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Abstract
Developers sometimes choose design and implementation shortcuts due to the pressure from
tight release schedules. However, shortcuts introduce technical debt that increases as the
software evolves. The debt needs to be repaid as fast as possible to minimize its impact on
software development and software quality. Sometimes, technical debt is admitted by devel-
opers in comments and commit messages. Such debt is known as self-admitted technical
debt (SATD). In data-intensive systems, where data manipulation is a critical functionality,
the presence of SATD in the data access logic could seriously harm performance and main-
tainability. Understanding the composition and distribution of the SATDs across software
systems and their evolution could provide insights into managing technical debt efficiently.
We present a large-scale empirical study on the prevalence, composition, and evolution of
SATD in data-intensive systems. We analyzed 83 open-source systems relying on relational
databases as well as 19 systems relying on NoSQL databases. We detected SATD in source
code comments obtained from different snapshots of the subject systems. To understand
the evolution dynamics of SATDs, we conducted a survival analysis. Next, we performed a
manual analysis of 361 sample data-access SATDs, investigating the composition of data-
access SATDs and the reasons behind their introduction and removal. We identified 15 new
SATD categories, out of which 11 are specific to database access operations. We found that
most of the data-access SATDs are introduced in the later stages of change history rather
than at the beginning. We also observed that bug fixing and refactoring are the main reasons
behind the introduction of data-access SATDs.
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1 Introduction

With the increasing data demand of novel technologies, modern systems often collect and
process large data volumes with high velocity for various purposes. Such Big Data or
data-intensive systems (Gokhale et al. 2008) are pervasive and virtually affect people in all
walks of life (Park et al. 2021). They often have critical roles, too, calling for prime impor-
tance to ensure their quality. Data-intensive systems, however, have several peculiarities
posing challenges to software engineering practitioners and researchers (Cleve et al. 2010;
Foidl et al. 2019; Hummel et al. 2018; Park et al. 2021).

Developers of data-intensive systems are also often under pressure to deliver features
on time. Although deadlines can increase productivity, a potential adverse side effect is
decreased quality (Kuutila et al. 2020). This phenomenon led to the concept of technical
debt, i.e., implementation trade-offs made by developers during rushed development tasks.
Since Cunningham first described technical debt almost 30 years ago (Cunningham 1992),
many researchers have studied its impact on software development (Alfayez et al. 2020;
Alves et al. 2016; Li et al. 2015; Rios et al. 2018). In general, researchers agree that it leads
to low quality (in particular maintainability), and makes further changes more expensive in
the long run (Lim et al. 2012; Wehaibi et al. 2016).

Technical debt is often admitted by the developers through comments with “todos” and
“fixmes” left in the source code as reminders for the future. Such debt is referred to as
self-admitted technical debt (SATD). Researchers often use SATD as a proxy to estimate
technical debt because it can be identified by analyzing the source code (Liu et al. 2018;
Huang et al. 2018) or issue reports (Xavier et al. 2020).

Technical debt is pertinent to data-intensive systems too. In a recent study, Foidl et al.
claim that technical debt can proliferate in data-intensive systems (Foidl et al. 2019). As
they say, data-intensive systems have heterogeneous architecture divided into multiple parts
(software systems, data storage systems, and data), and debt introduced in one part has
unwanted effects on other parts as well. A similar phenomenon has been described by sev-
eral authors (Lin and Neamtiu 2009; Meurice et al. 2016; Stonebraker et al. 2017), who
found that changes in the database or application often remain unpropagated to the other
side. In the end, the system’s quality decays over time (Stonebraker et al. 2017).

While these studies recognize the importance of technical debt in data-intensive systems,
the problem has not received much attention. Although several researchers have investigated
the detection, persistence and impact of technical debt in traditional software systems (e.g.,
Li et al. 2015; Alves et al. 2016; Rios et al. 2018; Alfayez et al. 2020; Liu et al. 2018; Lim
et al. 2012; Wehaibi et al. 2016), data-intensive systems remained out of focus. In particular,
we still do not know much about the prevalence and persistence of technical debt in data-
intensive systems. Neither do we know their composition and the circumstances of their
introduction or removal. This paper aims to fill this gap in the literature.

We conduct an empirical study to understand the prevalence and persistence of SATDs,
their composition, and the circumstances of their introduction and removal. In particular,
we seek answers to the following research questions.

RQ1: How prevalent are SATDs in data-intensive systems?
RQ2: How long do SATDs persist in data-intensive systems?
RQ3: What is the composition of data-access SATD?
RQ4: What are the circumstances behind the introduction and removal of data-access

SATD?
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We focus on data-accesses and define data-access SATDs as SATDs that occur in data-
access classes, i.e., classes with direct database interactions or other persistence systems
via calls to driver functions or APIs. To differentiate against their counterparts, we refer
to SATDs in non-data-access classes as regular SATDs. We are interested in data-access
SATDs because mismanagement of SATDs in such classes can significantly impact the
overall quality of a data-intensive system.

We examine SATDs in relational (SQL-based) and non-relational (NoSQL-based) data-
intensive systems. The reason is the fundamental differences between SQL and NoSQL
systems in terms of schema, data-access approach, data representation, scalability, and the
type of data they are manipulating (Sadalage and Fowler 2014; Scherzinger and Klettke
2013; Scherzinger and Sidortschuck 2020; Vassiliadis 2021). Relational systems have a pre-
defined schema, use structured query language for data access, store data using tables, and
capture the relationship between entities via the relationship between tables. They are ver-
tically scalable and efficient for handling structured data. NoSQL systems have a dynamic
schema, rely on document, key-value, graph, or column storage. They are horizontally scal-
able and efficient for handling unstructured data. SQL systems are often older and more
mature compared to NoSQL systems. The conceptual differences in SQL and NoSQL
systems result in differences in their APIs, affecting their data-access code, thus, the data-
access SATDs too. Such differences motivated us to compare the prevalence and persistence
of SQL-based and NoSQL-based data-intensive systems in our analysis. To the best of our
knowledge, this is the first study on database-related technical debt that considers both
relational and NoSQL software systems.

The primary contributions of this work can be summarized as follows.

1. We provide empirical evidence that SATDs are not equally prevalent between data-
access and regular classes and between NoSQL and SQL systems.

2. Our results show that data-access SATDs have lower survival than regular SATDs
3. We extended the SATD taxonomy proposed by Bavota and Russo (2016) with new

SATD types, including 11 database access-specific debts.
4. Our result also shows that data-access SATDs are introduced at later stages of software

evolution, mainly during bug fixing and refactoring activities.

The rest of the paper is organized as follows. We present related work in Section 2. In
Section 3, we provide background information on topic modeling and survival analysis. We
describe the study methodology in Section 4, then we present the results in Section 5, and
discuss their implications in Section 6. In Section 7, we identify the threats to the validity
of our study. Finally, we provide concluding remarks and discuss directions for future work
in Section 8.

2 RelatedWork

Several researchers have investigated self-admitted technical debt in source code for various
purposes including its identification (De Freitas Farias et al. 2015, 2016; da Silva Maldon-
ado et al. 2017; Huang et al. 2018; Liu et al. 2018; Yan et al. 2018; Yu et al. 2020; Al-Barak
and Bahsoon 2016), removal (Zampetti et al. 2020; Maldonado et al. 2017), prioritization
(Alfayez et al. 2020; Albarak and Bahsoon 2018; Kamei et al. 2016), recommendation when
to admit SATDs (Zampetti et al. 2017), or the analysis of its impact on source code quality
(Wehaibi et al. 2016)—to mention a few examples.
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In this section, we first present an overview of recent literature and surveys related to
technical debt. Then we summarize previous empirical studies on self-admitted technical
debt. Finally, we discuss closely related papers focusing on technical debt in databases or
data-intensive systems.

2.1 Surveys and Literature Reviews on Technical Debt

Li et al. conducted a systematic mapping study on technical debt and its management
(2015). They examined 49 papers, classified technical debts into ten categories and
identified eight activities and 29 technical debt management tools.

Rios et al. performed a tertiary study and evaluated 13 secondary studies dating from
2012 to March 2018 (Rios et al. 2018). As a result, they developed a taxonomy of technical
debt types and identified a list of situations in which debt items can be found in software
projects.

Alves et al. performed a systematic mapping study by evaluating 100 studies dating from
2010 to 2014 (Alves et al. 2016). They also proposed a taxonomy of technical debt types
and created a list of indicators to identify technical debt.

Alfayez et al. (2020) conducted a systematic literature review identifying 29 technical
debt prioritization approaches. Among the 29 approaches, 70.83% address a specific type of
technical debt, while the remaining approaches can be applied to any kind of technical debt.
33.33% of the approaches address code debt, 16.67% address design debt, 12.5% address
defect debt and 1% of the approaches is shared by SATDs, database normalization debt,
requirement debt and architectural debt. Among all approaches, 54.17% consider value and
cost as prioritization decision factors, 29.17% rely on value only, and 16.67% of approaches
are based on value cost and constraint.

Sierra et al. (2019) present a survey of SATD studies from 2014 to 2019. They identified
three main categories of research contributions: (1) papers that focus on the detection of
SATD, (2) papers that aim to improve the comprehension of SATD, and (3) papers that focus
on the repayment of SATD.

Interestingly, while the above literature reviews identified various types of technical
debt (e.g., service debt related to web services), none of them explicitly mention database
communication-related debts in their taxonomies as well as evolution and management. As
they constitute an overview of the state-of-the-art technical debt research, the recent sur-
veys indicate a lack of studies on database-related technical debt. We address this gap in
the literature by extending the SATD taxonomy (Bavota and Russo 2016) with database
access debt. Furthermore, we study the evolution and management of data-access SATDs to
complement the state of the art.

