
https://doi.org/10.1007/s10664-022-10191-w

Towards cost-benefit evaluation for continuous
software engineering activities

Eriks Klotins1 · Tony Gorschek1,2 ·Katarina Sundelin3 · Erik Falk4

Accepted: 17 May 2022 /
© The Author(s) 2022

Abstract
Context: Software companies must become better at delivering software to remain relevant
in the market. Continuous integration and delivery practices promise to streamline software
deliveries to end-users by implementing an automated software development and deliv-
ery pipeline. However, implementing or retrofitting an organization with such a pipeline
is a substantial investment, while the reporting on benefits and their relevance in specific
contexts/domains are vague.

Aim: In this study, we explore continuous software engineering practices from an invest-
ment-benefit perspective. We identify what benefits can be attained by adopting continu-
ous practices, what the associated investments and risks are, and analyze what parameters
determine their relevance.

Method: We perform a multiple case study to understand state-of-practice, organizational
aims, and challenges in adopting continuous software engineering practices. We compare
state-of-practice with state-of-the-art to validate the best practices and identify relevant gaps
for further investigation.

Results: We found that companies start the CI/CD adoption by automating and streamlining
the internal development process with clear and immediate benefits. However, upgrading
customers to continuous deliveries is a major obstacle due to existing agreements and cus-
tomer push-back. Renegotiating existing agreements comes with a risk of losing customers
and disrupting the whole organization.

Conclusions: We conclude that the benefits of CI/CD are overstated in literature without
considering the contextual and domain complexities rendering some benefits infeasible. We
identify the need to understand the customer and organizational perspectives further and
understand the contextual requirements towards the CI/CD.

Communicated by: Massimiliano Di Penta

� Eriks Klotins
eriks.klotins@bth.se

1 Software Engineering Research Lab, Blekinge Institute of Technology, Karlskrona, Sweden
2 fortiss, Munich, Germany
3 Ericsson AB Karlskrona, Karlskrona, Sweden
4 Telia Company Uppsala, Uppsala, Sweden

Published online: 16 August 2022

Empirical Software Engineering (2022) 27: 157

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10191-w&domain=pdf
http://orcid.org/0000-0002-1987-2234
mailto: eriks.klotins@bth.se

Keywords Continuous Integration · Continuous Delivery ·
Continuous Software Engineering · Cost-benefit analysis

1 Introduction

Many software companies aim to benefit from continuous software integration and delivery
(CI/CD) practices. In a nutshell, CI/CD practices promise to increase the speed of delivering
new features to end-users by automating steps of software delivery, such as testing, inte-
gration, and deployment to the business environment (Fitzgerald and Stol 2017; Kumar and
Mishra 2016). The idea is that new features and changes are immediately and automatically
delivered to end-users without shelving them and waiting for a scheduled release. Rapid
delivery of incremental features has the potential to enable fast feedback cycles, continuous
experimentation, and to close the gap between software developers and users (Fagerholm
et al. 2017; Zhu et al. 2016).

Retrofitting an organization with A CI/CD pipeline is a substantial undertaking. Most
existing software engineering practices and architectures need to be adjusted to fit within
a continuous pipeline. Other organizational aspects, such as the business model and cus-
tomer agreements, need to be tailored to support and benefit from continuous software
delivery (Fitzgerald and Stol 2014; Neely and Stolt 2013; Chen 2015).

Organizational changes, the introduction of new ways of working and delivering value
may disrupt the organization (Giardino et al. 2015). Maintenance of the pipeline, such as
tooling, test data, and automated test suites, requires commitment and continuous invest-
ments (Sundelin et al. 2020; Garousi and Felderer 2016). However, the risk and investments
associated with the adoption of CI/CD are justified only if the benefits are relevant and
sufficiently contribute to achieving organizational objectives.

There is a substantial body of knowledge around how to implement elements of a CI/CD
pipeline and overcome the associated challenges; see, for example, Olsson et al. (Olsson
et al. 2012), Rodriguez et al. (Rodrı́guez et al. 2017), Fitzgerald et al. (Fitzgerald and Stol
2017) and Laukkanen et al. (Laukkanen et al. 2017). However, very few studies address the
holistic cost/benefit aspect of CI/CD. The understanding of costs and benefits is required
to make informed decisions of what parts of CI/CD are relevant for a given product and
organization. Especially, if the investments are substantial and changes carry organizational
risks.

Naturally, organizations aim to maximize the benefits of their investments. However, we
observe that the adoption of CI/CD practices is often driven by hype and promises of huge,
however vague, benefits. For example, CI/CD are ought to enable more frequent software
releases and flexible business models (Humble and Kim 2018). However, how to assess
the relevance of such benefits for a given company, and gauge whether the investments can
be justified with the expected gains is not known. Without a detailed analysis of required
investments, the relevance of the benefits, and any downsides, organizations may waste
resources on implementing irrelevant practices, too expensive to maintain or even harmful
to a successful business.

Organizations may also miss capitalizing on the benefits of CI/CD while incurring the
cost. This is due to the potentially asymmetrical nature of costs and benefits. The costs could
be incurred at one stage of the software delivery pipeline with a small perceived immediate
benefit. However, the investment’s actual benefits could be reaped at a later stage, only if
such a later stage is implemented and aligned correctly (Laukkanen et al. 2015). The same is

157 Page 2 of 40 Empir Software Eng (2022) 27: 157

true upstream. For example, achieving regular and continuous customer feedback due to the
pipeline might significantly benefit product management and product planning. However, if
that part of the organization is not prepared to utilize said feedback as a part of their work,
significant parts of the benefits are not realized.

The term CI/CD largely refers to automation aspects of software engineering. How-
ever, Fitzgerald et al. (Fitzgerald and Stol 2017) points out that there are other continuous
activities, such as planning, support from the organization, business models and customers,
that enable and maximize benefits of the automation efforts. Thus, we explore continuous
software engineering from a holistic cost-benefit perspective encompassing all connected
aspects. We map state-of-practice in two companies to state-of-the-art to identify aims,
expected benefits, investments and prerequisites to adopting specific CI/CD practices. We
further discuss the relevance of the potential benefits to our studied cases and highlight areas
with insufficient support from state-of-the-art.

The rest of this paper is structured as follows. Section 2 presents background and related
work, Section 3 outlines the research methodology, Sections 4-5 presents and interprets our
findings, Section 6 concludes the paper.

2 Background and RelatedWork

2.1 Agile, Lean and Continuous Software Engineering

Agile software engineering principles emphasize working software over extensive planning
and documentation, rapid response to change, and collaboration versus contract negotia-
tion (Fowler et al. 2001). These principles have inspired a large number of agile software
engineering practices (Jalali and Wohlin 2012; Martin 2002; Sidky et al. 2007). Most impor-
tantly, agile practices aim to deliver value in small increments, facilitate collaboration and
anticipate changes in customer needs and the environment (Hazzan and Dubinsky 2009;
Alahyari et al. 2017).

Lean software engineering is an adaptation of lean manufacturing principles in the soft-
ware domain (Poppendieck and Poppendieck 2003). Lean principles are often applied in
conjunction with agile practices (Rodrı́guez et al. 2012; Alahyari et al. 2019). Both lean and
agile emphasize rapidly delivering customer value while minimizing activities that do not
deliver value.

Continuous software engineering is a paradigm to deliver new software features to
end-users in small increments and as rapidly as possible. The speed is achieved by com-
bining lean and agile principles with extensive automation and removal of organizational
silos (Chen 2015).

In continuous software engineering, software travels through a series of interconnected
and largely automated steps to deliver the latest software changes to end-users with minimal
delay. The automated steps handle testing, integration, delivery of software (Humble and
Kim 2018). Once software is delivered and used by end-users, telemetry is relayed back to
the software vendor to support further product decisions.

Fitzgerald et al. (Fitzgerald and Stol 2017) identifies the following components of a
continuous software delivery pipeline:

1. Continuous product planning considers various inputs (customer feedback, market data,
etc.) and prepares plans on leveraging software engineering to attain organizational
objectives (Lin 2018; Provost and Fawcett 2013)

Page 3 of 40 157Empir Software Eng (2022) 27: 157

2. Continuous software integration comprises continuous development, configuration
management, testing, integration, and other activities to produce working software
(Meyer 2014; Felidré et al. 2019; Hilton et al. 2017).

3. Continuous deployment making the latest software features available for delivery to
end-users (Zhu et al. 2016; Senapathi et al. 2018).

4. Continuous delivery refers to the ability to enable end-user access to the latest fea-
tures, i.e. updating production software, at any time and with minimal delay (Dubey
and Wagle 2007; Chen 2017; Mäkinen et al. 2016)

5. Continuous use & trust arising from less disruptive releases and improved value
delivery (Gefen et al. 2003; Susarla et al. 2009).

6. Continuous feedback collecting customer feedback to support further product planning
(Guzman et al. 2017; Lin 2018; Provost and Fawcett 2013; Fabijan et al. 2017)

7. Continuous improvement measures the performance of software delivery and fine-
tuning the pipeline. Metrics such as cycle-time, batch size, mean-time-to-recovery, and
throughput are proposed by Humble et al. (Humble and Kim 2018) to monitor the
pipeline.

There are many studies focusing on the implementation, challenges, and potential
solutions of individual components of CI/CD, especially the continuous integration (CI).
However, we identify lack of a holistic discussion on the relevance and interrelations of all
continuous practices.

For instance Hilton et al. (Hilton et al. 2016) analyzes continuous integration (CI) in
open-source projects. Their findings show that the use of CI correlates with more frequent
releases and popularity of open-source projects among other benefits. The main obstacles
in adopting CI are lack of familiarity with CI, lack of test automation, and a slow rate of
contributions to the project. Elazhary et al. (Elazhary et al. 2021) analyzes benefits and trade
offs of CI practices. One of their main findings is that due to differences in implementations,
contexts, and perceptions, CI cannot be studied as one practice. Rather, a more fine-grained
view is needed to analyze CI.

To our best knowledge, there are no similar studies to e.g., Hilton et al. (Hilton et al.
2016) and Elazhary et al. (Elazhary et al. 2021), analyzing the suitability of continuous prac-
tices throughout the whole software life-cycle, as suggested by Fitzgerald et al. (Fitzgerald
and Stol 2017). Furthermore, most existing work analyzes state-of-practice in organizations
who have already adopted continuous practices to some extent. This approach creates a sam-
pling bias and excludes organizations who have not yet overcome the adoption threshold
from analysis.

Our study contributes to state-of-the-art twofold. Firstly, we analyze continuous prac-
tices, associated investments, benefits, and contextual factors from a holistic perspective.
We consider the whole software life-cycle. That is, from the inception of a feature in plan-
ning stage to analyzing customer feedback on the feature and using it in fine-tuning the
feature as suggested by Fitzgerald et al. (Fitzgerald and Stol 2017).

Secondly, we analyze CI/CD in two organizations in telecom domain who have not yet
achieved operational level on any of the continuous practices. This perspective allow us to
analyze contexts where CI/CD adoption is challenging and requires most support.

2.1.1 Cost-Benefit Analysis

The cost-benefit analysis is a method to evaluate decisions in terms of their consequences.
That is, to what extent the investment (cost) in a project is justified by the gains (benefits)

157 Page 4 of 40 Empir Software Eng (2022) 27: 157

of the project (Drèze and Stern 1987), where the ”project” is the change required to real-
ize the CI/CD environment. The cost-benefit analysis method is widely applicable and
could be tailored to fit a variety of scenarios. The method comprises the following general
steps (Sassone and Schaffer 1978):

1. Identify stakeholders and their goals concerning the project being evaluated.
2. List alternatives. It could be a decision between maintaining the current or moving to a

new state or deciding between any number of alternatives.
3. Define metrics to use in the evaluation. The metrics qualify the stakeholder goals from

Step #1.
4. Determine the costs and benefits associated with the project.
5. Establish a timeline of when costs are incurred and benefits reaped.
6. Express the costs and benefits in similar units. Similar units are required to perform a

direct comparison between investments and benefits.
7. Calculate the net present value and ratio.
8. Perform sensitivity analysis. Determine to what extent adjustments in the inputs

(investments) affect the consequences (benefits).
9. Make decisions.

To support the application of the cost-benefit analysis for evaluating the adoption of
continuous software delivery practices, there is a need for an improved understanding of:

1. Common stakeholders of a CI/CD pipeline and detailing of their respective goals
2. A fine-grained understanding of investments (costs) and benefits (estimated) associated

with CI/CD and its components
3. Relevant metrics to gauge the progression towards said goals
4. A methodology to quantify and compare different benefits and costs
5. A methodology to determine a configuration of continuous practices given the context

of the organization

King and Schrems (King and Schrems 1978) propose using cost-benefit analysis to eval-
uate decisions regarding software development and operation. They identify possible types
of project benefits, such as:

– Cost reduction or avoidance
– Error reduction
– Increased flexibility
– Increased speed of activity
– Improvement in management planning or control

Furthermore, they identify the following types of project costs (investments):

– Procurement costs of acquiring tools, equipment, etc.
– Start-up costs incurred due to starting the project, e.g., adopting tools and practices,

training, and disruption to the organization.
– Project-related costs such as personnel, overhead, data collection, and software modifi-

cations.
– Ongoing costs, for example, maintenance of software and hardware.

The use of cost-benefit analysis to evaluate decisions in various areas of software engineer-
ing, such as adoption of cloud computing (Maresova et al. 2017; Chandra and Borah 2012),
software architecture (Carriere et al. 2010), and requirements (Letier et al. 2014), is not new.

Page 5 of 40 157Empir Software Eng (2022) 27: 157

Common challenges in applying cost-benefit analysis include identifying the right metrics,
expressing all costs and benefits in common units, and identifying all plausible alterna-
tives for comparison (King and Schrems 1978). Our work aims to identify possible benefits,
costs, and requirements under which an organization can realize the benefits. Such a map
is the first step in aiding management and other pertinent organizational units to invest in
implementing CI/CD and maximizing its operational benefits.

3 ResearchMethodology

3.1 Aims of the Study

This study aims to explore CI/CD from a cost (investment) and benefits perspective. Specif-
ically, we are interested in what benefits and associated prerequisites to these benefits are
linked to continuous practices. We also try to ascertain which benefits (as reported in the
state-of-the-art) are considered relevant in state-of-practice (industry).

3.2 Research Questions

To attain our objective, we set forth the following research questions:
RQ1: What are the key steps of a CI/CD pipeline?
Rationale: CI/CD is an umbrella term to describe a series of mostly automated and

interconnected practices. We aim to break down the concept into its constituents to sup-
port our further and more detailed analysis. We go beyond (sprint-based) engineering and
include product management/planning, realization, but also delivery/commissioning and
maintenance/evolution of the software-intensive product and service development.

RQ2: What potential benefits and potential investments (costs) are inherent to the CI/CD
adoption?

