
https://doi.org/10.1007/s10664-022-10214-6

An empirical study of the impact of log parsers
on the performance of log-based anomaly detection

Ying Fu1,2 ·Meng Yan1,2 ·Zhou Xu1,2 ·Xin Xia3 ·Xiaohong Zhang1,2 ·Dan Yang1,2

Accepted: 20 July 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Log-based anomaly detection plays an essential role in the fast-emerging Artificial Intelli-
gence for IT Operations (AIOps) of software systems. Many log-based anomaly detection
methods have been proposed. Due to the variety and unstructured characteristics of logs,
log parsing is the first necessary step for parsing logs into structured ones in log-based
anomaly detection methods. Prior studies have found that the effectiveness of log parsing
will impact the performance of log-based anomaly detection. However, few studies com-
prehensively investigate whether better log parsing implies better anomaly detection. In this
paper, we conduct a comprehensively empirical study to investigate the impact of six state-
of-the-art log parsers belonging to four categories (including heuristic-based, frequency-
based, clustering-based, and subsequence-based) on six state-of-the-art log-based anomaly
detection methods (including machine-learning-based and deep-learning-based methods).
Experimental results on three public datasets show that (1) High parsing accuracy does not
definitely imply high anomaly detection performance. Both parsing accuracy and the num-
ber of parsed event templates should be considered when choosing log parsers for anomaly
detection. (2) The log parsers have an impact on the efficiency of anomaly detection meth-
ods. With the increase in the number of parsed event templates, the efficiency of anomaly
detection decreases. In detail, the heuristic-based parsers have less impact on the efficiency
of anomaly detection methods, followed by frequency-based parsers. (3) All the anomaly
detection methods perform more effectively and efficiently with the heuristic-based log
parsers. Thus, the heuristic-based log parsers are recommended for a new practitioner on
anomaly detection. We believe that our work, with the evaluation results and the corre-
sponding findings, can help researchers and practitioners better understand the impact of
log parsers on anomaly detection and provide guidelines for choosing a suitable log parser
for their anomaly detection method.

Keywords Log parser · Anomaly detection · Empirical study

Communicated by: Philipp Leitner

� Meng Yan
mengy@cqu.edu.cn

� Dan Yang
dyang@cqu.edu.cn

Extended author information available on the last page of the article.

Published online: 8 November 2022

Empirical Software Engineering (2023) 28:6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10214-6&domain=pdf
http://orcid.org/0000-0002-9538-9121
mailto: dyang@cqu.edu.cn

1 Introduction

Modern software systems have evolved to provide 24/7 h of online services. The system
breaks down can lead to severe economic loss in the real world. For example, the loss of one-
hour downtime for Amazon on Prime Day in 2018 is up to $100 million. If the anomalies
can be detected before the system breaks down, the quality and reliability of the system
can be effectively improved. Therefore, anomaly detection plays an essential role in the
fast-emerging Artificial Intelligence for IT Operations (AIOps) (Dang et al. 2019; Lin et al.
2018; He et al. 2018a; El-Sayed et al. 2017; Huang et al. 2018).

Since the logs are used to record the detailed running status information of the sys-
tem when the system is running, it is widely used for anomaly detection (i.e., Liu et al.
2019; Xia et al. 2020; Nandi et al. 2016; Breier and Branišová 2015), failure diagnosis
(i.e., Chen 2019; Yuan et al. 2010; Babenko et al. 2009; Jia et al. 2017), and failure pre-
diction (i.e., Berrocal et al. 2014; Chen et al. 2019; Zhou et al. 2019). As logs are too
massive to examine manually, many semi-automatic or automatic log-based anomaly detec-
tion methods have been proposed. According to the adopted technique, log-based anomaly
detection methods can be categorized into keyword-searching-based methods, rule-based
methods, machine-learning-based methods (i.e., Chen et al. 2004; Lou et al. 2010; Lin et al.
2016), and deep-learning-based methods (i.e., Zhang et al. 2019; Du et al. 2017; Meng
et al. 2019). The limitations of the keyword-searching-based methods are inaccuracy and
insufficiency. And the limitations of rule-based methods are that they require the operator
to have domain knowledge and involve the operator in making the rules and their limited
coverage. To overcome the limitations of keyword-searching-based methods and rule-based
methods, many machine-learning-based methods and deep-learning-based methods are pro-
posed. We focus on the impact of log parsers on the performance of machine-learning-based
and deep-learning-based methods.

These methods extract features from logs as model input. The raw logs generated by the
system are semi-structured and cannot be directly used for feature extraction. So, it needs to
be parsed and converted into structured data. Automatic log parsers are widely used in the
data preprocessing stage of anomaly detection. Automatic log parsers can be divided into
source code-based log parsers (i.e., Nagappan et al. 2009; Xu et al. 2009) and data-driven
log parsers according to the used objects. Because some source code is not easily accessible,
such as commercial components, data-driven log parsers are often used. The current data-
driven log parsers can be divided into four categories according to the technology adopted,
heuristic-based (i.e., He et al. 2017; Makanju et al. 2011), frequency-based (i.e., Dai et al.
2020; Nagappan and Vouk 2010; Hamooni et al. 2016), clustering-based (i.e., Shima 2016;
Tang et al. 2011), and others.

Due to the importance of automatic log parsing and anomaly detection in AIOps, sev-
eral studies have attempted to propose new parsers (Du and Li 2018; He et al. 2017; Dai
et al. 2020 and anomaly detection methods Du et al. 2017; Zhang et al. 2019; Meng et al.
2019), aiming to improve the effectiveness of anomaly detection. At the same time, some
studies are devoted to the empirical evaluation of automatic log parsers and anomaly detec-
tion methods. He et al. (2016b) evaluated the performance of six machine-learning-based
anomaly detection methods on two public datasets. Their study focused on evaluating the
effectiveness of different anomaly detection methods and did not study the impact of log
parsers on different anomaly detection methods. In their subsequent study (He et al. 2016a),
they evaluated the performance of four log parsers on five datasets and the impact of three
log parsers on the effectiveness of one anomaly detection method. However, the impact
of the follow-up state-of-the-art log parsers (i.e., Drain (He et al. 2017), Spell (Du and Li

6 Page 2 of 39 Empir Software Eng (2023) 28:6

2018), Logram (Dai et al. 2020)) on the effectiveness of supervised machine-learning-based
(i.e., Logistic Regression (Bodik et al. 2010) and Decision Tree (Chen et al. 2004)) and
deep-learning-based (i.e., Deeplog (Du et al. 2017) and LogRobust (Zhang et al. 2019))
anomaly detection methods has never been investigated. Unlike the work of He et al.
(2016a), we comprehensively study the impact of six log parsers on six log-based anomaly
detection methods and the impact of parsing errors on the effectiveness of anomaly detec-
tion methods, then make a suggestion on log parser selection. Zhu et al. (2019) studied the
performance of log parsers and made their datasets publicly available.

Since the input features to the anomaly detection method are extracted from the log pars-
ing results, the effect of log parsing can impact the effectiveness of the anomaly detection
method. In this article, we comprehensively evaluate the impact of log parsers on log-based
anomaly detection methods to explore whether better log parsing implies better anomaly
detection? If not, what is the impact of log parsing errors on anomaly detection, and what
are the guidelines for choosing a suitable log parser for different types of anomaly detection
methods? To this end, we conduct a comprehensive empirical study to investigate the impact
of six state-of-the-art log parsers (including two heuristic-based, two frequency-based, one
clustering-based, and one subsequence-based) on six anomaly detection methods (includ-
ing four traditional machine-learning-based and two deep-learning-based). We public our
replication package for follow-up works.1 We believe that our work can benefit researchers
and practitioners in the following two aspects: the one is to help them better understand
the impact of the log parsers on anomaly detection; the other is to provide guidelines for
choosing a suitable log parser for different anomaly detection methods.

In summary, the main contributions of this paper are as follows:

• We conduct a comprehensive evaluation to investigate the impact of four types of
log parsers on the effectiveness of machine-learning-based and deep-learning-based
anomaly detection methods. We find that the heuristic-based parsers are more effective
for anomaly detection than other types of parsers. Additionally, high parsing accuracy
does not definitely lead to high anomaly detection performance. The performance of
anomaly detection is impacted by both parsing accuracy and the number of parsed event
templates.

• We conduct a comprehensive evaluation to investigate the impact of four types of log
parsers on the efficiency of machine-learning-based and deep-learning-based anomaly
detection methods. We find that the log parsers have an impact on the efficiency
of anomaly detection methods. With the increase in the number of parsed event
templates, the efficiency of anomaly detection decrease. The efficiency of anomaly
detection methods is higher on the heuristic-based parsers parsed data, followed by
frequency-based parsers parsed data.

Paper organization. Section 2 reviews the log parsers, feature extraction methods, and
anomaly detection methods selected in our study. Section 3 presents the experimental setup
of research questions, selected datasets, evaluation setting, and evaluation metrics. Section 4
details the experimental results of each research question, respectively. Section 5 presents
the threats to the validity of our work. Section 6 reviews the related studies. Section 7
concludes this paper.

1https://github.com/cqu-isse/Impact evalution

Page 3 of 39 6Empir Software Eng (2023) 28:6

https://github.com/cqu-isse/Impact_evalution

Fig. 1 The overview of our empirical study

2 Methodology

In this section, we introduce the methods we use in each step of our evaluation study. The
overview framework of our evaluation study is presented in Fig. 1. In the log parsing stage,
we introduce six log parsers (Drain (He et al. 2017), IPLoM (Makanju et al. 2011), Logram
(Dai et al. 2020), LFA (Nagappan and Vouk 2010), Lenma (Shima 2016) and Spell (Du
and Li 2018)) which belong to four categories. The summary information of six log parsers
is presented in Table 1. We introduce two log segmentation methods (session window and
sliding window) that we use in the feature extraction. In the anomaly detection stage, we
introduce six anomaly detection methods, including four traditional machine-learning-based
methods (PCA (Xu et al. 2009), LogClustering (Lin et al. 2016), Logistic Regression (Bodik
et al. 2010), and Decision Tree (Chen et al. 2004)), and two deep-learning-based methods
(Deeplog (Du et al. 2017) and LogRobust (Zhang et al. 2019)).

2.1 Log Parsers

The purpose of log parsing is to convert semi-structured log data into structured ones.
Generally, the structured log data contain the fields such as timestamp, event level, event
template, and dynamic variables. The timestamp, the event template, and the dynamic vari-
ables are often used for anomaly detection. The event template refers to the part of the log
that is identified as static texts by the log parser. The dynamic variable refers to the part
that is identified as the variable by the log parser. There are four categories of log parsers:
heuristic-based, frequency-based, clustering-based, and others. In our study, we select one

Table 1 Summary of log parsers
Parser Category Technology Year

Drain Heuristic Heuristic 2017

IPLoM Heuristic Heuristic 2012

LFA Frequency Frequency pattern mining 2010

Logram Frequency Frequency pattern mining 2020

Lenma Clustering Clustering 2016

Spell Subsequence Longest common subsequence 2016

6 Page 4 of 39 Empir Software Eng (2023) 28:6

or two log parsers with relatively high accuracy and efficiency in prior studies (i.e., Dai
et al. 2020; Zhu et al. 2019) from each category to conduct our evaluation study.

Heuristic-Based Log Parsers They mainly use the characteristics of log data and the condi-
tions defined by experts to partition log data. The classic heuristic-based log parsers Drain
(He et al. 2017) and IPLoM (Makanju et al. 2011) are selected in our study. IPLoM uses
the number of tokens in the content of log data as the first step partition condition and the
token position as the second step partition condition. It partitions log data by searching map
in the third step, then generates event templates. Drain uses a fixed-depth tree to represent
the hierarchical relationship between log data. Similar to IPLoM, firstly, the length of the
content and the beginning position token are used as the partition conditions of the first
and second layers of the fixed-depth tree, respectively. Secondly, it calculates the similarity
between the log data and the log event of each log group in the third layer. Thirdly, it gen-
erates event templates from each group. Heuristic-based parsers have the characteristics of
high efficiency (Zhu et al. 2019).

Frequency-Based Log Parsers They mainly construct frequent itemsets to group log data.
The classic frequency-based log parser LFA (Nagappan and Vouk 2010) and the latest
frequency-based log parser Logram (Dai et al. 2020) are selected in our study. Firstly, LFA
builds a frequency table with the number of times that a word occurs in a specific position
of the log data. Secondly, it uses the frequency of a word in a specific position of the log
data to generate the event templates. Logram leverages n-grams to parse log data. Firstly,
Logram builds n-gram dictionaries. Secondly, it parses log data by the n-gram dictionaries.
Frequency-based log parsers also have the characteristics of high efficiency (Dai et al. 2020;
Zhu et al. 2019).

Clustering-Based Log Parsers The efficiency of clustering-based log parsers is lower than
heuristic-based log parsers and frequency-based log parsers (Zhu et al. 2019). Most of them
cannot parse the datasets that we use in a reasonable time. So, we use the classic Lenma
(Shima 2016), which is more efficient than other clustering-based log parsers in our study.
Lenma creates a word length vector and a word vector of the new message for clustering.

Subsequence-Based Log Parsers In addition to the above three categories of log parsers,
we also use subsequence-based Spell (Du and Li 2018) in our study. The Spell uses the
longest common subsequence based algorithm to parse log data. It computes the longest
common subsequence of two log data to generate the event templates.

2.2 Feature Extraction

The purpose of feature extraction is to generate the numerical or sequence features of log
data from the parsed log data. The first step of feature extraction is to segment the parsed
log data into event subsequences by different segmentation methods (He et al. 2016b). The
segmentation methods include the session window segmentation method, fixed window
segmentation method, and sliding window segmentation method. According to the charac-
teristics of the dataset, we use the session window segmentation method and the sliding
window segmentation method.