2.2 Empirical Studies on Self-admitted Technical Debt

Potdar and Shihab (2014) used source code comments to study self-admitted technical debt
in four large open-source software projects. They found that different types of self-admitted
technical debts exist in up to 31% of the studied project files. They showed that develop-
ers with higher experience tend to introduce most of the self-admitted technical debt and
that time pressures and complexity of the code do not correlate with the amount of self-
admitted technical debt introduced. They also observed that between 26.3% and 63.5% of
self-admitted technical debt are removed from the projects after their introduction.

A large-scale empirical study on removing self-admitted technical debt was performed
by Maldonado et al., who examined 5,733 SATD removals in five large open-source projects
(Maldonado et al. 2017). They found that the majority (40.5–90.6%) of SATD comments
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were removed from the systems, and the median amount of time that self-admitted technical
debt stayed in the project ranged between 82–613.2 (18.2–172.8 days on average). While the
above studies address the prevalence and evolution of SATDs, they rely on four or five sub-
ject systems, limiting the generalization of the results, especially to data-intensive systems.
We investigate the prevalence and evolution of data-access SATDs using 102 data-intensive
subject systems.

Bavota and Russo (2016) conducted a differentiated replication of the work of Potdar
and Shihab (2014). They considered 159 software projects and investigated the diffusion
(prevalence) and evolution of self-admitted technical debt and its relationship with software
quality. Their results show that (1) SATD is diffused in software projects; (2) the most
diffused SATDs are related to code, defect, and requirement debt; (3) the amount of SATD
increases over time due to the introduction of new SATDs that developers never fix; and
(4) SATD has very long survivability (over 1,000 commits on average). They also proposed
a SATD taxonomy, which is used as a base for this work. We extended their taxonomy by
identifying data-access-specific SATDs.

Wehaibi et al. (2016) studied the relation between SATD and software quality in terms of
defects and maintenance effort. They identified SATDs in five popular open-source projects
using pattern-based approaches. They found that the defectiveness of files increased after
the introduction of SATDs and that changes were more difficult when they were related to
SATDs.

Kamei et al. assessed ways to measure the interest of SATDs as a function of LOC and
fan-in measures (Kamei et al. 2016). They examined JMeter as a case study and manually
classified its SATD comments, then compared the metric values after the introduction and
removal of SATDs to compute their interest. They found that up to 44% of SATDs have
positive interest implying that more effort is needed to resolve such debt.

Zampetti et al. performed a quantitative and qualitative study of how developers address
SATDs in five Java open-source projects (2018). They found that a relatively large per-
centage (20%–50%) of SATD comments are accidentally removed while entire classes or
methods are dropped. Developers acknowledged in commit messages the SATD removal in
only 8% of the cases. They also observed that SATD is often addressed by specific changes
to method calls or conditionals, not just complex source code changes. Like Zampetti et al.,
we utilize the information obtained from commit messages to understand why data-access
SATDs are introduced or removed.

The work of Wehaibi et al. (2016) and Zampetti et al. (2018) motivated us to investigate
the circumstances behind the introduction, evolution, and removal of data-access SATDs
as such factors affect the interest of technical debt. We are interested in generalizing the
findings of Zampetti et al. (2018) to the context of data-intensive systems.

2.3 SATD Detection Approaches

Most of the SATD detection approaches are either pattern- or machine learning-based.
Initial methods for detection were pattern-based. Machine learning approaches were
introduced more recently to improve the performance of detection approaches and tools.

2.3.1 Pattern-Based SATD Detection

De Freitas Farias et al. (2015) proposed a contextualized vocabulary model to identify
technical debt using source code analysis. The model consists of software-related terms,
adjectives that describe the terms, verbs to model actions in comments, adverbs, and tags
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such as Fixme and Todo. The combined terms can be used for searching comments in a
pattern-based approach. They tested the feasibility of their approach on jEdit and Apache
Lucene and identified technical debt in various categories.

As an extension of the work of De Freitas Farias et al. (2015), De Farias et al. conducted
an empirical study on the effectiveness of contextual vocabulary models (CVM) (2016).
Besides evaluating the accuracy of the pattern-based approaches, they studied the impacts of
language skills and developer experience on finding SATDs using a controlled experiment.
Their result shows that the accuracy of the pattern-based approach looks promising, but
it needs further improvement. English reading skills affected the identification of SATDs
using pattern-based techniques.

2.3.2 Machine Learning-Based SATD Detection

da Silva Maldonado et al. proposed NLP based approach to identify SATDs (2017) automat-
ically. Their approach can detect design and requirement SATDs. Furthermore, they built a
manually labeled dataset of 62566 SATD comments. This dataset is used as a benchmark
in most of the subsequent studies. They proposed a multi-class regression model using their
dataset. They evaluated their approach and achieved an F1 measure between 40% to 60%.
They observed that words related to sloppy code indicate design SATD while words related
to incomplete code are associated with requirement SATD.

Huang et al. proposed a machine learning-based detection approach that combines the
decisions of multiple Naive-Bayes-based classifiers into a composite classifier using major-
ity vote (2018). The comments from source codes are represented using vector space
modeling (VSM), where features are selected utilizing Information Gain. They achieved
an average F1-Score of 73.7%. Liu et al. (2018) proposed a SATD detector tool which is
a concrete implementation of Huang et al. (2018) approach. They provided this tool as a
Java back-end library implementing the model to train and classify comments and the corre-
sponding Eclipse plugin as a front end. We also used this tool to detect SATDs in our subject
systems due to its state-of-the-art detection performance and the availability of concrete
implementation of the detection approach as a Java API and Eclipse plugin.

Zampetti et al. (2017) presented TEDIOuS (TEchnical Debt IdentificatiOn System), a
machine learning approach that provides recommendations to developers about “techni-
cal debt to be admitted”. The method relies on source code structural metrics, readability
metrics, and information from static analysis tools. They evaluated TEDIOus using nine
open-source subject systems and achieved an average precision of 67% and recall of 55%.

2.4 Technical Debt in Data-Intensive Systems

Al-Barak and Bahsoon (2016) defined the concept of database design debt as “the imma-
ture or suboptimal database design decisions that lag behind the optimal/desirable ones,
that manifest themselves into future structural or behavioral problems, making changes
inevitable and more expensive to carry out” (2016). They develop a taxonomy of debts
related to the conceptual, logical, and physical design of a database. For example, they claim
that ill-normalized databases (i.e., databases with tables below the fourth normal form) can
also be considered technical debt (Albarak and Bahsoon 2018). To tackle this specific type
of debt, they propose an approach to prioritize tables that should be normalized.

Foidl et al. claim that technical debt can be incurred in different parts (i.e., software sys-
tems, data storage systems, data) of data-intensive systems and different parts can further
affect each other (2019). They propose a conceptual model to outline where technical debt
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can emerge in data-intensive systems by separating them into three parts: software systems,
data storage systems and data. They present two smells as examples. Missing constraints,
when referential integrity constraints are not declared in a database schema; and metadata
as data, when an entity-attribute-value pattern is used to store metadata (attributes) as data.
While this study provided a conceptual model for components of data-intensive systems
prone to technical debt, it did not provide empirical evidence for the existence of the tech-
nical debt. We contribute to addressing this gap by investigating SATDs in data-intensive
systems.

Weber et al. (2014) also identified relational database schemas as potential sources of
technical debt. In particular, they provided a first attempt at utilizing the technical debt
analogy for developing processes related to the missing implementation of implicit foreign
key (FK) constraints. They discuss the detection of missing FKs, propose a measurement
for the associated TD, and outline a process for reducing FK-related TD. As illustrative case
study, they consider OSCAR, a large Java medical record system used in Canada’s primary
health care.

Ramasubbu and Kemerer (2016) empirically analyze the impact of technical debt on
system reliability by observing a 10-year life cycle of a commercial enterprise system.
They also examine the relative effects of modular and architectural maintenance activities
in clients. They conclude that technical debt decreases the reliability of enterprise systems.
They also add that modular maintenance targeted to reduce technical debt is about 53%
more effective than architectural maintenance in reducing the probability of a system failure
due to client errors.

2.5 Summary

The various studies and approaches discussed above constitute an extensive and sound basis
for measuring, detecting and removing (self-admitted) technical debt. To the best of our
knowledge, this paper is the first large-scale study investigating the prevalence, nature, and
evolution of self-admitted technical debt in data-intensive systems in general and in data-
access code in particular. It is also the first to study database-related technical debt in both
relational and NoSQL software systems. In addition, it proposes an extension of an existing
SATD taxonomy (Bavota and Russo 2016) to incorporate data-access related SATDs.

3 Background

This section provides a background on the topic modeling and survival analysis techniques
used in our study.

3.1 Topic Modeling

Topic modeling (Papadimitriou et al. 2000) is one of the unsupervised machine learning
techniques that, given a set of documents (document corpus), can detect word and phrase
patterns and cluster the documents based on word similarity. In our case, the corpus will be
our dataset, and each comment will be one document in the corpus. Topic modeling works
by counting the words and grouping documents with similar word patterns. Topic modeling
is one of the frequently used techniques in natural language processing (NLP).

