
https://doi.org/10.1007/s10664-022-10160-3

Considerations and Pitfalls for Reducing Threats to the
Validity of Controlled Experiments on Code
Comprehension

Dror G. Feitelson1

Accepted: 23 March 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Understanding program code is a complicated endeavor. As a result, studying code com-
prehension is also hard. The prevailing approach for such studies is to use controlled
experiments, where the difference between treatments sheds light on factors which affect
comprehension. But it is hard to conduct controlled experiments with human developers,
and we also need to find a way to operationalize what “comprehension” actually means. In
addition, myriad different factors can influence the outcome, and seemingly small nuances
may be detrimental to the study’s validity. In order to promote the development and use of
sound experimental methodology, we discuss both considerations which need to be applied
and potential problems that might occur, with regard to the experimental subjects, the code
they work on, the tasks they are asked to perform, and the metrics for their performance. A
common thread is that decisions that were taken in an effort to avoid one threat to validity
may pose a larger threat than the one they removed.

Keywords Controlled experiment · Code comprehension · Experimental methodology ·
Threats to validity

1 Introduction

Code comprehension is a major element of software development. According to Robert
Martin, developers read 10 times more code than they write (Martin 2009). In one survey,

Communicated by: Anita Sarma, Fabio Palomba and Alexander Serebrenik

This article belongs to the Topical Collection: International Conference on Program Comprehension
(ICPC)

Dror Feitelson holds the Berthold Badler chair in Computer Science.
This research was supported by the ISRAEL SCIENCE FOUNDATION (grant no. 832/18).
This paper is an extended version of an “honorable mention” paper from ICPC 2021.

� Dror G. Feitelson
feit@cs.huji.ac.il

1 The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew
University of Jerusalem, 91904 Jerusalem, Israel

Published online: 23 June 2022

Empirical Software Engineering (2022) 27: 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10160-3&domain=pdf
http://orcid.org/0000-0002-2733-7709
mailto: feit@cs.huji.ac.il

95% of developers said understanding code was an important part of their job, and a large
majority said they do it every day (Cherubini et al. 2007). Most developers also agree that
understanding code written by others is hard. As researchers, we are interested in exactly
what makes it hard, and what can be done about it.

Controlled experiments are at the heart of research on code comprehension (Weissman
1974; Siegmund 2016). In such experiments the participants are asked to perform a pro-
gramming task based on some code. The task is crafted so that performing it successfully
requires the code to be understood. By measuring the effort and success of performing the
task, one can therefore obtain some information on the difficulty of understanding the code.
Repeating the measurements on modified code or using various tools then sheds light on
the effect of code features and tools on program comprehension.

While the general framework of code comprehension experiments is well known, there
are many variations in the details. This is a natural result of the combination of the many
decisions that have to be taken:

– One has to select the code on which the subjects will work. The code often reflects the
nature of the study, e.g. using a certain style of identifiers if the effect of such styles
on comprehension is the focus of the study. However, many other attributes of the code
may also affect the comprehension process. It is therefore important to select code that
does not introduce threats to the validity of the study.

– One has to select the tasks to be performed. The tasks are supposed to require under-
standing, but what does “understanding” mean? A particular risk is that subjects may
be able to find shortcuts and perform the task without actually understanding the code,
thereby undermining the whole experiment.

– One has to select the metrics by which performance will be measured. Different metrics
may actually measure different things, and reflect different aspects of the difficulties in
understanding code — or some factor that is unrelated to understanding the code.

– One also has to select the subjects themselves. A much-cited threat is the use of students
as experimental subjects. But when are students indeed a problem, and when can they
be used safely? And is the student/professional dichotomy indeed the correct one to be
concerned about?

Most work on the methodology of empirical software engineering focuses on experimen-
tal design, statistical tests, and reporting guidelines (Basili et al. 1986; Juristo and Moreno
2001; Wohlin et al. 2012; Shull et al. 2008; Jedlitschka and Pfahl 2005; Siegmund et al.
2021). But it is also important to get the domain-specific core features right (Brooks 1980).
For program comprehension our focus will be on general attributes of the code, the tasks,
and the measurements. We will discuss the manipulations that are part of a specific research
agenda only so far as they interact with such attributes. Our goal is to review the choices
that have been made in experimental studies, and the threats to validity involved in them.
This should be considered as a basis for discussion, not a comprehensive listing. Hopefully
this will encourage additional work on the methodological aspects of code comprehension
research.

Some previous work in this domain includes the following. In an early work Brooks
identified four factors which affect comprehension: what the program does, the program
text, the programmer’s task, and individual differences (Brooks 1983). These foreshadow
some of our observations on the code, the task, and the experimental subjects. Littman et
al. defined understanding at a somewhat higher level of abstraction (Littman et al. 1987).
According to them, understanding a program comprises knowing the objects the program
manipulates and the actions it performs, as well as its functional components and the causal

123 Page 2 of 42 Empir Software Eng (2022) 27: 123

interactions between them. Note that this description relates to systems, and not to smaller
elements of code.

To the best of our knowledge the only empirical evaluation of methods to measure code
comprehension was conducted by Dunsmore and Roper more than 20 years ago (Dunsmore
and Roper 2000). Their conclusion was that tasks performed using mental simulation of the
code provided the best results, and that a simple question regarding perceived comprehension
was also a good indicator. However, these results are of only a preliminary nature.

Siegmund et al. report on their experiences with conducting controlled experiments on
program comprehension, placing an emphasis on the need to control for programming expe-
rience (Siegmund et al. 2013). Perhaps the closest to our work is Siegmund and Schumann’s
review of confounding parameters in program comprehension (Siegmund and Schumann
2015). This includes a catalog of 39 factors that may influence the results of program
comprehension studies. Many of them have parallels in our discussion. However, we place
greater focus on the considerations involved in the technical aspects of the experiment, such
as the code used and the tasks performed: for example, Siegmund and Schumann spend only
one paragraph on the task, saying it may be a confounding factor, while we devote a whole
section to considerations in selecting a task and how this interacts with levels of understand-
ing the code. At the same time, many of the factors identified by Siegmund and Schumann,
especially considerations involving the experimental subjects, are not repeated here. As a
result the two papers largely complement each other. Another close paper is Oliveira et al.
(2020). This paper presents a literature survey of code readability and understanding, with
an emphasis on the tasks performed and the metrics used to assess understanding. It then
relates them to a taxonomy of learning. Our focus is narrower: we perform an in-depth
analysis of the factors involved in only the “understanding” level of the taxonomy, and on
concrete activities performed by developers.

Finally, von Mayrhauser and Vans (1995) and Storey (2005) emphasize the theoretical
underpinnings of program comprehension research. The most-often cited cognitive models
of code comprehension are the top-down model (Brooks 1983) and the bottom-up model
(Shneiderman and Mayer 1979). Another distinction is between the systematic strategy and
the as-needed strategy (Littman et al. 1987). While this is obviously important and worthy,
our work is focused on the more technical aspects of making the experimental observations
in the first place.

The following sections review issues related to the code, the task, the metrics, and the
experimental subjects. In each the pertinent considerations are listed first, and then the
potential pitfalls. This paper is an extended version of a paper from the 29th International
Conference on Program Comprehension (Feitelson 2021). The extensions added to this ver-
sion fall into two categories. First, the discussions of many of the points made throughout
the paper have been fleshed out. The original conference version naturally suffered from
space limitations, while in the present version it was possible to present the arguments more
fully and give more examples. In addition, several figures were added. Second, a few consid-
erations and pitfalls that were completely missing in the original version have been added.
A checklist summarizing the main points that need to be attended to in conducting a code
comprehension study has also been added.

2 The code

Experiments on code comprehension necessarily start with code. But finding suitable code
is not easy. Things to consider are the scope of the code, its level of difficulty so it will

Page 3 of 42 123Empir Software Eng (2022) 27: 123

be challenging enough but not too hard for an experiment, and whether to use real code or
write code specifically for the experiment. Pitfalls include the danger of misleading code on
the one hand, or code that will give the task away on the other hand, including the danger
of using well-known code that may be recognized, and problems with obfuscating variable
and function names and how the code is presented.

2.1 Considerations

2.1.1 Code scope

A central question regarding the code to use in a program comprehension study is how much
code to use. There is a wide spectrum of options: a short snippet of a few lines, a method, a
complete class, a package, or a full system.

The main consideration in favor of a limited scope is in cases where such a scope cor-
responds to the focus of the study. For example, when investigating the effect of the names
of parameters on the understanding of a function, it is natural to use complete functions
(Avidan and Feitelson 2017). If investigating control structures, focused snippets contain-
ing a single program element reduce confounding effects. For example, this was done by
Ajami et al. in a study that found differences in understanding loops that count up and loops
that count down (Ajami et al. 2019). An additional consideration is that a limited scope
allows for a manageable experiment, for example not extending beyond a single hour of the
experimental subject’s time and sometimes as short as 10 or 15 minutes.

Scope is also an important confounding factor (Gil and Lalouche 2017). If you want to
compare two constructs, and one requires more lines of code than the other, should differ-
ences in performance be interpreted as resulting from the constructs or from the amount of
code involved? This has no good solution, as artificially padding the shorter version may
compromise the integrity of the code and cause a confounding effect worse than the differ-
ence in length. However, if the longer code turns out to be beneficial, this strengthens the
results (Jbara and Feitelson 2014).

If the focus is on understanding as it is done during real development, e.g. to fix a
reported bug, a large volume of code should be used. Ideally, the whole system should be
available, just as it would be in a real-world setting (Abbes et al. 2011). This is important
since understanding a full system is quite different from understanding a limited amount of
code (Levy and Feitelson 2021). Brooks suggests that this difficulty is due to the software’s
myriad possible states (Brooks 1987).

In the past something that passes for a full system could involve relatively little code,
thereby enabling practical experiments on “complete systems”. For example, in the mid
1980s Littman et al. used a 250-line, 14-subroutine Fortran program that maintains a
database of personnel records. Today such a volume more realistically represents a single
class. As a result, experiments often make compromises. For example, a bug fixing task
may skip the stage of locating the relevant code in the system, and focus only on the actual
fix of the function in which the bug occurs.

The alternative is to conduct large scale experiments. For example, Wilson et al. asked
graduate students to implement change requests in programs comprising about 100 Kloc,
800 classes, and 500 files (Wilson et al. 2019). Sjøberg et al. suggest that realistic exper-
iments should be based on hiring professional programmers for relatively long periods of
days to months (Sjøberg et al. 2002; Sjøberg et al.). In such a setting, subjects can work
in a realistic environment, including having access to all the relevant code. This is impor-
tant because comprehension—like development—is an incremental process. It takes time

123 Page 4 of 42 Empir Software Eng (2022) 27: 123

and accumulates, and short experiments cannot evaluate this. At best they can focus on a
well-defined single step.

Another alternative is to observe professionals during their work. This approach was
taken by von Mayrhauser and Vans, who analyzed maintenance sessions of professionals
working on large-scale full systems. For example, in one paper they report in detail on a 2-
hour session devoted to porting client programs to a new operating system (von Mayrhauser
and Vans 1996), and in another they report on two 2-hour sessions, one fixing a bug and the
other searching for the location to insert new code (von Mayrhauser et al. 1997).

2.1.2 Code difficulty

Probably the most important characteristic of code used in an experiment is that the code
should be appropriate for the task and the subjects. It should not be too easy and not too
hard.

As an example of easy code, consider Fig. 1 (Listing 1 from Busjahn et al. (2015)). This
listing comprises 22 lines of code. It defines a class Vehicle with a constructor and a method,
followed by a main function that creates a Vehicle object and calls the method. The method
increments the vehicle’s speed, subject to not going over a maximal value. So essentially all
this code does is to increment an integer. Whether this is a problem depends on its use in the
experiment. The original experiment was to use an eye tracker to follow the code reading
order, so very simple code is a suitable base case. But using such code in a comprehension
study would probably actually measure the ability to find the one line that does something.

As an example of hard code consider Fig. 2 (Fig. 3 of Beniamini et al. (2017)). This is
11 lines long, comprising an initialized array and a function. The array is a lookup table.
The function calculates the number of 1 bits in an input buffer by using the top and bottom

Fig. 1 Example of trivial code. (©2015 IEEE. Reprinted, with permission, from Busjahn et al. (2015))

Page 5 of 42 123Empir Software Eng (2022) 27: 123

Fig. 2 Example of difficult code using bit operations to index an array. (©2017 IEEE. Reprinted, with
permission, from Beniamini et al. (2017))

halves of each byte as indexes to the lookup table and summing. While short, this code is
non-trivial due to the use of bitwise operations to manipulate array accesses.

The issue of difficulty is closely associated with code complexity. Unfortunately the term
“complexity” is used in three different meanings in the context of software:

– The simplest, which we emphasize here, is code complexity. This is a direct prop-
erty of the code—as text which expresses a set of instructions—that makes it hard to
understand. For example, McCabe suggested that the number of branch points in a func-
tion is a measure of such complexity (McCabe 1976), and Dijkstra claimed that goto
statements are especially harmful (Dijkstra 1968). However, more recent research has
questioned whether such code metrics indeed predict comprehension difficulty (Denaro
and Pezzè 2002; Nagappan et al. 2006; Feigenspan et al. 2011; Nagappan et al. 2015;
Gil and Lalouche 2017).

– A completely different issue is the conceptual complexity of the software. This is what
Brooks calls “essential complexity”, and is what makes software development hard
(Brooks 1987). Naturally it may also affect code comprehension studies.

– the third meaning is algorithmic or computational complexity, as in the number of steps
required to perform some computation. This is unrelated to our interests here.

As noted above, code difficulty may be related to the use of specific code constructs —
such as goto or bitwise operations. Pointers have also been observed to be hard to master
(Orso et al. 2001; Spolsky 2005). More generally, code smells and anti-patterns can make
code harder to understand (Sharma and Spinellis 2018; Abbes et al. 2011; Politowski et al.
2020). All these obviously justify being studied, but should probably be avoided when they
are not the focus of the study.

Assessing whether code is of suitable difficulty is hard, because this issue interacts with
the subjects. For example, if subjects don’t know about bitwise operations, code using such
operations becomes impenetrable. A similar problem occurs when understanding the code
requires specific domain knowledge. This needs to be checked in pilot studies and during
subject recruitment.

2.1.3 Code source

The considerations regarding what code to use depend on the type of experiment being
conducted. When style or tools are being investigated, the code should be “representative”
of code in general. However, given the vast amount of code that exists—much of which is

123 Page 6 of 42 Empir Software Eng (2022) 27: 123

closed source—it is unrealistic to try to create a statistically representative sample of code.
But we can at least use some sample of real code.

Volumes of real code are now freely available in open source repositories. An unan-
swered question is whether this is also representative of proprietary code. There are
dissenting opinions on which approach produces better code (and by implication, also
clearer code) (Paulson et al. 2004; Raghunathan et al. 2005). Proponents of open source
cite Linus’s law, and claim that open source is better due to being subject to review by mul-
tiple users (Raymond 2000). Alternatively, proprietary code has been claimed to be better
because it is more managed in terms of testing and documentation.

One major concern with using real code is that the code was written by people who
know what it is for. So the code may rely on implicit domain knowledge or reflect unknown
assumptions and constraints. If experimental subjects in code comprehension experiments
lack this knowledge, they will be unable to understand the code. A possible solution is to use
code from utility libraries (e.g. performing array or string operations) (Avidan and Feitelson
2017), or to otherwise ensure that domain knowledge is not required.

The quest for self-contained code may suggest the use of functions that perform some
computation that is completely devoid of any context. A good source for such functions is
web sites with programming exercises for job interviews, such as leetcode.com. The advan-
tage of such sites is that hundreds of exercises are available, often with dozens of solutions
for each. However, many of the problems are unrealistic, for example implementing a con-
trived complicated rule to distribute candy among children. It is highly unlikely that anyone
would actually be required to write such code except in a coding exercise. As a result under-
standing the code can be difficult simply because it does not have a clear purpose and does
not make sense. It is therefore recommended to vet candidate codes carefully, and use only
codes for realistic problems.