Rationale: We aim to understand what motivates organizations to adopt CI/CD practices,
what benefits motivate this, and what investments are required. We also analyze the dif-
ferences between benefits triggering the adoption of CI/CD and the benefits with the most
relevance

RQ3: What is needed to support the CI/CD cost/benefit analysis in the industry?
Rationale: We aim to identify opportunities for further research into the bene-

fit/consequence analysis of continuous software engineering practices.
RQ4: What are the gaps between state-of-the-art and state-of-practice in relation to

CI/CD?
Rationale: We aim to identify underdeveloped areas of CI/CD to aid further research

into the area.

3.3 ResearchMethod

We answer our research questions by conducting two industrial case studies supported by a
structured literature review (not to be confused with a systematic literature review). With the
case studies, we explore practitioners’ needs and aims towards CI/CD. From state-of-the-
art, we develop a conceptual model of continuous software delivery and use it to connect
state-of-the-art to state-of-the-practice.

Both the structured review and case studies are conduced in parallel and support each
other. In Fig. 1 we show an overview of our research methodology.

157 Page 6 of 40 Empir Software Eng (2022) 27: 157

Fig. 1 Overview of the research method. Alignment between case studies and the structured review

3.3.1 Industrial Case Studies

We analyze the adoption of CI/CD at two companies, Ericsson AB and Telia Company AB,
using in-depth case studies and following the case study research methodology proposed
by Runeson (Runeson et al. 2012). The object of our study is the continuous software engi-
neering process, related practices, relevant organizational aims, and challenges from the
benefit-consequence (cost) perspective. We limit the scope of our inquiry to one specific
product in each company.

The data collection took place between September 2020 and April 2021. Each organi-
zation was involved in capturing the broad view from multiple perspectives affected by
and instrumental to the area, including developers, project managers, product managers,
line-manager, test engineers, and co-workers representing the operations perspectives.

We structured the interviews and workshops to familiarize ourselves with each case and
their software delivery process specifics, see Step CS1 in Fig. 2. We perform inventory of
their current process and continuous practices. The purpose of the inventory is to understand
what practices (continuous or not) are currently applied in each case (RQ1), why, what
benefits could be realized by adopting continuous practices, and what are the associated
investments to realize said benefits (RQ2). Prior to the company engagements we designed a
spreadsheet to keep track of the gathered data, see the structure of Spreadsheet A in Table 1.

We further aim to capture broader organizational goals to gauge how continuous software
engineering can be useful and what parts of the pipeline are relevant to attain these goals.
Looking at the broader organizational goals we identify focus areas to steer our further
investigation.

We aim to complement our discussions with with document reviews, for instance process
overviews, presentations outlining organizational aims, and strategies. Such materials will
serve as input for steering discussions in the workshops.

Page 7 of 40 157Empir Software Eng (2022) 27: 157

Fig. 2 The conceptual model of state-of-the-art CI/CD pipeline

As we discover new angles and perspectives, we aim to schedule additional data collec-
tion activities with additional stakeholders to capture these new perspectives. As we gain
insights from the case studies, we update our conceptual model and analyze the gap/overlap
between state-of-the-art and state-of-practice. With this analysis, we identified overlapping
parts, gaps, and areas for further discussion.

We analyzed both cases and looked at state-of-the-art in parallel. Thus, findings from one
case could be immediately cross-checked with the other case and state-of-the-art, see steps
CS4–6 and R4–5. Once our analysis reached thematic saturation we finalized our reports,
and presented the results to the cases for additional input and feedback.

Once our case studies reached theoretical saturation and no new concepts emerged we
finalized our conceptual model. The conceptual model, see Fig. 2, is a emerged from the
case studies while maintaining connection to state-of-the-art. The final iteration of the
model was presented to both studied cases for additional input and feedback.

3.3.2 Connection to State-of-the-Art

To design and support the case studies, we refer to state-of-the-art. Our aim is to use state-
of-the-art to establish a baseline perspective of CI/CD to support our interactions with
practitioners. Specifically, we are interested to what extent benefits and investments of
continuous practices from literature are relevant for the studied cases.

Our approach should not be confused with a systematic literature review or mapping as
defined by e.g. Kitchenham (Kitchenham 2004) or Pettersen (Petersen et al. 2008). Rather
we build upon existing secondary studies and look for papers linked in these studies to
explore each step of CI/CD.

The initial scope of the review was defined by using the CI/CD research roadmap
(Fitzgerald and Stol 2017). The roadmap by Fitzgerald et al. (Fitzgerald and Stol 2017)
was selected as it provides the a comprehensive overview of CI/CD concepts with rele-
vant references. The roadmap was complemented with results from a systematic literature

157 Page 8 of 40 Empir Software Eng (2022) 27: 157

Ta
bl
e
1

T
he

st
ru

ct
ur

e
of

Sp
re
ad
sh
ee
tA

to
su

pp
or

ti
nv

en
to

ry
of

co
nt

in
uo

us
pr

ac
tic

es
at

ea
ch

co
m

pa
ny

#
H

ea
di

ng
D

es
cr

ip
tio

n
R

un
ni

ng
ex

am
pl

e

1
St

ep
St

ep
in

th
e

en
gi

ne
er

in
g

pr
oc

es
s

as
as

de
fi

ne
d

by
th

e
pa

r-
tic

ip
an

ts
,

e.
g.

Pl
an

ni
ng

,
D

ev
el

op
m

en
t,

Te
st

in
g,

M
ai

nt
en

an
ce

,
O

pe
ra

tio
ns

R
el

ea
se

2
C

on
tin

uo
us

pr
ac

tic
es

Pe
rt

in
en

t
co

nt
in

uo
us

pr
ac

tic
es

an
d

th
ei

r
st

at
us

(p
la

nn
ed

,
in

pr
og

re
ss

,i
m

pl
em

en
te

d,
ir

re
le

va
nt

,n
ot

co
ns

id
er

ed
)

C
on

ta
in

er
iz

at
io

n
(i

m
pl

em
en

te
d)

,c
on

t.
de

pl
oy

m
en

t(
pl

an
ne

d)

3
H

ow
it

w
or

ks
?

D
es

cr
ip

tio
n

of
cu

rr
en

ti
m

pl
em

en
ta

tio
n

of
th

e
en

gi
ne

er
in

g
st

ep
,

w
ha

ts
ta

ke
ho

ld
er

s
ar

e
in

vo
lv

ed
,t

ri
gg

er
s,

ex
ac

tp
ra

ct
ic

es
,t

oo
ls

,
ro

ut
in

es
,s

ub
-s

te
ps

W
ith

ea
ch

re
le

as
e

w
e

us
ed

sp
en

d
a

lo
t

of
tim

e
pr

ep
ar

in
g

in
st

al
la

tio
n

in
st

ru
ct

io
ns

4
R

at
io

na
le

R
at

io
na

le
an

d
re

as
on

in
g

fo
r

th
e

cu
rr

en
t

im
pl

em
en

ta
tio

n,
e.

g.
ad

va
nt

ag
es

,d
ri

ve
rs

O
pe

ra
tio

ns
do

es
no

t
kn

ow
m

uc
h

ab
ou

t
th

e
pr

od
uc

t,
th

ey
re

ly
on

ou
r

in
st

ru
ct

io
ns

an
d

su
pp

or
t

5
C

ha
lle

ng
es

Sp
ec

if
ic

ch
al

le
ng

es
w

ith
th

e
cu

rr
en

ti
m

pl
em

en
ta

tio
n

D
es

pi
te

th
e

ex
te

ns
iv

e
do

cu
m

en
ta

tio
n,

w
e

ne
ed

to
ju

m
p

in
an

d
su

pp
or

to
pe

ra
tio

ns
w

ith
al

m
os

te
ve

ry
in

st
al

la
tio

n

6
Id

ea
li

m
pl

em
en

ta
tio

n
T

he
id

ea
l

im
pl

em
en

ta
tio

n
of

th
e

st
ag

e
gi

ve
n

th
e

or
ga

ni
za

tio
n

co
nt

ex
ta

nd
ne

ed
s

D
oc

um
en

ta
tio

n
is

re
pl

ac
ed

w
ith

in
st

al
la

tio
n

sc
ri

pt
s.

W
e

m
ov

e
to

w
ar

ds
D

ev
O

ps

7
B

en
ef

its
Pe

rc
ei

ve
d

or
an

tic
ip

at
ed

be
ne

fi
ts

fr
om

co
nt

in
uo

us
pr

ac
tic

e
at

th
is

st
ep

L
es

s
tim

e
w

as
te

d
on

w
ri

tin
g

in
st

ru
ct

io
ns

,f
ew

er
hu

m
an

er
ro

rs

8
In

ve
st

m
en

ts
Pe

rc
ei

ve
d

or
an

tic
ip

at
ed

in
ve

st
m

en
ts

in
re

la
tio

n
to

co
nt

in
uo

us
pr

ac
tic

es
at

th
is

st
ep

D
ev

el
op

m
en

to
f

au
to

m
at

io
n

sc
ri

pt
s,

ch
an

gi
ng

th
e

cu
rr

en
tp

ro
-

ce
ss

9
Ty

pe
H

ow
of

te
n

th
e

be
ne

fi
to

r
in

ve
st

m
en

ti
s

pe
rc

ei
ve

d
(O

ne
-o

ff
,p

er
re

le
as

e,
co

nt
in

uo
us

ly
)

Pe
r

re
le

as
e

10
A

dd
iti

on
al

no
te

s
&

qu
ot

es

Page 9 of 40 157Empir Software Eng (2022) 27: 157

review (SLR) (Shahin et al. 2017). To gain a more in-depth perspective, we performed
a backward snowball sampling iterations, i.e. followed the references, from the research
roadmap and the SLR to find the primary studies discussing pertinent concepts, see steps
R1–2 in Fig. 1.

We performed narrative analysis of the discovered papers to gain an overview of pertinent
themes, associated issues and concerns relevant to our case studies (Huang et al. 2018).
With the analysis we extracted practices, benefits, associated investments, challenges, and
preconditions for applying the practices and realizing their benefits. Extracted data were
organized in a Spreadsheet B, With this input we formulated the preliminary conceptual
model, see R3, in Fig. 1, and prefilled the inventory spreadsheets with potentially relevant
insights for discussion in the workshops. Different slices of the Spreadsheets A and B are
presented in tables in the results section.

As the study progressed and more input from the cases was collected, see Steps CS3–5,
in Fig. 1, we performed additional literature searches and thematic analysis, to support the
case studies and evolve the conceptual model further, see Steps R4–5. Simultaneously, we
expanded the scope of the inventory to reflect new findings from literature.

3.4 Threats to Validity

Construct Validity captures to what extent the operational measures captures the intended
phenomenon (Runeson et al. 2012). A potential threat in this category stems from different
understanding and terminology between researchers and industry participants. To minimize
this threat, we start or interactions with industry participants with a presentation of the
conceptual model. We further ask the participants to point out parts of the model known to
them and single out new parts. Through such discussion, we establish a common view on
the studied phenomena.

Another treat arises from our review methodology. Our aim was to gain a broad and good-
enough support for conducting the case studies and to identify discrepancies between state-
of-the-art and state-of-practice. There could be relevant studies that study overlooked. To
mitigate this threat we divided our review per CI/CD step to more precisely target pertinent
literature, and continuously compared state-of-the-art and state-of-practice to gain as broad
coverage as possible.

State-of-the-art presents continuous practices spanning the entire life-cycle of a feature,
from the inception of a feature idea, development, delivery to customers, use, collection of
feedback, and use of feedback to steer the next iteration. However, our studied cases offer
primarily focus on development and delivery steps. Therefore, there is a threat that the other
steps of continuous engineering are not sufficiently covered.

Our studied cases have implemented or attempted to implement on some of the continu-
ous practices. Thus, their input on the other practices is based on their expert opinion, not
first-hand experience. This introduces a threat that they may have overlooked or misinter-
preted some aspects of such practices. To counter this threat, we compare and point out
differences between state-of-practice and state-of-the-art.

Internal Validity concerns the causal relationships and potential confounding factors to the
explored phenomenon (Runeson et al. 2012). In this paper, we do not attempt to establish
causal relationships. Thus, this category of threats is not relevant.

External Validity concerns the extent of generalizability of presented results (Runeson et al.
2012). The empirical part of our study considers two cases from the telecom domain. Thus,

157 Page 10 of 40 Empir Software Eng (2022) 27: 157

the generalizability of our empirical findings may be limited to similar domains and types
of companies.

In reviewing state-of-the-art, we consider all sources irrespective of domain, product,
and market type. Thus, our review represents a broad view of the phenomenon. We devise
the proposed conceptual model from earlier systematic literature reviews. That said, the
mapping between state-of-the-art and state-of-practice is limited to our two cases belonging
to telecomunications domain and relatively mature companies. State-of-the-art may have
additional limitations that we did not discover due to the nature of our studied cases. For
these reasons, the conceptual model could be skewed towards the studied cases.

Reliability examines to what extent the data and the analysis are independent of specific
researchers (Runeson et al. 2012). The first author conducted the workshops, interviews, and
other data collection activities. During the data collection activities, we used our conceptual
model to guide and let participants drive the discussion. Thus, the focus areas highlighted
challenges, and other findings emerged independently from researchers. After data col-
lection activities, the collected data was reviewed and discussed by both authors. These
discussions helped to shape ideas and focus areas for upcoming data collection activities.
During continued interactions with practitioners, we frequently discussed our intermediate
findings to gain additional insights and validation. Stakeholders reviewed the final draft of
the paper from both companies to ensure that the presented findings are accurate.

Another concern to the reliability of our study is replicability of the results.

4 Results

To understand drivers behind the adoption of CI/CD practices, we study state-of-practice in
two companies and map our findings with state-of-the-art. Using this mapping, we highlight
parts that overlap, are missing in state-of-the-art, but also items overlooked by practitioners
in state-of-the-practice. We differentiate between 5 types of mapping points, see Table 2.

We structure our results in two parts. In the first part, we present two industrial cases
highlighting their contexts, wants, and needs in relation to CI/CD. In the second part,

Table 2 Types of mapping points between state-of-the-art and state-of-practice

Type/term used in the discussion Description

1 Confirmed A phenomenon (a pipeline component, benefit, investment,
assumption) is both described literature and implemented (or
experienced, attained) by practitioners

2 Planned A phenomenon is described by literature and anticipated by
practitioners, however not yet achieved, e.g., planned but not
yet implemented pipeline component.

3 Gap A phenomenon is reported by practitioners, however not suffi-
ciently described by state-of-the-art.

4 Irrelevant Literature describes a phenomenon, however practitioners
report it as irrelevant/not feasible/unattainable in their current
context

5 Unclear A phenomenon is described in the literature and appears poten-
tially relevant, however additional investigation is needed to
gauge whether it is relevant/attainable in practice.

Page 11 of 40 157Empir Software Eng (2022) 27: 157

we present state-of-the-art perspecitve, connect it to the state of practice to identify gaps,
discrepancies, and relevant results to support the adoption of CI/CD in practice.