Session Window It segments the log data by the special identifiers in them. The log data
that contain the same identifier is segmented into the same session window. For example,

Page 5 of 39 6Empir Software Eng (2023) 28:6

HDFS log data use block IDs to record the different operations of a block. The block IDs
are used to segment the log data into different session windows, a life cycle of a block.

SlidingWindow Unlike the session window segmentation method, the sliding window seg-
mentation method uses the window size and the step size to segment the log data into event
subsequences. The window size and the step size can be either a period of time or the num-
ber of log events. For example, 6 h window sliding every half hour or 20 log events window
sliding every 10 log events. Generally, the step size is smaller than the window size in the
sliding window segmentation method.

After segmentation, the log data need to be converted into an event count matrix as the
input of traditional machine-learning-based anomaly detection methods. In this process, we
count the occurrence times of different log events in the segmented event subsequences to
generate an event count matrix. For example, the event count vector [3, 0, 2] means that
event 1 occurs three times, event 2 occurs zero times, and event 3 occurs two times in
this segmented event subsequences. For deep-learning-based anomaly detection methods,
log event subsequences can be used directly as the model input. For example, the event
subsequence [E1, E5, E2] means that event 5 happens after event 1, and event 2 happens
after event 5.

2.3 Anomaly DetectionMethods

The current anomaly detection methods can be divided into machine-learning-based and
deep-learning-based methods. We study the impact of six state-of-the-art log parsers on the
effectiveness of machine-learning-based and deep-learning-based methods respectively for
the following reasons: 1) Due to the two kinds of methods use different feature processing
methods, they cannot be fairly compared in the effectiveness of anomaly detection; 2) Since
the two kinds of methods use different computing resources, they cannot be fairly compared
in efficiency.

1) Machine-learning-based Methods

Principal Component Analysis (PCA). PCA is a classic dimension reduction
method. It transforms the original high-dimension data into low-dimension data that
can preserve the major characteristics of the original data. Xu et al. (2009) pro-
posed to apply PCA for anomaly detection based on their four key insights. They
used PCA to capture dominant patterns in the event subsequences to construct a
low dimensional normal space. PCA-based anomaly detection, firstly, transforms
the segmented event subsequences into event count vectors as the input of PCA.
Secondly, PCA is applied to detect non-dominant patterns in the event subsequences
that are considered as anomaly event patterns. All parameters in PCA can be either
chosen automatically or tuned easily. The most important parameter is the threshold
of squared prediction error.
LogClustering. LogClustering is a clustering-based method provided by Lin et al.
(2016). Firstly, in the training phase, LogClustering converts each segmented event
subsequence into an event count vector and assigns a weight to each event in the
vector. Secondly, it clusters event subsequences by the agglomerative hierarchical
clustering method based on the calculated similarity between two event subse-
quences. It is worth mentioning that LogClustering only uses normal event count
vectors in the training phase. Thirdly, it selects an event subsequence with the minor
score with the centroid of a cluster to represent the cluster of event subsequences.

6 Page 6 of 39 Empir Software Eng (2023) 28:6

In the testing phase, LogClustering calculates the distance between the new event
subsequence and the representative event subsequence. If the minimum distance
between the new event subsequence and the representative event subsequences is
greater than the threshold, the new event subsequence is reported to be anormal.
Logistic Regression (LR). LR is a classic classification method. It predicts the prob-
ability that an event subsequence is anormal (Bodik et al. 2010). Both the event count
vectors and their labels are the input of the model training. After the training stage,
the model can predict the anomaly probability of a new event subsequence. In the
anomaly detection stage, a probability threshold is set to determine whether a new
event subsequence is anormal. We set the probability threshold to be 0.5, consistent
with the setting in the work of He et al. (2016a). When the anormal probability of
a new event subsequence predicted by the model is greater than 0.5, the new event
subsequence is reported to be anormal; otherwise, it is reported to be normal.
Decision Tree (DT). Chen et al. (2004) applied DT to failure diagnosis on the web
request log data. The event count vectors, which are converted from the event subse-
quences together with their labels, are used as the training data of the model. In the
training stage, a decision tree can be built. Each path of the decision tree represents
a type of event subsequence pattern. The leaf nodes of the decision tree represent the
status of a type of event subsequence pattern, i.e., normal or anormal. The decision
tree is traversed according to the new event subsequence in the anomaly detection
stage. The state of the new event subsequence is obtained from the leaf node of the
decision tree at the end of the traverse.

2) Deep-learning-based Methods

Deeplog. Since the log data are produced by log statements of the program that fol-
low a rigorous set of logic and control flows and are very much like natural language,
the log data can be viewed as elements of a sequence that follows specific patterns
and grammar rules. Du et al. (2017) proposed Deeplog to model the pattern of event
subsequences as a natural language sequence based on Long Short Term Memory
(LSTM) model. They defined the anomaly detection task as a multiple classification
problem. Firstly, Deeplog transforms the segmented event subsequences into event
index subsequences. Secondly, it uses a small fraction normal event subsequence
to train the LSTM model. Then the model can be used to recognize normal event
subsequences. If the new event subsequence is the same as the model predicts, it is
considered as normal; else anormal.
LogRobust. Since there are semantic characteristics in log data, some studies (i.e.,
Zhang et al. 2019; Meng et al. 2019) used the NLP technology for anomaly detec-
tion. Zhang et al. (2019) proposed LogRobust for anomaly detection, which uses
the semantic characteristic in log data. They defined the anomaly detection task as
a supervised binary classification problem. LogRobust firstly uses word vectors to
present the words in the log events. The word vectors are pre-trained on the Com-
mon Crawl Corpus dataset, and the dimension of word vectors is 300. Secondly, it
uses the TF-IDF weight to sum up all word vectors in a log event to generate the
log event vector. At the same time, the event subsequences, which are the output of
the previously mentioned log segmentation method, are converted into a semantic
vector list. The length of the semantic vector list is the window size used by seg-
mentation. Thirdly, LogRobust uses the attention-based Bi-LSTM neural network
model to classify the log subsequences. The attention layer is used to automatically

Page 7 of 39 6Empir Software Eng (2023) 28:6

Table 2 Summary of datasets

Dataset Category Data size Time span Original logs Anomalies Anomalies

(%)

HDFS Distributed system logs 1.47GB 38.7 h 11,175,629 16,838(blocks) 2.93

BGL Supercomputer logs 667.3MB 214.7 days 4,747,693 348,460 7.33

ThunderBird Supercomputer logs 708.76MB 244 days 3,992,351 162,953 4.08

learn the weight of the log events by LogRobust because log events have different
contributions to the status of event subsequence. LogRobust can reduce the impact
of noisy log events because noisy events tend to have a small weight.

3 Experimental Setup

This section presents our research questions, selected datasets, evaluation setting, and
evaluation metrics.

3.1 Research Questions

We plan to investigate the following three Research Questions (RQ):

• RQ1: What is the impact of log parsers on the effectiveness of anomaly detection
methods?

• RQ2:What is the impact of log parsing errors and the number of parsing event templates
on anomaly detection?

• RQ3: How do log parsers impact the efficiency of anomaly detection methods?

3.2 Datasets

We employ three open-source datasets to evaluate the impact of log parsers on anomaly
detection methods. The basic information of the datasets is provided in Table 2.

HDFS data2 are distributed system logs that were collected from more than 200
Amazon’s EC2 nodes and labeled by Hadoop domain experts (Xu et al. 2009). Among
11,197,945 log messages, 16,383 log messages are labeled as anomalies, and anormal log
messages account for 2.93%.

BGL data3 are supercomputer logs that were collected from the BlueGene/L supercom-
puter system at Lawrence Livermore National Labs (Oliner and Stearley 2007). Among
4,747,693 log messages, 348,460 are identified as failures, accounting for 7.33%.

ThunderBird data4 are supercomputer logs that were collected from the ThunderBird
supercomputer system at Sandia National Labs (Oliner and Stearley 2007). There are more
than two hundred million log messages in the original dataset. Since two hundred million log

2https://zenodo.org/record/3227177/files/HDFS 2.tar.gz?download=1
3https://zenodo.org/record/3227177/files/BGL.tar.gz?download=1
4https://zenodo.org/record/3227177/files/Thunderbird.tar.gz?download=1

6 Page 8 of 39 Empir Software Eng (2023) 28:6

https://zenodo.org/record/3227177/files/HDFS_2.tar.gz?download=1
https://zenodo.org/record/3227177/files/BGL.tar.gz?download=1
https://zenodo.org/record/3227177/files/Thunderbird.tar.gz?download=1

messages are highly time-consuming for the clustering-based approach, we choose the top
four million log messages that we can handle in a reasonable time, as Yin et al. (2020). The
ThunderBird data are identified as alert and non-alert log messages by the tags contained
in the logs. There are 162,953 log messages identified as alert log messages, accounting for
4.08%.

3.3 Evaluation Setting

We run all our experiments on a Linux server with Intel Xeon E5-2650 v4 CPU and 256GB
DDR3, on which 64-bit Debian GNU/Linux 9.13 with Linux kernel 4.9.0 is running. Each
anomaly detection method is run five times, and the average result is reported.

In the feature extraction stage, the anomaly detection methods use different segment
methods on different datasets. For the machine-learning-based methods on HDFS data, the
logs are segmented by the session window. The data of the same block ID is segmented
into the same window, consistent with the setting in the work of He et al. (2016a). For BGL
data, the sliding window segment method is adopted with window size = 6 h and step size
= 1h, consistent with the setting in the work of He et al. (2016a). For ThunderBird data,
we also use the sliding window segment method to segment the logs. We experiment with
the segment settings, a comprehensive better segment setting (window size = 0.1 h and step
size = 0.03 h) is selected. For deep-learning-based methods on HDFS data, we also use
the session window segment method, consistent with the setting in the work of Zhang et al.
(2019). At the same time, the number of events is used as the window size and step size
of the sliding segment method on BGL data and ThunderBird data. Similar to the existing
work of Yin et al. (2020), we set window size = 18 and step size = 10 on both BGL and
ThunderBird data.

Different anomaly detection methods use different ways to split data for training and test
in the model training. Similar to the existing work (He et al. 2016a), 80% of event subse-
quences are used as the training data for all supervised machine-learning-based methods,
and the remaining 20% of event subsequences are used as the testing data. Since there is
no training stage in unsupervised machine-learning-based methods, 20% of event subse-
quences are used for testing directly. For deep-learning-based methods, since Deeplog and
LogRobust defined the anomaly detection task as a different problem, the number of event
subsequences used for model training is different. Deeplog only uses 1% of normal event
subsequences for the model training on HDFS, and the remaining event subsequences are
used for the model testing (Du et al. 2017). On BGL and ThunderBird data, Deeplog uses
80% of normal event subsequences for the model training, and the remaining event sub-
sequences are used for the model testing, consistent with the setting in the work of Yin
et al. (2020). Since LogRobust uses balanced data for model training, we use 6000 nor-
mal event subsequences and 6000 anormal event subsequences for model training on HDFS
data. The remaining event subsequences are used for model testing as Zhang et al. (2019).
Similar to the split setting of HDFS, for LogRobust on ThunderBird, we use 20,000 nor-
mal event subsequences and 20,000 anormal event subsequences for model training, and the
remaining event subsequences are used for testing. For LogRobust on BGL, we use 28,000
normal event subsequences (about seven times the number of anormal event sequences used
for training) and 3,995 anormal event subsequences (80% anormal event subsequences)
for model training, and the remaining event subsequences are used for model testing. We
use unbalanced data for LogRobust training on BGL data because the anormal logs are
concentrated. We experiment with the split settings; a better split setting is selected.

Page 9 of 39 6Empir Software Eng (2023) 28:6

3.4 EvaluationMetrics

We use parsing accuracy (PA), which is defined by Zhu et al. (2019), to evaluate the accu-
racy of log parsers. As shown below, the logs are considered to be parsed correctly if the
logs that are grouped together indeed belong to the same event template, and all the logs
that indeed belong to this event template are in this group.

PA = Correctly parsed log messages

T he total number of log messages
(1)

We use precision (P), recall (R), and F-measure (F1) which are widely used metrics as
the evaluation metrics of anomaly detection methods. As shown below, TP is the number of
anormal logs that are detected as anormal logs by model. FP is the number of normal logs
that are detected as anormal logs by the model. FN is the number of anormal logs that are
detected as normal logs by the model.

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

F -measure = 2 ∗ Precision ∗ Recall

P recision + Recall
(4)

4 Evaluation Results

4.1 RQ1: What is the Impact of Log Parsers on the Effectiveness of Anomaly
DetectionMethods?

Motivation Current log parsers use parsing accuracy as the key performance metric. Pars-
ing accuracy is also an important indicator for researchers and industrial practitioners to
choose which log parser to preprocess data in anomaly detection methods. However, dif-
ferent anomaly detection methods have different working principles and feature processing
methods. Does higher parsing accuracy imply higher anomaly detection performance? In
this question, we investigate the impact of log parsing accuracy on four machine-learning-
based (including two unsupervised and two supervised) and two deep-learning-based
anomaly detection methods, respectively. And we verify the correlation between the pars-
ing accuracy and the effectiveness of anomaly detection methods to evaluate whether higher
parsing accuracy implies higher anomaly detection performance.

