
Vol.:(0123456789)

https://doi.org/10.1007/s10664-021-10085-3

1 3

Predicting the objective and priority of issue reports
in software repositories

Maliheh Izadi1  · Kiana Akbari1 · Abbas Heydarnoori1

Accepted: 2 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Software repositories such as GitHub host a large number of software entities. Develop-
ers collaboratively discuss, implement, use, and share these entities. Proper documentation
plays an important role in successful software management and maintenance. Users exploit
Issue Tracking Systems, a facility of software repositories, to keep track of issue reports, to
manage the workload and processes, and finally, to document the highlight of their team’s
effort. An issue report is a rich source of collaboratively-curated software knowledge, and
can contain a reported problem, a request for new features, or merely a question about the
software product. As the number of these issues increases, it becomes harder to manage
them manually. GitHub provides labels for tagging issues, as a means of issue manage-
ment. However, about half of the issues in GitHub’s top 1000 repositories do not have any
labels. In this work, we aim at automating the process of managing issue reports for soft-
ware teams. We propose a two-stage approach to predict both the objective behind open-
ing an issue and its priority level using feature engineering methods and state-of-the-art
text classifiers. To the best of our knowledge, we are the first to fine-tune a Transformer
for issue classification. We train and evaluate our models in both project-based and cross-
project settings. The latter approach provides a generic prediction model applicable for any
unseen software project or projects with little historical data. Our proposed approach can
successfully predict the objective and priority level of issue reports with 82% (fine-tuned
RoBERTa) and 75% (Random Forest) accuracy, respectively. Moreover, we conducted
human labeling and evaluation on unlabeled issues from six unseen GitHub projects to
assess the performance of the cross-project model on new data. The model achieves 90%
accuracy on the sample set. We measure inter-rater reliability and obtain an average Per-
cent Agreement of 85.3% and Randolph’s free-marginal Kappa of 0.71 that translate to a
substantial agreement among labelers.

Keywords  Software evolution and maintenance · Mining software repositories · Issue
reports · Classification · Prioritization · Machine learning · Natural language processing

Communicated by: Shaowei Wang, Tse-Hsun (Peter) Chen, Sebastian Baltes, Ivano Malavolta,
Christoph Treude, and Alexander Serebrenik

Dr. Abbas Heydarnoori is also a corresponding author for this work.

Extended author information available on the last page of the article

Published online: 1 February 2022

Empirical Software Engineering (2022) 27: 50

/

http://orcid.org/0000-0001-5093-5523
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10085-3&domain=pdf

1 3

1  Introduction

Due to the possibility of having public discussions and contributions, software engineers
and developers can collaboratively develop and maintain software projects. In doing so, a
growing base of knowledge has formed on software-related platforms such as GitHub and
Stack Overflow. This knowledge encapsulates various types of information such as source
code, user reports, software Q&A posts, and more. This raw yet invaluable knowledge can
be transformed into automatic and practical solutions using data-driven approaches to help
developers achieve their tasks more efficiently.

Most software repositories have a tracker for recording and managing tasks of a pro-
ject. These trackers are the primary mean for communication, discussion, getting help,
sharing opinions, making decisions, and finally collecting users’ feedback. GitHub’s
tracker is called Issues. Issue reports are an important source of knowledge provided
with the help of the community. Any GitHub user is able to discuss, and contribute to
the progress of a software project using issue reports. Users can create an issue in a
repository for various reasons including reporting bugs in the system, requesting new
features, or asking for support. This source of collaboratively-curated knowledge can be
of great assistance in the process of software development and maintenance. Team mem-
bers should address these issues as soon as possible to keep their audience engaged and
improve their software product. As the project grows, the number of users and reported
issues increases. For instance, Elastic-search project has more than 27K issue reports
since 2017. It has on average, 25 and 760 daily and monthly new issues, respectively.
Consequently, timely management of issues including determining the goal of issues
(classification of issue objectives), identifying urgent issues to address (prioritizing
issues), and selecting the most important changes to include in product reports such as
release notes, becomes harder.

Issues in software repositories must have a title, a description, and a state (open or
closed). They can also have additional data such as labels, assignees, milestone, comments,
etc. Figure 1 presents an issue from GitHub which contains various types of information
including title, description, author, and participants. As shown, the description of this issue
contains useful information including the reported problem and code snippets to elaborate
the reported problem. Moreover, it has several labels such as bug report to denote its
objective and high-priority to indicate its importance. Labels, as a sort of project
metadata, describe the goal and content of an issue. They are mainly used for categoriz-
ing, managing, searching, and retrieving issues. Thus, assigning labels to issues facilitates
task assignment, maintenance, and management of a software project. Consequently, issue
management is a vital part of the software development process.

Labels are assigned to issues to indicate their objective, status, priority level, etc.
Such labels can help team members manage and track their tasks more efficiently. Cabot
et al. (2015) analyzed about three million non-forked GitHub repositories to investigate the
label usage and its impact on resolving issues. They showed only about 3% of these reposi-
tories had labeled issues, which indicates labeling issues is rarely done by developers. Fur-
thermore, in the repositories which incorporated issue labeling, only about 58% of issues
were labeled. In their study, each issue had 1.14 labels on average. The authors showed
addressing an issue and the engagement rate both have a high correlation with the number
of labeled issues in a repository (Cabot et al. 2015). This may indicate that labeling issues
can benefit project management. Recently, Liao et al. (2018) investigated the effect of labe-
ling issues on issue management. They analyzed six popular projects and found labeled

Empirical Software Engineering (2022) 27: 5050 Page 2 of 37

1 3

issues were addressed immediately, while unlabeled issues could remain open for a long
time. They also emphasized the need for correct labeling. Previously, Herzig et al. (2013)
also reported about 34% of bug reports submitted by various users are misclassified (has
a wrong label). Misclassified reports can be misleading and result in a prolonged resolv-
ing process. They can cause failed task assignment and/or impact the performance of bug
prediction models. This indicates the need for proper labeling of issue reports using an
unbiased model.

In this study we consider two types of labels, namely objective and priority labels for
an issue. Based on our label analysis (refer to Section 2.2), we take the three most frequent
reasons for opening issues as the main objectives. These are Bug reports, Enhancement
requests, and Support/Document. We also consider two priority levels, High and Low. The
former should be addressed as soon as possible while the latter can be handled with less
urgency. Detecting the priority level of issue reports has a two-fold gain; not only it helps
with accurate and timely resource allocation for bug triaging, but also it results in less
cost regarding maintenance and documentation purposes of the project. For instance, the

Fig. 1   Issue sample

Empirical Software Engineering (2022) 27: 50 Page 3 of 37 50

1 3

high-priority addressed issues can be listed in release notes or other performance reports
of a project.

Using a two-staged approach, we aim to predict both the objective and priority of an
issue. We first predict an issue’s objective by inspecting its textual information, namely its
title and description. We fine-tune a pre-trained transformer-based model to classify issue
objectives into three categories of Bug, Enhancement, or Support/Document. More specifi-
cally, we adapt the Robustly-optimized BERT approach (RoBERTa) (Liu et al. 2019) pro-
posed by Facebook to our case. Our experiments indicate that using these types of textual
information is sufficient for successfully predicting these objectives. In the second stage, to
train our classifiers we define three sets of features, namely Textual Features, Label Fea-
tures, and Normalized Features that can potentially help in predicting the importance of
an issue. Textual Features include TF-IDF vectors of title and description of issues. Label
Features are one-hot encoded vectors of available labels for an issue. For the third input
vector, Normalized Features, we apply feature engineering methods and scale the numeri-
cal information from five different information resources including textual-based, devel-
oper-related, discussion-related, event-related, and sentiment of the issues. Finally, we train
multiple classifiers for predicting the priority of an issue. We obtain the best result using a
Random Forest (RF) classifier.

For the first task, we use about 817, 743 issues and train a single generic model appli-
cable for all repositories. For the second task, we train our models in both project-based
and cross-project settings using about 82, 719 issues. We evaluate our models in both
tasks using standard metrics including precision, recall, F1-measure, and accuracy. Our
fined-tuned RoBERTa-based classifier achieves 82% of accuracy, outperforming baseline
models. Moreover, our priority prediction model scores 75% of accuracy. The results
show that both project-based and cross-project prediction models for the second task
perform comparably. Therefore, our model is expected to efficiently work for unseen
repositories without the need for more training. Nonetheless, we conducted a human
labeling and evaluation experiment to assess the proposed model’s performance on new
data, i.e., unlabeled issue reports from six unseen projects. Sixty issues were randomly
selected from these projects. Thirty software engineers participated in our study, and we
collected 300 votes for the sample set. The results indicate the high accuracy of the pro-
posed model on unseen data. Moreover, we also asked the participants the factors they
take into account while determining priority levels of issues and report their insights in
this work. Our contributions are:

–	 We train a model to predict issue objectives (bug report, enhancement, and support)
and obtain 82% accuracy. To the best of our knowledge, we are the first to adapt trans-
former-based models to predict labels for issue reports.

–	 We train project-based models for predicting the priority of issue reports using feature
engineering methods and state-of-the-art text classifiers. We also train a generic model
for priority prediction in a cross-project setting. This model performs on par with the
project-based models with 74% accuracy.

–	 We conducted a human labeling and evaluation task to assess the performance of the
proposed model on unseen data and achieved high accuracy ( 90% ). We obtain Percent
Agreement of 85.3% and Kappa of 0.71 which translate to a substantial agreement
among our participants.

–	 We collected and pre-processed two sets of large-scale datasets with objective and
priority labels from GitHub. We manually inspected synonym but differently-written

Empirical Software Engineering (2022) 27: 5050 Page 4 of 37

1 3

labels and clustered them to mitigate the noise of user-defined tags. We release our
source code and datasets for replication and use by other researchers.1 ,2

2 � Approach

In this section, we first present an overview of our proposed approach. Then, we elaborate
on each phase with more details.

2.1 � Approach Overview

Figure 2 presents a concise summary of our proposed approach. Our two-stage approach
for predicting the objective and priority of issues consists of (1) analyzing issue labels
on GitHub to determine which labels to use in our training, (2) data collection and pre-
processing, (3) issue-objective prediction, (4) feature engineering and model training, and
finally (5) predicting priority labels.

We first collect the data of issue reports using the GitHub API.3 Then, we extract tex-
tual information of issue reports, i.e., their title and description. We also extract all labels
assigned to issues. Finally, we process and save 73 types of information from these reports
(such as the author, closer, events, milestones, comments, etc.). Then we perform rigorous
text processing techniques on the data.

In the next phase, we train a transformer-based classifier, to predict the objective of an
issue. More specifically, we fine-tune RoBERTa (Liu et al. 2019) on our dataset. The three
intended categories we use are Bug Report, Enhancement, and Support/Documentation.

In the third phase, we take the information we gathered in the previous phases and
employ various NLP and machine learning techniques to train a model based on RF for
predicting priority levels of issues. Finally, we use our cross-project trained model to pre-
dict the priority of issues in unseen repositories. More specifically, we conducted an exper-
iment for human labeling and evaluation to assess the performance of the proposed model
on unlabeled issues from six unseen GitHub projects. In the following sections, we provide

- Data Collection

- PreProcessing

- Label analysis

First stage: Fine-tune

a Transformer-based

objective classifier

(RoBERTa)
Second stage: Train

the priority detection

model (Random

Forest)
- Feature Engineering

- Normalization

- Balancing

- Text transformation

- Sentiment analysis

Priority

Prediction

model

Issues

reports

Objective

detection

model

Low priority

High priority

Support/Documentation

Enhancement

Bug report

Labels

Fig. 2   Summary of the proposed approach

1  https://github.com/MalihehIzadi/IssueReportsManagement
2  https://zenodo.org/record/4925855#.YNME2r4zbtQ
3  https://developer.github.com/v3/

 Empirical Software Engineering (2022) 27: 50 Page 5 of 37 50

1 3

more details for each step of the proposed approach. Figure 3 presents the workflow of our
proposed approach with more details.

2.2 � Label Inspection

GitHub has a set of seven default issue labels, namely bug, enhancement, question,
help-wanted, duplicated, wont-fix, and invalid. Members can also add or
modify labels to adjust to their project’s needs.