4.1 Case I: Ericsson

4.1.1 Research Context

Ericsson AB is a large telecommunications hardware and software provider based in
Sweden. The company offers an extensive portfolio of software-intensive products. They
combine their offerings with 3rd party products to create customer-specific solutions. Cus-
tomer solutions are highly customized and delivered to mobile network service providers
globally.

In this study, we focus on a product aimed to support mobile telecommunications oper-
ators’ business functions (Product A). It is a large and complex constellation of different
components. Individual software components have a varying degree of continuous integra-
tion and deployment capabilities. However, the challenge lies in the solution-level integra-
tion and testing. Differences between components, individual component delivery methods,
customer-specific customizations, dependencies on third-party components, and domain
regulations make final software integration complex, slow, and manual effort-intensive.

Our primary contact in Ericsson was a service delivery organization. The organization
is responsible for orchestrating Ericsson’s different activities to attain efficient software
deliveries to customers and align the delivery process with their needs. Recently, they have
started an initiative to create a strategy for using CI/CD to streamline the software delivery
process, focusing on implementing a universal pipeline for delivering the Product A.

4.1.2 Data Collection

We organized the data collection activities in Ericsson between September 2020 and March
2021, see Table 3. In addition to meetings and workshops, Ericsson provided access to a
large number of slide decks containing information about their ongoing work on streamlin-
ing software delivery. We used these resources to prefill our inventory spreadsheet and steer
discussions in the meetings.

Due to the size of the product and large number of stakeholders involved, the inventory
spreadsheet was filled in incrementally. Stakeholders were able to provide information only
in their respective areas of responsibility. In one of the final workshops we gathered a larger
group of stakeholders to discuss the overall picture. We also jointly developed a mind map
capturing the organizational goals, links to specific engineering challenges to be solved,
pertinent continuous practices, and obstacles on implementing the practices.

We summarizing the insights from Ericsson illustrating their case in the following sub-
sections. We discuss the mapping between our empirical findings and state-of-the-art in
Section 4.4.

4.1.3 Steps of the Software Delivery

The software delivery in Ericsson is a multi-stage process. It can be summarized as follows:

1. Individual components are developed using a varying degree of continuous develop-
ment practices. The latest components are placed in a repository for further integration.

157 Page 12 of 40 Empir Software Eng (2022) 27: 157

Table 3 Data collection activities with Ericsson

Date Activity Industry
participants

Duration Purpose, data collected

2020-09-08 Meeting 2 1h Introductory presentation and discussion of
the study

2020-09-09 Workshop 1 1h Capture their CI/CD aims and strategy, inventory

2020-10-07 Interview 2 1h A follow-up on their aims and strategy

2020-10-09 Interview 2 2h Inventory of CI/CD benefits and challenges

2020-10-13 Workshop 2 1.5h Relevance of CI/CD benefits in their context

2020-11-13 Meeting 2 0.5h Workshop planning

2021-03-03 Workshop 8 2h Capturing multiple stakeholder perspectives
on software delivery issues and potential
solutions, creating a mind map of orgaiza-
tional goals, challenges irt. CI/CD

2021-03-22 Meeting 1 1h Presentation of the intermediate results, dis-
cussion

2. Service delivery organization combines different components into customer solutions.
Frequently, customer solutions contain bespoke customizations.

3. Customer solutions are deployed in a staging environment where both software vendors
and customers verify the software.

4. Once accepted, a solution is taken to customers’ premises for further validation, con-
figuration, and integration with customers’ systems. It may take several months and up
to a year until an accepted solution goes live.

5. There is a predefined update schedule determining when customers should be prepared
for upgrading their solution. The interval between upgrades spans multiple years.

More often than not, transitions between steps of the software delivery are a pull rather
than push operation. The reasons include ensuring control and stability of staging and oper-
ational environments and service level agreements between the vendor and customers. For
similar reasons, verification of releases, especially regarding compliance and non-functional
qualities, is performed manually and as a separate step before deployment.

4.1.4 Aim I - Rapid Delivery of New Technologies

Ericsson aims to remain on top of the market with the rapid delivery of innovative offerings.
Emerging technologies such as 5G will require software vendors to react more rapidly to
new market needs and provide innovative solutions on short notice. The current release
pace is not sufficient to address this objective. Specifically, the preparation (by vendor) and
adoption (by customer) of releases are overly time-consuming, complex, and expensive. As
one interviewee reflected:

“With 5G we must be much faster in rolling out new services. The technology is going
to be much more dynamic. We can’t wait 6 months to deliver something and then 6 more
months to get feedback.”

To address this objective, the study participants identify two areas of improve-
ment. Firstly, rapid software delivery depends on streamlined development supported

Page 13 of 40 157Empir Software Eng (2022) 27: 157

by automation—secondly, efficient solution level integration and deployment to staging
environments.

Continuous development is practiced to a significant extent. Test, build, and low-level
integration is largely automated already. However, due to compliance requirements and
legacy processes, some verification steps are performed manually and create a bottleneck at
the end of the development phase.

Solution level integration, development, and staging are implemented to deliver highly
customized solutions and to jointly with a customer to verify that a release is stable and
reliable for adoption. Much time is spent ensuring the reliability of the release and waiting
for the proper launch window to upgrade customers’ systems.

The customer systems are often piecemeal solutions consisting of various components
from various vendors and in-house developments. Thus, upgrading part of a system may
require upgrades and additional developments in 3rd party components. An important part
of Ericsson’s offering is to provide solutions that fit within existing customer systems. There
is an ongoing initiative to explore to what extent the solution automation can be streamlined
and automated. As an interviewee described customer solutions:

“Customers usually develop their systems over time and look for what is more economical
for them. A typical solution contains some of our components, components from other
vendors, and some of their own software. Ericsson puts in a lot of effort to make sure our
components are compatible with whatever customers have built.”

Ericsson needs to implement and streamline their continuous development, deployment,
and, potentially delivery, practices to fulfill this aim. However, state-of-the-art offers little
support for practicing CI/CD in complex regulated environments; see rows 1–3 in Table 4.

4.1.5 Aim II - Universal Pipeline to Deliver Software

There is an aim to simplify and unify the software delivery process for different offerings
and customers. The current software delivery process is tailored to the specifics of individ-
ual offerings and the needs of specific customers. Thus, there is little standardization and,
consequently, much room for optimization.

Interviewees identify that the product architecture, for example, component scopes
and interfaces, are not optimal for continuous solution level integration. The architectural
shortcomings increase solution complexity, thus making efficient integration and delivery
difficult. As described by a workshop participant:

“We have a “red team” of our top engineers. Initially it was planned only for incident
response. However, they are involved all the time whenever we are preparing a release.”

To remedy this, Ericsson needs to evolve their architectures with CI/CD in mind. Lit-
erature suggests that cloud-native components with few interdependencies perform best.
However, to what extent investments in evolving existing products to fit well with CI/CD
can be justified is unknown.

4.1.6 Aim III - New Business Models

More frequent software deliveries and access to feedback could enable closer cooperation
between Ericsson and customers. Thus, enabling new collaborative business models.

157 Page 14 of 40 Empir Software Eng (2022) 27: 157

Ta
bl
e
4

C
om

pa
ri

so
n

of
le

ss
on

s
fr

om
st

at
e-

of
-t

he
-a

rt
an

d
st

at
e-

of
-p

ra
ct

ic
e

(C
as

e
I)

#
A

im
s

L
es

so
ns

fr
om

st
at

e-
of

-t
he

-a
rt

L
es

so
ns

fr
om

st
at

e-
of

-p
ra

ct
ic

e

1
I

Pr
ac

tic
e

co
nt

in
uo

us
so

ft
w

ar
e

in
te

gr
at

io
n

to
en

ab
le

co
nt

in
uo

us
de

pl
oy

m
en

t
(H

um
bl

e
an

d
K

im
20

18
;

K
im

et
al

.2
00

8;
M

ey
er

20
14

).

Pr
od

uc
tc

om
pl

ex
ity

,p
er

-c
us

to
m

er
cu

st
om

iz
at

io
ns

,a
nd

de
pe

n-
de

nc
ie

s
to

3r
d

pa
rt

y
co

m
po

ne
nt

s
hi

nd
er

co
nt

in
uo

us
in

te
gr

a-
tio

n.
E

ns
ur

in
g

co
m

pl
ia

nc
e

an
d

re
lia

bi
lit

y
of

a
co

m
pl

ex
pr

od
uc

t
re

qu
ir

es
su

bs
ta

nt
ia

lm
an

ua
le

ff
or

t.

2
I

Pr
ac

tic
e

co
nt

in
uo

us
de

pl
oy

m
en

t
to

m
ak

e
la

te
st

fe
at

ur
es

re
ad

y
fo

r
im

m
ed

ia
te

de
liv

er
y

(F
itz

ge
ra

ld
an

d
St

ol
20

17
;C

he
n

20
15

)
L

at
es

t
fe

at
ur

es
ar

e
en

ab
le

d
by

cu
st

om
er

s
in

te
gr

at
in

g
th

e
ne

w
fe

at
ur

es
in

th
ei

r
so

ft
w

ar
e

ec
os

ys
te

m
.

D
if

fe
re

nt
or

ga
ni

za
tio

ns
w

or
k

in
di

ff
er

en
tp

ac
es

le
ad

in
g

to
on

e
or

ga
ni

za
tio

n
w

ai
tin

g
fo

r
an

ot
he

r.

3
I

Pr
ac

tic
e

co
nt

in
uo

us
de

liv
er

y
fo

r
fa

st
er

tim
e-

to
-m

ar
ke

t
(H

um
-

bl
e

an
d

K
im

20
18

;C
he

n
20

15
)

A
cc

es
s

to
cu

st
om

er
en

vi
ro

nm
en

ts
fo

r
so

ft
w

ar
e

de
liv

er
ie

s
ar

e
ou

t
of

th
e

qu
es

tio
n

du
e

to
se

rv
ic

e
le

ve
l

ag
re

em
en

ts
,

do
m

ai
n

co
m

pl
ex

ity
,s

ec
ur

ity
,a

nd
re

lia
bi

lit
y

co
nc

er
ns

.

4
II

A
rc

hi
te

ct
th

e
pr

od
uc

tf
or

co
nt

in
uo

us
de

liv
er

y
(C

he
n

20
18

)
R

ef
ac

to
ri

ng
a

la
rg

e
ex

is
tin

g
pr

od
uc

tt
o

st
at

el
es

s
m

ic
ro

-s
er

vi
ce

s
re

qu
ir

es
su

bs
ta

nt
ia

le
ff

or
ta

nd
cr

ea
te

s
m

an
y

ri
sk

s.

5
II

Im
pl

em
en

ts
of

tw
ar

e
de

liv
er

y
pi

pe
lin

e
(H

um
bl

e
an

d
K

im
20

18
)

W
ith

cu
st

om
er

-s
pe

ci
fi

c
pr

oc
es

s,
pr

od
uc

t,
an

d
se

rv
ic

e
le

ve
l

ag
re

em
en

tc
us

to
m

iz
at

io
ns

,t
he

so
ft

w
ar

e
ve

nd
or

ne
ed

s
to

m
ai

n-
ta

in
a

cu
st

om
iz

ed
pi

pe
lin

e
fo

r
ea

ch
cu

st
om

er
.

6
II

I
A

do
pt

C
I/

C
D

as
th

e
on

ly
m

ea
ns

fo
rs

of
tw

ar
e

de
liv

er
y

(F
itz

ge
r-

al
d

an
d

St
ol

20
14

)
U

pg
ra

di
ng

ex
is

tin
g

cu
st

om
er

s
to

C
I/

C
D

is
a

su
bs

ta
nt

ia
lu

nd
er

-
ta

ki
ng

an
d

m
ay

re
qu

ir
e

su
pp

or
tin

g
m

ul
tip

le
so

ft
w

ar
e

de
liv

er
y

m
et

ho
ds

.
T

hu
s,

ad
di

ng
a

lo
t

of
or

ga
ni

za
tio

na
l

an
d

pr
od

-
uc

t
co

m
pl

ex
ity

an
d

co
st

.
To

w
ha

t
ex

te
nt

be
ne

fi
ts

fr
om

su
ch

up
gr

ad
e

ex
ce

ed
th

e
co

st
s

is
di

ff
ic

ul
tt

o
ca

lc
ul

at
e

7
IV

C
ol

le
ct

pr
od

uc
t

us
ag

e
da

ta
,t

el
em

et
ry

,a
nd

cu
st

om
er

fe
ed

ba
ck

to
st

ee
r

fu
rt

he
r

pr
od

uc
t

di
re

ct
io

n
(H

um
bl

e
an

d
K

im
20

18
;

Pr
ov

os
ta

nd
Fa

w
ce

tt
20

13
)

C
us

to
m

er
s

ar
e

no
tr

ea
dy

to
sh

ar
e

an
y

liv
e

da
ta

to
pr

ot
ec

tt
he

ir
bu

si
ne

ss
se

cr
et

s
an

d
ho

no
r

th
ei

r
ag

re
em

en
ts

w
ith

en
d-

us
er

s.
C

ur
re

nt
pr

od
uc

tr
oa

d-
m

ap
s

la
ck

th
e

fl
ex

ib
ili

ty
to

be
fr

eq
ue

nt
ly

ad
ju

st
ed

du
e

to
m

an
y

de
pe

nd
en

ci
es

on
re

gu
la

tio
ns

,s
ta

nd
ar

ds
,

an
d

ot
he

r
ro

ad
-m

ap
s.

Page 15 of 40 157Empir Software Eng (2022) 27: 157

Our study participants reflect that this is a very vague aim that needs more details to judge
whether it is relevant in the telecom domain. Further discussion revealed that developing
new business models must support the existing offerings until all customers are upgraded
to the new models. Some customers may never accept continuous deliveries. This creates a
potential situation when the organization offers the same product with continuous deliveries
and plan-driven software releases. Quoting one participant:

“Sure, it sounds exciting! However, telecom domain has been very slow in adopting
innovations in business models. Largely, because we do what operators want and some
operators do not really want any innovation.”

Support for parallel business models and software delivery methods adds new requirements
and complexity throughout the organization. For example, software must be developed with
support for both the old and the new delivery method. Both delivery methods need to be
synced to ensure consistency in terms of product features and quality. Customer support
must be prepared to assist in both scenarios.

State-of-the-art assumes that the product is always delivered continuously (or release-based)
and offers little support for transitioning from one model to another, see row 6, in Table 4.

4.1.7 Aim VI - Data-Driven Decision Making

Ericsson aims to benefit from data-driven techniques in improving both internal processes
and customer offerings. To attain this objective, Ericsson needs to implement metrics to
measure the software delivery process and establish means of getting access to product
telemetry.

The study participants reveal that there have been attempts to gain access to product
telemetry and usage data. However, customers are unwilling to share any data to protect
their business secrets and the privacy of end-users. As one participant reflected:

“We have had endless discussions to get access to some telemetry. However, our
customers see that as a risk rather than an opportunity.”