Latent semantic analysis (LSA) (Papadimitriou et al. 2000) and latent Dirichlet alloca-
tion (LDA) (Blei et al. 2003) are commonly used topic modeling algorithms. We also rely on
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LDA to assign topics to a set of words assuming that the arrangement of words determines
the topic. LDA model is trained using a tokenized and pre-processed set of documents. After
the LDA is trained, it can assign a document to a topic group with a certain probability. In
this paper, we use LDA to cluster comments based on similarity so that our sampled data
for manual analysis is not biased to a specific topic. LDA has hyper-parameters such as the
number of topics, alpha, and beta to control the similarity levels that affect the model’s per-
formance. The first one determines the number of topics generated by LDA after training. It
can take any positive integer value. An insufficient value results in a too general model that
makes topic interpretation difficult. An excess number of topics creates many topics that are
too fine-grained for classification and subjective evaluation (Zhao et al. 2015). Alpha con-
trols the document topic density. A higher alpha makes the documents contain many topics.
On the contrary, a smaller alpha makes the documents have a small number of topics. Beta
controls the topic word density determining the number of words in the corpus associated
with a topic. The higher the beta value, the more words are associated with a topic. All those
parameters need to be tuned using the target dataset by optimizing for the best performance
of the LDA model.

Performance evaluation of LDA: A topic model can be evaluated by human judgment and
intrinsic methods such as perplexity and coherence. Perplexity measures how well a prob-
ability model predicts a sample. It is computed by assessing the LDA model with unseen
or held-out data. The lower the perplexity, the better the performance of the model. While
perplexity measures the prediction of the LDA model, it does not evaluate the interpretation
of the generated topics (Chang et al. 2009). Another approach is to use coherence for eval-
uation. The coherence score is computed following segmentation, probability estimation,
confirmation measure, and aggregation (Röder et al. 2015). Coherence score is calculated
by summing the scores of a pair of words that describe a topic on the assumption that words
that often appear together in the document are more coherent. Coherence takes a value
between 0 and 1. The higher the score, the better the model.

3.2 Survival Analysis

Survival analysis (Miller 2011) is a statistical analysis technique that provides the expected
time for an event’s occurrence. Time to event and status are two important variables for
survival analysis. To compute each variable, we first need to define an event of interest that
depends on the problem we want to analyze. In our case, an event of interest is the removal
of an SATD.

Time to event (T) is defined as the time interval between the starting of observation (the
first instance of the SATD) and the occurrence of an event of interest or the censoring of
data. Time to event T is a random variable with only positive values and can be measured in
any unit (Miller 2011). The most common approach is to use time in minutes, hours, days,
months, or years. However, we will use the number of commits to consider that the actual
time may not correctly reflect software evolution compared to the number of commits.
Projects have different activities at different times. Commits could be made more frequent
at specific periods of time and less frequent at other times. Using time for T in those cases
has a limited capability to reflect project evolution. On the contrary, the number of commits
directly measures the project activity regardless of activity variation in some periods of time.

It is important to define an observation window and flag events outside it as censored. In
our case, we define the observation window to cover all our snapshots of the subject systems.
We flag SATDs that persist in the latest snapshots as censored since we do not know if the
event of interest (i.e., the removal of the SATD) will occur or not. Similarly, when an entire
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source file with one or more SATD comments is deleted within the observation window,
we flag the SATDs as censored. The reason is that in this case, it cannot be determined
whether the SATDs are removed intentionally or only because of the file deletion. This
is also supported by the observation of Zampetti et al., who found that 20%–50% of the
removals of SATDs are accidental and are even unintended (Zampetti et al. 2018).

Survival analysis takes a boolean variable called status to distinguish between censored
data and non-censored data. For instance, it takes a value of 1 when the event of interest
occurred and 0 otherwise.

The survival function S(t) gives the probability (P(T > t)) that a subject (SATD in our
case) will survive beyond time t .

After we computed T and status, we can choose our survival estimator. We selected
one of the commonly used survival estimators, the Kaplan-Meier estimator (Kaplan and
Meier 1958). The Kaplan-Meier estimation is computed following Eq. 1 where ti is the time
duration (in the number of commits) up to event occurrence (removal of SATD) point i, di

is the number of event occurrences up to ti , and ni is the number of SATDs that survive just
before ti . ni and di are obtained from the input data.

S(t) =
∏

i:ti≤t

[
1 − di

ni

]
(1)

3.3 Metrics for Measuring Developers Activity in Time

Code repositories track changes in software artifacts through commits. The distribution of
commits in time co-relates to developer activity and is used to study the evolution of soft-
ware and the associated technical debts (e.g., Johannes et al. 2019; Tufano et al. 2017). For
our analysis, we took a snapshot of projects every 500 commits. We provided the mean,
standard deviation, and 95% confidence interval of the commit time span for each SQL
system1 and NoSQL system2 respectively in the replication package.

Furthermore, Fig. 1 shows the distribution of the average time interval between suc-
cessive snapshots of our subject systems. The average time interval between successive
snapshots is 535 days for SQL subject systems and 423 days for NoSQL subject systems.
The variation in time interval across and inside subject systems led to other approaches for
measuring developer activity, such as using the number of commits. While we use the num-
ber of commits to measure developer activity in our analysis, the above typical values can
be used to interpret the commit time span in days.

4 StudyMethod

In this section, we discuss the approach we followed to answer our research questions.
Figure 2 gives an overview of our approach, including the subject system identifica-
tion, data collection, and data analysis procedures. Each step is described in the coming
sub-sections.

1https://bit.ly/2YLrLnU
2https://bit.ly/3jj5JAH
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Fig. 1 The distribution of average time interval between successive snapshots taken every 500 commits for
SQL and NoSQL subject systems. The y-axis time unit is in days
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Fig. 2 Overview of the study method. We provided the subsection and sub-subsection numbers for easier
matching with the description
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4.1 Data Collection

We gathered SQL and NoSQL systems from GitHub for our study. We followed the
following steps to identify subject systems.

Phase 1: We ran a GitHub search using the keywords related to the persistence libraries
used by SQL projects such as SQLite, JDBC, Hibernate, and JPA. Those keywords are
used assuming that projects that mention those libraries in the project name, description
or readme file have a high chance of being data-intensive or having significant data-
access code.

For NoSQL projects, we first collected NoSQL database management systems pop-
ular in open-source projects such as MongoDB, Redis, Riak and Neo4J. The database
systems are collected from the supported databases of Eclipse JNoSQL,3 a popular Java
framework in the Eclipse ecosystem that streamlines the integration of Java applications
with NoSQL databases. Currently, JNoSQL supports around 30 databases. The complete
list of the databases is available in our replication package (Muse et al. 2022). We ran a
GitHub search for projects mentioning these database engines.

To avoid “toy” projects, we set the following criteria for the projects: (1) they had to
have at least one open issue, (2) more than 1,000 commits, and (3) at least one recent
commit within one year from the time of data collection (i.e., 2020).
Phase 2: We ran a code search on subject systems using the GitHub code search API
(GitHub Inc 2019).

We particularly looked for import statements for SQL projects corresponding to the
persistence technologies such as Android SQLite API, JDBC, and Hibernate. The import
statements were identified in the work of Nagy and Cleve (2018). The import state-
ments include, among others, android.database.sqlite, android.database.
DatabaseUtils, org.hibernate.Query, org. hibernate.SQLQuery,
java.sql.Statement, javax.persistence.Query, javax.persistence.
TypedQuery, org.springframework.

Similarly, for NoSQL projects, we collected a list of import statements that are
used to access NoSQL persistence systems, e.g., com.mongodb.MongoClient,
org.neo4j.driver, org.apache. hbase. To determine the imports, we started
with the list of supported NoSQL databases from JNoSQL. For each database, we explored
code snippets provided as instructions to connect that database to Java applications. We
collected the import statements mentioned in such snippets to compile the list of NoSQL
import statements. We ran a code search on the identified projects and counted the import
statements for each project.

We were finally left with 83 SQL and 19 NoSQL subject systems with the SQL and
NoSQL import statements as mentioned above. The complete list of the projects and import
statements is available in our replication package (Muse et al. 2022).

3http://www.jnosql.org/docs/introduction.html
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4.2 Data Extraction

4.2.1 Tracking Source File Genealogy

To ensure reliable evolution analysis, we need to keep track of all subject systems’ source
code genealogy. We extracted file genealogy information using the git diff com-
mand. This command compares two snapshots and reports the added, modified, deleted
and renamed files. Specifically, we used git diff --name-status sha1 sha2,
where sha1 and sha2 are commit ids of the versions to be compared. git diff provides
a numerical estimation of rename operations, which indicates the similarity percentage. In
this work, renames with similarity thresholds greater than 70% are considered true renames.
A similar threshold was used in previous studies too (Johannes et al. 2019; Muse et al. 2020).
We tagged each source file with a unique ID generated from our file genealogy tracking
database.

4.2.2 SATD Detection

Due to the large number of subject systems with a large number of commits, we took snap-
shots of each system’s every 500th commits. Another approach would have been to select
only a few projects and study every commit of each subject system. However, our research
is exploratory and, therefore, we emphasize the generalizability of our results and conclu-
sions. A similar choice was made in other studies as well (Aniche et al. 2018; Muse et al.
2020).

We used the SATD detection tool by Liu et al. (2018). This tool uses a machine learning-
based detection approach that combines the decisions of multiple Naive-Bayes classifiers
into a composite classifier using a majority vote. During the tool’s training phase, the source
codes comments are represented using vector space modeling (VSM), and features are
selected from VSM using information gain. The details of their approach are discussed in
Huang et al. (2018). The tool has a Java API as well as an Eclipse plugin to support devel-
opers. Given a source code comment, the tool returns a boolean indicating whether it is a
SATD comment or not. We chose this detection tool because it has the highest accuracy
(average F1 score of 73.7%) among different approaches, and the rest of the approaches
were not realized as a tool to the best of our knowledge.