Methods First, we implement the six selected log parsers, namely Drain, IPLoM, Logram,
LFA, Lenma, and Spell, following their description in the prior studies (He et al. 2017;
Makanju et al. 2011; Dai et al. 2020; Nagappan and Vouk 2010; Shima 2016; Du and Li
2018), and evaluate their parsing accuracy on three public log parsing datasets (Zhu et al.
2019). We follow the evaluation method of Zhu et al. (2019). Each of the three public log
parsing datasets contains 2,000 manually labeled logs as the ground truth. Second, we use
the six log parsers to parse the described datasets in Section 3. Third, we implement the
selected machine-learning-based (ML-based) anomaly detection methods, namely DT, LR,
LogClustering, and PCA, and deep-learning-based (DL-based) anomaly detection methods,
namely LogRobust and Deeplog, following their description from the prior studies (Chen
et al. 2004; Bodik et al. 2010; Lin et al. 2016; Xu et al. 2009; Zhang et al. 2019; Du et al.

6 Page 10 of 39 Empir Software Eng (2023) 28:6

2017). Fourth, we run the two kinds of anomaly detection methods on three datasets parsed
by the six selected log parsers. We also run the two kinds of anomaly detection methods
on the Ground Truth of HDFS and BGL which are the exactly correct parsed results. The
Ground Truth of HDFS and BGL is provided by prior studies (He et al. 2016b). To fairly
compare the impact of different types of log parsers on the anomaly detection methods, all
their parameters remain the same on the same dataset which is parsed by six log parsers.
Fifth, to evaluate whether higher parsing accuracy implies higher anomaly detection per-
formance, we verify the correlation between the parsing accuracy and the effectiveness of
anomaly detection methods with the Spearman rank correlation test (Zar 2005). The Spear-
man rank correlation test was used to verify whether there is a close correlation between the
parsing accuracy and the effectiveness of anomaly detection methods at the 95% confidence
level if the p-value < 0.05. Sixth, we use the Wilcoxon rank-sum test (Wilcoxon 1992) with
a Bonferroni correction (Abdi and et al 2007) at the 95% confidence level (p-value < 0.05)
to analyze the statistically significant difference in the effectiveness of anomaly detection
methods on different log parsers parsed data.

Results Table 3 shows the parsing accuracy of six log parsers on three datasets. Table 4
shows the effectiveness of ML-based anomaly detection methods on six log parser parsed
data, and Table 6 shows the effectiveness of two DL-based anomaly detection methods
on six log parser parsed data. Table 5 shows the Spearman correlation between PA and
the effectiveness of ML-based methods. Table 7 shows the Spearman correlation between
parsing accuracy and the effectiveness of DL-based methods. Tables 8 and 11 show the
average effectiveness of ML-based methods and DL-based, respectively. Tables 9 and 10
show the statistical significance of the difference between the effectiveness of unsuper-
vised ML-based methods and supervised ML-based methods on IPLoM parsed data and
other parsers parsed data, respectively. Table 12 shows the statistical significance of the
difference between the effectiveness of Deeplog on IPLoM parsed data and other parsers
parsed data, and the statistical significance of the difference between the effectiveness of
LogRobust on Drain parsed data and other parsers parsed data. Figure 2 shows the effective-
ness distribution of two unsupervised ML-based methods. Figure 3 shows the effectiveness
distribution of two supervised ML-based methods, and Fig. 4 shows the effectiveness distri-
bution of two DL-based methods across different log parsers parsed data. From the results
shown in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12, Figs. 2, 3, and 4, we make the following
observations:

(1) As shown in Table 3, the average parsing accuracy of the heuristic-based Drain
(97.17%) is the best, followed by the clustering-based Lenma (87.67%) and the
subsequence-based Spell (87.67%). The average parsing accuracy of frequency-based
Logram and LFA is lower than that of the other three types of log parsers. Specifically,

Table 3 Parsing accuracy (%) of the log parsers on three datasets

Datasets Drain IPLoM LFA Logram Lenma Spell

HDFS 99.75 100.00 88.50 99.75 99.75 100.00

BGL 96.25 93.90 85.40 63.95 68.95 78.65

ThunderBird 95.50 66.30 64.85 65.40 94.30 84.35

Average 97.17 86.73 79.58 76.37 87.67 87.67

The parsing accuracy highlighted in bold font is the best among the six log parsers and highlighted in
underline is the worst among the six log parsers

Page 11 of 39 6Empir Software Eng (2023) 28:6

Ta
bl
e
4

T
he

ef
fe
ct
iv
en
es
s
of

M
L
-b
as
ed

an
om

al
y
de
te
ct
io
n
m
et
ho
ds

on
si
x
lo
g
pa
rs
er
s
pa
rs
ed

lo
gs

D
at
as
et

L
og

pa
rs
er

U
ns
up
er
vi
se
d
m
ac
hi
ne

le
ar
ni
ng
-b
as
ed

m
et
ho
ds

T
D

R
L

gniretsul
Cgo

L
A

CP P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

P(
%
)

R
(%

)
F1

(%
)

H
D
FS

G
ro
un
d
T
ru
th

99
.8
0

72
.6
2

84
.0
7

10
0.
00

76
.8
0

86
.8
8

10
0.
00

99
.4
1

99
.7
0

10
0.
00

99
.8
1

99
.9
0

D
ra
in

99
.7
8

67
.3
4

80
.4
1

10
0.
00

76
.8
0

86
.8
8

10
0.
00

99
.4
1

99
.7
0

10
0.
00

99
.8
1

99
.9
0

IP
L
oM

99
.8
0

72
.6
2

84
.0
7

10
0.
00

77
.0
5

87
.0
4

10
0.
00

99
.4
1

99
.7
0

10
0.
00

99
.8
1

99
.9
0

L
FA

99
.7
9

70
.8
6

82
.8
5

92
.7
2

76
.5
7

83
.8
7

89
.2
1

99
.1
8

93
.9
3

88
.9
9

99
.5
1

93
.9
6

L
og
ra
m

83
.6
9

12
.6
5

21
.9
8

6.
75

76
.3
8

12
.4
1

99
.9
4

99
.6
7

99
.8
1

10
0.
00

99
.8
1

99
.9
0

L
en
m
a

99
.7
8

67
.3
4

80
.4
1

10
0.
00

76
.8
0

86
.8
8

10
0.
00

99
.4
1

99
.7
0

10
0.
00

99
.8
1

99
.9
0

Sp
el
l

99
.7
8

67
.3
4

80
.4
1

10
0.
00

77
.0
5

87
.0
4

10
0.
00

99
.4
1

99
.7
0

10
0.
00

99
.8
1

99
.9
0

B
G
L

G
ro
un
d
T
ru
th

98
.5
0

44
.5
6

61
.3
6

37
.7
5

94
.9
2

54
.0
1

81
.5
0

63
.1
3

71
.1
4

75
.2
8

62
.9
3

68
.5
3

D
ra
in

65
.8
5

45
.9
2

54
.1
1

37
.0
2

91
.9
9

52
.8
0

87
.1
6

61
.7
0

72
.2
0

73
.4
5

64
.4
2

68
.6
3

IP
L
oM

95
.6
2

44
.5
6

60
.7
9

37
.4
3

93
.4
1

53
.4
5

86
.2
6

61
.0
2

71
.4
5

74
.4
7

63
.2
7

68
.4
1

L
FA

43
.2
2

46
.6
0

44
.8
4

37
.3
1

88
.2
3

52
.4
4

70
.1
1

59
.0
5

64
.0
8

67
.3
8

58
.5
7

62
.6
6

L
og
ra
m

28
.4
4

98
.3
0

44
.1
2

36
.1
8

83
.6
2

50
.5
1

87
.2
2

26
.6
0

40
.7
5

43
.3
0

50
.4
8

46
.5
9

L
en
m
a

28
.5
2

10
0.
00

44
.3
8

36
.8
2

87
.6
7

51
.8
6

54
.8
1

17
.7
6

26
.8
2

51
.1
2

51
.0
9

51
.1
0

Sp
el
l

27
.5
6

94
.2
2

42
.6
5

36
.8
8

89
.8
5

52
.3
0

92
.5
3

42
.8
6

58
.5
7

72
.8
7

57
.2
8

64
.1
3

T
hu
nd
er
B
ir
d

D
ra
in

95
.3
8

64
.7
1

77
.1
1

62
.0
0

96
.5
9

75
.5
2

97
.0
9

95
.5
6

96
.3
2

95
.5
4

96
.9
2

96
.2
3

IP
L
oM

95
.5
2

66
.8
9

78
.6
8

61
.4
6

96
.6
5

75
.1
4

97
.8
4

96
.4
5

97
.1
5

96
.6
0

96
.6
2

96
.6
1

L
FA

95
.7
5

36
.9
2

53
.2
9

60
.6
4

96
.7
7

74
.5
6

98
.2
0

96
.8
1

97
.5
0

96
.2
7

96
.0
5

96
.1
6

L
og
ra
m

96
.3
9

25
.4
7

40
.3
0

60
.8
9

97
.1
2

74
.8
5

97
.4
7

93
.4
3

95
.4
1

96
.7
5

91
.7
7

94
.1
9

L
en
m
a

97
.3
3

49
.7
2

65
.8
2

61
.7
5

96
.2
4

75
.2
3

97
.0
8

96
.0
8

96
.5
8

96
.9
5

95
.0
7

96
.0
0

Sp
el
l

77
.9
7

53
.5
4

63
.4
9

60
.1
6

96
.7
7

74
.1
9

98
.7
0

96
.8
9

97
.8
6

94
.0
2

98
.0
7

96
.0
0

T
he

ef
fe
ct
iv
en
es
s
on

th
e
G
ro
un
d
T
ru
th

is
hi
gh
lig

ht
ed

in
gr
ey

co
lo
r.
T
he

ef
fe
ct
iv
en
es
s
hi
gh
lig

ht
ed

in
bo
ld

fo
nt

is
th
e
be
st
am

on
g
th
e
si
x
lo
g
pa
rs
er
s
an
d
hi
gh
lig

ht
ed

in
un
de
rl
in
e

is
th
e
w
or
st
am

on
g
th
e
si
x
lo
g
pa
rs
er
s

6 Page 12 of 39 Empir Software Eng (2023) 28:6

Fig. 2 Precision (P) distribution, Recall (R) distribution, and F-measure (F1) distribution of unsupervised
ML-based methods across different log parsers

all log parsers present high parsing accuracy on HDFS data (88.5% at least). Drain
presents the highest parsing accuracy on both BGL and ThunderBird data (96.25%
and 95.50%, respectively).

Fig. 3 Precision (P) distribution, Recall (R) distribution, and F-measure (F1) distribution of supervised ML-
based methods across different log parsers

Page 13 of 39 6Empir Software Eng (2023) 28:6

Fig. 4 Precision (P) distribution, Recall (R) distribution, and F-measure (F1) distribution of DL-based
method across different log parsers

(2) Table 4 shows the effectiveness of ML-based methods. We can observe that ML-based
anomaly detection methods do not always perform the best on the data parsed by the
parser with the highest parsing accuracy. For example, although Drain presented the
highest parsing accuracy on both BGL and ThunderBird data (96.25% and 95.50%,

Table 5 Spearman correlation coefficient (Spearman |ρ|) between parsing accuracy (PA) and the effective-
ness of ML-based anomaly detection methods

The effectiveness of PA of HDFS PA of BGL PA of ThunderBird

ML-based methods Spearman p-value Spearman p-value Spearman p-value

Precision of PCA 0.131 0.05 0.771 0.05 0.257 0.05

Precision of LogClustering 0.584 0.05 0.486 0.05 0.657 0.05

Precision of LR 0.730 0.05 0.086 0.05 0.771 0.05

Precision of DT 0.707 0.05 0.886 0.05 0.143 0.05

Recall of PCA 0.131 0.05 0.886 0.05 0.543 0.05

Recall of LogClustering 0.826 0.05 0.886 0.05 0.754 0.05

Recall of LR 0.365 0.05 0.943 0.05 0.200 0.05

Recall of DT 0.707 0.05 1.000 0.05 0.429 0.05

F-measure of PCA 0.131 0.05 0.771 0.05 0.600 0.05

F-measure of LogClustering 0.826 0.05 0.943 0.05 0.657 0.05

F-measure of LR 0.365 0.05 0.943 0.05 0.200 0.05

F-measure of DT 0.707 0.05 0.943 0.05 0.174 0.05

The p-value<0.05 indicates that the PA is close correlated with the effectiveness of anomaly detection. The
p-value is highlighted in grey color and p-value<0.05 is highlighted in bold font

6 Page 14 of 39 Empir Software Eng (2023) 28:6

Table 6 The effectiveness of DL-based anomaly detection methods on six log parsers parsed logs

tsuboRgoLgolpeeDresrapgoLtesataD

P(%) R(%) F1(%) P(%) R(%) F1(%)

HDFS Ground truth 95.94 95.60 95.77 98.92 99.83 99.37

Drain 95.98 94.11 95.04 96.92 99.83 98.35

IPLoM 95.81 93.68 94.73 97.11 99.47 98.28

LFA 96.48 91.22 93.78 96.67 99.92 98.27

Logram 94.36 99.27 96.75 94.87 99.81 97.27

Lenma 95.93 94.10 95.01 95.93 99.98 97.91

Spell 95.71 93.11 94.39 93.93 97.35 95.61

BGL Ground truth 87.74 91.78 89.72 76.39 96.36 85.22

Drain 85.88 78.01 81.76 76.36 96.63 85.31

IPLoM 88.90 95.25 91.96 71.94 97.44 82.77

LFA 76.79 73.02 74.86 52.39 82.62 64.12

Logram 19.31 61.71 29.42 61.49 94.68 74.62

Lenma 21.13 83.78 33.75 69.47 95.69 80.50

Spell 44.70 82.42 57.96 68.19 96.77 80.00

ThunderBird Drain 94.27 90.23 92.21 96.67 99.97 98.30

IPLoM 96.30 90.50 93.30 96.60 99.96 98.25

LFA 96.70 90.60 92.12 96.27 99.88 98.04

Logram 80.68 95.36 87.42 96.67 99.97 98.30

Lenma 93.50 90.90 92.20 99.96 96.66 98.29

Spell 96.82 69.97 81.23 96.53 99.97 98.22

The effectiveness on the Ground Truth is highlighted in grey color. The effectiveness highlighted in bold font
is the best among the six log parsers and highlighted in underline is the worst among the six log parsers

