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Abstract
Software repositories such as GitHub host a large number of software entities. Develop-
ers collaboratively discuss, implement, use, and share these entities. Proper documentation 
plays an important role in successful software management and maintenance. Users exploit 
Issue Tracking Systems, a facility of software repositories, to keep track of issue reports, to 
manage the workload and processes, and finally, to document the highlight of their team’s 
effort. An issue report is a rich source of collaboratively-curated software knowledge, and 
can contain a reported problem, a request for new features, or merely a question about the 
software product. As the number of these issues increases, it becomes harder to manage 
them manually. GitHub provides labels for tagging issues, as a means of issue manage-
ment. However, about half of the issues in GitHub’s top 1000 repositories do not have any 
labels. In this work, we aim at automating the process of managing issue reports for soft-
ware teams. We propose a two-stage approach to predict both the objective behind open-
ing an issue and its priority level using feature engineering methods and state-of-the-art 
text classifiers. To the best of our knowledge, we are the first to fine-tune a Transformer 
for issue classification. We train and evaluate our models in both project-based and cross-
project settings. The latter approach provides a generic prediction model applicable for any 
unseen software project or projects with little historical data. Our proposed approach can 
successfully predict the objective and priority level of issue reports with 82% (fine-tuned 
RoBERTa) and 75% (Random Forest) accuracy, respectively. Moreover, we conducted 
human labeling and evaluation on unlabeled issues from six unseen GitHub projects to 
assess the performance of the cross-project model on new data. The model achieves 90% 
accuracy on the sample set. We measure inter-rater reliability and obtain an average Per-
cent Agreement of 85.3% and Randolph’s free-marginal Kappa of 0.71 that translate to a 
substantial agreement among labelers.
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1  Introduction

Due to the possibility of having public discussions and contributions, software engineers 
and developers can collaboratively develop and maintain software projects. In doing so, a 
growing base of knowledge has formed on software-related platforms such as GitHub and 
Stack Overflow. This knowledge encapsulates various types of information such as source 
code, user reports, software Q&A posts, and more. This raw yet invaluable knowledge can 
be transformed into automatic and practical solutions using data-driven approaches to help 
developers achieve their tasks more efficiently.

Most software repositories have a tracker for recording and managing tasks of a pro-
ject. These trackers are the primary mean for communication, discussion, getting help, 
sharing opinions, making decisions, and finally collecting users’ feedback. GitHub’s 
tracker is called Issues. Issue reports are an important source of knowledge provided 
with the help of the community. Any GitHub user is able to discuss, and contribute to 
the progress of a software project using issue reports. Users can create an issue in a 
repository for various reasons including reporting bugs in the system, requesting new 
features, or asking for support. This source of collaboratively-curated knowledge can be 
of great assistance in the process of software development and maintenance. Team mem-
bers should address these issues as soon as possible to keep their audience engaged and 
improve their software product. As the project grows, the number of users and reported 
issues increases. For instance, Elastic-search project has more than 27K issue reports 
since 2017. It has on average, 25 and 760 daily and monthly new issues, respectively. 
Consequently, timely management of issues including determining the goal of issues 
(classification of issue objectives), identifying urgent issues to address (prioritizing 
issues), and selecting the most important changes to include in product reports such as 
release notes, becomes harder.

Issues in software repositories must have a title, a description, and a state (open or 
closed). They can also have additional data such as labels, assignees, milestone, comments, 
etc. Figure 1 presents an issue from GitHub which contains various types of information 
including title, description, author, and participants. As shown, the description of this issue 
contains useful information including the reported problem and code snippets to elaborate 
the reported problem. Moreover, it has several labels such as bug report to denote its 
objective and high-priority to indicate its importance. Labels, as a sort of project 
metadata, describe the goal and content of an issue. They are mainly used for categoriz-
ing, managing, searching, and retrieving issues. Thus, assigning labels to issues facilitates 
task assignment, maintenance, and management of a software project. Consequently, issue 
management is a vital part of the software development process.

Labels are assigned to issues to indicate their objective, status, priority level, etc. 
Such labels can help team members manage and track their tasks more efficiently. Cabot 
et al. (2015) analyzed about three million non-forked GitHub repositories to investigate the 
label usage and its impact on resolving issues. They showed only about 3% of these reposi-
tories had labeled issues, which indicates labeling issues is rarely done by developers. Fur-
thermore, in the repositories which incorporated issue labeling, only about 58% of issues 
were labeled. In their study, each issue had 1.14 labels on average. The authors showed 
addressing an issue and the engagement rate both have a high correlation with the number 
of labeled issues in a repository (Cabot et al. 2015). This may indicate that labeling issues 
can benefit project management. Recently, Liao et al. (2018) investigated the effect of labe-
ling issues on issue management. They analyzed six popular projects and found labeled 
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issues were addressed immediately, while unlabeled issues could remain open for a long 
time. They also emphasized the need for correct labeling. Previously, Herzig et al. (2013) 
also reported about 34% of bug reports submitted by various users are misclassified (has 
a wrong label). Misclassified reports can be misleading and result in a prolonged resolv-
ing process. They can cause failed task assignment and/or impact the performance of bug 
prediction models. This indicates the need for proper labeling of issue reports using an 
unbiased model.

In this study we consider two types of labels, namely objective and priority labels for 
an issue. Based on our label analysis (refer to Section 2.2), we take the three most frequent 
reasons for opening issues as the main objectives. These are Bug reports, Enhancement 
requests, and Support/Document. We also consider two priority levels, High and Low. The 
former should be addressed as soon as possible while the latter can be handled with less 
urgency. Detecting the priority level of issue reports has a two-fold gain; not only it helps 
with accurate and timely resource allocation for bug triaging, but also it results in less 
cost regarding maintenance and documentation purposes of the project. For instance, the 

Fig. 1   Issue sample
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high-priority addressed issues can be listed in release notes or other performance reports 
of a project.

Using a two-staged approach, we aim to predict both the objective and priority of an 
issue. We first predict an issue’s objective by inspecting its textual information, namely its 
title and description. We fine-tune a pre-trained transformer-based model to classify issue 
objectives into three categories of Bug, Enhancement, or Support/Document. More specifi-
cally, we adapt the Robustly-optimized BERT approach (RoBERTa) (Liu et al. 2019) pro-
posed by Facebook to our case. Our experiments indicate that using these types of textual 
information is sufficient for successfully predicting these objectives. In the second stage, to 
train our classifiers we define three sets of features, namely Textual Features, Label Fea-
tures, and Normalized Features that can potentially help in predicting the importance of 
an issue. Textual Features include TF-IDF vectors of title and description of issues. Label 
Features are one-hot encoded vectors of available labels for an issue. For the third input 
vector, Normalized Features, we apply feature engineering methods and scale the numeri-
cal information from five different information resources including textual-based, devel-
oper-related, discussion-related, event-related, and sentiment of the issues. Finally, we train 
multiple classifiers for predicting the priority of an issue. We obtain the best result using a 
Random Forest (RF) classifier.

For the first task, we use about 817, 743 issues and train a single generic model appli-
cable for all repositories. For the second task, we train our models in both project-based 
and cross-project settings using about 82,  719 issues. We evaluate our models in both 
tasks using standard metrics including precision, recall, F1-measure, and accuracy. Our 
fined-tuned RoBERTa-based classifier achieves 82% of accuracy, outperforming baseline 
models. Moreover, our priority prediction model scores 75% of accuracy. The results 
show that both project-based and cross-project prediction models for the second task 
perform comparably. Therefore, our model is expected to efficiently work for unseen 
repositories without the need for more training. Nonetheless, we conducted a human 
labeling and evaluation experiment to assess the proposed model’s performance on new 
data, i.e., unlabeled issue reports from six unseen projects. Sixty issues were randomly 
selected from these projects. Thirty software engineers participated in our study, and we 
collected 300 votes for the sample set. The results indicate the high accuracy of the pro-
posed model on unseen data. Moreover, we also asked the participants the factors they 
take into account while determining priority levels of issues and report their insights in 
this work. Our contributions are:

–	 We train a model to predict issue objectives (bug report, enhancement, and support) 
and obtain 82% accuracy. To the best of our knowledge, we are the first to adapt trans-
former-based models to predict labels for issue reports.

–	 We train project-based models for predicting the priority of issue reports using feature 
engineering methods and state-of-the-art text classifiers. We also train a generic model 
for priority prediction in a cross-project setting. This model performs on par with the 
project-based models with 74% accuracy.

–	 We conducted a human labeling and evaluation task to assess the performance of the 
proposed model on unseen data and achieved high accuracy ( 90% ). We obtain Percent 
Agreement of 85.3% and Kappa of 0.71 which translate to a substantial agreement 
among our participants.

–	 We collected and pre-processed two sets of large-scale datasets with objective and 
priority labels from GitHub. We manually inspected synonym but differently-written 
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labels and clustered them to mitigate the noise of user-defined tags. We release our 
source code and datasets for replication and use by other researchers.1 ,2

2 � Approach

In this section, we first present an overview of our proposed approach. Then, we elaborate 
on each phase with more details.

