
https://doi.org/10.1007/s10664-021-10110-5

Crowdsmelling: A preliminary study on using collective
knowledge in code smells detection

José Pereira dos Reis1 · Fernando Brito e Abreu1 ·
Glauco de Figueiredo Carneiro2

Accepted: 20 December 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Code smells are seen as major source of technical debt and, as such, should be detected and
removed. However, researchers argue that the subjectiveness of the code smells detection
process is a major hindrance to mitigate the problem of smells-infected code. This paper
presents the results of a validation experiment for the Crowdsmelling approach proposed
earlier. The latter is based on supervised machine learning techniques, where the wisdom
of the crowd (of software developers) is used to collectively calibrate code smells detection
algorithms, thereby lessening the subjectivity issue. In the context of three consecutive years
of a Software Engineering course, a total “crowd” of around a hundred teams, with an
average of three members each, classified the presence of 3 code smells (Long Method,
God Class, and Feature Envy) in Java source code. These classifications were the basis of
the oracles used for training six machine learning algorithms. Over one hundred models
were generated and evaluated to determine which machine learning algorithms had the best
performance in detecting each of the aforementioned code smells. Good performances were
obtained for God Class detection (ROC=0.896 for Naive Bayes) and Long Method detection
(ROC=0.870 for AdaBoostM1), but much lower for Feature Envy (ROC=0.570 for Random
Forrest). The results suggest that Crowdsmelling is a feasible approach for the detection of
code smells. Further validation experiments based on dynamic learning are required to a
comprehensive coverage of code smells to increase external validity.

Communicated by: Shaowei Wang, Tse-Hsun (Peter) Chen, Sebastian Baltes, Ivano Malavolta,
Christoph Treude and Alexander Serebrenik

This article belongs to the Topical Collection: Collective Knowledge in Software Engineering

� José Pereira dos Reis
jvprs@iscte-iul.pt

Fernando Brito e Abreu
fba@iscte-iul.pt

Glauco de Figueiredo Carneiro
glauco.carneiro@unifacs.br

1 ISTAR-Iscte, Instituto Universitário de Lisboa, Lisboa, Portugal
2 Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil

Published online: 17 March 2022

Empirical Software Engineering (2022) 27: 69

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10110-5&domain=pdf
http://orcid.org/0000-0002-2505-9565
http://orcid.org/0000-0002-9086-4122
http://orcid.org/0000-0001-6241-1612
mailto: jvprs@iscte-iul.pt
mailto: fba@iscte-iul.pt
mailto: glauco.carneiro@unifacs.br

Keywords Crowdsmelling · Code smells · Code smells detection · Software quality ·
Software maintenance · Collective knowledge · Machine learning algorithms

1 Introduction

Maintenance tasks are incremental modifications to a software system that aim to add or
adjust some functionality or to correct some design flaws and fix some bugs. It has been
found that feature addition, modification, bug fixing, and design improvement can cost as
much as 80% of total software development cost (Travassos et al. 1999). In addition, it is
shown that software maintainers spend around 60% of their time in understanding code (Zit-
zler et al. 2003). Therefore, as much as almost half (80%x60%=48%) of total development
cost may be spent on understanding code. This high cost can be reduced by the availability
of tools to increase code understandability, adaptability, and extensibility (Mansoor et al.
2017).

In software development and maintenance, especially in complex systems, the existence
of code smells jeopardizes the quality of the software and hinders several operations such
as code reuse. Code smells are not bugs, since they do not prevent a program from func-
tioning, but rather symptoms of software maintainability problems (Yamashita and Moonen
2013). They often correspond to the violation of fundamental design principles and may
slow down software evolution (e.g. due to code misunderstanding) or increase the risk of
bugs or failures in the future. Code smells can then compromise software quality in the long
term by inducing technical debt (Bavota and Russo 2016).

Many techniques and tools have been proposed in the literature for detecting code smells
(Pereira dos Reis et al. 2021), but that detection faces a few challenges. The first is that code
smells lack a formal definition (Wang et al. 2015). Therefore, their detection is highly sub-
jective (e.g. dependent on the developer’s experience). Second, due to the dramatic growth
in the size and complexity of software systems in the last four decades (Humphrey 2009), it
is not feasible to detect code smells thoroughly without tools.

Several approaches and tools for detecting code smells have been proposed. Kessen-
tini et al. (2014) classified those approaches into 7 categories: metric-based approaches,
search-based approaches, symptom-based approaches, visualization based approaches,
probabilistic approaches, cooperative based approaches, and manual approaches. The most
popular code smells detection approach is metric-based. The latter is based on the applica-
tion of detection rules that compare the values of relevant metrics extracted from the source
code with empirically identified thresholds. However, these techniques present some prob-
lems, such as subjective interpretation, a low agreement between detectors (Fontana et al.
2012), and threshold dependability.

To overcome the aforementioned limitations of code smell detection, researchers recently
applied supervised machine learning techniques that can learn from previous datasets with-
out needing any threshold definition. The main impediment for applying those techniques
is the scarcity of publicly available oracles, i.e. tagged datasets for training detection algo-
rithms. To mitigate this hindrance, we have proposed Crowdsmelling (Reis et al. 2017), a
collaborative crowdsourcing approach, based in machine learning, where the wisdom of the
crowd (of software developers) is used to collectively calibrate code smells detection algo-
rithms. The applications based in collective intelligence, where the contribution of several
users allows attaining benefits of scale and/or other types of competitive advantage, are
gaining increasing importance in Software Engineering (Stol and Fitzgerald 2014) and other

69 Page 2 of 35 Empir Software Eng (2022) 27: 69

areas (Bigham et al. 2014; Bentzien et al. 2013). The most notable examples of crowdsourc-
ing in Software Engineering are crowdtesting (Sharma and Padmanaban 2014) and code
snippets recommendation (Proksch et al. 2014).

In this paper we present the first results of applying Crowdsmelling in practice. The
paper is organized as follows: next section introduces the related work; then, Section 3
describes the experiment; results and corresponding analyses and the answers to the research
questions are presented in Section 4; discussing the results and threats to the validity are
presented in Section 5; and the concluding remarks, as well as scope for future research, are
presented in Section 6.

2 Related work

The related work is organised in two subsections and chronologically within each one.

2.1 Crowd-based approaches

Palomba et al. (2015) presented LANDFILL, a Web-based platform for sharing code smell
datasets, and a set of APIs for programmatically accessing LANDFILL’s contents. This
platform was created due to the lack of publicly available oracles (sets of annotated code
smells). The web-based platform has a dataset of 243 instances of five types of code smells
(Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy) identi-
fied from 20 open source software projects and a systematic procedure for validating code
smell datasets. LANDFILL allows anyone to create, share, and improve code smell datasets.

Oliveira et al. (2016) performed a controlled experiment involving 28 novice develop-
ers, aimed at assessing the effectiveness of collaborative practices in the identification of
code smells. The authors used Pair Programming (PP) and Coding Dojo Randori (CDR),
which are two increasingly adopted practices for improving the effectiveness of developers
with limited or no knowledge in Software Engineering tasks, including code review tasks,
and compared this two practices (PP and CDR) with solo programming in order to better
distinguish their impact on the effective identification of code smells. The results suggest
that collaborative practices contribute to the effectiveness on the identification of a wide
range of code smells. for nearly all types of inter-class smells, the average of smells iden-
tified by novice pairs or groups outperformed at least in 40% of the corresponding average
of smells identified by individuals and collaborative practices tend to increase the rate of
success in identifying more complex smells. In the same year Oliveira (2016) performed
a research based on a set of controlled experiments conducted with more than 58 novice
and professional developers, with the aim of knowing how to improve the efficiency in the
collaborative identification of code smells, and reached the same conclusions as the first
study.

Oliveira et al. (2017) is this paper reports an industrial case study aimed at observ-
ing how 13 developers individually and collaboratively performed smell identification in
five software projects from two software development organizations. The results are in line
with previous studies by these author, where they suggest that collaboration contributes to
improving effectiveness on the identification of a wide range of code smells.

de Mello et al. (2017) presents and discusses a set of context factors that may influ-
ence the effectiveness of smell identification tasks. The authors presented an initial set
of practical suggestions for composing more effective teams to the identification of code
smells. These suggestions are, i) be sure all team professionals are aware of the code smell

Page 3 of 35 69Empir Software Eng (2022) 27: 69

concepts applied in the review, ii) be sure all team professionals are aware of the relevance of
identifying code smells, iii) take preference to use collaboration in the reviews, iv) include
professionals that had worked in the module and professionals without such experience, v)
include professionals with different professionals roles.

Tahir et al. (2018) presented a study where they investigate how developers discuss code
smells and anti-patterns over Stack Overflow to understand better their perceptions and
understanding of these two concepts. In this paper, both quantitative and qualitative tech-
niques were applied to analyze discussions containing terms associated with code smells
and anti-patterns. The authors reached conclusions like: i) developers widely use Stack
Overflow to ask for general assessments of code smells or anti-patterns, instead of ask-
ing for particular refactoring solutions, ii) developers very often ask their peers ’to smell
their code’ (i.e., ask whether their own code ’smells’ or not), and thus, utilize Stack Over-
flow as an informal, crowd-based code smell/anti-pattern detector, iii) developers often
discuss the downsides of implementing specific design patterns, and ’flag’ them as poten-
tial anti-patterns to be avoided. Conversely, the authors also found discussions on why
some anti-patterns previously considered harmful should not be flagged as anti-patterns,
iv) C#, JavaScript and Java were the languages with most questions on code smells and
anti-patterns, constituting 59% of the total number of questions on these topics, v) Blob,
Duplicated Code and Data Class are the most frequently discussed smells in Stack Over-
flow, vi) when authors analyzed temporal trends in posts on code smells and anti-patterns
in Stack Overflow, show that there has been a steady increase in the numbers of questions
asked by developers over time.

Oliveira et al. (2020) have carefully designed and conducted a controlled experiment
with 34 developers. The authors exploited a particular scenario that reflects various organi-
zations: novices and professionals inspecting systems they are unfamiliar with. They expect
to minimize some critical threats to validity of previous work. Additionally, they inter-
viewed 5 project leaders aimed to understand the potential adoption of the collaborative
smell identification in practice. Statistical testing suggests 27% more precision and 36%
more recall through the collaborative smell identification for both novices and professionals.
The interviews performed by the authors showed that leaders would strongly adopt the col-
laborative smell identification. However, some organization and tool constraints may limit
such adoption.

Baltes and Treude (2020) presented a study with similarities and differences between
code clones in general and code clones on Stack Overflow and point to open questions that
need to be addressed to be able to make data-informed decisions about how to properly
handle clones on this important platform. The results of his first preliminary investigation
indicated that clones in Stack Overflow are common, diverse, similar to clones in regu-
lar software projects, affect the maintainability of posts and can lead to licensing issues.
The authors further point to specific challenges, including incentives for users to clone
successful answers and difficulties with bulk edits on the platform.

2.2 Multiple ML models based approaches

Regarding the use of the machine learning approach in the detection of code smells, most
studies only use one algorithm, being the most usual algorithm the decision trees. We will
present below the most relevant studies that use multiple machine learning algorithms.

Some of the most relevant studies in the area of machine learning were performed by
Fontana et al. (2013, 2015). In the first work Fontana et al. (2013), they outlined some
common problems of code smell detectors and described the approach they were following

69 Page 4 of 35 Empir Software Eng (2022) 27: 69

based on machine learning technology. In this study the authors focused on 4 code smells
(Data Class, Large Class, Feature Envy, Long Method), considered 76 systems for analy-
sis and validation and experimented 6 different machine learning algorithms. The results
with a use of 10-fold cross-validation to assess the performance of predictive models shown
that J48, Random Forest, JRip and SMO have accuracy values greater than 90% for the 4
code smells, and on average they have the best performances. In the second work Fontana
et al. (2015), they performed the largest experiment of applying machine learning algo-
rithms. They experimented 16 different machine-learning algorithms on four code smells
(Data Class, Large Class, Feature Envy, Long Method) and 74 software systems, with 1986
manually validated code smell samples. They found that all algorithms achieved high per-
formances in the cross-validation data set, yet the highest performances were obtained by
J48 and Random Forest, while the worst performance were achieved by support vector
machines. The authors concluded that the application of machine learning to the detection of
these code smells can provide high accuracy (>96 %), and only a hundred training examples
are needed to reach at least 95 % accuracy. The authors interpret the results as an indi-
cation that ”using machine learning algorithms for code smell detection is an appropriate
approach”.