To obtain a better understanding of which labels we should use for each task (objective
and priority prediction), we collected labels used in the top 1000 repositories of GitHub

Issues’ title

Balancing techniques

Issues’ description Issues’ set of features

Feature

normalization

Text preprocessing techniques

Issue-objective prediction

High-priority

Low-priority

PHASE 2: OBJECTIVE PREDICTION

PHASE 1: DATA COLLECTION AND PREPROCESSING

PHASE 3:
 PRIORITY PREDICTION

Trained

Model

GitHub

Predict

Text transformation (TF-IDF)

TF-IDF vectors of text

One-hot vectors of available labels

Normalized feature vectors

Sentiment scores

Sentiment Analysis

Preprocessed text

List of available labels

T
ra

n
sf

o
rm

at
io

n

Collect data

Enhancement Support/
Document

Bug
report

Textual

info

Discussion

-related
Events

Developer

info

Free

Text

Fine-tuned RoBERTa (Transformer)

Random Forest

Fig. 3   Approach workflow

Empirical Software Engineering (2022) 27: 5050 Page 6 of 37

1 3

which had at least 500 stars using the GitHub API.4 These repositories are ranked based
on their number of stars. Then two of the authors analyzed the labels. At the time we col-
lected labels of these repositories, they had 4, 888, 560 issue reports in total, from which
2, 333, 333 had at least one label. This means approximately half of the issues of popular
repositories did not have any labels. Furthermore, on average, 71% of all issue reports in
each repository were unlabeled. As shown by Figure 4, only 3% of these repositories have
labeled most of their issues (above 90% coverage), while about 80% of repositories have
labeled less than half of their issues.

Figure 5 shows top 20 labels used in the most popular repositories of GitHub. As
expected, most of these repositories already have the above-mentioned seven default
labels of GitHub. So the frequency of these labels are much higher than the new custom-
ized labels defined by users. We found 6182 distinct labels in the top 1000 repositories. As
shown, the frequency distribution has a long-tail. However, labels, like any other tag entity,
are written in free format. Thus, the distributed nature of the tagging process results in
multiple differently-written labels with a common semantic. For instance, issues opened to
report bugs are tagged with labels such as bug and type: bug or issues for requesting
new features are tagged with labels such as feature, feature request, and new
feature.

Previous studies have also investigated the main categories for issue objectives (Fan
et al. 2017; Kallis et al. 2019; Bissyandé et al. 2013; Cabot et al. 2015). Upon investigat-
ing issues of three million repositories, Cabot et al. (2015) concluded the most frequent
issue labels in GitHub are enhancement, bug, question, feature, documenta-
tion, won’t fix, and task. In another large-scale study on issue reports, Bissyande
et al. (2013) analyzed about 800K issues from which 27% were labeled. They reported that
the most frequent labels in their study were bug and feature. Fan et al. (2017) con-
ducted a study to determine whether issue reports are related to bugs or not. They used

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

La
be

le
d

iss
ue

 R
a	

o

Fig. 4   Labeled issues ratio per repository (for the top 1000 GitHub repositories)

4  https://api.github.com/search/repositories?q=stars:>500&sort=stars

 Empirical Software Engineering (2022) 27: 50 Page 7 of 37 50

1 3

the dataset provided by Yu et al. (2015) which contained 952K issue reports from 1, 185
GitHub repositories. Among the 7, 793 labels in the dataset, 149 were identified as the
labels which indicate the type of an issue. Over 252K issue reports ( 26% ) in the dataset
were tagged with one of these type labels. Fan et al. (2017) categorized the most frequently-
used type labels into two major classes of bug-related ( 52% ) and non-bug related ( 38% ).
The latter consists of the following labels: enhancement, feature, question, feature request,
documentation, improvement, and docs. This category can be broken down to two finer
categories of Enhancement and Support/Documentation. Lastly, Kallis et al. (2019) also
categorized issue reports into three classes of bug, feature, and question. There-
fore, based on our analysis and previous studies, we selected the three most-frequently-
used labels for issues’ objectives in the top projects as Bug Report, Enhancement and Sup-
port/Documentation. Next, two of the authors independently and manually identified the
most related but differently-written user-defined labels as these three main objectives. In
this process, authors have relied on the definitions provided by GitHub for labels.5 Then
the authors compared the categories and discussed any conflicts to validate the final deci-
sion. As a result, we collected issue reports that had at least one of the labels mentioned
in Table 1 for each objective category. Note that we only use mono-labeled issues in our
dataset. Thus issues tagged with more than one label are removed.

Note that there are other objectives for opening an issue, e.g., for testing, making
announcements, or discussing matters in the team. However, there were less frequently
used compared to our main selected categories. Moreover, among the most frequent labels,
there are also other recurrent labels such as duplicate, wont fix, invalid, in
progress, good first issue, stale, java, android, etc. However, these labels

Fig. 5   Label frequency among the top 1000 GitHub repositories

5  https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels

Empirical Software Engineering (2022) 27: 5050 Page 8 of 37

1 3

do not address the reason behind opening an issue. They are merely other types of metadata
for adding extra information. That is why we do not include these labels as issue objective.

The second task which is prioritizing issues, requires issues with a priority-related label.
Therefore, we inspected various priority labels including blocker-priority, crit-
ical-priority, high-priority, and low-priority. Note that priority labels
are also written in different formats. For instance, we found the following labels as indica-
tors of an issue with critical-priority: criticalpriority, priority-critical,
critical priority, priority:critical, priority critical, prior-
ity: critical, priority - critical, critical-priority, priority/
urgent, priority/critical, critical, and urgent. Thus, to find these seman-
tically similar labels, we performed the same analysis on priority-related labels explained
above, and found semantically similar but differently-written priority labels.

Moreover, in Section 2.7, we report the result of our analysis for extracting other fre-
quent and semantically-similar labels and incorporating them in our proposed approach as
an optional feature vector.

2.3 � Data Collection

For the first task of predicting the objective of an issue, we collected closed issues from
GitHub’s open-source repositories with Java as their main programming language which
were created before April 2021. We used Java as it was used frequently in previous stud-
ies and also to limit the number of retrieved issues. We selected three main categories of
objectives, namely Bug Report, Enhancement, and Support/Documentation based on the
labels presented in Table 1. The initial dataset for the classifying issue objectives contained
1, 096, 704 issues from 79, 729 repositories. Issues are grouped into three categories; 480K
bug-related issues, 528K enhancement-related issues, and 173K support-related issues.
In the end, after performing all our pre-processing steps reviewed below, there remained
817, 743 issues from 60, 958 repositories. More specifically, we include 362K, 342K, and
112K pre-processed issues belonging to the bug report, enhancement, and support/docu-
mentation categories, respectively. We denote this dataset as the issue-objective dataset.

For the second task we collected issues with at least one of the following four priority-
related labels: blocker-priority, critical-priority, high-priority, and
low-priority. We aggregate issues with labels of blocker, critical and high-priority
in the same group of the crucial issues. The rest are categorized in the low-priority group.

Table 1   Selected labels for each category of objective

Category Labels’ list

Bug report bug, defect, kind/bug, type: bug
Enhancement enhancement, kind/enhancement, type: enhancement,

type: improvement, improvement,
feature request, feature, kind/feature, type: new feature, new feature

Support/ Documentation help wanted, status: help wanted, type: support, supports,
question, type: question, kind/question,
docs, documentation, type: documentation, kind/documentation,
information, more info needed, more info required, more-information-needed,
need more info, needs info, needs more info, needs-info, needs-details

 Empirical Software Engineering (2022) 27: 50 Page 9 of 37 50

1 3

In all, we collected 47 synonyms for the two categories of High and Low priority (for the
complete list refer to Appendix 1.) In the end, after pre-processing the data, we have a data-
set of 82, 719 issues from 70 repositories for this task. The pre-processed dataset contains
44, 733 high-priority and 37, 986 low-priority issues. We denote this dataset
as the Issue-priority dataset.

Figure 6 provides the distribution of objective and priority classes after pre-processing
in their respective dataset for all projects. Figure 7 presents three box-plots for the num-
ber of issues in the 70 repositories of the Issue-priority dataset. HP Issues and LP Issues
denote the number of issues with High-Priority and Low-Priority labels, respectively. Fig-
ure 8 depicts the ratio of HP to LP labels of issue reports (HP/LP) per project in this data-
set. Although the average HP/LP ratio is 1.00, this ratio per project ranges from 0.16 to
6.40. That is for some repositories, the HP class is more represented, while for others, the
LP class is more supported.

2.4 � Pre‑processing

Each issue has two main textual information sources, namely title and description. To train
our models, we create a feature vector for both of them based on the following pre-process-
ing steps.

Filtering and cleaning We first remove issues that have very little (less than three char-
acters) or no text in their title or description. We also remove issues that are tagged as not
an issue or duplicate issue reports to prevent biasing our models. Then, we filter out
issue reports that are written in a non-English language (more than 50% of the text). Then,
we clean issues’ textual information by removing arbitrary digits, non-ASCII characters,
and punctuation marks. Note that we retain question marks as they are mainly used in ques-
tions and support-related issues. Thus, they can be helpful for predicting this class.

Text normalization Handling large vocabularies is a challenging task in NLP-based
researches. Generally, studies limit vocabulary to the most common words and replace out-
of-vocabulary tokens with a special unknown token <UNK>. To reduce out-of-vocabulary
tokens, we normalize issue reports’ textual information using several normalization rules.
More specifically, we replace abstract concepts such as user-names, code snippets, function
calls, markdown symbols, emails, URLs, paths, dates, and times using regular expressions.
The intuition is that including the exact content of these concepts increases the size of our
vocabulary, however, by performing text normalization we can both keep the notion of hav-
ing e.g., a code snippet in an issue and remove the exact characters of that code snippet to

(a) Objective categories (b) Priority categories

0

10000

20000

30000

40000

50000

Low Priority High Priority
0

100000

200000

300000

400000

Bug report Enhancement Support/Documentation

Fig. 6   Class distribution

Empirical Software Engineering (2022) 27: 5050 Page 10 of 37

1 3

help our models learn better. To achieve this, we replace the content of a code snippet with
an abstract token <CODE>. We apply the same technique to the rest of the above-men-
tioned concepts as well. Text normalization has been used before in pre-processing data for
machine learning models (Svyatkovskiy et al. 2020; Izadi et al. 2021).

Tokenization and lemmatization We split tokens based on several naming conventions
including SnakeCase, camelCase, and underscores using an identifier splitting tool called
Spiral.6 This will also mitigate the out-of-vocabulary problem. Using NLTK library7, we
first tokenize the text of issue reports, then we remove frequently used words in the lan-
guage called stop-words which do not bring any value to the models. Note that we keep
negative words such as NOT and compulsory words such as MUST, which can be useful
for the sentiment analysis phase. We then lemmatize the pre-processed text to reduce gram-
matical forms but retain their correct word formats.

Transformation The final step is to transform the textual information of issues to their
mathematical representation that can be fed to the machine learning models. We convert the
collection of pre-processed issues’ text to a matrix of TF-IDF vectors. More specifically,

Fig. 7   Distribution of LP and HP issues among repositories

Fig. 8   Histogram of HP/LP ratio per project

6  https://github.com/casics/spiral.
7  https://www.nltk.org/

 Empirical Software Engineering (2022) 27: 50 Page 11 of 37 50

1 3

we represent each issue title and description as a vector where each word is a feature. Note
that we generate their TF-IDF embedding vectors separately, then we concatenate these
two vectors for each issue. The simpler approach would be to first concatenate the text of
these two sources and then build the embedding vectors. However, our experiment yielded
better results when taking title and description TF-IDF vectors separately. This is prob-
ably due to the fact that although both title and description are inherently textual informa-
tion describing an issue, their abstract level and objective differ. Interestingly, our machine
learning models were capable of picking up on this difference. It is worth mentioning we
also experimented with Doc2Vec and Word2Vec embeddings. However, TF-IDF vectors
yielded the best results, thus we only report them in this work.

2.5 � First stage: Objective Detection

Previously, we obtained and pre-processed our issue-objective dataset. In this step, we train
our classifier for the first stage of our approach. To predict issue objectives (Bug report,
Enhancement, or Support/Document), we train a transformer-based model on the issue-
objective dataset. We fine-tune the RoBERTa (Liu et al. 2019) on our issue-objective
dataset. RoBERTa includes pre-training improvements (compared to the vanilla BERT
model Devlin et al. 2018) using only unlabeled text from the web, with minimal fine-tuning
and no data augmentation. The authors modified the masked language modeling task of
BERT by using dynamic masking based on a new masking pattern generated each time a
sentence is fed into training. They also eliminated the next sentence prediction task since
Facebook’s analysis indicated that it indeed hurts the model’s performance. The Input of
our model is the concatenated pre-processed word vectors of title and description of issues.
In this stage, we feed the models with pre-processed text (word vectors) and the models
process them accordingly. The output of the first stage is the probability of an issue to be a
Bug report, Enhancement, or Support.