2.1 � Approach Overview

Figure 2 presents a concise summary of our proposed approach. Our two-stage approach 
for predicting the objective and priority of issues consists of (1) analyzing issue labels 
on GitHub to determine which labels to use in our training, (2) data collection and pre-
processing, (3) issue-objective prediction, (4) feature engineering and model training, and 
finally (5) predicting priority labels.

We first collect the data of issue reports using the GitHub API.3 Then, we extract tex-
tual information of issue reports, i.e., their title and description. We also extract all labels 
assigned to issues. Finally, we process and save 73 types of information from these reports 
(such as the author, closer, events, milestones, comments, etc.). Then we perform rigorous 
text processing techniques on the data.

In the next phase, we train a transformer-based classifier, to predict the objective of an 
issue. More specifically, we fine-tune RoBERTa (Liu et al. 2019) on our dataset. The three 
intended categories we use are Bug Report, Enhancement, and Support/Documentation.

In the third phase, we take the information we gathered in the previous phases and 
employ various NLP and machine learning techniques to train a model based on RF for 
predicting priority levels of issues. Finally, we use our cross-project trained model to pre-
dict the priority of issues in unseen repositories. More specifically, we conducted an exper-
iment for human labeling and evaluation to assess the performance of the proposed model 
on unlabeled issues from six unseen GitHub projects. In the following sections, we provide 
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1  https://github.com/MalihehIzadi/IssueReportsManagement
2  https://zenodo.org/record/4925855#.YNME2r4zbtQ
3  https://developer.github.com/v3/
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more details for each step of the proposed approach. Figure 3 presents the workflow of our 
proposed approach with more details.

2.2 � Label Inspection

GitHub has a set of seven default issue labels, namely bug, enhancement, question, 
help-wanted, duplicated, wont-fix, and invalid. Members can also add or 
modify labels to adjust to their project’s needs.

To obtain a better understanding of which labels we should use for each task (objective 
and priority prediction), we collected labels used in the top 1000 repositories of GitHub 
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which had at least 500 stars using the GitHub API.4 These repositories are ranked based 
on their number of stars. Then two of the authors analyzed the labels. At the time we col-
lected labels of these repositories, they had 4, 888, 560 issue reports in total, from which 
2, 333, 333 had at least one label. This means approximately half of the issues of popular 
repositories did not have any labels. Furthermore, on average, 71% of all issue reports in 
each repository were unlabeled. As shown by Figure 4, only 3% of these repositories have 
labeled most of their issues (above 90% coverage), while about 80% of repositories have 
labeled less than half of their issues.

Figure  5 shows top 20 labels used in the most popular repositories of GitHub. As 
expected, most of these repositories already have the above-mentioned seven default 
labels of GitHub. So the frequency of these labels are much higher than the new custom-
ized labels defined by users. We found 6182 distinct labels in the top 1000 repositories. As 
shown, the frequency distribution has a long-tail. However, labels, like any other tag entity, 
are written in free format. Thus, the distributed nature of the tagging process results in 
multiple differently-written labels with a common semantic. For instance, issues opened to 
report bugs are tagged with labels such as bug and type: bug or issues for requesting 
new features are tagged with labels such as feature, feature request, and new 
feature.

Previous studies have also investigated the main categories for issue objectives  (Fan 
et al. 2017; Kallis et al. 2019; Bissyandé et al. 2013; Cabot et al. 2015). Upon investigat-
ing issues of three million repositories, Cabot et  al.  (2015) concluded the most frequent 
issue labels in GitHub are enhancement, bug, question, feature, documenta-
tion, won’t fix, and task. In another large-scale study on issue reports, Bissyande 
et al. (2013) analyzed about 800K issues from which 27% were labeled. They reported that 
the most frequent labels in their study were bug and feature. Fan et  al.  (2017) con-
ducted a study to determine whether issue reports are related to bugs or not. They used 
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4  https://api.github.com/search/repositories?q=stars:>500&sort=stars
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the dataset provided by Yu et al. (2015) which contained 952K issue reports from 1, 185 
GitHub repositories. Among the 7,  793 labels in the dataset, 149 were identified as the 
labels which indicate the type of an issue. Over 252K issue reports ( 26% ) in the dataset 
were tagged with one of these type labels. Fan et al. (2017) categorized the most frequently-
used type labels into two major classes of bug-related ( 52% ) and non-bug related ( 38% ). 
The latter consists of the following labels: enhancement, feature, question, feature request, 
documentation, improvement, and docs. This category can be broken down to two finer 
categories of Enhancement and Support/Documentation. Lastly, Kallis et  al.  (2019) also 
categorized issue reports into three classes of bug, feature, and question. There-
fore, based on our analysis and previous studies, we selected the three most-frequently-
used labels for issues’ objectives in the top projects as Bug Report, Enhancement and Sup-
port/Documentation. Next, two of the authors independently and manually identified the 
most related but differently-written user-defined labels as these three main objectives. In 
this process, authors have relied on the definitions provided by GitHub for labels.5 Then 
the authors compared the categories and discussed any conflicts to validate the final deci-
sion. As a result, we collected issue reports that had at least one of the labels mentioned 
in Table 1 for each objective category. Note that we only use mono-labeled issues in our 
dataset. Thus issues tagged with more than one label are removed.

Note that there are other objectives for opening an issue, e.g., for testing, making 
announcements, or discussing matters in the team. However, there were less frequently 
used compared to our main selected categories. Moreover, among the most frequent labels, 
there are also other recurrent labels such as duplicate, wont fix, invalid, in 
progress, good first issue, stale, java, android, etc. However, these labels 

Fig. 5   Label frequency among the top 1000 GitHub repositories

5  https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels
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do not address the reason behind opening an issue. They are merely other types of metadata 
for adding extra information. That is why we do not include these labels as issue objective.

The second task which is prioritizing issues, requires issues with a priority-related label. 
Therefore, we inspected various priority labels including blocker-priority, crit-
ical-priority, high-priority, and low-priority. Note that priority labels 
are also written in different formats. For instance, we found the following labels as indica-
tors of an issue with critical-priority: criticalpriority, priority-critical, 
critical priority, priority:critical, priority critical, prior-
ity: critical, priority - critical, critical-priority, priority/
urgent, priority/critical, critical, and urgent. Thus, to find these seman-
tically similar labels, we performed the same analysis on priority-related labels explained 
above, and found semantically similar but differently-written priority labels.

Moreover, in Section 2.7, we report the result of our analysis for extracting other fre-
quent and semantically-similar labels and incorporating them in our proposed approach as 
an optional feature vector.

2.3 � Data Collection

For the first task of predicting the objective of an issue, we collected closed issues from 
GitHub’s open-source repositories with Java as their main programming language which 
were created before April 2021. We used Java as it was used frequently in previous stud-
ies and also to limit the number of retrieved issues. We selected three main categories of 
objectives, namely Bug Report, Enhancement, and Support/Documentation based on the 
labels presented in Table 1. The initial dataset for the classifying issue objectives contained 
1, 096, 704 issues from 79, 729 repositories. Issues are grouped into three categories; 480K 
bug-related issues, 528K enhancement-related issues, and 173K support-related issues. 
In the end, after performing all our pre-processing steps reviewed below, there remained 
817, 743 issues from 60, 958 repositories. More specifically, we include 362K, 342K, and 
112K pre-processed issues belonging to the bug report, enhancement, and support/docu-
mentation categories, respectively. We denote this dataset as the issue-objective dataset.

For the second task we collected issues with at least one of the following four priority-
related labels: blocker-priority, critical-priority, high-priority, and 
low-priority. We aggregate issues with labels of blocker, critical and high-priority 
in the same group of the crucial issues. The rest are categorized in the low-priority group. 

Table 1   Selected labels for each category of objective

Category Labels’ list

Bug report bug, defect, kind/bug, type: bug
Enhancement enhancement, kind/enhancement, type: enhancement,

type: improvement, improvement,
feature request, feature, kind/feature, type: new feature, new feature

Support/ Documentation help wanted, status: help wanted, type: support, supports,
question, type: question, kind/question,
docs, documentation, type: documentation, kind/documentation,
information, more info needed, more info required, more-information-needed,
need more info, needs info, needs more info, needs-info, needs-details
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In all, we collected 47 synonyms for the two categories of High and Low priority (for the 
complete list refer to Appendix 1.) In the end, after pre-processing the data, we have a data-
set of 82, 719 issues from 70 repositories for this task. The pre-processed dataset contains 
44, 733 high-priority and 37, 986 low-priority issues. We denote this dataset 
as the Issue-priority dataset.

Figure 6 provides the distribution of objective and priority classes after pre-processing 
in their respective dataset for all projects. Figure 7 presents three box-plots for the num-
ber of issues in the 70 repositories of the Issue-priority dataset. HP Issues and LP Issues 
denote the number of issues with High-Priority and Low-Priority labels, respectively. Fig-
ure 8 depicts the ratio of HP to LP labels of issue reports (HP/LP) per project in this data-
set. Although the average HP/LP ratio is 1.00, this ratio per project ranges from 0.16 to 
6.40. That is for some repositories, the HP class is more represented, while for others, the 
LP class is more supported.

2.4 � Pre‑processing

Each issue has two main textual information sources, namely title and description. To train 
our models, we create a feature vector for both of them based on the following pre-process-
ing steps.