Di Nucci et al. (2018) replicated the Fontana et al. (2015) study with a different dataset
configuration. The dataset contains instances of more than one type of smell, with a reduced
proportion of smelly components and with a smoothed boundary between the metric dis-
tribution of smelly and non-smelly components, and therefore more realistic. The results
revealed that with this configuration the machine learning techniques reveal critical limi-
tations in the state of the art which deserve further research. They concluded that, when
testing code smell prediction models on the revised dataset, they noticed: i) accuracy of all
the models is still noticeably high when compared to the results of the reference study (on
average, 76% vs 96%), ii) that performances are up to 90% less accurate in terms of F-
Measure than those reported in the Fontana et al. study. Thus, the problem of detecting code
smells through the adoption of machine learning techniques may still be worthy of further
attention, e.g., in devising proper machine learning-based code smell detectors and datasets
for software practitioners.

To the best of our knowledge, namely obtained while performing a systematic litera-
ture review on code smells detection techniques Pereira dos Reis et al. (2021), there is no
study that uses a collective knowledge-based approach to detect code smells automatically,
i.e. based on machine learning, with a dataset increment over 3 years. The use of groups
of people in code smells detection is typically used in manual detection approaches and in
the construction of oracles (a tagged dataset for training detection algorithms). A distinctive
feature of our approach is the use of crowds. While in related work a group of 3 to 5 peo-
ple is typically used to build an oracle, we used hundreds, thus embodying a much larger
large diversity of opinions. However, manual techniques are human-centric, tedious, time-
consuming, and error-prone. These techniques require a great human effort, therefore not
effective for detecting code smells in large systems.

3 Experiment planning

3.1 Research questions

The concept of Crowdsmelling – use of collective intelligence in the detection of code
smells – aims to mitigate the aforesaid problems of subjectivity and lack of calibration

Page 5 of 35 69Empir Software Eng (2022) 27: 69

data required to obtain accurate detection model parameters, by using machine learning
techniques. We have formulated the following research questions to assess the feasibility of
Crowdsmelling:

• RQ1: What is the performance of machine learning techniques when trained with data
from the crowd and therefore more realistic?

• RQ2: What is the best machine learning model to detect each one of the three code
smells?

• RQ3: Is it possible to use Collective Knowledge for code smells detection?

The goal of these RQs is to understand if our Crowdsmelling approach is feasible. For this,
it is fundamental to understand the performance of machine learning techniques (RQ1),
which will make our approach feasible. However, it is always important to know, in addition
to performance, if there is any tendency towards algorithms (RQ2). If it is found that there
is a tendency for one algorithm to overlap with the others, in the future we can simplify
our research, focusing on fewer algorithms. This aspect will also propose the simplification
of an application that automates this approach. Finally, based on this data, we intend to
determine the feasibility of this approach in detecting code smells (RQ3).

3.2 Participants

Our approach consists of several teams using a tool, as an advisor, to detect code smells
and then confirming the validity of the detection manually. In addition to the code smells
detected by the advisor tool, teams can always add other code smells manually. In the end,
code identification, code metrics and classification (presence or absence of code smells) are
saved by creating an oracle for each code smell. This oracle will allow training machine
learning algorithms for code smells detection. These oracles have been increased for 3 years,
with data collected each year.

The repetition of this process for 3 years, allowed every year to increase the oracle
with data from new teams, thus increasing the variability of existing classifications. This
variability of opinions in the code smells classification is very important, because it will
allow collecting data from teams with different opinions on the definition of code smells,
enriching the oracle.

Our subjects were the finalists (3rd year) of a B.Sc. degree in computer science at the
ISCTE-IUL University, attending a compulsory Software Engineering course. They had
similar backgrounds as they have been trained across the same set of courses along their
academic path. However, there are differences between the students, as the skills and expe-
rience in code development are different. The knowledge about code smells was acquired
in the Software Engineering curricular unit.

The teams had a variable size depending on the year (see Table 1) and the number of
participants were increasing each year. In 2018, 19 teams were formed, essentially with 4
elements each, for a total of 73 elements, but in the end, only the data from 8 teams, for a

Table 1 Teams whose code
smells detection was included in
the oracles

Year Number of teams Total number of elements

2018 8 31

2019 51 152

2020 44 179

69 Page 6 of 35 Empir Software Eng (2022) 27: 69

total of 31 elements were used for the oracle. In Section 3.3 we explain why the data from 11
teams were not used. In 2019 we had 51 teams, mainly made up of 3 members, with a total
of 152 members. In 2020 we had 44 teams, mainly made up of 6 members, with a total of
179 members. These teams were requested to complete a code smells detection assignment.

3.3 Data

Participants were invited to perform the detection of 3 code smells (God Class, Feature
Envy, Long Method) in a code extract (e.g. of their choice). They used JDeodorant1 as an
auxiliary tool in the detection. The use of tools to help detect code smells in the process
of creating oracles is usual. For example, in the Fontana et al. (2015) study, 5 advisors
were used, depending on the code smell that was intended to be detected. We chose to
use JDeodorant because it detects refactoring opportunities for the 3 code smells we used,
because it is one of the best known and used tools, as we can see in the paper by Tsantalis
et al. (2018). To account for individual judgement in the oracle, teams could either decide to
accept (true positives) or not (false positives) the tool suggestions or add additional manual
detections (false negatives).

In 2018 each team chose the Java project where they wanted to do code smells detection
from a list of 8 open-source projects. The latter have already been used in other stud-
ies, namely in those using machine learning approaches mentioned in the related work
section Fontana et al. (2013, 2015); Di Nucci et al. (2018). However, in the end, only 3
projects/versions were considered: jasml-0.102, jgrapht-0.8.13 and jfreechart-1.0.13.4 We
discarded the collected data from the other projects, chosen by 11 teams (42 participants),
since those teams used diversified versions and, therefore, the collected metrics were not
consistent from version to version, and that would be a validity threat. In the next 2 years
we just used Jasml-0.10 to avoid the aforementioned issue.

The results of each team’s detection are saved in a file with the following fields for the
code smells Feature Envy and Long Method: Team number, project, package, class, method,
82 metrics of code, is code smell. In the case of the code smell God Class, as the scope is to
the class, does not have the method field and 61 code metrics are saved. At the end we have
3 files, one for each smell code.

The data obtained each year serve to reinforce the calibration datasets of the machine
learning algorithms, with the objective of improving their detection performance over time.
This way we will have several datasets, so we can evaluate which one gives the best results
for each code smell.

In Table 2 we present the composition of the datsets, indicating the following elements,
i) name of the dataset, ii) code smell to which the dataset refers, iii) number of cases, iv)
number of true instances, v) percentage of true instances, vi) number of false instances,
vii) percentage of false instances. Each dataset is identified by the year or the years that
constitute it, for example, 2019 is the dataset of the year 2019 and 2019+2020 is the dataset
resulting from the aggregation of the datasets of the years 2019 and 2020. Unlike several
authors, such as Fontana et al. (2015), we do not normalize our datasets in size in order to
balance the number of positive and negative instances. Even with the risk of getting worse

1https://users.encs.concordia.ca/∼nikolaos/jdeodorant/
2http://jasml.sourceforge.net/
3https://jgrapht.org/
4https://www.jfree.org/

Page 7 of 35 69Empir Software Eng (2022) 27: 69

https://users.encs.concordia.ca/~nikolaos/jdeodorant/
http://jasml.sourceforge.net/
https://jgrapht.org/
https://www.jfree.org/

Table 2 Datasets (Oracles) and their composition

Dataset Code smell No
¯ Cases True % True False % False

2018 Feature Envy 10 3 30% 7 70%

2019 Feature Envy 197 110 56% 87 44%

2019+2018 Feature Envy 207 113 55% 94 45%

2020 Feature Envy 123 79 64% 44 36%

2020+2019 Feature Envy 320 189 59% 131 41%

2020+2019+2018 Feature Envy 330 192 58% 138 42%

2018 God class 22 8 36% 14 64%

2019 God class 129 74 57% 55 43%

2019+2018 God class 151 82 54% 69 46%

2020 God class 136 84 62% 52 38%

2020+2019 God class 265 158 60% 107 40%

2020+2019+2018 God class 287 166 58% 121 42%

2018 Long Method 59 24 41% 35 59%

2019 Long Method 414 180 43% 234 57%

2019+2018 Long Method 473 204 43% 269 57%

2020 Long Method 853 350 41% 503 59%

2020+2019 Long Method 1267 530 42% 737 58%

2020+2019+2018 Long Method 1326 554 42% 772 58%

results, we used the datasets with all the cases classified by the teams. Thus, we believe
that we are reproducing the reality of the teams’ thinking about code smells. The size of the
datasets varies widely depending on the type of the code smell. Since the datasets of code
smell Feature Envy are too small, i.e., for a code smell in the scope of the method, they do
not have a large enough variance of cases, it was not possible to obtain good results. Even
so, we intend to use all the datasets, as they represent the obtained reality and serve as a
basis for a future amplification and evolution of the crowd’s study in code smells detection.

The 18 datasets are available on GitHub.5

3.4 Code smells

In this study we considered three different types of code smells defined by Fowler et al.
(1999):

– God Class.This smell characterises classes having a large size, poor cohesion, and
several dependencies with other data classes of the system. Class that has many
responsibilities and therefore contains many variables and methods. The same Single
Responsibility Principle (SRP) also applies in this case;

– Feature Envy. When a method is more interested in members of other classes than its
own, is a clear sign that it is in the wrong class;

– Long Method. Methods implementing more than one functionality are affected by this
smell. Very large method/function and, therefore, difficult to understand, extend and

5https://github.com/dataset-cs-surveys/Crowdsmelling

69 Page 8 of 35 Empir Software Eng (2022) 27: 69

https://github.com/dataset-cs-surveys/Crowdsmelling

modify. It is very likely that this method has too many responsibilities, hurting one of
the principles of a good Object Oriented design (SRP: Single Responsibility Principle);

The choice of these 3 code smells is due to the fact that, according to the Systematic
Literature Review we conducted, they are the three most detected code smells Pereira dos
Reis et al. (2021). Therefore, it is easier for teams to obtain documentation and understand
these 3 code smells for better detection.

3.5 Code metrics

In this study, we used the same metrics that were used in the study of Fontana et al. (2015),
since the metrics are publicly available.

The metrics extracted from the software which constitute the independent variables in
the machine learning algorithms, are at class, method, package and project level. For God
Class, we used a set of 61 metrics, and for the other two code smells, Feature Envy and
Long Method, we used a set of 82 metrics, plus 21 metrics than God Class, since these codes
smells are at the method level. The main metrics are described in the Table Appendix.

3.6 Machine learning techniques experimented

The application used in this experiment to train and evaluate machine learning algorithms
was Weka (open source software from Waikato University) (Hall et al. 2009), and the
following algorithms available in Weka were implemented:

– J48 (Quinlan 2014) is an implementation of the C4.5 decision tree, and its three types
of pruning techniques: pruned, unpruned and reduced error pruning;

– Random Forest (Breiman 2001) consists of a large number of individual decision trees,
a forest of random trees, that operate as an ensemble;

– AdaBoostM1 (Freund and Schapire 1996) Boosting works by repeatedly running a
given weak learning algorithm on various distributions over the training data, and
then combining the classifiers produced by the weak learner into a single composite
classifier. Weka uses the Adaboost M1 method;

– SMO (Platt 1999) is a Sequential Minimal Optimization algorithm widely used for
training support vector machines. We use the Polynomial kernel;

– Multilayer Perceptron (Rumelhart et al. 1986) is a classifier that uses backpropagation
to learn a multi-layer perceptron to classify instances;

– Naı̈ve Bayes (John and Langley 1995) is a probabilistic model based on the Bayes
theorem.

Experiments were performed to evaluate the performance values of the machine learning
algorithms used with their default parameters for each type of code smell. Also, no feature
selection technique was used.

3.7 Model evaluation

To assess the capabilities of the machine learning model, we adopted 10-Fold Cross Vali-
dation (Stone 1974). This methodology randomly partitions the data into 10 folds of equal
size, applying a stratified sampling (e.g., each fold has the same proportion of code smell
instances). A single fold is used as test set, while the remaining ones are used as training set.
The process was repeated 10 times,using each time a different fold as test set. The result of

Page 9 of 35 69Empir Software Eng (2022) 27: 69

the process described above consisted of a confusion matrix for each code smell type and
for each model (Pecorelli et al. 2019).

Several evaluation metrics can be used to assess model quality in terms of false
positives/negatives (FP/FN), and true classifications (TP/TN). However, commonly used
measures, such as Accuracy, Precision, Recall and F-Measure, do not perform very well
in case of an imbalanced dataset or they require the use of a minimum probability thresh-
old to provide a definitive answer for predictions. For these reasons, we used the ROC6,
which is a threshold invariant measurement. Nevertheless, for general convenience, we kept
present in results tables all the evaluation metrics (Caldeira et al. 2020).