In experiments focused on particular features of the code, using real code may provide
only imperfect examples, and at the same time it may introduce unwanted confounding
factors. It may therefore be necessary to write code snippets specifically for the experiment
to better control the different treatments. For example, Ajami et al. wrote code snippets with
exactly the same functionality using different programming constructs, to investigate the
effect of these constructs on understanding (Ajami et al. 2019). Note, however, that different
treatments can also be based on real code. Abbes et al. used 6 large systems that contained
specific antipatterns in an experiment on the effect of these antipatterns on comprehension
(Abbes et al. 2011). To create the alternative treatment they refactored the systems to remove
the antipatterns, without changing the rest of the design.

An extreme case is using randomly-generated code (Hollmann and Hanenberg 2017).
This is by definition devoid of meaning, which raises the question of what we are asking
subjects to understand. It can perhaps be used to study very technical aspects of reading, as
a way to separate them from the effect of semantics. For example, Stefik and Siebert used
randomly-generated keywords as a baseline (like a placebo) for studying the effect of syntax
on understanding (Stefik and Siebert 2013).

In any case, regardless of the source of the code, one should ensure that it compiles and
runs correctly. Few things are more embarrassing than having subjects in an experiment
point out a bug (where this is not part of the experiment).

2.2 Pitfalls

Even when all the considerations are taken into account, problems with the code can threaten
the validity of the study.

Page 7 of 42 123Empir Software Eng (2022) 27: 123

2.2.1 Misleading code

Perhaps the biggest problem is unintentionally misleading code. If the code is misleading,
subjects may make mistakes not because of the studied effect but because they were mis-
led. Gopstein et al. have identified 15 coding practices that may be misleading (Gopstein
et al. 2017). Examples include using an assignment as a value, using short-circuit logic for
control flow (in A||B, if A is true B is not evaluated), or presenting literals in an unnatural
encoding like octal. Scalabrino et al. suggest code consistency as another attribute which
affects readability and understanding (Scalabrino et al. 2016). This refers to the consistent
use of terms in variable names and in comments. In other work, Scalabrino et al. define a
metric for the deceptiveness of code based on the discord between perceived comprehension
and actual comprehension (Scalabrino et al. 2021).

A major factor in misleading code appears to be names. Arnaoudova et al. call this
“linguistic antipatterns”, e.g. when a variable’s name does not match its type, or when its
plurality does not match its use (Arnaoudova et al. 2016). A simple example appears in
Fig. 3 (Listing 4 of Hofmeister et al. (2019)). This includes an array named str, and a line
int len = str.Length. But contrary to what might be expected, str is not a string. Rather, “str”
is an abbreviation for “start”, and is used to denote the initial array of integers passed to a
function that will change it. To further confuse matters, the array that will be appended to
str is called end, a name that may be more suitable for the final result.

A striking example of the effect of misleading names was given by Avidan and Feitelson
(2017). In a study about variable naming they used 6 real functions from utility libraries.
Each function was presented either as it was originally written, or with variable names
changed to a, b, c, etc. in order of appearance. The unexpected result was that in 3 of
the functions there was no significant difference in the time to understand the different
versions, and moreover, several subjects made mistakes — and all the mistakes were in the
versions with the original names. The conclusion was that the names were misleading, to
the degree of being worse than meaningless names like consecutive letters of the alphabet.
But presumably the original developers did not intentionally choose misleading names. So
the real threat is that names that look OK to the experiment designer would turn out to be
misleading for the experimental subjects.

A more insidious example comes from Soloway and Ehrlich’s seminal paper on pro-
gramming knowledge (Soloway and Ehrlich 1984). The code samples shown in Fig. 1 of

Fig. 3 Example of mechanistic abbreviations. (Reprinted by permission from Springer Nature from Hofmeis-
ter et al. (2019), ©2019)

123 Page 8 of 42 Empir Software Eng (2022) 27: 123

Fig. 4 Example of misleading code. The task was to decide whether to put a < or a > in the box. (©1984
IEEE. Reprinted, with permission, from Soloway and Ehrlich (1984))

that paper were meant to investigate the rule that “a variable’s name should reflect its func-
tion”. This was done by writing code that calculates the maximum or the minimum of a set
of input numbers. The experimental subjects’ task was to insert the correct relation symbol
(< or >) in the expression comparing the result so far with each new input.

But in the version calculating the minimum, the code used the name max instead of min
(Fig. 4). This left the initialization to a large number 1 instead of to 0 as the only clue that the
code actually calculates the minimum; if one assumes that the code calculates the maximum,
as the variable name suggests, such an initialization would be erroneous. In other words, the
experiment did not present its subjects with a situation in which the name does not reflect its
function — it presented them with a downright contradiction. And this contradiction pitted
a central variable name against a not so prominent initialization. Subjects would have to be
especially diligent to get this right.

2.2.2 Recognized code

The opposite of misleading code is easily recognized code. This may occur if textbook
examples are used, e.g. a well-known sorting algorithm. Using such code may end up mea-
suring how well-versed subjects are in the cannon of programming examples. This also
applies to many of the problems available on web sites with job-interview programming
exercises.

It may be tempting to nevertheless use a well-known example but modify it in some
way. This is a dangerous practice, as modifying such code risks turning it into misleading
code, because subjects who recognize it expect the conventional unaltered functionality. For
example, altering the initialization or termination of a canonical for loop leads to a large
increase in the errors made in interpreting what it does (Ajami et al. 2019).

2.2.3 Code structure giveaways

Code used in experiments should be realistic, in the sense that it could have been written in
the context of a real project. Code written specifically for experiments sometimes violates
this requirement. For example, it should not include parts that do not make sense, especially
if such unnecessary additions may give the experiment away.

1They used 999999, which today looks unjustifiable; it should have been MAXINT.

Page 9 of 42 123Empir Software Eng (2022) 27: 123

An example is shown in Fig. 5 (Fig. 1 in Schankin et al. (2018)). This is a class that
converts variable names in under score style to camelCase style. The class contains two
helper functions, to lowercase the first letter of a word and to capitalize it. The point of
the experiment is to notice that lowercase is called instead of capitalize, which is an error.
But in fact there is no reason for the lowercase function to exist at all, because the class as
presented supports only one-way conversion. And in the original (erroneous) code capitalize
is dead code that is never called, which may provide a hint.

Another example is when the code allows the answer to be guessed. For example,
Sharif and Maletic studied name recall using a multiple-choice question with the following
options: fill pathname, full mathname, full pathname, and full pathnum (Sharif and Maletic
2010). The distractors were selected to be as similar as possible to the original name. But
the first of them contains a verb, and is therefore more likely to be a function name. Two
others contain unlikely word conjugations, mathname and pathnum. This leaves only one
option which makes sense as a variable name, and indeed this is the correct answer.

2.2.4 Problematic code presentation

A potential problem in presenting code in the context of comprehension studies is what to do
with comments and descriptive names. For example, header comments and method names
are specifically designed to allow readers to understand what a function does without read-
ing its code. Leaving them intact may therefore undermine an experiment where subjects
are supposed to deduce just that. But given that they normally exist, removing them cre-
ates an unnatural situation. Thus it is suggested that this be done only in experiments using

Fig. 5 Example of problematic code. The task was to find the bug, which is that the wrong function is called.
(Republished with permission of ACM, from Schankin et al. (2018), ©2018)

123 Page 10 of 42 Empir Software Eng (2022) 27: 123

short code segments, where the focus justifies using an unrealistic setting. If a large body of
code is used, names and comments should probably be retained. Likewise, in experiments
where the task is not to understand what the code does there is no problem. An example is
superficial debugging tasks, as explained below in Section 3.1.6.

As a side note, care should be taken that the comments do not directly interact with the
task. For example, Fig. 1 in a paper by Buse and Weimer (2010) shows a short code snippet
preceded by the comment “this is hard to read”, from an experiment where subjects are
asked to assess readability. Providing such overt hints regarding the expected answer should
be avoided.

A more delicate issue is how to handle mathematical and logical expressions. For exam-
ple, should one rely on operator precedence, or use parentheses to clarify the order of
evaluation? Again, if this is not the issue being studied, the best approach is probably to
make it as unobtrusive as possible. Any effort that subjects spend on understanding expres-
sions, and any mistakes they make, dilute the results that the experiment was designed to
produce. In practical terms, this means to make the expressions as simple and obvious as
possible, including by using parentheses.

More generally, all aspects of code readability affect its comprehension. If they are not the
issue being studied (e.g. Oman and Cook 1990), they should be controlled. When using real
code it may be tempting to present the code as it was written. But if the original code is not
laid out properly, or uses an idiosyncratic style, this could introduce a confounding effect.
A good practice is to use an IDE’s default indentation and syntax highlighting, as incon-
sistent presentation leads to cognitive load and therefore constitutes a confounding factor
(Fakhoury et al. 2020). Methods within a class should be listed in calling order, meaning that
called methods are placed after methods that call them (Geffen and Maoz 2016).

Another aspect of code presentation is coding style. Fashions change, and different peo-
ple write in different styles. A mismatch between the writing style and the preferences
(or experience) of the experimental subject may cause bias and a confounding effect. Two
things can be done to reduce such problems. First, adopt the style that matches the prevail-
ing culture (e.g. snake case for Python but CamelCase for Java). Second, be consistent and
use the same style throughout.

2.2.5 Variable naming side-effects

Variable names and function names are instrumental for comprehension, and in many cases
they provide the main clues regarding what the code is about. In the context of comprehen-
sion studies this may be undesirable, so the names have to be stripped of meaning. Some of
the ways that this has been done are problematic:

– Simple options are using arbitrary strings (asdf, qetmji) or unrelated words (superman,
purple). These are distracting, and may be useful only in relation to extreme research
questions on reading or the possible detrimental effect of extremely bad (distracting)
names. They should not be used if this is not the research issue.

– Another approach is to use obfuscation, e.g. by applying a simple letter-exchange cipher
(Siegmund et al. 2017). This leads to names that are long and distracting non-words.
For example, the function name ‘countSameCharsAtSamePosition’ can change into
‘ecoamKayiEoaikAmKayiEckqmqca’. Long names like this that differ in just a couple
of letters may become very hard to distinguish.

Note too that obfuscation may deeply affect how subjects perform tasks. Vari-
able names convey meaning, and thus enable a measure of top-down comprehension.

Page 11 of 42 123Empir Software Eng (2022) 27: 123

Siegmund et al. therefore used obfuscated variable names to force subjects to use
bottom-up comprehension based on the syntax (Siegmund et al. 2014; Siegmund
et al. 2017). Such an effect may happen with problematic code also when this is not
intentional.

Alternative better ways to obfuscate variable names are the following:

– One option is to use words that represent the technical use of the variables, but do not
reveal the intent — exactly the opposite of what we usually try to do. For example, one
could use num1 and num2 instead of base and exponent in a function that calculates a
power (Siegmund et al. 2014).

– Perhaps the simplest and most straightforward approach is to just use consecutive letters
of the alphabet in order of appearance (Avidan and Feitelson 2017; Hofmeister et al.
2019). Note that this is different from using the first letter of the “good” name, as that
may still convey information (Beniamini et al. 2017).

A related case is when names are abbreviated to see the effect of such abbreviations. This
is sometimes done in a mechanical manner in an attempt to be more scientific and reduce
the reliance on individual judgment. For example a possible approach is to concatenate
the first 3 consonants in the name (as shown in Fig. 3 above) (Hofmeister et al. 2019).
However, this may lead to unnatural or misleading names, such as str for start or rsl for
result. Consequently the gain in rigorosity may come at the expense of reduced validity.
It is better to use judgment rather than a mechanical approach, e.g. allowing res for result
and the 4-letter conc for concatenate. To reduce the danger of mistakes in judgment, the
abbreviations can be derived independently by two people, and then compared.

2.2.6 Inappropriate code for the task

Importantly, the task subjects are required to perform and the code must be compatible.
For example, when studying whether indentation aids comprehension, one needs a task that
depends on the block structure of the code. Otherwise indentation is indeed not an important
feature, and the results will show that it does not matter. But this would be wrong, because
maybe indentation does indeed matter for another task — for example, one that is related to
navigation and identification of code blocks.

For example, Miara et al. conducted a study on indentation using 102-line long code
with a main and two functions, and a maximal nesting level of 3 (Miara et al. 1983). The
result was that nesting had some effect, based on questions such as whether all variables
were global, which require the definition of variables at the beginning of functions to be
identified (the study is from 1983 and the code was written in Pascal). Many years later
Bauer et al. replicated this study, but the code used was 17-line single functions with a
maximal nesting of 2, and the task was to anticipate what the program would print (Bauer
et al. 2019). In this setting indentation was not found to be important, but maybe the reason
was that the code structure was too simple.

3 The task

If we focus on comprehension per se, experiments on code comprehension are a sort of
challenge-response game. The experimenter challenges the subject to understand some

123 Page 12 of 42 Empir Software Eng (2022) 27: 123

code. A subject that claims to have achieved such understanding must prove it by perform-
ing some task. It is therefore vital that the task really reflect comprehension. In a sense, the
task defines what “comprehension” means. The main considerations are therefore what level
of comprehension is reflected by each task. And the main pitfall is that the link between
the task and the understanding might be compromised, e.g. if subjects can guess the correct
answer without actually understanding the code.

3.1 Considerations

In real life, program comprehension is rarely an end in itself. Rather, comprehension is a
prerequisite to performing some programming task, such as fixing a bug or adding a feature.
So experiments can use such tasks directly.

Alternatively, one can consider comprehension itself. In this case the main consideration
in selecting the task to perform is that the task reflects the level of understanding which is at
the focus of the experiment. Should the subjects just know the variables and data structures?
Maybe the behavior at runtime? Or perhaps also the underlying algorithms? The following
subsections detail several such possible levels. We name them using the straightforward
dictionary meaning of different words. Note, however, that this is not universal, and over
the years some of these names and others have been used in various non-compatible ways.

It is also interesting to consider the relationship of code comprehension to reading natu-
ral language texts, and to the terminology used there. Being able to read at all depends on
the legibility of the text — that the letters stand out clearly. This is more a matter of design
(e.g. fonts and color contrast) than of reading. Reading is commonly referred to as combin-
ing the acts of identifying letters and words and gleaning the meaning conveyed by them.
While this terminology is not universal (for example, Smith and Taffler advocate distin-
guishing between “reading” and “understanding” (Smith and Taffler 1992)), it is often also
adopted in studies on reading code. For example, the first sentence in Buse and Weimer
(2010) is “we define readability as a human judgment of how easy a text is to understand”.
But code is actually somewhat different from text. For example, the difficulty of text can
be approximated based on simple metrics like sentence lengths and word lengths (DuBay
2004; Smith and Taffler 1992), but at the same time text may be ambiguous (which may be
used to advantage in both prose and poetry). In code such metrics are not very meaningful,
and the semantics are unique and well defined. Our goal is to describe how levels of the
semantics relate to levels of reading the code. The relationship between the different levels
is shown in Fig. 6.

recognition

parsing

comprehension

interpretation API use

design

recovery

refactoringcorrection
recall

completion,

modification

extention,

Fig. 6 Relationships between tasks used in comprehension experiments

Page 13 of 42 123Empir Software Eng (2022) 27: 123

3.1.1 Recognition task (tokens and structure)

The most basic level is just recognizing the elements of the code, such as tokens and struc-
ture. Note that this has two facets. Recognizing tokens is a localized task. It is aided by
programming practices such as surrounding the assignment operator with spaces, and by
IDE options such as colorizing keywords. Recognizing structure is a more global issue,
which has a strong influence on navigation in the code and on the findability of key elements
in it (Oman and Cook 1990). In addition to colorized keywords, this is aided by practices
such as consistent indentation.

The above considerations indicate what type of tasks may be used to assess recognition.
Such tasks include:

– Find a certain word, e.g. the use of a variable.
– Identify nesting of constructs, e.g. the most deeply nested one.
– Verify whether two expressions have the same syntactic structure.

But studies that focus on mere recognition are few, such as those targeting notation or syntax
highlighting (Oman and Cook 1990; Purchase et al. 2002; Hollmann and Hanenberg 2017;
Hannebauer et al. 2018). In addition, disrupted layout has been used as a control and to
force subjects to employ bottom-up comprehension (Siegmund et al. 2017).

3.1.2 Parsing task (understand syntax)

The next level up is to be able to parse the code. This shows that you are able to understand
the syntax: what are legal expressions, and what their relations may be. Example tasks can
include

– Find the type of a variable (in a typed language).
– Find a syntax error in a function.
– At a larger scale, draw a basic UML class diagram of a project, or compare a UML

diagram with code that is supposed to implement it. “Basic” here means without some
details that require deeper understanding, such as using type inference and defining the
cardinality of associations.