Filtering and cleaning We first remove issues that have very little (less than three char-
acters) or no text in their title or description. We also remove issues that are tagged as not 
an issue or duplicate issue reports to prevent biasing our models. Then, we filter out 
issue reports that are written in a non-English language (more than 50% of the text). Then, 
we clean issues’ textual information by removing arbitrary digits, non-ASCII characters, 
and punctuation marks. Note that we retain question marks as they are mainly used in ques-
tions and support-related issues. Thus, they can be helpful for predicting this class.

Text normalization Handling large vocabularies is a challenging task in NLP-based 
researches. Generally, studies limit vocabulary to the most common words and replace out-
of-vocabulary tokens with a special unknown token <UNK>. To reduce out-of-vocabulary 
tokens, we normalize issue reports’ textual information using several normalization rules. 
More specifically, we replace abstract concepts such as user-names, code snippets, function 
calls, markdown symbols, emails, URLs, paths, dates, and times using regular expressions. 
The intuition is that including the exact content of these concepts increases the size of our 
vocabulary, however, by performing text normalization we can both keep the notion of hav-
ing e.g., a code snippet in an issue and remove the exact characters of that code snippet to 
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help our models learn better. To achieve this, we replace the content of a code snippet with 
an abstract token <CODE>. We apply the same technique to the rest of the above-men-
tioned concepts as well. Text normalization has been used before in pre-processing data for 
machine learning models (Svyatkovskiy et al. 2020; Izadi et al. 2021).

Tokenization and lemmatization We split tokens based on several naming conventions 
including SnakeCase, camelCase, and underscores using an identifier splitting tool called 
Spiral.6 This will also mitigate the out-of-vocabulary problem. Using NLTK library7, we 
first tokenize the text of issue reports, then we remove frequently used words in the lan-
guage called stop-words which do not bring any value to the models. Note that we keep 
negative words such as NOT and compulsory words such as MUST, which can be useful 
for the sentiment analysis phase. We then lemmatize the pre-processed text to reduce gram-
matical forms but retain their correct word formats.

Transformation The final step is to transform the textual information of issues to their 
mathematical representation that can be fed to the machine learning models. We convert the 
collection of pre-processed issues’ text to a matrix of TF-IDF vectors. More specifically, 

Fig. 7   Distribution of LP and HP issues among repositories

Fig. 8   Histogram of HP/LP ratio per project

6  https://github.com/casics/spiral.
7  https://www.nltk.org/
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we represent each issue title and description as a vector where each word is a feature. Note 
that we generate their TF-IDF embedding vectors separately, then we concatenate these 
two vectors for each issue. The simpler approach would be to first concatenate the text of 
these two sources and then build the embedding vectors. However, our experiment yielded 
better results when taking title and description TF-IDF vectors separately. This is prob-
ably due to the fact that although both title and description are inherently textual informa-
tion describing an issue, their abstract level and objective differ. Interestingly, our machine 
learning models were capable of picking up on this difference. It is worth mentioning we 
also experimented with Doc2Vec and Word2Vec embeddings. However, TF-IDF vectors 
yielded the best results, thus we only report them in this work.

2.5 � First stage: Objective Detection

Previously, we obtained and pre-processed our issue-objective dataset. In this step, we train 
our classifier for the first stage of our approach. To predict issue objectives (Bug report, 
Enhancement, or Support/Document), we train a transformer-based model on the issue-
objective dataset. We fine-tune the RoBERTa  (Liu et  al. 2019) on our issue-objective 
dataset. RoBERTa includes pre-training improvements (compared to the vanilla BERT 
model Devlin et al. 2018) using only unlabeled text from the web, with minimal fine-tuning 
and no data augmentation. The authors modified the masked language modeling task of 
BERT by using dynamic masking based on a new masking pattern generated each time a 
sentence is fed into training. They also eliminated the next sentence prediction task since 
Facebook’s analysis indicated that it indeed hurts the model’s performance. The Input of 
our model is the concatenated pre-processed word vectors of title and description of issues. 
In this stage, we feed the models with pre-processed text (word vectors) and the models 
process them accordingly. The output of the first stage is the probability of an issue to be a 
Bug report, Enhancement, or Support.

2.6 � Sentiment Analysis

Sentiment analysis uses computational linguistics and NLP techniques to quantify the 
intended sentiment of a piece of text. We believe more urgent issues hold more distinct 
sentiment, and use sentiment analysis methods to extract this information from textual 
information of issues. We use SentiStrength which quantifies the strength of positive and 
negative sentiment8 in text. SentiStrength reports two scores in the range of ( −1 , −5 ) with 
−5 for extremely negative sentiment, and (1, 5) with 5 as the extremely positive sentiment. 
Psychology research claims that we process positive and negative sentiment at the same 
time. Thus, SentiStrength reports both sentiment scores (positivity and negativity). We 
apply SentiStrength on both issues’ titles and descriptions and analyze these features in our 
feature selection process.

We also use TextBlob, a library that quantifies sentiment in terms of two measures of 
subjectivity and polarity.9 It reports a tuple of Sentiment(polarity,  subjectivity). Polarity 
range is [−1, 1] and subjectivity range is [0,  1] with 0 as completely objective and 1 as 

8  http://sentistrength.wlv.ac.uk/
9  https://textblob.readthedocs.io/en/dev/
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completely subjective. Same as the above, we use this library on the title and description of 
issues and use them in the feature selection process.

2.7 � Label Clustering

Labels are free-format text. Thus, users can use different word formats for semantically-
similar concepts. Clustering the morphological synonym labels as a form of issue label 
management can boost the performance of machine learning models which takes these 
labels as inputs. However as shown in Section 2.2, the number of distinct user-specified 
labels is high. To be able to decrease issue labels’ space, two of the authors manually ana-
lyzed the collected labels from the top 1000 repositories, and found several clusters of 
semantically similar labels. Based on our investigation, we selected the most 66 frequently-
used labels in GitHub and then extracted their synonyms but differently-written labels to 
build a dataset of clusters of labels. Table 2 shows two sample identified clusters.10

We use representatives of these clusters as one of our feature sets. More specifically, we 
build a one-hot vector with a size of 66, in which each element denotes the presence of one 
of the label clusters. In the model construction phase, we concatenate this label vector with 
the TF-IDF embedding vector of textual information of an issue and the selected features’ 
normalized vector and feed the final vector to our model.

2.8 � Feature Extraction And Categorization

Before training our prioritizer classifier, we performed feature selection. Feature selection 
is the process of selecting a subset of relevant predictors to feed to the machine learning 
model. These techniques are usually employed to simplify models, provide better inter-
pretation, avoid overfitting by providing more generalizable models, and achieve a shorter 
training time (Dash and Liu 1997).

Table 2   Semantically similar 
clusters of issue labels

Representative Semantically similar labels

Duplicate duplicate, status/duplicate, status: 
duplicate, status:duplicate, 
status=duplicate, status-duplicate, 
type:duplicate, was:duplicate, 
resolution:duplicate, resolu-
tion/duplicate, duplicate issue, 
t-duplicate, r: duplicate, closed: 
duplicate, kind/duplicate, type: 
duplicate

Won’t fix won’t fix, wont fix, wontfix, wont-
fix, status: won’t fix, will not fix, 
resolution:won’t fix, status=will-
not-fix, closed: won’t fix, 
state:wont-fix, status: will not fix, 
won’t-fix, will-not-fix, cant-fix, 
cantfix, can’t fix

10  A complete list of these 66 clusters is available in our repository.
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Two of the authors manually inspected issue reports and extracted a list of 73 potential 
features which could affect the importance of issue reports. These features included (but 
are not limited to) information about textual length of an issue, author of an issue, the 
closer of an issue, were the author and closer the same people, the amount of discussion an 
issue has attracted, how long the discussions took, the sentiment of the discussions, number 
of events on the issue, does it have a commit, milestone, or assignee, is it a Pull Request, 
and many more. Each of these features can potentially affect the outcome. For instance, 
experienced developers are more likely to report or close important issues. A heated and/or 
long discussion can be an indication of urgent matters being discussed by the team mem-
bers. For each opened Pull Requests, an issue is opened automatically (Kalliamvakou et al. 
2014). Pull Requests can be considered as important issues. In fact using GitHub API when 
collecting the dataset, one can choose to retrieve only issues and exclude Pull Requests or 
retrieve all of them together. Considering the tight relationship of issues and Pull Requests, 
we decided to keep Pull Requests when collecting the data. Note that Pull Requests can 
also be investigated separately using their specific features and applications (Gousios et al. 
2015; Veen et al. 2015). Therefore, we compute the correlation of these features, draw their 
heat map (filter-based selection), perform two wrapper-based selection methods, namely 
backward and recursive feature elimination approaches to analyze these features and 
remove rudimentary ones. In the end, we choose 28 features and categorize them into five 
groups of textual-, discussion-, events-, developer-, and sentiment-related features. Table 3 
summarizes these features. Our analysis showed text length and the existence of code snip-
pets and URLs inside the description can help the model. For the discussion-related fea-
tures, we include four features, namely number of comments, the average length of com-
ments, the ratio of the number of comments to the number of engaged developers in the 
discussion, and discussion time. For the events-related category, we include six features: 
the number of all events, the fact that whether this issue is assigned, does it have a mile-
stone already, is it a Pull Request, does any commit reference this issue, and finally, how 
many labels does it have. For the developer-related category, we use ten features including 
various information about who has opened the issue, their reputation and number of fol-
lowers/followings, their experience and contribution to this project and GitHub in general, 
their association, that is, whether they are a team member or merely a GitHub user, their 
profile age and whether the author and closer are the same users or not. Because the author 
and closer information have a high correlation score (above 80% ) in our dataset, we do not 
include closer information separately.