SATD detection was carried out in two phases. In the first phase, we extracted the com-
ments of each snapshot of all the projects using srcML.4 SrcML initially converts the source
code into XML format. The comments can then be identified by running XPath queries. In
the second phase, we run the SATD detection on the identified comments. The output of the
SATD detection tool is binary: it classifies the comment as SATD-related or not.

4.2.3 Identifying Data-Access SATD

We relied on SQL and NoSQL database import statements to identify data-access classes in
both subject systems. We considered a class with at least one SQL/NoSQL database access
import statement as a data-access class. To identify such classes, we ran a code search using
the egrep command on all studied snapshots of the projects. An SATD comment that
belongs to any of the identified data access classes is considered a data-access SATD.

4https://www.srcml.org/

130   Page 12 of 42 Empir Software Eng (2022) 27: 130

https://www.srcml.org/


4.2.4 Study Dataset

We built two SATD datasets corresponding to SQL and NoSQL subject systems. A row
in each dataset contains fileId, version, commentId, projectName, commentMessage and
isDataAccess. The version attribute is needed because we study multiple versions of each
subject system. Overall, our dataset contains 35,284 unique comments from SQL subject
systems, out of which 4,580 are from data-access classes. Our dataset also contains 2,386
unique comments from NoSQL subject systems, out of which 436 are comments from data-
access classes.

4.3 Data Analysis

4.3.1 RQ1: How Prevalent Are SATDs in Data-Intensive Systems?

To answer RQ1, we computed the total number of data-access SATD comments and non-
data-access SATDs for both SQL and NoSQL subject systems. We collected the number of
SATDs for each snapshot of the subject systems’ change history. We used violin plots to
show how the prevalence of SATDs change as systems evolve and compared data-access
and regular SATDs as well as SQL and NoSQL systems.

4.3.2 RQ2: How Long Do SATDs Persist in Data-Intensive Systems?

To answer this research question, we analyzed the persistence of SATDs using survival
analysis. There are two cases when we automatically check if SATDs in File X are addressed
between two versions A and B. Case 1: if an SATD comment in File X is similar between
version A and B, we consider it as “not fixed” at version B. Case 2: if the comment found
in version A is missing in version B, we consider it “fixed” at version B. We choose the
number of commits over time in days for the survival analysis because different projects
have different activities in time. As we discussed before (see Section 3.2), the number of
commits suits better than time for our purpose to reflect the projects’ activity (Bavota and
Russo 2016).

We used the Kaplan-Meir curve to visualize the survival of subject SATDs. The Kaplan-
Meir curve shows the survival probability S(t) of a given SATD at a time t . We define the
addressing of a SATD as our event of interest. The occurrence of this event determines the
survival probability. SATDs that persisted up to the latest versions and those removed with
the source files are flagged as censored (see Section 3.2).

4.3.3 RQ3: What Is the Composition of Data-Access SATD?

To answer this research question, we first identified unique data-access SATD comments
in our dataset. We built an LDA topic model on the dataset to generate the strata needed
for stratified sampling. Finally, We conducted a manual analysis on the sample SATD
comments. We provide a detailed description in the following paragraphs.

Build LDA model: We then applied common NLP preprocessing techniques. In partic-
ular, we removed punctuation, common English stop words, and the words “todo” and
“fixme,” as they are very common in most comments. Then, we applied lemmatization
and stemming using the Python NLTK library. The final output of this preprocessing is a
tokenized comment.
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The tokenized comments were transformed using TF-IDF transformation. The input
of the LDA was the TF-IDF representation of the comments in our dataset. After the pre-
processing, we run the LDA topic model, using the Gensim Python library to cluster the
SATD comments based on similarity. We experimented with different hyper-parameters,
namely the number of topics, alpha, and beta using coherence score as model perfor-
mance evaluation. First, we experimented with topics from 5 to 75, increasing by 5 every
iteration. The coherence score gradually increased as we increased the number of top-
ics and reached a maximum value of 20 topics (0.39%) for SQL systems. For NoSQL
systems, we started with less than five topics since the corpus of NoSQL comments
was smaller, then we continued until 150 because we saw some fluctuations in coher-
ence score as the number of topics increased. We obtained the highest coherence score
(0.45%) when the number of topics was set to 4. Next, we experimented with alpha and
beta using a range from 0.01 to 0.1 with 0.3 intervals. We did not see a significant change
in the coherence score. Hence, we used the default values on Gensim (alpha and beta:
‘symmetric’ meaning alpha and beta are set as the inverse of the number of topics). Both
LDA models achieved a lower coherence score below 0.5. However, we did not consider
the interpretation of the topics. Instead, we used the LDA to cluster similar comments
before sampling. After the LDA model training, we assigned each document to a specific
topic. The overall output of the LDA model was documents clustered under each topic
group. We used stratified random sampling from the clusters to generate our dataset for
manual analysis.
Stratified sampling: We prepared a dataset for manual analysis using stratified sampling
from each LDA topic group. The dataset contains 183 data-access SATD comments for
SQL systems and 178 data-access SATD comments for NoSQL systems. We used strat-
ified random sampling to pick representative samples from each LDA topic group or
cluster.
Manual analysis: The manual analysis was conducted using deductive coding to assign
themes to the comments. We started with the themes identified by Bavota and Russo
(2016) and extended them with themes specific to data access. To have a common inter-
pretation of the labels among authors, we conducted iterative sessions to label sample
SATDs and resolve conflicts. After that, the first author labeled all the 361 SATDs, which
were then divided into three sets and reviewed by three more authors to ensure that at
least one additional person checks each label. Finally, all conflicts were resolved through
face-to-face discussions.

During the labeling process, we found some comments that were identified as SATD
comments by the detector tool but were not related to technical debt. Recall that Liu et al.
reported an average F1 score of 73.7% for the tool (Liu et al. 2018). A common reason was
that they contained one of the keywords (e.g., “fix”), but the developer meant it for a differ-
ent purpose (e.g., “// import release fix into the release branch”).5 We found 105 instances
(29%) of these comments and marked them as false positives.

We found 12 comments in which the information from the comments and source code
did not give enough context to assign the comments to the appropriate category. We marked
such instances as unclear.

We also found 4 comments that belonged to more than one category as they typically
ordered tasks in a list under a “todo” comment. These tasks often belonged to various SATD
categories; hence, we decided to mark them as multi-label comments.

5https://bit.ly/3siSWzX
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For multi-label comments, we cannot identify one specific category. Hence we exclude
them for RQ3 but keep them for the evolution-related research question RQ4. After we
excluded false positives, unclear comments and multi-label comments, the final dataset
contained a total number of 240 data-access SATD comments.

4.3.4 RQ4: What Are the Circumstances Behind the Introduction and Removal
of Data-Access SATD?

In our analysis, we use the introduction or removal of SATD comments as a proxy to the
introduction or removal of SATDs, respectively. We are particularly interested in investi-
gating when and why the data-access SATDs are introduced and removed. Hence, we first
identified the SATD introduction and removal commits and then computed the commit time.
Then we conducted manual labeling of the commit messages. We outline the details of our
analysis in the following paragraph.

Identify SATD introducing and removing commits: Using this labeled data from RQ3,
we extracted the commits that introduced the comments and commits that removed them
from the change history of the subject systems. We used the PyDriller repository mining
framework (Spadini et al. 2018) for our analysis. PyDriller is used to analyze both local
and remote repositories and extract information related to their change history. We looked
for the SATD introducing commit given the path of a file by looking at the change history
starting from the beginning to the end and looking for the first occurrence of the SATD
under study. Similarly, we looked for the SATD removal commit, the commit in which a
SATD is removed from the system, by looking for the first commit in which the SATD
is no longer present given that the SATD occurred in the previous versions. To check if
the SATD is removed together with the hosting class, we also keep track of the commit
where the hosting class is removed (if it is removed).

When Are Data-Access SATDs Introduced or Removed? For our purpose, the number of
commits is better than the absolute time at reflecting software evolution (see Section 3.2).
Hence, we measure introduction time and removal time in terms of number of commits.

We define introduction time (t ′i ) as the number of commits that occurred before and
including the first occurrence of the SATD under study. Similarly, we define removal time
(t ′r ) as the number of commits that occurred before and including the commit that removed
the SATD. t ′i and t ′r are measured in the number of commits.

Since the total number of commits varies across the projects, we normalize the introduc-
tion time and removal time with the total number of commits for each subject system (see
Eqs. 2 and 3). We use a similar normalization for the removal time. For example, a SATD
introduction time of 20% for a project with 1,000 commits means the SATD was introduced
in the 200th commit from the beginning. The smaller the value, the closer the introduction
of SATD to the early stages of the project evolution and vice versa.

Introduction time = t ′i · 100

Total number of commits
(2)

Removal time = t ′r · 100

Total number of commits
(3)

We use Introduction time and Removal time to investigate when SATDs are introduced
or removed.
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Why Are Data-Access SATDs Introduced or Removed? To investigate why data-access
SATDs are introduced, we collected the commit messages of SATD introduction and
removal commits, then manually categorized their goal or purpose. We use similar cate-
gories to Tufano et al. (2015): bug fixing, enhancement, new feature, and refactoring. In our
case, we added merging and multiple goals to account for merging commits and commits
whose messages have more than one goal. In this way, the commit goal can be mapped to
more than one of the categories from Tufano et al.