Note that these tasks do not require any understanding of what the code does. This is
intentional, as such understanding is detailed in subsequent higher-level tasks. It is some-
times claimed that this level of understanding is not very important or interesting in itself,
as syntax issues are typically delegated to a compiler. It is therefore not commonly used in
comprehension experiments, and when it is, it may be used as a control, to show the dif-
ference between understanding syntax and semantics (e.g. Siegmund et al. 2014; Schankin
et al. 2018).

3.1.3 Interpretation task (local semantics)

While parsing requires understanding the structure of the code, interpretation requires
understanding the semantics of the individual instructions. Tasks which reflect the ability to
interpret code include

– Find what the code prints for a certain input. This can be done by simulating the
execution one instruction at a time, much like an interpreter would.

123 Page 14 of 42 Empir Software Eng (2022) 27: 123

– Answer simple questions about the code. For example, Pennington suggested using
questions on the program’s control flow (will the last record be counted?) and data flow
(does the value of variable a affect that of b?), its states (will c have a certain value after
the loop?), and specific operations (is d initialized to 0?) (Pennington 1987).

– Write tests that provide statement coverage or branch coverage. This only requires one
to understand individual condition statements.

– Identify and remove dead code which will never be executed (e.g. a function that is not
called, or a condition that is always false).

– Draw a UML sequence diagram. To do so one just needs to understand which functions
call each other.

Interpretation is on the verge of “real” understanding. On the one hand, one can hand-
simulate the execution of code and figure out what it will print without forming a general
understanding of what the code actually does. But this is nevertheless appropriate for very
short snippets of code comprising a single control block and nothing else. For example,
Ajami et al. use this for comparisons of different formulations of a predicate used in an if
construct (Ajami et al. 2019).

On the other hand, there are cases where it is actually easier to figure out what the code
does rather than to simulate its execution. A case in point is code with loops, especially
when many iterations are performed. For example, Hannebauer et al. suggest this is the
case in an experiment they perform on code that implements bubble sort (Hannebauer et al.
2018, Figure 2).

Interpretation tasks are quite popular in comprehension experiments, because they are
easy to create and to check: you just compare the given answer to the known correct answer.
However, one must carefully consider the details to determine whether an answer based
on tracing the execution is likely, and whether this affects the validity of the experimental
results.

3.1.4 Comprehension task (global semantics)

Comprehension is understanding the underlying concepts of the code, and grasping its
functionality in abstract terms. This is the general goal of code comprehension. The differ-
ence between comprehending semantics and parsing syntax is real. fMRI studies show that
comprehension tasks activate different parts of the brain than syntax-related tasks — parts
related to working memory, attention, and language processing (Siegmund et al. 2014).

The most common way to assess comprehension is to ask questions about the program.
Specific questions and tasks which are thought to reflect comprehension are:

– After reading and understanding the code, answer a question about the expected output
for a given input without seeing the code again — that is, without the ability to simulate
its execution (this assumes the code is non-trivial and cannot be remembered easily).

– Describe the functionality of the code. More concretely, this can be achieved in several
ways:

– Ask subjects to suggest a suitable meaningful name for a function.
– Ask subjects to summarize the purpose of the code.
– Ask subjects to add documentation to the code, for example header comments

for functions.
– More formally, ask subjects to articulate the contract of a function or API:

what are the preconditions and postconditions when using it (Meyer 1992).

Page 15 of 42 123Empir Software Eng (2022) 27: 123

– Describe the flow of the code, namely how it transforms its input into its output. Or
more generally, perform a code summarization task. Answers to such questions must
be carefully analyzed to ascertain that they indeed reflect comprehension. For example,
saying that the code loops over all numbers smaller than the input and checks for cases
where they divide the input number with no remainder may be precise, but it is just a
technical description of the code. True comprehension is to say that the code checks
whether the input number is a prime.

– Answer questions about specific elements of the code, for example the purpose of a
certain variable, or why a certain function is called. Note however that such questions
do not necessarily assess global understanding.

– Write a test suite for a function. As this requires the expected results to be given, it
shows you know what the tested code does. A comprehensive test suite specifically
shows understanding of semantic corner cases.

– Another possible task is to explain the limitations of a function or API — when should
it be used, and when can’t it be used. This is related to the question of writing the
contracts for functions mentioned above.

It is advisable to use questions of several types, so as to cover different aspects of under-
standing the code (Pennington 1987; Cook et al. 1984). But in many cases, assessing the
answers given to comprehension tasks is not easy (as discussed in Section 4.1.2 below).
Therefore other tasks which assess comprehension indirectly are sometimes used. Such
options are described in the following subsections.

3.1.5 Code completion or recall task

A common exercise when learning foreign languages is “fill in the blanks” (the so-called
cloze test): the students are given a text with some parts missing, and need to complete
them either on their own or using a list of options, based on their understanding of the text
and of how different options fit in. This can also be done with code (Cook et al. 1984).
For example, Soloway and Ehrlich used this to study the effect of a mismatch between a
variable’s name and its function (Soloway and Ehrlich 1984), and Hannebauer et al. used it
to study the understanding of an inheritance hierarchy (Hannebauer et al. 2018). However,
finding the right balance between trivial cases and misleading cases appears to be hard.
As noted above, Soloway and Ehrlich’s code was misleading. Hannebauer et al’s is trivial:
subjects were requested to replace the XXXXX in the declaration Mother x = new XXXXX()
with one of the options Father, Mother, or Daughter. This can obviously be done without
ever looking at the code.

A rather different type of task is to read the code, understand it, and then try to recall
it from memory. Obviously this is limited to reasonably short codes, e.g. up to 20–30 lines
long. The motivation for this task is the seminal work of Simon and Chase, which showed
that expert chess players can easily memorize meaningful chess positions, but are not good
at memorizing random placements of chess pieces (Simon and Chase 1973). Hence the
memorization interacts with identification of meaning.

Shneiderman conducted an experiment based on this approach more than 40 years ago
(Shneiderman 1977), concluding that better recall indeed correlates with better comprehen-
sion (as measured by the ability to make modifications to the code). McKeithen et al. also
showed that expert programmers are better able to recall semantically meaningful program
code (McKeithen et al. 1981). However, this type of task is rather far removed from what
programmers actually do, and perhaps for this reason does not seem to be popular.

123 Page 16 of 42 Empir Software Eng (2022) 27: 123

3.1.6 Correction task (white-box)

Of the different types of maintenance (Lientz et al. 1978), corrective maintenance (fixing
bugs) is the one most often used to test understanding. Moreover, Dunsmore et al. have
found that perceived comprehension indeed correlates with finding bugs (Dunsmore et al.
2000). But not all bugs reflect the same level of understanding. One needs to distinguish
technical bug fixing (e.g. finding and correcting a null pointer dereference (Levy and Fei-
telson 2021), a method declared private instead of public (Hannebauer et al. 2018), or a
syntax error) from a semantic error (such as calling the wrong helper function (Schankin
et al. 2018) or using a wrong index into an array (Hofmeister et al. 2019)). Finding technical
errors is more at the level of interpretation than comprehension — it can be done by scan-
ning the code superficially without any deep understanding of the whole. Syntax errors may
be irrelevant, as they should be caught by the compiler (but nevertheless they are sometimes
used, e.g. (Hannebauer et al. 2018)). Only semantic errors reflect real comprehension.

An important question is exactly what bugs to inject. Two classifications were suggested
by Basili and Selby (1987). The first is a distinction between errors of omission and errors of
commission. This is an important distinction, because with commission the subjects can see
the error, but for omission they need to notice that something is missing — which depends
on a preconception of what the code is trying to do. The second classification lists six types:
initialization, control, computation, interface, data, and cosmetic. Using such classifications
helps reduce confounding effects that may be due to a specific type of bugs. They were used
for example by Juristo et al. (2012) and Jbara and Feitelson (2014).

An important consideration is whether to ask only for the correction of the bug given
the location where it occurs, or to also require subjects to locate the bug (Pearson et al.
2017). The first option is more focused on understanding the details of the given code. The
second mixes this with achieving an overall view of how the code is structured and how
responsibilities are distributed across modules and functions. This is a different level of
understanding that should be assessed separately, for example by asking where to look for
the bug rather than asking to fix it.

3.1.7 Extension or modification task (large scale white-box)

Most of the tasks outlined above are suitable for short code snippets, a function, or perhaps
a class. Some of them, e.g. correction tasks, can also apply to larger software systems.
Extension and modification of software can also be done on a single function, but usually
the minimal relevant scope is a class, and the common scope in real-life situations is a
module or a complete system.

A few examples are given by Wilson et al. who use large-scale projects of 78 and 100
KLoC to study adding new features (Wilson et al. 2019). This enables them to study not
only the change itself, but also the process of finding where in the code the change must be
made. If the task asks only to change a given function, it misses the steps of zeroing in on
the correct location to make the change, and the evaluation of the impact that the change
may have on other parts of the system (Rajlich and Wilde 2002). Whether this is a problem
depends on whether you consider it part of comprehending the system.

Importantly, writing code as in code extension or modification tasks is different from
reading code as in comprehension tasks. Krueger et al. show using fMRI studies that writing
activates areas in the right hemisphere of the brain, associated, inter alia, with planning and
spatial cognition (Krueger et al. 2020). So it seems that in these tasks, while comprehension

Page 17 of 42 123Empir Software Eng (2022) 27: 123

is needed, it is not the main activity. They may therefore be less suitable as tasks that reflect
comprehension.

Moreover, there are additional levels of comprehension which may be required to cor-
rectly change code but are hard to attain and to measure. Levy and Feitelson identify two
such levels beyond the usual black-box/white-box dichotomy (Levy and Feitelson 2021):

– “Out-of-the-box” comprehension refers to subtle interactions of the code under study
with other parts of the system, e.g. as may be required for extreme optimizations.

– “Unboxable” comprehension is the appreciation of the underlying assumptions and
considerations involved in developing the code, which may not be directly reflected in
the code at all.

3.1.8 Use task (black-box)

Black-box is a special case of comprehension, where we are interested in using the code
as opposed to understanding how it works (white-box) (Levy and Feitelson 2021). This is
very common and important in real life when one needs to use third-party libraries. It also
forms the basis for modularity, encapsulation, and information hiding (Parnas 1972; Parnas
et al. 1985). But it is rather uncommon and not very useful in comprehension experiments.
The simplest way to exhibit black-box knowledge about an API is to use it, that is to write
some code that calls the API functions. In addition, one can ask about various attributes of
the API:

– Details about parameters of API functions.
– Connections between functions, e.g. if one must be called before another is called.
– Documented preconditions or constraints.

Note that black-box understanding is actually disconnected from the code itself — this
is the essence of information hiding. It is based on documentation. But generating such
knowledge requires deeper comprehension, as noted above.

3.1.9 Design-related task (abstraction)

Understanding a system is not the same as understanding a single module or a smaller piece
of code. When understanding a system the focus is on understanding the structure, namely
the system’s components, what are their responsibilities, and how they interact with each
other (Biggerstaff 1989; Levy and Feitelson 2021). A deeper level of understanding is to
understand why it is structured like this, that is, to understand the rationale for the design
decisions that were taken during development.

Recovering the design of a system from its implementation is an act of reverse engineer-
ing (Chikofsky and Cross II 1990). One possible approach to achieve this is by analyzing
the dynamic behavior of the system at runtime, and noting the interactions between its com-
ponents (Cornelissen et al. 2009). This is different from the approaches used for other tasks
listed above, which mostly focus on the static code. It may even be claimed that resorting to
code execution is a way to circumvent the need to understand the code directly. However,
performing tasks that affect the design do require one to contend with the code itself. Pos-
sible tasks related to understanding the design are different types of refactoring, such as the
following (Fowler 2019):

– Extract methods, that is identify blocks of code that should be made into independent
methods for reuse or better structure.

123 Page 18 of 42 Empir Software Eng (2022) 27: 123

– Suggest methods that should be moved to another class.
– Modify the inheritance hierarchy by pulling up or pushing down a field or a method,

and placing them in a more appropriate class.
– Replace a conditional behavior with using inheritance to create polymorphism.
– Identify a common base-case and extract a superclass to represent it.
– Extract explaining variables to improve the comprehensibility of the code (Cates et al.

2021).

While there is extensive literature about the execution of such tasks, they are not common
in code comprehension studies. Possible reasons are that they require a large scope to be
meaningful, which is harder to provide in a controlled experiment. It is also hard to judge
the correctness of performing such tasks, as design is always also partially a matter of taste.

At a higher level of abstraction, the result of the design process is an architecture. Hence
understanding the design is understanding the architecture. A possible task to show this level
of understanding is then to describe the architecture. This can be expressed, for example, as
defined by the 4+1 views suggested by Kruchten (1995). For example, in an experiment we
can ask participants to draw a conceptual diagram showing relations between entities. Note,
however, that in a real-life setting comprehending a system is a continuous process, and each
task adds to this understanding in an incremental manner (von Mayrhauser and Vans 1995).
In all likelihood such a process cannot be fully replicated in an experiment. However, design
recovery may also be useful in the context of other tasks, such as debugging or adding a
feature.

3.1.10 Selection of tasks

The previous subsections indicate that different tasks actually reflect different aspects of
understanding. A possible way to interpret the relations between them is shown in Fig. 7. A
major distinction is between factors that reflect code properties and factors that character-
ize the developer tasked with understanding the code. For example, style is a code property,
but being able to parse and interpret code reflects knowledge of the programming language
in which it is written. Thus the selection of which task to use should be predicated by what
we want to study: the code or the developer. The more involved tasks, such as modifying
or explaining code, typically involve both code and developer. It is then hard or impossi-
ble to claim that the task measures one or the other (Bergersen et al. 2014). In addition,
challenging tasks such as adding a feature conflate comprehension with other activities
such as designing and programming. This dilutes the fraction of the effort invested in

complexity

understanding

skill

knowledge experience

readability

style

code properties developer properties

Fig. 7 Factors affecting the understanding of code

Page 19 of 42 123Empir Software Eng (2022) 27: 123

comprehension, thereby reducing the accuracy of experiments with the express purpose of
studying only comprehension.

To get a better picture it may be advisable to use multiple different tasks in the same study
(as done e.g. by Pennington 1987). Multiple tasks of different types can illuminate different
aspects of comprehension, and may expose unanticipated differences between treatments.
With multiple tasks of the same type one can obtain more nuanced and accurate results,
leading to better validity.

It would be good to also have independent assessments of the value of different tasks
in measuring comprehension. Regrettably it seems that very little such research has been
performed to date. One study is that by Dunsmore et al., in which they found a correlation
between bug fixing and perceived comprehension (Dunsmore et al. 2000). But more work
on this issue is required.

3.2 Pitfalls

3.2.1 Substituting opinion for measurement

The main problem with selecting a task that reflects program understanding is the classic
construct validity issue: are you measuring what you set out to measure? In particular, does
your task actually measure understanding at the level you are interested in?

For example, consider Buse and Weimer’s “A metric for software readability” (Buse and
Weimer 2008), which—very naturally, given its title—is often cited as a reference on read-
ability. But in the reported experiments, subjects were told to score code snippets “based on
[your] estimation of readability”, where “readability is [your] judgment about how easy a
block of code is to understand”. This reflects two problems. First, “readability” is a catch-all
phrase which does not distinguish between different levels of understanding as delineated
above. Second, using judgment as the dependent variable conflates personal opinion about
what it means to understand (which could be any of the levels discussed above) with miscon-
ceptions about how easy or hard a specific code snippet is. This violates the whole concept
of using a well-chosen and well-defined task to actually measure performance that depends
on comprehension. However, one should acknowledge that many of the tasks listed above
actually do not measure comprehension directly, but rather by proxy.

Scalabrino et al. face this issue head-on and distinguish between perceived understand-
ing, where subjects just declare that they think they have understood a method, and actual
understanding, where they correctly answer several verification questions (Scalabrino et al.
2021). However, the questions they suggested were about the meaning of a variable name,
or the purpose of calling a certain function. It is debatable whether such questions indeed
reflect a full understanding of the code.

