
Vol.:(0123456789)

https://doi.org/10.1007/s10664-021-10068-4

1 3

Revisiting process versus product metrics: a large scale
analysis

Suvodeep Majumder1  · Pranav Mody1 · Tim Menzies1

Accepted: 20 September 2021 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Numerous methods can build predictive models from software data. However, what meth-
ods and conclusions should we endorse as we move from analytics in-the-small (dealing
with a handful of projects) to analytics in-the-large (dealing with hundreds of projects)?
To answer this question, we recheck prior small-scale results (about process versus prod-
uct metrics for defect prediction and the granularity of metrics) using 722,471 commits
from 700 Github projects. We find that some analytics in-the-small conclusions still hold
when scaling up to analytics in-the-large. For example, like prior work, we see that process
metrics are better predictors for defects than product metrics (best process/product-based
learners respectively achieve recalls of 98%/44% and AUCs of 95%/54%, median values).
That said, we warn that it is unwise to trust metric importance results from analytics in-the-
small studies since those change dramatically when moving to analytics in-the-large. Also,
when reasoning in-the-large about hundreds of projects, it is better to use predictions from
multiple models (since single model predictions can become confused and exhibit a high
variance).

Keywords  Software engineering · Software process · Process metrics · Product metrics ·
Developer metrics · Random forest · Logistic regression · Support vector machine · HPO

Communicated by: Yasutaka Kamei.

 *	 Suvodeep Majumder
	 smajumd3@ncsu.edu

	 Pranav Mody
	 prmody@ncsu.edu

	 Tim Menzies
	 tim@ieee.org

1	 Department of Computer Science, North Carolina State University, Raleigh, USA

Published online: 17 March 2022

Empirical Software Engineering (2022) 27: 60

http://orcid.org/0000-0001-5673-1142
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10068-4&domain=pdf

1 3

1  Introduction

There exist many automated software engineering techniques for building predictive mod-
els from software project data (Ghotra et al. 2015). Such models are cost-effective methods
for guiding developers on where to quickly find bugs (Menzies et al. 2006; Ostrand et al.
2004).

Given that there are so many techniques, the question naturally arises: which one should
we use? Software analytics is growing more complex and more ambitious with time. A
decade ago, a standard study in this field dealt with just 20 projects or less.1 Now we can
access data on hundreds to thousands of projects. How does this change software analytics?
What methods and conclusions should we endorse as we move from analytics in-the-small
(which analyzes a small number of projects individually to report their findings) to analyt-
ics in-the-large (which analyzes hundreds of projects individually to report findings that
are important across all or majority of the projects analyzed)?2 So reproducing results and
findings that were true for analytics in-the-small is of utmost importance with hundreds to
thousands of projects. Such analytics in-the-large results will help the software engineering
community to understand and adopt appropriate methods, beliefs, and conclusions.

As part of this study, we revisited the Rahman et al. ICSE 2013 study “How, and why,
process metrics are better” (Rahman and Devanbu 2013) and Kamei et al. ICSM 2010
study “Revisiting common bug prediction findings using effort-aware models” (Kamei
et al. 2010). Both papers were analytics in-the-small study that used 12 and 3 projects,
respectively to see if defect predictors worked best if they used:

–	 Product metrics, showing what was built; e.g., see Table 1.
–	 Or process metrics, showing how code is changed; e.g., see Table 2;

These papers are worth revisiting since it is widely cited3 and it addresses an important
issue. Herbsleb argues convincingly that how groups organize themselves can be highly
beneficial/detrimental to the process of writing code (Herbsleb 2014). Hence, process fac-
tors can be highly informative about what parts of a codebase are buggy. In support of the
Herbsleb hypothesis, prior studies have shown that, for defect prediction, process metrics
significantly outperform product metrics (Lumpe et al. 2012; Rahman and Devanbu 2013;
Bird et al. 2009). Also, if we wish to learn general principles for software engineering that
hold across multiple projects, it is better to use process metrics since:

–	 Process metrics are much simpler to collect and can be applied uniformly to software
written in different languages.

–	 Product metrics, on the other hand, can be much harder to collect. For example, some
static code analysis requires expensive licenses, which need updating every time a new
version of a language is released (Rahman et al. 2014a). Also, the collected value for
these metrics may not translate between projects since those ranges can be highly spe-
cific.Lastly, product metrics tend to be far more verbose and hence time-consuming to
collect. For example, for 722,471 commits studied in this paper, data collected required

1  For examples of such papers, see Table 3, later in this paper.
2  Note, here, when referring to analytics in-the-small and analytics in-the-large, we are not comparing find-
ings from a local vs global approach. Rather we compare results and findings summarized from analyzing
small number of projects vs results and findings summarized from analyzing large number of projects.
3  232 and 179 citations respectively in Google Scholar, as of Sept 28, 2020.