2.6 � Sentiment Analysis

Sentiment analysis uses computational linguistics and NLP techniques to quantify the
intended sentiment of a piece of text. We believe more urgent issues hold more distinct
sentiment, and use sentiment analysis methods to extract this information from textual
information of issues. We use SentiStrength which quantifies the strength of positive and
negative sentiment8 in text. SentiStrength reports two scores in the range of ( −1 , −5 ) with
−5 for extremely negative sentiment, and (1, 5) with 5 as the extremely positive sentiment.
Psychology research claims that we process positive and negative sentiment at the same
time. Thus, SentiStrength reports both sentiment scores (positivity and negativity). We
apply SentiStrength on both issues’ titles and descriptions and analyze these features in our
feature selection process.

We also use TextBlob, a library that quantifies sentiment in terms of two measures of
subjectivity and polarity.9 It reports a tuple of Sentiment(polarity, subjectivity). Polarity
range is [−1, 1] and subjectivity range is [0, 1] with 0 as completely objective and 1 as

8  http://sentistrength.wlv.ac.uk/
9  https://textblob.readthedocs.io/en/dev/

Empirical Software Engineering (2022) 27: 5050 Page 12 of 37

1 3

completely subjective. Same as the above, we use this library on the title and description of
issues and use them in the feature selection process.

2.7 � Label Clustering

Labels are free-format text. Thus, users can use different word formats for semantically-
similar concepts. Clustering the morphological synonym labels as a form of issue label
management can boost the performance of machine learning models which takes these
labels as inputs. However as shown in Section 2.2, the number of distinct user-specified
labels is high. To be able to decrease issue labels’ space, two of the authors manually ana-
lyzed the collected labels from the top 1000 repositories, and found several clusters of
semantically similar labels. Based on our investigation, we selected the most 66 frequently-
used labels in GitHub and then extracted their synonyms but differently-written labels to
build a dataset of clusters of labels. Table 2 shows two sample identified clusters.10

We use representatives of these clusters as one of our feature sets. More specifically, we
build a one-hot vector with a size of 66, in which each element denotes the presence of one
of the label clusters. In the model construction phase, we concatenate this label vector with
the TF-IDF embedding vector of textual information of an issue and the selected features’
normalized vector and feed the final vector to our model.

2.8 � Feature Extraction And Categorization

Before training our prioritizer classifier, we performed feature selection. Feature selection
is the process of selecting a subset of relevant predictors to feed to the machine learning
model. These techniques are usually employed to simplify models, provide better inter-
pretation, avoid overfitting by providing more generalizable models, and achieve a shorter
training time (Dash and Liu 1997).

Table 2   Semantically similar
clusters of issue labels

Representative Semantically similar labels

Duplicate duplicate, status/duplicate, status:
duplicate, status:duplicate,
status=duplicate, status-duplicate,
type:duplicate, was:duplicate,
resolution:duplicate, resolu-
tion/duplicate, duplicate issue,
t-duplicate, r: duplicate, closed:
duplicate, kind/duplicate, type:
duplicate

Won’t fix won’t fix, wont fix, wontfix, wont-
fix, status: won’t fix, will not fix,
resolution:won’t fix, status=will-
not-fix, closed: won’t fix,
state:wont-fix, status: will not fix,
won’t-fix, will-not-fix, cant-fix,
cantfix, can’t fix

10  A complete list of these 66 clusters is available in our repository.

 Empirical Software Engineering (2022) 27: 50 Page 13 of 37 50

1 3

Ta
bl

e 
3  

S
el

ec
te

d
fe

at
ur

es
 fo

r p
rio

rit
iz

in
g

is
su

e
re

po
rts

C
at

eg
or

y
Fe

at
ur

e
D

es
cr

ip
tio

n

Te
xt

ua
l i

nf
or

m
at

io
n

tit
le

-w
or

ds
N

um
be

r o
f w

or
ds

 in
 th

e
tit

le
 o

f a
n

is
su

e.
de

sc
-w

or
ds

N
um

be
r o

f w
or

ds
 in

 th
e

de
sc

rip
tio

n
of

 a
n

is
su

e
co

de
N

um
be

r o
f c

od
e

sn
ip

pe
ts

 in
 th

e
de

sc
rip

tio
n

of
 a

n
is

su
e

ur
l

N
um

be
r o

f U
R

Ls
 in

 th
e

de
sc

rip
tio

n
of

 a
n

is
su

e
D

is
cu

ss
io

n
co

m
m

en
ts

N
um

be
r o

f c
om

m
en

ts
 in

 th
e

di
sc

us
si

on
cm

-m
ea

n-
le

n
A

ve
ra

ge
 le

ng
th

 o
f c

om
m

en
ts

 in
 a

n
is

su
e

cm
-d

ev
el

op
er

s-
ra

tio
Th

e
ra

tio
 o

f n
um

be
r o

f c
om

m
en

ts
 to

 n
um

be
r o

f d
ev

el
op

er
s e

ng
ag

ed
 in

 th
e

di
sc

us
si

on
tim

e-
to

-d
is

cu
ss

Th
e

tim
e

sp
an

 o
f t

he
 d

is
cu

ss
io

n
Ev

en
ts

ev
en

ts
N

um
be

r o
f e

ve
nt

s t
ha

t h
ap

pe
ne

d
to

 a
n

is
su

ea

as
si

gn
ed

Is
 a

n
is

su
e

as
si

gn
ed

 to
 a

 te
am

 m
em

be
r?

is
-p

ul
l-r

eq
ue

st
Is

 a
n

is
su

e
a

Pu
ll

Re
qu

es
t?

ha
s-

co
m

m
it

D
oe

s a
n

is
su

e
ha

ve
 a

ny
 re

fe
re

nc
ed

 c
om

m
it?

ha
s-

m
ile

sto
ne

D
oe

s a
n

is
su

e
ha

ve
 a

 m
ile

sto
ne

?
la

be
ls

N
um

be
r o

f l
ab

el
s a

ss
ig

ne
d

to
 a

n
is

su
e

D
ev

el
op

er
au

th
or

-fo
llo

w
er

s
N

um
be

r o
f f

ol
lo

w
er

s o
f t

he
 a

ut
ho

r o
f a

n
is

su
e

au
th

or
-fo

llo
w

in
g

N
um

be
r o

f G
itH

ub
 u

se
rs

 th
e

au
th

or
 fo

llo
w

s
au

th
or

-p
ub

lic
-r

ep
os

N
um

be
r o

f p
ub

lic
 re

po
si

to
rie

s o
f t

he
 a

ut
ho

r o
f a

n
is

su
e

au
th

or
-p

ub
lic

-g
ist

s
N

um
be

r o
f g

ist
s o

f t
he

 a
ut

ho
r o

f a
n

is
su

e
au

th
or

-is
su

e-
co

un
ts

N
um

be
r o

f i
ss

ue
s o

pe
ne

d
by

 th
e

au
th

or
 o

f a
n

is
su

e
au

th
or

-g
ith

ub
-c

nt
rb

N
um

be
r o

f c
on

tri
bu

tio
ns

 o
f t

he
 a

ut
ho

r o
f a

n
is

su
e

in
 G

itH
ub

au
th

or
-a

cc
ou

nt
-a

ge
Th

e
ag

e
of

 th
e

au
th

or
’s

 G
itH

ub
 p

ro
fil

e
ac

co
un

t
au

th
or

-r
ep

o-
cn

trb
N

um
be

r o
f c

on
tri

bu
tio

ns
 o

f t
he

 a
ut

ho
r t

o
th

e
cu

rr
en

t r
ep

os
ito

ry
as

so
ci

at
io

n
A

ss
oc

ia
tio

n
ty

pe
 o

f t
he

 a
ut

ho
r i

.e
.,

C
ol

la
bo

ra
to

r,
C

on
tri

bu
to

r,
M

em
be

r,
O

w
ne

r,
N

on
e

sa
m

e-
au

th
or

-c
lo

se
r

A
re

 th
e

au
th

or
 a

nd
 c

lo
se

r s
am

e
pe

op
le

?
Se

nt
im

en
t

de
sc

-p
os

iti
vi

ty
Po

si
tiv

e
se

nt
im

en
t s

co
re

 o
f t

he
 d

es
cr

ip
tio

n
of

 a
n

is
su

e
de

sc
-n

eg
at

iv
ity

N
eg

at
iv

e
se

nt
im

en
t s

co
re

 o
f t

he
 d

es
cr

ip
tio

n
of

 a
n

is
su

e

Empirical Software Engineering (2022) 27: 5050 Page 14 of 37

1 3

a
 A

 c
om

pl
et

e
lis

t o
f a

ll
is

su
e

ev
en

ts
 is

 a
va

ila
bl

e
at

 h
ttp

s:
//d

ev
el

op
er

.g
ith

ub
.c

om
/v

3/
is

su
es

/is
su

e-
ev

en
t-t

yp
es

/

Ta
bl

e 
3  

(c
on

tin
ue

d)

C
at

eg
or

y
Fe

at
ur

e
D

es
cr

ip
tio

n

de
sc

-p
os

-p
ol

ar
ity

Po
si

tiv
e

po
la

rit
y

sc
or

e
of

 th
e

de
sc

rip
tio

n
of

 a
n

is
su

e
de

sc
-s

ub
je

ct
iv

ity
Su

bj
ec

tiv
ity

 sc
or

e
of

 th
e

de
sc

rip
tio

n
of

 a
n

is
su

e

 Empirical Software Engineering (2022) 27: 50 Page 15 of 37 50

1 3

Two of the authors manually inspected issue reports and extracted a list of 73 potential
features which could affect the importance of issue reports. These features included (but
are not limited to) information about textual length of an issue, author of an issue, the
closer of an issue, were the author and closer the same people, the amount of discussion an
issue has attracted, how long the discussions took, the sentiment of the discussions, number
of events on the issue, does it have a commit, milestone, or assignee, is it a Pull Request,
and many more. Each of these features can potentially affect the outcome. For instance,
experienced developers are more likely to report or close important issues. A heated and/or
long discussion can be an indication of urgent matters being discussed by the team mem-
bers. For each opened Pull Requests, an issue is opened automatically (Kalliamvakou et al.
2014). Pull Requests can be considered as important issues. In fact using GitHub API when
collecting the dataset, one can choose to retrieve only issues and exclude Pull Requests or
retrieve all of them together. Considering the tight relationship of issues and Pull Requests,
we decided to keep Pull Requests when collecting the data. Note that Pull Requests can
also be investigated separately using their specific features and applications (Gousios et al.
2015; Veen et al. 2015). Therefore, we compute the correlation of these features, draw their
heat map (filter-based selection), perform two wrapper-based selection methods, namely
backward and recursive feature elimination approaches to analyze these features and
remove rudimentary ones. In the end, we choose 28 features and categorize them into five
groups of textual-, discussion-, events-, developer-, and sentiment-related features. Table 3
summarizes these features. Our analysis showed text length and the existence of code snip-
pets and URLs inside the description can help the model. For the discussion-related fea-
tures, we include four features, namely number of comments, the average length of com-
ments, the ratio of the number of comments to the number of engaged developers in the
discussion, and discussion time. For the events-related category, we include six features:
the number of all events, the fact that whether this issue is assigned, does it have a mile-
stone already, is it a Pull Request, does any commit reference this issue, and finally, how
many labels does it have. For the developer-related category, we use ten features including
various information about who has opened the issue, their reputation and number of fol-
lowers/followings, their experience and contribution to this project and GitHub in general,
their association, that is, whether they are a team member or merely a GitHub user, their
profile age and whether the author and closer are the same users or not. Because the author
and closer information have a high correlation score (above 80% ) in our dataset, we do not
include closer information separately.

2.9 � Feature Normalization

As the value of our features selected in the previous step vary in degrees of magnitude
and range, we perform feature normalization. machine learning algorithms such as Logistic
Regression (LR) and Neural Networks that use gradient descent as an optimization tech-
nique require data to be scaled. Furthermore, distance-based algorithms like K-Nearest
Neighbors (KNN), and Support Vector Machines (SVM) are affected by the range of fea-
tures. This is because they use distances between data points to determine their similar-
ity. We use the Min-Max scaling technique in which values of features are re-scaled to be
in the fixed range of 0 and 1 (Al Shalabi et al. 2006). We apply Min-Max scaling using
Equation 1 where Xmax and Xmin are the maximum and the minimum values of a feature,
respectively. We apply this technique to all our selected numerical features from the previ-
ous section.