Bug fixing commits mention that the commit was made to fix an existing bug or issue.
Enhancement commits aim at enhancing existing or already implemented features. Commits
with the goal new feature describe their goal as introducing or supporting a new functional-
ity. Commits that mention refactoring operations are categorized under refactoring. Finally,
commits made for merging pull requests and branches are categorized under merging. We
labeled SATD removing commits similarly.

5 Study Result

In this section, we present the results of our study. The raw results and corresponding
analysis are reported for each research question.

5.1 RQ1: How Prevalent Are SATDs in Data-Intensive Systems?

In this subsection, we present the prevalence of SATD in SQL and NoSQL systems. We also
show how data-access and regular SATDs evolve in multiple snapshots of the systems.

Figure 3 shows the distribution of the number of commits for SQL and NoSQL systems.
We can see a significant difference in the number of commits between the two types of
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Fig. 3 Distribution of the number of commits in SQL and NoSQL subject systems. The y-axis is on a log
scale
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Table 1 Project groups

Group Min. Commits Max. Commits NoSQL projects SQL projects

Group1 1001 1,500 12 21

Group2 1,501 6,750 7 37

Group3 6,751 53,501 0 26

systems. SQL systems have a median of 4,501 and a mean of 7,066.5 commits. The maxi-
mum number of commits is 53,501 for SQL subject systems. On the other hand, for NoSQL
systems, the median number of commits is 1,501, and the mean is 1,869.42. The maximum
number of commits is 5,501 for NoSQL systems.

The quantile analysis of the distribution of commits shows that 25% of the projects have
less than 1,501 commits, 50% of the projects less than 3,001, and 75% of the projects
less than 6,751 commits. We grouped the projects based on the quantiles into three for the
purpose of visualization. Table 1 presents a summary of the systems in each group. For
example, all projects with a maximum of 1,500 commits are included in Group1, including
12 NoSQL and 21 SQL subject systems.

Tables 2, 3 and 4 show the summary of the distribution of SATDs in our subject systems
by the project groups. The distribution was computed over the snapshots of the subject
systems. Figure 4a shows the distribution of regular SATDs in Group1. We observe that the
number of regular SATDs increases for SQL systems as the number of commits increases.
For NoSQL systems, an increase in the SATDs is observed, moving from 1 to 501 and 1,001
to 1,501. The median of regular SATDs in NoSQL systems (23.5, 38.5, 71) is higher than
in SQL systems (12, 28.5, 40) for snapshots at commits 1 and 501 and 1,501, respectively.
The highest number of regular SATDs (477) was observed at the 501st commit of a NoSQL

Table 2 Summary of the distribution of data-access and regular SATDs over the number of commits in Group
1 subject systems

Data-access SATD Regular SATD

Commit System Min 25% Mean Median 75% Max Min 25% Mean Median 75% Max

1 NoSQL 0 0 1.92 0 0.25 19 1 8.25 47.83 23.5 47.25 304

SQL 0 0 5.05 0 3.5 31 1 8 35.26 12 31.5 281

501 NoSQL 0 0 5.75 1 8.5 24 0 7.5 79.67 38.5 87 477

SQL 0 1 17.20 1.5 8.25 163 1 13.75 57.75 28.5 64.25 412

1001 NoSQL 0 2 13.50 4 14.5 64 2 6 74.42 35 95.5 370

SQL 0 1 27.76 4 17 226 1 13 63.67 35 74 293

1501 NoSQL 1 2 34.71 22 43.5 129 4 17 96.57 71 88 391

SQL 1 2.5 63.17 5.5 75.25 380 12 20.5 73.67 40 84.5 290
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Table 3 Summary of the distribution of data-access and regular SATDs over the number of commits in Group
2 subject systems

Data-access SATD Regular SATD

Commit System Min 25% Mean Median 75% Max Min 25% Mean Median 75% Max

1 NoSQL 0 0 0.57 0 0 4 4 5 21.14 10 29 66

SQL 0 0 6.89 0 0.25 203 1 7 64.61 24 86.25 580

1001 NoSQL 0 0 7.00 4 12 21 2 7.5 30.86 15 46.5 91

SQL 0 0 8.14 0 2 121 3 18 111.16 40 164 586

2001 NoSQL 0 3 13.14 7 11.5 56 0 15.5 35.43 26 50 91

SQL 0 0 19.03 2 6 316 5 29 147.76 51 239 1015

3001 NoSQL 1 5.5 10.00 10 14.5 19 17 25.5 34.00 34 42.5 51

SQL 0 1 31.30 5 9 506 4 37 160.37 87 224.5 857

4001 NoSQL 2 2 2.00 2 2 2 20 20 20.00 20 20 20

SQL 0 1 40.17 2.5 10.5 555 24 40.75 169.83 85 220.25 923

5001 NoSQL 18 18 18.00 18 18 18 11 11 11.00 11 11 11

SQL 0 1.5 54.13 4 12 588 3 39.5 179.60 95 266 941

6001 SQL 1 1.25 26.67 2.5 3 150 11 27.5 48.67 33.5 76.25 98

system, Bboss.6 Bboss is a framework that provides API support for developing enterprise
and mobile applications.

Figure 4b shows the distribution of data-access SATDs in Group1. The number of data-
access SATDs in Group1 increases with the number of commits. The median data-access
SATD for SQL systems is 0, 1.5, 4, and 5.5 for commits 1, 501, 1,001 and 1,501. For NoSQL
systems, the median is 0, 1, 4, and 22 for commits 1, 501, 1,001 and 1,501, respectively.
We can see that the median of data-access SATDs is roughly similar between SQL and
NoSQL subject systems except for commit 1,501, where we observe a large difference in
magnitude between SQL and NoSQL subject systems. The highest number of data-access
SATDs (380) was observed at commit 1,501 by the SQL subject system Blaze-persistence.7

Blaze-persistence is a criteria API provider project for applications that rely on JPA for data
persistence.

Figure 5a shows the distribution of regular SATDs in Group2. We observe an increasing
trend in the number of regular SATDs for both SQL and NoSQL systems. SQL systems have
a higher median number of regular SATD in all snapshots. The median number of regular
SATD of SQL systems is 24, 40, 51 and 87 for commits 1, 1,001, 2,001 and 3,001, respec-
tively. For NoSQL systems, the median is 10, 15, 26 and 34, respectively. The maximum
number of regular SATD (1,015) was registered in an SQL system, Jena-sparql-api,8 at
commit 2,001. Jena-sparql-api provides a SPARQL processing stack for building Semantic
Web applications.

We observe a similar trend of increase in the number of data-access SATDs on Group2,
as shown in Fig. 5b. The median number of data-access SATD in NoSQL systems is 0,

6https://github.com/bbossgroups/bboss
7https://github.com/Blazebit/blaze-persistence
8https://github.com/SmartDataAnalytics/jena-sparql-api
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Table 4 Summary of the distribution of data-access and regular SATDs over the number of commits in Group
3 SQL subject systems

Data-access SATD Regular SATD

Commit Min 25% Mean Median 75% Max Min 25% Mean Median 75% Max

1 0 0 3.46 0 0 60 4 27.5 203.96 67.5 153.75 1485

10001 0 1 71.00 18 50.5 519 99 203 552.47 307 648.5 2263

20001 0 2.5 10.00 5 15 25 177 183 189.33 189 195.5 202

30001 0 0.75 1.50 1.5 2.25 3 180 192.75 205.50 205.5 218.25 231

40001 0 0.75 1.50 1.5 2.25 3 202 223.75 245.50 245.5 267.25 289

50001 4 4 4.00 4 4 4 308 308 308.00 308 308 308

4, and 7 for commits 1, 1,001, and 2,001. SQL systems have a median number of data-
access SATD 0, 0, and 2, respectively. The largest data-access SATD (588) was registered at
commit 5,001 by SQL system Threadfix,9 a software vulnerability management application.

Figure 6 shows the distribution of regular and data-access SATD in Group3. We only
have SQL systems in Group3. After commit 10,001, we have two projects where we
observe SATD, and only one project, WordPress-Android,10 remains after commit 20,001.
The violin plot is not needed for such cases. Figure 6a shows that the number of regular
SATDs rises between commit 1 (median = 67.5) and commit 10,001 (307), then decreases at
20,001 (189). The most significant regular SATDs (2,263) were observed at version 10,001
in ControlSystemStudio,11 a repository of applications to operate large-scale industrial con-
trol systems. In Fig. 6b, we can see an increasing median number of data-access SATDs (0,
18) at commits 1 and 10,001.

Summary: Data-access SATD has lower prevalence than regular SATD in both SQL
and NoSQL subject systems. We observed that the number of data-access SATDs tends
to increase as systems evolve, regardless of the database type. In most cases, NoSQL
systems have higher median data-access SATD compared to SQL systems.

5.2 RQ2: How Long Do SATDs Persist in Data-Intensive Systems?

We conducted a survival analysis to see the persistence of data-access SATDs. In particular,
we plot the Kaplan-Meier curve for both SQL and NoSQL systems.

Figure 7 shows the survival probability of data-access SATDs in SQL projects. The
median survival is 1,000 commits. Given the average value of 500 commit time span of
535 days for SQL subject systems, described in Section 3.3, the average median survival
time is 2.93 years. The steeper slope before 10,000 commits has two potential explanations.
One possibility is that several data-access SATDs are fixed/censored at the early stages of
the projects. Alternatively, several subject systems have a small number of commits. The
distribution of the total number of commits (median = 3,729, mean = 7,005, skewness =
3.07) of SQL subject systems is right-skewed. Hence, the steep slope is not likely due to

9https://github.com/denimgroup/threadfix
10https://github.com/wordpress-mobile/WordPress-Android
11https://github.com/ControlSystemStudio/cs-studio
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Fig. 7 Kaplan–Meier survival curve for data-access SATDs in SQL subject systems. The x-axis is the number
of commits. The censoring time and confidence intervals are marked on the plot. The Logrank test’s p-value
is indicated

small project activities. The number of “data-access SATD fixed” events is 3,914, with the
remaining 608 being censored. This shows that many SATD comments are introduced and
fixed at the early stages of the projects.