2.9 � Feature Normalization

As the value of our features selected in the previous step vary in degrees of magnitude 
and range, we perform feature normalization. machine learning algorithms such as Logistic 
Regression (LR) and Neural Networks that use gradient descent as an optimization tech-
nique require data to be scaled. Furthermore, distance-based algorithms like K-Nearest 
Neighbors (KNN), and Support Vector Machines (SVM) are affected by the range of fea-
tures. This is because they use distances between data points to determine their similar-
ity. We use the Min-Max scaling technique in which values of features are re-scaled to be 
in the fixed range of 0 and 1  (Al Shalabi et al. 2006). We apply Min-Max scaling using 
Equation 1 where Xmax and Xmin are the maximum and the minimum values of a feature, 
respectively. We apply this technique to all our selected numerical features from the previ-
ous section.
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2.10 � Balancing Techniques

A training dataset is considered to be imbalanced if one or more of the classes are repre-
sented by significantly less number of samples (issues) compared to other classes. This 
leads to skewed data distribution between classes and can introduce bias into the model 
(Weiss and Provost 2001). Therefore, we employ two balancing techniques to improve the 
performance of our models. We first assign higher weights to the less-represented classes. 
The classifier is penalized based on these weights when it misclassifies issues. The weight 
vector corresponding to our classes is calculated using Equation 2, where N is the number 
of issues in the whole dataset and frequencyti is the number of issues per class. Second, 
we use the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) to 
augment (over-sample) the minority classes.

2.11 � Second Stage: Priority Prediction

We train our classifiers for the second stage of our approach. To predict the priority level 
of issues, we use our issue-priority dataset. The input of the model in this phase consists 
of three different types of feature sets obtained from previous steps and explained below. 
Table 4 summarizes the input to our model.

–	 Textual Features (TF): First part of the input is the concatenated TF-IDF vectors of 
title and description of an issue. We fit our TF-IDF vectorizer on the training data-
set. Later we use the same vectorizer to transform the test dataset. We set the maxi-
mum number of features for title and description vectors to 10K and 20K. The objective 
label of an issue which is the output of the first stage of the proposed approach is also 
included. Moreover, we set ngram range to (1, 2).

(1)Xnorm =
X − Xmin

Xmax − Xmin

(2)weightti =
N

frequencyti

Table 4   Inputs to our models in both stages

Stage Inputs

Objective detection - Word vectors of issue titles,
- Word vectors of issue descriptions.

Priority prediction - TF-IDF vectors of issue titles,
- TF-IDF vectors of issue descriptions,
- Predicted objective of issues from the first stage,
- One-hot encoded vector of available labels,
- Normalized feature vector (containing five different set of information,
namely textual information, discussion-related, developer-related, events-
related, and sentiment scores).
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–	 Labels Features (LF): The second feature set is the one-hot vector of available labels 
for an issue computed in Section 2.7.

–	 Normalized Features (NF): And the third part of the input is the normalized version of 
our engineered features obtained in Section 2.9. The complete list of selected features is 
provided in Table 3. We also include sentiment scores in this set.

We use RF as the selected classifier in this phase. RF has been shown to perform bet-
ter on tabular data. We configure the model parameters using Random Search algo-
rithm (Bergstra and Bengio 2012), that performs an exhaustive search of the hyper-param-
eter space. The output of the second stage is the probability of an issue being High or Low. 
Note that we use the two balancing techniques presented in Section 2.10 to improve the 
performance of our classifier, for the project-based setting, where for some repositories, the 
ratio of labels is very unbalanced.

3 � Experiment Design

We conduct various experiments to validate the proposed approach. An experiment is 
designed to analyze the performance of the issue-objective predictor model. For the pri-
ority prediction task, we analyze the model in both project-based and cross-project set-
tings. Our priority prediction model has two applications: (1) to prioritize open or closed 
issues to facilitate timely task assignment and better project management, (2) to help select 
important issues for inclusion in the periodic documentation of the project, e.g., to auto-
matically select important changes for inclusion in release notes. It is worth mentioning 
that all issue features in both experiments of the project-based and cross-project settings 
for the priority prediction task are calculated after issues are closed. However, a possible 
future research direction is to design an experiment for training and evaluating the prior-
ity prediction model through collecting dynamic features periodically. We also conduct a 
human labeling and evaluation experiment on unlabeled issues.

We use the datasets presented in Section 2.3. We split them to train, and test sets with 
ratios of 80% , and 20% . Note that we use stratified sampling on the target value to ran-
domly select these datasets to reduce sampling biases and retain the similar class distribu-
tion in train, test, and the whole dataset. On smaller datasets, we also incorporate the cross-
validation technique.

We conduct our experiments on a machine with Ubuntu 16.04, 64-bit, GeForce RTX 
2080 GPU, Intel(R) Xeon(R) CPU E5-2690 3.00GHz and 64.0GB RAM. Next, we present 
our Research Questions (RQ) and the performance metrics for evaluating our model on the 
collected datasets.

3.1 � Research Questions

In this study, we investigate the following research questions:

–	 RQ1: How accurately our model predicts the objective behind opening an issue? We 
train a text classifier on a large-scale dataset of 818K issue reports to investigate how 
accurately we can predict the objective of an issue. The list of objectives that we con-
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sider in this phase are among the most-used labels in GitHub, namely Bug, Enhance-
ment, and Support.

–	 RQ2: How accurate is our priority prediction model in a project-based context? We 
train classifiers for each repository separately. The goal is to predict the importance of 
an issue. This predicted label can then be used for prioritizing team resources for solv-
ing the high-priority issues or used for documentation purposes of the project. One use 
case of the latter are release notes (or any other types of reports). That is, team manag-
ers, tasked with writing reports of each release, can use the model to extract the urgent 
issue reports addressed by the team for that release.

–	 RQ3: How accurate is our priority prediction model in a cross-project setting? That 
is how well does our trained classifier performance transfer to other repositories? We 
investigate the previous research question but in a cross-project setting. We train our 
model on 80% of repositories and investigate how well this generic model predicts the 
priority label of issues from other repositories?

–	 RQ4: How does the priority prediction model preform on unlabeled data? We con-
duct human labeling and evaluation to assess the performance of the priority detection 
model trained in a cross-project context on unlabeled issues from unseen GitHub pro-
jects. Moreover, through an open question, we ask what are the factors participants take 
into account when categorizing issues into high and low priority.

3.2 � Evaluation Metrics

We use standard measures for evaluating classifiers, namely precision, recall, F1-score. 
We also report accuracy which is the ratio of correct predictions, both true positives (TP) 
and true negatives (TN), to the total number of cases examined. TP indicates the number 
of truly X-labeled issues that are classified as X. FP is the number of truly Non-X issues 
that are classified as X. True Negative (TN) denotes the number of truly Non-X issues that 
are classified as Non-X. And False Negative (FN) indicates the number of truly X-labeled 
issues that are classified as Non-X. Equations 3, 4, 5, and 6 compute the above measures.

3.3 � Baselines

For both tasks, we include baselines from a wide range of rule-based and learning-based 
solutions.

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 =
2 ⋅ Precision ⋅ Recall

Precision + Recall

(6)Accuracy =
TP + TN

TP + FP + TN + FN
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For the first task, objective detection, we train several supervised machine learning-
based models on a large-scale dataset of pre-processed 818K issue reports to predict their 
objective (Bug Report, Enhancement, or Support/Documentation). We use TicketTag-
ger (Kallis et al. 2019; Song and Chaparro 2020) and Intention-mining (Huang et al. 2018) 
as the baselines for this task. Moreover, we train two more classifiers based on Multino-
mial Naive Bayes and Bidirectional Long Short Term Memory (BiLSTM) deep neural net-
works that are usually used for text classification as complementary baselines. The latter 
is inspired by the study of Li et al. (2019) for tag recommendation in software information 
sites. Finally, we also implement a keyword-based approach to include simpler rule-based 
solutions in the experiment. In this baseline, the model looks for specific keywords related 
to the three categories above and tags them with their respective label. For example, if the 
issue contains words such as crash and fix, it will be labeled as a bug report.

For the second task, priority prediction, we include baselines which are all vanilla 
(standard) versions of classical Machine Learning models, namely KNN, Multinomial NB, 
Logistic Regression and RF. Furthermore, we add several simpler models based on the date 
of issues or number of comments to the list of the baselines for this task. For instance, for 
the “Most Comments” baseline, we calculate the median number of comments for issues. 
We then proceed to tag those with a higher number of comments than the median value 
with HP and the rest with LP labels. Finally, we also include the proposed approach by 
Dhasade et al. (2020), Issue Prioritizer, for this task.