3.2.2 The danger of shortcuts

The tasks in code comprehension experiments are predicated on the assumption that they
can only be performed successfully if one understands the code. But as noted above, it is not
necessarily true that you need to fully understand the code to predict what it will print, or to
correct a bug that it contains. Furthermore, experimental subjects may be lazy (Roehm et al.
2012; Levy and Feitelson 2021). They may prefer to use an “as-needed” program compre-
hension strategy as an alternative to a “systematic” strategy leading to full understanding
(Littman et al. 1987). So given a specific task, they might make do with comprehending
only whatever is directly needed for this task (von Mayrhauser and Vans 1998). Unless this

123 Page 20 of 42 Empir Software Eng (2022) 27: 123

part is precisely aligned with the experimental objectives, this compromises the validity of
the experiment.

When designing an experiment it is therefore of paramount importance to avoid tasks
where the brunt of the work can be avoided. This is a significant threat to the premise
that comprehension is a prerequisite for testing, debugging, and maintenance. Examples
include cases where tasks can be done mechanically without understanding. For example,
in bug fixing, finding a syntax error or finding a null pointer reference can be done without
understanding what the function does. In code modification, a simple refactor like extracting
a function can be done without understanding how the function works.

3.2.3 Confounding explanations

In controlled experiments one needs a control: a base-level treatment with which to compare
the performance on the other treatments. This is what gives controlled experiments their
explanatory power (which is why it is regrettable that there is such a limited use of controlled
experiments (Sjøberg et al. 2005)).

To provide explanatory power the task has to be crisp in the sense that it strongly sup-
ports a certain interpretation. Not all tasks have this property. For example, the fill in the
blanks task used by Soloway and Ehrlich is not crisp, because the variable name they used
is misleading (as described above) (Soloway and Ehrlich 1984). Thus a failure to answer
correctly may not be due to a problem with the conceptual model (what the experiment was
supposed to check), but simply due to falling in the trap of the misleading name. Likewise,
failure in recalling code verbatim from memory may identify totally wrong code or code
that does not abide by conventions, not necessarily hard to understand code. Finally, failure
to find a bug such as calling the wrong function may be the result of lack of attention, rather
than lack of understanding.

3.2.4 The working environment

A potentially important confounding factor is the working environment in which subjects
perform their task. Certain environments may include facilities that support the task and
make it easier to complete. If such an environment is provided, performing the task becomes
easier. Worse, having access to features that support the task may undermine the need to
understand the code or affect the process of how it is understood.

Note, however, that this also depends on the subject knowing how to use the environment.
Subjects who do not know how to use the required feature (or don’t know it exists) will be
at a disadvantage. If some subjects know how to use these features and others do not, this
becomes a confounding factor that may interfere with the results.

A possible solution to this problem is to use a reduced environment, which does not include
the features that may be used to help perform the task. However, this is also problematic for
subjects who are used to work in an environment which does include such support.

4 Themetrics

Rajlich and Cowan suggested that the dependent variables measured in comprehension stud-
ies should be the accuracy of the answers, the response time of accurate answers, and the
response time of inaccurate answers (Rajlich and Cowan 1997). Of these, the most com-
monly used is time to correct answer. Accuracy is also often used, especially when it is

Page 21 of 42 123Empir Software Eng (2022) 27: 123

easy to assess (for example, when the task is to predict what a given code will print). The
time to inaccurate answers is typically not used. An interesting question is how and whether
different measurements should be combined into a single metric.

Note, however, that these metrics are actually proxies for what we are really interested
in: the effort invested in understanding the code, and the difficulty of understanding the
code. Recently, biophysical indicators (ranging from skin conductance through pupil size to
fMRI brain activity patterns) have also been suggested as indicative of the effort expended
in code comprehension. This is a potentially valuable development, but such metrics are not
widely used yet.

4.1 Considerations

The main consideration regarding metrics is that they be measurable. This may interact with
the task, as some tasks produce outcomes that are more measurable than others. Note that
as discussed above we do not consider voicing an opinion as a measurement.

4.1.1 Imposing time limits

There are basically two approaches to measuring performance: how much one can achieve
in a given time, or how long it takes to perform a given task (Bergersen et al. 2014). Most
experiments on comprehension measure time for a task. This is also closer to normal work-
ing conditions. However, placing a generous time limit may be advisable to exclude subjects
who experience difficulties for some reason, or subjects who do not work continuously or
conscientiously.

4.1.2 Judging accuracy

If we consider comprehension experiments as a challenge-response game, the outcome of
the game depends on the evaluation of the response. If the response was correct, the experi-
mental subject has met the challenge and “wins”. But how do we know whether the response
was correct? This obviously depends on the details of the task.

The easy cases are when the response is well-defined in advance, such as to identify
what a given code will print (e.g. Ajami et al. 2019). In this case the answer can be checked
automatically. The only reservation is that inconsequential variations (e.g. an added space)
should be ignored. If multiple tasks are used, the fraction performed correctly can serve as
a score.

In cases such as when the question is “what does this code do” or “give this function a
meaningful name”, one needs to prepare a capacity for judging the responses. This should
include

– A key, prepared in advance, of what responses are expected to include, and how to
identify and score each level of achievement. For example, in an experiment based on
comprehension of a program that created a histogram of word occurrences in a text, a
third of the points were given for answering that the program counts word occurrences,
a third for saying that it prints each unique word, and a third for noting that it prints the
number of occurrences next to each word (Miara et al. 1983).

– Application of the key by at least two and possibly more independent judges.
– A protocol for settling disputes, e.g. majority vote (2 of 3 judges) or conducting a joint

discussion till reaching consensus.

123 Page 22 of 42 Empir Software Eng (2022) 27: 123

It is also important to keep track of and report how many disagreements there were.

4.1.3 Reaction to errors

In those cases where a wrong answer can be detected automatically, e.g. when the exper-
imental subject is required to find out what the code will print, one has to decide what to
do if a wrong answer is given. A common approach is to just go on with the experiment.
Possible alternatives include

– Display a message indicating that a mistake has been made. But this may affect the
rest of the experiment, either due to discouraging the subject, or due to facilitating a
learning effect.

– In addition to indicating that a mistake was made, allow the subject to try again
(Hofmeister et al. 2019). This raises the questions of how to measure time. Do you
include the sum of all trials? Is it fair to compare this to the time taken by someone who
did not try and fail?

– When it is expected that all subjects will succeed (which implies that correctness is not
being measured), discard subjects who fail (Hofmeister et al. 2019). In other words,
failure is used as an exclusion criterion.

4.1.4 Combining dimensions of performance

If both time and accuracy (correctness) are measured, the question is whether to report
them separately or to combine them in some way. Combining the two metrics simplifies the
analysis by making it one-dimensional. But this is justified only if they indeed reflect the
same underlying concept.

Bergersen et al. suggest a crude categorical classification scheme which combines time
and correctness (2011). In its simplest form, this scheme defines 3 levels of accomplish-
ment:

1. Incorrect answer.
2. Correct answer, time above the median.
3. Correct answer, time below the median.

If the task is made up of multiple stages, the levels first reflect the number of stages com-
pleted successfully, and if all were, the time range in which this was achieved.

Beniamini et al. suggest a continuous version of such a combination, where accomplish-
ment is defined to be the quotient of the correctness score divided by the time (Beniamini et
al. 2017). This can be interpreted as the “rate of answering correctly”. Incorrect answers are
naturally included with a rate of 0. Scalabrino et al. suggest a similar formula, but use the
time saved relative to the subject who took the longest to answer (Scalabrino et al. 2021).
This has the disadvantage that outliers may distort the results of others.

A related question is what is the significance of time to incorrect answer? The most
common approach is to ignore this data. A possible alternative is to interpret such data as
instances of censoring: we know that the subject spent this much time and did not arrive at
a correct answer, therefore the time needed for a correct answer would be longer. Another
option is to interpret this as wasted time. If the task was something practical, like fixing a
bug, a wrong fix reflects waste because the task would have to be done again. A third option
is to use this as an assessment of motivation: this is how much time subjects are willing to
invest (Rajlich and Cowan 1997).

Page 23 of 42 123Empir Software Eng (2022) 27: 123

4.1.5 Using direct physiological measurements

The commonly used dependent variables of time and accuracy measure the overall resulting
performance when executing a task. But they rarely provide information about how this per-
formance is achieved, e.g. what cognitive processes were used, and what were the trouble
spots on which the experimental subjects stumbled. They also do not provide direct infor-
mation on the effort needed to achieve the measured performance. In recent years there is
an increasing use of tools that enable these factors to be studied too.

The most prominent tool in the context of code comprehension studies is eye trackers
(Shaffer et al. 2015; Sharafi et al. 2015; Obaidellah et al. 2018; Bednarik and et al 2020;
Sharafi et al. 2020). Eye trackers enable an identification and quantification of how the
experimental subjects focus on different parts of the code, and also a recording of the gaze
scan path: the order in which they go over the code. This is especially useful to identify
what the experimental subjects are interested in. An example is given by Jbara and Feitel-
son (2017). This study used eye tracking to quantify the amount of time spent looking at
successive repetitions of the same basic structure. The results showed that the first instances
get more attention, and were used to create quantitative models of how attention decreases
with instance serial number.

The effort required to comprehend code can also be measured more directly than by the
time and correctness of the comprehension. For example, changes in pupil size are known to
be correlated with mental effort (Kahneman 1973), and this is measured by most eye track-
ers. Various other biophysical indicators for effort have also been used in relation to software
engineering research (Fritz et al. 2014; Couceiro et al. 2019). In addition, subjective self-
reporting can be used, e.g. based on the NASA task load index (Abbes et al. 2011).

An even deeper level of analysis of how subjects comprehend code is provided by func-
tional magnetic resonance imaging (fMRI). This is being used in an increasing number of
studies (Siegmund et al. 2014; Siegmund et al. 2017; Floyd et al. 2017; Ivanova et al. 2020;
Krueger et al. 2020). fMRI identifies areas of the brain that become active when perform-
ing a task. For example, this has enabled the distinction between brain activity patterns
when performing syntactic vs. semantic tasks (Siegmund et al. 2014) or reading vs. writ-
ing (Krueger et al. 2020). It has also been possible to distinguish between reading code and
reading prose based on brain activity patterns (Floyd et al. 2017). Finally, thinking about
manipulating data structures and about spacial rotation tasks employ the same regions in the
brain (Sharafi et al. 2021).

A technically simpler alternative is to use functional near-infrared spectroscopy (fNIRS)
technology (Fakhoury et al. 2020; Sharafi et al. 2021). Unlike fMRI, which is a large noisy
machine in which subjects need to lie and is expensive, fNIRS is based on wearing a scalp
cap and can be done sitting in front of a computer. And it provides nearly the same level of
data as fMRI.

An especially interesting attribute of neuroimaging studies is that they bypass the lim-
itation of conscious reporting. A lot of processing in the brain is done unconsciously, and
therefore subjects cannot report on precisely what they had done. Techniques such as fMRI
and fNIRS provide an objective glimpse into what the brain is doing, without the need
for cognizant reporting, and irrespective of potential filtering and rationalization by the
conscious self.

Importantly, using all the above methodologies in the context of program comprehension
studies is still pretty new. Developing the methodologies and establishing best practices is
therefore an ongoing effort (Bednarik and Tukiainen 2006; Sharafi et al. 2020; Sharafi et al.
2021).

123 Page 24 of 42 Empir Software Eng (2022) 27: 123

4.2 Pitfalls

4.2.1 Confounding effects

Measurements are always subject to the danger of confounding effects. Many of the pitfalls
noted in the previous sections may come into play when we measure the time or accuracy of
code comprehension, and lead to unreliable results — namely results which do not reflect
the intended aspects of code comprehension.

One straightforward effect is getting used to the experimental setting. It is apparently not
uncommon that the first task or two in a sequence take longer, as the subjects learn what
exactly is required of them (e.g. Fig. 8, from (Ajami et al. 2019, Figure 5)). It may therefore
be better to discard the first such result(s), or use them to evaluate the participants. More
generally, measurements necessarily conflate the effects of code attributes with those of the
person participating in the experiment (as noted above in Section 3.1.10 and Fig. 7). If the
subjects are unsuitable, e.g. is they lack appropriate experience, it would be wrong to assign
their low performance to the code.

Focusing on the metrics themselves, a special case is the relation between time and cor-
rectness. Errors by definition reflect misunderstandings. The question is whether this is due
to the difficulty of the code or to misleading beacons. Evidence that time and correctness
may actually reflect different concepts is given by Ajami et al. (2019). This study included
a comparison of understanding a canonical for loop (for (i=0; i<n; i++)) with variations in
which the initialization, termination condition, or step are varied. The results were that loops
counting down took a bit longer, while loops with abnormal initialization or termination
caused more errors. The suggested interpretation was that time reflects difficulty, and the
error rate reflects a “surprise factor”, namely whether the code deviates from expectations.

question serial number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ti
m

e
 t
o
 c

o
r
r
e
c
t
a
n
s
w

e
r
 [
s
]

0

10

20

30

40

50

60

N=140 N=142 N=147 N=144 N=148 N=135 N=148 N=134 N=136 N=141 N=135 N=47 N=50 N=47 N=12

Fig. 8 Example of distributions of time to correct answer for a sequence of questions in an experiment.
(Reprinted by permission from Springer Nature from Ajami et al. (2019), ©2019)

Page 25 of 42 123Empir Software Eng (2022) 27: 123

Thus if the code contains misleading elements it may be ill-advised to combine time and
correctness scores.

4.2.2 Learning and fatigue effects

One confounding effect that deserves special attention is that measurements can change dur-
ing the experiment. For example, when multiple codes are used the question arises in what
order to display them. Using the same order for all experimental subjects reduces variabil-
ity and enhances comparisons. However, such a consistent order may cause a confounding
effect due to learning, fatigue, or dropouts. For example, if unsuccessful subjects feel dis-
couraged and drop out of the experiment, only the more successful subjects will reach the
last questions (Ajami et al. 2019). In other words, a difference in performance on differ-
ent codes may be the result of their placement in the sequence, rather than a result of the
differences we wish to study. The common solution is to randomize the order.

4.2.3 Measurement technical issues

The understanding of short code snippets may take a short time measured in seconds. Thus
inaccuracies in the times of beginning and ending the measurement may have an effect. The
beginning is typically when the code is first presented, and does not pose a problem. But
the ending time may be ambiguous in the sense that it may or may not also include the time
to report the answer. Hofmeister et al. explicitly use a two-step system (Hofmeister et al.
2019). Their experimental platform first requires subjects to indicate that they have achieved
comprehension. It then stops the clock and freezes the code display, and only then opens a
window where the subjects can enter their answer. Wilson et al. use an Eclipse plugin which
measures the time spent performing different actions to differentiate between time spent
comprehending and time spent coding (Wilson et al. 2019).

An alternative to using eye trackers is to employ an experimental platform which dis-
plays the code via a “letterbox slit”. With this mechanism most of the screen is hidden from
view, and only the lines in the slit are visible (Jansen et al. 2003; Hofmeister et al. 2019).
The slit may be moved up and down using the arrow keys. This has the significant advan-
tage of enabling online experiments over the Internet, instead of requiring subjects to come
physically to the lab where the eye tracking device is set up. However, it is an unnatural set-
ting, which might impair performance. In particular, subjects cannot use peripheral vision
to observe the structure of the code and navigate directly to different locations. With the
advent of eye tracking software based on webcams,2 this problem will be eliminated.

4.2.4 Premature theorizing

The ultimate goal of research on program comprehension is to formalize theories on the
cognitive processes which underlie comprehension (e.g. Brooks 1983; von Mayrhauser and
Vans 1995; Storey 2005; Siegmund 2016). These are then expected to inform and facilitate
the design of better tools and methodologies for software development. However, not every
measurement should lead directly to a cognitive theory. We need to collect a lot of data
first. In particular we need multiple replications of existing research, which is the way to
increase our confidence in the results, to better define their limitations, and to illuminate
their nuances.

2For example, GazeRecorder https://gazerecorder.com/.

123 Page 26 of 42 Empir Software Eng (2022) 27: 123

https://gazerecorder.com/

5 The experimental subjects

Previous sections were about technical aspects of program comprehension studies. Despite
the various problems and complications that were discussed, these are things that are rela-
tively easy to control. The biggest problem is the human element, namely the experimental
subjects. Helpfully, there have been several reviews and guides on this matter (e.g. Ko et al.
2015).