Ericsson has only partial control over the software delivery pipeline. The software vendor
controls the pipeline internally until the latest release is ready for delivery. However, the
vendor has limited control of whether customers upgrade to the latest version and no control
or access to software once it is operational. One interviewee shared an old but relevant
anecdote:

“Once in the ninethies we delivered a new solution with both hardware and software
to an operator. It cost them a lot. Our sales teams tried to follow up and learn how sat-
isfied the customer is. However, no useful information came back. Finally, six months
later we sent a representative to investigate. It turned out that the operator had not
even unpacked the boxes yet.”

Recently with the adoption of cloud-based solutions, the situation has improved.
However, the challenge of gathering data from customers is still relevant.

4.1.8 What is Needed to Support Retrofitting Product Product A with CI/CD Pipeline?

Analysis of Case I shows that retrofitting a product with a CI/CD pipeline is a substan-
tial undertaking and introduces many business risks in addition to technical challenges.

157 Page 16 of 40 Empir Software Eng (2022) 27: 157

For example, from customers’ perspective switching to a new product release model
and renegotiating service agreement may trigger consideration of alternative offerings by
competitors.

Comparing lessons from state-of-the-art and Case I, see Table 4, we identify the
following areas for support.

Component Granularity and Flexibility Current granularity of components is not well
suited to support different configurations of customer solutions. Thus, there is additional
bespoke development at each release to tailor the solution to customer needs, see rows 1-4
in Table 4.

Component boundaries and limits of flexibility need to be revised to streamline the
release process and keep bespoke development at minimum.

Support for Different Parallel Delivery Models Not all customers could be ready for
changes in the product and its delivery method. Customers have built their own and
tightly coupled solutions on top of Ericsson’s offerings. Thus, any changes in architecture,
components, interfaces, etc., will have a substantial impact, see rows 1–2,4–6 in Table 4.

Currently, customers rely on a predefined release pace with ample time to prepare other
systems and their business processes for integration with the new release. Thus, different
customers may require different release paces and extent of backward compatibility. Conse-
quently, Ericsson must be prepared to roll out any changes in components and release pace
softly while maintaining full support for customers who do not wish to change right away.

Ericsson needs to balance investments, risks, and potential benefits to decide whether it
is worth the investment to change the product architecture and upgrade current customers
to the improved software delivery model. We summarize the decision in Table 5.

Our interviewees state that the organization has little appetite for the risk of losing exist-
ing customers. Thus, the focus is set to adopt CI/CD with minimal disruption to customers.
However, the objectives to change the software delivery model without affecting customers
are contradictory. More understanding of the customers’ perspective and willingness to
switch to continuous software deliveries is needed.

4.2 Case 2: Telia Company

4.2.1 Research Context

Telia Company AB is a telecommunications services provider in Sweden. The company
provides telecommunications services to private and business customers. To serve its
customers, the company integrates in-house built software with off-the-shelf products.

Table 5 CI/CD investment, benefit, opportunity and risk conundrum in Case I

Investments of refactoring components to
provide more streamlined integration of cus-
tomer solutions, streamline software deliv-
ery process.

Benefits of faster and cheaper software
releases from the vendor’s perspective.

Risk of customers switching to competitors’
offerings when pushed to adopt new archi-
tectures and release pace with insufficient
support and leeway.

Opportunities to deliver new features faster
and reducing the effort of accepting new
releases from customers viewpoint.

Page 17 of 40 157Empir Software Eng (2022) 27: 157

The current release pace is slow due to domain complexities and dependencies on other
systems with long release cycles. However, there is an ongoing initiative to improve internal
efficiency and speed up software releases. The initiative is not specific to CI/CD. However,
continuous software delivery is considered to be one of the candidate solutions.

The company had selected one of their products (from now on, Product B) as a pilot
case for adopting continuous engineering practices. The product is a software layer between
other systems supporting an exchange of text messages. The product is stable, mature, and
most developments concern maintenance updates and occasional bug fixes. The product is
not exposed to customers directly. Instead, it enables features for other products with user
interfaces.

4.2.2 Data Collection

We conducted several workshops with the product team to understand their objectives, moti-
vation, constraints, and challenges in adopting CI/CD practices. The product manager, two
senior developers, delivery manager, and operations specialist where the core participants.
The data collection took place between September, 2020 and April 2021, see Table 6.

4.2.3 Steps of Software Delivery

Product B is relatively small and developed by a loose team of few developers. Other
stakeholders include an operations team responsible for deploying and ensuring the smooth
operation of the product. The steps of delivering Product B are:

1. Developers receive issue tickets from the operations team and implement necessary
changes. The flow of tickets is slow, and developers prepare two releases a year.

2. Finished software is complemented with extensive instructions for deployment and
operation and forgo several rounds of testing.

3. Once a release is ready, operations teams take over and deliver the release to customers
with support from the development team.

4.2.4 Aim I - Simplify the Development and Build Process

Due to strong coupling with other systems, Product A requires a complex environment
for development and testing. Setting up the local environment and ensuring the correct
configuration for development and testing is a complicated task. The team aims to benefit
from containerization, build scripts, and similar practices to alleviate software dependency
management issues. As one participant summarized the challenge:

“It used to take about two weeks to set up a development environment from scratch. The
product has many intricate dependencies that are documented nowhere. Most of the time
is spend on troubleshooting compatibility issues. With Docker containers we do not have
this issue anymore.”

The slow-release pace of two releases per year has created an issue of knowledge preser-
vation. Over long periods of inactivity on Product B, developers are assigned to other
tasks or may have left the company. Every small change requires context switching and re-
learning the specifics of the product. As a consequence, developers spend substantial time
reading documentation and setting up individual development environments.

157 Page 18 of 40 Empir Software Eng (2022) 27: 157

Table 6 Data collection activities with Telia

Date Activity Industry
participants

Duration Purpose, data collected

2020-09-03 Workshop 9 2h Introductory presentation and dis-
cussion of the study

2020-09-03 Workshop 2 2h Introduction into product/domain specifics

2020-09-09 Meeting 3 0.5h Planning of workshops, setting focus areas

2020-09-17 Workshop 8 2h Inventory of their CI/CD practices

2021-01-14 Workshop 5 2h Capture and break down their orga-
nizational aims irt. CI/CD

2021-01-25 Meeting 1 0.5h Presentation of the intermediate results

2021-04-26 Meeting 7 2h Workshop to explore CI/CD from
customers perspective

4.2.5 Aim II - Reduce the Complexity of Software Upgrades

Currently, every release of Product B is complemented with extensive documentation.
Preparing this documentation is a substantial undertaking. The exact audience and value
of the documentation are unclear to the development team. However, some documentation
(e.g., installation instructions, test cases) is required as software artifacts are passed from
development to operations. As described by one interviewee:

“Deployment of the product is not straightforward and operations often need our support
to get things going even with all the documentation we provide. I think with automated
scripts and containers we can make deliveries easier and leave less room for issues.”

The software vendor aims to streamline software delivery process by tearing down
organizational silos and closer collaboration between development and operations. Such a
move should reduce the need for extensive documentation and streamline the development-
operations process as there would be one team responsible for the whole process.

Current customer agreements determine the software delivery process and do not support
frequent releases. Furthermore, customers are not eager to receive frequent software deliv-
eries. They mostly contain maintenance updates with little perceived value and increase the
risk of system outages and other issues. The software vendor aims to simplify the release
adoption process from the customers’ viewpoint. One participant reflected on this:

“The upgrades does not provide much new features, thus there is little incentive to
upgrade right away. We have to send a notice weeks in advance to let customers prepare
for an upgrade. We know very little what it takes for them to upgrade.”

4.2.6 Aim III - Improve Software Quality

Currently, Product B forgo several rounds of testing in different test environments before a
release. Although some tests are automated, there is considerable potential to benefit from
automated testing and verification practices.

Some tests are difficult to automate because the tests are complex, expensive to run, and
prone to distrust in automated testing practices. These tests remain as a bottleneck at the
end of the otherwise automated integration and verification pipeline.

Page 19 of 40 157Empir Software Eng (2022) 27: 157

Due to the high turnaround of developers, the product had eroded and accumulated some
technical debt. To support the refactoring effort, the team wishes to benefit from automated
and continuous verification practices.

The software vendor aims to benefit from continuous integration and deployment prac-
tices to remove bottlenecks of manual testing, simplify the release process, and improve the
overall quality of the product. As stated by one interviewee:

“We have started automating some tests and it shows results. However, we still have
some pretty heavy manual tests at the end. It would be good to automate them as well.
However, we feel that sometimes there is distrust in automated tests and stakeholders are
more confident with manual testing.”

4.3 What is Needed to Support Retrofitting Product B with a CI/CD Pipeline?

Currently, there are no inherent obstacles to retrofitting Product B with a continuous integra-
tion pipeline. However, the team reflects that by adding new practices and ways of working,
they need to revise and remove any obsolete activities. For example, multiple testing rounds
on different environments are no longer relevant if the product is containerized. Similarly,
deployment scripts can replace installation instructions.

Identification of obsolete steps in development, integration, and deployment is essential
to avoid unnecessary investments in automation. However, changes in the software delivery
process need to be communicated and explained to all stakeholders.

Our interviewees admitted that they mainly consider the engineering perspective. The
interests of other stakeholders, namely customers and adjacent products, have not been
considered. Further work is needed to understand software deliveries from customers per-
spective and to what extent continuous software deliveries reduces the effort to adopt a new
software release.

Comparing reflections from participants with state-of-the-art, see Table 7, we observe
that practice agrees with literature. Specifically, continuous practices reduces the complex-
ity of software engineering and removes tedious setup and configuration steps, and reduces
the need for detailed documentation.

Continuing adoption of CI/CD, needs to explore the interests of other stakeholders.
For example, exploring the potential of aligning software delivery pipelines across the
whole organization. Thus, creating a coherent software delivery pipeline that can be further
extended to customers organizations. We summarize the investment-benefit conundrum in
Table 8.

The CI/CD initiative in the Product B was intended to pilot continuous software deliv-
ery within the organization to gauge its further potential. Thus, attaining more than “just
enough” continuous capabilities could be a worthy investment to gain a complete picture of
the potential benefits, investments and pitfalls of CI/CD in their specific context.

4.4 Connection to State-of-the-Art

A substantial amount of research addresses individual building blocks of a CI/CD pipeline,
e.g., test automation (Wiklund et al. 2017; Raulamo-Jurvanen et al. 2017; Kasurinen et al.
2010). However, a big picture perspective is needed to identify all relevant components of
a pipeline (RQ1) and understand how individual components of a pipeline fit together to
analyze their benefits (RQ2) (Frank 2000).

157 Page 20 of 40 Empir Software Eng (2022) 27: 157

Ta
bl
e
7

C
om

pa
ri

so
n

of
le

ss
on

s
fr

om
st

at
e-

of
-t

he
-a

rt
an

d
st

at
e-

of
-p

ra
ct

ic
e

(C
as

e
II

)

#
A

im
s

L
es

so
ns

fr
om

st
at

e-
of

-t
he

-a
rt

L
es

so
ns

fr
om

st
at

e-
of

-p
ra

ct
ic

e

1
I

Pr
ac

tic
e

co
nt

in
uo

us
in

te
gr

at
io

n
to

im
pr

ov
e

so
ft

w
ar

e
de

liv
er

-
ie

s
(S

ha
hi

n
et

al
.2

01
7)

Sm
al

l
an

d
lo

ca
l

im
pr

ov
em

en
ts

of
au

to
m

at
io

n
an

d
to

ol
in

g
ca

n
su

bs
ta

nt
ia

lly
si

m
pl

if
y

ot
he

rw
is

e
co

m
pl

ex
co

nf
ig

ur
at

io
ns

w
ith

ou
ti

m
pl

em
en

tin
g

fu
ll

co
nt

in
uo

us
in

te
gr

at
io

n.

2
I,

II
Id

en
tif

y
an

d
m

ai
nt

ai
n

kn
ow

le
dg

e
ar

tif
ac

ts
to

su
pp

or
t

kn
ow

l-
ed

ge
di

st
ri

bu
tio

n(
O

ur
iq

ue
s

et
al

.2
01

9)
B

ui
ld

an
d

co
nf

ig
ur

at
io

n
sc

ri
pt

s
ar

e
co

nc
is

e
an

d
up

to
da

te
pr

od
uc

td
oc

um
en

ta
tio

n.

3
II

M
ak

e
so

ft
w

ar
e

de
liv

er
ie

s
m

or
e

ef
fi

ci
en

t
by

te
ar

in
g

do
w

n
bo

un
da

ri
es

be
tw

ee
n

de
ve

lo
pm

en
t

an
d

op
er

at
io

ns
(Z

hu
et

al
.

20
16

)

Te
ar

in
g

do
w

n
bo

un
da

ri
es

re
du

ce
s

th
e

ne
ed

fo
r

do
cu

m
en

ta
tio

n,
th

us
si

m
pl

if
yi

ng
th

e
re

le
as

e
pr

oc
es

s.

4
II

U
nn

ec
es

sa
ry

st
ep

s
in

so
ft

w
ar

e
en

gi
ne

er
in

g
ar

e
w

as
te

(P
op

-
pe

nd
ie

ck
et

al
.2

01
1)

W
he

n
tr

an
si

tio
ni

ng
to

co
nt

in
uo

us
de

ve
lo

pm
en

t
an

d
in

te
gr

a-
tio

n,
ex

is
tin

g
pr

ac
tic

es
an

d
w

ay
s

of
w

or
ki

ng
ne

ed
to

be
ev

al
ua

te
d.

St
ep

s
th

at
do

no
t

pr
ov

id
e

va
lu

e
sh

ou
ld

be
el

im
i-

na
te

d.

5
II

I
D

ev
el

op
an

au
to

m
at

ed
te

st
fr

am
ew

or
k

to
en

su
re

th
e

qu
al

ity
of

so
ft

w
ar

e
(S

ha
hi

n
et

al
.2

01
7)

R
ob

us
t

te
st

fr
am

ew
or

k
he

lp
s

to
pr

es
er

ve
pr

od
uc

t
kn

ow
le

dg
e

an
d

w
or

ks
as

a
sa

fe
ty

ne
t

to
m

iti
ga

te
ri

sk
s

of
re

fa
ct

or
in

g
an

d
sp

or
ad

ic
de

ve
lo

pm
en

t.

Page 21 of 40 157Empir Software Eng (2022) 27: 157

Table 8 CI/CD investment, benefit, opportunity and risk conundrum in Case II

Investments in automation, tooling, streamlining
software delivery processes, reorganization

Benefits of local knowldege preservtion, efficiency,
and waste minimization

Risk of wasting resources on attaining irrelevant
software delivery capabilities

Opportunities to free-up resources for more value
adding tasks, and potentially increasing the appetite
for new features; showcase the CI/CD to other parts
of the organization and leading the change towards
more efficient software deliveries.

Inspired by Fitzgerald et al. (Fitzgerald and Stol 2017), we develop a conceptual model visu-
alizing state-of-the-art CI/CD pipeline, see Fig. 2. Importantly, the model is based on state-of-
the-art in the area. We use it as an overview and tool in our industry workshops to aid discus-
sions of costs, benefits, relevance, and dependencies between different parts of the pipeline.