Empirical Software Engineering (2022) 27: 5050 Page 16 of 37

1 3

2.10 � Balancing Techniques

A training dataset is considered to be imbalanced if one or more of the classes are repre-
sented by significantly less number of samples (issues) compared to other classes. This
leads to skewed data distribution between classes and can introduce bias into the model
(Weiss and Provost 2001). Therefore, we employ two balancing techniques to improve the
performance of our models. We first assign higher weights to the less-represented classes.
The classifier is penalized based on these weights when it misclassifies issues. The weight
vector corresponding to our classes is calculated using Equation 2, where N is the number
of issues in the whole dataset and frequencyti is the number of issues per class. Second,
we use the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002) to
augment (over-sample) the minority classes.

2.11 � Second Stage: Priority Prediction

We train our classifiers for the second stage of our approach. To predict the priority level
of issues, we use our issue-priority dataset. The input of the model in this phase consists
of three different types of feature sets obtained from previous steps and explained below.
Table 4 summarizes the input to our model.

–	 Textual Features (TF): First part of the input is the concatenated TF-IDF vectors of
title and description of an issue. We fit our TF-IDF vectorizer on the training data-
set. Later we use the same vectorizer to transform the test dataset. We set the maxi-
mum number of features for title and description vectors to 10K and 20K. The objective
label of an issue which is the output of the first stage of the proposed approach is also
included. Moreover, we set ngram range to (1, 2).

(1)Xnorm =
X − Xmin

Xmax − Xmin

(2)weightti =
N

frequencyti

Table 4   Inputs to our models in both stages

Stage Inputs

Objective detection - Word vectors of issue titles,
- Word vectors of issue descriptions.

Priority prediction - TF-IDF vectors of issue titles,
- TF-IDF vectors of issue descriptions,
- Predicted objective of issues from the first stage,
- One-hot encoded vector of available labels,
- Normalized feature vector (containing five different set of information,
namely textual information, discussion-related, developer-related, events-
related, and sentiment scores).

 Empirical Software Engineering (2022) 27: 50 Page 17 of 37 50

1 3

–	 Labels Features (LF): The second feature set is the one-hot vector of available labels
for an issue computed in Section 2.7.

–	 Normalized Features (NF): And the third part of the input is the normalized version of
our engineered features obtained in Section 2.9. The complete list of selected features is
provided in Table 3. We also include sentiment scores in this set.

We use RF as the selected classifier in this phase. RF has been shown to perform bet-
ter on tabular data. We configure the model parameters using Random Search algo-
rithm (Bergstra and Bengio 2012), that performs an exhaustive search of the hyper-param-
eter space. The output of the second stage is the probability of an issue being High or Low.
Note that we use the two balancing techniques presented in Section 2.10 to improve the
performance of our classifier, for the project-based setting, where for some repositories, the
ratio of labels is very unbalanced.

3 � Experiment Design

We conduct various experiments to validate the proposed approach. An experiment is
designed to analyze the performance of the issue-objective predictor model. For the pri-
ority prediction task, we analyze the model in both project-based and cross-project set-
tings. Our priority prediction model has two applications: (1) to prioritize open or closed
issues to facilitate timely task assignment and better project management, (2) to help select
important issues for inclusion in the periodic documentation of the project, e.g., to auto-
matically select important changes for inclusion in release notes. It is worth mentioning
that all issue features in both experiments of the project-based and cross-project settings
for the priority prediction task are calculated after issues are closed. However, a possible
future research direction is to design an experiment for training and evaluating the prior-
ity prediction model through collecting dynamic features periodically. We also conduct a
human labeling and evaluation experiment on unlabeled issues.

We use the datasets presented in Section 2.3. We split them to train, and test sets with
ratios of 80% , and 20% . Note that we use stratified sampling on the target value to ran-
domly select these datasets to reduce sampling biases and retain the similar class distribu-
tion in train, test, and the whole dataset. On smaller datasets, we also incorporate the cross-
validation technique.

We conduct our experiments on a machine with Ubuntu 16.04, 64-bit, GeForce RTX
2080 GPU, Intel(R) Xeon(R) CPU E5-2690 3.00GHz and 64.0GB RAM. Next, we present
our Research Questions (RQ) and the performance metrics for evaluating our model on the
collected datasets.

3.1 � Research Questions

In this study, we investigate the following research questions:

–	 RQ1: How accurately our model predicts the objective behind opening an issue? We
train a text classifier on a large-scale dataset of 818K issue reports to investigate how
accurately we can predict the objective of an issue. The list of objectives that we con-

Empirical Software Engineering (2022) 27: 5050 Page 18 of 37

1 3

sider in this phase are among the most-used labels in GitHub, namely Bug, Enhance-
ment, and Support.

–	 RQ2: How accurate is our priority prediction model in a project-based context? We
train classifiers for each repository separately. The goal is to predict the importance of
an issue. This predicted label can then be used for prioritizing team resources for solv-
ing the high-priority issues or used for documentation purposes of the project. One use
case of the latter are release notes (or any other types of reports). That is, team manag-
ers, tasked with writing reports of each release, can use the model to extract the urgent
issue reports addressed by the team for that release.

–	 RQ3: How accurate is our priority prediction model in a cross-project setting? That
is how well does our trained classifier performance transfer to other repositories? We
investigate the previous research question but in a cross-project setting. We train our
model on 80% of repositories and investigate how well this generic model predicts the
priority label of issues from other repositories?

–	 RQ4: How does the priority prediction model preform on unlabeled data? We con-
duct human labeling and evaluation to assess the performance of the priority detection
model trained in a cross-project context on unlabeled issues from unseen GitHub pro-
jects. Moreover, through an open question, we ask what are the factors participants take
into account when categorizing issues into high and low priority.

3.2 � Evaluation Metrics

We use standard measures for evaluating classifiers, namely precision, recall, F1-score.
We also report accuracy which is the ratio of correct predictions, both true positives (TP)
and true negatives (TN), to the total number of cases examined. TP indicates the number
of truly X-labeled issues that are classified as X. FP is the number of truly Non-X issues
that are classified as X. True Negative (TN) denotes the number of truly Non-X issues that
are classified as Non-X. And False Negative (FN) indicates the number of truly X-labeled
issues that are classified as Non-X. Equations 3, 4, 5, and 6 compute the above measures.

3.3 � Baselines

For both tasks, we include baselines from a wide range of rule-based and learning-based
solutions.

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 =
2 ⋅ Precision ⋅ Recall

Precision + Recall

(6)Accuracy =
TP + TN

TP + FP + TN + FN

 Empirical Software Engineering (2022) 27: 50 Page 19 of 37 50

1 3

For the first task, objective detection, we train several supervised machine learning-
based models on a large-scale dataset of pre-processed 818K issue reports to predict their
objective (Bug Report, Enhancement, or Support/Documentation). We use TicketTag-
ger (Kallis et al. 2019; Song and Chaparro 2020) and Intention-mining (Huang et al. 2018)
as the baselines for this task. Moreover, we train two more classifiers based on Multino-
mial Naive Bayes and Bidirectional Long Short Term Memory (BiLSTM) deep neural net-
works that are usually used for text classification as complementary baselines. The latter
is inspired by the study of Li et al. (2019) for tag recommendation in software information
sites. Finally, we also implement a keyword-based approach to include simpler rule-based
solutions in the experiment. In this baseline, the model looks for specific keywords related
to the three categories above and tags them with their respective label. For example, if the
issue contains words such as crash and fix, it will be labeled as a bug report.

For the second task, priority prediction, we include baselines which are all vanilla
(standard) versions of classical Machine Learning models, namely KNN, Multinomial NB,
Logistic Regression and RF. Furthermore, we add several simpler models based on the date
of issues or number of comments to the list of the baselines for this task. For instance, for
the “Most Comments” baseline, we calculate the median number of comments for issues.
We then proceed to tag those with a higher number of comments than the median value
with HP and the rest with LP labels. Finally, we also include the proposed approach by
Dhasade et al. (2020), Issue Prioritizer, for this task.

3.4 � Human Labeling And Evaluation: Setup

We designed an experiment to investigate whether the trained model in the cross-context
setting can be used successfully for labeling unlabeled issue reports. As this experiment
is designed to assess the performance of the proposed model on unlabeled issues, we do
not have the ground truth labels to compare against. Thus, we employ a partially objective
labeling task (Alonso et al. 2014), a crowd-sourced labeling task in which the label (High
or Low Priority) of a subject (issue report) is determined based on inter-rater agreement
among the participants. That is, a given issue report is assigned the label which the major-
ity of raters have given it. We then compare these majority-vote labels with the labels gen-
erated by our priority detection model.

We provided general information about each project for the participants to help them
make informed decisions. This information includes the project’s goal, description, #stars,
#forks, #contributors, #closed and #open issues, and median response time by the devel-
opers of the project to its issues. Furthermore, participants were instructed to analyze the
assigned repository and its main characteristic to get familiar with the project. We asked
the participants to assess ten issues of a given project and assign a High or Low priority
label to each one based on the characteristics of the project. Next, with an open question,
we asked what factors participants took into account while tagging the issues.

Projects We randomly selected 60 issue reports from six unseen GitHub projects (ten
issues per project). The list of projects is as follows. They were selected based on their
popularity, and the variety in their sizes. Moreover, all projects’ main programming lan-
guage is Java.

–	 Elasticsearch: Free and Open, Distributed, RESTful Search Engine,
–	 Spring Boot: Spring Boot makes it easy to create stand-alone, production-grade Spring

based Applications that you can just run,

Empirical Software Engineering (2022) 27: 5050 Page 20 of 37

1 3

–	 OkHttp: Square’s meticulous HTTP client for the JVM, Android, and GraalVM,
–	 RxJava: Reactive Extensions for the JVM; a library for composing asynchronous and

event-based programs using observable sequences for the Java VM,
–	 Retrofit: A type-safe HTTP client for Android and the JVM,
–	 Guava: Google core libraries for Java.

Participants As we did not have access to the main developers of these projects, we invited
62 software engineers from both industry and academia to participate in this study. Each
participant was assigned to the issues of one project. Thirty-four software engineers
responded and participated in the study from which 30 responses were valid (25 males and
5 females). Thus our response rate is 48% . All participants have a BSc or MSc in software
engineering with an average of 4.8 years of developing experience. They all are proficient
with the programming language Java. In addition, on average the participants own or con-
tribute to 6.52 open-source projects on GitHub.

Inter-rater Reliability Measurement Inter-rater reliability is the level of agreement
among independent observers who label, code, or rate the same phenomenon (Gwet 2008).
Several statistics can be used to measure inter-rater reliability, from which the most com-
mon are Percent Agreement, Cohen’s kappa (for two raters), and Fleiss kappa as an adapta-
tion of Cohen’s kappa for three or more raters (Fleiss and Cohen 1973). To compute the
Percent Agreement score among the participants, we create a matrix in which the columns
represented the different labelers, and the rows represent issue reports. The cells of this
matrix contain the label (category) the labelers entered for each issue. As we only have
two labels (High and Low Priority), we fill the cells with either 0 (Low Priority) or 1 (High
Priority) For each row, we calculate the Percent Agreement and then report the average.
Percent agreement ranges between 0 and 1, with 0 as no agreement and 1 as perfect agree-
ment. Kappa determines the extent to which the observed amount of agreement among
labelers surpass the expected value if all labelers tagged issues completely randomly. Two
variations of kappa for multi-raters (more than two) are Fleiss’ fixed-marginal multi-rater
kappa (Fleiss 1971) and Randolph’s free-marginal multi-rater kappa (Randolph 2005).
Marginal distributions are considered to be free when the quantities of cases that should be
distributed into each category are not predefined. As our labelers are not forced to assign a
fixed number of issues to each label (category) we report Randolph’s free-marginal kappa
score for this experiment (Brennan and Prediger 1981) Values of kappa can range from

Table 5   RQ1: objective detection results

Evaluation metrics

Accuracy Precision Recall F1-score

Model / Classes B E SD B E SD B E SD

Keyword-based 26% 66% 63% 26% 39% 15% 19% 49% 25% 22%
Multinomial NB 73% 79% 71% 62% 75% 83% 37% 77% 77% 47%
Bi-LSTM 68% 71% 71% 48% 77% 72% 34% 74% 72% 40%
CNN (Huang et al. 2018) 73% 74% 73% 54% 80% 77% 32% 77% 75% 41%
FastText (Kallis et al. 2019;

Song and Chaparro 2020)
76% 78% 77% 67% 82% 80% 46% 80% 78% 54%

Proposed approach 82% 84% 83% 72% 86% 84% 62% 85% 84% 67%

 Empirical Software Engineering (2022) 27: 50 Page 21 of 37 50

1 3

−1.0 (perfect disagreement below chance), to 0 (agreement equal to chance), to 1.0 (perfect
agreement above chance). The kappa will be higher when there are fewer categories. Lan-
dis and Koch (1977) suggest the following system for interpreting kappa values:

–	 less than 0 as poor agreement,
–	 0.01 − −0.20 as slight agreement,
–	 0.21 − −0.40 as fair agreement,
–	 0.41 − −0.60 as moderate agreement,
–	 0.61 − −0.80 as substantial agreement, and
–	 0.81 − −1.0 as almost perfect agreement.