Different people exhibit different levels of performance in all human endeavors, includ-
ing in code development and program comprehension. Three important high-level factors
that affect performance are (Campbell et al. 1993):

– Knowledge — what a developer knows, e.g. the syntax, semantics, and common idioms
of a programming language and the background of the application domain;

– Skill — the developer’s aptitude in applying his or her knowledge in a given situation,
and the degree to which this is done automatically or requires effort; and

– Motivation — how much the developer actually wants to develop, which affects the
effort invested in applying the skill.

As people may have different knowledge, different skills, and different levels of motivation,
their performance will differ too. This is exacerbated by the degree of relevance of their
knowledge and skills to the experimental task. In the context of academic experiments on
program comprehension, using students as subjects has drawn some objections, based on
the perception that their skills differ from those of professional developers.

5.1 Considerations

Variability among humans is a huge confounding factor, which is hard to assess and control
(Bergersen and Sjøberg 2012; Curtis 2014). Large individual differences have been reported
in various empirical studies, e.g. by Sackman et al. (1968), Curtis (1981), and Prechelt
(1999). This has three main implications. First, it is important to assess the capabilities
of experimental subjects and match them to the experiment and tasks as best as is practi-
cal. Second, it is important to check whether the variability correlates with demographic
variables, and assess whether this affects the external validity of the experiment. Finally,
studies have to contend with large variability, and use large enough samples and appropriate
statistical methods. In particular, it is desirable to use within-subjects designs over between-
subjects designs, or at least to control for variability by dividing subjects into groups based
on perceived differences which might affect the results. Most of the following subsections
are elaborations of these considerations.

5.1.1 Skill and experience

As shown in Fig. 7, programming proficiency and skill can be seen as the general factor
which sums up the effects of individual factors like knowledge and experience. Dreyfus and
Dreyfus identified the following possible levels (Dreyfus and Dreyfus 1980):

1. Novice: knows how to apply learned rules to basic situations.
2. Competent: recognizes and uses recurring patterns based on experience.
3. Proficient: prioritizes based on a holistic view of the situation.
4. Expert: experienced enough to do the above intuitively and automatically.

Page 27 of 42 123Empir Software Eng (2022) 27: 123

Note that the different levels differ not only in the expected performance but also in the
approach taken to solve the programming task. This naturally also affects the interpretation
of experimental results. It is therefore important to identify the desired level of proficiency
of the experimental subjects, and to screen subjects so that only those with suitable skills
participate in the experiment.

However, it is not easy to assess skill (Adams and Wieman 2011). One possible approach
is to use a pre-test, namely require subjects to perform a task ahead of the experiment to
assess their general skills. However, a single task may not be enough, and there is a danger
of interaction between the screening and the experiment. To get a better picture of subjects
abilities, Bergersen et al. have suggested a testing regime that can take up to two days
(Bergersen et al. 2014). This is not applicable to short experiments, especially if conducted
over the Internet. The other extreme is to make do with self assessment of skill, which has
the obvious drawback of being subjective (Siegmund et al. 2014).

An often used alternative to assessing skill is counting years of experience. The advan-
tage of this approach is that it is less subjective than self assessment and easily applied: one
just asks the prospective subjects how many years of programming experience they have.
However, such a formulation is ill-defined, as some people count programming during their
studies as experience while other do not. It is therefore important to explicitly ask about profes-
sional experience, or in other words “real” experience, beyond that obtained during studies.

However, one should note that more experience does not necessarily correlate with higher
performance (Sonnentag 1998; Sonnentag et al. 2006). One reason may be that knowledge
may be more important for skill than experience (Bergersen and Gustafsson 2011). Falessi
et al. stress the need to consider not only duration of experience, but whether the experience
is relevant and recent (Falessi et al. 2018).

More generally, Ericsson and others stress the importance of what the years of experience
were spent on. Performing rote work that does not challenge you and expand your horizons
will not improve your skills beyond being able to do the same thing automatically. To really
improve, deliberate practice is needed (Ericsson et al. 1993; Ericsson et al. 2007). This
means performing challenging work just beyond your comfort zone, receiving feedback that
allows you to learn and improve, and doing this over the over again. If this is not done,
achievements tend to “flatten out” after several years (Newell and Rosenbloom 1981; Heath-
cote et al. 2000; Ericsson et al. 1993). Assuming this is often the case, a useful threshold
for tagging subjects as “experienced” can be as low as 3–5 years of professional experience.
Requiring more will exclude too many subjects and not provide additional benefits.

In cases where the study requires a distinction between novices and experienced
programmers, Feitelson et al. suggest to define three groups (Feitelson et al. 2022):

– Novice students without significant programming experience outside their studies,
e.g. in the first or second year of their undergraduate studies and with at most 2 years
of programming experience.

– Experienced professionals, with at least 5 years of programming for a living beyond
any programming done during their studies.

– All those falling in between the above two groups. These are excluded from the
analysis, to sharpen the distinction between students/novices and professionals.

5.1.2 Using students

Most studies on software engineering, including those focused on comprehension, loosely
target “professional developers”. But in practice many studies employ students as subjects,

123 Page 28 of 42 Empir Software Eng (2022) 27: 123

because students are more accessible to academics. Indeed, it is hard to escape the percep-
tion that so many studies target “novice” programmers precisely because student subjects
are so accessible. The preponderance of such studies raises the question of whether per-
forming experiments with students as subjects is appropriate (Falessi et al. 2018). Feitelson
lists the following potential problems with students (2015):

– By definition students before graduation have not completed their studies. In addition,
they may not have fully ingested what they had learned, or hold misconceptions regard-
ing what they have learned (Kaczmarczyk et al. 2010; Ma et al. 2007; Madison and
Gifford 2002). The implication is that the knowledge at their disposal is not as complete
as that of professionals.

– They may not know of commonly used tools or use them ineffectively. This not only
affects their performance relative to professionals, but also means that they may use a
completely different approach.

– They lack practical experience, which makes it harder for them to find and focus
on the heart of the issue. In addition, experience hones skills and facilitates higher
performance with less effort.

– Their academic orientation may be misaligned with the needs in industry.

On the other hand students may be more consistent in following instructions, rather than
trying to cut to the core in whatever way (including violating the experimental protocol).

It is also important to note that the dichotomy pitting “students” against “professionals”
is overly simplistic. Students may have had professional experience in their past or work
in parallel with their studies. Graduating students are very close to novice professionals.
Consequently, classifying subjects based on their work experience, while far from perfect,
is still usually better than classifying them based on their student status.

In particular this means that completely avoiding students as subjects is unwarranted. In
fact, when studying how beginners learn to program, students, and even first-year students
in particular, are the natural subjects to use. Experiments using students can also be useful to
focus the research and to debug experimental procedures (Tichy 2000; Basili and Zelkowitz
2007). And in many cases experiments with students yield the same relative results as exper-
iments with professionals, in the sense that the relations between the different treatments
are the same. Only the absolute results are different, with professionals usually performing
better (e.g. McMeekin et al. 2009; Bednarik et al. 2005).

Note too that the common career path for graduating students is to seek industrial posi-
tions. So students close to graduation are essentially the same as beginning professionals.
However, many professionals do not have an academic background: for example, in the
2021 StackOverflow developer survey,3 nearly 60% said they learned to code from online
blogs and videos, 40% cited online courses or certification, and less than 54% said they
learned at a school (the sum is larger than 100% as they noted all that apply). So students
represent only about half of developers.

One situation in which students indeed should not be used is as proxies for experts.
Too many studies aim to expose differences between novices and experts, and use begin-
ning undergraduates as the novices and graduate students or even third-year students as the
experts. This is wrong. They are slightly more advanced students, but not programming
experts.

3https://insights.stackoverflow.com/survey/2021

Page 29 of 42 123Empir Software Eng (2022) 27: 123

https://insights.stackoverflow.com/survey/2021

5.1.3 Ensuring motivation

As noted above, motivation is required for the experimental subjects to apply their skill in
performing the tasks of the experiment. Results obtained from unmotivated subjects may
distort the data. Motivation is also important for the recruitment of subjects in the first place.

Various steps can be taken to increase the motivation of subjects to participate in an
experiment. Major incentives include the following:

– In many studies the only incentive is interest in the study and its results. for profession-
als, this can be based on having confronted situations similar to those in the experiment
in day-to-day work. Experiments can also provide a welcome and thought-provoking
diversion from routine work. In both cases, the interest in the experiment should not be
tempered by hardships such as excessive length. Keeping experiments as short as pos-
sible — as short as 10 to 15 minutes — helps recruit and retain subjects. The price is
that the length of code or number of treatments used in the experiment may need to be
reduced.

– A common approach to incentivizing subjects is to pay them, either paying a small sum
directly or by holding a raffle for a larger sum. Naturally the payment should not be so
large as to incentivize people who are not suitable to pose as subjects. Payments like
this are often useful with students, but probably less so with well-paid professionals,
unless they are actually hired as part of a large-scale experiment.

– In some cases the experimental subjects do the experiment authors a favor by partici-
pating. For example it is common practice to ask friends and colleagues to take part in
pilot studies used to validate and adjust experimental materials and procedures. Inviting
colleagues and acquaintances to participate in the final experiment, and snowballing
from there, is also not uncommon. This is generally a useful way to recruit participants.
However it might have the disadvantage of narrowing the field to subjects with similar
characteristics.

The most motivated potential subjects are the experiment authors themselves. However,
self experiments should be avoided, as the authors not only may have a conflict of interest,
but their performance may also be influenced by their knowledge of the experiment design.

5.1.4 Effect of demographics

A recurring theme when considering experimental subjects is whether demographic vari-
ables, mainly sex and age, may explain some of the variability. Some studies have reported
observed differences between men and women (Lawrie et al. 2006; Sharafi et al. 2012;
Etgar et al. 2022). Others have found no such differences (Ajami et al. 2019; Feitelson et al.
2022). At present it seems that the differences, when and if they exist, are not major, but
this deserves further study.

5.1.5 Ethics in research

An experiment on how people understand code is an experiment with human subjects, and
as such must follow research ethics guidelines. The basic principles for ethical research
were laid out in the Belmont report in 1979 (The National Commission for the Protection
of Human Subjects of Biomedical and Behavioral Research 1979). While this was done
in the context of bio-medial research, two main ideas carry over to software engineering
experiments:

123 Page 30 of 42 Empir Software Eng (2022) 27: 123

– Subjects should be respected, implying that experimental subjects should be informed
about the experiment and are entitled to decide for themselves whether to participate in
it. For example, posing as a ranking service to collect data on developers’ aptitude is
unethical. Likewise, students should not be coerced to participate in an experiment by
their professors.

– In performing the experiments the researchers are obliged to do no harm, and should
avoid the danger of jeopardizing subjects’ well-being in any way. For example,
identifying subjects who made stupid mistakes is unethical.

Ethical compliance is usually ensured by the practices of obtaining informed consent from
experimental subjects, allowing them to leave the experiment at any time, and not collecting
any identifying information.

Carver et al. point out that special considerations apply when students are used as sub-
jects. One needs to remember that the students are there for an education, and participating
in an experiment can affect this education (Carver et al. 2010). It is up to the researchers
to ensure that this effect is for the good. More generally, care should be taken to ensure
non-coercing participation and to limit stress.

5.2 Pitfalls

5.2.1 Subjects unsuited for the study

A potentially significant problem may be the failure to exclude subjects who are unsuited
for the task done in the experiment. This should be verified as part of the initial demographic
screening. However, it is not easy to think in advance of all the factors that need to be
checked.

An obvious exclusion criterion is that subjects should be well-versed in the programming
language used. They should be excluded if they lack knowledge needed to perform well in
the study, e.g. knowledge about certain technologies. However, Carver et al. suggest that
this last deficiency can be corrected quickly by first observing someone else perform the
experiment while using the required technology (Carver et al. 2003).

Inexperienced subjects should not be used when the research involves not just basic or
technical knowledge but performance honed by practice. And practice can have an effect on
many different things. For example, naming or documentation practices may change after
one has first-hand experience suffering from the practices of others. Indeed, names given
by experienced developers have been found to differ from those given by inexperienced
students (Feitelson et al. 2022).

There can also be difficulties unrelated to knowledge. For example, contact lenses and
downward pointing eyelashes appear to reduce accuracy in eye tracking studies (Nyström
et al. 2013). Eye glasses, on the other hand, are fine.

Last, subjects repeating the experiment should most probably also be excluded. But if
no identifying information is collected, this has to rely on subject self reporting. To enable
such reporting, a question needs to be included in the demographic screening.

As an example, Hofmeister et al. report having used the following exclusions criteria
to exclude 63 of 135 participants in a study, leaving only 72 valid ones (Hofmeister et al.
2019):

– Self rating of language proficiency as being 1–3 on a scale of 1–6, for both German
(the language of the instructions) and English (the language of code variable names and
comments).

Page 31 of 42 123Empir Software Eng (2022) 27: 123

– Self rating of C# skills of 1–3 on a scale of 1–5, or less than 1 year of practical use of
the language.

– Admitting having been distracted or not having worked conscientiously.
– Too low performance, e.g. taking more than 10 minutes to perform a trial.
– Having already participated in the study or in a pilot study.

5.2.2 Lack of relevant knowledge

A special case of unsuitable subjects that deserves further attention is when subjects lack
relevant knowledge. Developers often have different levels of knowledge in different per-
tinent dimensions of knowledge. The most important distinction is between the technical
dimension and the domain dimension (Shaft and Vessey 1998). Both should be checked to
ascertain that the study participants indeed have the required background.

The technical dimension involves knowledge about the programming language, the
development environment, the process workflows, etc. A minimal requirement in exper-
iments is that subjects be proficient in the language in which the code is written. Note
that proficiency is more than mere working knowledge of the language, and includes being
acquainted with the programming culture and ecosystem around the language. This should
therefore be included in the screening of subjects.

Domain knowledge is about the background of the code or application. This can mean
general knowledge about the application itself: what exactly it is supposed to do, why,
and how it fits into the bigger picture. But in many cases the more important background
concerns the whole domain. For example, understanding a scientific code which performs
physics calculations would typically require a knowledge of the underlying physics, and
understanding a banking investments application would require deep knowledge of the
financial system. This is the reason that studies are often conducted using general code
(such as utility libraries) and not specialized code.

Note that these two dimensions are required in different amounts for different tasks. For
example, technical knowledge is sufficient for fixing a technical bug like a null pointer
reference, but domain knowledge is crucial for providing suitable context in a code sum-
marization task. In addition, it is important to note that knowledge dimensions may interact
with tasks. According to von Mayrhauser and Vans, adaptive maintenance tasks require
much more domain knowledge than program knowledge (von Mayrhauser and Vans 1998).
Corrective maintenance and the development of new features, on the other hand, require
much more program knowledge than domain knowledge.

5.2.3 Differences in definition of levels

Many studies attempt to perform a comparison between novices and experts. However, develop-
ers often have different levels of knowledge in different pertinent dimensions of knowledge.
Therefore any uni-dimensional classification into “novices” and “experts” is compromised.
In addition, in some cases the differences between the levels may not be significant enough
to make a difference, for example when comparing 3rd year students with masters students.