3.4 � Human Labeling And Evaluation: Setup

We designed an experiment to investigate whether the trained model in the cross-context 
setting can be used successfully for labeling unlabeled issue reports. As this experiment 
is designed to assess the performance of the proposed model on unlabeled issues, we do 
not have the ground truth labels to compare against. Thus, we employ a partially objective 
labeling task (Alonso et al. 2014), a crowd-sourced labeling task in which the label (High 
or Low Priority) of a subject (issue report) is determined based on inter-rater agreement 
among the participants. That is, a given issue report is assigned the label which the major-
ity of raters have given it. We then compare these majority-vote labels with the labels gen-
erated by our priority detection model.

We provided general information about each project for the participants to help them 
make informed decisions. This information includes the project’s goal, description, #stars, 
#forks, #contributors, #closed and #open issues, and median response time by the devel-
opers of the project to its issues. Furthermore, participants were instructed to analyze the 
assigned repository and its main characteristic to get familiar with the project. We asked 
the participants to assess ten issues of a given project and assign a High or Low priority 
label to each one based on the characteristics of the project. Next, with an open question, 
we asked what factors participants took into account while tagging the issues.

Projects We randomly selected 60 issue reports from six unseen GitHub projects (ten 
issues per project). The list of projects is as follows. They were selected based on their 
popularity, and the variety in their sizes. Moreover, all projects’ main programming lan-
guage is Java.

–	 Elasticsearch: Free and Open, Distributed, RESTful Search Engine,
–	 Spring Boot: Spring Boot makes it easy to create stand-alone, production-grade Spring 

based Applications that you can just run,
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–	 OkHttp: Square’s meticulous HTTP client for the JVM, Android, and GraalVM,
–	 RxJava: Reactive Extensions for the JVM; a library for composing asynchronous and 

event-based programs using observable sequences for the Java VM,
–	 Retrofit: A type-safe HTTP client for Android and the JVM,
–	 Guava: Google core libraries for Java.

Participants As we did not have access to the main developers of these projects, we invited 
62 software engineers from both industry and academia to participate in this study. Each 
participant was assigned to the issues of one project. Thirty-four software engineers 
responded and participated in the study from which 30 responses were valid (25 males and 
5 females). Thus our response rate is 48% . All participants have a BSc or MSc in software 
engineering with an average of 4.8 years of developing experience. They all are proficient 
with the programming language Java. In addition, on average the participants own or con-
tribute to 6.52 open-source projects on GitHub.

Inter-rater Reliability Measurement Inter-rater reliability is the level of agreement 
among independent observers who label, code, or rate the same phenomenon (Gwet 2008). 
Several statistics can be used to measure inter-rater reliability, from which the most com-
mon are Percent Agreement, Cohen’s kappa (for two raters), and Fleiss kappa as an adapta-
tion of Cohen’s kappa for three or more raters (Fleiss and Cohen 1973). To compute the 
Percent Agreement score among the participants, we create a matrix in which the columns 
represented the different labelers, and the rows represent issue reports. The cells of this 
matrix contain the label (category) the labelers entered for each issue. As we only have 
two labels (High and Low Priority), we fill the cells with either 0 (Low Priority) or 1 (High 
Priority) For each row, we calculate the Percent Agreement and then report the average. 
Percent agreement ranges between 0 and 1, with 0 as no agreement and 1 as perfect agree-
ment. Kappa determines the extent to which the observed amount of agreement among 
labelers surpass the expected value if all labelers tagged issues completely randomly. Two 
variations of kappa for multi-raters (more than two) are Fleiss’ fixed-marginal multi-rater 
kappa  (Fleiss 1971) and Randolph’s free-marginal multi-rater kappa  (Randolph 2005). 
Marginal distributions are considered to be free when the quantities of cases that should be 
distributed into each category are not predefined. As our labelers are not forced to assign a 
fixed number of issues to each label (category) we report Randolph’s free-marginal kappa 
score for this experiment  (Brennan and Prediger 1981) Values of kappa can range from 

Table 5   RQ1: objective detection results

Evaluation metrics

Accuracy Precision Recall F1-score

Model / Classes B E SD B E SD B E SD

Keyword-based 26% 66% 63% 26% 39% 15% 19% 49% 25% 22%
Multinomial NB 73% 79% 71% 62% 75% 83% 37% 77% 77% 47%
Bi-LSTM 68% 71% 71% 48% 77% 72% 34% 74% 72% 40%
CNN (Huang et al. 2018) 73% 74% 73% 54% 80% 77% 32% 77% 75% 41%
FastText (Kallis et al. 2019; 

Song and Chaparro 2020)
76% 78% 77% 67% 82% 80% 46% 80% 78% 54%

Proposed approach 82% 84% 83% 72% 86% 84% 62% 85% 84% 67%

   Empirical Software Engineering (2022) 27: 50    Page 21 of 37 50



1 3

−1.0 (perfect disagreement below chance), to 0 (agreement equal to chance), to 1.0 (perfect 
agreement above chance). The kappa will be higher when there are fewer categories. Lan-
dis and Koch (1977) suggest the following system for interpreting kappa values:

–	 less than 0 as poor agreement,
–	 0.01 − −0.20 as slight agreement,
–	 0.21 − −0.40 as fair agreement,
–	 0.41 − −0.60 as moderate agreement,
–	 0.61 − −0.80 as substantial agreement, and
–	 0.81 − −1.0 as almost perfect agreement.

4 � Experiment Results

In the following, we report the results of our experiments and the answer to our research 
questions.

4.1 � RQ1: Issue Objective Detection

Table 5 reports the results of objective-prediction task. B, E, and SD represent Bug Report 
and Enhancement and Support/Documentation classes. As presented, our proposed 
approach indeed has a high accuracy for predicting issue-objective labels. We successfully 
outperform all the baselines regarding all the evaluation metrics. For instance, regarding 
the F1-score of the Support class, we outperform BiLSTM, Multinomial NB, CNN (Inten-
tion mining), and FastText (TicketTagger and BEE) -based classifiers by 204% , 66% , 43% , 
63% , and 24% , respectively. The keyword-based approach does not achieve sufficient accu-
racy. That is probably because an issue can contain prominent but conflicting keywords. 
For instance, a user can describe a bug but does not use the bug-related vocabulary explic-
itly, hence misleading such simple models. Furthermore, although Huang et al. (2018) use 
a deep model for classification, it is not performing very well in our case as is. The prob-
lem can be due to the fact that their model is designed and optimized to predict the goal of 
each sentence of an issue report separately. As we have not adapted the architecture of their 
approach to our goal, it may not be suitable for predicting the objective of a complete issue 
report. However, it can provide preliminary analysis on using different Convolutional deep 
neural networks in classifying issues. Finally, the BiLSTM-based deep model also does not 
perform well in our case and it takes a very long time to train as expected when training 
Recurrent Neural Networks on large datasets. On the contrary, the inherent parallelization 
of Transformers’ architecture allows our proposed approach to be trained much faster along 
providing better results.

While we outperform all the baselines for all classes, our model too seems to struggle 
for the Support/Documentation class (compared to the other two classes; Bug report, and 
Enhancement). This is probably due to several reasons including (1) this class is under-pre-
sented in our dataset (less number of issues), and (2) the objective behind opening issues 
in this category is inherently more diverse. As described in Section 2.3, we include various 
issues tagged by labels such as question, support, help, etc. in the Support/Documentation 
category. While Kallis et  al.  (2019) only consider issues tagged with the label question 
as their third class, our goal is to cover a broader range of issue reports in the third class 
and provide a more generic objective classifier. It is also worth mentioning, usually fixing 
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existing bugs or implementing requested features are of more value to the community, 

Table 6   RQ2: Project-based 
priority prediction results

Evaluation metrics

Accuracy Precision Recall F1-score

Models / Classes HP LP HP LP HP LP

Oldest 48% 43% 52% 48% 47% 44% 49%
Recently updated 48% 44% 53% 48% 50% 45% 50%
Most comments 50% 46% 54% 64% 39% 52% 44%
Issue Prior-

itizer (Dhasade 
et al. 2020)

55% 58% 53% 51% 61% 54% 57%

KNN 67% 63% 69% 64% 70% 63% 68%
Multinomial NB 69% 68% 69% 63% 77% 60% 69%
Logistic Regression 70% 69% 71% 66% 76% 64% 71%
Vanilla RF 69% 69% 69% 65% 75% 63% 70%
Proposed approach 75% 73% 77% 74% 78% 72% 77%

Fig. 9   Distribution of results among 70 repositories for three approaches
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thus, we believe better performance on the first two objectives (bugs and enhancement) 
is deemed more important. Nonetheless, one can improve these models’ performance by 
collecting more data for this class or narrowing down the objective of this class. It is worth 
mentioning that we investigated the use of various additional features for this task. As the 
results did not improve significantly, we decided to keep it simple for the first stage and 
only incorporate textual information of issues.

4.2 � RQ2: Project‑Based Priority Prediction

In this experiment, we train our proposed approach per repository to predict the priority of 
their issues. As discussed in Section 2.11, we have three sets of input features, namely TF, 
LF, and NF and experimented with different combinations of them. For each repository, we 
take 80% of its issues as the train data and test the model on the remaining 20%.