Table 7 Spearman correlation coefficient (Spearman |ρ|) between parsing accuracy (PA) and the effective-
ness of DL-based anomaly detection methods

The effectiveness of PA of HDFS PA of BGL PA of ThunderBird

DL-based methods Spearman p-value Spearman p-value Spearman p-value

Precision of Deeplog 0.617 0.05 0.943 0.05 0.143 0.05

Precision of LogRobust 0.062 0.05 0.600 0.05 0.609 0.05

Recall of Deeplog 0.000 0.05 0.314 0.05 0.429 0.05

Recall of LogRobust 0.802 0.05 0.429 0.05 0.152 0.05

F-measure of Deeplog 0.000 0.05 0.943 0.05 0.314 0.05

F-measure of LogRobust 0.157 0.05 0.600 0.05 0.493 0.05

The p-value<0.05 indicates that the PA is close correlated with the effectiveness of anomaly detection. The
p-value is highlighted in grey color and p-value<0.05 is highlighted in bold font

Page 15 of 39 6Empir Software Eng (2023) 28:6

Table 8 The average effectiveness of ML-based methods on three datasets parsed by different parsers

Parser PCA LogClustering LR DT

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Drain 84.94 59.32 70.54 66.34 88.46 71.73 94.75 85.56 89.41 89.66 87.05 88.25

IPLoM 96.98 61.36 74.51 66.30 89.04 71.88 94.70 85.63 89.43 90.36 86.57 88.31

LFA 79.59 51.46 60.33 63.56 87.19 70.29 85.84 85.01 85.17 84.21 84.71 84.26

Logram 69.51 45.47 35.47 34.61 85.71 45.92 94.88 73.23 78.66 80.02 80.69 80.23

Lenma 75.21 72.35 63.54 66.19 86.90 71.32 83.96 71.08 74.37 82.69 81.99 82.33

Spell 68.44 71.70 62.18 65.68 87.89 71.19 97.08 79.72 85.38 88.96 85.05 86.68

The average effectiveness highlighted in bold font is the best among the six log parsers and highlighted in
underline is the worst among the six log parsers

respectively), the precision and F-measure of PCA on BGL are best on IPLoM parsed
data (95.62% and 60.79%). The F-measure of LR on ThunderBird is best on Spell
parsed data (97.86%). Table 5 shows the Spearman correlation between parsing accu-
racy (PA) and the effectiveness of ML-based methods. On HDFS data, only the recall
and F-measure of LogClustering are correlated with PA at the 95% confidence level (p-
value<0.05). This indicates that the recall and F-measure of LogClustering are closely
correlated with PA, and the Spearman correlation coefficient is 0.826. The effective-
ness of other ML-based methods is not closely correlated with PA on HDFS data,
and the Spearman correlation coefficients range from 0.131 to 0.730. On BGL data,
the recall and F-measure of all ML-based methods are closely correlated with PA at
the 95% confidence level (p-value<0.05), except the F-measure of PCA, with Spear-
man correlation coefficients ranging from 0.886 to 1. The precision of all ML-based
methods, except DT, are not closely correlated with PA, with Spearman correlation
coefficients ranging from 0.086 to 0.771. On ThunderBird data, the effectiveness of all
ML-based methods is not closely correlated with PA, with Spearman correlation coef-
ficients ranging from 0.143 to 0.771. As we know that the events recorded by BGL
data are more complex and diverse than those recorded by HFDS data. This indicates

Table 9 The statistical significance of the difference between the effectiveness of unsupervised ML-based
methods on data parsed by IPLoM vs. by other parsers

Log parser PCA LogClustering

p-value on P p-value on R p-value on F1 p-value on P p-value on R p-value on F1

IPLoM vs Drain <0.05 <0.05 <0.05 >0.05 <0.05 > 0.05

IPLoM vs LFA <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Logram <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Lenma <0.05 >0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Spell <0.05 >0.05 <0.05 <0.05 <0.05 <0.05

The p-value > 0.05 is highlighted in underline. The p-value < 0.05 indicates that the effectiveness of the
detection method on the IPLoM parsed data significantly better than other parsers. The p-value > 0.05
indicates that the effectiveness of the detection method on the IPLoM parsed data does not significantly better
than other parsers

6 Page 16 of 39 Empir Software Eng (2023) 28:6

Table 10 The statistical significance of the difference between the effectiveness of supervised ML-based
methods on data parsed by IPLoM vs. by other parsers

Log parser LR DT

p-value on P p-value on R p-value on F1 p-value on P p-value on R p-value on F1

IPLoM vs Drain >0.05 >0.05 > 0.05 <0.05 >0.05 >0.05

IPLoM vs LFA <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Logram <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Lenma <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

IPLoM vs Spell >0.05 <0.05 <0.05 <0.05 >0.05 <0.05

The p-value > 0.05 is highlighted in underline. The p-value < 0.05 indicates that the effectiveness of the
detection method on the IPLoM parsed data significantly better than other parsers. The p-value > 0.05
indicates that the effectiveness of the detection method on the IPLoM parsed data does not significantly better
than other parsers

Table 11 The average effectiveness of DL-based methods on three datasets parsed by different parsers

Parser Deeplog LogRobust

P(%) R(%) F1(%) P(%) R(%) F1(%)

Drain 92.04 87.45 89.67 89.98 98.81 93.98
IPLoM 93.67 93.14 93.33 88.55 98.96 93.10

LFA 89.99 84.95 87.41 81.78 94.14 86.81

Logram 64.78 85.45 71.20 84.34 98.15 90.06

Lenma 70.19 89.59 73.65 88.45 97.44 92.23

Spell 79.08 81.83 77.86 86.22 98.03 91.28

The average effectiveness highlighted in bold font is the best among the six log parsers and highlighted in
underline is the worst among the six log parsers

Table 12 The statistical significance of the difference between the effectiveness of Deeplog on data parsed
by IPLoM vs. by other parsers, and the statistical significance of the difference between the effectiveness of
LogRobust on data parsed by Drain vs. by other parsers

Log parser Deeplog Log parser LogRobust

p-value p-value p-value p-value p-value p-value

on P on R on F1 on P on R on F1

IPLoM vs Drain <0.05 <0.05 <0.05 Drain vs IPLoM <0.05 >0.05 <0.05

IPLoM vs LFA >0.05 <0.05 <0.05 Drain vs LFA <0.05 <0.05 <0.05

IPLoM vs Logram <0.05 <0.05 <0.05 Drain vs Logram <0.05 <0.05 <0.05

IPLoM vs Lenma <0.05 > 0.05 <0.05 Drain vs Lenma <0.05 <0.05 <0.05

IPLoM vs Spell <0.05 <0.05 <0.05 Drain vs Spell <0.05 <0.05 <0.05

The p-value > 0.05 is highlighted in underline. For Deeplog, the p-value < 0.05 indicates that the effective-
ness of detection methods on the IPLoM parsed data significantly better than other parsers. The p-value >

0.05 indicates that the effectiveness of the detection method on the IPLoM parsed data does not significantly
better than other parsers. For LogRobust, the p-value < 0.05 indicates that the effectiveness of the detection
method on the Drain parsed data significantly better than other parsers. The p-value larger than 0.05 indicate
the effectiveness of the detection method on the Drain parsed data does not significantly better than other
parsers

Page 17 of 39 6Empir Software Eng (2023) 28:6

that the PA correlated closely with the effectiveness of ML-based methods on complex
data (BGL) than it does on simple data (HDFS). In general, although the effectiveness
of the ML-based methods is correlated with PA, almost all of them are not linear cor-
relation. This indicates that high parsing accuracy does not definitely lead to the high
effectiveness of ML-based anomaly detection methods.

(3) Table 6 shows the effectiveness of DL-based methods. We can observe that the preci-
sion, recall, and F-measure of Deeplog on BGL data are best on the IPLoM parsed data
(88.90%, 95.25%, and 91.96%, respectively). The recall and F-measure of Deeplog
on HDFS data are best on Logram parsed data (99.27% and 96.75%, respectively).
However, Drain presents better parsing accuracy on BGL data than IPLoM and the
same parsing accuracy as Logram on HDFS data. Table 7 shows the Spearman cor-
relation between parsing accuracy (PA) and the effectiveness of DL-based methods.
On HDFS and ThunderBird data, the effectiveness of all DL-based methods is not
closely correlated with PA, with Spearman correlation coefficients ranging from 0.000
to 0.802. On BGL data, the precision and F-measure of Deeplog are closely corre-
lated with PA at the 95% confidence level (p-value<0.05), with Spearman correlation
coefficients ranging from 0.750 to 0.893. The precision, recall, and F-measure of
LogRobust are not closely correlated with PA, with Spearman correlation coefficients
ranging from 0.429 to 0.600. These results indicate that PA has a closer correlation
with Deeplog than LogRobust on BGL. That’s probably because that LogRobust can
handle the unstable log events caused by parsing errors. In general, the effectiveness of
the DL-based methods is not linearly correlated with PA. This indicates that high pars-
ing accuracy does not definitely lead to the high effectiveness of DL-based anomaly
detection methods.

(4) Table 8 shows the average effectiveness of ML-based methods. Table 9 shows the
results of the Wilcoxon rank-sum test with a Bonferroni correction on unsupervised
ML-based methods. We verify whether IPLoM is significantly better than other log
parsers for unsupervised ML-based methods by the Wilcoxon rank-sum test with a
Bonferroni correction. Tables 8 and 9 show that the average precision and F-measure
of PCA on IPLoM parsed data (96.98% and 74.51%, respectively) are significantly
better than other log parsers at the 95% confidence level (p-value < 0.05). The average
recall and F-measure of LogClustering on IPLoM parsed data (89.04% and 71.88%,
respectively) are significantly better than other log parsers at the 95% confidence level
(p-value < 0.05), except Drain. It is worth noting that the average effectiveness of
LogClustering on IPLoM parsed data is not significantly better than Drain. In general,
IPLoM is better than other log parsers for PCA based on the average effectiveness
of PCA. Both Drain and IPLoM are better than other log parsers for LogClustering
based on the average effectiveness of LogClustering. Figure 2 shows the effectiveness
distribution of unsupervisedML-based methods. We can observe that the precision and
F-measure of unsupervised ML-based methods are the most robust on the heuristic-
based IPLoM and Drain parsed data. The recall of unsupervised ML-based methods is
the most robust on the subsequence-based Spell parsed data. Considering the average
effectiveness and robustness of effectiveness, IPLoM is more suitable for PCA, and
both IPLoM and Drain are more suitable for LogClustering.

(5) Table 10 shows the results of the Wilcoxon rank-sum test with a Bonferroni cor-
rection on supervised ML-based methods. We verify whether IPLoM is significantly
better than other parsers for supervised ML-based methods by the Wilcoxon rank-

6 Page 18 of 39 Empir Software Eng (2023) 28:6

sum test with a Bonferroni correction. Tables 8 and 10 show the average recall and
F-measure of LR on IPLoM parsed data (85.63% and 89.43%, respectively) are sig-
nificantly better than other log parsers at 95% confidence level (p-value < 0.05),
except Drain. The average precision and F-measure of DT on IPLoM parsed data
(90.36% and 88.31%, respectively) are significantly better than other log parsers at
the 95% confidence level (p-value < 0.05), except Drain. The average effectiveness
of LR and DT on IPLoM parsed data is not significantly better than Drain. This
indicates that both Drain and IPLoM are better than other log parsers for supervised
ML-based methods according to the average effectiveness of supervised ML-based
methods. Figure 3 shows the effectiveness distribution of supervised ML-based meth-
ods. We can observe that the precision, recall, and F-measure of supervised ML-based
methods are the most robust on the heuristic-based IPLoM and Drain parsed data,
and that is the least robust on the clustering-based Lenma parsed data, followed by
the frequency-based Logram. Considering the average effectiveness and robustness
of effectiveness, both IPLoM and Drain are more suitable for supervised ML-based
methods.

(6) Table 12 shows the results of the Wilcoxon rank-sum test with a Bonferroni cor-
rection on DL-based methods. We verify whether IPLoM is significantly better than
other parsers for Deeplog and Drain is significantly better than other parsers for
LogRobust by the Wilcoxon rank-sum test with a Bonferroni correction. Tables 11
and 12 show the average precision, recall, and F-measure of Deeplog on IPLoM
parsed data (93.67%, 93.14%, and 93.33%, respectively) are significantly better than
other parsers at the 95% confidence level (p-value < 0.05). The average precision
and F-measure of LogRobust on Drain parsed data (89.98% and 93.98%, respec-
tively) are significantly better than other parsers at the 95% confidence level (p-value
< 0.05). This indicates that IPLoM is better than other log parsers for Deeplog,
and Drain is better than other log parsers for LogRobust according to the aver-
age effectiveness of DL-based methods. As shown in Fig. 4, we can observe that
the precision of DL-based methods is the most robust on the heuristic-based Drain
parsed data, followed by IPLoM. That is the least robust on the frequency-based
Logram parsed data, followed by the clustering-based Lenma. The recall of DL-
based methods is the most robust on the heuristic-based IPLoM parsed data, followed
by clustering-based Lenma. The robustness of the F-measure of DL-based meth-
ods on Drain and IPLoM parsed data are comparable. For the average effectiveness
and robustness, IPLoM is more suitable for Deeplog, and Drain is more suitable for
LogRobust.