Another problem is that the definitions used by different researchers differ considerably,
making any comparison between different studies practically meaningless (see Table 1).
For example, many use graduate students, or even students towards the end of their first
degree, as “experienced”. This might be true relative to freshmen in their first year, but
does not reflect experience gained in a few years on the job. A possible approach is to clas-
sify students by year during undergraduate studies or as “advanced” for graduates, whereas

123 Page 32 of 42 Empir Software Eng (2022) 27: 123

Ta
bl
e
1

E
xa

m
pl

es
of

de
fi

ni
tio

ns
of

no
vi

ce
/in

te
rm

ed
ia

te
/e

xp
er

ts
ub

je
ct

s

R
ef

.
L

ev
el

1
L

ev
el

2
L

ev
el

3

(A
br

ah
ão

et
al

.2
01

3)
lo

w
:g

ra
de

s
be

lo
w

th
re

sh
ol

d
hi

gh
:g

ra
de

s
ab

ov
e

th
re

sh
ol

d

(B
ed

na
ri

k
et

al
.2

00
5)

no
vi

ce
:

<
24

m
on

th
s

pr
o-

gr
am

m
in

g
ex

pe
ri

en
ce

in
te

rm
ed

ia
te

:
>

24
m

on
th

s
pr

og
ra

m
m

-
in

g
ex

pe
ri

en
ce

(B
is

ho
p

an
d

M
cD

ai
d

20
08

)
no

vi
ce

:2
nd

ye
ar

st
ud

en
ts

ex
pe

rt
:

in
du

st
ry

pr
of

es
si

on
-

al
s

co
ns

id
er

ed
ex

pe
rt

s

(B
us

ja
hn

et
al

.2
01

5)
no

vi
ce

:i
ne

xp
er

ie
nc

ed
st

ud
en

t
ex

pe
ri

en
ce

d
pr

of
es

si
on

al

(C
ec

ca
to

et
al

.2
01

4)
ba

ch
el

or
st

ud
en

t
m

as
te

r
st

ud
en

t
Ph

D
st

ud
en

t

(C
ro

sb
y

et
al

.2
00

2)
no

vi
ce

:2
nd

te
rm

C
S

st
ud

en
ts

in
te

rm
ed

ia
te

:j
un

io
r/

se
ni

or
C

S
st

ud
en

ts
ad

va
nc

ed
:g

ra
du

at
e

C
S

st
ud

en
ts

+
fa

cu
lty

(M
cK

ei
th

en
et

al
.1

98
1)

be
gi

nn
er

:s
ta

rt
in

g
1s

tc
ou

rs
e

in
te

rm
ed

ia
te

:f
in

is
hi

ng
1s

tc
ou

rs
e

ex
pe

rt
:t

ea
ch

in
g

co
ur

se
,w

ith
40

0
hr

ex
pe

ri
en

ce

(S
al

vi
ul

o
an

d
Sc

an
ni

el
lo

20
14

)
3r

d
ye

ar
ba

ch
el

or
st

ud
en

t
pr

of
es

si
on

al

(S
ch

en
k

et
al

.1
99

8)
no

vi
ce

:1
–6

m
on

th
s

jo
b

ex
pe

ri
en

ce
ex

pe
ri

en
ce

d
ra

te
d

lo
w

by
su

pe
rv

is
or

s
ex

pe
ri

en
ce

d
ra

te
d

hi
gh

by
su

pe
rv

is
or

s

(S
ol

ow
ay

an
d

E
hr

lic
h

19
84

)
no

vi
ce

:
en

d
of

1s
t

pr
og

ra
m

m
in

g
co

ur
se

ad
va

nc
ed

:
co

m
pl

et
ed

3
pr

og
ra

m
-

m
in

g
co

ur
se

s

(W
ei

se
r

an
d

Sh
er

tz
19

83
)

no
vi

ce
:u

nd
er

gr
ad

C
S

m
aj

or
s

ex
pe

rt
:2

nd
ye

ar
gr

ad
ua

te
st

ud
en

ts
m

an
ag

er
:f

ro
m

in
du

st
ry

Page 33 of 42 123Empir Software Eng (2022) 27: 123

Table 2 Tentative checklist for program comprehension experiments

Related to Code

� Use minimal scope to avoid diluting the experiment; but if needed, “minimal” may be a full system

� Do not pad code to achieve a pre-specified length

� Do not use trivial code, contrived code, or overly sophisticated code

� Use real code unless need to write code specifically for the experiment; make sure code compiles and

runs correctly

� Beware of misleading code and in particular misleading names

� Avoid well-known recognizable code

� Use a, b, c, etc. or general terms like num to obfuscate names

� Apply judgment rather than mechanical solutions for specific issues such as the use of abbreviations

� Do not include dead code

� Use consistent style based on IDE defaults

� Ensure that the code is appropriate for the task but does not give it away

Related to Task

� Use a recognition task for research on identifying tokens and structure

� Use a parsing task for research on understanding syntax

� Use an interpretation task (what does this print) for research on semantics of individual instructions

� Use a comprehension task (name this function) for research on global semantics

� Use a semantic bug-fixing task for research on understanding the mechanics of the code

� Use a localization or modification task for research on understanding large scale structure

� Use a black-box task for research on understanding APIs

� Use a refactoring task for research on understanding design

� Beware of tasks that can be circumvented

� Use a well-defined base task as control

� Provide a suitable and convenient working environment

Related to Measurement

� Plan how to accurately measure time

� Plan how to judge the correctness of answers

� Decide what to do if a wrong answer is given

� Consider whether and how to combine time measurements with correctness assessments

� Consider the use of eye tracking or other biophysical measurements

� Beware of non-representative results at beginning of experiment

� Beware of fatigue, learning, and dropout effects

Related to Subjects

� Make sure subjects have the appropriate levels of knowledge and skill for the experiment

� Consider whether and how the subjects can be divided into “novices” and “experienced”

� Do not over-obsess about subjects being students

� Use preliminary tasks to test skill and knowledge

� Try to ensure that subjects are motivated

� Consider the effect of demographic factors

� Exclude subjects who are not suited to the task

� Follow ethical guidelines

123 Page 34 of 42 Empir Software Eng (2022) 27: 123

professionals would be classified into “novices” (say up to a year of on-the-job experience)
and “experienced” (3 or more years). Note that this leaves a gap between the groups as
suggested above.

5.2.4 Unmotivated subjects

The performance on any work task may be affected by motivation, interest, and mood:
happy developers are more productive and create better-quality code (Graziotin et al. 2014;
2015; Graziotin et al. 2018). Personality also has an effect (Hannay 2011). This naturally
also applies in experiments. But if the experiment is conducted on-line, you have no way
to know how the experimental subjects are feeling, or whether they were distracted. And
motivation when participating in experiments may not be the same as in real work. Hofmeis-
ter et al. therefore suggest to perform a final debriefing at the end of the experiment and
exclude subjects who report that they were not working conscientiously or were distracted
(Hofmeister et al. 2019).

6 Conclusions

Methodological discussions on software engineering experiments have typically focused
mainly on experimental design, statistical tests, and reporting guidelines (e.g. (Juristo and
Moreno 2001; Jedlitschka and Pfahl 2005; Wohlin et al. 2012; Shull et al. 2008)). This focus
mirrors the reaction to the reproducibility crisis in psychological research (Sochat et al.
2016). But validity and reproducibility are compromised not only by flaws in the statistics
and the reporting. The conclusion of an otherwise solid study can also be jeopardized by
inadvertent nuances in the experimental materials and the experimental procedure.

In the context of experiments on program comprehension, very little discussion has
appeared in the literature on what exactly we mean when we say “the subject understands
the code”, and how the code and tasks we use affect this issue. We need more work on such
methodological issues, and better reporting not only of the details but also of the considera-
tions involved in selecting the code and the tasks. Table 2 summarizes the main points made
in the previous sections. Many of these points may seem obvious. But the literature is rife
with examples of good research papers that did not take some of these considerations into
account or failed on some pitfall.

The purpose of this paper is not to dictate the “right” way to do research. Its purpose
is to raise awareness to the myriad considerations that are involved in experiments on pro-
gram comprehension, and especially to the side effects that methodological decisions may
have. Such awareness is needed mainly to increase the volume of discussion of methodolog-
ical issues, including methodological differences. Awareness of differences is important for
better understanding of how the results of different studies can be compared to each other,
and how they complement each other. This, together with multiple divergent replications of
previous work, is the path to a deeper understanding of how code is understood.

References

Abbes M, Khomh F, Guéhéneuc Y-G, Antoniol G (2011) An empirical study of the impact of two antipat-
terns, blob and spaghetti code, on program comprehension. In: 15th European Conf. Softw. Maintenance
& Reengineering, pp 181–190. https://doi.org/10.1109/CSMR.2011.24

Page 35 of 42 123Empir Software Eng (2022) 27: 123

https://doi.org/10.1109/CSMR.2011.24

Abrahão S, Gravino C, Insfran E, Scanniello G, Tortora G (2013) Assessing the effectiveness of sequence
diagrams in the comprehension of functional requirements: Results from a family of five experiments.
IEEE Trans Softw Eng 39(3):327–342. https://doi.org/10.1109/TSE.2012.27

Adams WK, Wieman CE (2011) Development and validation of instruments to measure learning of
expert-like thinking. Intl J Science Education 33(9):1289–1312. https://doi.org/10.1080/09500693.2010.
512369

Ajami S, Woodbridge Y, Feitelson DG (2019) Syntax, predicates, idioms — what really affects code
complexity? Empirical Softw Eng 24(1):287–328. https://doi.org/10.1007/s10664-018-9628-3

Arnaoudova V, Di Penta M, Antoniol G (2016) Linguistic antipatterns: What they are and how developers
perceive them. Empirical Softw Eng 21(1):104–158. https://doi.org/10.1007/s10664-014-9350-8

Avidan E, Feitelson DG (2017) Effects of variable names on comprehension: An empirical study. In: 25th
Intl. Conf. Program Comprehension, pp 55–65. https://doi.org/10.1109/ICPC.2017.27

Basili VR, Selby RW (1987) Comparing the effectiveness of software testing strategies. IEEE Trans Softw
Eng SE-13(12):1278–1296. https://doi.org/10.1109/TSE.1987.232881

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE Trans Softw Eng
SE-12(7):733–743. https://doi.org/10.1109/TSE.1986.6312975

Basili VR, Zelkowitz MV (2007) Empirical studies to build a science of computer science. Comm ACM
50(11):33–37. https://doi.org/10.1145/1297797.1297819

Bauer J, Siegmund J, Peitek N, Hofmeister JC, Apel S (2019) Indentation: Simply a matter of style
or support for program comprehension? In: 27th Intl Conf Program Comprehension, pp 154–164.
https://doi.org/10.1109/ICPC.2019.00033

Bednarik R, Myller N, Sutinen E, Tukiainen M (2005) Effects of experience on gaze behavior during program
animation. In: 17th workshop of psychology of programming interest group, pp 49–61

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing porgram comprehen-
sion processes. In: 4th Symp. Eye Tracking Res. & App, pp 125–132. https://doi.org/10.1145/1117309.
1117356

Bednarik R et al (2020) EMIP: The eye movements in programming dataset. Sci Comput Programming
198:102520. https://doi.org/10.1016/j.scico.2020.102520

Beniamini G, Gingichashvili S, Klein Orbach A, Feitelson DG (2017) Meaningful identifier names: The
case of single-letter variables. In: 25th Intl. Conf. Program Comprehension, pp 45–54. https://doi.org/10.
1109/ICPC.2017.18

Bergersen GR, Gustafsson J.-E. (2011) Programming skill, knowledge, and working memory among
professional software developers from an investment theory perspective. J Individual Differences
32(4):201–209. https://doi.org/10.1027/1614-0001/a000052

Bergersen GR, Hannay JE, Sjøberg DIK, Dybå T., Karahasanović A (2011) Inferring skill from tests of
programming performance: Combining time and quality. In: 5th Intl. Symp. Empirical Softw. Eng. &
Measurement, pp 305–314. https://doi.org/10.1109/ESEM.2011.39

Bergersen GR, Sjøberg DIK (2012) Evaluating methods and technologies in software engineering with
respect to developer’s skill level. In: 16th Intl. Conf. Evaluation & Assessment in Softw. Eng.,
pp 101–110. https://doi.org/10.1049/ic.2012.0013

Bergersen GR, Sjøberg DIK, Dybå T (2014) Construction and validation of an instrument for measuring pro-
gramming skill. IEEE Trans Softw Eng 40(12):1163–1184. https://doi.org/10.1109/TSE.2014.2348997

Biggerstaff TJ (1989) Design recovery for maintenance and reuse. Computer 22(7):36–49. https://doi.org/10.
1109/2.30731

Bishop B, McDaid K (2008) Spreadsheet debugging behaviour of expert and novice end-users. In: 4th Intl.
Workshop End-User Software Engineering, pp 56–60. https://doi.org/10.1145/1370847.1370860

Brooks FP Jr (1987) No silver bullet: Essence and accidents of software engineering. Computer 20(4):10–19.
https://doi.org/10.1109/MC.1987.1663532

Brooks R (1983) Towards a theory of the comprehension of computer programs. Intl J Man-Machine Studies
18(6):543–554. https://doi.org/10.1016/S0020-7373(83)80031-5

Brooks RE (1980) Studying programmer behavior experimentally: The problems of proper methodology.
Comm ACM 23(4):207–213. https://doi.org/10.1145/358841.358847

Buse RPL, Weimer WR (2008) A metric for software readability. Intl. Symp. Softw. Testing & Analysis,
121–130. https://doi.org/10.1145/1390630.1390647

Buse RPL, Weimer WR (2010) Learning a metric for code readability. IEEE Trans Softw Eng 36(4):546–558.
https://doi.org/10.1109/TSE.2009.70

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015) Eye
movements in code reading: Relaxing the linear order. In: 23rd Intl. Conf. Program Comprehension,
pp 255–265. https://doi.org/10.1109/ICPC.2015.36

123 Page 36 of 42 Empir Software Eng (2022) 27: 123

https://doi.org/10.1109/TSE.2012.27
https://doi.org/10.1080/09500693.2010.512369
https://doi.org/10.1080/09500693.2010.512369
https://doi.org/10.1007/s10664-018-9628-3
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/TSE.1987.232881
https://doi.org/10.1109/TSE.1986.6312975
https://doi.org/10.1145/1297797.1297819
https://doi.org/10.1109/ICPC.2019.00033
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1145/1117309.1117356
https://doi.org/10.1016/j.scico.2020.102520
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1027/1614-0001/a000052
https://doi.org/10.1109/ESEM.2011.39
https://doi.org/10.1049/ic.2012.0013
https://doi.org/10.1109/TSE.2014.2348997
https://doi.org/10.1109/2.30731
https://doi.org/10.1109/2.30731
https://doi.org/10.1145/1370847.1370860
https://doi.org/10.1109/MC.1987.1663532
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1145/358841.358847
https://doi.org/10.1145/1390630.1390647
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1109/ICPC.2015.36

Campbell JP, McCloy RA, Oppler SH, Sager CE (1993) A theory of performance. In: Schmitt N, Borman
WC, Associates (eds) Personnel Selection in Organizations. Jossey-Bass Pub, pp 35–70

Carver J, Shull F, Basili V (2003) Observational studies to accelerate process experience in classroom studies:
An evaluation. In: Intl. Symp. Empirical Softw. Eng., pp 72–79. https://doi.org/10.1109/ISESE.2003.
1237966

Carver JC, Jaccheri L, Morasca S, Shull F (2010) A checklist for integrating student empirical studies with
research and teaching goals. Empirical Softw Eng 15(1):35–59. https://doi.org/10.1007/s10664-009-
9109-9

Cates R, Yunik N, Feitelson DG (2021) Does code structure affect comprehension? on using and naming
intermediate variables. In: 29th Intl. Conf. Program Comprehension, pp 118–126. https://doi.org/10.
1109/ICPC52881.2021.00020

Ceccato M, Di Penta M, Falcarin P, Ricca F, Torchiano M, Tonella P (2014) A family of experiments to
assess the effectiveness and efficiency of source code obfuscation techniques. Empirical Softw Eng
19(4):1040–1074. https://doi.org/10.1007/s10664-013-9248-x

Cherubini M, Venolia G, DeLine R, Ko AJ (2007) Let’s go to the whiteboard: How and why soft-
ware developers use drawings. In: SIGCHI Conf. Human Factors in Comput. Syst, pp 557–566.
https://doi.org/10.1145/1240624.1240714

Chikofsky EJ, Cross II JH (1990) Reverse engineering and design recovery: A taxonomy. IEEE Softw
7(1):13–17. https://doi.org/10.1109/52.43044

Cook C, Bregar W, Foote D (1984) A preliminary investigation of the use of the cloze procedure as a measure
of program understanding. Inf Process & Management 20(1–2):199–208. https://doi.org/10.1016/0306-
4573(84)90050-5

Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A systematic survey of program
comprehension through dynamic analysis. IEEE Trans Softw Eng 35(5):684–702. https://doi.org/10.
1109/TSE.2009.28

Couceiro R, Duarte G, Durães J., Castelhano J, Duarte C, Teixeira C, Castelo Branco M, de Carvalho P,
Madeira H (2019) Biofeedback augmented software engineering: Monitoring of programmers’ men-
tal effort. In: 41st Intl. Conf. Softw. Eng., pp 37–40. https://doi.org/10.1109/ICSE-NIER.2019.00018.
(NIER track).

