, developers spent 164 minutes before completing their first issue. Despite incurring
new costs due to the unfamiliar environment and workflow, microtask programming sub-
stantially reduced these barriers, measured both in time to initially complete the first line
of code and the first task. For larger projects with more to learn or for developers already
familiar with microtask programming, the differences may be even larger. This suggests the
potential of microtasking for expanding the pool of contributors available to open source
projects.

We found that, compared to traditional programming, microtask programming reduced
onboarding time by a factor of 3.7. A key reason may be that microtasking required less of
developers in terms of familiarizing themselves with the codebase. Developers could only
see the code for the function for each microtask, and participants could not see the wrapper’s
implementation. However, in traditional development, developers could see, read and learn
the whole codebase. The learning challenges traditional developers faced could not occur
for microtask participants.

Another key reason for the reduced onboarding time for microtasking may be the avail-
ability of a preconfigured IDE. Without the preconfigured IDE, developers spent substantial
time time and effort setting up the programming environment, interacting with Git to clone,
commit, and push code, and learning how to correctly use a third-party API. These barriers
mirror those reported as onboarding challenges in open source projects (Fagerholm et al.
2014; Fagerholm et al. 2013). The preconfigured environment enabled developers to skip

@ Springer



Empir Software Eng (2023) 28:10 Page 250f29 10

these activities, removing these barriers. This offer important evidence about the value of a
preconfigured environment for reducing onboarding effort. This suggests the potential for
adopting a preconfigured environment more broadly, even beyond a microtasking context.
Commercial tool vendors have begun to offer features towards this end, such as GitHub
Codespaces (Microsoft, G.: Github codespaxces. https://github.com/features/codespaces),
Gitpod (Gitpod: Gitpod. https://www.gitpod.io), AWS Cloud9 (Cloud9: Aws cloud9. https://
aws.amazon.com/cloud9/). These web-based integrated development cloud platforms typ-
ically consist of a code editor, compiler, command line, debugger, an API, source version
controller, or a graphical user interface (GUI) builder. However, none of these have yet
supported automatically generating implementation or review tasks, TDD approach, offline
Q/A, and gamification. These environments might be able to offer even more support for
onboarding by adopting more of these features.

By adding additional contributors to a project, the project velocity might be assumed
to increase. However, achieving this in practice is challenging, as coordinating additional
contributors may incur new costs. We found that microtask programming was surprisingly
successful in minimizing these costs, where increasing the number of project contributors
substantially increased project velocity.

By reducing the context available to each developer, microtask programming might be
expected to reduce quality. However, in domains outside programming, prior work has
found that microtasking can, increase, rather than decrease, quality (Cheng et al. 2015; Igbal
et al. 2018). Decomposing tasks into several microtasks was the key to achieving higher
quality, as contributors could focus on smaller tasks without interruption. Our findings
reveal that microtasking did not reduce quality. microtask programming impacted the ways
in which developers worked, requiring developers to write unit tests and offering a review of
their work by others more frequently. In traditional software development, developers may
only receive feedback after submitting all of their changes together through a pull request.

Microtasking reduced the productivity of individual developers, as measured by the
behaviors correctly implemented per developer hour. However, it increased the final lines
of code written per developer hour, largely by requiring developers to write more tests. At
the same time, nearly half of the code written by microtask participants was discarded, as
others edited or replaced it. The gamification elements may have helped motivate some par-
ticipants while demotivating others. These results illustrate the complexity of productivity,
where many factors may play an important role in shaping how much output developers
create.

In this study, we focused only on the impact of microtasking on green-field implementa-
tion and debugging of function bodies rather than on software maintenance or design. Many
questions remain about how microtasking might be adopted in maintenance or design tasks.
Our study largely mirrors the focus of microtasking and tool methodologies on supporting
this aspect of work. Existing systems have not yet offered ways to microtask maintenance
work. More work has been done in the area of design, such as envisioning ways in which the
design tasks, which in our study were completed by the experimenters, might be down by
the crowd (Weidema et al. 2016). However, these new microtask design techniques have not
yet been connected to programming tasks, and it remains unclear how effective they might
be for building the task specifications used in microtask programming. In the meantime,
asking a client to construct these manually is clearly a substantial challenge. Much more
work is needed to design new techniques and approaches for these problems and evaluate
the impact of these approaches on microtasking.
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8 Conclusions

This paper contributes findings from a controlled experiment comparing microtask pro-
gramming to traditional programming, in the context of the task to implement and debug
function bodies. Our findings show that, compared to traditional programming, microtask
programming reduces onboarding time, increases project velocity, and decreases individ-
ual developer productivity. At the same time, the quality code created is not significantly
reduced.

These findings begin to lay a foundation for adopting microtask programming in practice.
In contexts where project velocity is important, there may be benefits to adopting a micro-
task programming approach to implement individual modules. To do so, developers might
first describe desired functionality through an API, which a crowd might then implement
and debug through microtask programming. More work remains to investigate how micro-
task programming might be adopted to a broader range of contexts, such as maintenance or
design tasks.
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