Finding 1: High parsing accuracy does not imply high anomaly detection
effectiveness. Heuristic-based log parsers are more suitable for anomaly
detection than other types of log parsers. In detail, IPLoM is more suitable
for PCA. Both IPLoM and Drain are suitable for LogClustering and
supervised ML-based methods (LR and DT). For the DL-based method,
IPLoM is more suitable for Deeplog, while Drain is more suitable for
LogRobust.

Page 19 of 39 6Empir Software Eng (2023) 28:6

4.2 RQ2: What is the Impact of Log Parsing Errors and the Number of Parsing Event
Templates on Anomaly Detection?

Motivation As shown in Section 4.1, we observe that high parsing accuracy does not imply
high anomaly detection effectiveness. At the same time, we also found that some log parsers
have the same parsing incorrect event, but they parse the same event into different num-
bers of event templates. For example, Drain parses the E1 of BGL to 686 event templates,
while LFA parses it to 416 event templates; IPLoM parses the E164 of BGL to 337 event
templates, while Spell parses it to 381 event templates. Therefore, we explore the impact of
parsing errors and the number of parsing event templates on the effectiveness of anomaly
detection methods. Do parsing errors definitely have a negative impact on the effectiveness
of anomaly detection methods? We explore the impact caused by parsing errors.

Methods To explore the impact of parsing errors on the effectiveness of anomaly detection
methods, we analyze the detection results of all detection methods on the six log parsers
parsed HDFS and BGL data. We treat the detection results on Ground Truth of HDFS and
BGL data as the baseline. In the case that the dataset and the detection method are consis-
tent, it can be considered that the inconsistency between the detection results of the detection
method on the parser parsed data and the detection results on the Ground Truth is caused by
parsing errors. Therefore, the impact can be defined as the ratio of the number of inconsis-
tent detection results caused by parsing errors to the number of event subsequences in test
data. The more inconsistent the detection results, the greater the impact of parsing errors. To
explore the impact caused by parsing errors, we deeply analyze the inconsistency between
the detection results of the detection method on the parser parsed data and the detection
results on the Ground Truth. If an event subsequence contains parsing errors, while the event
subsequence is detected correctly, it can be considered that the positive impact is caused by
parsing errors. Therefore, the positive impact can be defined as the ratio of the number of
correct detection results caused by parsing errors to the number of inconsistent detection
results caused by parsing errors. If an event subsequence contains parsing errors and the
event subsequence is detected incorrectly, it can be considered that the negative impact is
caused by parsing errors. Therefore, the negative impact can be defined as the ratio of the
number of incorrect detection results caused by parsing errors to the number of inconsistent
detection results caused by parsing errors.

To explore the number of parsing event templates on the effectiveness of anomaly detec-
tion methods, we run four ML-based methods and two DL-based methods on the processed
HDFS and BGL data. Firstly, we find the log events that is parsed to the most event tem-
plates by the six log parsers in the Ground Truth of HDFS and BGL. Secondly, we merged
the event templates belonging to the same event into two event templates without improv-
ing the parsing accuracy according to the definition of parsing accuracy, called processed
parsed data. Thirdly, we run four ML-based methods and two DL-based methods on the
processed HDFS and BGL data. At last, we conduct the Wilcoxon rank-sum test at the 95%
confidence level (p-value < 0.05) to analyze the statistically significant difference in the
effectiveness of anomaly detection methods on the processed data and the original parsed
data.

Results Tables 13 and 14 show the impact of parsing errors on ML-based and DL-based
methods, respectively. Figures 5 and 6 show the positive impact and negative impact of
parsing errors on ML-based and DL-based methods, respectively. Tables 15 and 16 show
the summary of the impact of the number of parsed event templates on the effectiveness of

6 Page 20 of 39 Empir Software Eng (2023) 28:6

Table 13 The impact of parsing errors of six log parsers on ML-based anomaly detection methods

Impact on method Drain IPLoM LFA Logram Lenma Spell Average

(%) (%) (%) (%) (%) (%) (%)

Impact on PCA 0.12 0.00 0.15 1.41 0.51 0.50 0.45

Impact on LogClustering 0.01 0.01 0.66 14.64 0.03 0.04 2.56

Impact on LR 0.02 0.02 0.24 0.10 0.11 0.05 0.09

Impact on DT 0.06 0.06 0.26 0.15 0.12 0.05 0.12

Average 0.05 0.02 0.33 4.08 0.19 0.16 –

Table 14 The impact of parsing errors of six log parsers on DL-based anomaly detection methods

Impact on method Drain IPLoM LFA Logram Lenma Spell Average

(%) (%) (%) (%) (%) (%) (%)

Impact on Deeplog 1.88 1.55 3.00 13.66 15.00 5.20 6.71

Impact on LogRobust 0.09 0.12 0.22 0.23 0.17 0.20 0.17

Average 0.98 0.84 1.61 6.94 7.59 2.70 –

Fig. 5 The impact of parsing errors on the effectiveness of ML-based methods

Page 21 of 39 6Empir Software Eng (2023) 28:6

Fig. 6 The impact of parsing errors on the effectiveness of DL-based methods

ML-based methods and DL-based methods, respectively. More detailed results are shown
in Appendix A. From the results shown in Tables 13, 14, 15, 16, Figs. 5, and 6, we make
the following observations:

(1) Table 13 shows the average inconsistency percentage of ML-based methods on log
parsers parsed data (HDFS and BGL). The greater the average inconsistency percent-
age of an anomaly detection method is, the more significant the impact of the parsing
errors on the effectiveness of the anomaly detection method is. It can be observed
from Table 13, which shows that IPLoM has the smallest average impact (0.02%)
on ML-based methods, followed by Drain (0.05%). Logram has the greatest average
impact (4.08%) on ML-based methods, followed by LFA (0.33%). These indicate that
heuristic-base log parsers (IPLoM and Drain) have the least impact on the ML-based
anomaly detection methods, and frequency-based log parsers (Logram and LFA) have
the greatest impact on the ML-based anomaly detection methods. The average impact
of six log parsers on unsupervised ML-based methods (PCA (0.45%) and LogCluster-
ing (2.56%)) is greater than that on supervised ML-based methods (LR (0.09%) and
DT (0.12%)). This indicates that supervised ML-based methods are more robust to
parsing errors than unsupervised ML-based methods.

(2) Table 14 shows the average inconsistency percentage of DL-based methods on log
parsers parsed data (HDFS and BGL). It can be observed from Table 14 that IPLoM
has the smallest average impact (0.84%) on DL-based methods, followed by Drain
(0.98%). Lenma has the greatest average impact (7.59%) on DL-based methods, fol-
lowed by Logram (6.94%). These indicate that heuristic-based log parsers (IPLoM
and Drain) have the smallest impact on the DL-based anomaly detection methods, and
clustering-based log parser (Lenma) has the greatest impact on the DL-based anomaly
detection methods. The average impact of six log parsers on Deeplog (6.71%) is
greater than that on LogRobust (0.17%). This indicates that LogRobust is more robust
to parsing errors than Deeplog. That’s probably because that LogRobust can handle
unstable log events, including the unstable log events caused by parsing errors.

(3) We can observe from Fig. 5, which shows that parsing errors have not only a negative
impact but also a positive impact on the effectiveness of ML-based methods. And the
parsing errors of different log parsers have a different impact on the effectiveness of

6 Page 22 of 39 Empir Software Eng (2023) 28:6

Table 15 Summary of the impact of the number of parsed event templates on the effectiveness of ML-based
methods

Parser ML on HDFS ML on BGL

Significant Significant Significant Significant Significant Significant

different in P different in R different in F1 different in P different in R different in F1

Drain 0 0 0 2 2 3

IPLoM 0 0 0 3 4 4

LFA 3 3 3 4 4 3

Logram 3 3 2 4 4 3

Lenma 0 0 0 3 4 4

Spell 0 0 0 1 2 1

The value presents the number of ML-based methods that the effectiveness on the processed parsed data is
significantly different to that on the original parsed data

ML-based methods. In most cases, the negative impact of parsing errors on the effec-
tiveness of ML-based methods is greater than the positive impact. However, in only a
few cases, the positive impact of parsing errors on the effectiveness of ML-based meth-
ods is greater than the negative impact. For example, the impact of parsing errors of
IPLoM on LogClustering (The positive and negative impacts are 59.23% and 40.77%,
respectively) and the impact of parsing errors of Drain on LR (The positive and neg-
ative impacts are 32.86% and 17.14%, respectively). This is why the effectiveness of
ML-based methods is better on the log parser data than on Ground Truth in a few
cases. The parsing errors of all log parsers have a significantly greater negative impact
than positive impact on PCA. This indicates that the parsing errors are more likely to
degrade the effectiveness of PCA. The positive impact caused by the parsing errors of
IPLoM and Drain is close to or slightly higher than the negative impact on supervised
ML-based methods. As Table 13 shows that heuristic-based log parsers (IPLoM and
Drain) have the smallest impact on the supervised ML-based methods. This is why
heuristic-based log parsers are more suitable for supervised ML-based methods.

Table 16 Summary of the impact of the number of parsed event templates on the effectiveness of DL-based
methods

Parser DL on HDFS DL on BGL

Significant Significant Significant Significant Significant Significant

different in P different in R different in F1 different in P different in R different in F1

Drain 1 1 1 2 1 2

IPLoM 0 0 0 2 1 2

LFA 1 1 1 2 2 2

Logram 1 2 2 2 2 2

Lenma 1 2 1 2 2 2

Spell 0 0 0 2 2 2

The value presents the number of DL-based methods that the effectiveness on the processed parsed data is
significantly different to that on the original parsed data

Page 23 of 39 6Empir Software Eng (2023) 28:6

(4) We can observe from Fig. 6, which shows that parsing errors have not only a nega-
tive impact but also a positive impact on the effectiveness of DL-based methods. The
parsing errors of different log parsers have a different impact on the effectiveness
of anomaly detection. The negative impact of parsing errors on the effectiveness of
DL-based methods is greater than the positive impact. The positive impact caused by
the parsing errors of IPLoM is closer to the negative impact on Deeplog than other
log parsers. Table 14 shows that IPLoM has the smallest impact on Deeplog. This is
why IPLoM is more suitable for Deeplog. Similarly, Drain has the smallest impact on
LogRobust, and the positive impact caused by the parsing errors of Drain is closer to
the negative impact on LogRobust than other log parsers. This is why Drain is more
suitable for LogRobust.

Finding 2: Parsing errors of log parsers have not only a negative impact but
also a positive impact on the effectiveness of anomaly detection methods.

(5) Table 15 shows the summary of the impact of the number of parsed event templates on
the effectiveness of ML-based methods. The column of ML-based methods on HDFS
shows the number of ML-based methods that the effectiveness on processed HDFS
data is significantly different from the original HDFS data. It is worth noting that the
processed HDFS data only reduces the number of templates belonging to the same
event without changing the parsing accuracy. The column of ML-based methods on
BGL is similar to the column of ML-based methods on HDFS. We can observe from
Table 15, which shows that there are at least two ML-based methods’ effectiveness on
the processed parsed HDFS data of LFA and Logram significantly different from the
effectiveness on original parsed HDFS data of them. There is no ML-based method’
effectiveness on the processed parsed HDFS data of the other four log parsers (Drain,
IPLoM, Lenma, and Spell) significantly different from the effectiveness on original
parsed HDFS data of them. This may be because that the number of templates parsed
by these four log parsers on HDFS data is close to the Ground Truth of HDFS, so
the processing of merged templates has no significant impact on the effectiveness of
ML-based methods. There is at least one ML-based method’s effectiveness on the pro-
cessed parsed BGL data of six log parsers significantly different from the effectiveness
on original parsed BGL data of them. The impact of the number of parsed event tem-
plates on the effectiveness of ML-based methods is more evident on BGL than that on
HDFS. This may be because the difference in the number of parsing event templates
on BGL is greater than that of the HDFS. The results of the impact of the number
of parsed event templates on the effectiveness of ML-based methods indicate that the
number of parsed templates has an impact on the effectiveness of ML-based methods,
especially on complex data.

(6) Table 16 shows the summary of the impact of the number of parsed event templates on
the effectiveness of DL-based methods. We can observe from Table 16, which shows
that there are one or two DL-based methods’ effectiveness on the processed parsed
HDFS data of four log parsers (Drain, LFA, Logram, and Lenma) is significantly dif-
ferent from the effectiveness on original parsed HDFS data of them. The effectiveness
of two DL-based methods on the processed parsed BGL data of all six log parsers sig-
nificantly different from the effectiveness on original parsed BGL data of them, except
the recall of Deeplog on Drain and IPLoM parsed BGL data. The impact of the number
of parsed event templates on the effectiveness of DL-based methods is more evident
on BGL than that on HDFS, the same as ML-based methods. The results of the impact

6 Page 24 of 39 Empir Software Eng (2023) 28:6

of the number of parsed event templates on the effectiveness of DL-based methods
indicate that the number of parsed templates has an impact on the effectiveness of
DL-based methods, especially on complex data.