Crosby ME, Scholtz J, Wiedenbeck S (2002) The roles beacons play in comprehension for novice and expert
programmers. In: 14th workshop psychology of programming interest group, pp 58–73

Curtis B (1981) Substantiating programmer variability. Proc IEEE 69(7):846. https://doi.org/10.1109/PROC.
1981.12088

Curtis B (2014) A career spent wading through industry’s empirical ooze. In: 2nd Intl. Workshop Conducting
Empirical Studies in Industry, pp 1–2. https://doi.org/10.1145/2593690.2593699

Denaro G, Pezzè M (2002) An empirical evaluation of fault-proneness models. In: 24th Intl. Conf. Softw.
Eng., pp 241–251. https://doi.org/10.1145/581339.581371

Dijkstra EW (1968) Go To statement considered harmful. Comm ACM 11(3):147–148. https://doi.org/10.
1145/362929.362947

Dreyfus SE, Dreyfus HL (1980) A Five-Stage Model of the Mental Activities Involved in Directed Skill
Acquisition. Tech. Rep. ORC-80-2, Operations Research Center. University of California, Berkeley

DuBay WH (2004) The principles of readability. http://www.impact-information.com/impactinfo/
readability02.pdf

Dunsmore A, Roper M (2000) A Comparative Evaluation of Program Comprehension Measures. Tech. Rep.
EFoCS-35-2000. University of Strathclyde, Glasgow

Dunsmore A, Roper M, Wood M (2000) The role of comprehension in software inspection. J Syst Softw
52(2–3):121–129. https://doi.org/10.1016/S0164-1212(99)00138-7

Ericsson KA, Krampe RT, Tesch-Römer C (1993) The role of deliberate practice in the acquisition of expert
performance. Psychological Rev 100(3):363–406. https://doi.org/10.1037/0033-295X.100.3.363

Ericsson KA, Prietula MJ, Cokely ET (2007) The making of an expert. Harvard Business Rev, Massachusetts
Etgar A, Friedman R, Haiman S, Perez D, Feitelson DG (2022) The effect of information content and length

on name recollection. In: 30th Intl Conf Program Comprehension. https://doi.org/10.1145/3524610.
3529159

Fakhoury S, Roy D, Ma Y, Arnaoudova V, Adesope O (2020) Measuring the impact of lexical and structural
inconsistencies on developers’ cognitive load during bug localization. Empirical Softw Eng 25(3):2140–
2178. https://doi.org/10.1007/s10664-019-09751-4

Falessi D, Juristo N, Wohlin C, Turhan B, Münch J, Jedlitschka A, Oivo M (2018) Empirical software
engineering experts on the use of students and professionals in experiments. Empirical Softw Eng
23(1):452–489. https://doi.org/10.1007/s10664-017-9523-3

Page 37 of 42 123Empir Software Eng (2022) 27: 123

https://doi.org/10.1109/ISESE.2003.1237966
https://doi.org/10.1109/ISESE.2003.1237966
https://doi.org/10.1007/s10664-009-9109-9
https://doi.org/10.1007/s10664-009-9109-9
https://doi.org/10.1109/ICPC52881.2021.00020
https://doi.org/10.1109/ICPC52881.2021.00020
https://doi.org/10.1007/s10664-013-9248-x
https://doi.org/10.1145/1240624.1240714
https://doi.org/10.1109/52.43044
https://doi.org/10.1016/0306-4573(84)90050-5
https://doi.org/10.1016/0306-4573(84)90050-5
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1109/ICSE-NIER.2019.00018
https://doi.org/10.1109/PROC.1981.12088
https://doi.org/10.1109/PROC.1981.12088
https://doi.org/10.1145/2593690.2593699
https://doi.org/10.1145/581339.581371
https://doi.org/10.1145/362929.362947
https://doi.org/10.1145/362929.362947
http://www.impact-information.com/impactinfo/readability02.pdf
http://www.impact-information.com/impactinfo/readability02.pdf
https://doi.org/10.1016/S0164-1212(99)00138-7
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1145/3524610.3529159
https://doi.org/10.1145/3524610.3529159
https://doi.org/10.1007/s10664-019-09751-4
https://doi.org/10.1007/s10664-017-9523-3

Feigenspan J, Apel S, Liebig J, Kästner C (2011) Exploring software measures to assess program compre-
hension. In: Intl. Symp. Empirical Softw. Eng. & Measurement, pp 127–136. https://doi.org/10.1109/
ESEM.2011.21

Feitelson DG (2015) Using students as experimental subjects in software engineering research – a review
and discussion of the evidence. arXiv:1512.08409 [cs.SE]

Feitelson DG (2021) Considerations and pitfalls in controlled experiments on code comprehension. In: 29th
Intl. Conf. Program Comprehension, pp 106–117. https://doi.org/10.1109/ICPC52881.2021.00019

Feitelson DG, Mizrahi A, Noy N, Ben Shabat A, Eliyahu O, Sheffer R (2022) How developers choose names.
IEEE Trans Softw Eng 48(1):37–52. https://doi.org/10.1109/TSE.2020.2976920

Floyd B, Santander T, Weimer W (2017) Decoding the representation of code in the brain: An fMRI study
of code review and expertise. In: 39th Intl Conf Softw Eng, pp 175–186. https://doi.org/10.1109/ICSE.
2017.24

Fowler M (2019) Refactoring: Improving the Design of Existing Code, 2nd edn. Pearson Education Inc,
Boston

Fritz T, Begel A, Müller SC, Yigit-Elliott S, Züger M. (2014) Using psycho-physiological measures to assess
task difficulty in software development. In: 36th Intl Conf Softw Eng, pp 402–413. https://doi.org/10.
1145/2568225.2568266

Geffen Y, Maoz S (2016) On method ordering. In: 24th Intl Conf Program Comprehension. https://doi.org/10.
1109/ICPC.2016.7503711

Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Empirical Softw Eng
22(5):2585–2611. https://doi.org/10.1007/s10664-017-9513-5

Gopstein D, Iannacone J, Yan Y, DeLong L, Zhuang Y, Yeh MK-C, Cappos J (2017) Understanding misun-
derstanding in source code. In: 11th ESEC/FSE, pp 129–139. https://doi.org/10.1145/3106237.3106264

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2018) What happens when software developers are
(un)happy. J Syst Softw 140:32–47. https://doi.org/10.1016/j.jss.2018.02.041

Graziotin D, Wang X, Abrahamsson P (2014) Software developers, moods, emotions, and performance. IEEE
Softw 31(4):24–27. https://doi.org/10.1109/MS.2014.94

Graziotin D, Wang X, Abrahamsson P (2015) How do you feel, developer? an explanatory theory of
the impact of affects on programming performance. peerJ Comput Sci 1:e18. https://doi.org/10.7717/
peerj-cs.18

Hannay JE (2011) Personality, intelligence, and expertise: Impacts on software development. In: Oram A.,
Wilson G. (eds) Making Software, pp 79–110. O’Reilly Media Inc, Massachusetts

Hannebauer C, Hesenius M, Gruhn V (2018) Does syntax highlighting help programming novices? Empirical
Softw Eng 23(5):2795–2828. https://doi.org/10.1007/s10664-017-9579-0

Heathcote A, Brown S, Mewhort DJK (2000) The power law repealed: The case for an exponential law of
practice. Psychonomic Bulletin & Review 7(2):185–207. https://doi.org/10.3758/BF03212979

Hofmeister JC, Siegmund J, Holt DV (2019) Shorter identifier names take longer to comprehend. Empirical
Softw Eng 24(1):417–443. https://doi.org/10.1007/s10664-018-9621-x

Hollmann N, Hanenberg S (2017) An empirical study on the readability of regular expressions: Textual versus
graphical. In: Working Conf. Softw. Visualization, pp 74–84. https://doi.org/10.1109/VISSOFT.2017.27

Ivanova AA, Srikant S, Sueoka Y, Kean HH, Dhamala R, O’Reilly U.-M., Bers MU, Fedorenko E (2020)
Comprehension of computer code relies primarily on domain-general executive brain regions. eLife
9:e58906. https://doi.org/10.7554/eLife.58906

Jansen AR, Blackwell AF, Marriott K (2003) A tool for tracking visual attention: The restricted focus viewer.
Behavior Research Methods, Instruments, & Comput 35(1):57–69. https://doi.org/10.3758/BF03195497

Jbara A, Feitelson DG (2014) On the effect of code regularity on comprehension. In: 22nd Intl. Conf. Program
Comprehension, pp 189–200. https://doi.org/10.1145/2597008.2597140

Jbara A, Feitelson DG (2017) How programmers read regular code: A controlled experiment using eye
tracking. Empirical Softw Eng 22(3):1440–1477. https://doi.org/10.1007/s10664-016-9477-x

Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software engineering. In:
Intl Symp Empirical Softw Eng, pp 95–104. https://doi.org/10.1109/ISESE.2005.1541818

Juristo N, Moreno AM (2001) Basics of software engineering experimentation. Kluwer
Juristo N, Vegas S, Solari M, Abrahao S, Ramos I (2012) Comparing the effectiveness of equivalence par-

titioning, branch testing and code reading by stepwise abstraction applied by subjects. In: 5th Intl Conf
Software Testing, Verification, & Validation, pp 330–339. https://doi.org/10.1109/ICST.2012.113

Kaczmarczyk LC, Petrick ER, East JP, Herman GL (2010) Identifying student misconceptions of program-
ming. In: 41st SIGCSE Tech Symp Comput Sci Ed, pp 107–111

Kahneman D (1973) Attention and Effort. Prantice-Hall, Hoboken

123 Page 38 of 42 Empir Software Eng (2022) 27: 123

https://doi.org/10.1109/ESEM.2011.21
https://doi.org/10.1109/ESEM.2011.21
http://arxiv.org/abs/1512.08409
https://doi.org/10.1109/ICPC52881.2021.00019
https://doi.org/10.1109/TSE.2020.2976920
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1109/ICPC.2016.7503711
https://doi.org/10.1109/ICPC.2016.7503711
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1109/MS.2014.94
https://doi.org/10.7717/peerj-cs.18
https://doi.org/10.7717/peerj-cs.18
https://doi.org/10.1007/s10664-017-9579-0
https://doi.org/10.3758/BF03212979
https://doi.org/10.1007/s10664-018-9621-x
https://doi.org/10.1109/VISSOFT.2017.27
https://doi.org/10.7554/eLife.58906
https://doi.org/10.3758/BF03195497
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1109/ISESE.2005.1541818
https://doi.org/10.1109/ICST.2012.113

Ko AJ, LaToza TD, Burnett MM (2015) A practical guide to controlled experiments of software engineer-
ing tools with human participants. Empirical Softw Eng 20(1):110–141. https://doi.org/10.1007/s10664-
013-9279-3

Kruchten P (1995) The 4+1 view model of architecture. IEEE Softw 12(6):42–50. https://doi.org/10.1109/52.
469759

Krueger R, Huang Y, Liu X, Santander T, Weimer W, Leach K (2020) Neurological divide: An fMRI study
of prose and code writing. In: 42nd Intl Conf Softw Eng, pp 678–690. https://doi.org/10.1145/3377811.
3380348

Lawrie D, Morrell C, Field H, Binkley D (2006) What’s in a name? a study of identifiers. In: 14th Intl Conf
Program Comprehension, pp 3–12. https://doi.org/10.1109/ICPC.2006.51

Levy O, Feitelson DG (2021) Understanding large-scale software systems — structure and flows. Empirical
Softw Eng 26(3):48. https://doi.org/10.1007/s10664-021-09938-8

Lientz BP, Swanson EB, Tompkins GE (1978) Characteristics of application software maintenance. Comm
ACM 21(6):466–471. https://doi.org/10.1145/359511.359522

Littman DC, Pinto J, Letovsky S, Soloway E (1987) Mental models and software maintenance. J Syst Softw
7(4):341–355. https://doi.org/10.1016/0164-1212(87)90033-1

Ma L, Ferguson J, Roper M, Wood M (2007) Investigating the viability of mental models held by novice
programmers. In: 38th SIGCSE Symp Comput Sci Education, pp 499–503. https://doi.org/10.1145/
1227504.1227481

Madison S, Gifford J (2002) Modular programming: Novice misconceptions. J Res Tech Ed 34(3):217–229.
https://doi.org/10.1080/15391523.2002.10782346

Martin RC (2009) Clean Code: A Handbook of Agile Software Craftmanship. Prentice Hall, Hoboken
McCabe T (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320. https://doi.org/10.1109/

TSE.1976.233837
McKeithen KB, Reitman JS, Reuter HH, Hirtle SC (1981) Knowledge organization and skill differ-

ences in computer programmers. Cognitive Psychol 13(3):307–325. https://doi.org/10.1016/0010-
0285(81)90012-8

McMeekin DA, von Konsky BR, Robey M, Cooper DJA (2009) The significance of participant experi-
ence when evaluating software inspection techniques. In: Australian Softw Eng Conf, pp 200–209.
https://doi.org/10.1109/ASWEC.2009.13

Meyer B (1992) Applying “design by contract”. Computer 25(10):40–51. https://doi.org/10.1109/2.161279
Miara RJ, Musselman JA, Navarro JA, Shneiderman B (1983) Program indentation and comprehensibility.

Comm ACM 26(11):851–867. https://doi.org/10.1145/182.358437
Nagappan M, Robbes R, Kamei Y, Tanter E, McIntosh S, Mockus A, Hassan AE (2015) An

empirical study of goto in C code from GitHub repositories. In: 10th ESEC/FSE, pp 404–414.
https://doi.org/10.1145/2786805.2786834

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: 28th Intl Conf Softw
Eng, pp 452–461. https://doi.org/10.1145/1134285.1134349

Newell A, Rosenbloom PS (1981) Mechanisms of skill acquisition and the law of practice. In: Anderson
JR (ed) Cognitive skills and their acquisition. Lawrence Erlbaum Assoc, pp 1–55

Nyström M., Andersson R, Holmqvist K, van der Weijer J (2013) The influence of calibration method and eye
physiology on eyetracking data quality. Behavioral Res Meth 45(1):272–288. https://doi.org/10.3758/
s13428-012-0247-4

Obaidellah U, Al Haek M, Cheng PC-H (2018) A survey on the usage of eye-tracking in computer
programming. ACM Comput Surv 51(1):5. https://doi.org/10.1145/3145904

Oliveira D, Bruno R, Madeiral F, Castor F (2020) Evaluating code readability and legibility: An exam-
ination of human-centric studies. In: Intl Conf Softw. Maintenance & Evolution, pp 348–359.
https://doi.org/10.1109/ICSME46990.2020.00041

Oman PW, Cook CR (1990) Typographic style is more than cosmetic. Comm ACM 33(5):506–520.
https://doi.org/10.1145/78607.78611

Orso A, Sinha S, Harrold MJ (2001) Effects of pointers on data dependences. In: 9th IEEE Intl Workshop
Program Comprehension, pp 39–49. https://doi.org/10.1109/WPC.2001.921712

Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Comm ACM
15(12):1053–1058. https://doi.org/10.1145/361598.361623

Parnas DL, Clements PC, Weiss DM (1985) The modular structure of complex systems. IEEE Trans Softw
Eng SE-11(3):259–266. https://doi.org/10.1109/TSE.1985.232209

Paulson JW, Succi G, Eberlein A (2004) An empirical study of open-source and closed-source software
products. IEEE Trans Softw Eng 30(4):246–256. https://doi.org/10.1109/TSE.2004.1274044

Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B (2017) Evaluating and
improving fault localization. 39th Intl Conf Softw Eng, 609–620. https://doi.org/10.1109/ICSE.2017.62

Page 39 of 42 123Empir Software Eng (2022) 27: 123

https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1145/3377811.3380348
https://doi.org/10.1145/3377811.3380348
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s10664-021-09938-8
https://doi.org/10.1145/359511.359522
https://doi.org/10.1016/0164-1212(87)90033-1
https://doi.org/10.1145/1227504.1227481
https://doi.org/10.1145/1227504.1227481
https://doi.org/10.1080/15391523.2002.10782346
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1016/0010-0285(81)90012-8
https://doi.org/10.1016/0010-0285(81)90012-8
https://doi.org/10.1109/ASWEC.2009.13
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/182.358437
https://doi.org/10.1145/2786805.2786834
https://doi.org/10.1145/1134285.1134349
https://doi.org/10.3758/s13428-012-0247-4
https://doi.org/10.3758/s13428-012-0247-4
https://doi.org/10.1145/3145904
https://doi.org/10.1109/ICSME46990.2020.00041
https://doi.org/10.1145/78607.78611
https://doi.org/10.1109/WPC.2001.921712
https://doi.org/10.1145/361598.361623
https://doi.org/10.1109/TSE.1985.232209
https://doi.org/10.1109/TSE.2004.1274044
https://doi.org/10.1109/ICSE.2017.62