In the figure, we denote the main pipeline steps with rectangular blocks. With dashed
boxes, we illustrate the key benefits and investments associated with each step. The flow
through the pipeline is denoted with arrows. Components of the pipeline are organized by
the four main levels of stakeholders in a CI/CD pipeline:

– Level I: Engineering organization produces software. The primary objective of an
engineering organization is to efficiently, in terms of time and resources, produce
software according to the product planning and other organizational objectives and
constraints (Fitzgerald and Stol 2014).

– Level II: Product planning organization analyzes various inputs and sets objectives for
further product development. The planning organization’s primary objective is to pre-
pare plans on leveraging software engineering to attain strategic objectives, e.g., market
share, profitability, and outperform competition (Fitzgerald and Stol 2014; Humble and
Kim 2018).

– Level III: Operations organization deploys and provides the software to the end-
users. The primary objective of product operations is to deliver quality service to
end-users (Fitzgerald and Stol 2014).

– Level IV: End-user organization uses and benefits from the software. The primary
objective of this stakeholder is to maximize perceived value from the software (Fitzger-
ald and Stol 2014; Boehm 2003).

These stakeholders can be organized into different organizational structures. The orga-
nizational configuration is important because more involved organizations imply more
boundaries, need to synchronize different paces, aiming for different objectives, unclear
areas of responsibility, and other potential impediments to end-to-end continuous software
delivery (Serrat 2017; Romano Jr et al. 2010).

The conceptual model shows an idealized state-of-the-art scenario. Analysis of the two
industrial cases shows that adoption of the pipeline components varies, see Table 9. We
elaborate details of the cases in Sections 4.1 – 4.2. Further sections elaborate state-of-the-art
of each component.

4.4.1 Continuous Planning

Continuous planning, see Step #1, in Fig. 2, refers to a holistic activity involving multiple
stakeholders to create lightweight, dynamic, and open-ended product plans. The planning

157 Page 22 of 40 Empir Software Eng (2022) 27: 157

Table 9 Mapping between the steps of CI/CD, state-of-the-art, and state-of-practice

Component References Case I Case II

1 Continuous planning (Fitzgerald and Stol 2014; Lehtola et al.
2009; Provost and Fawcett 2013)

Irrelevant Irrelevant

2 Continuous development (Humble and Kim 2018; Tómasdóttir
et al. 2017; Williams et al. 2003; Stol-
berg 2009; Shahin et al. 2017; Jiang
et al. 2017; Kim et al. 2008; Hasselbring
and Steinacker 2017; Del Rosso 2006;
Riaz et al. 2009; O’Connor et al. 2017;
Hilton et al. 2016; Hilton et al. 2017)

Confirmed Confirmed

3 Continuous deployment (Fitzgerald and Stol 2017; Neely and
Stolt 2013; Feitelson et al. 2013)

Planned Planned

4 Continuous delivery (Chen 2015; Humble and Kim 2018;
Claps et al. 2015; Kuula and Haapasalo
2017; Shahin et al. 2017)

Unclear Planned

5 Continuous use (Chen 2015; Gefen et al. 2003; Susarla
et al. 2009; Yaman et al. 2016)

Confirmed Confirmed

6 Continuous monitoring (Ehlers et al. 2011; van Hoorn et al.
2009; Olsson and Wnuk 2018; Johnson
et al. 2005)

Irrelevant Confirmed

is aimed to swiftly address and adjust to new market opportunities, changes in a business
environment, and technologies (Fitzgerald and Stol 2014; Lehtola et al. 2009).

Continuous planning depends on access to immediate customer feedback and prod-
uct telemetry to support decision making and organizational flexibility to make necessary
adjustments rapidly, see Table 10. Without access to information, the planning activity falls
short of delivering precise responses. Lack of organizational flexibility hinders the imple-
mentation of the plans as they may become outdated before the organization is able to
react (Provost and Fawcett 2013; Li et al. 2010).

The benefits of continuous planning concern faster response time to any inputs, thus
helping the organization to be more flexible, see Table 11.

Investments in continuous planning concern the costs of more frequent analysis, plan-
ning, and coordination, see Table 12, and investments in data collection and analysis, see
Table 26.

Table 10 Assumptions associated with continuous planning

Assumption References Case I Case II

1 Customers and end-users are ready to
provide detailed feedback and share
product usage data (telemetry) as input
for planning

(Isaak and Hanna 2018;
Zhang 2018)

Irrelevant Confirmed

2 The release cycles and time-to-feedback
are short enough to provide continuous
input for planning the next cycle

(Humble and Kim 2018) Irrelevant Irrelevant

3 The organization is flexible to quickly
adjust any plans on short notice

(Provost and Fawcett
2013; Li et al. 2010)

Irrelevant Unclear

Page 23 of 40 157Empir Software Eng (2022) 27: 157

Table 11 Benefits associated with continuous planning

Benefit Beneficiary References Case I Case II

1 Less wasted resources on build-
ing irrelevant features

Organization (Claps et al. 2015;
Fabijan et al. 2017)

Irrelevant Irrelevant

2 More flexibility from shorter
planning cycles

Organization (Lohan 2013; Lehtola
et al. 2009)

Irrelevant Irrelevant

3 Improved, data-driven decision
making

Organization (Provost and Fawcett
2013; Fabijan et al.
2017)

Irrelevant Irrelevant

4.4.2 Continuous Development

Continuous development, see Step #2 in Fig. 2, comprises activities to produce software.
Development starts by receiving plans or tasks from the product planning organization,
turning these plans into working software, and returning a ready-to-be-deployed software.

The continuity of development is achieved by minimizing any waiting in the process, for
example, downtime until test results are in or shelving completed features until specified
release date. Another important characteristic of continuity is to minimize dependencies
between tasks and developers, enabling scalability through parallelization of development
tasks (Humble and Kim 2018).

The literature identifies several activities that constitute continuous development.

Continuous Verification see Step #2.1, in Fig. 2, refers to running various test suites fre-
quently and in parallel with development. Practices such as using code linters (Tómasdóttir
et al. 2017), following test-driven development, and running unit tests (Williams et al. 2003;
Stolberg 2009) help to reduce the time between a defect are introduced and discovered.
Source code analysis tools and pull-request review process help to ensure that the code con-
forms to the best practices and organizational standards (Shahin et al. 2017; Jiang et al.
2017)

Continuous integration see Step #2.2, refers to frequent integration of software compo-
nents and running of higher-level tests to ensure software as a whole work as intended and
enabling continuous deployment, see Step # 3, (Pinto et al. 2018; Kim et al. 2008; Meyer
2014; Hilton et al. 2017; Hilton et al. 2016; Felidré et al. 2019).

Continuous Architecture see Step #2.3, refers to a frequent assessment of software archi-
tecture to control software decay and adjusting the architecture to suit new and evolving
scenarios (Del Rosso 2006; Riaz et al. 2009). The right software architecture is essential to
support other CI/CD activities. For example, modularization of software reduces the need

Table 12 Investments associated with continuous planning

Investment References Case I Case II

1 Cost of more frequent planning and coordination (Humble and Kim 2018) Irrelevant Irrelevant

2 Cost data analysis to support decision making (Provost and Fawcett 2013) Irrelevant Irrelevant

157 Page 24 of 40 Empir Software Eng (2022) 27: 157

Table 13 Assumptions associated with continuous development

Assumption References Case I Case II

1 Product architecture is modular and
permits permits fast and indepen-
dent modification, building, testing,
and deployment of individual com-
ponents

(Balalaie et al. 2016;
Sturtevant 2017)

Irrelevant Confirmed

2 Software development teams are
independent and cross-functional
enabling parallelization of develop-
ment tasks

(Humble and Kim 2018) Unclear Irrelevant

3 Software test, build, integration and
quality assurance steps can be auto-
mated to a significant extent

(Felidré et al. 2019;
Senapathi et al. 2018;
Pinto et al. 2018)

Unclear Planned

to coordinate between teams working on different parts of the software, simplifies verifica-
tion, and enables quick deployment, Steps 3-4 in Fig. 2, of a part of the system (O’Connor
et al. 2017; Humble and Kim 2018; Chen 2018).

Continuous Configuration Management see Step #2.4, refers to a set of practices to
ensure that all assets and routines for building and running software are versioned and
scripted. The practices include source code versioning, isolating software instances and their
dependencies in containers, build scripts, automated deployment to dedicated build/staging
environment, and so on (Hasselbring and Steinacker 2017).

Continuous Non-functional Testing see Step #2.5, refers to frequently verifying non-
functional aspects of software (Yu et al. 2020).

State-of-the-art identifies numerous benefits of continuous development. Most benefits
arise from implementing a robust and automated process for software verification. Full
automation requires software to follow certain enforced standards (such as modularization,
testability, unit test coverage). As a result, the overall software quality increases, and less
manual effort is needed to make sure software works as intended. Thus, providing engineers
with the flexibility to dedicate their time to more value-adding activities, see Table 14.

Beneficiaries include developers who experience increased productivity and support for
their tasks, the team experiencing improved culture and collaboration, product improving
internal and external quality aspects, and the organization.

On the investments side, there are substantial investments to create automated test suites,
integration environments, tooling, and test data. However, state-of-the-art offers limited per-
spective into estimating the costs of test automation and test data management, see Table 15.

Continuous development relies on test automation. Thus the ability to automate most, if
not all, QA steps is a prerequisite, see Table 13.

4.4.3 Continuous Deployment

Continuous deployment, see Step #3 in Fig. 2 refers to a practice to continuously deploy
the latest software to a staging environment and keep it ready for immediate delivery. The
continuous deployment follows continuous development when software is integrated and
passes all tests (Fitzgerald and Stol 2017).

Page 25 of 40 157Empir Software Eng (2022) 27: 157

Ta
bl
e
14

B
en

ef
its

as
so

ci
at

ed
w

ith
co

nt
in

uo
us

de
ve

lo
pm

en
t

#
B

en
ef

it
B

en
ef

ic
ia

ry
R

ef
er

en
ce

s
C

as
e

I
C

as
e

II

1
R

ed
uc

ed
tim

e
be

tw
ee

n
de

fe
ct

in
tr

od
uc

tio
n

an
d

di
sc

ov
er

y
D

ev
el

op
er

(W
ill

ia
m

s
et

al
.2

00
9;

H
um

bl
e

an
d

K
im

20
18

)
C

on
fi

rm
ed

Pl
an

ne
d

2
B

en
ef

it
of

of
fl

oa
di

ng
he

av
y

in
te

gr
at

io
n/

bu
ild

ta
sk

s
fr

om
de

ve
lo

pe
r

m
ac

hi
ne

s
to

de
di

ca
te

d
in

te
gr

at
io

n
en

vi
ro

nm
en

t
D

ev
el

op
er

(H
ilt

on
et

al
.2

01
6)

C
on

fi
rm

ed
C

on
fi

rm
ed

3
Sa

fe
ty

ha
rn

es
s

an
d

sm
oo

th
er

le
ar

ni
ng

cu
rv

e
fo

r
no

vi
ce

co
nt

ri
bu

to
rs

D
ev

el
op

er
(V

as
ile

sc
u

et
al

.
20

15
;

H
um

bl
e

an
d

K
im

20
18

;
W

ill
ia

m
s

et
al

.2
00

9)
C

on
fi

rm
ed

C
on

fi
rm

ed

4
Im

pr
ov

ed
co

de
un

de
rs

ta
nd

ab
ili

ty
as

un
it

te
st

s
do

ub
le

s
as

do
cu

m
en

ta
tio

n
D

ev
el

op
er

(W
ill

ia
m

s
et

al
.2

00
9)

C
on

fi
rm

ed
C

on
fi

rm
ed

5
Im

pr
ov

ed
co

lla
bo

ra
tio

n
Te

am
(W

ill
ia

m
s

et
al

.2
00

9;
H

um
bl

e
an

d
K

im
20

18
)

C
on

fi
rm

ed
Ir

re
le

va
nt

6
R

ed
uc

ed
tim

e
to

re
so

lv
e

in
te

gr
at

io
n

is
su

es
Te

am
(L

ac
os

te
20

09
;H

um
bl

e
an

d
K

im
20

18
;R

og
er

s
20

04
)

U
nc

le
ar

C
on

fi
rm

ed

7
Fo

st
er

s
cu

ltu
re

of
in

di
vi

du
al

re
sp

on
si

bi
lit

y
to

qu
al

ity
an

d
sp

ee
d

Te
am

(F
ei

te
ls

on
et

al
.2

01
3)

C
on

fi
rm

ed
Pl

an
ne

d

8
M

or
e

st
re

am
lin

ed
de

ve
lo

pm
en

tp
ro

ce
ss

du
e

to
au

to
m

at
io

n
Te

am
(C

he
n

20
15

;H
um

bl
e

an
d

K
im

20
18

;K
um

ar
an

d
M

is
hr

a
20

16
;V

as
ile

sc
u

et
al

.2
01

5)
C

on
fi

rm
ed

C
on

fi
rm

ed

9
T

im
e

an
d

re
so

ur
ce

sa
vi

ng
s

fr
om

au
to

m
at

in
g

re
pe

tit
iv

e
ta

sk
s

Te
am

(W
ill

ia
m

s
et

al
.

20
09

;
Sh

am
sh

ir
i

et
al

.
20

15
;

V
as

ile
sc

u
et

al
.2

01
5)

C
on

fi
rm

ed
C

on
fi

rm
ed

10
E

nf
or

ce
d

co
de

qu
al

ity
st

an
da

rd
s

Pr
od

uc
t

(H
um

bl
e

an
d

K
im

20
18

;
V

as
ile

sc
u

et
al

.
20

15
;

W
ill

ia
m

s
et

al
.2

00
9;

C
he

n
20

15
)

C
on

fi
rm

ed
Pl

an
ne

d

11
In

cr
ea

se
d

pr
od

uc
tq

ua
lit

y
Pr

od
uc

t
(W

ill
ia

m
s

et
al

.2
00

9;
K

um
ar

an
d

M
is

hr
a

20
16

)
C

on
fi

rm
ed

C
on

fi
rm

ed

12
Im

pr
ov

ed
sc

al
ab

ili
ty

of
de

ve
lo

pm
en

to
rg

an
iz

at
io

n
O

rg
an

iz
at

io
n

(F
ei

te
ls

on
et

al
.