4 � Experiment Results

In the following, we report the results of our experiments and the answer to our research
questions.

4.1 � RQ1: Issue Objective Detection

Table 5 reports the results of objective-prediction task. B, E, and SD represent Bug Report
and Enhancement and Support/Documentation classes. As presented, our proposed
approach indeed has a high accuracy for predicting issue-objective labels. We successfully
outperform all the baselines regarding all the evaluation metrics. For instance, regarding
the F1-score of the Support class, we outperform BiLSTM, Multinomial NB, CNN (Inten-
tion mining), and FastText (TicketTagger and BEE) -based classifiers by 204% , 66% , 43% ,
63% , and 24% , respectively. The keyword-based approach does not achieve sufficient accu-
racy. That is probably because an issue can contain prominent but conflicting keywords.
For instance, a user can describe a bug but does not use the bug-related vocabulary explic-
itly, hence misleading such simple models. Furthermore, although Huang et al. (2018) use
a deep model for classification, it is not performing very well in our case as is. The prob-
lem can be due to the fact that their model is designed and optimized to predict the goal of
each sentence of an issue report separately. As we have not adapted the architecture of their
approach to our goal, it may not be suitable for predicting the objective of a complete issue
report. However, it can provide preliminary analysis on using different Convolutional deep
neural networks in classifying issues. Finally, the BiLSTM-based deep model also does not
perform well in our case and it takes a very long time to train as expected when training
Recurrent Neural Networks on large datasets. On the contrary, the inherent parallelization
of Transformers’ architecture allows our proposed approach to be trained much faster along
providing better results.

While we outperform all the baselines for all classes, our model too seems to struggle
for the Support/Documentation class (compared to the other two classes; Bug report, and
Enhancement). This is probably due to several reasons including (1) this class is under-pre-
sented in our dataset (less number of issues), and (2) the objective behind opening issues
in this category is inherently more diverse. As described in Section 2.3, we include various
issues tagged by labels such as question, support, help, etc. in the Support/Documentation
category. While Kallis et al. (2019) only consider issues tagged with the label question
as their third class, our goal is to cover a broader range of issue reports in the third class
and provide a more generic objective classifier. It is also worth mentioning, usually fixing

Empirical Software Engineering (2022) 27: 5050 Page 22 of 37

1 3

existing bugs or implementing requested features are of more value to the community,

Table 6   RQ2: Project-based
priority prediction results

Evaluation metrics

Accuracy Precision Recall F1-score

Models / Classes HP LP HP LP HP LP

Oldest 48% 43% 52% 48% 47% 44% 49%
Recently updated 48% 44% 53% 48% 50% 45% 50%
Most comments 50% 46% 54% 64% 39% 52% 44%
Issue Prior-

itizer (Dhasade
et al. 2020)

55% 58% 53% 51% 61% 54% 57%

KNN 67% 63% 69% 64% 70% 63% 68%
Multinomial NB 69% 68% 69% 63% 77% 60% 69%
Logistic Regression 70% 69% 71% 66% 76% 64% 71%
Vanilla RF 69% 69% 69% 65% 75% 63% 70%
Proposed approach 75% 73% 77% 74% 78% 72% 77%

Fig. 9   Distribution of results among 70 repositories for three approaches

 Empirical Software Engineering (2022) 27: 50 Page 23 of 37 50

1 3

thus, we believe better performance on the first two objectives (bugs and enhancement)
is deemed more important. Nonetheless, one can improve these models’ performance by
collecting more data for this class or narrowing down the objective of this class. It is worth
mentioning that we investigated the use of various additional features for this task. As the
results did not improve significantly, we decided to keep it simple for the first stage and
only incorporate textual information of issues.

4.2 � RQ2: Project‑Based Priority Prediction

In this experiment, we train our proposed approach per repository to predict the priority of
their issues. As discussed in Section 2.11, we have three sets of input features, namely TF,
LF, and NF and experimented with different combinations of them. For each repository, we
take 80% of its issues as the train data and test the model on the remaining 20%.

Table 6 reports the results of the project-based priority-prediction task on these 70
repositories. As mentioned before, HP and LP represent High-Priority and Low-Priority
classes. As there are various feature sets attributed to an issue report, we investigated the
use of different variations of these feature sets and report the best case below. The results
indicate integrating selected features (refer to Section 2.11) helps training a better model.
As shown, our proposed approach based on RF with all the three input feature vectors (NF,
LF and TF) outperforms all the baselines. This indicates the benefit of integrating other
features, and employing normalization, balancing, and optimization techniques. Lastly, our
experiments also show both of the balancing techniques proposed in Section 2.10 perform
comparably.

Figure 9 provides three sets of box-plots for three approaches including two baselines
and one of our proposed approaches based on RF. The box-plots report the distribution
of results per repository and based on all the evaluation metrics. Comparing vanilla Mul-
tinomial NB and our approach, it is clear that enriching these classifiers with the advance
techniques mentioned in Section 2.11 cause the model to perform more consistently. For
instance, take the box-plot for the recall metric (for the HP class) provided by Multino-
mial NB and our approach. Our approach scores above 50% for all repositories, while the

Table 7   RQ3: cross-project
priority prediction results

Evaluation metrics

Accuracy Precision Recall F1-score

Models / Classes HP LP HP LP HP LP

Oldest 47% 43% 51% 47% 47% 45% 49%
Recently updated 50% 46% 54% 50% 50% 48% 52%
Most comments 50% 47% 55% 53% 49% 50% 52%
KNN 57% 47% 63% 38% 71% 42% 67%
SVM 58% 47% 64% 43% 68% 45% 66%
Logistic Regression 57% 46% 64% 45% 65% 46% 64%
Multinomial NB 62% 55% 66% 40% 78% 46% 71%
Issue Prior-

itizer (Dhasade
et al. 2020)

55% 55% 55% 50% 60% 53% 57%

Vanilla RF 57% 46% 63% 43% 67% 44% 65%
Proposed approach 74% 70% 75% 59% 83% 64% 79%

Empirical Software Engineering (2022) 27: 5050 Page 24 of 37

1 3

Multinomial NB performance fluctuates for different repositories with the first quartile as
low as 20% . The first quartile for all the metrics and all the repositories are above 50% in
our approach. Moreover, comparing the vanilla RF with our enriched version of RF, one
can see that the latter shifts the results of all metrics to higher scores. Therefore, we are
able to successfully outperform the baselines regarding different evaluation metrics.

4.3 � RQ3: Priority Prediction In Cross‑Project Context

We also train a generic model on issues from 80% of repositories and evaluate this model
on the rest of the repositories. Our goal is to investigate whether a generic model trained
in a cross-project setting can perform on par with project-based models. Table 7 reports
the results of priority-prediction task in the cross-project context. Based on the results, our
proposed approach based on RF with the two feature inputs (NF, and LF) outperforms all
other models. This generic model can indeed perform comparably with the average perfor-
mance of project-based models. Therefore, we can train only one generic model to auto-
matically predict the priority of issues and successfully reuse (and/or retrain) it for unseen
repositories or repositories with little historical data. It is worth mentioning that in our

Fig. 10   The impact of class weights on total accuracy

(a) HP class (b) LP class

Fig. 11   The impact of changing class weights per class

 Empirical Software Engineering (2022) 27: 50 Page 25 of 37 50

1 3

case, TF-IDF vectors provide more information to these models compared to Doc2Vec and
Word2Vec vectors.

4.3.1 � Feature Importance

Using RF, we derived the importance of 28 features listed in Table 3 (NF feature vector).
The five most important features are time_to_discuss, cm_mean_len, desc_words, desc_
subjectivity, and desc_pos_polarity. The least important five features are numeric_asso-
ciation, code, has_commit, same_author_closer, and finally is_pull_request. Moreover,
the five most important features from the LF feature vector are bug, feature, documenta-
tion, stale, usability, won’t fix. The least five features from this vector are weekly-report,
announcement, pinned, hard, bounty.

4.3.2 � High vs. Low Priority

As the impact of misclassifying HP and LP classes differ, they can be treated differently.
In this section, we investigated the impact of adding more weights to the HP class to see
how it affects the results. To this end, we set the weights to 0.1 × (10 − i) for the LP class,
and 0.1 × i for the HP class where i = [1, 9] . Figures 10, and 11 depict changes in the total
accuracy, and results of different evaluation metrics for HP and LP classes. The results
indicate that as the weight of the HP class increases, the scores of recall, F1, and accu-
racy for HP class and precision for LP class increase. At the same time, the precision of
HP class, and the recall of LP class decrease. However, the best overall accuracy of the
model based on both classes is achieved when i = 6 . That means slightly more emphasis
on the HP class results in the best overall result. As we have tuned the parameter, this is
the setting we have used for the cross-project context as well. That is, the final model puts
more emphasis on the HP class to achieve the best overall results. However, in cases where
the HP class (or LP) is of much higher importance, one can adjust the weights to get the
desired results from the model.

4.4 � RQ4: Human Labeling And Evaluation: Results

For the first part of this experiment, we asked participants to tag unlabeled issues from six
unseen projects. We collected at least 5 votes (priority labels) per issue (300 votes in total).

We initially obtained 34 responses to our questionnaires, from which four responses
had major conflicts with others (outliers). We define an outlier labeler as an individual
whose tagged labels are different than labels assigned by the majority of other labelers
(who tagged the same issues) in more than 50% of cases. To avoid introducing noise, we
removed all the labels assigned by such outlier participants and then proceeded to assess
the results based on the responses of the remaining 30 individuals. The average outlier
percentage for the remaining 30 labelers, is 19% . That is, on average, a labeler, has assigned
similar labels to what others tagged for the same issues in more than 80% of cases.

The model achieves 90% overall accuracy. Moreover, accuracy per project ranges
from 80% to 100% . Weighted precision, recall, and F1 scores for the two classes of HP
and LP are 92% , 90% and 91% , respectively. The results indicate the model is capable of
predicting unseen issues successfully. Note that the above accuracy is achieved using the

Empirical Software Engineering (2022) 27: 5050 Page 26 of 37

1 3

cross-project-based priority prediction model. We believe adding historical data of projects
in GitHub and training project-based models can further improve these results.

To measure the inter-rater reliability among the 30 participants, we use two meas-
ures, Percent Agreement and Randolph’s free-marginal multi-rater kappa. We achieve
85.3% overall Percent Agreement and 0.71 Kappa. For the latter, based on Landis and
Koch’s interpretation system (Landis and Koch 1977), the achieved score translates to
substantial agreement among the labelers. Thus, our labelers substantially agree accord-
ing to this measure. We also compute these measures per project. Percent Agreement
among the six projects varies between 76% to 96% . Moreover, for two out of six pro-
jects (ElasticSearch and Retrofit), kappa is above 0.81 which translates to almost perfect
agreement among labelers for these projects. Considering the diversity among partici-
pants, the large number of labelers, and the inherent subjectiveness when prioritizing
issues, we believe the assigned labels have good quality and the labelers are mostly in
agreement with each other. However, the exact same results may not be replicated using
another set of labelers or issues.