Figure 8 shows the survival probability of data-access SATDs in NoSQL subject systems.
The median survival time of NoSQL data-access SATDs is 1,000 commits (2.3 years using
an average 500 commit time span for NoSQL subject systems as described in Section 3.3).
The number of events is 391 out of 441, with the remaining data being censored. The number
of commits of NoSQL projects has a right-skewed distribution (median = 1,927, mean =
2,114, skewness = 2.16). The smaller median survival value aligns with the smaller median
number of commits of NoSQL subject systems.

Many data-access SATD comments are introduced in the first versions of the systems,
and several of them persisted until the latest versions. For SQL systems, 223 (4.93%) com-
ments were introduced in the first version, and 152 (68.16%) persisted until the latest
version. For NoSQL systems, 31 (7.02%) comments were introduced in the first version,
out of which 12 (38.7%) lasted in all versions.

Figure 9 compares the survival curves of data-access and regular SATD comments in
SQL systems. This comparison provides an insight into the prioritization of addressing
technical debt. Data-access comments have a lower survival curve compared to their reg-
ular counterparts. We run the Log-Rank test to compare the survival curves statistically.
The p-value of the log-rank test is < 2e − 16. Hence, we can reject the null hypothesis
that there is no difference between the survival curves of data-access and regular SATD
comments. Data-access SATDs tend to get more priority in addressing compared to regular
SATDs.
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Fig. 8 Kaplan–Meier survival curve for data-access SATDs in NoSQL subject systems. The x-axis represents
the number of commits. The censoring time and confidence interval are marked on the plot. The Logrank
test’s p-value is indicated
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Fig. 9 Kaplan–Meier survival curve for SQL subject systems by grouping them into data-access and regular
SATD comments. The x-axis represents the number of commits. The censoring time is marked on the plot
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Fig. 10 Kaplan–Meier survival curve for NoSQL subject systems by grouping them into data-access and
regular SATD comments. The x-axis represents the number of commits. The censoring time is marked on the
plot

Similarly, Fig. 10 shows for NoSQL subject systems that data-access SATDs tend to get
fixed quicker than regular SATDs. The Log-Rank test’s p-value was < 2e − 16. Hence, we
can reject the null hypothesis that there is no difference in survival curves.

Summary:
We found statistically significant differences between the survival curves of data-access
and regular SATDs in both SQL and NoSQL systems, which indicates that data-access
SATDs are fixed sooner than regular SATDs. However, we also found a significant num-
ber of data-access SATDs introduced in the first versions of the systems (5% for SQL
and 7% for NoSQL systems). Many persisted until the latest versions (68% for SQL and
39% for NoSQL).

5.3 RQ3: What Is the Composition of Data-Access SATD?

In this section, we describe the result of our manual classification of SATD comments in the
data-access classes. Figure 11 shows the taxonomy we extended from the work of Bavota
and Russo (2016). In particular, we added a new high-level category called data-access debt
and provided more specialized categories for code debt, test debt and documentation debt.
While our primary focus is on the newly added categories, especially on the data-access
debt categories, we also provide a brief description of the original categories (Bavota and
Russo 2016) for completeness.
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Fig. 11 SATD classification hierarchy extended from Bavota and Russo (2016). White boxes are newly
added categories to existing categories (gray boxes). Boxes marked with a database icon ( ) are categories
closely related to database accesses

5.3.1 Distribution of Manually Categorized Data-Access SATDs

We have manually classified 361 data-access SATD comments that represent our entire
dataset with 95% confidence. We did not have enough information from the comments
and the source code in some cases. We labeled such comments as unclear. Excluding 105
false positives, 4 multi-label and 12 unclear comments, we ended up with 240 data-access
SATD comments. Table 5 shows the distribution of the final labels in the sample dataset.
The comments under each category were presented separately for SQL and NoSQL subject
systems. We mark SATDs related to database accesses with a database icon ( ) and regular
SATDs with a file icon ( ). The categories are sorted according to the total number of
comments.

Table 5 shows that a large portion of the comments belongs to sub-categories of code
debt, requirement debt and defect debt. This is a similar observation with Bavota and Russo
(2016). We can also see that data-access debts are also found in smaller quantities compared
to the traditional SATDs. The most considerable data access debt is data access test debt,
followed by query construction.

When we contrast SATDs between SQL and NoSQL systems, we can see that most
categories have a higher occurrence in SQL systems than in NoSQL systems.

Next, we describe the composition of SATDs categorized in Fig. 11 in the following
paragraphs. We start with the SATDs identified by Bavota and Russo (2016), then we move
to the newly added categories.

Code Debt Code debt includes “problems found in the source code which can affect neg-
atively the legibility of the code making it more difficult to be maintained” (Alves et al.
2014). It is divided into low internal quality and workaround categories. SATD comments
that mention code quality issues related to program comprehension are categorized as low
internal quality.
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Table 5 Distribution of categories in the manually classified dataset

Category SQL NoSQL Total Percent

Low internal quality 21 19 40 16.39

Improvement to features needed 16 14 30 12.30

Known defects to fix 9 16 25 10.25

Workaround 12 11 23 9.43

New features to be implemented 13 8 21 8.61

Low external quality 15 3 18 7.38

Code smells 10 6 16 6.56

Test debt 3 12 15 6.15

Data-access test debt 5 3 8 3.28

Query construction 6 1 7 2.87

Document commented code 1 4 5 2.05

On hold 1 4 5 2.05

Query execution performance 3 2 5 2.05

Performance 1 2 3 1.23

Addressed technical debt 2 1 3 1.23

Documentation needed 3 0 3 1.23

Known issue in data access library 1 1 2 0.82

Data synchronization 2 0 2 0.82

Transactions 1 1 2 0.82

Known defect of external library 1 1 2 0.82

Partially fixed defects 0 1 1 0.41

Due to database schema 1 0 1 0.41

Localization 1 0 1 0.41

Indexes 0 1 1 0.41

Design patterns 1 0 1 0.41

For example, a comment from the low internal quality category in Blaze-Persistence12

says:

Comments justified by the developers as a workaround to address specific require-
ments are categorized under workaround. For example, quick fixes that mention a hack or
workaround belong to this category. We extended workaround SATDs with a workaround
on hold category. An “on-hold” SATD comment describes a problem that can be fixed once
an issue referenced in the comment is addressed (Maipradit et al. 2020).

We found a specific case of an “on-hold” SATD when the issue holding back the devel-
opers was due to synchronization problems with the database schema. We dedicated the

12Blaze-Persistence, https://bit.ly/3qGaXbb
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workaround on hold due to database schema category for similar SATDs. As an example,
the comment in OpenL Tablets13 says:

Defect Debt Comments that mention bugs or defects that should be fixed but are postponed
to another time are categorized under defect debt. The main causes of this debt can be defects
or low external quality issues.

Defects are further divided into known defects to fix and partially fixed defects. An
example of a partially fixed defect can be seen in Snowstorm:14

We found two specific cases when the issue was due to a known defect of external library;
thus, we introduced a sub-category for these cases. Low external quality SATD comments
describe problems with a high probability of becoming a bug or defect (Bavota and Russo
2016), as they may affect user experience.

Design Debt SATDs related to code smells or design patterns are grouped in this category.
Comments that discuss the violation of object-oriented design or mention refactoring as

a solution are categorized under code smells. Comments suggesting the usage of a design
pattern are classified under design patterns.

Documentation Debt This type of SATD can be identified in comments by looking for
“missing, inadequate, or incomplete documentation of any type” (Alves et al. 2014). Com-
ments referring to issues already addressed are also categorized under documentation debt.
This might happen when developers forget to update the documentation or comments after
some source code changes. Documentation debt is divided into inconsistent comments and
licensing categories. Inconsistent comments are further divided into addressed technical
debt and won’t fix categories (Bavota and Russo 2016).

We added two new sub-categories, document commented code and documentation
needed, as we found multiple instances of such cases. Document commented code com-
ments explain the rationale of code that was commented out but still needed due to a pending
“todo” or “fixme.” Comments labeled as documentation needed mention the necessity of
providing documentation to a piece of code.

Requirement Debt Comments that describe the need for new features to be implemented
are categorized under requirement debt. Bavota and Russo (2016) further classified these to
functional and non-functional requirement debt. Functional requirement debt includes the
new feature to be implemented and improvement to features needed categories.

Additionally, under non-functional requirement SATDs, we also observed a few issues
related to performance requirements.

Test Debt Test debt affects the quality of testing activities (Alves et al. 2014). These com-
ments are typically found in testing classes and indicate low quality of testing code, e.g., in
terms of readability or the appropriateness of test cases and testing conditions.

13OpenL Tablets, https://bit.ly/3sioFkX
14Snowstorm, https://bit.ly/3dEUMXN
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We identified several test debt comments in the test code related to data accesses. We
grouped these under the data access test debt category. Examples of these are related to the
testing of database access operations such as transactions and query syntax. For example, a
comment in Sqlg15 says:

The comment follows a query in a test method of the TestRangeLimit class. Sqlg provides
graph computing capabilities on SQL databases, and the method tests the range specification
of a query. As the comment suggests, the query in the test could be optimized to return
fewer results.