Accuracy = T P + T N

T P + FP + FN + T N
(1)

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

F − measure = 2 ∗ Recall ∗ Precision

Recall + Precision
(4)

ROC gives us a 2-D curve, which passes through (0, 0) and (1, 1). The best possible model
would have the curve close to y = 1, with and area under the curve (AUC) close to 1.0. AUC
always yields an area of 0.5 under random-guessing. This enables comparing a given model
against random prediction, without worrying about arbitrary thresholds, or the proportion
of subjects on each class to predict (Rahman and Devanbu 2013).

3.8 Process

In this subsection, we describe the three stages that constitute the process adopted in this
exploratory study.

3.8.1 Stage 1: Developer - Code smell classification

All Java developers use the Eclipse IDE with the JDeodorant plug-in installed. In the first
year - the year 2018 - each team was free to choose, from a list of Java projects, the one they
wanted to use to detect code smells. So, in the first year, the teams chose the Java projects
jasml-0.10, jgrapht-0.8.1, and jfreechart-1.0.13.In the following two years, the teams just
used jasml-0.10.

Figure 1 shows the code smells classification process by the programmer, where we
can see that after importing the Java project, the participants were invited to perform the
detection of 3 Code smell (Long Method, God Class, Feature Envy). In 2018, detections
of code smells were performed in the 3 Java projects as follows: a) Long Method, 5 teams
detected this smell in jasml-0.10, 2 teams detected it in jfreechart-1.0.13, and all detections
performed in jgrapht-0.8. 1 were not used for the reasons described in Section 3.3; b) God
Class, 4 teams detected this smell in jasml-0.10, 2 teams detected it in jfreechart-1.0.13, and
1 team detected it in jgrapht-0.8.1; c) Feature Envy, only the detections made by 4 teams in
jasml-0.10 were used, all other detections were discarded for the reasons already mentioned.
In the following 2 years, all teams detected all 3 code smells in jasml-0.10.

6Receiver operating characteristic (ROC) is a curve that plots the true positive rates against the false positive
rates for all possible thresholds between 0 and 1.

69 Page 10 of 35 Empir Software Eng (2022) 27: 69

Fig. 1 Process of code smells classification by the developer

In this detection the participants could use JDeodorant as an auxiliary tool in the detec-
tion of smells, i.e., they first used JDeodorant as an advisor, and then manually validated the
result of the detection of the tool, saying whether or not they agreed with the code smells
detected. JDeodorant detects refactoring opportunities (refactoring is a controlled technique
for improving the design of an existing code base (Fowler et al. 1999)), consequently, when
JDeodorant detects a refactoring opportunity it is detecting a code smell candidate. The use
of JDeodorant also had the advantage that participants could export the code smells iden-
tified by this tool to a text file, where they later registered their agreement or not with this
identification, i.e., they performed the final classification.

Regardless of the use of JDeodorant, all participants could identify the code smells
directly in the Java project code (using the code metrics) and record their occurrence or not
in a text file. In this case, the participants wrote in the text file the name of the class or
method, and if there existed or not a code smell. The percentage of teams that performed
code smells detection without the help of the JDeodorant advisor was 7%. Although, the
work of detecting code smells without the use of the advisor is higher we found that, on
average, the teams that did not use the advisor detected 30% more Long Methods and 20%
more God Class. Regarding Feature Envy, the detection was on average 16% less than the
teams that used JDeodorant.

With the use of JDeodorant, as advisor, in detecting smells, there is a risk that teams
will only classify code smells resulting from advisor detection, in our case, code smells
candidates detected by JDeodorant. To mitigate this risk the teams were asked to classify
all classes and methods in a project package, thus extending the classification to cases not
detected by JDeodorant. Another factor that minimizes this risk is the fact that JDeodorant
identifies refactoring opportunities in code that is clearly not code smell, but the code can

Page 11 of 35 69Empir Software Eng (2022) 27: 69

still be improved. This fact causes in JDeodorant’s detection result a larger scope of cases
and consequently a larger disagreement between the teams’ classification and JDeodor-
ant’s identification. In the detection of the Long Method, the degree of disagreement with
JDeodorant in the year 2018 was 66% (highest disagreement), and in the year 2019, it was
49% (lowest disagreement), being in total for the three years 54%. For God Class, the dis-
agreement with JDeodorant for the three years was 47% and varied from 68% in the year
2018 to 40% in 2020. In Feature Envy the disagreement ranged from 70% in 2018 to 34%
in 2020, being in the three years 45%.

Regarding the code classified by the teams, methods, and classes of the applications, we
found that the majority was classified by more than one team. In the first year, 2018, due to
the diversity of Java projects used there was a greater dispersion of the code classified, with
most classes (75%) and methods (76%) classified by only one team. Consequently, the most
used class was classified by four teams, and the most used method in the classification was
classified by six teams. The next two years saw a reversal, with most classes and methods
being classified by more than one team. Regarding classes, 60% in the year 2019 and 75%
in the year 2020 were classified by more than one team, with the most used class being
classified by 43 teams. Regarding methods, 85% and 60% were classified by more than
one team in 2020 and 2019, respectively, with the most-used method being classified by 44
teams.

The time given to the teams to classify the three code smells was three weeks, and no
indication was given on how they should work as a team, that is, how they should divide
the code smells classification among the various team members. Hence, based on the data
obtained from the experiment, we are not able to identify specifically which members per-
formed a specific code analysis. However, we were able to identify which code smells were
analyzed. For example, according to data available in GitHub,7 it is possible to identify that
in the 2020 Long Method dataset, the private void consumeDigits() method was classified
by 37 teams, by applying a filter to the method field. We have made available on GitHub the
filecode-classification-statistics.csv with a set of statistics about the percentages of teams
that classified the methods and classes. We also found that the teams divided the classifi-
cation of the three code smells among their members, for example, when the team had six
members, they created groups of two members, and each group classified one code smell in
the code.In this way, the teams increased the reliability of the classification, since the code
was classified by 2 team members.

As a result of this stage, all teams produced three files - one for each code smell - with
the classification of a set of methods and classes of the Java project, i.e., with the record of
the existence or not of code smells in those classes or methods. This stage was performed
over 3 years, 2018, 2019 and 2020.

3.8.2 Stage 2: Researcher - Evaluation of machine learning models

After collecting data in three years, we proceeded to the second phase, which aimed to
produce the datasets for the 3 code smells and evaluation of the different machine learning
techniques. In Fig. 2 is represented the whole process of this second stage.

The first task to be performed by the researcher is the creation of the datasets described
in Section 3.3.

7https://github.com/dataset-cs-surveys/Crowdsmelling

69 Page 12 of 35 Empir Software Eng (2022) 27: 69

https://github.com/dataset-cs-surveys/Crowdsmelling

Fig. 2 Process of creation of the datasets and evaluation of the machine learning techniques by the researcher

The creation of the datasets is done by joining all the text files with the classifications
of a code smell, produced by the teams of each year, in a single Excel file. Then, to this
excel file are added the code metrics for the methods or classes (see Section 3.5), depending
on the scope of the code smell to which the dataset belongs. Thus, in a first step, datasets
are created - usually called oracles - with the data for each year, for each of the three code
smells, for a total of 6 datasets. These datasets have been given the name of the year to
which they belong, i.e., 2018, 2019 and 2020. In a second step, we proceed to aggregate the
dataset of the year with those of previous years to make the dataset larger, increasing the
number of instances. In the end, we created six datasets for each code smell, with a total of
18 datasets (see Table 2).

After creating the datasets, we proceed to the creation and evaluation of the machine
learning models using Weka (open source software from Waikato University) (Hall et al.
2009). To import datasets into Weka, we convert the datasets files, from excel XLSX to CSV.
At Weka, we trained the six algorithms described in Section 3.6, with each of the 18 datasets,
and evaluated the model produced using the 10-Fold Cross Validation methodology. In the
end, 36 machine learning models were created for each code smell, with a total of 108
models for the three code smells. Finally, all the metrics (Accuracy, Precision, Recall, F-
Measure, and ROC) resulting from the evaluation of each model were saved in the ”ML
classifier output” file (see Section 3.7).

3.8.3 Stage 3: Researcher - Model variance test

To check if there were significant differences between the classifications presented by the
different models, we proceeded to the analysis of variance through a one-way analysis of
variance (ANOVA) (see Fig. 3).

To test the variance between the machine learning models we use the ROC value. Thus,
the first step was to produce a data file, for each code smell, with the identification of the
machine learning models and the respective ROC. This file was created aggregating the
results of the evaluations of all models produced by Weka, by code smell.

To analyze if there were differences between the classifications of the machine learning
models for each code smell, we performed an analysis of variance using a one-way analysis
of variance (ANOVA) test in the IBM SPSS Statistics 27 software.

Page 13 of 35 69Empir Software Eng (2022) 27: 69

Fig. 3 Process of testing the variance between machine learning models

4 Results

In this section, we present the experiment results with respect to our research questions.

4.1 RQ1. What is the performance of machine learning techniques when trained
with data from the crowd and therefore more realistic?

In this RQ we will evaluate the performance of the 36 models for each code smell in a total
of 108 models. These models resulted from the training of the 6 machine learning algorithms
(J48, Random Forest, AdaBoostM1, SMO, Multilayer Perceptron, Naı̈ve Bayes), described
in Section 3.6, by the datasets presented in Table 2. These algorithms were trained with the
various datasets resulting from the crowd, and as explained in Section 3.3 we want these
datasets to be as real as possible, to represent as faithfully as possible what the detection
teams think about the code smells.

From the various existing metrics for evaluating machine learning models, we have cho-
sen to use the ROC as the primary metric, but we also use accuracy, precision, recall, and
f-measure. For testing, we used the 10-Fold Cross Validation, for the reasons presented in
Section 3.7.

4.1.1 Performance of machine learning techniques for the code smell Long Method

Starting by analyzing the machine learning techniques for the Long Method data, described
in Table 3, we observed that the best results were obtained by the Random Forrest
and AdaBoostM1 algorithms. The best result with a ROC of 0.870 was obtained by
AdaBoostM1 when trained by the dataset 2020, followed by the Random Forrest with
ROC of 0.869 for the same dataset. For the dataset 2018, the best result was also that of
AdaBoostM1. However, the most uniform algorithm was Random Forrest, with the best
results in 4 of the 6 datasets (2020+2019+2018, 2020+2019, 2019+2018, 2019) and for the
dataset 2020, the difference for AdaBoostM1 is insignificant (0.001). The Multilayer Per-
ceptron and J48 algorithms, were two other algorithms to present ROC results above 0.800.
Especially the Multilayer Perceptron algorithm which for the datasets of the year 2020
presented an ROC between 0.868 and 0.822.

69 Page 14 of 35 Empir Software Eng (2022) 27: 69

Table 3 Long Method: ROC Area results for the machine learning algorithms trained by the 3 years datasets

year 2020 2019 2018

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.792 0.801 0.832 0.677 0.678 0.617

Random Forest 0.828 0.828 0.869 0.684 0.679 0.671

AdaBoostM1 0.807 0.818 0.665 0.673 0.707

SMO 0.753 0.753 0.803 0.634 0.649 0.524

MultilayerPerceptron 0.822 0.822 0.868 0.683 0.667 0.604

NaiveBayes 0.736 0.742 0.783 0.584 0.614 0.471

The worst results were obtained by the NaiveBayes algorithm with ROC between 0.783
and 0.471. The second worst algorithm was SMO, with ROC results between 0.803 and
0.524.

In Table 3, we can still observe that the best results were obtained when the algorithms
were trained with the datasets for the year 2020, with ROC of 0.870 for the dataset 2020 and
ROC of 0.828 for the datasets 2020+2019+2018 and 2020+2019. In opposition is the year
2019, with the worst results, ROC of 0.684 and 0.679 for the datasets 2019+2018, 2019,
respectively.

4.1.2 Performance of machine learning techniques for the code smell God Class

Table 4 shows the results of the machine learning techniques for the God Class data. The best
result was obtained by the NaiveBayes algorithm, when trained by the dataset 2020, with the
ROC value of 0.896. The algorithms that obtained the best performances were NaiveBayes
and MultilayerPerceptron, with the best result in 3 of the datasets each one. NaiveBayes
obtained the best results for the datasets 2020, 2020+2019, 2019, with ROC values of 0.896,
0.859 and 0.804, respectively.Also with the best result in 3 datasets (2020+2019+2018,
2019+2018, 2018) the MultilayerPerceptron algorithm presented ROC values between
0.768 and 0.885. The Random Forest and AdaBoostM1 algorithms presented their best ROC
values of 0.893 and 0.876, respectively, for the dataset 2020.