20
13

;
H

um
bl

e
an

d
K

im
20

18
;

Sh
ah

in
et

al
.2

01
9)

Ir
re

le
va

nt
Pl

an
ne

d

157 Page 26 of 40 Empir Software Eng (2022) 27: 157

Table 15 Investments associated with continuous development

Investment References Case I Case II

1 Development, verification, and maintenance
of automated test suites

(Sundelin et al. 2018;
Lam et al. 2019)

Confirmed Confirmed

2 Preparation and maintenance of test data Gap Confirmed Confirmed

3 Cost of adopting new tools and practices Gap Confirmed Confirmed

4 Cost of prioritizing and executing tests (Rogers 2004; Memon
et al. 2017)

Confirmed Confirmed

5 Preparation and maintenance of test environments (Rogers 2004) Confirmed Confirmed

6 Cost of managing dependencies other
pipelines/3rd party components

(Claps et al. 2015) Confirmed Confirmed

7 Cost of refactoring the product to support CI/CD (Del Rosso 2006;
Riaz et al. 2009)

Confirmed Irrelevant

In the literature, we found that terms delivery and deployment are sometimes mixed or
used interchangeably, see, for example, Fitzgerald et al. (Fitzgerald and Stol 2014), and
Neely et al. (Neely and Stolt 2013). We differentiate between the two. We use the term
deployment to refer to internal readiness to deliver software to customers at any moment.
With the term delivery, we refer to the ability to deliver the latest software to end-users at
any time.

Continuous deployment relies on continuous integration and test automation at the earlier
continuous development step, see Table 16.

The main benefits of continuous deployments stem from their frequent and incremental
nature. Minor changes are easier to verify than large updates, reducing the risk of intro-
ducing severe issues. Automation reduces stress and overtime of preparing a release, thus
increasing developers’ job satisfaction, see Table 17.

The investments of continuous deployment concern the development of a robust
acceptance test suite, and adjusting the organization. Continuous deployment requires
downstream stakeholders (operations, customer support, marketing, etc.) to work with a
versionless and continuously evolving product. This requires additional coordination effort,
see Table 18.

4.4.4 Continuous Delivery

Continuous delivery, see Step #4, in Fig. 2, refers to making the latest features available
to end-users immediately, i.e., with automated software upgrades. The critical difference
between release-based and continuous delivery is that completed features are shelved until
the scheduled release date in a release-based process. While shelved, a feature does not
generate value (e.g., profit for the vendor and value for the customer), and it is uncertain to
what extent the feature is relevant in the market. However, in continuous delivery, completed

Table 16 Assumptions associated with continuous deployment

Assumption References Case I Case II

1 The organization applies continuous
development practices

(Fitzgerald and Stol 2017) Planned Planned

Page 27 of 40 157Empir Software Eng (2022) 27: 157

Table 17 Benefits associated with continuous deployment

Benefit Beneficiary References Case I Case II

1 Improved work-life balance Developer (Neely and Stolt 2013;
Humble and Kim 2018)

Unclear Unclear

2 Narrower test focus Team (Neely and Stolt 2013;
Feitelson et al. 2013)

Unclear Irrelevant

3 Reduced effort and stress to
prepare releases

Team (Feitelson et al. 2013;
Neely and Stolt 2013;
Humble and Kim 2018)

Planned Planned

4 Reduced risk of introducing
major issues due to small
incremental releases

Product (Claps et al. 2015; Humble
and Kim 2018)

Planned Planned

5 Latest features always avail-
able for delivery

Organization (Feitelson et al. 2013;
Neely and Stolt 2013;
Humble and Kim 2018)

Planned Planned

features forgo automated integration, verification, and acceptance steps are immediately
delivered to the end-users. Thus, new features start generating value and feedback to steer
further product development (Humble and Kim 2018; Chen 2015).

Continuous delivery assumes that the software vendor has access to the product for
upgrades, and customers are willing to upgrade without notice, see Table 19. Renegotiating
agreements with customers and establishing control over production environments are the
key investments in adopting continuous delivery, see Table 21.

The primary benefits of continuous delivery stem from pushing the latest features to
customers with no delay. Thus, increasing the value of the features and starting to collect
customer feedback. In Table 20, we summarize the benefits from literature.

4.4.5 Continuous Use

The shift from transactional, release-based software deliveries to continuous, versionless
software highlight the importance of delivering software that satisfies customer needs over
time, not just at the moment of purchase. Business models, such as software-as-a-service,
monetize software, i.e., continuous use, not just its purchase. These developments create
opportunities for software vendors to establish synergy with customers, improve under-
standing of their needs, and build trust. Mutual trust enables organizations to open up to
each other (e.g., by sharing details on how the product is used and jointly developing new
experimental features) (Fitzgerald and Stol 2017; Susarla et al. 2009).

Table 18 Investments associated with continuous deployment

Investment References

1 Development of a robust acceptance test suite (Neely and Stolt 2013;
Shahin et al. 2017; Lam
et al. 2019)

Confirmed Planned

2 Revising marketing strategies to promote version-
less product

(Claps et al. 2015) Planned Planned

3 Additional coordination effort between develop-
ment/maintenance/operations/support teams

(Claps et al. 2015) Confirmed Planned

157 Page 28 of 40 Empir Software Eng (2022) 27: 157

Table 19 Assumptions associated with continuous delivery

Assumption References Case I Case II

1 Product is not in a regulated domain, safety, or
mission critical

(Shahin et al. 2017) Confirmed Confirmed

2 Customers are ready to accept continuous deliveries Gap Irrelevant Planned

3 Software vendor has access to the product for
upgrades after decommissioning

Gap Unclear Confirmed

The primary benefits from continuous use arise from closer, longitudinal relationships
with customers and end-users. The closer relationship enables more opportunities for
feedback collection, builds trust, and improves overall customer satisfaction, see Table 23.

The investments of continuous use concern costs associated with maintaining longitu-
dinal customer relationships and analyzing customer feedback. We differentiate between
customer feedback arising from the use of the product, e.g., social media posts and app
reviews, revealing experiences with the software, and product telemetry (discussed in the
following subsection) capturing how the software is used, see Table 24

The benefits from continuous are relevant if the product offers features that are intended
for continuous use. Software that is used rarely, e.g., a system that is used once a year
to generate a yearly report, may not generate meaningful feedback or customer trust, see
Table 22.

4.4.6 Continuous Monitoring

Continuous monitoring, see Step #5 in Fig. 2 is a practice to collect and analyze data on how
the product is used and performs in a live environment, including metrics from the CI/CD
pipeline. This data used in planning, monitoring helps to fine tune the product, CI/CD
procedures, discover defects and quality issues early (Ehlers et al. 2011; van Hoorn et al.
2009)

There are no immediate benefits from collecting the data. Data collected at this step of the
pipeline enables and supports continuous planning, and improvement activities, see Steps #1
and #7.6 in Fig. 2 (Olsson and Wnuk 2018; Johnson et al. 2005). Product usage data helps
to prioritize test cases and to synthesize realistic test data in the continuous verification step,
see Step #2 in Fig. 2, (Anderson et al. 2019).

Monitoring and data collection are associated with investments in setting up and main-
taining relevant infrastructure, see Table 26. However, to implement continuous monitoring,
customers should be ready to provide access to product usage data, see Table 25.

Table 20 Benefits associated with continuous delivery

Benefit Beneficiary References Case I Case II

1 Improved time-to-market
for new features

Organization (Chen 2015; Humble and
Kim 2018)

Irrelevant Planned

2 Faster time-to-feedback Organization (Claps et al. 2015; Humble
and Kim 2018)

Planned Irrelevant

3 Easier adoption of new releases Customer Gap Planned Planned

Page 29 of 40 157Empir Software Eng (2022) 27: 157

Table 21 Investments associated with continuous delivery

Investment References Case I Case II

1 Adjusting contractual arrange-
ments with customers, trans-
ferring customers to continu-
ous software deliveries

(Yaman et al. 2016) Unclear Planned

2 Adjusting the business model
to offer versionless software

(Kuula and Haapasalo 2017;
Loebbecke and Picot 2015)

Unclear Planned

3 Technical arrangements with
customers

(Shahin et al. 2017) Unclear Irrelevant

4 Delivery infrastructure (Shahin et al. 2017) Unclear Irrelevant

4.4.7 Cross-Cutting Concerns

Some pipeline components are rather cross-cutting than a discrete step in the software deliv-
ery pipeline, see components #7.* in Fig. 2. The benefits of these cross-cutting components
include enable and support the rest of the pipeline, e.g. by generating data, setting perfor-
mance indicators, and ensuring compliance to relevant regulations (Chen 2015; Shahin et al.
2017).

Primary investments in cross-cutting concerns tearing down existing organizational
structures, business models, and ways of working to implement continuous software
delivery pipeline throughout the organization, see Table 27.

Continuous Compliance see Step #7.1, in Fig. 2, refers to the practice to ensure com-
pliance to relevant regulations continuously and throughout the pipeline, in contrast to
compliance verification bottleneck at the end of development phase (Fitzgerald and Stol
2014; Moyon et al. 2018). Furthermore, agile and continuous principles are often at odds
with regulatory practices. Practicing continuous software delivery in regulated environments
requires a careful balance between speed and discipline (McHugh et al. 2013; Fitzgerald
et al. 2013)

Continuous Security see Step #7.2, in Fig. 2, refers to practicing security throughout the
pipeline (Moyon et al. 2018; Dännart et al. 2019)

Continuous Budgeting see Step #7.3, in Fig. 2, highlights the need for the whole organiza-
tion to adopt continuous practices. Budgeting traditionally results in yearly, quarterly, etc.,
budgets tied to attaining specific objectives delegated to specific organizational units. How-
ever, such a plan-driven approach may hinder cooperation, speed, and flexibility associated
with continuous practices (Frow et al. 2010; Lohan 2013).

Continuous Innovation see Step #7.4, in Fig. 2, refers to a process throughout the pipeline
to respond to evolving market conditions (Cole 2001; Olsson et al. 2012).

Table 22 Assumptions associated with continuous use

Assumption References Case I Case II

1 Product offers features encouraging continued use (Gustafsson et al. 2005) Confirmed Confirmed

157 Page 30 of 40 Empir Software Eng (2022) 27: 157

Table 23 Benefits associated with continuous use

Benefit Beneficiary References Case I Case II

1 Improved customer satisfac-
tion, trust

Customer (Chen 2015; Gefen
et al. 2003)

Confirmed Confirmed

2 Rich feedback from on-line
communities, social media,
user forums etc.

Product (Guzman et al. 2017;
Genc-Nayebi and Abran
2017; Yaman et al. 2016)

Irrelevant Irrelevant

3 Benefit of emotional and habit-
ual connection between cus-
tomers and the use of the product

Organization (Rodrı́guez et al. 2017;
Gefen et al. 2003)

Confirmed Confirmed

Table 24 Investments associated with continuous use

Investment References Case I Case II

Cost of maintaining longitudinal customer relationships (Ryals 2005) Confirmed Irrelevant

Cost of collection and analysis of customer feedback Gap Confirmed Confirmed

Table 25 Assumptions associated with continuous monitoring

Assumption References Case I Case II

1 Customers are ready to share product usage data Gap Irrelevant Confirmed

2 The product planning organization is prepared to
use the data and practice continuous planning

(Lin 2018) Irrelevant Planned

Table 26 Investments associated with continuous monitoring

Investment References Case I Case II

1 Cost of implementing monitor-
ing features in the software

(van Hoorn et al. 2009) Confirmed Confirmed

2 Cost of data storage and maintenance (Gardner 1998; Yaman
et al. 2016)

Unclear Confirmed

3 Cost of preprocessing, clean-
ing the data from sensitive or
bogus information

(Fatima et al. 2017;
Rahm and Do 2000)

Unclear Unclear

4 Cost of getting customer agree-
ment to share data from the
product use

(Isaak and Hanna
2018; Zhang 2018)

Confirmed Confirmed

Page 31 of 40 157Empir Software Eng (2022) 27: 157

Table 27 Investments associated with cross-cutting concerns

Investment References Case I Case II

1 Cost of implementing organizational changes,
removing internal boundaries, adjusting busi-
ness models etc. to implement end-to-end CI/CD

(Humble and Kim 2018; Chen
2015; Shahin et al. 2017)

Confirmed Unclear

2 Cost of maintaining multiple product or cus-
tomer specific software delivery pipelines,
e.g. continuous and release based

Gap Confirmed Unclear

Continuous Experimentation see Step #7.5, in Fig. 2, refers to a controlled, data-driven
process of devising hypotheses about user preferences, setting experiments, and analyzing
the results to drive product decisions (Fagerholm et al. 2017; Bosch 2012).

Continuous Improvement see Step #7.6, in Fig. 2, arises from Lean principles and aims to
minimize waste and perfecting the process. The improvements are achieved by process map-
ping, collecting metrics, observing performance indicators, and making minor adjustments
throughout the pipeline (Cole 2001; Poppendieck et al. 2011).

5 Discussion

We have analyzed two cases to understand how they adopt CI/CD and their perspectives on
the investments and benefits of CI/CD practices.

Our results show that in both cases, the adoption of CI/CD practices started by engi-
neering teams wishing to improve internal efficiency. Teams had adopted automated test,
build, and integration practices to aid their day-to-day work. There are immediate benefits
of adopting such practices confirmed both by our cases, see Sections 4.1.4, 4.2.4, and litera-
ture, see Section 4.4.2. However, in the cases there are no systematically collected objective
data reflecting the gains.

Both studied organizations report that implementing continuous deliveries to customer
environments would be a significant challenge. Existing customer agreements are designed
around planned releases and do not support continuous software deliveries. Deliveries to
customer environments require adhering to customer-specific differences and dependencies.
Furthermore, pushing customers to accept new terms of service create a risk of customers
switching over to competitors’ offerings. The challenge is further exacerbated by the fact
that both companies offer software to other organizations to provide services for end-
users. The limited control over the software delivery pipeline hinders the speed of software
delivery and limits exchange of data and feedback, especially in Case I, see Section 4.1.6.

Humble et al. (Humble and Kim 2018) argues that delivering minor frequent incremen-
tal updates alleviates the release pain. However, our interviewees responded that while they
find the statement plausible, they lack concrete arguments and leverage to force their cus-
tomers to accept continuous software deliveries. A specific challenge arises from customers’
developments on top of the vendor’s software. Any update introduces a risk of breaking
the intricate dependencies. For this reason, accepting software updates involves extensive
testing and custom development on the customer’s side. There is a potential to reduce the
risk by synchronizing the development cycles between the customer and the vendor and
strictly defining the interfaces. However, persuading many other downstream organizations

157 Page 32 of 40 Empir Software Eng (2022) 27: 157

to change and align their processes with the software vendor is unrealistic in the foreseeable
future, see Sections 4.1.8 and 4.3.

Both organizations have chosen to adopt CI/CD due to ongoing high-level initiatives
to improve software delivery. However, they have performed only a superficial analysis of
what exact goals they wish to achieve and whether CI/CD is the most suited approach. More
in-depth analysis is needed to understand how the implementation of CI/CD can support
organizational objectives.

We continue the discussion by answering our research questions.

5.1 What are the Key Steps of the CI/CD Pipeline?

Literature suggests that an end-to-end continuous software delivery pipeline comprises plan-
ning, engineering, deployment, delivery, use, feedback collection, analysis, and other steps,
see Fig 2 and Section 4.4. However, to our best knowledge, a complete implementation
of an end-to-end CI/CD pipeline is yet to be demonstrated by empirical studies. State-of-
the-art discusses parts of the pipeline and primarily focus on development, integration, and
delivery steps.