In the second part of this experiment, we asked the participants what factors they
take into account when determining the importance of issue reports. In the follow-
ing, we have summarized their free-format answers in several major groups to provide
insights for future work. Two of the authors were involved in the process of analyzing
the free-format answers. We used the open coding technique for this process by break-
ing issues into discrete parts and creating codes to label them (Khandkar 2009). Each
author separately labeled each sentence of a free-format answer for all participants. We
used concise summarization of a sentence’s goal in the labeling process. If sentences
were compound, authors separately labeled the goal of each phrase. Then, for each par-
ticipant, the two authors compared the goal category for each sentence/phrase. In the
end, we accumulated the categories, clustered them, and reported on the largest clusters
existing in the data of this experiment. While we have exploited some of these factors
(e.g., issue type, discussion magnitude, roles, etc.) in this study, other interesting factors
such as the required effort and estimated impact can be also utilized to further improve
the proposed model.

–	 Issue type: Many participants indicated that they first look for the type of issue,
whether it is a bug report, a feature request, a question, etc. Then they go deeper, if it
is a bug, what kind of a bug it is, e.g., is it security related?

–	 Content: Is it related to the core features of the project?
–	 Impact: Is the reported issue blocking other functionalities of the project? Is it

affecting many users? Which one can potentially cause more problems?
–	 Discussion/Reaction magnitude: How large is the discussion around the reported

issue? How many comments has it attracted? How many users are participating in
the discussion? What are the emojis used?

–	 Labels: What are the labels assigned to the issue, e.g., duplicate, invalid, etc?
–	 Roles: Who has opened the issue? What is their experience level? Which team mem-

bers are participating in the discussion?
–	 Required effort: How much effort is required to solve the issue?
–	 Dates: How long ago has it been reported?

 Empirical Software Engineering (2022) 27: 50 Page 27 of 37 50

1 3

4.5 � Applications

The proposed models in this work can be integrated into online platforms such as
GitHub and help software teams automatically and instantly tag their issues with the
correct label. One can also use the models dynamically to assign new priority labels.
That is, teams can use the model periodically (e.g., at a specific hour each day) and
re-assess the importance of issues based on the updated features (e.g., new discussions
among team members, labels being added/removed, etc.). Moreover, previous work has
shown that properly tagged issues are easier to manage. For instance, based on the deter-
mined objective (Bug report, Enhancement, support/Documentation), bug triaging can
be facilitated and more important issues are assigned earlier to proper team members.
Finally, major and important issue reports can be automatically selected to be included
in software teams’ periodic reports (such as release notes).

4.6 � Threats to Validity

In this section, we discuss the potential threats to the validity of our findings and how we
address or mitigate them.

Internal validity Internal validity threats are related to our implementation and results,
labels analysis, and human bias in manual processes. Although we have tried to thoroughly
check our implementation, there still may be missed mistakes. To mitigate this, we have
made our code and data publicly available in our repository for replication and use by other
researchers.11 Moreover, the parameters used in this study can pose potential threats. To
mitigate this we have tried to optimize all models and explicitly reported the values of
parameters in each experiment separately. Any unmentioned parameter is set to the default
value of the corresponding library. The set of synonym but differently written labels also
poses a risk. To mitigate this risk, two authors independently assessed these labels, then
compared the results, and resolved any case of conflict. Moreover, in this process, both
authors adhered to the labels’ definitions provided by GitHub. These measures increase our
confidence in the manually created label sets.

As the main goal for the human labeling and evaluation task is to showcase the abil-
ity of the model when prioritizing unlabeled issues, we were not able to compare against
the ground truth labels in this experiment. To mitigate this we employed a partially objec-
tive labeling task and took the majority vote for each label as its ground truth. As prior-
itizing issues is a subjective task, biases and different opinions cannot be avoided. A fac-
tor that is important for an individual is not necessarily considered important for another
person. Thus, the problem of prioritization is inherently subjective and biased. We took
several measures to mitigate such biases, including selecting matured projects, randomly
selecting issues from these projects, inviting a large number of professional developers
and software engineers to participate in our experiment (diversity), providing labelers with
important information of projects, and instructing them to get to know the project and its
type of issues (awareness and knowledge). We also assigned each labeler only to one pro-
ject. Moreover, we computed two inter-rater reliability measures, Percent Agreement and
Randolph’s free-margin multi-rater kappa. The results indicated that there is a substantial
level of agreement among labelers for all projects. Furthermore, for two projects there are

11  https://github.com/MalihehIzadi/IssueReportsManagement

Empirical Software Engineering (2022) 27: 5050 Page 28 of 37

1 3

perfect agreements. On one hand, the key limitation of Percent Agreement is that it does
not account for the possibility that labelers may guess the labels, so it may overestimate
the true agreement (McHugh 2012). As our labelers are experts in the software engineer-
ing domain and are instructed to make well-informed decisions, little guessing is likely to
exist, minimizing this risk. On the other hand, due to some of the kappa’s assumptions, it
can underestimate the agreement among labelers (McHugh 2012). That is why we have
included both of these measures in this study. Moreover, participants’ level of carefulness
and effort can also affect the validity of the experiment’s results. To mitigate this risk,
we recruited participants who expressed interest in our research and double-checked the
results to make sure there is no error. For instance, we removed outlier labelers to avoid
introducing noise by including people who had responded with low-quality labels (more
than 50% inconsistency with others). In the end, it is worth mentioning, due to the inherent
subjectiveness of the prioritization task, the results of this particular experiment may not
be completely replicable using another set of labelers or issue reports.

External validity These threats are related to the generalizability of our work. To address
this issue, in both tasks we train our models on large-scale datasets. For the objective-pre-
diction task, we use over 818K issue reports collected from approximately 61K reposito-
ries. Furthermore, for the second, priority-detection, we also have trained a generic model
in a cross-project context. We have shown that our model can successfully predict priority
of issue reports for unseen repositories.

Construct validity Threats to construct validity relates to the suitability of the evaluation
metrics used in this study. We use a set of standard evaluation metrics, namely precision,
recall, F1-score, and accuracy which are all employed in previous work (Kallis et al. 2019;
Song and Chaparro 2020; Huang et al. 2018) in the field. However, more clusters and/or
synonym labels can be found and used in the future. Another threat is the choice of classi-
fiers and the list of feature sets that we feed our models. It is possible that using different
features sets (and models) result in different findings. To address this issue, we thoroughly
inspected issue reports and collected a large set of features. Then we performed feature
engineering methods to identify the most important ones. We also used normalization
techniques on numerical features. Furthermore, we experimented with different Machine
Learning models to find the best algorithm that fits our case. To obtain more stable results
for smaller datasets, we used the cross-validation technique. However, random selection
does not preserve chronology and ignores possible dependency between issue reports that
may influence the trend of issues’ category and importance in practice. To mitigate this
problem, the blocked version of the cross-validation technique through adding margins can
be used.

5 � Related Work

In the following, we review studies related to two phases of our proposed approach in the
categories of collective knowledge in SE, issue report classification, issue report prioritiza-
tion, and cross-project models.

5.1 � Collective Knowledge in Software Engineering

Collective knowledge accumulated on software-related platforms has been exploited in
various studies to help improve the software development process by introducing new

 Empirical Software Engineering (2022) 27: 50 Page 29 of 37 50

1 3

techniques or providing empirical evidence. Various types of collective knowledge have
provided the means to perform studies on empirical studies on such knowledge acquired
from Stack Overflow, GitHub, and App store (Baltes et al. 2019; Wu et al. 2019; Hu et al.
2019; Zeng et al. 2019), investigating, utilizing, and improving crowd-sourced knowledge
in Stack Overflow (Zhang et al. 2015; Tavakoli et al. 2020), usage of collective knowl-
edge in a cross-platform setting (Baltes and Diehl 2019). Vasilescu et al. (2013) studied
the relationship between Stack Overflow activities and the development process in GitHub
through analyzing the available crowd-sourced knowledge. They claimed the Stack Over-
flow activity rate correlates with the code changing activity in GitHub. For instance, active
committers tend to provide more answers on Q&A websites. In another work, Vasilescu
et al. (2014) studied the evolution of mailing list participation after the lunch of StackEx-
change. They showed that the behavior of developers has been impacted by the emergence
of these platforms, e.g., users are motivated to provide faster answers on StackExchange
than on r-help mailing list due to its gamified environment.

There are also numerous studies on providing automatic and intelligent solutions for
various SE problems through exploiting these sources of collective knowledge such as
source code summarization (Wan et al. 2018; Aghamohammadi et al. 2020), automatic tag
(topic) recommendation in Stack Overflow and GitHub (Wang et al. 2018; Izadi et al. 2021)
and more. For instance, Zhou et al. (2020) through acknowledging the voluntary nature of
open source software and the difficulty of finding appropriate developers to solve difficult
yet important issue reports studied monetary rewards (bounties) to motivate developers and
help the evolution of the project. They found the timing of bounties is the crucial factor
affecting the likelihood of an issue being handled. In another work, Chen et al. (2021) per-
formed an empirical study on the user-provided logs in bug reports to investigate the prob-
lems that developers encounter and how to facilitate the diagnosis and fixing process. Da
Costa et al. (2018) conducted a comparative study on traditional and rapid release cycles to
grasp the effect of rapid release cycles on the integration delay of fixed issues by analyzing
72K issue reports from the Firefox project.

Our work is similar to the above in the context that we too try to exploit collective
knowledge to address SE problems and provide efficient and automatic solutions. However,
we specifically aim at addressing the management of issue reports as an important source
of such knowledge to further facilitate and support the evolution of software projects. We
employ advanced Machine Learning techniques to address issue reports from two aspects
of objective and priority and help team managers make better decisions. In the following,
we review the literature on issue report classification and prioritization.

5.2 � Issue Report Classification

Bug report categorization using Machine Learning techniques has received increasing atten-
tion from the software research community. Antoniol et al. (2008) used three Machine Learn-
ing algorithms, namely Naive Bayes, Decision Trees, and Logistic Regression to determine
whether the text of their manually-labeled bug reports is enough to classify them into two
distinctive classes of bugs or non-bugs. They found the information included in an issue can
be indeed used to classify them. However, they only investigated three projects of Mozilla,
Eclipse, and JBoss projects from Bugzilla. In the past years, there have been more researches
on categorizing bug reports using text mining, topic modeling (Pingclasai et al. 2013; Lim-
settho et al. 2016) and classification techniques (Sohrawardi et al. 2014; Zhou et al. 2016; Ter-
dchanakul et al. 2017; Pandey et al. 2017) in bug tracking systems such as Bugzilla and Jira.

Empirical Software Engineering (2022) 27: 5050 Page 30 of 37

1 3

The main focus of the previous work has been on distinguishing bug from non-bug reports
for the purpose of bug triaging. Moreover, most of these studies only investigate a few pro-
jects and rely only on a limited set of projects and their data for training separate models.
There is no proof whether they are suitable from a large-scale perspective. Therefore, in the
issue-objective prediction phase of our proposed approach, we perform a large-scale analysis
of issue reports in GitHub issues to classify them into three coarse-grained classes of Bug,
Enhancement, and Support using state-of-the-art transformer-based techniques.

To the best of our knowledge, there are two papers with the same focus (similar issue
classes, GitHub as the common platform, large-scale) as the issue-objective prediction
phase of our proposed approach. In 2019, Kallis et al. (2019) proposed TicketTagger, a tool
based on FastText for classifying issues to three categories of Bug, Enhancement and
Question. These categories are among the default labels of the GitHub issue system.
They trained their model on the text (title and description) of 30K issue reports from about
12K GitHub repositories. Their evaluation reports 82% , 76% , and 78% of precision/recall
scores for three classes of Bug, Enhancement, and Question, respectively. Recently, BEE
was proposed by Song and Chaparro (2020), which uses the pre-trained model of Ticket-
Tagger to label issues. Then it proceeds to identify the structure of bug descriptions from
predicted reports that are predicted to be a bug in the issue-objective prediction phase. Fur-
thermore, Huang et al. (2018) proposed a model based on convolutional neural networks
(CNN) to classify issue report sentences. They manually labeled 5408 issue sentences from
four GitHub projects and categorized them into seven groups based on their intentions.
These intention categories include Problem Discovery, Feature Request, Information Giv-
ing, Information Seeking, Solution Proposal, Aspect Evaluation and finally, Meaningless.
Our objective categories overlap with theirs, however, they extract issue sentence intention
while we classify the whole issue. We not only classify issue reports and outperform these
baselines, but also use these probabilities as one of the input features in the second stage
of our proposed approach which is the prioritization of said issues. This is because the
priority of issues is largely sensitive to their actual objective. Although answering users’
questions and helping them are important tasks, fixing bugs and adding new features are
probably assigned higher ranks of importance. Pull Requests are intertwined with issue
reports (they usually try to address open issues), and this notion is confirmed by Gousios
et al.’s (2015) findings as well. They reported that software project integrators tend to pri-
oritize contributions (pull requests) to their projects by considering the criticality of bug
fixes, the urgency of new features, and their size. Furthermore, to the best of our knowl-
edge, we are the first to use transformer-based classifiers to manage issue reports. We fine-
tune RoBERTa, a pre-trained model on our large-scale dataset and achieve higher accu-
racy (outperforming all the baselines by large margins). We also apply more rigorous text
processing techniques and we employ a much larger dataset incorporating more labels to
train a more generic model. More specifically, we collect and process over one million
issue reports from 80K repositories. We include 818K pre-processed issues from about 61K
repositories, while Kallis et al. (2019) use only 30K issues from 12K repositories.