The worst results were presented by J48 and SMO, with their best ROC values for the
dataset 2020 of 0.759 and 0.857, respectively.

Table 4 God Class: ROC Area results for the machine learning algorithms trained by the 3 years datasets

year 2020 2019 2018

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.763 0.759 0.791 0.693 0.725 0.692

Random Forest 0.853 0.850 0.893 0.781 0.802 0.491

AdaBoostM1 0.854 0.857 0.876 0.771 0.793 0.571

SMO 0.815 0.800 0.857 0.716 0.751 0.741

MultilayerPerceptron 0.880 0.853 0.885 0.805 0.797 0.768

NaiveBayes 0.731 0.859 0.669 0.804 0.651

Page 15 of 35 69Empir Software Eng (2022) 27: 69

Regarding the datasets that presented the best results were those of the year 2020, with
the dataset only with data of the year 2020 being the best (dataset 2020) with ROC val-
ues between 0.896 and 0.791. The dataset with the worst results was 2018, with the ROC
between 0.491 and .0768.

4.1.3 Performance of machine learning techniques for the code smell Feature Envy

The ROC Results for the machine learning algorithms trained by the 3-year datasets for the
code smell Feature Envy are presented in Table 5. Feature Envy detection results are low,
with the Random Forest algorithm having the best ROC value of 0.570 when trained by
dataset 2019. As already explained in point Section 3.3, the datasets for Feature Envy are
very small, considering the variance of cases, however we are convinced that when we have
bigger datasets the results will be better. The machine learning algorithms showed better
results when trained with the datasets of the year 2019, with ROC values between 0.570 and
0.508.

4.1.4 The one-way analysis of variance (ANOVA)

To determine if there were significant differences between the performance of machine
learning techniques when trained with data from the crowd and therefore more realistic, a
One-way ANOVA was conducted to compare effect of machine learning techniques on the
ROC. Before performing the ANOVA, we checked all the assumptions for its application,
namely, the inexistence of outliers, the normality of the distribution (Shapiro-Wilk test),
and the homogeneity of variances (Levene’s test). All assumptions were fulfilled and the
following results were obtained:

i) For the code smell Long Method, an analysis of variance showed that the effect of
the performance of machine learning techniques on ROC value was not significant,
F(5,30)=1.096, p=.383.

ii) For the code smell God Class, an analysis of variance showed that the effect of
the performance of machine learning techniques on ROC value was not significant,
F(5,30)=.655, p=.660.

ii) For the code smell Feature Envy, an analysis of variance showed that the effect of
the performance of machine learning techniques on ROC value was not significant,
F(5,24)=.585, p=.712.

Table 5 Feature Envy: ROC Area results for the machine learning algorithms trained by the 3 years datasets

year 2020 2019 2018

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.518 0.484 0.467 0.552 0.563 0

Random Forest 0.539 0.494 0.486 0.542 0

AdaBoostM1 0.498 0.437 0.468 0.554 0.548 0

SMO 0.520 0.491 0.500 0.551 0.508 0

MultilayerPerceptron 0.533 0.498 0.536 0.548 0.544 0

NaiveBayes 0.524 0.519 0.482 0.548 0.547 0

69 Page 16 of 35 Empir Software Eng (2022) 27: 69

The results of the variance tests show there was no statistically significant difference
between the performance of the six machine learning models, when trained with data from
the crowd and therefore more realistic.

4.1.5 Summary of RQ1 results

For the code smell Long Method the best result with a ROC of 0.870 was obtained by
AdaBoostM1 when trained by the dataset 2020, followed by the Random Forrest with a
ROC of 0.869 for the same dataset. For the code smell God Class the best result was obtained
by the NaiveBayes algorithm, when trained by the dataset 2020, with the ROC value of
0.896. Feature Envy detection results are low, with the Random Forest algorithm having the
best ROC value of 0.570 when trained by dataset 2019.

The results of the variance tests (performed through One-way ANOVA) show there was
no statistically significant difference between the performance of the six machine learning
models when trained with data from the crowd and therefore more realistic.

4.2 RQ2. What is the best machine learning model to detect each one of the three
code smells?

In this RQ we want to know which is the best model to detect each of the code smells. To do
so, we analyzed the various metrics that evaluate the performance of code smells prediction
models in detecting each of the 3 code smells. Of course, the best model will vary with the
metric we choose to analyze the model performance (accuracy, precision, recall, f-measure,
ROC), but for the reasons described in Section 3.7 we will use as the main metric the ROC.

Tables 6, 7, and 8 present the performance of the prediction models for the 3 code smells,
where the best values for each of the evaluation metrics are marked.

4.2.1 Best machine learning model for the code smell Long Method

For the code smell Long Method, the model that best performs its detection is AdaBoostM1,
presenting the best values for all evaluation metrics. As we can see in the Table 6,
AdaBoostM1 obtained a ROC value of 0.870, a accuracy of 81.36%, a precision of 82.90%,
a recall of 81.40%, and F-measure of 81.50%. However, two more models present an almost
equal ROC, Random Forest and Multilayer Perceptron, with ROC values of 0.869 and 0.868,
respectively.

Except for NaiveBayes, all the other five models have values higher than 0.803 for ROC
and values higher than 80.00% for f-measure, precision, and recall in the detection of code
smell Long Method.

4.2.2 Best machine learning model for the code smell God Class

Table 7 presents the results of God Class detection using the 10-Fold Cross-Validation tech-
nique and where the best values are marked. As we can see in Table 7, the model that
presents the best value for the ROC is Naive Bayes with a value of 0.896. For the remaining
four evaluation metrics, the Random Forest model presents the same values as the Naive
Bayes. Thus, the Naive Bayes and Random Forest models present an accuracy value of
88.97%, a precision value of 89.70%, a recall value of 89.00%, and an f-measure value of
88.70%.

Page 17 of 35 69Empir Software Eng (2022) 27: 69

Ta
bl

e
6

L
on

g
M

et
ho

d:
Pe

rf
or

m
an

ce
of

th
e

co
de

sm
el

lp
re

di
ct

io
n

m
od

el
s

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
18

J4
8

61
.0

2%
61

.0
0%

37
.2

0%
63

.4
0%

61
.0

0%
61

.3
0%

0.
61

7

20
18

R
an

do
m

Fo
re

st
61

.0
2%

61
.0

0%
45

.1
0%

60
.0

0%
61

.0
0%

60
.0

0%
0.

67
1

20
18

A
da

B
oo

st
M

1
67

.8
0%

67
.8

0%
36

.5
0%

67
.3

0%
67

.8
0%

67
.4

0%
0.

70
7

20
18

SM
O

55
.9

3%
55

.9
0%

51
.2

0%
54

.3
0%

55
.9

0%
54

.5
0%

0.
52

4

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

57
.6

3%
57

.6
0%

46
.1

0%
57

.4
0%

57
.6

0%
57

.5
0%

0.
60

4

20
18

N
ai

ve
B

ay
es

61
.0

2%
61

.0
0%

47
.7

0%
59

.4
0%

61
.0

0%
58

.7
0%

0.
47

1

20
19

J4
8

64
.7

3%
64

.7
0%

34
.1

0%
66

.1
0%

64
.7

0%
64

.9
0%

0.
67

8

20
19

R
an

do
m

Fo
re

st
66

.1
8%

66
.2

0%
34

.5
0%

66
.4

0%
66

.2
0%

66
.3

0%
0.

67
9

20
19

A
da

B
oo

st
M

1
66

.6
7%

66
.7

0%
29

.6
0%

70
.7

0%
66

.7
0%

66
.3

0%
0.

67
3

20
19

SM
O

65
.4

6%
65

.5
0%

35
.7

0%
65

.5
0%

65
.5

0%
65

.5
0%

0.
64

9

20
19

M
ul

til
ay

er
Pe

rc
ep

tr
on

63
.2

9%
63

.3
0%

38
.6

0%
63

.1
0%

63
.3

0%
63

.1
0%

0.
66

7

20
19

N
ai

ve
B

ay
es

61
.1

1%
61

.1
0%

40
.8

0%
60

.9
0%

61
.1

0%
61

.0
0%

0.
61

4

20
19

+
20

18
J4

8
65

.7
5%

65
.8

0%
33

.2
0%

67
.0

0%
65

.8
0%

65
.9

0%
0.

67
7

20
19

+
20

18
R

an
do

m
Fo

re
st

65
.3

3%
65

.3
0%

35
.3

0%
65

.6
0%

65
.3

0%
65

.4
0%

0.
68

4

20
19

+
20

18
A

da
B

oo
st

M
1

66
.6

0%
66

.6
0%

29
.1

0%
71

.4
0%

66
.6

0%
66

.2
0%

0.
66

5

20
19

+
20

18
SM

O
63

.8
5%

63
.8

0%
37

.1
0%

64
.0

0%
63

.8
0%

63
.9

0%
0.

63
4

20
19

+
20

18
M

ul
til

ay
er

Pe
rc

ep
tr

on
63

.0
0%

63
.0

0%
39

.4
0%

62
.7

0%
63

.0
0%

62
.8

0%
0.

68
3

69 Page 18 of 35 Empir Software Eng (2022) 27: 69

Ta
bl

e
6

(c
on

tin
ue

d)

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
19

+
20

18
N

ai
ve

B
ay

es
58

.3
5%

58
.4

0%
43

.7
0%

58
.2

0%
58

.4
0%

58
.3

0%
0.

58
4

20
20

J4
8

79
.9

5%
80

.0
0%

20
.3

0%
80

.3
0%

80
.0

0%
80

.0
0%

0.
83

2

20
20

R
an

do
m

Fo
re

st
80

.6
6%

80
.7

0%
20

.7
0%

80
.6

0%
80

.7
0%

80
.7

0%
0.

86
9

20
20

A
da

B
oo

st
M

1
81

.4
0%

16
.7

0%

20
20

SM
O

80
.7

7%
80

.8
0%

20
.2

0%
80

.9
0%

80
.8

0%
80

.8
0%

0.
80

3

20
20

M
ul

til
ay

er
Pe

rc
ep

tr
on

80
.0

7%
80

.1
0%

21
.5

0%
80

.0
0%

80
.1

0%
80

.0
0%

0.
86

8

20
20

N
ai

ve
B

ay
es

73
.3

9%
73

.4
0%

33
.0

0%
73

.7
0%

73
.4

0%
72

.3
0%

0.
78

3

20
20

+
20

19
J4

8
76

.3
2%

76
.3

0%
22

.1
0%

77
.8

0%
76

.3
0%

76
.5

0%
0.

80
1

20
20

+
20

19
R

an
do

m
Fo

re
st

77
.1

9%
77

.2
0%

22
.6

0%
77

.7
0%

77
.2

0%
77

.3
0%

0.
82

8

20
20

+
20

19
A

da
B

oo
st

M
1

76
.8

0%
76

.8
0%

20
.3

0%
79

.4
0%

76
.8

0%
76

.9
0%

0.
81

8

20
20

+
20

19
SM

O
75

.5
3%

75
.5

0%
25

.0
0%

75
.8

0%
75

.5
0%

75
.6

0%
0.

75
3

20
20

+
20

19
M

ul
til

ay
er

Pe
rc

ep
tr

on
75

.8
5%

75
.8

0%
24

.6
0%

76
.1

0%
75

.8
0%

75
.9

0%
0.

82
2

20
20

+
20

19
N

ai
ve

B
ay

es
68

.4
3%

68
.4

0%
35

.7
0%

68
.0

0%
68

.4
0%

67
.9

0%
0.

74
2

20
20

+
20

19
+

20
18

J4
8

76
.4

0%
76

.4
0%

22
.7

0%
77

.4
0%

76
.4

0%
76

.5
0%

0.
79

2

20
20

+
20

19
+

20
18

R
an

do
m

Fo
re

st
76

.7
7%

76
.8

0%
22

.7
0%

77
.5

0%
76

.8
0%

76
.9

0%
0.

82
8

20
20

+
20

19
+

20
18

A
da

B
oo

st
M

1
76

.4
0%

76
.4

0%
20

.5
0%

79
.3

0%
76

.4
0%

76
.5

0%
0.