In our studied cases, the scope of the CI/CD is limited to engineering, integration,
deployment, and delivery steps. Practices such as continuous data collection, planning,
and improvement are appealing, however currently unattainable, see Sections 4.1.8 and
4.3. Realizing the difficulties of achieving continuous delivery, organizations have not
considered further steps.

It could be that end-to-end CI/CD as presented in our model, see Fig 2, and specific steps
following continuous deployment are not feasible for products with a high level of customer
customization, strict service level agreements, and a general push-back from existing cus-
tomers. Furthermore, it could be that end-to-end CI/CD requires a special context granting
the software vendor control over the pipeline and access to customer data.

Fitzgerald et al. (Fitzgerald and Stol 2017) argue that agile software development
methodologies, such as scrum, are finding their way into regulated domains. Nevertheless,
literature offers little support in retrofitting existing organizations with CI/CD capabilities.
In particular, organizational interfaces such as business models, software delivery models,
customer agreements are assumed to be flexible and adjustable without cost.

As shown by our two cases, organizations can benefit from automating and streamlin-
ing the internal development process without considering the complete end-to-end CI/CD.
Thus, the focus on adopting CI/CD in complex domains could be to maximize the benefits
from internal automation steps first, see Table 9.

Importantly, our empirical findings show that companies acknowledge the potential ben-
efits end-to-end CI/CD pipeline as presented in Fig. 2, and Tables 4–7. However, when
retrofitting existing offerings with CI/CD, organizations are cautious to make sweeping
changes and to take risks that can disrupt their business. For instance, requiring customers
to accept continuous deliveries and share data may backfire if customers are not prepared
and ready to comply. Thus, the investments (costs) and associated risks nullify the potential
benefits to adopting the practices, see Section 4.1.7.

5.2 What Costs and Benefits Steer the Adoption of the CI/CD in Practice?

In Ericsson’s case, the primary driver to adopt CI/CD is to streamline and speed up internal
software delivery processes. The main challenge to solve is integrating a large number of
software components into customized customer solutions efficiently, see Section 4.1.4.

Page 33 of 40 157Empir Software Eng (2022) 27: 157

The secondary objective is to improve their business models based on CI/CD capabilities.
However, what exactly are these capabilities, the extent to which they are relevant to current
customers, and how to retrofit current offerings to be compatible with the new business
models remains unknown. As a consequence, the organization currently focuses on internal
benefits, see Section 4.1.6.

In Telia, the only driver for adopting the CI/CD practices is to improve the internal pro-
cesses and free up resources for more value-adding activities, see Section 4.2.4. While the
organization realizes the potential benefits of continuous software deliveries, attaining them
is not their current agenda.

During our workshops, the participants reflected that engineers generally welcome test
and build automation initiatives, containerization, and other technical practices. The value
of introducing such practices is immediate and substantial. However, the challenge is to
convince management to invest in other CI/CD practices spanning multiple organizational
units and organizational functions especially, if that requires adjustments in currently oper-
ational business models. For instance, pushing customer to accept more frequent deliveries
and share data, see Tables 4–7.

Participants expressed that they realize the potential of developing new collaborative
business models based on CI/CD capabilities. However, due to their organizational com-
plexities and potential customer push-back, changing their business models on a scale is
beyond their current planning. More analysis is required to understand how changes in busi-
ness models could help to attain the organizational objectives and what are the constraints
of such changes, see the discussion on Sections 4.1.6 and 4.3.

5.3 What is Needed to Support the CI/CD Cost-Benefit Analysis?

In both studied cases, we observed a difficulty to extend the continuous pipeline outside
the development organization to customers and end-users. The software delivery process
is an important feature and changing it changes the total value of the offering (Khurum
et al. 2013). The two cases demonstrate that predictability and risk minimization in software
deliveries takes precedence over delivery speed in domains where software is business-
critical, see Sections 4.1–4.2.

The literature emphasizes that delivery speed and frequency is a solution to nearly all
software delivery challenges, see for instance Humble et al. (Humble and Kim 2018). How-
ever, there is little discussion on weighing the benefits of schedule-based software releases
versus faster access to new features from customers’ perspectives. For example, in cus-
tomers’ eyes, the fact that software does not change could be an important feature if a
software upgrade requires updating many intricate dependencies.

Avenue for further work: There is an opportunity to explore the mapping between
software value aspects (Khurum et al. 2013) and benefits and trade-offs of continuous engi-
neering. That is, knowing what value aspects are prioritized by customers and the software
vendor enables a more fine-grained analysis of how continuous engineering contributes to
these aspects.

We observe that organizations are often not aware of what specific goals they aim to
attain by adopting CI/CD, becoming better in delivering software and what are the con-
straints of any solutions they wish to implement. Attaining one goal, e.g. increasing speed
by implementing automation and eliminating manual steps, could imply more standardiza-
tion. However, that can be counterproductive if customers expect individual treatment and
bespoke solutions. This issue is evident in Case I, see Section 4.1.6, where the organization

157 Page 34 of 40 Empir Software Eng (2022) 27: 157

contemplates the benefits of new collaborative business models, however there is not enough
details to gauge the relevance of such models in their domain.

Avenue for further work: There is an opportunity to devise a methodology to identify
and break down organizational goals towards software delivery and estimate the degree
of freedom to implement any changes. The adoption of any new practices or tools should
be guided by specific and measurable goals. Importantly, the software delivery pipeline
transcends individual organizational departments and extends into a customer organization.
Therefore, the goals, KPIs, and objectives should aligned and shared across the organization
and accepted by the customers.

More understanding of the organizational benefits is needed to support management
decisions concerning adopting CI/CD and driving the necessary organizational changes.
Both engineering and organizational literature, see Section 4.4 and, e.g. Hanelt et al. (Hanelt
et al. 2021), discusses organizational benefits such as cooperative business models and
telemetry to tailor the offering to specific customer needs. However, it is unknown how to
gauge relevance, quantify, and compare these benefits to the required investments.

Avenue for further work: The relationship between digital transformation and continuous
engineering in software organizations need to be explored. Digital transformation explores
the organizational benefits of adopting technology to streamline their processes. Continu-
ous engineering focus on the benefits from streamlining software engineering. Exploring
how one could enable and support another could help establishing a joint management-
engineering view on the associated changes, benefits and required investments.

We further notice that the boundaries of control constrain the adoption of CI/CD. In
the studied cases, the software vendors only partially control the delivery pipeline. By
design, the final installation and release to end-users is out of control of the software ven-
dor, see Section 4.1.3. The literature overlooks this and assumes that the software vendor
has complete control over the pipeline. Expanding control boundaries and assuming more
responsibilities requires substantial changes in the offering and the underlying business
model. It also implies reducing the level of control other stakeholders has over the software.
More understanding is needed to gauge the implications of extending boundaries of control.

Avenue for further work: More research is required how to integrate different pipelines
of software delivery with potentially different aims, release cadences, stakeholders, and
controlled by different organizations. Moreover, large organizations, such as Ericsson, may
have multiple internal pipelines that could branch and merge in different ways and are con-
trolled by different internal stakeholders. It remains to be explored how to streamline and
synchronize software delivery in such scenarios.

6 Conclusions

This paper has examined the adoption of continuous software engineering practices in
two industrial cases and performed a literature study to understand the costs and benefits
perspective on the CI/CD.

We found that literature overstates the benefits of CI/CD without recognizing specific
domain complexities and the challenges of retrofitting already existing offerings with CI/CD
capabilities. Importantly, literature overlooks the customer perspective on accepting con-
tinuous software deliveries and provides little guidance on upgrading existing customers to
continuous mode.

The two case studies reveal that the adoption of CI/CD in organizations starts from the
bottom-up engineering teams attempting to automate and streamline their work. However,

Page 35 of 40 157Empir Software Eng (2022) 27: 157

expanding the continuous software delivery pipeline to adjacent organizational units, espe-
cially to customer organizations, is challenging. A significant challenge is to gauge the
relevance of CI/CD benefits for a specific organizational domain and context.

We identify a need to explore customer further and organizational perspectives and
understand the contextual requirements for adopting continuous software engineering prac-
tices. Furthermore, we identify a gap in state-of-the-art concerning retrofitting an existing
product with a CI/CD pipeline.

Acknowledgements The authors would like to thank all study participants for their time dedicated to this
study. We would like to acknowledge that this work was supported by the KKS foundation through the
S.E.R.T. Research Profile project at Blekinge Institute of Technology.

Funding Open access funding provided by Blekinge Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alahyari H., Gorschek T., Svensson R. B. (2019) An exploratory study of waste in software development
organizations using agile or lean approaches: A multiple case study at 14 organizations. Information and
Software Technology 105:78–94

Alahyari H., Svensson R. B., Gorschek T. (2017) A study of value in agile software development
organizations. Journal of Systems and Software 125:271–288

Anderson J., Azizi M., Salem S., Do H. (2019) On the use of usage patterns from telemetry data for test case
prioritization. Information and Software Technology 113:110–130

Balalaie A., Heydarnoori A., Jamshidi P. (2016) Microservices architecture enables devops: Migration to a
cloud-native architecture. Ieee Software 33(3):42–52

Boehm B. (2003) Value-based software engineering. ACM SIGSOFT Software Engineering Notes 28(2):4
Bosch J. (2012) Building products as innovation experiment systems. In: International Conference of

Software Business, Springer, pp 27–39
Carriere J., Kazman R., Ozkaya I. (2010) A cost-benefit framework for making architectural decisions in a

business context. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering, IEEE.
vol. 2, pp 149–157

Chandra D. G., Borah M. D. (2012) Cost benefit analysis of cloud computing in education. In: 2012
International Conference on Computing, Communication and Applications, IEEE, pp 1–6

Chen L. (2015) Continuous delivery: Huge benefits, but challenges too. IEEE Softw 32(2):50–54
Chen L. (2017) Continuous delivery: Overcoming adoption challenges. J Syst Softw 128:72–86
Chen L. (2018) Microservices: architecting for continuous delivery and devops. In: 2018 IEEE International

conference on software architecture (ICSA), IEEE, pp 39–397
Claps G. G., Svensson R. B., Aurum A. (2015) On the journey to continuous deployment: Technical and

social challenges along the way. Information and Software Technology 57:21–31
Cole R. E. (2001) From continuous improvement to continuous innovation. Qual Manag J 8(4):7–21
Dännart S., Constante F. M., Beckers K. (2019) An assessment model for continuous security compli-

ance in large scale agile environments. In: International Conference on Advanced Information Systems
Engineering, Springer, pp 529–544

Del Rosso C. (2006) Continuous evolution through software architecture evaluation: a case study. Journal of
Software Maintenance and Evolution: Research and Practice 18(5):351–383

Drèze J., Stern N. (1987) The theory of cost-benefit analysis. In: Handbook of public economics, Elsevier.
vol 2, pp 909–989

157 Page 36 of 40 Empir Software Eng (2022) 27: 157

http://creativecommons.org/licenses/by/4.0/

Dubey A., Wagle D. (2007) Delivering software as a service. McKinsey Q 6(2007):2007
Ehlers J., van Hoorn A., Waller J., Hasselbring W. (2011) Self-adaptive software system monitoring for per-

formance anomaly localization. In: Proceedings of the 8th ACM international conference on Autonomic
computing, pp 197–200

Elazhary O., Werner C., Li Z. S., Lowlind D., Ernst N. A., Storey M.-A. (2021) Uncovering the benefits and
challenges of continuous integration practices. IEEE Trans Softw Eng

Fabijan A., Dmitriev P., Olsson H. H., Bosch J. (2017) The evolution of continuous experimentation in
software product development: from data to a data-driven organization at scale. In: 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), IEEE, pp 770–780

Fagerholm F., Guinea A. S., Mäenpää H., Münch J. (2017) The right model for continuous experimentation.
J Syst Softw 123:292–305

Fatima A., Nazir N., Khan M. G. (2017) Data cleaning in data warehouse: A survey of data pre-processing
techniques and tools. IJ Information Technology and Computer Science 3:50–61

Feitelson D. G., Frachtenberg E., Beck K. L. (2013) Development and deployment at facebook. IEEE Internet
Computing 17(4):8–17

Felidré W., Furtado L., da Costa D. A., Cartaxo B., Pinto G. (2019) Continuous integration theater. In: 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),
IEEE, pp 1–10

Fitzgerald B., Stol K.-J. (2014) Continuous software engineering and beyond: trends and challenges. In:
Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering, pp 1–9

Fitzgerald B., Stol K.-J. (2017) Continuous software engineering: A roadmap and agenda. J Syst Softw
123:176–189

Fitzgerald B., Stol K.-J., O’Sullivan R., O’Brien D. (2013) Scaling agile methods to regulated environments:
An industry case study. In: 2013 35th International Conference on Software Engineering (ICSE), IEEE,
pp 863–872

Fowler M., Highsmith J. et al (2001) The agile manifesto. Software Development 9(8):28–35
Frank M. (2000) Engineering systems thinking and systems thinking. Syst Eng 3(3):163–168
Frow N., Marginson D., Ogden S. (2010) “continuous”? budgeting: Reconciling budget flexibility with

budgetary control. Acc Organ Soc 35(4):444–461
Gardner S. R. (1998) Building the data warehouse. Commun ACM 41(9):52–60
Garousi V., Felderer M. (2016) Developing, verifying, and maintaining high-quality automated test scripts.