(7) As shown in Section 4.1, we observe that higher parsing accuracy does not imply
higher effectiveness of anomaly detection methods. Such observation is also similar
to the findings of He et al. (2016a). In the study of He et al., they also find that two
log parsers with comparable parsing accuracy lead to the different performance of
PCA, and two log parsers with different parsing accuracy lead to the comparable per-
formance of PCA. Unlike their work, we further explore the impact of parsing errors
on the effectiveness of anomaly detection methods. As shown in Figs. 5 and 6, we
observe that parsing errors of log parsers have not only a negative impact but also a
positive impact on the effectiveness of anomaly detection methods. This indicates that
the parsing errors do not definitely lead to performance degradation. This is why high
parsing accuracy does not imply the high effectiveness of anomaly detection methods.
At the same time, we also found that some log parsers have the same parsing incorrect
event, but they parse the same event into different numbers of event templates. We fur-
ther explore the impact of the number of parsed event templates on the effectiveness of
anomaly detection methods. As shown in Tables 15 and 16, the results of the impact of
the number of parsed event templates on the effectiveness of ML-based methods and
DL-based methods indicate that the number of parsed event templates has an impact
on the effectiveness of anomaly detection methods.

Finding 3: Both parsing accuracy and the number of parsed event templates
should be considered when choosing log parsers for anomaly detection.

4.3 RQ3: How do Log Parsers Impact the Efficiency of Anomaly DetectionMethods?

Motivation With the generation of massive log data, the efficiency of anomaly detection
methods becomes a key performance indicator. Anomaly detection methods are required to
detect anomalies accurately and as quickly as possible to ensure online service quality. Do
different log parsers have an impact on the efficiency of anomaly detection methods? In
this question, we investigate the impact of log parsers on the efficiency of four machine-
learning-based and two deep-learning-based anomaly detection methods, respectively.

Methods To ensure the consistency of the running environment when the anomaly detec-
tion method runs on all six log parsers parsing data, we run them simultaneously. Each
anomaly detection method on different log parser parsed data is run five times, and the
average training and testing time is reported as their efficiency.

Results Table 17 shows the number of event templates parsed by six log parsers on three
datasets. Figure 7 shows the efficiency of ML-based methods, and Fig. 8 shows the effi-
ciency of DL-based methods. From the results shown in Table 17, Figs. 7, and 8, we make
the following observations:

(1) As Table 17 shown, the number of event templates parsed by the heuristic-based log
parsers is more stable than that parsed by the other kinds of log parsers across differ-
ent datasets. The number of event templates parsed by the clustering-based Lenma on
Thunderbird data and BGL data is significantly larger than that parsed by the other

Page 25 of 39 6Empir Software Eng (2023) 28:6

Table 17 The number of parsed event templates

Datasets Drain IPLoM Lenma Logram LFA Spell

HDFS 48 41 45 97 47 37

BGL 1,848 793 135,127 7,615 1,326 24,444

ThunderBird 1,008 1,002 20,630 2,077 877 692

kinds of log parsers, especially that on BGL (135,127). The number of event tem-
plates parsed by Spell and Logram on BGL data (24,444 and 7,615, respectively) is
significantly larger than that of heuristic-based log parsers.

(2) As Fig. 7 shown, the number of parsed event templates impacts the efficiency of
ML-based methods. With the increase in the number of parsed event templates, the
efficiency of ML-based methods decreases. Since the increase in the number of parsed
event templates increases the dimension of the event count matrix, the efficiency of the
model decreases. The efficiency of all ML-based methods is the lowest on the data that
have the largest number of parsed event templates. For example, they are the least effi-
cient on the clustering-based Lenma parsed ThunderBird and BGL data. It is noticed
that the efficiency of LogClustering on HDFS data is not shown in Fig. 7(a) due to the
running time being about 500 times of other methods. It is because the efficiency of
LogClustering scales non-linearly with log size.

(3) As Fig. 8 shown, the number of parsed event templates has less impact on the effi-
ciency of DL-based methods, except Deeplog on BGL data. Deeplog handled the
anomaly detection task as a multi-classification problem and used the event template
index as input. When the number of parsed event templates increases within 10 times,
the number of parsed event templates has little impact on the efficiency of the model.
But when the number of parsed event templates increases more than 100 times, the
impact of the number of parsed event templates on the efficiency of Deeplog increases
significantly. This is because Deeplog performed fully connected calculations in the

Fig. 7 The running time of ML-based anomaly detection methods (the running time of LogClustering on
HDFS data is not shown in (a) as the running time of it is about 500 times of other methods)

6 Page 26 of 39 Empir Software Eng (2023) 28:6

Fig. 8 The running time of DL-based anomaly detection methods

output layer. When the number of event templates increases beyond a specific range,
its efficiency decreases significantly. For LogRobust, it converted the event subse-
quence into an event template vector list as input. Since the vector dimension of the
event template and the length of the event template vector list are fixed, the efficiency
of LogRobust is less affected by the number of parsed event templates.

Finding 4: The log parsers have an impact on the efficiency of anomaly
detection methods. With the increase in the number of parsed event
templates, the efficiency of anomaly detection decreases. The heuristic-based
parsers have less impact on the efficiency of anomaly detection methods,
followed by frequency-based parsers.

5 Discussion

5.1 Threats to Validity

Threats to Internal Validity Six log parsers and six anomaly detection methods are used
in our study. Threats to internal validity relate to potential errors in our implementation. In
order to reduce the mistakes in methods implementation, we carefully review the description
of the methods in prior studies. And the implemented methods have been tested and double-
checked by two graduate students to ensure the correctness of the implemented methods.

Threats to External Validity In this work, we evaluate the impact of the log parsers on
anomaly detection methods on three public datasets. Although these three datasets represent
two types of systems logs (Distributed system logs and Supercomputer logs), the evaluation
results and findings may still be limited due to the diversity of the datasets. And our results
may not be generalized to other types of datasets.

5.2 Implications

Correlation The effectiveness of anomaly detection methods is not linearly correlated with
PA, and most of their effectiveness is not closely correlated whit PA. This indicates that
high PA does not imply the high effectiveness of anomaly detection methods.

Page 27 of 39 6Empir Software Eng (2023) 28:6

Impact of Parsing Errors The parsing errors of log parsers have an impact on the effec-
tiveness of anomaly detection methods. And the parsing errors of log parsers have not
only a negative impact but also a positive impact on the effectiveness of anomaly detection
methods. However, in most cases, the negative impact is more significant than the positive
impact. An end-to-end anomaly detection method that does not require a log parser to parse
log data can be a potential improvement to avoid the impact of a log parser.

Impact of the Number of Parsed Event Templates The number of parsed event templates
should be considered when evaluating the effectiveness of the log parser. Since the effective-
ness of anomaly detection is impacted by both parsing accuracy and the number of parsing
event templates, the previous studies of log parsers only evaluated parsing accuracy with-
out considering the number of parsing event templates. A more comprehensive log parsing
performance evaluation metric is needed in log parsing or log mining studies.

Efficiency The log parsers have an impact on the efficiency of anomaly detection methods.
With the increase in the number of parsed event templates, the efficiency of anomaly detec-
tion decreases. The impact of log parsers on the efficiency of anomaly detection methods
should also be considered when selecting a suitable log parser.

Recommended Log Parser All the anomaly detection methods perform more effectively
and efficiently with the heuristic-based log parsers. Thus, heuristic-based log parsers are
recommended for anomaly detection methods.

Others There are two main reasons why it is difficult for most anomaly detection meth-
ods, especially machine-learning-based methods, to achieve high performance: 1) Training
data after cutting is highly unbalanced due to the concentration of anomaly logs; 2) log
events recorded by BGL are very complex. Data sample or data synthesis technology can
be adopted to improve the effectiveness of anomaly detection methods.

6 RelatedWork

6.1 Log Parsing

Log parsing is an important preprocessing step for automatic log analysis. It converts the
raw semi-structured log messages into structured data which is used for feature extrac-
tion. Current log parsing methods can be divided into rule-based, source-code-based, and
data-driven-based methods. Rule-based methods need practitioners or researchers to define
heuristic rules manually (Vaarandi 2006; Damasio et al. 2002; Hansen and Atkins 1993).
Rule-based methods have some limits, such as difficulty in maintaining rules and limited
coverage of rules. Although some management tools were designed to support practitioners
to specific customized rules (loggly 2021; Logstash 2021; Splunk 2021), they still cannot
completely overcome the deficiencies of rule-based methods. Source-code-based methods
require source code as input (Nagappan et al. 2009; Xu et al. 2009). For example, Xu et al.
(2009) used static source code analysis technology to extract event templates in the log

6 Page 28 of 39 Empir Software Eng (2023) 28:6

statement. However, source code is not always available, such as commercial components.
Unlike the source-code-based methods, the data-driven methods take the log messages gen-
erated during system running as input. The current data-driven methods can be classified
into four categories according to the technology it adopts: heuristic-based, frequency-based,
clustering-based, and others. The heuristic-based methods (AEL (Jiang et al. 2008), Drain
(He et al. 2017), and IPLoM (Makanju et al. 2011)) were mainly based on the characteristics
of the log messages to define the partition conditions to group the logs, such as the length of
log messages content. The frequency-based methods (SLCT (Vaarandi 2003), LFA (Nagap-
pan and Vouk 2010), and LogCluster (Vaarandi and Pihelgas 2015)) generated log templates
based on tokens frequently appearing in the log messages. Clustering-based methods (LKE
(Fu et al. 2009), LogSig (Tang et al. 2011), SHISO (Mizutani 2013), Lenma (Shima 2016),
and LogMine (Hamooni et al. 2016)) mainly used clustering algorithms to group logs and
then generated log templates. In addition, Spell (Du and Li 2018) was based on the longest
common subsequence algorithms to parse logs, and MoLFI (Messaoudi et al. 2018) was
based on evolutionary algorithms to parse logs. It is worth noting that these log parsers all
used log parsing accuracy as the key performance metric. However, does high parsing accu-
racy imply the high effectiveness of log mining? As far as we know, few of the log parser
research mentioned above, except Drain, evaluated the impact of log parser on log mining
tasks in their research.

At the same time, some studies are devoted to evaluating the log parsers, i.e., He et al.
(2016a) evaluated four log parsers on five datasets, and Zhu et al. (2019) comprehensively
evaluated 13 log parsers on 16 datasets and open-sourced the toolkit and benchmarks.

6.2 Log-Based Anomaly Detection

Log-based anomaly detection is an important application branch of automatic log analysis,
and many methods have been proposed in recent years. These methods can be classified into
four categories: keyword-searching-based, rule-based, traditional machine-learning-based,
and deep-learning-based. In system development, developers define the log severity level
when they use the log to record the detailed running status information of the system, such as
“info”, “warning”, and “error”. Jiang et al. (2009) used a keyword-searching-based method
to find critical events for abnormal detection. Shang et al. (2013) combined log abstraction
with a keyword-searching-based method to find the abnormal log. Traditional machine-
learning-based methods can be further divided into supervised and unsupervised according
to whether they need labeled data for training. In the real world, the logs generated by the
system are unlabeled, so unsupervised machine-learning-based methods (PCA (Xu et al.
2009), LogClustering (Lin et al. 2016), Frequent pattern Mining (Lu et al. 2018a), and
Log3C (He et al. 2018b)) have more practical application significance. For example, Lin
et al. (2016) proposed LogClustering and successfully applied it to many Microsoft online
service systems. Supervised machine learning (Decision Tree (Chen et al. 2004) and SVM
(Liang et al. 2007)) need to label the data manually or record the failure in the log as a label.
Liang et al. (2007) applied SVM to predict failure events. At the same time, He et al. (2016b)
evaluated six machine-learning-based anomaly detection methods on two public datasets.
With the development of deep learning technology in recent years, deep-learning-based
methods (Deeplog (Du et al. 2017), LogRobust (Zhang et al. 2019), LogC (Yin et al. 2020),
LogAnormal (Meng et al. 2019), and CNN-based approach (Lu et al. 2018b)) have also

Page 29 of 39 6Empir Software Eng (2023) 28:6

been used for anomaly detection. Deep-learning-based methods mainly define the anomaly
detection task as a multi-classification or binary classification problem and use RNN-based
methods for learning and prediction. For example, Deeplog defined the anomaly detection
task as a multi-classification problem, and LogRobust defined the anomaly detection task
as a binary classification problem. It is worth noting that these log-based anomaly detection
methods do not evaluate the impact of different log parsers on their methods.

7 Conclusion

In this paper, we explore the impact of log parsers on anomaly detection. To that end, we
conduct a comprehensive study to investigate the impact of four kinds of log parsers on two
kinds of anomaly detection methods on three public datasets. Firstly, we evaluate the impact
of the four kinds of log parsers on the effectiveness of two kinds of anomaly detection meth-
ods. And we conduct a Spearman rank correlation test to verify the correlation between the
parsing accuracy and the effectiveness of anomaly detection methods. The results show that
although the effectiveness of anomaly detection methods is correlated with parsing accu-
racy, almost all of them are not linear correlations. This indicates that high parsing accuracy
does not imply the high effectiveness of anomaly detection methods. Secondly, we evaluate
the impact of parsing errors on two kinds of anomaly detection methods. We find that the
parsing errors have not only a negative impact but also a positive impact on the effective-
ness of anomaly detection methods. This indicates that the parsing errors do not definitely
lead to performance degradation. Thirdly, we evaluate the impact of the number of parsed
event templates on the effectiveness of anomaly detection methods. We find that the number
of parsed event templates has an impact on the effectiveness of anomaly detection methods.
This indicates that both parsing accuracy and the number of parsed event templates should
be considered when choosing log parsers for anomaly detection. Fourthly, we evaluate the
impact of the log parsers on the efficiency of the two kinds of anomaly detection meth-
ods. We found that the number of parsed event templates has an impact on the efficiency of
anomaly detection. With the increase in the number of parsed event templates, the efficiency
of anomaly detection decrease. In detail, the heuristic-based parsers have less impact on the
efficiency of anomaly detection methods, followed by frequency-based parsers. Through
the results of the impact of log parsers on the effectiveness and efficiency of the anomaly
detection methods, we find that the heuristic-based parsers perform more effectively and
efficiently on average of all the anomaly detection methods. In detail, the heuristic-based
IPLoM is more suitable for unsupervised ML-based method PCA and DL-based method
Deeplog. Both heuristic-based IPLoM and Drain are more suitable for unsupervised ML-
based LogClustering and supervised ML-based methods. Heuristic-based Drain is more
suitable for DL-based LogRobust. We expect our work could help more researchers and
practitioners on log mining research and practical applications.