5.3 � Issue report Prioritization

Researchers have been studying bug report prioritization avidly (Uddin et al. 2017). Kan-
wal and Maqbool (2012) proposed a bug priority recommender using SVM and NB clas-
sification techniques. Alenezi and Banitaan (2013) tried to predict bug priority using three
classifiers, namely NB, DT, RF on two projects of Firefox and Eclipse. Tian et al. (2013)

 Empirical Software Engineering (2022) 27: 50 Page 31 of 37 50

1 3

proposed DRONE for Eclipse projects. They investigated the effect of multiple factors,
namely temporal, textual, author, related-report, severity, and product features of bug
reports on their priority level in the five-category ranking system of the Bugzilla’s Bug
Tracking System (BTS). Kikas et al. (2016) proposed an approach to predict the lifetime of
an issue and whether it can be closed in a given period, using dynamic and contextual fea-
tures of issues. There are also other studies on prioritizing pull requests (PRioritizer) (Veen
et al. 2015), and prioritizing user-reported issues through their relations with app reviews
and ratings (Gao et al. 2015; Noei et al. 2019, 2019; Di Sorbo et al. 2020). For instance,
Noei et al. (2019) proposed an approach to identify issues that need immediate attention
through matching them with related user reviews in several apps. They suggested software
teams should first address issues that are mapped to the highest number of reviews. By
doing so, their app rating can be positively affected.

Although there are several studies on prioritizing bug reports on Bugzilla, the scope and
features available in these systems differ. For instance, Bugzilla is primarily designed for bug
report management and has a predefined set of five priority labels, thus it has more training
data available. In these studies, the focus is on bug reports and predicting whether a report
is a bug or non-bug, while we train a model to detect the objective behind opening issues. It
also includes information regarding the severity which previous work has greatly exploited.
A recent study proposed by Dhasade et al. (2020) has addressed the need for priority predic-
tion models in GitHub. However, they use LDA to identify the categories of issues, then train
a classifier to predict the hotness of issue reports on a daily basis. On contrary, our model
uses classification models to label issues with two straightforward labels (High/Low). The
model can be used on both open and closed issues. And it can be utilized both for prioritizing
tasks plus resource allocation and also for documentation purposes such as writing reports,
delivering release notes, and highlighting the most important closed issues in a release.

The mentioned studies mostly try to prioritize bug reports in various ITS and BTS
systems such as Bugzilla, Jira, and GitHub using different Machine Learning techniques.
However, to the best of our knowledge, there is no prior work on supervised models for
issue reports of GitHub similar to ours. Our work differs from bug prioritizing approaches
since we address all issues and not just bugs. Furthermore, BTS systems have readily avail-
able metadata which are unfortunately missing in GitHub. Merten et al. (2016) empirically
analyzed four open-source projects from GitHub and Redmine and found projects’ meta-
data can improve classifier performance. Therefore, we also conduct feature engineering
techniques on metadata of issue reports and extract the salient features from GitHub which
have not been utilized before. On the other hand, approaches based on linking app’s user
reviews and issues from GitHub do not take into account various important factors such
as author information, the amount of discussion happening in the report, issue lifetime,
issue category, etc. In addition to utilizing the metadata of reports, we predict the objec-
tive of issue reports and then feed the predicted probability to our classification model for
prioritizing. We also perform sentiment analysis and include the outcome in our prioritizer
model. Moreover, we train both project-based and cross-project models. And finally, we
also conducted a human labeling and evaluation task to assess the performance of the pro-
posed model on unseen data and provided developers’ insights for future studies as well.

5.4 � Cross‑project Models

Peters et al. (2013) claimed project-based predictors are weak for small datasets. Also,
Kitchenham et al. (2007) found that relying on project-based datasets is problematic due to

Empirical Software Engineering (2022) 27: 5050 Page 32 of 37

1 3

the challenging task of collecting just enough project data to train models properly. Cross-
project classification is a realistic solution for training a generic model from the data of
a large number of different projects. The trained model then can be successfully used for
projects that have little to no data available for training. In this field, a few studies have
been conducted in the cross-project context. Yu et al. (2018) conducted an empirical study
to identify the factors that affect the performances of transferring reusable models across
projects in the context of issue classification. They extracted 28 attributes grouped into four
dimensions. Sharma et al. (2012) evaluated different Machine Learning models for predict-
ing priority of new issues in five datasets of Open-Office and Eclipse projects. Our work
complements these studies by analyzing factors affecting issue reports in GitHub from both
aspects of issue objective and priority.

6 � Conclusions and Future Work

An issue report can be opened due to several reasons including reporting bugs, requesting new
features or merely for seeking support from the software team. Naturally not all issues are
equally important. Some may require immediate care, some may need to be included in the
documentation reports of the project, while others are not as urgent. In this study, we proposed
a two-stage approach to predict both objective and importance of issue reports posted on soft-
ware repositories. We defined three sets of features related to issue reports and exploited state-
of-the-art text classifiers to achieve our goal. According to the evaluation results, our models
outperform the baselines in both project-based and cross-project settings with 82% and 75%
accuracy for objective and priority prediction, respectively. Furthermore, we showed that our
proposed priority prediction model in the cross-project setting performs on par with the pro-
ject-based models. Moreover, we conducted a human labeling and evaluation task to use the
proposed priority detection model on unlabeled issue reports from six unseen projects with

Table 8   Selected labels for each
category of issue priority

Priority Labels’ list

High-priority p0, priority: p0, p1, priority 1,
priority: p1, priority 2, critical,
criticalpriority, priority-critical,
critical priority, priority:critical,
priority critical, priority: critical,
priority - critical, critical-priority,
priority/critical, urgent, priority/
urgent, priority/blocker, prior-
ity: blocker, important, prior-
ity/important, priority: major,
highpriority, priority-high, high
priority, priority:high, priority
high, priority: high, priority -
high, high-priority, priority/high,
is:priority

Low-priority p3, priority: p3, priority 4, priority:
minor, lowpriority, priority-low,
low priority, priority:low, priority
low, priority: low, priority - low,
low-priority, priority/low, is:no-
priority

 Empirical Software Engineering (2022) 27: 50 Page 33 of 37 50

1 3

the help of 30 software engineers. The results indicate that the model is capable of predicting
priority of unseen data with high accuracy (90%). Therefore, our proposed model can be used
for other unseen projects successfully without the need for extra training.

In the future, we plan to work on finer-grained categories of both objectives and priority
levels. Moreover, based on the results of our human labeling and evaluation experiment, we
plan to investigate more features that can affect the importance of an issue from software engi-
neers’ perspectives. For instance, many participants considered the bug type and the degree of
its impact as an important factor while prioritizing issue reports. Finally, adding more projects
from other programming languages can also help the generalizability of the proposed approach.

Appendix: Priority Labels

Table 8 presents the list of manually extracted labels from top GitHub repositories (most
star) for categories of high and low priority issues.

References

Aghamohammadi A, Izadi M, Heydarnoori A (2020) Generating summaries for methods of event-driven
programs: an android case study. J Syst Softw 170:110,800

Al Shalabi L, Shaaban Z, Kasasbeh B (2006) Data mining: a preprocessing engine. J Comp Sci
2(9):735–739

Alenezi M, Banitaan S (2013) Bug reports prioritization: which features and classifier to use? In: 2013 12th
international conference on machine learning and applications. IEEE, Miami, FL, USA, pp 112–116.
https://​doi.​org/​10.​1109/​ICMLA.​2013.​114. http://​ieeex​plore.​ieee.​org/​docum​ent/​67860​91/

Alonso O, Marshall C, Najork M (2014) Crowdsourcing a subjective labeling task: a human-centered frame-
work to ensure reliable results. Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2014–91

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug or an enhancement? A
text-based approach to classify change requests. In: Proceedings of the 2008 conference of the
center for advanced studies on collaborative research meeting of minds - CASCON ’08. ACM Press,
Ontario, Canada, pp. 304. https://​doi.​org/​10.​1145/​14637​88.​14638​19. http://portal.acm.org/citation.
cfm?doid=1463788.1463819

Baltes S, Diehl S (2019) Usage and attribution of stack overflow code snippets in github projects. Emp
Softw Eng 24(3):1259–1295

Baltes S, Treude C, Diehl S (2019) Sotorrent: studying the origin, evolution, and usage of stack overflow
code snippets. In: 2019 IEEE/ACM 16th international conference on mining software repositories
(MSR). IEEE, pp 191–194

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res
13(1):281–305

Bissyandé TF, Lo D, Jiang L, Réveillere L, Klein J, Le Traon Y (2013) Got issues? Who cares about it? a
large scale investigation of issue trackers from github. In: 2013 IEEE 24th international symposium on
software reliability engineering (ISSRE). IEEE, pp 188–197

Brennan RL, Prediger DJ (1981) Coefficient kappa: some uses, misuses, and alternatives. Educ Psychol
Measure 41(3):687–699

Cabot J, Izquierdo JLC, Cosentino V, Rolandi B (2015) Exploring the use of labels to categorize issues in
open-source software projects. In: 2015 IEEE 22nd international conference on software analysis, evo-
lution, and reengineering (SANER). IEEE, pp 550–554

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling tech-
nique. J Artif Intell Res 16:321–357

Chen AR, Chen THP, Wang S (2021) Demystifying the challenges and benefits of analyzing user-reported
logs in bug reports. Emp Softw Eng 26(1):1–30

da Costa DA, McIntosh S, Treude C, Kulesza U, Hassan AE (2018) The impact of rapid release cycles on
the integration delay of fixed issues. Emp Softw Eng 23(2):835–904

Empirical Software Engineering (2022) 27: 5050 Page 34 of 37

https://doi.org/10.1109/ICMLA.2013.114
http://ieeexplore.ieee.org/document/6786091/
https://doi.org/10.1145/1463788.1463819

1 3

Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1(3):131–156
Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for

language understanding. arXiv preprint arXiv:​1810.​04805
Dhasade AB, Venigalla ASM, Chimalakonda S (2020) Towards prioritizing github issues. In: Proceedings

of the 13th innovations in software engineering conference on formerly known as India software engi-
neering conference, pp 1–5

Di Sorbo A, Grano G, Aaron Visaggio C, Panichella S (2020) Investigating the criticality of user-reported
issues through their relations with app rating. J Softw Evol Process, pp e2316

Fan Q, Yu Y, Yin G, Wang T, Wang H (2017) Where is the road for issue reports classification based on text
mining? In: 2017 ACM/IEEE international symposium on Emp Softw Eng and measurement (ESEM).
IEEE, pp 121–130

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychological Bulletin 76(5):378
Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as

measures of reliability. Educ Psychol Measure 33(3):613–619
Gao C, Wang B, He P, Zhu J, Zhou Y, Lyu MR (2015) PAID: prioritizing app issues for developers by tracking

user reviews over versions. In: 2015 IEEE 26th international symposium on software reliability engineer-
ing (ISSRE). IEEE, Gaithersbury, MD, USA, pp 35–45. https://​doi.​org/​10.​1109/​ISSRE.​2015.​73817​97.
http://​ieeex​plore.​ieee.​org/​docum​ent/​73817​97/

Gousios G, Zaidman A, Storey MA, Van Deursen A (2015) Work practices and challenges in pull-based devel-
opment: the integrator’s perspective. In: 2015 IEEE/ACM 37th IEEE international conference on software
engineering. IEEE, vol 1, pp 358–368

Gwet KL (2008) Computing inter-rater reliability and its variance in the presence of high agreement. Brit J
Mathemat Stat Psychol 61(1):29–48