Pennington N (1987) Stimulus structures and mental representations in expert comprehension of computer
programs. Cognitive Psychology 19(3):295–341. https://doi.org/10.1016/0010-0285(87)90007-7

Politowski C, Khomh F, Romano S, Scanniello G, Petrillo F, Guéhéneuc Y-G, Maiga A (2020) A large scale
empirical study of the impact of Spaghetti Code and Blob anti-patterns on program comprehension. Inf
Softw Tech 122:106278. https://doi.org/10.1016/j.infsof.2020.106278

Prechelt L (1999) Comparing Java vs. C/C++ efficiency differences to interpersonal differences. Comm
ACM 42(10):109–112. https://doi.org/10.1145/317665.317683

Purchase HC, Colpoys L, McGill M, Carrington D (2002) UML collaboration diagram syntax: An empirical
study of comprehension. In: 1st Intl Workshop Visualizing Softw for Understanding & Analysis, pp 13–
22. https://doi.org/10.1109/VISSOF.2002.1019790

Raghunathan S, Prasad A, Mishra BK, Chang H (2005) Open source versus closed source: Software
quality in monopoly and competitive markets. IEEE Trans Syst Man Cybernetics 35(6):903–918.
https://doi.org/10.1109/TSMCA.2005.853493

Rajlich V, Cowan GS (1997) Towards standard for experiments in program comprehension. In: 5th IEEE Intl
Workshop Program Comprehension, pp 160–161. https://doi.org/10.1109/WPC.1997.601284

Rajlich V, Wilde N (2002) The role of concepts in program comprehension. In: 10th IEEE Intl Workshop
Program Comprehension, pp 271–278. https://doi.org/10.1109/WPC.2002.1021348

Raymond ES (2000) The cathedral and the bazaar. www.catb.org/∼esr/writings/cathedral-bazaar/cathedral-
bazaar

Roehm T, Tiarks R, Koschke R, Maalej W (2012) How do professional developers comprehend software?
In: 34th Intl Conf Softw Eng, pp 255–265. https://doi.org/10.1109/ICSE.2012.6227188

Sackman H, Erikson WJ, Grant EE (1968) Exploratory experimental studies comparing online and offline
programming performance. Comm ACM 11(1):3–11. https://doi.org/10.1145/362851.362858

Salviulo F, Scanniello G (2014) Dealing with identifiers and comments in source code comprehension and
maintenance: Results from an ethnographically-informed study with students and professionals. In: 18th
Intl Conf Evaluation & Assessment in Softw Eng, art. 48. https://doi.org/10.1145/2601248.2601251

Scalabrino S, Bavota G, Vendome C, Linares-Vśquez M, Poshyvanyk D, Oliveto R (2021) Automatically
assessing code understandability. IEEE Trans Softw Eng 47(3):595–613. https://doi.org/10.1109/TSE.
2019.2901468.

Scalabrino S, Linares-Vásquez M, Poshyvanyk D, Oliveto R (2016) Improving code readability models
with textual features. In: 24th Intl Conf Program Comprehension. https://doi.org/10.1109/ICPC.2016.
7503707

Schankin A, Berger A, Holt DV, Hofmeister JC, Riedel T, Beigl M (2018) Descriptive compound identifier
names improve source code comprehension. In: 26th Intl Conf Program Comprehension, pp 31–40.
https://doi.org/10.1145/3196321.3196332

Schenk KD, Vitalari NP, Davis KS (1998) Differences between novice and expert systems analysts: What
do we know and what do we do? J Mgmt Inf Syst 15(1):9–50. https://doi.org/10.1080/07421222.1998.
11518195

Shaffer TR, Wise JL, Walters BM, Müller SC, Falcone M, Sharif B (2015) iTrace: Enabling eye tracking
on software artifacts within the IDE to support software engineering tasks. In: ESEC/FSE, pp 954–957.
https://doi.org/10.1145/2786805.2803188

Shaft TM, Vessey I (1998) The relevance of application domain knowledge: Characterizing the computer
program comprehension process. J Mgmt Inf Syst 15(1):51–78. https://doi.org/10.1080/07421222.1998.
11518196

Sharafi Z, Huang Y, Leach K, Weimer W (2021) Toward an objective measure of developers’ cognitive
activities. ACM Trans Softw Eng Methodology 30(3):30. https://doi.org/10.1145/3434643

Sharafi Z, Sharif B, Guéhéneuc Y-G, Begel A, Bednarik R, Crosby M (2020) A practical guide on
conducting eye tracking studies in software engineering. Empirical Softw Eng 25(5):3128–3174.
https://doi.org/10.1007/s10664-020-09829-4

Sharafi Z, Soh Z, Guéhéneuc Y-G (2015) A systematic litareture review on the usage of eye-tracking in
software engineering. Inf Softw Tech 67:79–107. https://doi.org/10.1016/j.infsof.2015.06.008

Sharafi Z, Soh Z, Guéhéneuc Y-G, Antoniol G (2012) Women and men — different but equal: On the
impact of identifier style on source code reading. In: 20th Intl Conf Program Comprehension, pp 27–36.
https://doi.org/10.1109/ICPC.2012.6240505

Sharif B, Maletic JI (2010) An eye tracking study on camelCase and under score identifier styles. In: 18th
Intl Conf Program Comprehension, pp 196–205. https://doi.org/10.1109/ICPC.2010.41

Sharma T, Spinellis D (2018) A survey of code smells. J Syst Softw 138:158–173. https://doi.org/10.1016/j.
jss.2017.12.034

Shneiderman B (1977) Measuring computer program quality and comprehension. Intl J Man-Machine
Studies 9(4):465–478. https://doi.org/10.1016/S0020-7373(77)80014-X

123 Page 40 of 42 Empir Software Eng (2022) 27: 123

https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1016/j.infsof.2020.106278
https://doi.org/10.1145/317665.317683
https://doi.org/10.1109/VISSOF.2002.1019790
https://doi.org/10.1109/TSMCA.2005.853493
https://doi.org/10.1109/WPC.1997.601284
https://doi.org/10.1109/WPC.2002.1021348
https://www.catb.org/~{}esr/writings/cathedral-bazaar/cathedral-bazaar
https://www.catb.org/~{}esr/writings/cathedral-bazaar/cathedral-bazaar
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1145/362851.362858
https://doi.org/10.1145/2601248.2601251
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1109/ICPC.2016.7503707
https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1080/07421222.1998.11518195
https://doi.org/10.1080/07421222.1998.11518195
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1080/07421222.1998.11518196
https://doi.org/10.1080/07421222.1998.11518196
https://doi.org/10.1145/3434643
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1109/ICPC.2012.6240505
https://doi.org/10.1109/ICPC.2010.41
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/S0020-7373(77)80014-X

Shneiderman B, Mayer R (1979) Syntactic/semantic interactions in programmer behavior: A model and
experimental results. Intl J Comput Inf Syst 8(3):219–238. https://doi.org/10.1007/BF00977789

Shull F, Singer J, Sjøberg DIK (eds) (2008) Guide to Advanced Empirical Software Engineering. Springer,
Berlin

Siegmund J (2016) Program comprehension: Past, present, and future. In: 23rd Intl Conf Softw Analysis,
Evolution, & Reengineering, pp 13–20. https://doi.org/10.1109/SANER.2016.35

Siegmund J, Kästner C, Apel S, Brechmann A, Saake G (2013) Experience from measuring program
comprehension—toward a general framework. In: Kowalewski S, Rumpe B (eds) Software Engineering,
vol P-213, pp 239–257. Gesellschaft für Informatik e.V. LNI

Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2014) Understand-
ing understanding source code with functional magnetic resonance imaging. In: 36th Intl Conf Softw
Eng, pp 378–389. https://doi.org/10.1145/2568225.2568252

Siegmund J, Kästner C, Liebig J, Apel S, Hanenberg S (2014) Measuring and modeling programming
experience. Empirical Softw Eng 19(5):1299–1334. https://doi.org/10.1007/s10664-013-9286-4

Siegmund J, Peitek N, Apel S, Siegmund N (2021) Mastering variation in human studies: The role of
aggregation. ACM Trans Softw Eng Methodology 30(1):art. 2. https://doi.org/10.1145/3406544

Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Kästner C, Begel A, Bethmann A, Brechmann
A (2017) Measuring neural efficiency of program comprehension. In: 11th ESEC/FSE, pp 140–150.
https://doi.org/10.1145/3106237.3106268

Siegmund J, Schumann J (2015) Confounding parameters on program comprehension: A literature survey.
Empirical Softw Eng 20(4):1159–1192. https://doi.org/10.1007/s10664-014-9318-8

Simon HA, Chase WG (1973) Skill in chess. American Scientist 61(4):394–403
Sjøberg DIK, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanovic A, Koren EF, Vokác M. (2002)

Conducting realistic experiments in software engineering. In: Intl Symp Empirical Softw Eng, pp 17–26.
https://doi.org/10.1109/ISESE.2002.1166921

Sjøberg DIK, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanović A, Vokáč M Challenges and rec-
ommendations when increasing the realism of controlled software engineering experiments. In: Conradi
R, Wang AI (eds) Empirical methods and studies in software engineering: experiences from ESERNET,
Springer, pp 2438. https://doi.org/10.1007/978-3-540-45143-3. Lect Notes Comput vol 2765

Sjøberg DIK, Hannay JE, Hansen O, Kampenes VB, Karahasanović A, Liborg N-K, Rekdal AC (2005)
A survey of controlled experiments in software engineering. IEEE Trans Softw Eng 31(9):733–753.
https://doi.org/10.1109/TSE.2005.97

Smith M, Taffler R (1992) Readability and understandability: Different measures of the textual complexity
of accounting narrative. Accounting, Audting & Accountability J 5(4):84–98. https://doi.org/10.1108/
09513579210019549

Sochat VV, Eisenberg IW, Enkavi AZ, Li J, Bissett PG, Poldrack RA (2016) The experiment factory:
Standardizing behavioral experiments. Frontiers in Psychology 7:art. 610. https://doi.org/10.3389/fpsyg.
2016.00610

Soloway E, Ehrlich K (1984) Empirical studies of programming knowledge. IEEE Trans Softw Eng SE-
10(5):595–609. https://doi.org/10.1109/TSE.1984.5010283

Sonnentag S (1998) Expertise in professional software design: A process study. J App Psychol 83(5):703–
715. https://doi.org/10.1037/0021-9010.83.5.703

Sonnentag S, Niessen C, Volmer J (2006) Expertise in software design. In: Ericsson KA, Charness N,
Feltovich PJ, Hoffman RR (eds) The Cambridge Handbook of Expertise and Expert Performance.
Cambridge University Press, pp 373–387

Spolsky J (2005) The perils of JavaSchools. www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2,
29 Dec 2005

Stefik A, Siebert S (2013) An empirical investigation into programing language syntax. ACM Trans
Computing Education 13(4) art. 19. https://doi.org/10.1145/2534973

Storey M-A (2005) Theories, methods and tools in program comprehension: Past, present and future. In: 13th
IEEE Intl Workshop Program Comprehension. https://doi.org/10.1109/WPC.2005.38

The National Commission for the Protection of Human Subjects of Biomedical and Behavioral
Research (1979) The Belmont report. https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/
read-the-belmont-report/index.html

Tichy WF (2000) Hints for reviewing empirical work in software engineering. Empirical Softw Eng
5(4):309–312. https://doi.org/10.1023/A:1009844119158

von Mayrhauser A, Vans AM (1995) Program comprehension during software maintenance and evolution.
Computer 28(8):44–55. https://doi.org/10.1109/2.402076

Page 41 of 42 123Empir Software Eng (2022) 27: 123

https://doi.org/10.1007/BF00977789
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1145/3406544
https://doi.org/10.1145/3106237.3106268
https://doi.org/10.1007/s10664-014-9318-8
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1007/978-3-540-45143-3
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1108/09513579210019549
https://doi.org/10.1108/09513579210019549
https://doi.org/10.3389/fpsyg.2016.00610
https://doi.org/10.3389/fpsyg.2016.00610
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1037/0021-9010.83.5.703
https://www.joelonsoftware.com/2005/12/29/the-perils-of-javaschools-2
https://doi.org/10.1145/2534973
https://doi.org/10.1109/WPC.2005.38
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://www.hhs.gov/ohrp/regulations-and-policy/belmont-report/read-the-belmont-report/index.html
https://doi.org/10.1023/A:1009844119158
https://doi.org/10.1109/2.402076

von Mayrhauser A, Vans AM (1996) On the role of hypotheses during opportunistic understanding while
porting large scale code. In: 4th Workshop Program Comprehension, pp 68–77. https://doi.org/10.1109/
WPC.1996.501122

von Mayrhauser A, Vans AM (1998) Program understanding behavior during adaptation of large scale
software. In: 6th Workshop Program Comprehension, pp 164–172. https://doi.org/10.1109/WPC.1998.
693345

von Mayrhauser A, Vans AM, Howe AE (1997) Program understanding behavior during enhancement of
large-scale software. J Softw Maintenance: Res Pract 9(5):299–327. https://doi.org/10.1002/(SICI)1096-
908X(199709/10)9:5<299::AID-SMR157>3.0.CO;2-S

Weiser M, Shertz J (1983) Programming problem representation in novice and expert programmers. Intl J
Man-Machine Studies 19(4):391–398. https://doi.org/10.1016/S0020-7373(83)80061-3

Weissman L (1974) Psychological complexity of computer programs: An experimental methodology.
SIGPLAN Notices 9(6):25–36. https://doi.org/10.1145/953233.953237

Wilson LA, Senin Y, Wang Y, Rajlich V (2019) Empirical study of phased model of software change.
arXiv:1904:05842 [cs.SE]

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in Software
Engineering. Springer, Berlin

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Dror G. Feitelson holds the Berthold Badler chair in Computer Sci-
ence at the School of Computer Science and Engineering of the
Hebrew University of Jerusalem, where he has been a faculty member
since 1995. His research interests are in experimental computer sci-
ence and empirical software engineering, with an emphasis on human
aspects and experimental methodology. His current research focus is
on program comprehension and what makes software hard to under-
stand. This includes work on code complexity and on what makes
variable names “meaningful”.

123 Page 42 of 42 Empir Software Eng (2022) 27: 123

https://doi.org/10.1109/WPC.1996.501122
https://doi.org/10.1109/WPC.1996.501122
https://doi.org/10.1109/WPC.1998.693345
https://doi.org/10.1109/WPC.1998.693345
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5$<$299::AID-SMR157$>$3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5$<$299::AID-SMR157$>$3.0.CO;2-S
https://doi.org/10.1016/S0020-7373(83)80061-3
https://doi.org/10.1145/953233.953237
http://arxiv.org/abs/1904:05842

	Considerations and Pitfalls for Reducing Threats to the Validity of Controlled Experiments on Code Comprehension
	Abstract
	Introduction
	The code
	Considerations
	Code scope
	Code difficulty
	Code source

	Pitfalls
	Misleading code
	Recognized code
	Code structure giveaways
	Problematic code presentation
	Variable naming side-effects
	Inappropriate code for the task

	The task
	Considerations
	Recognition task (tokens and structure)
	Parsing task (understand syntax)
	Interpretation task (local semantics)
	Comprehension task (global semantics)
	Code completion or recall task
	Correction task (white-box)
	Extension or modification task (large scale white-box)
	Use task (black-box)
	Design-related task (abstraction)
	Selection of tasks

	Pitfalls
	Substituting opinion for measurement
	The danger of shortcuts
	Confounding explanations
	The working environment

	The metrics
	Considerations
	Imposing time limits
	Judging accuracy
	Reaction to errors
	Combining dimensions of performance
	Using direct physiological measurements

	Pitfalls
	Confounding effects
	Learning and fatigue effects*-.2pt
	Measurement technical issues*-.2pt
	Premature theorizing

	The experimental subjects
	Considerations
	Skill and experience
	Using students
	Ensuring motivation
	Effect of demographics
	Ethics in research

	Pitfalls
	Subjects unsuited for the study
	Lack of relevant knowledge
	Differences in definition of levels
	Unmotivated subjects

	Conclusions
	References