Table  6 reports the results of the project-based priority-prediction task on these 70 
repositories. As mentioned before, HP and LP represent High-Priority and Low-Priority 
classes. As there are various feature sets attributed to an issue report, we investigated the 
use of different variations of these feature sets and report the best case below. The results 
indicate integrating selected features (refer to Section 2.11) helps training a better model. 
As shown, our proposed approach based on RF with all the three input feature vectors (NF, 
LF and TF) outperforms all the baselines. This indicates the benefit of integrating other 
features, and employing normalization, balancing, and optimization techniques. Lastly, our 
experiments also show both of the balancing techniques proposed in Section 2.10 perform 
comparably.

Figure 9 provides three sets of box-plots for three approaches including two baselines 
and one of our proposed approaches based on RF. The box-plots report the distribution 
of results per repository and based on all the evaluation metrics. Comparing vanilla Mul-
tinomial NB and our approach, it is clear that enriching these classifiers with the advance 
techniques mentioned in Section 2.11 cause the model to perform more consistently. For 
instance, take the box-plot for the recall metric (for the HP class) provided by Multino-
mial NB and our approach. Our approach scores above 50% for all repositories, while the 

Table 7   RQ3: cross-project 
priority prediction results

Evaluation metrics

Accuracy Precision Recall F1-score

Models / Classes HP LP HP LP HP LP

Oldest 47% 43% 51% 47% 47% 45% 49%
Recently updated 50% 46% 54% 50% 50% 48% 52%
Most comments 50% 47% 55% 53% 49% 50% 52%
KNN 57% 47% 63% 38% 71% 42% 67%
SVM 58% 47% 64% 43% 68% 45% 66%
Logistic Regression 57% 46% 64% 45% 65% 46% 64%
Multinomial NB 62% 55% 66% 40% 78% 46% 71%
Issue Prior-

itizer (Dhasade 
et al. 2020)

55% 55% 55% 50% 60% 53% 57%

Vanilla RF 57% 46% 63% 43% 67% 44% 65%
Proposed approach 74% 70% 75% 59% 83% 64% 79%
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Multinomial NB performance fluctuates for different repositories with the first quartile as 
low as 20% . The first quartile for all the metrics and all the repositories are above 50% in 
our approach. Moreover, comparing the vanilla RF with our enriched version of RF, one 
can see that the latter shifts the results of all metrics to higher scores. Therefore, we are 
able to successfully outperform the baselines regarding different evaluation metrics.

4.3 � RQ3: Priority Prediction In Cross‑Project Context

We also train a generic model on issues from 80% of repositories and evaluate this model 
on the rest of the repositories. Our goal is to investigate whether a generic model trained 
in a cross-project setting can perform on par with project-based models. Table 7 reports 
the results of priority-prediction task in the cross-project context. Based on the results, our 
proposed approach based on RF with the two feature inputs (NF, and LF) outperforms all 
other models. This generic model can indeed perform comparably with the average perfor-
mance of project-based models. Therefore, we can train only one generic model to auto-
matically predict the priority of issues and successfully reuse (and/or retrain) it for unseen 
repositories or repositories with little historical data. It is worth mentioning that in our 

Fig. 10   The impact of class weights on total accuracy

(a) HP class (b) LP class

Fig. 11   The impact of changing class weights per class
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case, TF-IDF vectors provide more information to these models compared to Doc2Vec and 
Word2Vec vectors.

4.3.1 � Feature Importance

Using RF, we derived the importance of 28 features listed in Table 3 (NF feature vector). 
The five most important features are time_to_discuss, cm_mean_len, desc_words, desc_
subjectivity, and desc_pos_polarity. The least important five features are numeric_asso-
ciation, code, has_commit, same_author_closer, and finally is_pull_request. Moreover, 
the five most important features from the LF feature vector are bug, feature, documenta-
tion, stale, usability, won’t fix. The least five features from this vector are weekly-report, 
announcement, pinned, hard, bounty.

4.3.2 � High vs. Low Priority

As the impact of misclassifying HP and LP classes differ, they can be treated differently. 
In this section, we investigated the impact of adding more weights to the HP class to see 
how it affects the results. To this end, we set the weights to 0.1 × (10 − i) for the LP class, 
and 0.1 × i for the HP class where i = [1, 9] . Figures 10, and 11 depict changes in the total 
accuracy, and results of different evaluation metrics for HP and LP classes. The results 
indicate that as the weight of the HP class increases, the scores of recall, F1, and accu-
racy for HP class and precision for LP class increase. At the same time, the precision of 
HP class, and the recall of LP class decrease. However, the best overall accuracy of the 
model based on both classes is achieved when i = 6 . That means slightly more emphasis 
on the HP class results in the best overall result. As we have tuned the parameter, this is 
the setting we have used for the cross-project context as well. That is, the final model puts 
more emphasis on the HP class to achieve the best overall results. However, in cases where 
the HP class (or LP) is of much higher importance, one can adjust the weights to get the 
desired results from the model.

4.4 � RQ4: Human Labeling And Evaluation: Results

For the first part of this experiment, we asked participants to tag unlabeled issues from six 
unseen projects. We collected at least 5 votes (priority labels) per issue (300 votes in total).

We initially obtained 34 responses to our questionnaires, from which four responses 
had major conflicts with others (outliers). We define an outlier labeler as an individual 
whose tagged labels are different than labels assigned by the majority of other labelers 
(who tagged the same issues) in more than 50% of cases. To avoid introducing noise, we 
removed all the labels assigned by such outlier participants and then proceeded to assess 
the results based on the responses of the remaining 30 individuals. The average outlier 
percentage for the remaining 30 labelers, is 19% . That is, on average, a labeler, has assigned 
similar labels to what others tagged for the same issues in more than 80% of cases.

The model achieves 90% overall accuracy. Moreover, accuracy per project ranges 
from 80% to 100% . Weighted precision, recall, and F1 scores for the two classes of HP 
and LP are 92% , 90% and 91% , respectively. The results indicate the model is capable of 
predicting unseen issues successfully. Note that the above accuracy is achieved using the 
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cross-project-based priority prediction model. We believe adding historical data of projects 
in GitHub and training project-based models can further improve these results.

To measure the inter-rater reliability among the 30 participants, we use two meas-
ures, Percent Agreement and Randolph’s free-marginal multi-rater kappa. We achieve 
85.3% overall Percent Agreement and 0.71 Kappa. For the latter, based on Landis and 
Koch’s interpretation system (Landis and Koch 1977), the achieved score translates to 
substantial agreement among the labelers. Thus, our labelers substantially agree accord-
ing to this measure. We also compute these measures per project. Percent Agreement 
among the six projects varies between 76% to 96% . Moreover, for two out of six pro-
jects (ElasticSearch and Retrofit), kappa is above 0.81 which translates to almost perfect 
agreement among labelers for these projects. Considering the diversity among partici-
pants, the large number of labelers, and the inherent subjectiveness when prioritizing 
issues, we believe the assigned labels have good quality and the labelers are mostly in 
agreement with each other. However, the exact same results may not be replicated using 
another set of labelers or issues.

In the second part of this experiment, we asked the participants what factors they 
take into account when determining the importance of issue reports. In the follow-
ing, we have summarized their free-format answers in several major groups to provide 
insights for future work. Two of the authors were involved in the process of analyzing 
the free-format answers. We used the open coding technique for this process by break-
ing issues into discrete parts and creating codes to label them (Khandkar 2009). Each 
author separately labeled each sentence of a free-format answer for all participants. We 
used concise summarization of a sentence’s goal in the labeling process. If sentences 
were compound, authors separately labeled the goal of each phrase. Then, for each par-
ticipant, the two authors compared the goal category for each sentence/phrase. In the 
end, we accumulated the categories, clustered them, and reported on the largest clusters 
existing in the data of this experiment. While we have exploited some of these factors 
(e.g., issue type, discussion magnitude, roles, etc.) in this study, other interesting factors 
such as the required effort and estimated impact can be also utilized to further improve 
the proposed model.

–	 Issue type: Many participants indicated that they first look for the type of issue, 
whether it is a bug report, a feature request, a question, etc. Then they go deeper, if it 
is a bug, what kind of a bug it is, e.g., is it security related?

–	 Content: Is it related to the core features of the project?
–	 Impact: Is the reported issue blocking other functionalities of the project? Is it 

affecting many users? Which one can potentially cause more problems?
–	 Discussion/Reaction magnitude: How large is the discussion around the reported 

issue? How many comments has it attracted? How many users are participating in 
the discussion? What are the emojis used?

–	 Labels: What are the labels assigned to the issue, e.g., duplicate, invalid, etc?
–	 Roles: Who has opened the issue? What is their experience level? Which team mem-

bers are participating in the discussion?
–	 Required effort: How much effort is required to solve the issue?
–	 Dates: How long ago has it been reported?
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4.5 � Applications

The proposed models in this work can be integrated into online platforms such as 
GitHub and help software teams automatically and instantly tag their issues with the 
correct label. One can also use the models dynamically to assign new priority labels. 
That is, teams can use the model periodically (e.g., at a specific hour each day) and 
re-assess the importance of issues based on the updated features (e.g., new discussions 
among team members, labels being added/removed, etc.). Moreover, previous work has 
shown that properly tagged issues are easier to manage. For instance, based on the deter-
mined objective (Bug report, Enhancement, support/Documentation), bug triaging can 
be facilitated and more important issues are assigned earlier to proper team members. 
Finally, major and important issue reports can be automatically selected to be included 
in software teams’ periodic reports (such as release notes).