5.3.2 Database Access Related SATDs

We added database access related as a new category that groups together SATDs dealing
with the implementation of data-access logic. This category is further divided into sub-
categories. We describe each sub-category and provide examples from the subject systems.

Query Execution Performance We found SATD comments dealing with issues about the
execution performance of database queries. For example, a comment in GnuCash Android16

says:

The comment belongs to a method that deletes all accounts and transactions from the
database. As the developers note, the cascade operation takes too much time and affects the
method’s performance.

Transactions We identified comments about code that deal with transactions or rollback
operations. An example of this type of debt was found in Sqlg:17

The comment appears in a method that removes a schema from a database. The operation
is performed in a transaction; however, the implementation does not undo the operation in
case of a rollback.

Workaround on Known Issue in Data-Access Library We found comments that described
workarounds of problems existing in the data-access libraries. In such comments, the
developers explicitly reference the issue pointing to the library’s issue tracking system.

The following comment in Foxtrot18 explains a workaround by directing the developer
to an issue of Hazelcast, a key-value store implementation.

15Sqlg, https://bit.ly/3wxbAqW
16GnuCash Android, https://bit.ly/37H1PeV
17Sqlg, https://bit.ly/3pRCOnK
18Foxtrot, https://bit.ly/3urWcey
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Data Synchronization These SATD comments describe a synchronization issue between
the application and the database. An example comment can be found in UPortal:19

The comment appears in a method called getUserIdForUsername(...) that is sup-
posed to return a user’s ID. However, as an additional comment says, the method
“returns 0 consistent with prior import behavior, not the id in the database.”

Indexes Comments about issues related to indexes in the database are grouped under this
category. For example, the following comment in Sqlg20 describes the need for support for
indexes.

Localization We found comments about localization issues in the database, i.e., problems
with character sets or collation. The following comment in Robolectric21 highlights the need
for creating a collator as part of registering a localized collator.

Query Construction We found comments that mentioned issues about the construction of
database queries. The following comment in Carbon-apimgt22 notes a pending task to filter
results by the status of the APIs.

The query marked with the todo comment returns unnecessary records when only a
specific API context is needed.

Summary:We identified in data-access classes a large variety of SATD categories from
the taxonomy of Bavota et al. (2016). Low internal quality code debt has the highest
prevalence among data-access SATDs in both SQL and NoSQL subject systems. Most
of the data-access SATDs have a higher prevalence in SQL subject systems compared to
NoSQL subject systems. Besides the categories in the taxonomy of Bavota et al. (2016),
we found several SATDs pertaining to data access operations such as query construction,
data synchronization, index management and transactions.

19UPortal, https://bit.ly/3qY50X2
20Sqlg, https://bit.ly/3aIqEcc
21Robolectric, https://bit.ly/3umvXpD
22Carbon-apimgt, https://bit.ly/2NvDZvQ
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5.4 RQ4: What Are the Circumstances Behind the Introduction and Removal
of Data-Access SATD?

In this subsection, we present our result and analysis concerning the circumstances
behind the introduction and removal of data-access SATDs. We first discuss when data-
access SATDs are introduced and removed. Then we discuss the reasons motivating their
introduction and removal.

5.4.1 When Are Data-Access SATDs Introduced?

To answer this question, we analyze the change history of the data-access SATDs labeled
in RQ3 and identify the commits introducing the comments. The commit at which the com-
ment first appears in change history is referred to as the data-access SATD introducing
commit.

We measure the introduction time as the number of commits it takes for SATDs to man-
ifest in the subject systems. As for the survival analysis, we use the number of commits to
measure time as it is more reflective of software development activities. Similarly, we define
removal time as the number of commits between the SATD comment’s introduction and
removal. Since each system’s number of commits varies, we normalized the introduction
time and removal time using Eq. 2 (see Section 5.4).

Figure 12 shows the overall distribution of data-access SATD introduction time. The dis-
tribution is right-skewed with the median introduction time (72.53%) and mean (64.14%).
This indicates that most of the data-access SATD introducing commits did not happen at the
beginning of the change history. This also confirms our observation of the survival analy-
sis in RQ2. Data-access SATDs seem to be introduced at later stages in the change history.
We also identified SATDs committed in the most recent snapshots of the subject systems
(introduction time = 100%).

Figure 13 shows the distribution of introduction time for SQL and NoSQL systems. For
both SQL and NoSQL data-access SATDs, introduction time is right-skewed. The notches

Fig. 12 Distribution of data-access SATD introduction time
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Fig. 13 Distribution of data-access SATD introduction time in SQL and NoSQL subject systems

of the SQL and NoSQL overlap, which means that the difference in the median is not signifi-
cant. SQL data-access SATDs have a slightly higher median (80.31%) than NoSQL systems
(71.67%).

Table 6 shows the number of comments, mean, and median introduction time for all data-
access SATD categories. The categories are ordered by the median introduction time from
highest to lowest. Low external quality and design patterns data-access SATDs are intro-
duced in the latest stages of change history among all the categories. On the other extreme,
most of the database access related SATDs tend to be introduced at the early stages of
change history. Compared to regular SATDs, most of the database access related SATDs are
introduced earlier. Transactions, indexes, and data-access test debt tend to be introduced at
later stages. Addressed technical debt comments tend to be introduced at the very beginning
of the subject systems’ development.

5.4.2 When Are Data-Access SATDs Removed?

We found 12 data-access SATDs that were removed at different stages of the change history.
Figure 14 shows the distribution of data-access SATD removal time for SQL and NoSQL
subject systems. Both SQL and NoSQL SATDs were removed at the latter stages close to
the most recent versions. The median removal time is 99.58% for SQL and 98.58% for
NoSQL data-access SATDs.

Table 7 shows the distribution of data-access SATD removal time grouped by categories.
We did not have any removed comments from the database access related SATD category.
Improvement of features needed comments tend to be introduced at later stages of change
history with the highest median removal time of 99.58%. On the other hand, document
commented code comments were introduced in the middle stages of the change history
(median = 47.32%).

5.4.3 Why Are Data-Access SATDs Introduced and Removed?

We now focus on the potential reasons for data-access SATDs’ introduction and removal.
We manually labeled the data-access SATDs’ introducing/removing commit messages to
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Table 6 Data-access SATD introduction time for SATD categories

Category Comments Mean Median

Low external quality 18 81.34 99.83

Design patterns 1 99.83 99.83

Performance 3 87.86 82.96

Workaround 23 62.76 82.12

Data-access test debt 8 74.76 81.31

Known defects to fix 25 75.24 80.43

New features to be implemented 21 64.25 80.43

Code smells 16 72.08 77.28

Transactions 2 72.62 72.62

Indexes 1 72.53 72.53

Document commented code 5 49.15 72.31

Test debt 15 71.10 71.67

Improvement to features needed 30 59.89 70.66

Known defect of external library 2 68.15 68.15

Multi-label 4 63.09 64.26

Localization 1 61.19 61.19

Low internal quality 40 56.84 58.75

Documentation needed 3 66.39 50.54

On hold 5 46.73 48.09

Due to database schema 1 47.30 47.30

Data synchronization 2 45.64 45.64

Query execution performance 5 48.93 44.68

Known issue in data access library 2 43.57 43.57

Query construction 7 48.08 37.29

Partially fixed defects 1 21.30 21.30

Addressed technical debt 3 28.90 2.51
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Fig. 14 Distribution of data-access SATD removal time in SQL and NoSQL subject systems
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Table 7 Distribution of data-access SATD removal time among the data-access categories

Category Comments Mean Median Minimum Maximum

Improvement to features needed 2 99.47 99.47 99.36 99.58

Code smells 1 98.54 98.54 98.54 98.54

Known defects to fix 2 98.19 98.19 97.80 98.58

Test debt 1 98.15 98.15 98.15 98.15

Low internal quality 5 77.34 97.06 35.29 99.22

Document commented code 1 47.32 47.32 47.32 47.32

classify their purposes. We classified the goal of the commit messages as bug fixing,
enhancement, new feature, refactoring, and merging. Some commit messages described
multiple goals, and some comments were labeled unclear as they did not contain enough
information in the commit message for categorization.

Table 8 summarizes the various goals of data-access SATDs’ introductions. Consider-
ing NoSQL data-access SATDs, refactoring is the most associated reason with 38 instances
(33.04%). It is followed by new feature with 30 cases (26.09%) and 22 enhancements
(19.13%). For SQL, bug fixing was the most often mentioned reason in comments with
45 instances (34.88%). It is followed by refactoring with 38 cases (29.46%) and 30 new
features (23.26%). Overall, bug fixing and refactoring are the main reasons behind the
introduction of data-access SATDs.

Table 9 shows the introduction goals grouped by data-access debt categories. In gen-
eral, refactoring, new feature and bug fixing appear to be the most common reasons.
However, only considering the database access related SATDs, they are mainly introduced
during refactoring. Another interesting observation is that code smells are introduced dur-
ing refactoring (31.25%), bug fixing (31.25%) and new feature (31.25%). This means that
refactoring, which is supposed to fix code smells, could also introduce other code smells
and SATDs.

We present the removal goals of SATD categories in Table 10. Low internal qual-
ity is associated with enhancement (60%) and new feature (40%). The remaining SATD
categories have 6 instances combined.