80
7

20
20

+
20

19
+

20
18

SM
O

75
.1

9%
75

.2
0%

24
.6

0%
75

.8
0%

75
.2

0%
75

.3
0%

0.
75

3

20
20

+
20

19
+

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

76
.9

2%
76

.9
0%

22
.5

0%
77

.7
0%

76
.9

0%
77

.1
0%

0.
82

2

20
20

+
20

19
+

20
18

N
ai

ve
B

ay
es

68
.1

8%
68

.2
0%

35
.7

0%
67

.8
0%

68
.2

0%
67

.7
0%

0.
73

6

Page 19 of 35 69Empir Software Eng (2022) 27: 69

Ta
bl

e
7

G
od

C
la

ss
:P

er
fo

rm
an

ce
of

th
e

co
de

sm
el

lp
re

di
ct

io
n

m
od

el
s

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
18

J4
8

81
.8

2%
81

.8
0%

26
.5

0%
82

.0
0%

81
.8

0%
81

.1
0%

0.
69

2

20
18

R
an

do
m

Fo
re

st
63

.6
4%

63
.6

0%
47

.6
0%

61
.9

0%
63

.6
0%

62
.3

0%
0.

49
1

20
18

A
da

B
oo

st
M

1
68

.1
8%

68
.2

0%
39

.6
0%

67
.4

0%
68

.2
0%

67
.7

0%
0.

57
1

20
18

SM
O

77
.2

7%
77

.3
0%

29
.1

0%
76

.9
0%

77
.3

0%
76

.9
0%

0.
74

1

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

72
.7

3%
72

.7
0%

31
.7

0%
72

.7
0%

72
.7

0%
72

.7
0%

0.
76

8

20
18

N
ai

ve
B

ay
es

68
.1

8%
68

.2
0%

45
.0

0%
66

.7
0%

68
.2

0%
66

.1
0%

0.
65

1

20
19

J4
8

72
.8

7%
72

.9
0%

29
.5

0%
72

.7
0%

72
.9

0%
72

.7
0%

0.
72

5

20
19

R
an

do
m

Fo
re

st
73

.6
4%

73
.6

0%
28

.5
0%

73
.5

0%
73

.6
0%

73
.5

0%
0.

80
2

20
19

A
da

B
oo

st
M

1
72

.8
7%

72
.9

0%
29

.5
0%

72
.7

0%
72

.9
0%

72
.7

0%
0.

79
3

20
19

SM
O

76
.7

4%
76

.7
0%

26
.6

0%
76

.9
0%

76
.7

0%
76

.3
0%

0.
75

1

20
19

M
ul

til
ay

er
Pe

rc
ep

tr
on

75
.9

7%
76

.0
0%

27
.7

0%
76

.1
0%

76
.0

0%
75

.5
0%

0.
79

7

20
19

N
ai

ve
B

ay
es

76
.7

4%
76

.7
0%

26
.6

0%
76

.9
0%

76
.7

0%
76

.3
0%

0.
80

4

20
19

+
20

18
J4

8
70

.8
6%

70
.9

0%
30

.0
0%

70
.8

0%
70

.9
0%

70
.8

0%
0.

69
3

20
19

+
20

18
R

an
do

m
Fo

re
st

67
.5

5%
67

.5
0%

32
.4

0%
67

.8
0%

67
.5

0%
67

.6
0%

0.
78

1

20
19

+
20

18
A

da
B

oo
st

M
1

69
.5

4%
69

.5
0%

30
.9

0%
69

.5
0%

69
.5

0%
69

.5
0%

0.
77

1

20
19

+
20

18
SM

O
72

.1
9%

72
.2

0%
28

.9
0%

72
.1

0%
72

.2
0%

72
.0

0%
0.

71
6

20
19

+
20

18
M

ul
til

ay
er

Pe
rc

ep
tr

on
71

.5
2%

71
.5

0%
29

.0
0%

71
.5

0%
71

.5
0%

71
.5

0%
0.

80
5

20
19

+
20

18
N

ai
ve

B
ay

es
74

.8
3%

74
.8

0%
26

.5
0%

74
.9

0%
74

.8
0%

74
.6

0%
0.

66
9

20
20

J4
8

87
.5

0%
87

.5
0%

17
.3

0%
87

.8
0%

87
.5

0%
87

.2
0%

0.
79

1

69 Page 20 of 35 Empir Software Eng (2022) 27: 69

Ta
bl

e
7

(c
on

tin
ue

d)

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
20

R
an

do
m

Fo
re

st
89

.0
0%

16
.4

0%
0.

89
3

20
20

A
da

B
oo

st
M

1
88

.2
4%

88
.2

0%
16

.8
0%

88
.7

0%
88

.2
0%

87
.9

0%
0.

87
6

20
20

SM
O

88
.2

4%
88

.2
0%

16
.8

0%
88

.7
0%

88
.2

0%
87

.9
0%

0.
85

7

20
20

M
ul

til
ay

er
Pe

rc
ep

tr
on

88
.2

4%
88

.2
0%

16
.8

0%
88

.7
0%

88
.2

0%
87

.9
0%

0.
88

5

20
20

N
ai

ve
B

ay
es

89
.0

0%
16

.4
0%

20
20

+
20

19
J4

8
82

.6
4%

82
.6

0%
21

.7
0%

82
.9

0%
82

.6
0%

82
.3

0%
0.

75
9

20
20

+
20

19
R

an
do

m
Fo

re
st

83
.0

2%
83

.0
0%

21
.5

0%
83

.4
0%

83
.0

0%
82

.6
0%

0.
85

0

20
20

+
20

19
A

da
B

oo
st

M
1

82
.6

4%
82

.6
0%

21
.7

0%
82

.9
0%

82
.6

0%
82

.3
0%

0.
85

7

20
20

+
20

19
SM

O
82

.2
6%

82
.3

0%
22

.3
0%

82
.6

0%
82

.3
0%

81
.9

0%
0.

80
0

20
20

+
20

19
M

ul
til

ay
er

Pe
rc

ep
tr

on
82

.2
6%

82
.3

0%
22

.3
0%

82
.6

0%
82

.3
0%

81
.9

0%
0.

85
3

20
20

+
20

19
N

ai
ve

B
ay

es
83

.0
2%

83
.0

0%
21

.5
0%

83
.4

0%
83

.0
0%

82
.6

0%
0.

85
9

20
20

+
20

19
+

20
18

J4
8

81
.8

8%
81

.9
0%

21
.7

0%
82

.3
0%

81
.9

0%
81

.5
0%

0.
76

3

20
20

+
20

19
+

20
18

R
an

do
m

Fo
re

st
81

.5
3%

81
.5

0%
22

.0
0%

81
.9

0%
81

.5
0%

81
.2

0%
0.

85
3

20
20

+
20

19
+

20
18

A
da

B
oo

st
M

1
80

.8
4%

80
.8

0%
22

.7
0%

81
.2

0%
80

.8
0%

80
.5

0%
0.

85
4

20
20

+
20

19
+

20
18

SM
O

83
.2

8%
83

.3
0%

20
.3

0%
83

.8
0%

83
.3

0%
82

.9
0%

0.
81

5

20
20

+
20

19
+

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

82
.2

3%
82

.2
0%

20
.1

0%
82

.2
0%

82
.2

0%
82

.1
0%

0.
88

0

20
20

+
20

19
+

20
18

N
ai

ve
B

ay
es

81
.8

8%
81

.9
0%

21
.3

0%
82

.1
0%

81
.9

0%
81

.6
0%

0.
73

1

Page 21 of 35 69Empir Software Eng (2022) 27: 69

Ta
bl

e
8

Fe
at

ur
e

E
nv

y:
Pe

rf
or

m
an

ce
of

th
e

co
de

sm
el

lp
re

di
ct

io
n

m
od

el
s

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
18

J4
8

70
.0

0%
70

.0
0%

70
.0

0%
-

70
.0

0%
-

0.
00

0

20
18

R
an

do
m

Fo
re

st
70

.0
0%

70
.0

0%
70

.0
0%

-
70

.0
0%

-
0.

00
0

20
18

A
da

B
oo

st
M

1
70

.0
0%

70
.0

0%
70

.0
0%

-
70

.0
0%

-
0.

00
0

20
18

SM
O

70
.0

0%
70

.0
0%

70
.0

0%
-

70
.0

0%
-

0.
00

0

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

70
.0

0%
70

.0
0%

70
.0

0%
-

70
.0

0%
-

0.
00

0

20
18

N
ai

ve
B

ay
es

30
.0

0%
30

.0
0%

87
.1

0%
35

.0
0%

30
.0

0%
32

.3
0%

0.
00

0

20
19

J4
8

56
.8

5%
56

.9
0%

46
.1

0%
56

.2
0%

56
.9

0%
56

.2
0%

0.
56

3

20
19

R
an

do
m

Fo
re

st
58

.3
8%

58
.4

0%
44

.7
0%

57
.8

0%
58

.4
0%

57
.7

0%

20
19

A
da

B
oo

st
M

1
54

.8
2%

54
.8

0%
51

.4
0%

52
.9

0%
54

.8
0%

51
.4

0%
0.

54
8

20
19

SM
O

52
.7

9%
52

.8
0%

51
.3

0%
51

.5
0%

52
.8

0%
51

.4
0%

0.
50

8

20
19

M
ul

til
ay

er
Pe

rc
ep

tr
on

51
.7

8%
51

.8
0%

52
.3

0%
50

.4
0%

51
.8

0%
50

.4
0%

0.
54

4

20
19

N
ai

ve
B

ay
es

52
.2

8%
52

.3
0%

45
.4

0%
54

.3
0%

52
.3

0%
52

.0
0%

0.
54

7

20
19

+
20

18
J4

8
57

.9
7%

58
.0

0%
42

.8
0%

57
.9

0%
58

.0
0%

0.
55

2

20
19

+
20

18
R

an
do

m
Fo

re
st

57
.4

9%
57

.5
0%

43
.8

0%
57

.3
0%

57
.5

0%
57

.3
0%

0.
54

2

20
19

+
20

18
A

da
B

oo
st

M
1

53
.6

2%
53

.6
0%

48
.8

0%
52

.9
0%

53
.6

0%
52

.9
0%

0.
55

4

20
19

+
20

18
SM

O
55

.5
6%

55
.6

0%
45

.4
0%

55
.5

0%
55

.6
0%

55
.5

0%
0.

55
1

20
19

+
20

18
M

ul
til

ay
er

Pe
rc

ep
tr

on
53

.6
2%

53
.6

0%
47

.5
0%

53
.5

0%
53

.6
0%

53
.5

0%
0.

54
8

69 Page 22 of 35 Empir Software Eng (2022) 27: 69

Ta
bl

e
8

(c
on

tin
ue

d)

D
at

as
et

C
la

ss
if

ie
r

A
cc

ur
ac

y
T

P
R

at
e

FP
R

at
e

Pr
ec

is
io

n
R

ec
al

l
F-

M
ea

su
re

R
O

C
A

re
a

20
19

+
20

18
N

ai
ve

B
ay

es
51

.6
9%

51
.7

0%
47

.3
0%

52
.6

0%
51

.7
0%

51
.7

0%
0.

54
8

20
20

J4
8

64
.2

3%
64

.2
0%

64
.2

0%
-

64
.2

0%
-

0.
46

7

20
20

R
an

do
m

Fo
re

st
64

.2
3%

64
.2

0%
64

.2
0%

-
64

.2
0%

-
0.

48
6

20
20

A
da

B
oo

st
M

1
64

.2
3%

64
.2

0%
64

.2
0%

-
64

.2
0%

-
0.

46
8

20
20

SM
O

64
.2

3%
64

.2
0%

64
.2

0%
-

64
.2

0%
-

0.
50

0

20
20

M
ul

til
ay

er
Pe

rc
ep

tr
on

64
.2

3%
64

.2
0%

64
.2

0%
-

64
.2

0%
-

0.
53

6

20
20

N
ai

ve
B

ay
es

51
.2

2%
51

.2
0%

38
.2

0%
51

.2
0%

50
.9

0%
0.

48
2

20
20

+
20

19
J4

8
59

.3
8%

59
.4

0%
56

.7
0%

57
.0

0%
59

.4
0%

48
.4

0%
0.

52
9

20
20

+
20

19
R

an
do

m
Fo

re
st

59
.7

0%
56

.1
0%

58
.0

0%
49

.4
0%

0.
54

8

20
20

+
20

19
A

da
B

oo
st

M
1

58
.7

5%
58

.8
0%

59
.3

0%
34

.8
0%

58
.8

0%
43

.7
0%

0.
51

9

20
20

+
20

19
SM

O
59

.0
6%

59
.1

0%
56

.5
0%

55
.7

0%
59

.1
0%

49
.1

0%
0.