4.6 � Threats to Validity

In this section, we discuss the potential threats to the validity of our findings and how we 
address or mitigate them.

Internal validity Internal validity threats are related to our implementation and results, 
labels analysis, and human bias in manual processes. Although we have tried to thoroughly 
check our implementation, there still may be missed mistakes. To mitigate this, we have 
made our code and data publicly available in our repository for replication and use by other 
researchers.11 Moreover, the parameters used in this study can pose potential threats. To 
mitigate this we have tried to optimize all models and explicitly reported the values of 
parameters in each experiment separately. Any unmentioned parameter is set to the default 
value of the corresponding library. The set of synonym but differently written labels also 
poses a risk. To mitigate this risk, two authors independently assessed these labels, then 
compared the results, and resolved any case of conflict. Moreover, in this process, both 
authors adhered to the labels’ definitions provided by GitHub. These measures increase our 
confidence in the manually created label sets.

As the main goal for the human labeling and evaluation task is to showcase the abil-
ity of the model when prioritizing unlabeled issues, we were not able to compare against 
the ground truth labels in this experiment. To mitigate this we employed a partially objec-
tive labeling task and took the majority vote for each label as its ground truth. As prior-
itizing issues is a subjective task, biases and different opinions cannot be avoided. A fac-
tor that is important for an individual is not necessarily considered important for another 
person. Thus, the problem of prioritization is inherently subjective and biased. We took 
several measures to mitigate such biases, including selecting matured projects, randomly 
selecting issues from these projects, inviting a large number of professional developers 
and software engineers to participate in our experiment (diversity), providing labelers with 
important information of projects, and instructing them to get to know the project and its 
type of issues (awareness and knowledge). We also assigned each labeler only to one pro-
ject. Moreover, we computed two inter-rater reliability measures, Percent Agreement and 
Randolph’s free-margin multi-rater kappa. The results indicated that there is a substantial 
level of agreement among labelers for all projects. Furthermore, for two projects there are 

11  https://github.com/MalihehIzadi/IssueReportsManagement
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perfect agreements. On one hand, the key limitation of Percent Agreement is that it does 
not account for the possibility that labelers may guess the labels, so it may overestimate 
the true agreement (McHugh 2012). As our labelers are experts in the software engineer-
ing domain and are instructed to make well-informed decisions, little guessing is likely to 
exist, minimizing this risk. On the other hand, due to some of the kappa’s assumptions, it 
can underestimate the agreement among labelers  (McHugh 2012). That is why we have 
included both of these measures in this study. Moreover, participants’ level of carefulness 
and effort can also affect the validity of the experiment’s results. To mitigate this risk, 
we recruited participants who expressed interest in our research and double-checked the 
results to make sure there is no error. For instance, we removed outlier labelers to avoid 
introducing noise by including people who had responded with low-quality labels (more 
than 50% inconsistency with others). In the end, it is worth mentioning, due to the inherent 
subjectiveness of the prioritization task, the results of this particular experiment may not 
be completely replicable using another set of labelers or issue reports.

External validity These threats are related to the generalizability of our work. To address 
this issue, in both tasks we train our models on large-scale datasets. For the objective-pre-
diction task, we use over 818K issue reports collected from approximately 61K reposito-
ries. Furthermore, for the second, priority-detection, we also have trained a generic model 
in a cross-project context. We have shown that our model can successfully predict priority 
of issue reports for unseen repositories.

Construct validity Threats to construct validity relates to the suitability of the evaluation 
metrics used in this study. We use a set of standard evaluation metrics, namely precision, 
recall, F1-score, and accuracy which are all employed in previous work (Kallis et al. 2019; 
Song and Chaparro 2020; Huang et al. 2018) in the field. However, more clusters and/or 
synonym labels can be found and used in the future. Another threat is the choice of classi-
fiers and the list of feature sets that we feed our models. It is possible that using different 
features sets (and models) result in different findings. To address this issue, we thoroughly 
inspected issue reports and collected a large set of features. Then we performed feature 
engineering methods to identify the most important ones. We also used normalization 
techniques on numerical features. Furthermore, we experimented with different Machine 
Learning models to find the best algorithm that fits our case. To obtain more stable results 
for smaller datasets, we used the cross-validation technique. However, random selection 
does not preserve chronology and ignores possible dependency between issue reports that 
may influence the trend of issues’ category and importance in practice. To mitigate this 
problem, the blocked version of the cross-validation technique through adding margins can 
be used.

5 � Related Work

In the following, we review studies related to two phases of our proposed approach in the 
categories of collective knowledge in SE, issue report classification, issue report prioritiza-
tion, and cross-project models.

5.1 � Collective Knowledge in Software Engineering

Collective knowledge accumulated on software-related platforms has been exploited in 
various studies to help improve the software development process by introducing new 
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techniques or providing empirical evidence. Various types of collective knowledge have 
provided the means to perform studies on empirical studies on such knowledge acquired 
from Stack Overflow, GitHub, and App store (Baltes et al. 2019; Wu et al. 2019; Hu et al. 
2019; Zeng et al. 2019), investigating, utilizing, and improving crowd-sourced knowledge 
in Stack Overflow  (Zhang et  al. 2015; Tavakoli et  al. 2020), usage of collective knowl-
edge in a cross-platform setting  (Baltes and Diehl 2019). Vasilescu et  al.  (2013) studied 
the relationship between Stack Overflow activities and the development process in GitHub 
through analyzing the available crowd-sourced knowledge. They claimed the Stack Over-
flow activity rate correlates with the code changing activity in GitHub. For instance, active 
committers tend to provide more answers on Q&A websites. In another work, Vasilescu 
et al. (2014) studied the evolution of mailing list participation after the lunch of StackEx-
change. They showed that the behavior of developers has been impacted by the emergence 
of these platforms, e.g., users are motivated to provide faster answers on StackExchange 
than on r-help mailing list due to its gamified environment.

There are also numerous studies on providing automatic and intelligent solutions for 
various SE problems through exploiting these sources of collective knowledge such as 
source code summarization (Wan et al. 2018; Aghamohammadi et al. 2020), automatic tag 
(topic) recommendation in Stack Overflow and GitHub (Wang et al. 2018; Izadi et al. 2021) 
and more. For instance, Zhou et al. (2020) through acknowledging the voluntary nature of 
open source software and the difficulty of finding appropriate developers to solve difficult 
yet important issue reports studied monetary rewards (bounties) to motivate developers and 
help the evolution of the project. They found the timing of bounties is the crucial factor 
affecting the likelihood of an issue being handled. In another work, Chen et al. (2021) per-
formed an empirical study on the user-provided logs in bug reports to investigate the prob-
lems that developers encounter and how to facilitate the diagnosis and fixing process. Da 
Costa et al. (2018) conducted a comparative study on traditional and rapid release cycles to 
grasp the effect of rapid release cycles on the integration delay of fixed issues by analyzing 
72K issue reports from the Firefox project.

Our work is similar to the above in the context that we too try to exploit collective 
knowledge to address SE problems and provide efficient and automatic solutions. However, 
we specifically aim at addressing the management of issue reports as an important source 
of such knowledge to further facilitate and support the evolution of software projects. We 
employ advanced Machine Learning techniques to address issue reports from two aspects 
of objective and priority and help team managers make better decisions. In the following, 
we review the literature on issue report classification and prioritization.

5.2 � Issue Report Classification

Bug report categorization using Machine Learning techniques has received increasing atten-
tion from the software research community. Antoniol et al. (2008) used three Machine Learn-
ing algorithms, namely Naive Bayes, Decision Trees, and Logistic Regression to determine 
whether the text of their manually-labeled bug reports is enough to classify them into two 
distinctive classes of bugs or non-bugs. They found the information included in an issue can 
be indeed used to classify them. However, they only investigated three projects of Mozilla, 
Eclipse, and JBoss projects from Bugzilla. In the past years, there have been more researches 
on categorizing bug reports using text mining, topic modeling (Pingclasai et al. 2013; Lim-
settho et al. 2016) and classification techniques (Sohrawardi et al. 2014; Zhou et al. 2016; Ter-
dchanakul et al. 2017; Pandey et al. 2017) in bug tracking systems such as Bugzilla and Jira.
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The main focus of the previous work has been on distinguishing bug from non-bug reports 
for the purpose of bug triaging. Moreover, most of these studies only investigate a few pro-
jects and rely only on a limited set of projects and their data for training separate models. 
There is no proof whether they are suitable from a large-scale perspective. Therefore, in the 
issue-objective prediction phase of our proposed approach, we perform a large-scale analysis 
of issue reports in GitHub issues to classify them into three coarse-grained classes of Bug, 
Enhancement, and Support using state-of-the-art transformer-based techniques.