We plan to enrich our study with more available system logs in the future. We expect
to conduct the evaluation on more diverse data to provide more valuable findings for
researchers and practitioners. Besides, more newly proposed anomaly detection methods
will be considered.

6 Page 30 of 39 Empir Software Eng (2023) 28:6

Appendix A: The Impact of the Number of Parsed Event Templates
on Anomaly DetectionMethods’ Effectiveness

Table 18 The impact of the number of parsed event templates on the ML based methods’ effectiveness (on
HDFS)

Parser Original parsed HDFS data Processed parsed HDFS data

tsetnoxocliWfoeulav-pACPACP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 99.78 67.34 80.41 99.78 67.34 80.41 0.05 0.05 0.05

IPLoM 99.80 72.62 84.07 99.80 72.62 84.07 0.05 0.05 0.05

LFA 99.79 70.86 82.85 99.78 69.00 81.58 0.05 0.05 0.05

Logram 83.69 12.65 21.98 90.55 24.47 38.52 0.05 0.05 0.05

Lenma 99.78 67.34 80.41 99.78 67.34 80.41 0.05 0.05 0.05

Spell 99.78 67.34 80.41 99.78 67.34 80.41 0.05 0.05 0.05

Parser LogClustering LogClustering

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 100.00 76.80 86.88 100.00 76.80 86.88 0.05 0.05 0.05

IPLoM 100.00 77.05 87.04 100.00 76.90 87.04 0.05 0.05 0.05

LFA 92.72 76.57 83.87 93.80 78.51 85.47 0.05 0.05 0.05

Logram 6.75 76.38 12.41 38.10 74.92 50.51 0.05 0.05 0.05

Lenma 100.00 76.80 86.88 100.00 76.80 86.88 0.05 0.05 0.05

Spell 100.00 77.05 87.08 100.00 77.05 87.08 0.05 0.05 0.05

RLRLresraP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 100.00 99.41 99.70 100.00 99.41 99.70 0.05 0.05 0.05

IPLoM 100.00 99.41 99.70 100.00 99.41 99.70 0.05 0.05 0.05

LFA 89.21 99.18 93.93 88.69 99.08 93.60 0.05 0.05 0.05

Logram 99.94 99.67 99.81 100.00 99.08 99.02 0.05 0.05 0.05

Lenma 100.00 99.41 99.70 100.00 99.41 99.70 0.05 0.05 0.05

Spell 100.00 99.41 99.70 100.00 99.41 99.70 0.05 0.05 0.05

TDTDresraP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 100.00 99.81 99.90 100.00 99.81 99.90 0.05 0.05 0.05

IPLoM 100.00 99.81 99.90 100.00 99.81 99.90 0.05 0.05 0.05

LFA 88.99 99.51 93.96 88.99 99.52 93.96 0.05 0.05 0.05

Logram 100.00 99.81 99.90 100.00 99.81 99.90 0.05 0.05 0.05

Lenma 100.00 99.81 99.90 100.00 99.81 99.90 0.05 0.05 0.05

Spell 100.00 99.81 99.90 100.00 99.81 99.90 0.05 0.05 0.05

The p-value < 0.05 is highlighted in bold. The p-value < 0.05 indicates that the effectiveness of detection
method on the processed parsed data is significantly different to that on the original parsed data

Page 31 of 39 6Empir Software Eng (2023) 28:6

Table 19 The impact of the number of parsed event templates on the ML based methods’ effectiveness (on
BGL)

Parser Original parsed BGL data Processed parsed BGL data p-value of Wilcoxon test

ACPACP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 65.85 45.92 54.11 66.18 45.92 54.22 0.05 0.05 0.05

IPLoM 95.62 44.56 60.79 95.62 44.56 60.79 0.05 0.05 0.05

LFA 43.22 46.60 44.84 92.05 47.28 62.47 0.05 0.05 0.05

Logram 28.44 98.30 44.12 28.94 94.22 44.28 0.05 0.05 0.05

Lenma 28.52 100.00 44.38 29.56 91.50 44.68 0.05 0.05 0.05

Spell 27.56 94.22 42.65 27.56 94.22 42.65 0.05 0.05 0.05

Parser LogClustering LogClustering

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 37.02 91.99 52.80 37.76 93.70 53.83 0.05 0.05 0.05

IPLoM 37.43 93.41 53.45 36.75 91.77 52.48 0.05 0.05 0.05

LFA 37.31 88.23 52.44 37.16 87.55 52.17 0.05 0.05 0.05

Logram 36.18 83.62 50.51 35.70 87.87 50.77 0.05 0.05 0.05

Lenma 36.82 87.67 51.86 36.99 91.07 52.61 0.05 0.05 0.05

Spell 36.88 89.85 52.30 37.87 92.23 53.69 0.05 0.05 0.05

RLRLresraP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 87.16 61.70 72.20 87.26 62.93 73.12 0.05 0.05 0.05

IPLoM 86.26 61.02 71.45 88.32 59.80 71.29 0.05 0.05 0.05

LFA 70.11 59.05 64.08 69.27 60.32 64.48 0.05 0.05 0.05

Logram 87.22 26.60 40.75 49.49 47.30 48.36 0.05 0.05 0.05

Lenma 54.81 17.76 26.82 100.00 36.39 53.37 0.05 0.05 0.05

Spell 92.53 42.86 58.57 92.20 42.82 58.48 0.05 0.05 0.05

TDTDresraP

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 73.45 64.42 68.63 74.03 64.96 69.20 0.05 0.05 0.05

IPLoM 74.47 63.27 68.41 74.88 62.28 67.99 0.05 0.05 0.05

LFA 67.38 58.57 62.66 66.45 57.22 61.49 0.05 0.05 0.05

Logram 43.30 50.48 46.59 47.06 58.69 52.23 0.05 0.05 0.05

Lenma 51.12 51.09 51.10 51.03 59.77 55.06 0.05 0.05 0.05

Spell 72.87 57.28 64.13 72.67 56.58 63.62 0.05 0.05 0.05

The p-value < 0.05 is highlighted in bold. The p-value < 0.05 indicates that the effectiveness of detection
method on the processed parsed data is significantly different to that on the original parsed data

6 Page 32 of 39 Empir Software Eng (2023) 28:6

Table 20 The impact of the number of parsed event templates on the DL based methods’ effectiveness (on
HFDS)

Parser Original parsed HDFS data Processed parsed HDFS data Wilcoxon test

golpeeDgolpeeD

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 95.98 94.11 95.03 96.01 93.86 94.92 0.05 0.05 0.05

IPLoM 95.81 93.68 94.73 95.94 93.96 94.94 0.05 0.05 0.05

LFA 96.48 91.22 93.78 96.90 90.75 93.72 0.05 0.05 0.05

Logram 94.36 99.27 96.75 94.18 98.16 96.13 0.05 0.05 0.05

Lenma 95.93 94.10 95.01 95.57 94.75 95.16 0.05 0.05 0.05

Spell 95.71 93.11 94.39 95.75 93.15 94.43 0.05 0.05 0.05

Parser LogRobust LogRobust

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 96.92 99.83 98.35 96.52 99.88 98.17 0.05 0.05 0.05

IPLoM 97.11 99.47 98.28 96.71 99.86 98.26 0.05 0.05 0.05

LFA 96.67 99.92 98.27 96.88 97.82 97.34 0.05 0.05 0.05

Logram 94.87 99.81 97.27 95.76 99.63 97.66 0.05 0.05 0.05

Lenma 95.93 99.98 97.91 97.30 99.78 98.52 0.05 0.05 0.05

Spell 93.93 97.35 95.61 93.95 97.35 95.62 0.05 0.05 0.05

The p-value < 0.05 is highlighted in bold. The p-value < 0.05 indicates that the effectiveness of detection
method on the processed parsed data is significantly different to that on the original parsed data

Page 33 of 39 6Empir Software Eng (2023) 28:6

Table 21 The impact of the number of parsed event templates on the DL based methods’ effectiveness (on
BGL)

Parser Original parsed BGL data Processed parsed BGL data p-value of Wilcoxon test

Deeplog Deeplog

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 85.88 78.01 81.76 88.72 78.12 83.08 0.05 0.05 0.05

IPLoM 88.90 95.25 91.96 89.60 95.17 92.30 0.05 0.05 0.05

LFA 76.79 73.02 74.86 79.33 72.25 75.62 0.05 0.05 0.05

Logram 19.31 61.71 29.42 22.83 81.11 35.63 0.05 0.05 0.05

Lenma 21.13 83.78 33.75 22.84 75.79 35.10 0.05 0.05 0.05

Spell 44.70 82.42 57.96 52.66 83.01 64.44 0.05 0.05 0.05

Parser LogRobust LogRobust

P(%) R(%) F1(%) P(%) R(%) F1(%) p-value p-value p-value

on P on R on F1

Drain 76.36 96.63 85.31 87.58 86.12 86.85 0.05 0.05 0.05

IPLoM 71.94 97.44 82.77 69.68 98.25 81.53 0.05 0.05 0.05

LFA 52.39 82.62 64.12 60.80 74.31 66.88 0.05 0.05 0.05

Logram 61.49 94.68 74.62 61.98 95.92 75.30 0.05 0.05 0.05

Lenma 69.47 95.69 80.50 72.27 97.94 83.17 0.05 0.05 0.05

Spell 68.19 96.77 80.00 72.21 97.71 83.03 0.05 0.05 0.05

The p-value < 0.05 is highlighted in bold. The p-value < 0.05 indicates that the effectiveness of detection
method on the processed parsed data is significantly different to that on the original parsed data

Acknowledgments This work was supported in part by the National Key Research and Development
Project (No. 2018YFB2101200), the Fundamental Research Funds for the Central Universities (No.
2022CDJKYJH001), the Natural Science Foundation of Chongqing (No. cstc2021jcyj-msxmX0538), the
National Natural Science Foundation of China (No. 62002034) and the Postdoctoral Foundation of
Chongqing (No. 2020LY13).

Declarations

Conflict of Interest The authors have no conflict of interest.

References

Abdi H et al (2007) Bonferroni and šidák corrections for multiple comparisons. Encyclopedia of Measure-
ment and Statistics 3:103–107

Babenko A, Mariani L, Pastore F (2009) Ava: automated interpretation of dynamically detected anomalies.
In: Proceedings of the eighteenth international symposium on software testing and analysis, pp 237–248

Berrocal E, Yu L, Wallace S, Papka ME, Lan Z (2014) Exploring void search for fault detection on extreme
scale systems. In: 2014 IEEE International conference on cluster computing (CLUSTER). IEEE, pp 1–9

Bodik P, Goldszmidt M, Fox A, Woodard DB, Andersen H (2010) Fingerprinting the datacenter: auto-
mated classification of performance crises. In: Proceedings of the 5th European conference on computer
systems, pp 111–124

Breier J, Branišová J (2015) Anomaly detection from log files using data mining techniques. In: Information
science and applications. Springer, pp 449–457

6 Page 34 of 39 Empir Software Eng (2023) 28:6

Chen AR (2019) An empirical study on leveraging logs for debugging production failures. In: 2019
IEEE/ACM 41st international conference on software engineering: companion proceedings (ICSE-C).
IEEE, pp 126–128

Chen M, Zheng AX, Lloyd J, Jordan MI, Brewer E (2004) Failure diagnosis using decision trees. In:
International conference on autonomic computing, 2004. Proceedings. IEEE, pp 36–43

Chen Y, Yang X, Lin Q, Zhang H, Gao F, Xu Z, Dang Y, Zhang D, Dong H, Xu Y et al (2019) Outage
prediction and diagnosis for cloud service systems. In: The world wide web conference, pp 2659–2665

Dai H, Li H, Chen CS, Shang W, Chen TH (2020) Logram: efficient log parsing using n-gram dictionaries.
IEEE Trans Softw Eng

Damasio CV, Fröhlich P, Nejdl W, Pereira LM, Schroeder M (2002) Using extended logic programming for
alarm-correlation in cellular phone networks. Appl Intell 17(2):187–202

Dang Y, Lin Q, Huang P (2019) Aiops: real-world challenges and research innovations. In: 2019 IEEE/ACM
41st international conference on software engineering: companion proceedings (ICSE-C). IEEE, pp 4–5

Du M, Li F (2018) Spell: online streaming parsing of large unstructured system logs. IEEE Trans Knowl
Data Eng 31(11):2213–2227

Du M, Li F, Zheng G, Srikumar V (2017) Deeplog: anomaly detection and diagnosis from system logs
through deep learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pp 1285–1298

El-Sayed N, Zhu H, Schroeder B (2017) Learning from failure across multiple clusters: a trace-driven
approach to understanding, predicting, and mitigating job terminations. In: 2017 IEEE 37th international
conference on distributed computing systems (ICDCS). IEEE, pp 1333–1344

Fu Q, Lou JG, Wang Y, Li J (2009) Execution anomaly detection in distributed systems through unstructured
log analysis. In: 2009 Ninth IEEE international conference abstracting log lines to log event types for
mining software system logsce on data mining. IEEE, pp 149–158

Hamooni H, Debnath B, Xu J, Zhang H, Jiang G, Mueen A (2016) Logmine: fast pattern recognition for log
analytics. In: Proceedings of the 25th ACM international on conference on information and knowledge
management, pp 1573–1582