51
3

20
20

+
20

19
M

ul
til

ay
er

Pe
rc

ep
tr

on
57

.5
0%

57
.5

0%
56

.4
0%

52
.8

0%
57

.5
0%

49
.8

0%
0.

54
5

20
20

+
20

19
N

ai
ve

B
ay

es
52

.8
1%

52
.8

0%
40

.7
0%

58
.7

0%
52

.8
0%

51
.9

0%
0.

53
2

20
20

+
20

19
+

20
18

J4
8

57
.5

8%
57

.6
0%

57
.8

0%
50

.5
0%

57
.6

0%
44

.5
0%

0.
51

8

20
20

+
20

19
+

20
18

R
an

do
m

Fo
re

st
58

.4
8%

58
.5

0%
55

.9
0%

56
.2

0%
58

.5
0%

47
.7

0%
0.

53
9

20
20

+
20

19
+

20
18

A
da

B
oo

st
M

1
57

.8
8%

57
.9

0%
58

.4
0%

33
.8

0%
57

.9
0%

42
.7

0%
0.

49
8

20
20

+
20

19
+

20
18

SM
O

58
.7

9%
58

.8
0%

54
.7

0%
56

.9
0%

58
.8

0%
49

.7
0%

0.
52

0

20
20

+
20

19
+

20
18

M
ul

til
ay

er
Pe

rc
ep

tr
on

54
.8

5%
54

.8
0%

58
.5

0%
46

.8
0%

54
.8

0%
45

.5
0%

0.
53

3

20
20

+
20

19
+

20
18

N
ai

ve
B

ay
es

51
.8

2%
51

.8
0%

43
.2

0%
56

.1
0%

51
.8

0%
51

.1
0%

0.
52

4

Page 23 of 35 69Empir Software Eng (2022) 27: 69

When we evaluate the models by the ROC value, we verify that, except for the J48 model,
all the other five models have values higher than 0.857. For the remaining evaluation metrics
all six models have: a) accuracy values higher or equal to 87.50%, b) precision values higher
or equal to 87.80%, c) recall values higher or equal to 87.50%, and d) f-measure values
higher or equal to 87.20%.

When we compare the results of the code smell God Class detection with those of the
Long Method, we verify that the results of God class are better.

4.2.3 Best machine learning model for the code smell Feature Envy

Regarding the code smell Feature Envy, we present in Table 8 the results of the evaluation of
the different models. For the dataset 2018 of Feature Envy it was not possible to obtain pre-
cision, and consequently f-measure, since all the instances classified as TRUE were poorly
classified, i.e., all the instances were classified as FALSE. For the dataset 2020, we also
did not obtain precision and f-measure, because all the instances classified as FALSE were
badly classified, i. e., all the models created from this dataset to classify the future envy,
classified all the instances of the dataset 2020 as TRUE. For this reason we will not consider
in the response to the RQ the models resulting from the training by these two datasets.

When we evaluate the models by the ROC metric, we find that the best model is the Ran-
dom Forrest with a ROC of 0.570. However, if we compare the various evaluation metrics
we find that all the other evaluation metrics have better values than the ROC metric. The
best performance in the detection of Feature Envy is obtained by the Naive Bayes model for
precision with a value of 61.40%. The Random Forrest model also obtains the best accuracy
with 59.69% and recall with a value of 59.70%.

When we compare the results of the models for the detection of the three smells, we
verify that the worst results are obtained by the Feature Envy detection models.

4.2.4 Summary of RQ2 results

For the code smell Long Method, the model that best performs its detection is AdaBoostM1,
presenting the best values for all evaluation metrics. For the God Class, the model that
presents the best value for the ROC is Naive Bayes with a value of 0.896. For Feature Envy,
when we evaluate the models by the ROC metric, we find that the best model is Random
Forrest. However, for this code smell, the best performance is obtained by the Naive Bayes
model, for the precision metric, with a value of 61.40%. When we compare the results of
the models for the detection of the three smells, we verify that the worst results are obtained
by the Feature Envy detection models and the best results by God Class.

4.3 RQ3. Is it possible to use Collective Knowledge for code smells detection?

Several studies present code smells detection results through machine learning techniques
with accuracy, precision, recall, and f-measure, very close to 100%. However, these studies
use very treated datasets to obtain good results, which makes the datasets unrealistic. A
proof of this is the replication of one of the most important studies on code smells detection
using machine learning techniques by Di Nucci et al. (2018), where more realistic datasets
were used in this replication. The results of this replication show that the accuracy value, on
average, decreased from 96% to 76%, but the f-measure presented results 90% lower than
in the reference work. When we compare our results with the Di Nucci et al. (2018) study,
we find that the results are similar in some metrics, and better in others.

69 Page 24 of 35 Empir Software Eng (2022) 27: 69

As reported in the answers to RQ1 and RQ2, we obtained values for some machine
learning models close to 90%, which can be considered very good. The fact that the most
recent datasets are the ones that usually present the best results, mainly the year 2020, leaves
us with expectations of being able to improve the results further. This improvement is mainly
due to the improvement of the methodological process, which has been progressively refined
each year. Thus, the answer to this RQ is yes, it is possible to use Collective Knowledge for
code smells detection.

4.3.1 Summary of RQ3 results

The answer to this RQ is yes, it is possible to use Collective Knowledge for code smells
detection. The Crowdsmelling approach obtained values for some ML models close to 90%,
which can be considered very good. Overall our results are similar to those of Di Nucci et al.
(2018)’s study and are even better in some metrics. The fact that the most recent datasets are
the ones that usually show the best results, mainly the year 2020, leaves us with expectations
that we can improve the results even more.

5 Discussion

5.1 Research questions (RQ)

In this section, we present the discussion of the results considering the three RQs. Regarding
the comparison of our results with existing works, we will compare with Di Nucci et al.
(2018) study, since it is the one that presents more similarities with ours, also using more
realistic datasets.

For the long Method, the model with the best prediction is AdaBoostM1, trained on the
2020 dataset, with a ROC of 0.870 (see Table 3), but also F-Measure and Accuracy show
values higher than 80%, namely 81.50%, and 81.36%, respectively (see Table 6). Random
Forest, with a ROC of 0.869, shows a value almost equal to AdaBoostM1. These two models
show good results, in line with the results presented in Di Nucci et al. (2018)’s study. The
MultilayerPerceptron and J48 models also show good results with the best ROC of 0.868
and 0.832, respectively, for the 2020 dataset. Namely, MultilayerPerceptron is the second-
best model for three datasets (2019+2018, 2020+2019, 2020+2019+2018). In opposition
is NaiveBayes and SMO which show the worst results for all datasets, for example, for the
2020 dataset where they have their best values, the ROC is 0.783 for NaiveBayes, and 0.803
for SMO.

Also, regarding the code smell Long Method, the models trained with the most recent
dataset, the year 2020, have the best values, with a ROC greater than or equal to 0.803 for
five models (J48, Random Forest, AdaBoostM1, SMO, MultilayerPerceptron) out of the six
we used. Only the NaiveBayes model has a ROC lower than 0.800, more precisely 0.783,
but still higher than all models trained with datasets from previous years.The fact that the
models trained on the most recent dataset show the best results is important because it means
that there has been an evolution in the production of the datasets over the three years by this
approach.

For the code smell God Class, prediction values very close to 90% were obtained, as
such, we consider these to be good values compared to similar studies. The model that
presented the best ROC value was NaiveBayes with 0.896, followed by Random Forest
with 0.893 (see Table 4) for the 2020 dataset. These two models also had the best values

Page 25 of 35 69Empir Software Eng (2022) 27: 69

for the other metrics, with both having equal values for F-Measure 88.70% and Accuracy
of 88.97% (see Table 7) for the 2020 dataset. For the MultilayerPerceptron model, good
results were also obtained, with a ROC of 0.885, for the 2020 dataset and a ROC of 0.880
for the 2020+2019+2018 dataset. Hence, this model presented the 3rd and 4th best values.
The AdaBoostM1 and the SMO models obtained their best values with the 2020 dataset,
with a ROC value of 0.876 and 0.857, respectively. The worst values were presented by the
J48 model, with its best ROC value of 0.791, thus being the only model that failed to exceed
the ROC value of 0.800. For the code smell God Class it happened the same as for the code
smell Long Method, all models presented their best ROC values when trained with the most
recent year datasets, the year 2020.

For the code smell Feature Envy, it was not possible to obtain the values for all the eval-
uation metrics for the reasons already explained in the results section (see Section 4.2.3).
The models for this code smell showed low results, being the worst results of the three code
smells. Thus, the best ROC value was 0.570 for Random Forrest, but far from the values
obtained for God Class and Long Method, 0.896 and 0.870, respectively. The NaiveBayes
model showed the best result of all the evaluation metrics with a value of 61.40% for Pre-
cision. Random Forrest again presented the best value for Recall 59.70% and Accuracy
59.69%. For F-Measure, the best value of 58.00% is obtained with the J48 model. Regarding
the datasets that show better results for Feature Envy, the Accuracy, Precision, and Recall
metrics were the 2020+2019, for the F-measure and ROC metrics were the 2019+2018 and
2019, respectively. Hence, no dataset concentrates most of the best values for the various
metrics.

In the following subsections we provide a summary for each of the RQs.

5.1.1 RQ1. What is the performance of machine learning techniques when trained
with data from the crowd and therefore more realistic?

The best result was obtained for the code smell God Class with a ROC value of 0.896,
however, the Long Method with a ROC of 0.870 is very close. The worst result was
obtained for Feature Envy with a ROC of 0.570. The difference in ROC value between
the best and worst code smell is 0.326. This considerable difference is due to the constitution
of the Feature Envy datasets. When we analyze the composition of the datasets, we see that
the diversity of cases (classified methods) is much smaller compared to that of the Long
Method datasets, which is also a code smell in the method scope, and consequently uses
the same code metrics. The solution to this problem is to continue to grow the dataset by
classifying methods that are not already part of it. However, this problem alerts us to the
classification of more complex code smells, as such, with fewer occurrences in the code,
and where programmers tend to follow more of the advisors’ detection results.

When we compare our ROC values with those obtained by Di Nucci et al. (2018), we
find that for the code smells God Class and Long Method, we obtain similar values in the
range of 0.89 and 0.87, respectively. Regarding the code smell Feature Envy, for the reasons
already presented, our value of 0.57 is considerably lower than the one presented by Di
Nucci et al. (2018), which is 0.89.

5.1.2 RQ2. What is the best machine learning model to detect each one of the three
code smells?

Having the ROC as the reference metric, for the Long Method the best models were
AdaBoostM1 and Random Forrest, for the God Class it was Naive Bayes and Random

69 Page 26 of 35 Empir Software Eng (2022) 27: 69

Forrest that presented the best values, and for the Feature Envy, it was Random For-
rest and Naive Bayes models. Thus, we can conclude that in regards to which is the best
ML model for the detection of the three code smells, we do not have a model that guarantees
the best detection value in the three smells, however, Random Forrest stands out.

When we compare the results of the models for the detection of the three smells, we
verify that the best results are obtained by the God Class detection models, and the worst
results are obtained by the Feature Envy detection models.

In the Di Nucci et al. (2018) study, the best performances (for all code smells) were
obtained by the Random Forrest and J48 models. These two models have in common that
they are based on decision trees. When we compare them to our models we can conclude,
i) Random Forrest was also the model with which we obtained the best results when con-
sidering all smells, ii) regarding J48, it was not one of our best models, because only for
the F-Measure in the Feature Envy code smell it presented the best value, iii) Naive Bayes,
which was one of our best models, did not present significant results in the Di Nucci et al.
(2018) study.

5.1.3 RQ3. Is it possible to use Collective Knowledge for code smells detection?

This study is the first to use the Crowdsmelling approach for code smell detection, as such,
there are always methodological aspects that could have been improved. As a result of this
study, we have also already found more aspects that can be improved in the future which
we present in this discussion.

When we have dozens of participants, it is not possible to have total control over the
actions of each participant. In our case, this was reflected in the non-use, in the first year,
of data from 11 teams, out of a total of 42 participants. To have better control over the par-
ticipants’ actions, we removed the possibility for them to choose the Java project on which
to detect the code smells, and all the teams started using the same project. This decision
resulted in a lack of diversity of cases when a code smell is more complex and consequently
has fewer existences in the code (in our case, Feature Envy). Another consequence was that
the participants started to follow the advisor’s suggestions more since the code smell is more
complex.

In this experiment, we performed many processes manually, such as the data aggrega-
tion process, which proved to be time and effort consuming, and therefore impractical to
implement in a company’s reality. However, our goal was to perform the first experiment to
verify the potential of this approach.