To the best of our knowledge, there are two papers with the same focus (similar issue 
classes, GitHub as the common platform, large-scale) as the issue-objective prediction 
phase of our proposed approach. In 2019, Kallis et al. (2019) proposed TicketTagger, a tool 
based on FastText for classifying issues to three categories of Bug, Enhancement and 
Question. These categories are among the default labels of the GitHub issue system. 
They trained their model on the text (title and description) of 30K issue reports from about 
12K GitHub repositories. Their evaluation reports 82% , 76% , and 78% of precision/recall 
scores for three classes of Bug, Enhancement, and Question, respectively. Recently, BEE 
was proposed by Song and Chaparro (2020), which uses the pre-trained model of Ticket-
Tagger to label issues. Then it proceeds to identify the structure of bug descriptions from 
predicted reports that are predicted to be a bug in the issue-objective prediction phase. Fur-
thermore, Huang et al. (2018) proposed a model based on convolutional neural networks 
(CNN) to classify issue report sentences. They manually labeled 5408 issue sentences from 
four GitHub projects and categorized them into seven groups based on their intentions. 
These intention categories include Problem Discovery, Feature Request, Information Giv-
ing, Information Seeking, Solution Proposal, Aspect Evaluation and finally, Meaningless. 
Our objective categories overlap with theirs, however, they extract issue sentence intention 
while we classify the whole issue. We not only classify issue reports and outperform these 
baselines, but also use these probabilities as one of the input features in the second stage 
of our proposed approach which is the prioritization of said issues. This is because the 
priority of issues is largely sensitive to their actual objective. Although answering users’ 
questions and helping them are important tasks, fixing bugs and adding new features are 
probably assigned higher ranks of importance. Pull Requests are intertwined with issue 
reports (they usually try to address open issues), and this notion is confirmed by Gousios 
et al.’s (2015) findings as well. They reported that software project integrators tend to pri-
oritize contributions (pull requests) to their projects by considering the criticality of bug 
fixes, the urgency of new features, and their size. Furthermore, to the best of our knowl-
edge, we are the first to use transformer-based classifiers to manage issue reports. We fine-
tune RoBERTa, a pre-trained model on our large-scale dataset and achieve higher accu-
racy (outperforming all the baselines by large margins). We also apply more rigorous text 
processing techniques and we employ a much larger dataset incorporating more labels to 
train a more generic model. More specifically, we collect and process over one million 
issue reports from 80K repositories. We include 818K pre-processed issues from about 61K 
repositories, while Kallis et al. (2019) use only 30K issues from 12K repositories.

5.3 � Issue report Prioritization

Researchers have been studying bug report prioritization avidly (Uddin et al. 2017). Kan-
wal and Maqbool (2012) proposed a bug priority recommender using SVM and NB clas-
sification techniques. Alenezi and Banitaan (2013) tried to predict bug priority using three 
classifiers, namely NB, DT, RF on two projects of Firefox and Eclipse. Tian et al. (2013) 
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proposed DRONE for Eclipse projects. They investigated the effect of multiple factors, 
namely temporal, textual, author, related-report, severity, and product features of bug 
reports on their priority level in the five-category ranking system of the Bugzilla’s Bug 
Tracking System (BTS). Kikas et al. (2016) proposed an approach to predict the lifetime of 
an issue and whether it can be closed in a given period, using dynamic and contextual fea-
tures of issues. There are also other studies on prioritizing pull requests (PRioritizer) (Veen 
et al. 2015), and prioritizing user-reported issues through their relations with app reviews 
and ratings (Gao et al. 2015; Noei et al. 2019, 2019; Di Sorbo et al. 2020). For instance, 
Noei et al.  (2019) proposed an approach to identify issues that need immediate attention 
through matching them with related user reviews in several apps. They suggested software 
teams should first address issues that are mapped to the highest number of reviews. By 
doing so, their app rating can be positively affected.

Although there are several studies on prioritizing bug reports on Bugzilla, the scope and 
features available in these systems differ. For instance, Bugzilla is primarily designed for bug 
report management and has a predefined set of five priority labels, thus it has more training 
data available. In these studies, the focus is on bug reports and predicting whether a report 
is a bug or non-bug, while we train a model to detect the objective behind opening issues. It 
also includes information regarding the severity which previous work has greatly exploited. 
A recent study proposed by Dhasade et al. (2020) has addressed the need for priority predic-
tion models in GitHub. However, they use LDA to identify the categories of issues, then train 
a classifier to predict the hotness of issue reports on a daily basis. On contrary, our model 
uses classification models to label issues with two straightforward labels (High/Low). The 
model can be used on both open and closed issues. And it can be utilized both for prioritizing 
tasks plus resource allocation and also for documentation purposes such as writing reports, 
delivering release notes, and highlighting the most important closed issues in a release.

The mentioned studies mostly try to prioritize bug reports in various ITS and BTS 
systems such as Bugzilla, Jira, and GitHub using different Machine Learning techniques. 
However, to the best of our knowledge, there is no prior work on supervised models for 
issue reports of GitHub similar to ours. Our work differs from bug prioritizing approaches 
since we address all issues and not just bugs. Furthermore, BTS systems have readily avail-
able metadata which are unfortunately missing in GitHub. Merten et al. (2016) empirically 
analyzed four open-source projects from GitHub and Redmine and found projects’ meta-
data can improve classifier performance. Therefore, we also conduct feature engineering 
techniques on metadata of issue reports and extract the salient features from GitHub which 
have not been utilized before. On the other hand, approaches based on linking app’s user 
reviews and issues from GitHub do not take into account various important factors such 
as author information, the amount of discussion happening in the report, issue lifetime, 
issue category, etc. In addition to utilizing the metadata of reports, we predict the objec-
tive of issue reports and then feed the predicted probability to our classification model for 
prioritizing. We also perform sentiment analysis and include the outcome in our prioritizer 
model. Moreover, we train both project-based and cross-project models. And finally, we 
also conducted a human labeling and evaluation task to assess the performance of the pro-
posed model on unseen data and provided developers’ insights for future studies as well.

5.4 � Cross‑project Models

Peters et  al.  (2013) claimed project-based predictors are weak for small datasets. Also, 
Kitchenham et al. (2007) found that relying on project-based datasets is problematic due to 
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the challenging task of collecting just enough project data to train models properly. Cross-
project classification is a realistic solution for training a generic model from the data of 
a large number of different projects. The trained model then can be successfully used for 
projects that have little to no data available for training. In this field, a few studies have 
been conducted in the cross-project context. Yu et al. (2018) conducted an empirical study 
to identify the factors that affect the performances of transferring reusable models across 
projects in the context of issue classification. They extracted 28 attributes grouped into four 
dimensions. Sharma et al. (2012) evaluated different Machine Learning models for predict-
ing priority of new issues in five datasets of Open-Office and Eclipse projects. Our work 
complements these studies by analyzing factors affecting issue reports in GitHub from both 
aspects of issue objective and priority.

6 � Conclusions and Future Work

An issue report can be opened due to several reasons including reporting bugs, requesting new 
features or merely for seeking support from the software team. Naturally not all issues are 
equally important. Some may require immediate care, some may need to be included in the 
documentation reports of the project, while others are not as urgent. In this study, we proposed 
a two-stage approach to predict both objective and importance of issue reports posted on soft-
ware repositories. We defined three sets of features related to issue reports and exploited state-
of-the-art text classifiers to achieve our goal. According to the evaluation results, our models 
outperform the baselines in both project-based and cross-project settings with 82% and 75% 
accuracy for objective and priority prediction, respectively. Furthermore, we showed that our 
proposed priority prediction model in the cross-project setting performs on par with the pro-
ject-based models. Moreover, we conducted a human labeling and evaluation task to use the 
proposed priority detection model on unlabeled issue reports from six unseen projects with 

Table 8   Selected labels for each 
category of issue priority

Priority Labels’ list

High-priority p0, priority: p0, p1, priority 1, 
priority: p1, priority 2, critical, 
criticalpriority, priority-critical, 
critical priority, priority:critical, 
priority critical, priority: critical, 
priority - critical, critical-priority, 
priority/critical, urgent, priority/
urgent, priority/blocker, prior-
ity: blocker, important, prior-
ity/important, priority: major, 
highpriority, priority-high, high 
priority, priority:high, priority 
high, priority: high, priority - 
high, high-priority, priority/high, 
is:priority

Low-priority p3, priority: p3, priority 4, priority: 
minor, lowpriority, priority-low, 
low priority, priority:low, priority 
low, priority: low, priority - low, 
low-priority, priority/low, is:no-
priority
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the help of 30 software engineers. The results indicate that the model is capable of predicting 
priority of unseen data with high accuracy (90%). Therefore, our proposed model can be used 
for other unseen projects successfully without the need for extra training.

In the future, we plan to work on finer-grained categories of both objectives and priority 
levels. Moreover, based on the results of our human labeling and evaluation experiment, we 
plan to investigate more features that can affect the importance of an issue from software engi-
neers’ perspectives. For instance, many participants considered the bug type and the degree of 
its impact as an important factor while prioritizing issue reports. Finally, adding more projects 
from other programming languages can also help the generalizability of the proposed approach.

Appendix: Priority Labels

Table 8 presents the list of manually extracted labels from top GitHub repositories (most 
star) for categories of high and low priority issues.
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