IEEE Softw 33(3):68–75
Gefen D., Karahanna E., Straub D. W. (2003) Trust and tam in online shopping: An integrated model, MIS

quarterly pp 51–90
Genc-Nayebi N., Abran A. (2017) A systematic literature review: Opinion mining studies from mobile app

store user reviews. J Syst Softw 125:207–219
Giardino C., Paternoster N., Unterkalmsteiner M., Gorschek T., Abrahamsson P. (2015) Software develop-

ment in startup companies: the greenfield startup model. IEEE Trans Softw Eng 42(6):585–604
Gustafsson A., Johnson M. D., Roos I. (2005) The effects of customer satisfaction, relationship commitment

dimensions, and triggers on customer retention. Journal of marketing 69(4):210–218
Guzman E., Ibrahim M., Glinz M. (2017) Prioritizing user feedback from twitter: A survey report. In: 2017

IEEE/ACM 4th International Workshop on CrowdSourcing in Software Engineering (CSI-SE), IEEE,
pp 21–24

Hanelt A., Bohnsack R., Marz D., Antunes Marante C. (2021) A systematic review of the literature on
digital transformation: insights and implications for strategy and organizational change. J Manag Stud
58(5):1159–1197

Hasselbring W., Steinacker G. (2017) Microservice architectures for scalability, agility and reliability in
e-commerce. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW),
IEEE, pp 243–246

Hazzan O., Dubinsky Y. (2009) Agile software engineering. Springer Science & Business Media
Hilton M., Nelson N., Tunnell T., Marinov D., Dig D. (2017) Trade-offs in continuous integration: assurance,

security, and flexibility. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, pp 197–207

Hilton M., Tunnell T., Huang K., Marinov D., Dig D. (2016) Usage, costs, and benefits of continuous integra-
tion in open-source projects. In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, pp 426–437

Huang X., Zhang H., Zhou X., Babar M. A., Yang S. (2018) Synthesizing qualitative research in soft-
ware engineering: A critical review. In: Proceedings of the 40th International Conference on Software
Engineering, pp 1207–1218

Humble J., Kim G. (2018) Accelerate: The science of lean software and devops: Building and scaling high
performing technology organizations. IT Revolution

Page 37 of 40 157Empir Software Eng (2022) 27: 157

Isaak J., Hanna M. J. (2018) User data privacy: Facebook, cambridge analytica, and privacy protection.
Computer 51(8):56–59

Jalali S., Wohlin C. (2012) Global software engineering and agile practices: a systematic review. Journal of
software: Evolution and Process 24(6):643–659

Jiang J., Yang Y., He J., Blanc X., Zhang L. (2017) Who should comment on this pull request? analyzing
attributes for more accurate commenter recommendation in pull-based development. Inf Softw Technol
84:48–62

Johnson P. M., Kou H., Paulding M., Zhang Q., Kagawa A., Yamashita T. (2005) Improving software
development management through software project telemetry. IEEE software 22(4):76–85

Kasurinen J., Taipale O., Smolander K. (2010) Software test automation in practice: empirical observations.
Advances in Software Engineering (2010)

Khurum M., Gorschek T., Wilson M. (2013) The software value map—an exhaustive collection of value
aspects for the development of software intensive products. Journal of software: Evolution and Process
25(7):711–741

Kim S., Park S., Yun J., Lee Y. (2008) Automated continuous integration of component-based software:
An industrial experience. In: 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, IEEE, pp 423–426

King J. L., Schrems E. L. (1978) Cost-benefit analysis in information systems development and operation.
ACM Computing Surveys (CSUR) 10(1):19–34

Kitchenham B. (2004) Procedures for performing systematic reviews. Keele, UK, Keele University
33(2004):1–26

Kumar D., Mishra K. K. (2016) The impacts of test automation on software’s cost, quality and time to market.
Procedia Computer Science 79:8–15

Kuula S., Haapasalo H. (2017) Continuous and co-creative business model creation. In: Service business
model innovation in healthcare and hospital management, Springer, pp 249–268

Lacoste F. J. (2009) Killing the gatekeeper: Introducing a continuous integration system. In: 2009 agile
conference, IEEE, pp 387–392

Lam W., Godefroid P., Nath S., Santhiar A., Thummalapenta S. (2019) Root causing flaky tests in a
large-scale industrial setting. In: Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pp 101–111

Laukkanen E., Itkonen J., Lassenius C. (2017) Problems, causes and solutions when adopting continuous
delivery-a systematic literature review. Inf Softw Technol 82:55–79

Laukkanen E., Paasivaara M., Arvonen T. (2015) Stakeholder perceptions of the adoption of continuous
integration–a case study. In: 2015 agile conference, IEEE, pp 11–20

Lehtola L., Kauppinen M., Vähäniitty J., Komssi M. (2009) Linking business and requirements engineer-
ing: is solution planning a missing activity in software product companies? Requirements engineering
14(2):113–128

Letier E., Stefan D., Barr E. T. (2014) Uncertainty, risk, and information value in software requirements and
architecture. In: Proceedings of the 36th International Conference on Software Engineering, pp 883–894

Li Y., Chang K.-C., Chen H.-G., Jiang J. J. (2010) Software development team flexibility antecedents. J Syst
Softw 83(10):1726–1734

Lin C. (2018) Data driven product management. IEEE Eng Manag Rev 46(1):16–18
Loebbecke C., Picot A. (2015) Reflections on societal and business model transformation arising from

digitization and big data analytics: A research agenda. The Journal of Strategic Information Systems
24(3):149–157

Lohan G. (2013) A brief history of budgeting: reflections on beyond budgeting, its link to performance
management and its appropriateness for software development. In: International Conference on Lean
Enterprise Software and Systems, Springer, pp 81–105

Mäkinen S., Leppänen M., Kilamo T., Mattila A.-L., Laukkanen E., Pagels M., Männistö T. (2016) Improving
the delivery cycle: A multiple-case study of the toolchains in finnish software intensive enterprises. Inf
Softw Technol 80:175–194

Maresova P., Sobeslav V., Krejcar O. (2017) Cost–benefit analysis–evaluation model of cloud computing
deployment for use in companies. Appl Econ 49(6):521–533

Martin R. C. (2002) Agile software development: principles, patterns, and practices. Prentice Hall
McHugh M., McCaffery F., Fitzgerald B., Stol K.-J., Casey V., Coady G. (2013) Balancing agility and dis-

cipline in a medical device software organisation. In: International Conference on Software Process
Improvement and Capability Determination, Springer, pp 199–210

Memon A., Gao Z., Nguyen B., Dhanda S., Nickell E., Siemborski R., Micco J. (2017) Taming google-
scale continuous testing. In: 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), IEEE, pp 233–242

157 Page 38 of 40 Empir Software Eng (2022) 27: 157

Meyer M. (2014) Continuous integration and its tools. IEEE software 31(3):14–16
Moyon F., Beckers K., Klepper S., Lachberger P., Bruegge B. (2018) Towards continuous security compli-

ance in agile software development at scale. In: 2018 IEEE/ACM 4th International Workshop on Rapid
Continuous Software Engineering (RCoSE), IEEE, pp 31–34

Neely S., Stolt S. (2013) Continuous delivery? easy! just change everything (well, maybe it is not that easy).
In: 2013 Agile Conference, IEEE, pp 121–128

O’Connor R. V., Elger P., Clarke P. M. (2017) Continuous software engineering-a microservices architecture
perspective. Journal of Software: Evolution and Process 29(11):e1866

Olsson H. H., Alahyari H., Bosch J. (2012) Climbing the” stairway to heaven”–a mulitiple-case study explor-
ing barriers in the transition from agile development towards continuous deployment of software. In:
2012 38th euromicro conference on software engineering and advanced applications, IEEE, pp 392–399

Olsson T., Wnuk K. (2018) Qreme–quality requirements management model for supporting decision-making.
In: International Working Conference on Requirements Engineering: Foundation for Software Quality,
Springer, pp 173–188

Ouriques R. A. B., Wnuk K., Gorschek T., Svensson R. B. (2019) Knowledge management strategies and
processes in agile software development: a systematic literature review. International journal of software
engineering and knowledge engineering 29(03):345–380

Petersen K., Feldt R., Mujtaba S., Mattsson M. (2008) Systematic mapping studies in software engineering.
In: 12th International Conference on Evaluation and Assessment in Software Engineering (EASE) 12,
pp 1–10

Pinto G., Castor F., Bonifacio R., Rebouças M. (2018) Work practices and challenges in continuous
integration: A survey with travis ci users. Software: Practice and Experience 48(12):2223–2236

Poppendieck M. et al (2011) Principles of lean thinking. IT Management Select 18(2011):1–7
Poppendieck M., Poppendieck T. (2003) Lean software development: An agile toolkit: An agile toolkit.

Addison-Wesley
Provost F., Fawcett T. (2013) Data science and its relationship to big data and data-driven decision making.

Big data 1(1):51–59
Rahm E., Do H. H. (2000) Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23(4):3–

13
Raulamo-Jurvanen P., Mäntylä M., Garousi V. (2017) Choosing the right test automation tool: a grey literature

review of practitioner sources. In: Proceedings of the 21st International Conference on Evaluation and
Assessment in Software Engineering, pp 21–30

Riaz M., Sulayman M., Naqvi H. (2009) Architectural decay during continuous software evolution and
impact of ‘design for change’on software architecture. In: International Conference on Advanced
Software Engineering and Its Applications, Springer, pp 119–126

Rodrı́guez P., Haghighatkhah A., Lwakatare L. E., Teppola S., Suomalainen T., Eskeli J., Karvonen T., Kuvaja
P., Verner J. M., Oivo M. (2017) Continuous deployment of software intensive products and services: A
systematic mapping study. J Syst Softw 123:263–291

Rodrı́guez P., Markkula J., Oivo M., Garbajosa J. (2012) Analyzing the drivers of the combination of lean and
agile in software development companies. In: International Conference on Product Focused Software
Process Improvement, Springer, pp 145–159

Rogers R. O. (2004) Scaling continuous integration. In: International conference on extreme programming
and agile processes in software engineering, Springer, pp 68–76

Romano Jr N. C., Pick J. B., Roztocki N. (2010) A motivational model for technology-supported cross-
organizational and cross-border collaboration. Eur J Inf Syst 19(2):117–133

Runeson P., Host M., Rainer A., Regnell B. (2012) Case study research in software engineering: Guidelines
and examples. John Wiley & Sons

Ryals L. (2005) Making customer relationship management work: the measurement and profitable manage-
ment of customer relationships. Journal of marketing 69(4):252–261

Sassone P. G., Schaffer W. A. (1978) Cost-benefit analysis: a handbook, vol 182. Academic Press, New York
Senapathi M., Buchan J., Osman H. (2018) Devops capabilities, practices, and challenges: insights from

a case study. In: Proceedings of the 22nd International Conference on Evaluation and Assessment in
Software Engineering 2018, pp 57–67

Serrat O. (2017) Bridging organizational silos. In: Knowledge Solutions. Springer, pp 711–716
Shahin M., Babar M. A., Zahedi M., Zhu L. (2017) Beyond continuous delivery: an empirical investiga-

tion of continuous deployment challenges. In: 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), IEEE, pp 111–120

Shahin M., Babar M. A., Zhu L. (2017) Continuous integration, delivery and deployment: a systematic review
on approaches, tools, challenges and practices. IEEE Access 5:3909–3943

Shahin M., Zahedi M., Babar M. A., Zhu L. (2019) An empirical study of architecting for continuous delivery
and deployment. Empir Softw Eng 24(3):1061–1108

Page 39 of 40 157Empir Software Eng (2022) 27: 157

Shamshiri S., Just R., Rojas J. M., Fraser G., McMinn P., Arcuri A. (2015) Do automatically generated unit
tests find real faults? an empirical study of effectiveness and challenges (t). In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, pp 201–211

Sidky A., Arthur J., Bohner S. (2007) A disciplined approach to adopting agile practices: the agile adoption
framework. Innovations in systems and software engineering 3(3):203–216

Stolberg S. (2009) Enabling agile testing through continuous integration. In: 2009 agile conference, IEEE,
pp 369–374

Sturtevant D. (2017) Modular architectures make you agile in the long run. IEEE Softw 35(1):104–108
Sundelin A., Gonzalez-Huerta J., Wnuk K. (2018) Test-driving fintech product development: An experience

report. In: International Conference on Product-Focused Software Process Improvement, Springer, pp
219–226

Sundelin A., Gonzalez-Huerta J., Wnuk K. (2020) The hidden cost of backward compatibility: when depre-
cation turns into technical debt-an experience report. In: Proceedings of the 3rd International Conference
on Technical Debt, pp 67–76

Susarla A., Barua A., Whinston A. B. (2009) A transaction cost perspective of the” software as a service”
business model. J Manag Inf Syst 26(2):205–240

Tómasdóttir K. F., Aniche M., van Deursen A. (2017) Why and how javascript developers use linters. In:
2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, pp
578–589

van Hoorn A., Rohr M., Hasselbring W., Waller J., Ehlers J., Frey S., Kieselhorst D. (2009) Continuous
monitoring of software services: Design and application of the kieker framework

Vasilescu B., Yu Y., Wang H., Devanbu P., Filkov V. (2015) Quality and productivity outcomes relating to
continuous integration in github. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, pp 805–816

Wiklund K., Eldh S., Sundmark D., Lundqvist K. (2017) Impediments for software test automation: A
systematic literature review. Software Testing, Verification and Reliability 27(8):e1639

Williams L., Kudrjavets G., Nagappan N. (2009) On the effectiveness of unit test automation at microsoft.
In: 2009 20th International Symposium on Software Reliability Engineering, IEEE, pp 81–89

Williams L., Maximilien E. M., Vouk M. (2003) Test-driven development as a defect-reduction practice. In:
14th International Symposium on Software Reliability Engineering, 2003. ISSRE 2003., IEEE, pp 34–45

Yaman S. G., Sauvola T., Riungu-Kalliosaari L., Hokkanen L., Kuvaja P., Oivo M., Männistö T. (2016) Cus-
tomer involvement in continuous deployment: a systematic literature review. In: International Working
Conference on Requirements Engineering: Foundation for Software Quality, Springer, pp 249–265

Yu L., Alégroth E., Chatzipetrou P., Gorschek T. (2020) Utilising ci environment for efficient and effective
testing of nfrs. Inf Softw Technol 117:106199

Zhang D. (2018) Big data security and privacy protection. In: 8th International Conference on Management
and Computer Science (ICMCS 2018), Atlantis Press, pp 275–278

Zhu L., Bass L., Champlin-Scharff G. (2016) Devops and its practices. IEEE Softw 33(3):32–34

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

157 Page 40 of 40 Empir Software Eng (2022) 27: 157

	Towards cost-benefit evaluation for continuous software engineering activities
	Abstract
	Introduction
	Background and Related Work
	Agile, Lean and Continuous Software Engineering
	Cost-Benefit Analysis

	Research Methodology
	Aims of the Study
	Research Questions
	Research Method
	Industrial Case Studies
	Connection to State-of-the-Art

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Results
	Case I: Ericsson
	Research Context
	Data Collection
	Steps of the Software Delivery
	Aim I - Rapid Delivery of New Technologies
	Aim II - Universal Pipeline to Deliver Software
	Aim III - New Business Models
	Aim VI - Data-Driven Decision Making
	What is Needed to Support Retrofitting Product Product A with CI/CD Pipeline?
	Component Granularity and Flexibility
	Support for Different Parallel Delivery Models

	Case 2: Telia Company
	Research Context
	Data Collection
	Steps of Software Delivery
	Aim I - Simplify the Development and Build Process
	Aim II - Reduce the Complexity of Software Upgrades
	Aim III - Improve Software Quality

	What is Needed to Support Retrofitting Product B with a CI/CD Pipeline?
	Connection to State-of-the-Art
	Continuous Planning
	Continuous Development
	Continuous Verification
	Continuous integration
	Continuous Architecture
	Continuous Configuration Management
	Continuous Non-functional Testing

	Continuous Deployment
	Continuous Delivery
	Continuous Use
	Continuous Monitoring
	Cross-Cutting Concerns
	Continuous Compliance
	Continuous Security
	Continuous Budgeting
	Continuous Innovation
	Continuous Experimentation
	Continuous Improvement

	Discussion
	What are the Key Steps of the CI/CD Pipeline?
	What Costs and Benefits Steer the Adoption of the CI/CD in Practice?
	What is Needed to Support the CI/CD Cost-Benefit Analysis?

	Conclusions
	References