This first study presents promising results, therefore, we are convinced of the appli-
cability of this approach in detecting code smells. One of the reasons for this is that this
approach allowed us to gather in the datasets a wide variety of opinions regarding the clas-
sification of code smells since it has the contribution of more than 350 participants. Another
reason is that the datasets have borderline smells (where it is not clear whether it is a smell
or not) which make it harder to detect. Finally, the fact that the datasets are not balanced
also contributes to the datasets being considered more realistic.

We have organized the datasets by year so that we can compare the results of each year
and thus understand the progress in implementing this approach. The results obtained show
progress over these years, with the best values being obtained in 2020. Thus, we are led to
conclude that we are on the right track and that we can improve these results much more.

From a methodological point of view, more validation experiments are needed to cover
more code smells, build more broad datasets, and to increase external validity. To address
many of the issues presented, we are developing a tool based on micro-tasks to automate

Page 27 of 35 69Empir Software Eng (2022) 27: 69

the whole process of the Crowdsmelling approach, from the extraction of metrics from the
Java project code to the validation of code smells by the developers. With these tools, our
goal is to move to the next level, which is to study the implementation of this approach in
an industrial environment.

5.2 Implications and limitations of the Crowdsmelling Approach

The Crowdsmelling approach has several advantages for developers and researchers because
it is a dynamic approach that does not require the definition of rules for the detection of each
code smell and its thresholds. This approach through the input given by developers produces
datasets more and more adapted to the developers’ reality, which implies the production
of better ML models and consequently a better detection of code smells. These dynamics
presented by the approach has two main advantages: i) although we have used only three
code smells in this study, it is not limited to these code smells, and can be generalized to
other code smells; ii) it makes the detection accuracy improve as the feedback from the
developers grows (by improving the learning datasets) and leads the ML models to converge
to maximum accuracy.

The learning dynamics presented in the previous paragraph, are also the main limitation
of the approach, because it is dependent on feedback from developers, and it is not possi-
ble to predict exactly how much convergence in learning can be achieved, i.e., what is the
maximum detection accuracy.

To better demonstrate our approach, we will exemplify two scenarios: i) a company
where there is a set of development rules, namely, code smells, that is known and respected
by all developers. In this scenario all developers are aligned with the code smells rules, thus
contributing to a clear definition of what a code smell is in the datasets. In this scenario,
we have faster convergence and will achieve higher detection accuracy; ii) A successful
open-source project, where many developers contribute. In this scenario, it will be more
complicated for all developers to respect the rules since there will be less alignment among
developers, and therefore more divergence on what is a code smell. Our approach will
always translate in the datasets what the developers understand to be a code smell, but the
convergence will take longer and the detection accuracy will be lower.

In both scenarios, this approach learns from the context in which it is used by learning
the code smells detection rules used, thus always translating the developers’ reality. The
more precise the detection rules, the higher the detection accuracy.

5.3 Threats to validity

In our study, we made assumptions that may threaten the validity of our results. In this
section, we discuss possible sources of threats, and how we mitigated them.

5.3.1 Conclusion validity

Threats in this category impact the relation between treatment and outcome.
The first threat is in the evaluation methodology, so we adopted the 10-fold cross-

validation, which is one of the most used in machine learning, and to directly compare our
results with those achieved in the other study’s.

As for the evaluation metrics adopted to interpret the performance of the experimented
models, we have adopted the most common machine learning metrics, which have been
used in other studies with some similarity.

69 Page 28 of 35 Empir Software Eng (2022) 27: 69

To test if there was a statistically significant difference between the performance of the
six machine learning models, we used the one-way analysis of variance (ANOVA).

5.3.2 Construct validity

As for potential issues related to the relationship between theory and observation, we may
have been subject of problems in the adopted methodology. To avoid bias in process, we
elaborated a script in which we detailed all the steps that the teams had to carry out to detect
code smells, so that there would be uniformity in the process. However, we cannot guarantee
the correct use of this script by all the teams.

Code metrics are extremely important because they play the role of independent vari-
ables in the machine learning algorithms. To avoid bias in metrics extraction we used the
same metrics as in Fontana et al. (2015), since they are publicly available. As for the
experimented prediction models, we exploited the implementation provided by the Weka
framework (Hall et al. 2009), which is widely considered as a reliable tool. To avoid bias in
the parameterization of the Weka algorithms, we used the default values for the parameters.

5.3.3 Internal validity

This threat is related to the correctness of the experiments’ outcome. Since the definition
of code smells is subjective, it may cause different interpretations and, as such, the manual
evaluation is not entirely reliable. To mitigate this problem, an advisor is used in the exper-
iment to serve as a basis for identifying code smells, although the final decision is always
made by the team, which is composed of several developers, and all had the same training.

To avoid participants only classifying code smells detected by the JDeodorant advisor
(although it was optional to use it), it was indicated that they would have to classify at least
one package, however, not all teams did so. This requires teams to manually classify, based
directly on code metrics, a set of false positive and negative code smells as detected by
JDeodorant.

The participants in this study were students attending a compulsory Software Engi-
neering course. In the scope of this course, an optional assignment was done where this
experiment was carried out. To have rigor in the accomplishment of this work, since it was
optional, the works were evaluated by the teachers and a grade was assigned according to
the quality demonstrated. The fact that only students were used can be a threat, however,
these are finalists who in three months will be working in companies. On the other hand,
the use of students has advantages and disadvantages as we can see in the paper by Feldt
et al. (2018).

The maturity, experience, and knowledge of team members about code smells is a vari-
able that we cannot control. As such, there may be variations in the accuracy and precision
of the detection of code smells. To minimize the possible bias, the decisions are not indi-
vidual, but taken by the team. The time given to do this work was 3 weeks, which may
have been a reason for bias, but considering that it was a team effort we thought it was
sufficient.

Because code smells is only detected in three Java projects, there may be some bias as to
the number and type of code smells existing in these Java projects. We chose these projects
because they are open-source, are widely used in code smells detection, and are not toy
examples due to their considerable dimension.

Page 29 of 35 69Empir Software Eng (2022) 27: 69

5.3.4 External validity

Finally, the External validity is concerned with whether we can generalize the results outside
the scope of our study.

With respect to the generalizability, we used the three most common code smells in this
type of studies. Regarding the code metrics, we used a high number, 61 metrics for God
Class and 82 metrics for Feature Envy and Long Method, thus ensuring a wide scope.

In terms of programming languages, we only used Java projects, but Java is by far the
most used language in code smells detection studies, accounting for 77.1% of the cases
(Pereira dos Reis et al. 2021).

The fact that this study has a very manual component does not make it easy to reproduce,
however, all the necessary indications are in the study, and a set of materials is available on
GitHub.

6 Conclusion and future work

In Reis et al. (2017) we have proposed the concept of Crowdsmelling – use of collective
intelligence in the detection of code smells – to mitigate the aforesaid problems of subjec-
tivity and lack of calibration data required to obtain accurate detection model parameters. In
this paper we reported first results of a study investigating the approach Crowdsmelling, a
collaborative crowdsourcing approach, based in machine learning, where the wisdom of the
crowd (of software developers) will be used to collectively calibrate code smells detection
algorithms.

For 3 years we collected code smells detection data by several teams manually, although
they could use JDeodorant as an advisor if they wanted. Combining the data from each year
with the previous ones, we created several oracles for each of the three code smells (Long
Method, God Class, Feature Envy). The latter were used to train a set of machine learning
algorithms, creating the detection models for each of the three code smells, in a total of 108
models. Finally, to evaluate the models we tested them using the 10-Fold Cross-Validation
methodology, and analyzed the metrics Accuracy, Precision, Recall, and F-Measure, with
special emphasis on ROC, because the datasets were not treated, for example, balanced.
This way we created the most realistic datasets possible. To check if there were significant
differences between the classifications presented by the different models, we proceeded to
the analysis of variance through a one-way analysis of variance (ANOVA).

Regarding RQ1, we conclude that the best results for the code smell Long Method were
obtained by the Random Forrest and AdaBoostM1 algorithms. The best result with a ROC
of 0.870 was obtained by AdaBoostM1 when trained by the dataset 2020, followed by the
Random Forrest with ROC of 0.869 for the same dataset. For the code smell God Class, the
best result was obtained by the NaiveBayes algorithm, when trained by the dataset 2020,
with the ROC value of 0.896. For Feature Envy the results are low, with the Random Forest
algorithm having the best ROC value of 0.570 when trained by dataset 2019. The results of
the variance tests (ANOVA) show there was no statistically significant difference between
the performance of the six machine learning models, when trained with data from the crowd
and therefore more realistic.

As for RQ2, the best machine learning model for Long Method detection is AdaBoostM1,
presenting the best values for all evaluation metrics, a ROC value of 0.870, a accuracy of
81.36%, a precision of 82.90%, a recall of 81.40%, and F-measure of 81.50%. For the God
Class, the model that presents the best value for the ROC is Naive Bayes with a value of

69 Page 30 of 35 Empir Software Eng (2022) 27: 69

0.896. the Naive Bayes and Random Forest models present an accuracy value of 88.97%,
a precision value of 89.70%, a recall value of 89.00%, and an f-measure value of 88.70%.
For the Feature Envy, best model is the Random Forrest with a ROC of 0.570. However, the
best performance in the detection of Feature Envy is obtained by the Naive Bayes model for
precision with a value of 61.40%.

Regarding RQ3, it is possible to use the Crowdsmelling – use of collective intelligence in
the detection of code smells – as a good approach for the detection of code smells, because
we obtained values for some machine learning models close to 90%, which can be consid-
ered very good, for realistic datasets, which reflect the detection performed by developers.
The fact that the most recent datasets, the year 2020, are the ones that usually presented the
best results, leaves us with great motivation to continue developing this detection approach
because we think that we can even better the results.

We are currently developing a plugin for the Eclipse IDE, which extracts the code
metrics, detects the code smells, identifies the code smells in the code, receives the program-
mer’s opinion regarding the detection of the code smell (i.e., if the programmer agrees or not
with the code smell and stores all this information in a database). This plugin is expected to
simplify the use of the Crowdsmelling approach, making it simple for programmers to use
when developing their Java projects.

Appendix: Code metrics

Metric Acronym

Lines of Code LOC
Lines of Code Without Accessor or Mutator Methods LOCNAMM
Number of Packages NOPK
Number of Classes NOCS
Number of Methods NOM
Number of Not Accessor or Mutator Methods NOMNAMM
Number of Attributes NOA
Cyclomatic Complexity CYCLO
Weighted Methods Count WMC
Weighted Methods Count of Not Accessor or Mutator Methods WMCNAMM
Average Methods Weight AMW
Average Methods Weight of Not Accessor or Mutator Methods AMWNAMM
Maximum Nesting Level MAXNESTING
Weight of Class WOC
Called Local Not Accessor or Mutator Methods CLNAMM
Number of Parameters NOP
Number of Accessed Variables NOAV
Access to Local Data ATLD
Number of Local Variable NOLV
Tight Class Cohesion TCC
Lack of Cohesion in Methods LCOM
Fanout FANOUT
Access to Foreign Data ATFD

Page 31 of 35 69Empir Software Eng (2022) 27: 69

Foreign Data Providers FDP
Response for A Class RFC
Coupling Between Objects Classes CBO
Called Foreign Not Accessor or Mutator Methods CFNAMM
Coupling Intensity CINT
Coupling Dispersion CDISP
Maximum Message Chain Length MAMCL
Number of Message Chain Statements NMCS
Mean Message Chain Length MEMCL
Changing Classes CC
Changing Methods CM
Number of Accessor Methods NOAM
Number of Public Attributes NOPA
Locality of Attribute Accesses LAA
Depth of Inheritance Tree DIT
Number of Interfaces NOI
Number of Children NOC
Number of Methods Overridden NMO
Number of Inherited Methods NIM
Number of Implemented Interfaces NOII
Number of Default Attributes NODA
Number of Private Attributes NOPVA
Number of Protected Attributes NOPRA
Number of Final Attributes NOFA
Number of Final and Static Attributes NOFSA
Number of Final and Non - Static Attributes NOFNSA
Number of Not Final and Non - Static Attributes NONFNSA
Number of Static Attributes NOSA
Number of Non - Final and Static Attributes NONFSA
Number of Abstract Methods NOABM
Number of Constructor Methods NOCM
Number of Non - Constructor Methods NONCM
Number of Final Methods NOFM
Number of Final and Non - Static Methods NOFNSM
Number of Final and Static Methods NOFSM
Number of Non - Final and Non - Abstract Methods NONFNABM
Number of Final and Non - Static Methods NONFNSM
Number of Non - Final and Static Methods NONFSM
Number of Default Methods NODM
Number of Private Methods NOPM
Number of Protected Methods NOPRM
Number of Public Methods NOPLM
Number of Non - Accessors Methods NONAM
Number of Static Methods NOSM

69 Page 32 of 35 Empir Software Eng (2022) 27: 69

Acknowledgements This work was partially funded by the Portuguese Foundation for Science and Tech-
nology, under ISTAR’s projects UIDB/04466/2020 and UIDP/04466/2020, and by Anima Institute (Edital
N◦ 43/2021).