Table 11 summarizes the goals of the removals of data-access SATDs. Several com-
ments were removed for feature enhancements and new features. Bug fixing commits also
contribute to the reduction of data-access SATD. Both SQL and NoSQL systems follow a
similar distribution of commit goals.

Table 8 Data-access introducing commit goals in NoSQL and SQL subject systems

Systems Bug fixing Enhancement Multiple goals New feature Refactoring Unclear Merging

NoSQL 17 22 3 30 38 5 0

SQL 45 6 3 32 38 1 4
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Table 10 Data-access SATD
removing commit goals grouped
by data-access SATD categories

Category Commit goal Comments

Low internal quality Enhancement 3

New Feature 2

Known defects to fix Enhancement 1

New Feature 1

Code smells Unclear 1

Document commented code Bug fixing 1

Improvement to features needed Bug fixing 1

New Feature 1

Test debt Bug fixing 1

Summary: Most SATD comments in data-access classes are introduced at the later
stages of change history. However, SATD comments where database access is explic-
itly mentioned (i.e., database access related categories in the taxonomy) are introduced
earlier than SATD comments unrelated to database accesses. We observed similar dis-
tribution between SQL and NoSQL data-access SATDs in introduction time. Bug fixing
and refactoring are the main reasons behind the introduction of data-access SATDs, fol-
lowed by feature enhancement and supporting new features. Data-access debt removal
commits are often associated with feature enhancements, new features, and bug fixing.
None of the observed removal events was associated with refactoring. We did not find
removed database access related SATD comments.

6 Discussion

The goal of this study is to explore SATDs in data-intensive systems. In particular, we inves-
tigated the prevalence, persistence, composition of SATDs, and introduction and removal
circumstances. The results show that SATDs are prevalent in data-intensive systems, and
their prevalence increases as systems evolve. This pattern is similar to traditional software
systems. Bavota and Russo (2016) showed that SATDs are prevalent and increase as new
ones are introduced during software evolution. This indicates that in both traditional and
data-intensive systems, developers tend to introduce new SATDs instead of addressing exist-
ing ones. In addition, our results show that the prevalence of SATDs is different between
SQL and NoSQL data-intensive systems. Given that NoSQL persistence systems are get-
ting higher preference due to the advantages they offer in terms of schema flexibility and

Table 11 Data-access SATD removing commit goals for SQL and NoSQL subject systems

Commit goal Enhancement New feature Bug fixing Unclear

SQL 1 2 1 1

NoSQL 3 2 2 0

Total 4 4 3 1
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scalability and our result showing more prevalent SATDs in some NoSQL-based systems,
our findings motivate further investigation of the impact of the persistence technologies on
SATD.

Our results regarding the persistence of SATDs in data-intensive systems are similar to
traditional systems. Bavota and Russo (2016) found that the median survival time of SATDs
to be 1000 commits for traditional software systems. We also find similar median survival
times for both SQL and NoSQL subject systems. On the other hand, Maldonado et al. (2017)
reported that SATDs persist up to 173 days on average using five open-source traditional
software systems. This implies that SATDs in data-intensive systems have even higher per-
sistence (more than two years on average in our case). We also found that a significant
number of SATDs persisted in all versions without getting addressed. Since the longer the
SATD stays in the system, the higher the cost of repaying, practitioners should incorporate
fixing technical debts as part of their workflow. This result highlights the importance of
research work in SATDs in terms of providing tool support, raising awareness of the costs
of technical debts, and providing processes and frameworks for monitoring technical debt.

The state-of-the-art SATD detection systems do not differentiate between different types
of SATDs. One reason for this could be the lack of information on the specific types
of SATDs. In this direction, Bavota and Russo (2016) provided a taxonomy of SATDs,
including design debt, code debt, defect debt, requirement debt, and test debt. While they
addressed most of the software development workflow, they did not cover data-access debts
since the subject systems were not data-intensive. We extended their taxonomy, incorporat-
ing 11 new database access-specific SATDs generalizing their taxonomy to data-intensive
systems. This taxonomy can be utilized for proposing SATD detection approaches that pro-
vide more information than their mere existence. This, in turn, helps practitioners in their
effort to manage technical debts and future researchers to investigate the impacts of specific
types of SATDs on software quality. We find that low internal quality code debts were the
most prevalent SATDs among our subject systems. Code debts are also found to be dominant
SATDs in traditional software systems (Bavota and Russo 2016). Hence, future research
efforts should focus more on code debts as they are more prevalent SATDs in software
systems. Data-access SATDs are also important in the context of data-intensive systems.

Our fine-grained analysis on data-access SATDs showed that most data-access SATD
comments are introduced as the subject systems evolve rather than at the initial stages indi-
cating that they are introduced as a result of software evolution. A software system can
evolve for various reasons such as bug fixing, adding new features, improving features, and
refactoring activities. Developers should take care to assess the cost of the SATD they intro-
duce with such activities. Our results also show that the introduction of data-access SATDs
is mainly associated with refactoring. However, this motivates further investigation on how
and why refactoring operations are associated with SATDs. This could be done by extracting
refactoring information using refactoring detection tools and co-relating with the SATD’s
introduced. This, in turn, leads to the development of refactoring tools that also suggest
developers when to admit technical debts.

7 Threats to Validity

Threats to Construct Validity Threats to construct validity concern the relation between
theory and observation. We relied on a list of keywords and import statements to select
subject systems and distinguish data-access classes (DAC) from non-data-access classes
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(NDC) within those systems. We may have missed some keywords and import statements,
which would lead us to overestimate the set of NDCs. Conversely, it is possible that some
classes are considered as DACs (i.e., that import database-related packages belong to our
list), but do not (directly) query the database. Hence, we may also slightly overestimate the
actual set of DACs in the software systems considered. We checked 100 randomly selected
data-access classes and found that 82% of those directly query the database.

Another threat to construct validity is the precision of the SATD detector tool. The 73.7%
F1 score shows that the tool could introduce a significant number of false positives. Indeed,
we conducted a manual analysis and identified a considerable number of false positives.
However, The SATD detector is a state-of-the-art tool whose base approach was also used in
other studies (e.g., Bavota and Russo 2016). Improving the accuracy of the SATD detector
is out of the scope of the paper. However, the conclusions from this paper are carefully
formulated and need to be interpreted taking into account the imprecise nature of the tool.

There might be cases when SATD comments are removed without code changes in effect.
This may mean that the SATD admitted earlier is no longer viewed as technical debt by the
developers, or they may not be interested in keeping track of that SATD (Zampetti et al.
2018). Such cases are not actual removals of SATDs. Zampetti et al. (2018) conducted an
empirical study on Java open-source systems and observed that such cases are not frequent
(<10%) in most cases and the maximum being 17%.

We used the number of commits as a metric to measure developer activity instead of time
due to the variations in commit time span across subject systems and in between different
snapshots of a subject system. However, the number of commits may not accurately repre-
sent the time spent by developers on technical debt. To help mitigate this threat, we provided
the typical 500 commit time span for each subject system in the replication package as an
indication of time.

Threats to Internal Validity Internal validity concerns how one can be confident on claimed
cause and effect relation. We did not claim any causation in our study. We only analyzed
the diffusion and survival of SATD in SQL and NoSQL subject systems. Hence, our study
is not subjected to threats to internal validity.

Threats to Conclusion Validity Conclusion validity concerns the degree to which the statis-
tical conclusions about the claimed relationships are reasonable. To avoid conclusion threats
to validity, we only used non-parametric statistical tests.

Threats to External Validity External validity concerns the generalizability of findings out-
side the study context. Our study considers different types of projects in terms of database
technology (SQL or NoSQL), application domain, size, and the number of database inter-
actions. We also covered projects that use different drivers and frameworks to interact with
the database. We only considered Java projects for analysis. However, our investigation
approach is generalizable to other programming languages.

Threats to Reliability Validity Reliability validity concerns factors that cause an error in
data collection and analysis. To minimize potential threats to reliability, we analyzed open-
source projects available on GitHub and provided a replication package that contains our
dataset and analysis scripts (Muse et al. 2022).
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8 Conclusion and FutureWork

Technical debt represents the costs associated with favoring short-term low-quality solu-
tions rather than appropriate solutions that take more time. Developers use SATD comments
to track technical debt and reserve it for future fixes. We conducted a large-scale empirical
study on data-access SATD using 102 open-source data-intensive systems. In particular, we
extracted SATD comments from multiple snapshots of each subject system and explored
the prevalence and persistence of data-access SATD. We conducted a manual analysis
on representative data-access SATDs to categorize them under the type of SATD refer-
eed. We further analyzed the data-access SATDs to understand the circumstances behind
introducing/removing such debt.

Results show that data-access SATDs are introduced as software gets more mature, and
many instances of SATDs persist for a more extended time. Bug fixing and refactoring
are the main reasons behind the introduction of data-access SATDs followed by feature
enhancements and new features. The observed SATD removal activities are not associated
with refactoring, which implies that the removals are merely parts of bug fixing or feature
enhancement activities.

SATDs in general and data-access SATDs, in particular, are critical to data-intensive
systems as they determine the quality of the subject systems in terms of robustness and
efficiency of data-access operations. Supporting more functionalities and maintaining code
quality at the same time is a general problem to any software system. Having the right
balance would help maintain software quality and reduce technical debt costs in the long
run.

Our exploratory study could be extended in different ways. One extension could be to
validate the newly identified database access-related SATDs and evaluate how developers
prioritize such SATDs. Another extension of this study could be to investigate the impact
of data-access SATDs on software quality. This could help demonstrate the harmfulness
of technical debt to practitioners, which is particularly important in the context of data-
intensive systems.
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