Hansen SE, Atkins ET (1993) Automated system monitoring and notification with swatch. In: LISA, vol 93,
pp 145–152

He P, Zhu J, He S, Li J, Lyu MR (2016a) An evaluation study on log parsing and its use in log mining.
In: 2016 46th Annual IEEE/IFIP international conference on dependable systems and networks (DSN).
IEEE, pp 654–661

He S, Zhu J, He P, Lyu MR (2016b) Experience report: system log analysis for anomaly detection. In: 2016
IEEE 27th international symposium on software reliability engineering (ISSRE), IEEE, pp 207–218

He P, Zhu J, Zheng Z, Lyu MR (2017) Drain: an online log parsing approach with fixed depth tree. In: 2017
IEEE International conference on web services (ICWS). IEEE, pp 33–40

He S, Lin Q, Lou JG, Zhang H, Lyu MR, Zhang D (2018a) Identifying impactful service system problems
via log analysis. In: Proceedings of the 2018 26th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp 60–70

He S, Lin Q, Lou JG, Zhang H, Lyu MR, Zhang D (2018b) Identifying impactful service system problems
via log analysis. In: Proceedings of the 2018 26th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp 60–70

Huang P, Guo C, Lorch JR, Zhou L, Dang Y (2018) Capturing and enhancing in situ system observability for
failure detection. In: 13th Symposium on operating systems design and implementation (OSDI), pp 1–16

Jia T, Chen P, Yang L, Li Y, Meng F, Xu J (2017) An approach for anomaly diagnosis based on hybrid
graph model with logs for distributed services. In: 2017 IEEE International conference on web services
(ICWS). IEEE, pp 25–32

Jiang ZM, Hassan AE, Flora P, Hamann G (2008) Abstracting execution logs to execution events for enter-
prise applications (short paper). In: 2008 The eighth international conference on quality software. IEEE,
pp 181–186

Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y (2009) Understanding customer problem trou-
bleshooting from storage system logs. In: Proccedings of the 7th conference on file and storage
technologies, pp 43–56

Liang Y, Zhang Y, Xiong H, Sahoo R (2007) Failure prediction in ibm bluegene/l event logs. In: Seventh
IEEE international conference on data mining (ICDM 2007). IEEE, pp 583–588

Lin Q, Zhang H, Lou JG, Zhang Y, Chen X (2016) Log clustering based problem identification for online
service systems. In: 2016 IEEE/ACM 38th international conference on software engineering companion
(ICSE-c). IEEE, pp 102–111

Lin Q, Hsieh K, Dang Y, Zhang H, Sui K, Xu Y, Lou JG, Li C, Wu Y, Yao R et al (2018) Predicting node
failure in cloud service systems. In: Proceedings of the 2018 26th ACM joint meeting on European

Page 35 of 39 6Empir Software Eng (2023) 28:6

software engineering conference and symposium on the foundations of software engineering, pp 480–
490

Liu F, Wen Y, Zhang D, Jiang X, Xing X, Meng D (2019) Log2vec: a heterogeneous graph embedding
based approach for detecting cyber threats within enterprise. In: Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp 1777–1794

loggly (2021) [EB/OL]. https://www.loggly.com/blog/
Logstash (2021) [EB/OL]. https://logz.io
Lou JG, Fu Q, Yang S, Xu Y, Li J (2010) Mining invariants from console logs for system problem detection.

In: USENIX Annual technical conference, pp 1–14
Lu J, Li F, Li L, Feng X (2018a) Cloudraid: hunting concurrency bugs in the cloud via log-mining. In:

Proceedings of the 2018 26th ACM joint meeting on European software engineering conference and
symposium on the foundations of software engineering, pp 3–14

Lu S, Wei X, Li Y, Wang L (2018b) Detecting anomaly in big data system logs using convolu-
tional neural network. In: 2018 IEEE 16th international conference on dependable, autonomic and
secure computing, 16th international conference on pervasive intelligence and computing, 4th interna-
tional conference on big data intelligence and computing and cyber science and technology congress
(DASC/picom/datacom/cyberscitech). IEEE, pp 151–158

Makanju A, Zincir-Heywood AN, Milios EE (2011) A lightweight algorithm for message type extraction in
system application logs. IEEE Trans Knowl Data Eng 24(11):1921–1936

Meng W, Liu Y, Zhu Y, Zhang S, Pei D, Liu Y, Chen Y, Zhang R, Tao S, Sun P et al (2019) Loganomaly:
unsupervised detection of sequential and quantitative anomalies in unstructured logs. In: IJCAI, vol 7,
pp 4739–4745

Messaoudi S, Panichella A, Bianculli D, Briand L, Sasnauskas R (2018) A search-based approach for
accurate identification of log message formats. In: 2018 IEEE/ACM 26th international conference on
program comprehension (ICPC). IEEE, pp 167–16,710

Mizutani M (2013) Incremental mining of system log format. In: 2013 IEEE International conference on
services computing. IEEE, pp 595–602

Nagappan M, Vouk MA (2010) Abstracting log lines to log event types for mining software system logs.
In: 2010 7th IEEE working conference on mining software repositories (MSR 2010). IEEE, pp 114–
117

Nagappan M, Wu K, Vouk MA (2009) Efficiently extracting operational profiles from execution logs using
suffix arrays. In: 2009 20th International symposium on software reliability engineering (ISSRE). IEEE,
pp 41–50

Nandi A, Mandal A, Atreja S, Dasgupta GB, Bhattacharya S (2016) Anomaly detection using program con-
trol flow graph mining from execution logs. In: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pp 215–224

Oliner A, Stearley J (2007) What supercomputers say: a study of five system logs. In: 37th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN). IEEE, pp 575–584

Shang W, Jiang ZM, Hemmati H, Adams B, Hassan AE, Martin P (2013) Assisting developers of big data
analytics applications when deploying on hadoop clouds. In: 2013 35th International conference on
software engineering (ICSE). IEEE, pp 402–411

Shima K (2016) Length matters: clustering system log messages using length of words. arXiv:161103213
Splunk (2021) [EB/OL]. https://docs.splunk.com/Documentation/Splunk/7.3.1/ Knowledge/

AboutSplunkregularexpressions/
Tang L, Li T, Perng CS (2011) Logsig: generating system events from raw textual logs. In: Proceed-

ings of the 20th ACM international conference on Information and knowledge management, pp 785–
794

Vaarandi R (2003) A data clustering algorithm for mining patterns from event logs. In: Proceedings of the
3rd IEEE workshop on IP operations & management (IPOM). IEEE, pp 119–126

Vaarandi R (2006) Simple event correlator for real-time security log monitoring. Hakin9 Magazine 1(6):28–
39

Vaarandi R, Pihelgas M (2015) Logcluster-a data clustering and pattern mining algorithm for event logs. In:
2015 11th International conference on network and service management (CNSM). IEEE, pp 1–7

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer,
pp 196–202

Xia B, Bai Y, Yin J, Li Y, Xu J (2020) Loggan: a log-level generative adversarial network for anomaly
detection using permutation event modeling. Inf Syst Front 1–14

Xu W, Huang L, Fox A, Patterson D, Jordan MI (2009) Detecting large-scale system problems by mining
console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles,
pp 117–132

6 Page 36 of 39 Empir Software Eng (2023) 28:6

https://www.loggly.com/blog/
https://logz.io
http://arxiv.org/abs/161103213
https://docs.splunk.com/Documentation/Splunk/7.3.1/_Knowledge/AboutSplunkregularexpressions/
https://docs.splunk.com/Documentation/Splunk/7.3.1/_Knowledge/AboutSplunkregularexpressions/

Yin K, Yan M, Xu L, Xu Z, Li Z, Yang D, Zhang X (2020) Improving log-based anomaly detection
with component-aware analysis. In: 2020 IEEE International conference on software maintenance and
evolution (ICSME). IEEE, pp 667–671

Yuan D, Mai H, Xiong W, Tan L, Zhou Y, Pasupathy S (2010) Sherlog: error diagnosis by connecting clues
from run-time logs. In: Proceedings of the fifteenth international conference on architectural support for
programming languages and operating systems, pp 143–154

Zar JH (2005) Spearman rank correlation. Encyclopedia of biostatistics 7
Zhang X, Xu Y, Lin Q, Qiao B, Zhang H, Dang Y, Xie C, Yang X, Cheng Q, Li Z et al (2019) Robust log-

based anomaly detection on unstable log data. In: Proceedings of the 2019 27th ACM joint meeting on
European software engineering conference and symposium on the foundations of software engineering,
pp 807–817

Zhou X, Peng X, Xie T, Sun J, Ji C, Liu D, Xiang Q, He C (2019) Latent error prediction and fault localization
for microservice applications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM joint meeting on European software engineering conference and symposium on the foundations of
software engineering, pp 683–694

Zhu J, He S, Liu J, He P, Xie Q, Zheng Z, Lyu MR (2019) Tools and benchmarks for automated log parsing.
In: 2019 IEEE/ACM 41st international conference on software engineering: software engineering in
practice (ICSE-SEIP). IEEE, pp 121–130

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Ying Fu received the B.S. and M.S. degrees from Chongqing Univer-
sity, China, where she is currently pursuing the Ph.D. degree at the
School of Big Data & Software Engineering. Her current research
focuses on data mining and analyzing.

Meng Yan is now a Research Professor at the School of Big Data
& Software Engineering, Chongqing University, China. He received
Ph.D. degree in June 2017 under the supervision of Prof. Xiao-
hong Zhang from Chongqing University, China. His current research
focuses on how to improve developers’ productivity, how to improve
software quality, and how to reduce the effort during software devel-
opment by analyzing rich software repository data.

Page 37 of 39 6Empir Software Eng (2023) 28:6

Zhou Xu is currently an Assistant Professor at the School of Big Data
and Software Engineering, Chongqing University, Chongqing, China.
He received the dual Ph.D. degree from the School of Computer Sci-
ence, Wuhan University, China, and the Department of Computing,
The Hong Kong Polytechnic University, Hong Kong. His research
interests include feature engineering and data mining.

Xin Xia is the director of the software engineering application tech-
nology lab, Huawei, China. Prior to joining Huawei, he was an ARC
DECRA Fellow and a lecturer at Monash University, Australia. Xin
received his Ph.D in computer science from Zhejiang University in
2014. To help developers and testers improve their productivity, his
current research focuses on mining and analyzing rich data in soft-
ware repositories to uncover interesting and actionable information.
More information at: https://xinxia.github.io/.

Xiaohong Zhang is currently a Professor and the Vice Dean of the
School of Big Data and Software Engineering, Chongqing University.
He received the M.S. degree in applied mathematics and the Ph.D.
degree in computer software and theory from Chongqing University,
China, in 2006. His current research interests include data mining of
software engineering, topic modeling, image semantic analysis, and
video analysis.

6 Page 38 of 39 Empir Software Eng (2023) 28:6

https://xinxia.github.io/

Dan Yang is currently the President of Southwest Jiaotong Univer-
sity. He is also a Professor with the School of Big Data and Software
Engineering, Chongqing University. He received the B.S. degree in
automation, the M.S. degree in applied mathematics, and the Ph.D.
degree in machinery manufacturing and automation from Chongqing
University, Chongqing. From 1997 to 1999, he held a postdoctoral
position at the University of ElectroCommunications, Tokyo, Japan.
His research interests include computer vision, image processing,
pattern recognition, software engineering, and scientific computing.

Affiliations

Ying Fu1,2 ·Meng Yan1,2 ·Zhou Xu1,2 ·Xin Xia3 ·Xiaohong Zhang1,2 ·Dan Yang1,2

Ying Fu
fuying@cqu.edu.cn

Zhou Xu
zhouxullx@cqu.edu.cn

Xin Xia
xin.xia@acm.org

Xiaohong Zhang
xhongz@cqu.edu.cn

1 Key Laboratory of Dependable Service Computing in Cyber Physical Society (Chongqing University),
Ministry of Education, Chongqing, China

2 School of Big Data and Software Engineering, Chongqing University, Chongqing, China
3 Software Engineering Application Technology Lab, Huawei, Hangzhou, China

Page 39 of 39 6Empir Software Eng (2023) 28:6

http://orcid.org/0000-0002-9538-9121
mailto: fuying@cqu.edu.cn
mailto: zhouxullx@cqu.edu.cn
mailto: xin.xia@acm.org
mailto: xhongz@cqu.edu.cn

	An empirical study of the impact of log parsers on the performance of log-based anomaly detection
	Abstract
	Introduction
	Methodology
	Log Parsers
	Heuristic-Based Log Parsers
	Frequency-Based Log Parsers
	Clustering-Based Log Parsers
	Subsequence-Based Log Parsers

	Feature Extraction
	Session Window
	Sliding Window

	Anomaly Detection Methods

	Experimental Setup
	Research Questions
	Datasets
	Evaluation Setting
	Evaluation Metrics

	Evaluation Results
	RQ1: What is the Impact of Log Parsers on the Effectiveness of Anomaly Detection Methods?
	Motivation
	Methods
	Results

	RQ2: What is the Impact of Log Parsing Errors and the Number of Parsing Event Templates on Anomaly Detection?
	Motivation
	Methods
	Results

	RQ3: How do Log Parsers Impact the Efficiency of Anomaly Detection Methods?
	Motivation
	Methods
	Results

	Discussion
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity

	Implications
	Correlation
	Impact of Parsing Errors
	Impact of the Number of Parsed Event Templates
	Efficiency
	Recommended Log Parser
	Others

	Related Work
	Log Parsing
	Log-Based Anomaly Detection

	Conclusion
	Appendix: A: The Impact of the Number of Parsed Event Templates on Anomaly Detection Methods' Effectiveness
	Declarations
	References
	Affiliations