References

Baltes S, Treude C (2020) Code duplication on stack overflow. In: Proceedings of the ACM/IEEE 42nd
International conference on software engineering: new ideas and emerging results, ICSE-NIER ’20.
Association for Computing Machinery, New York, pp 13–16

Bavota G, Russo B (2016) A large-scale empirical study on self-admitted technical debt. In: Proceedings of
the 13th international conference on mining software repositories, pp 315–326

Bentzien J, Muegge I, Hamner B, Thompson DC (2013) Crowd computing: Using competitive dynamics to
develop and refine highly predictive models. Drug Discov Today 18(9-10):472–478

Bigham JP, Bernstein MS, Adar E (2014) Human-computer interaction and collective intelligence. In:
Malone TW, Bermstein MS (eds) The Collective Intelligence Handbook. CMU

Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Caldeira J, Brito e Abreu F, Cardoso J, dos Reis JP (2020) Unveiling process insights from refactoring

practices
de Mello R, Oliveira R, Sousa L, Garcia A (2017) Towards effective teams for the identification of code

smells. In: 2017 IEEE/ACM 10th international workshop on cooperative and human aspects of software
engineering (CHASE), pp 62–65

Di Nucci D, Palomba F, Tamburri DA, Serebrenik A, De Lucia A (2018) Detecting code smells using
machine learning techniques: Are we there yet? In: 2018 IEEE 25th international conference on software
analysis, evolution and reengineering (SANER), pp 612–621

Feldt R, Zimmermann T, Bergersen GR, Falessi D, Jedlitschka A, Juristo N, Münch J, Oivo M, Runeson P,
Shepperd M, Sjøberg DI, Turhan B (2018) Four commentaries on the use of students and professionals
in empirical software engineering experiments. Empirical Software Engineering 23(6):3801–3820

Fontana FA, Braione P, Zanoni M (2012) Automatic detection of bad smells in code: an experimental
assessment. Journal of Object Technology 11(2)

Fontana FA, Mäntylä MV, Zanoni M, Marino A (2015) Comparing and experimenting machine learning
techniques for code smell detection. Empirical Software Engineering

Fontana FA, Zanoni M, Marino A, Mäntylä MV (2013) Code smell detection: Towards a machine learning-
based approach. In: 2013 IEEE international conference on software maintenance, pp 396–399

Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc

Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth
international conference on international conference on machine learning, ICML’96. Morgan Kaufmann
Publishers Inc, San Francisco, pp 148–156

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software:
An update. SIGKDD Explor Newsl 11(1):10–18

Humphrey W (2009) The Future of Software Engineering: I. The Watts New? Collection: Columns by the
SEI’s Watts Humphrey

John G, Langley P (1995) Estimating continuous distributions in bayesian classifiers. In: Inproceedings of
the eleventh conference on uncertainty in artificial intelligence, pp 338–345. Morgan Kaufmann

Kessentini W, Kessentini M, Sahraoui H, Bechikh S, Ouni A (2014) A cooperative parallel search-based
software engineering approach for code-smells detection. IEEE Trans Softw Eng 40(9):841–861

Mansoor U, Kessentini M, Maxim BR, Deb K (2017) Multi-objective code-smells detection using good and
bad design examples. Softw Qual J 25(2):529–552

Oliveira R (2016) When more heads are better than one? understanding and improving collaborative iden-
tification of code smells. In: 2016 IEEE/ACM 38th international conference on software engineering
companion (ICSE-C), pp 879–882

Oliveira R, de Mello R, Fernandes E, Garcia A, Lucena C (2020) Collaborative or individual identification of
code smells? on the effectiveness of novice and professional developers. Inf Softw Technol 120:106242

Oliveira R, Estácio B, Garcia A, Marczak S, Prikladnicki R, Kalinowski M, Lucena C (2016) Identifying
code smells with collaborative practices: A controlled experiment. In: 2016 X Brazilian symposium on
software components, architectures and reuse (SBCARS), pp 61–70

Page 33 of 35 69Empir Software Eng (2022) 27: 69

Oliveira R, Sousa L, de Mello R, Valentim N, Lopes A, Conte T, Garcia A, Oliveira E, Lucena C (2017)
Collaborative identification of code smells: A multi-case study. In: 2017 IEEE/ACM 39th international
conference on software engineering: software engineering in practice track (ICSE-SEIP), pp 33–42

Palomba F, Di Nucci D, Tufano M, Bavota G, Oliveto R, Poshyvanyk D, De Lucia A (2015) Landfill: an
open dataset of code smells with public evaluation. In: 2015 IEEE/ACM 12th working conference on
mining software repositories, pp 482–485

Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2019) On the role of data balancing for machine
learning-based code smell detection. In: Proceedings of the 3rd ACM SIGSOFT international work-
shop on machine learning techniques for software quality evaluation, MaLTeSQuE 2019. Association
for Computing Machinery, New York, pp 19–24

Pereira dos Reis J, Brito e Abreu F, de Figueiredo Carneiro G, Anslow C (2021) Code smells detection and
visualization: A systematic literature review. Archives of Computational Methods in Engineering

Platt JC (1999) Fast training of support vector machines using sequential minimal optimization. In: Advances
in kernel methods - support vector learning, MIT Press, pp 185–208

Proksch S, Amann S, Mezini M (2014) Towards standardized evaluation of developer-assistance tools. In:
Proceedings of the 4th international workshop on recommendation systems for software engineering -
RSSE 2014. ACM Press, New York, pp 14–18

Quinlan JR (2014) C4.5: Programs for Machine Learning. Elsevier
Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: Proceedings of the 2013

international conference on software engineering, ICSE ’13, IEEE Press, pp 432–441
Reis JP, Brito e Abreu F, de F. Carneiro G (2017) Code smells detection 2.0: Crowdsmelling and visu-

alization. In: 2017 12th iberian conference on information systems and technologies (CISTI), pp
1–4

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning Internal Representations by Error Propagation.
MIT Press, Cambridge, pp 318–362

Sharma M, Padmanaban R (2014) Leveraging the wisdom of the crowd in software testing. CRC Press
Stol K-J, Fitzgerald B (2014) Researching crowdsourcing software development: Perspectives and concerns.

In: Proceedings of the 1st international workshop on CrowdSourcing in software engineering, CSI-SE
2014. Association for Computing Machinery, New York, pp 7–10

Stone M (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the Royal
Statistical Society. Series B (Methodological) 36(2):111–147

Tahir A, Yamashita A, Licorish S, Dietrich J, Counsell S (2018) Can you tell me if it smells? a study on how
developers discuss code smells and anti-patterns in stack overflow. In: Proceedings of the 22nd Interna-
tional Conference on Evaluation and Assessment in Software Engineering 2018, EASE’18. Association
for Computing Machinery, New York, pp 68–78

Travassos G, Shull F, Fredericks M, Basili VR (1999) Detecting defects in object-oriented designs: Using
reading techniques to increase software quality. In: Proceedings of the 14th conference on object oriented
programming, systems, languages, and applications. ACM Press, New York, pp 47–56

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2018) Ten years of jdeodorant: Lessons learned from the hunt for
smells. In: 2018 IEEE 25th international conference on software analysis, evolution and reengineering
(SANER), pp 4–14

Wang C, Hirasawa S, Takizawa H, Kobayashi H (2015) Identification and elimination of Platform-Specific
code smells in high performance computing applications. International Journal of Networking and
Computing 5(1):180–199

Yamashita A, Moonen L (2013) To what extent can maintenance problems be predicted by code smell
detection? - an empirical study. Inf Softw Technol 55(12):2223–2242

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of
multiobjective optimizers: an analysis and review. IEEE Transaction on Evolutionary Computation
7(2):117–132

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

69 Page 34 of 35 Empir Software Eng (2022) 27: 69

José Pereira dos Reis is an Invited Assistant in the Computer Sci-
ence Department at Iscte-University Institute of Lisbon. He received
his BSc degree in electrotechnical engineering from ISEL-Lisbon and
an MSc degree in Computer Science from the FCT-New University of
Lisbon. He is Research Assistant in ISTAR-Information Sciences and
Technologies and Architecture Research Center at Iscte-University
Institute of Lisbon. His research interest lies in the area of Software
Engineering, which includes Empirical Software Engineering, and
Software Quality Assurance.

Fernando Brito e Abreu holds a Ph.D. in Computer Science from
IST/UTL and is a professor at ISCTE-IUL, a public university in
Lisbon. He formerly taught at the Department of Informatics of
the Faculty of Sciences and Technology of the Universidade Nova
de Lisboa, having also lectured at ISEGI/UNL (now NOVA IMS),
IST/UTL, ISEG/UTL, and in the Portuguese Air Force Academy. He
was also an invited professor at the Département Informatique of the
École des Mines de Nantes, in the scope of the EMOOSE European
master program. In those universities, he has conceived and taught
many software engineering, information systems, data science, and
research methodology courses.

As a researcher in the Software Engineering Group of INESC
Lisboa, and at the CITI (Informatics and Information Technology)
research center of FCT/UNL, he was a pioneer of Empirical Software
Engineering in Portugal, having created the QUASAR research group
(QUantitative Approaches in Software engineering And Reengineer-
ing). He is currently affiliated with the Software Systems Engineering

group that he created in the ISTAR-IUL research unit at ISCTE-IUL. He has supervised around 30 M.Sc.
and Ph.D. dissertations, has led and participated in many research projects and, authored around two hundred
scientific documents, mostly papers in international conferences and journals. He is a regular reviewer for
several international journals, has served in the organization of many international scientific meetings under
different roles and, created the QUATIC conference series and the QAOOSE workshop series.

Glauco de Figueiredo Carneiro holds a Ph.D. in Computer Science
from the Federal University of Bahia (UFBA), an MSc in Computer
Science from Salvador University (UNIFACS), and a BSc in Elec-
trical Engineering from the Federal University of Bahia (UFBA).
In 2016/2017, he was a pos-doc researcher at the University of
Wisconsin-Milwaukee (UWM) in the United States. Dr. Carneiro is
an Associate Researcher of the Information Sciences, Technologies
and Architecture Research Center (ISTAR) at ISCTEIUL, a public
university in Lisbon, and a full Professor at the Department of Com-
puter Science of Salvador University (UNIFACS) in Salvador-Bahia,
Brazil. His main research interests are open source software projects,
software quality, software evolution, software process improvement,
open data, open government data, information visualization, and
software visualization.

Page 35 of 35 69Empir Software Eng (2022) 27: 69

	Crowdsmelling: A preliminary study on using collective knowledge in code smells detection
	Abstract
	Introduction
	Related work
	Crowd-based approaches
	Multiple ML models based approaches

	Experiment planning
	Research questions
	Participants
	Data
	Code smells
	Code metrics
	Machine learning techniques experimented
	Model evaluation
	Process
	Stage 1: Developer - Code smell classification
	Stage 2: Researcher - Evaluation of machine learning models
	Stage 3: Researcher - Model variance test

	Results
	RQ1. What is the performance of machine learning techniques when trained with data from the crowd and therefore more realistic?
	Performance of machine learning techniques for the code smell Long Method
	Performance of machine learning techniques for the code smell God Class
	Performance of machine learning techniques for the code smell Feature Envy
	The one-way analysis of variance (ANOVA)
	Summary of RQ1 results

	RQ2. What is the best machine learning model to detect each one of the three code smells?
	Best machine learning model for the code smell Long Method
	Best machine learning model for the code smell God Class
	Best machine learning model for the code smell Feature Envy
	Summary of RQ2 results

	RQ3. Is it possible to use Collective Knowledge for code smells detection?
	Summary of RQ3 results

	Discussion
	Research questions (RQ)
	RQ1. What is the performance of machine learning techniques when trained with data from the crowd and therefore more realistic?
	RQ2. What is the best machine learning model to detect each one of the three code smells?
	RQ3. Is it possible to use Collective Knowledge for code smells detection?

	Implications and limitations of the Crowdsmelling Approach
	Threats to validity
	Conclusion validity
	Construct validity
	Internal validity
	External validity

	Conclusion and future work
	Appendix I Code metrics
	References