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In:
2013 35th international conference on software engineering (ICSE). IEEE, pp 392–401

Hu H, Wang S, Bezemer CP, Hassan AE (2019) Studying the consistency of star ratings and reviews of popular
free hybrid android and ios apps. Emp Softw Eng 24(1):7–32

Huang Q, Xia X, Lo D, Murphy GC (2018) Automating intention mining. IIEEE Trans. Software Eng, pp 1–1.
https://​doi.​org/​10.​1109/​TSE.​2018.​28763​40. https://ieeexplore.ieee.org/document/8493285/

Izadi M, Heydarnoori A, Gousios G (2021) Topic recommendation for software repositories using multi-label
classification algorithms. Emp Softw Eng 26(5):1–33

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining github. In: Proceedings of the 11th working conference on mining software repositories, pp
92–101

Kallis R, Di Sorbo A, Canfora G, Panichella S (2019) Ticket tagger: machine learning driven issue classifi-
cation. In: 2019 IEEE international conference on software maintenance and evolution (ICSME). IEEE,
Cleveland, OH, USA, pp 406–409. https://​doi.​org/​10.​1109/​ICSME.​2019.​00070. https://​ieeex​plore.​ieee.​
org/​docum​ent/​89189​93/

Kanwal J, Maqbool O (2012) Bug prioritization to facilitate bug report triage. J Comput Sci Technol.
27(2):397–412 (2012). https://​doi.​org/​10.​1007/​s11390-​012-​1230-3. http://​link.​sprin​ger.​com/​10.​1007/​
s11390-​012-​1230-3

Khandkar SH (2009) University of Calgary. Open coding 23:2009
Kikas R, Dumas M, Pfahl D (2016) Using dynamic and contextual features to predict issue lifetime in

github projects. In: 2016 IEEE/ACM 13th working conference on mining software repositories (MSR).
IEEE, pp 291–302

Kitchenham BA, Mendes E, Travassos GH (2007) Cross versus within-company cost estimation studies: a sys-
tematic review. IEEE Trans Softw Eng 33(5):316–329

Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority
agreement among multiple observers. Biometrics, pp 363–374

Li C, Xu L, Yan M, He J, Zhang Z (2019) Tagdeeprec: tag recommendation for software information sites using
attention-based bi-lstm. In: International conference on knowledge science, engineering and management.
Springer, pp 11–24

Liao Z, He D, Chen Z, Fan X, Zhang Y, Liu S (2018) Exploring the characteristics of issue-related behaviors in
github using visualization techniques. IEEE Access 6:24003–24015

Limsettho N, Hata H, Monden A, Matsumoto K (2016) Unsupervised bug report categorization using clustering
and labeling algorithm. Int J Softw Eng Knowledge Eng 26(07):1027–1053

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V (2019) Roberta: a
robustly optimized bert pretraining approach. arXiv preprint arXiv:​1907.​11692

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia medica 22(3):276–282

 Empirical Software Engineering (2022) 27: 50 Page 35 of 37 50

http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/ISSRE.2015.7381797
http://ieeexplore.ieee.org/document/7381797/
https://doi.org/10.1109/TSE.2018.2876340
https://doi.org/10.1109/ICSME.2019.00070
https://ieeexplore.ieee.org/document/8918993/
https://ieeexplore.ieee.org/document/8918993/
https://doi.org/10.1007/s11390-012-1230-3
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11390-012-1230-3
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11390-012-1230-3
http://arxiv.org/abs/1907.11692

1 3

Merten T, Falis M, Hübner P, Quirchmayr T, Bürsner S, Paech B (2016) Software feature request detection
in issue tracking systems. In: 2016 IEEE 24th international requirements engineering conference (RE).
IEEE, pp 166–175

Noei E, Zhang F, Wang S, Zou Y (2019) Towards prioritizing user-related issue reports of mobile applications.
Empir Software Eng 24(4):1964–1996. https://​doi.​org/​10.​1007/​s10664-​019-​09684-y. http://​link.​sprin​ger.​
com/​10.​1007/​s10664-​019-​09684-y

Noei E, Zhang F, Zou Y (2019) Too many user-reviews, what should app developers look at first? IIEEE Trans Soft-
ware Eng, pp 1–1. https://​doi.​org/​10.​1109/​TSE.​2019.​28931​71. https://​ieeex​plore.​ieee.​org/​docum​ent/​86137​95/

Pandey N, Sanyal DK, Hudait A, Sen A (2017) Automated classification of software issue reports using
machine learning techniques: an empirical study. Innov Syst Softw Eng 13(4):279–297

Peters F, Menzies T, Marcus A (2013) Better cross company defect prediction. In: 2013 10th working confer-
ence on mining software repositories (MSR). IEEE, pp 409–418

Pingclasai N, Hata H, Matsumoto KI (2013) Classifying bug reports to bugs and other requests using topic
modeling. In: 2013 20Th asia-pacific software engineering conference (APSEC). IEEE, vol 2, pp 13–18

Randolph JJ (2005) Free-marginal multirater kappa (multirater k [free]): An alternative to fleiss’ fixed-marginal
multirater kappa. Online submission

Sharma M, Bedi P, Chaturvedi K, Singh V (2012) Predicting the priority of a reported bug using machine learn-
ing techniques and cross project validation. In: 2012 12th International Conference on Intelligent Systems
Design and Applications (ISDA). IEEE, pp 539–545

Sohrawardi SJ, Azam I, Hosain S (2014) A comparative study of text classification algorithms on user submit-
ted bug reports. In: Ninth International Conference on Digital Information Management (ICDIM 2014).
IEEE, Phitsanulok, Thailand, pp 242–247. https://​doi.​org/​10.​1109/​ICDIM.​2014.​69914​34. http://​ieeex​
plore.​ieee.​org/​docum​ent/​69914​34/

Song Y, Chaparro O (2020) Bee: a tool for structuring and analyzing bug reports. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp 1551–1555

Svyatkovskiy A, Deng SK, Fu S, Sundaresan N (2020) Intellicode compose: code generation using transformer.
arXiv preprint arXiv:​2005.​08025

Tavakoli M, Izadi M, Heydarnoori A (2020) Improving quality of a post’s set of answers in stack overflow. In:
46th Euromicro conference on software engineering and advanced applications, SEAA 2020, Portoroz,
Slovenia, August 26-28, 2020. IEEE, pp 504–512. https://​doi.​org/​10.​1109/​SEAA5​1224.​2020.​00084

Terdchanakul P, Hata H, Phannachitta P, Matsumoto K (2017) Bug or not? Bug report classification
using n-gram idf. In: 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp 534–538

Tian Y, Lo D, Sun C (2013) DRONE: predicting priority of reported bugs by multi-factor analysis. In: 2013
IEEE International Conference on Software Maintenance. IEEE, Eindhoven, Netherlands, pp 200–209.
https://​doi.​org/​10.​1109/​ICSM.​2013.​31. http://​ieeex​plore.​ieee.​org/​docum​ent/​66768​91/

Uddin J, Ghazali R, Deris MM, Naseem R, Shah H (2017) A survey on bug prioritization. Artif Intell Rev 47(2):145–
180. https://​doi.​org/​10.​1007/​s10462-​016-​9478-6. http://​link.​sprin​ger.​com/​10.​1007/​s10462-​016-​9478-6

Vasilescu B, Filkov V, Serebrenik A (2013) Stackoverflow and github: associations between software development
and crowdsourced knowledge. In: 2013 international conference on social computing. IEEE, pp 188–195

Vasilescu B, Serebrenik A, Devanbu P, Filkov V (2014) How social q&a sites are changing knowledge sharing
in open source software communities. In: Proceedings of the 17th ACM conference on computer sup-
ported cooperative work & social computing, pp 342–354

Vee EVD, Gousios G, Zaidman A (2015) Automatically prioritizing pull requests. In: 2015 IEEE/ACM 12th
working conference on mining software repositories. IEEE, Florence, Italy, pp 357–361. https://​doi.​org/​10.​
1109/​MSR.​2015.​40. http://​ieeex​plore.​ieee.​org/​docum​ent/​71800​94/

Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS (2018) Improving automatic source code summarization
via deep reinforcement learning. In: Proceedings of the 33rd ACM/IEEE international conference on auto-
mated software engineering, pp 397–407

Wang S, Lo D, Vasilescu B, Serebrenik A (2018) Entagrec++: an enhanced tag recommendation system for
software information sites. Emp Softw Eng 23(2):800–832

Weiss GM, Provost F (2001) The effect of class distribution on classifier learning: an empirical study
Wu Y, Wang S, Bezemer CP, Inoue K (2019) How do developers utilize source code from stack overflow? Emp

Softw Eng 24(2):637–673
Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: determinants of pull request evaluation latency

on github. In: 2015 IEEE/ACM 12th working conference on mining software repositories. IEEE, pp 367–371
Yu Y, Zeng Y, Fan Q, Wang H (2018) Transferring well-trained models for cross-project issue classification: a

large-scale empirical study. In: Proceedings of the Tenth Asia-Pacific Symposium on Internetware, pp 1–6

Empirical Software Engineering (2022) 27: 5050 Page 36 of 37

https://doi.org/10.1007/s10664-019-09684-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10664-019-09684-y
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10664-019-09684-y
https://doi.org/10.1109/TSE.2019.2893171
https://ieeexplore.ieee.org/document/8613795/
https://doi.org/10.1109/ICDIM.2014.6991434
http://ieeexplore.ieee.org/document/6991434/
http://ieeexplore.ieee.org/document/6991434/
http://arxiv.org/abs/2005.08025
https://doi.org/10.1109/SEAA51224.2020.00084
https://doi.org/10.1109/ICSM.2013.31
http://ieeexplore.ieee.org/document/6676891/
https://doi.org/10.1007/s10462-016-9478-6
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10462-016-9478-6
https://doi.org/10.1109/MSR.2015.40
https://doi.org/10.1109/MSR.2015.40
http://ieeexplore.ieee.org/document/7180094/

1 3

Authors and Affiliations

Maliheh Izadi1  · Kiana Akbari1 · Abbas Heydarnoori1

 *	 Maliheh Izadi
	 maliheh.izadi@sharif.edu

	 Kiana Akbari
	 kakbari@ce.sharif.edu

	 Abbas Heydarnoori
	 heydarnoori@sharif.edu

1	 Intelligent Software Engineering Lab, Sharif University of Technology, Tehran, Iran

Zeng Y, Chen J, Shang W, Chen THP (2019) Studying the characteristics of logging practices in mobile apps: a
case study on f-droid. Emp Softw Eng 24(6):3394–3434

Zhang J, Wang X, Hao D, Xie B, Zhang L, Mei H (2015) A survey on bug-report analysis. Sci China Inform Sci
58(2):1–24

Zhou J, Wang S, Bezemer CP, Zou Y, Hassan AE (2020) Studying the association between bountysource boun-
ties and the issue-addressing likelihood of github issue reports. IEEE Trans Softw Eng

Zhou Y, Tong Y, Gu R, Gall H (2016) Combining text mining and data mining for bug report classification.
J Softw Evolut Process 28(3):150–176

 Empirical Software Engineering (2022) 27: 50 Page 37 of 37 50

http://orcid.org/0000-0001-5093-5523

	Predicting the objective and priority of issue reports in software repositories
	Abstract
	1 Introduction
	2 Approach
	2.1 Approach Overview
	2.2 Label Inspection
	2.3 Data Collection
	2.4 Pre-processing
	2.5 First stage: Objective Detection
	2.6 Sentiment Analysis
	2.7 Label Clustering
	2.8 Feature Extraction And Categorization
	2.9 Feature Normalization
	2.10 Balancing Techniques
	2.11 Second Stage: Priority Prediction

	3 Experiment Design
	3.1 Research Questions
	3.2 Evaluation Metrics
	3.3 Baselines
	3.4 Human Labeling And Evaluation: Setup

	4 Experiment Results
	4.1 RQ1: Issue Objective Detection
	4.2 RQ2: Project-Based Priority Prediction
	4.3 RQ3: Priority Prediction In Cross-Project Context
	4.3.1 Feature Importance
	4.3.2 High vs. Low Priority

	4.4 RQ4: Human Labeling And Evaluation: Results
	4.5 Applications
	4.6 Threats to Validity

	5 Related Work
	5.1 Collective Knowledge in Software Engineering
	5.2 Issue Report Classification
	5.3 Issue report Prioritization
	5.4 Cross-project Models

	6 Conclusions and Future Work
	References