60 Page 2 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Table 1   List of product metrics used in this study

Type Metrics Count

File AvgCyclomatic, AvgCyclomaticModified, AvgCyclomaticStrict, 37
AvgEssential, AvgLine, AvgLineBlank, AvgLineCode,
AvgLineComment, CountDeclClassMethod,
CountDeclClassVariable, CountDeclInstanceMethod,
CountDeclInstanceVariable, CountDeclMethod, CountDeclMethodAll,
CountDeclMethodDefault, CountDeclMethodPrivate,
CountDeclMethodProtected, CountDeclMethodPublic,
CountLine, CountLineBlank, CountLineCode, CountLineCodeDecl,
CountLineCodeExe, CountLineComment, CountSemicolon, CountStmt,
CountStmtDecl, CountStmtExe, MaxCyclomatic,
MaxCyclomaticModified, MaxCyclomaticStrict,MaxEssential,
RatioCommentToCode, SumCyclomatic, SumCyclomaticModified,
SumCyclomaticStrict, SumEssential

Class PercentLackOfCohesion, 7
PercentLackOfCohesionModified, MaxInheritanceTree,
CountClassDerived, CountClassCoupled, CountClassCoupledModified,
CountClassBase

Method MaxNesting 1

Table 2   List of process metrics
used in this study adev : Active Dev Count

age : Interval between the last and the current change
ddev : Distinct Dev Count
sctr : Distribution of modified code across each file
exp : Experience of the committer
la : Lines of code added
ld : Lines of code deleted
lt : Lines of code in a file before the change
minor : Minor Contributor Count
nadev : Neighbor’s Active Dev Count
ncomm : Neighbor’s Commit Count
nd : Number of Directories
nddev : Neighbor’ Distinct Dev Count
ns : Number of Subsystems
nuc : Number of unique changes to the modified files
own : Owner’s Contributed Lines
sexp : Developer experience on a subsystem
rexp : Recent developer experience

Page 3 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

Ta
bl

e 
3  

N
um

be
r o

f d
at

a
se

ts
 e

xp
lo

re
d

in
 re

ce
nt

 p
ap

er
s a

t p
ro

m
in

en
t v

en
ue

s t
ha

t e
xp

er
im

en
t w

ith
 p

ro
ce

ss
 a

nd
/o

r p
ro

du
ct

 m
et

ric
s

Pa
pe

r

of
 D

at
as

et
s

Ye
ar

Ve
nu

e

A
 v

al
id

at
io

n
of

 o
bj

ec
t-o

rie
nt

ed
 d

es
ig

n
m

et
ric

s a
s q

ua
lit

y
in

di
ca

to
rs

8
19

96
TS

E
Pr

ed
ic

tin
g

fa
ul

t i
nc

id
en

ce
 u

si
ng

 so
ftw

ar
e

ch
an

ge
 h

ist
or

y
1

20
00

TS
E

Em
pi

ric
al

 a
na

ly
si

s o
f c

k
m

et
ric

s f
or

 o
bj

ec
t-o

rie
nt

ed
 d

es
ig

n
co

m
pl

ex
ity

: I
m

pl
ic

at
io

ns
 fo

r s
of

tw
ar

e
de

fe
ct

s
1

20
03

TS
E

D
at

a
m

in
in

g
st

at
ic

 c
od

e
at

tri
bu

te
s t

o
le

ar
n

de
fe

ct
 p

re
di

ct
or

s
8

20
06

TS
E

Em
pi

ric
al

 a
na

ly
si

s o
f o

bj
ec

t-o
rie

nt
ed

 d
es

ig
n

m
et

ric
s f

or
 p

re
di

ct
in

g
hi

gh
 a

nd
 lo

w
 se

ve
rit

y
fa

ul
ts

1
20

06
TS

E
Is

 e
xt

er
na

l c
od

e
qu

al
ity

 c
or

re
la

te
d

w
ith

 p
ro

gr
am

m
in

g
ex

pe
rie

nc
e

or
 fe

el
go

od
fa

ct
or

?
1

20
06

X
P

M
in

in
g

m
et

ric
s t

o
pr

ed
ic

t c
om

po
ne

nt
 fa

ilu
re

s
5

20
06

TS
E

Pr
ed

ic
tin

g
de

fe
ct

s f
or

 e
cl

ip
se

1
20

07
IC

SE
Th

e
eff

ec
ts

 o
f o

ve
r a

nd
 u

nd
er

 sa
m

pl
in

g
on

 fa
ul

t-p
ro

ne
 m

od
ul

e
de

te
ct

io
n

1
20

07
ES

EM
U

si
ng

 so
ftw

ar
e

de
pe

nd
en

ci
es

 a
nd

 c
hu

rn
 m

et
ric

s t
o

pr
ed

ic
t fi

el
d

fa
ilu

re
s:

 A
n

em
pi

ric
al

 c
as

e
stu

dy
1

20
07

ES
EM

A
 c

om
pa

ra
tiv

e
an

al
ys

is
 o

f t
he

 e
ffi

ci
en

cy
 o

f c
ha

ng
e

m
et

ric
s a

nd
 st

at
ic

 c
od

e
at

tri
bu

te
s f

or
 d

ef
ec

t p
re

di
ct

io
n

1
20

08
IC

SE
B

en
ch

m
ar

ki
ng

 m
od

el
s f

or
 d

ef
ec

t p
re

di
ct

io
n

10
20

08
TS

E
D

o
to

o
m

an
y

co
ok

s s
po

il
th

e
br

ot
h?

 u
si

ng
 th

e
nu

m
be

r o
f d

ev
el

op
er

s t
o

en
ha

nc
e

de
fe

ct
 p

re
di

ct
io

n
m

od
el

s
2

20
08

EM
SE

Im
pl

ic
at

io
ns

 o
f c

ei
lin

g
eff

ec
ts

 in
 d

ef
ec

t p
re

di
ct

or
s

12
20

08
IP

SE
A

n
in

ve
sti

ga
tio

n
of

 th
e

re
la

tio
ns

hi
ps

 b
et

w
ee

n
lin

es
 o

f c
od

e
an

d
de

fe
ct

s
1

20
09

IC
SE

O
n

th
e

re
la

tiv
e

va
lu

e
of

 c
ro

ss
-c

om
pa

ny
 a

nd
 w

ith
in

-c
om

pa
ny

 d
at

a
fo

r d
ef

ec
t p

re
di

ct
io

n
6

20
09

EM
SE

C
ro

ss
-p

ro
je

ct
 d

ef
ec

t p
re

di
ct

io
n:

 a
 la

rg
e

sc
al

e
ex

pe
rim

en
t o

n
da

ta
 v

s.
do

m
ai

n
vs

. p
ro

ce
ss

7
20

09
FS

E
A

 sy
ste

m
at

ic
 a

nd
 c

om
pr

eh
en

si
ve

 in
ve

sti
ga

tio
n

of
 m

et
ho

ds
 to

 b
ui

ld
 a

nd
 e

va
lu

at
e

fa
ul

t p
re

di
ct

io
n

m
od

el
1

20
10

JS
S

A
n

an
al

ys
is

 o
f d

ev
el

op
er

 m
et

ric
s f

or
 fa

ul
t p

re
di

ct
io

n
1

20
10

PR
O

M
IS

E
C

ha
ng

e
bu

rs
ts

 a
s d

ef
ec

t p
re

di
ct

or
s

1
20

10
IS

SR
E

Pr
ed

ic
tin

g
fa

ul
ts

 in
 h

ig
h

as
su

ra
nc

e
so

ftw
ar

e
15

20
10

H
A

SE
Re

vi
si

tin
g

C
om

m
on

 B
ug

 P
re

di
ct

io
n

Fi
nd

in
gs

 U
si

ng
 E

ffo
rt-

A
w

ar
e

M
od

el
s

3
20

10
IC

SM
B

ug
ca

ch
e

fo
r i

ns
pe

ct
io

ns
: h

it
or

 m
is

s
5

20
11

FS
E

D
on

’t
to

uc
h

m
y

co
de

! e
xa

m
in

in
g

th
e

eff
ec

ts
 o

f o
w

ne
rs

hi
p

on
 so

ftw
ar

e
qu

al
ity

2
20

11
FS

E
O

w
ne

rs
hi

p,
 e

xp
er

ie
nc

e
an

d
de

fe
ct

s:
 a

 fi
ne

-g
ra

in
ed

 st
ud

y
of

 a
ut

ho
rs

hi
p

4
20

11
IC

SE
U

si
ng

 c
od

in
g-

ba
se

d
en

se
m

bl
e

le
ar

ni
ng

 to
 im

pr
ov

e
so

ftw
ar

e
de

fe
ct

 p
re

di
ct

io
n

14
20

12
SM

C
Tr

an
sf

er
 le

ar
ni

ng
 fo

r c
ro

ss
-c

om
pa

ny
 so

ftw
ar

e
de

fe
ct

 p
re

di
ct

io
n

6
20

12
IS

T

60 Page 4 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Ta
bl

e 
3  

(c
on

tin
ue

d)

Pa
pe

r

of
 D

at
as

et
s

Ye
ar

Ve
nu

e

Re
ca

lli
ng

 th
e

“i
m

pr
ec

is
io

n”
 o

f c
ro

ss
-p

ro
je

ct
 d

ef
ec

t p
re

di
ct

io
n.

9
20

12
FS

E
M

et
ho

d-
le

ve
l b

ug
 p

re
di

ct
io

n
21

20
12

ES
EM

H
ow

, a
nd

 w
hy

, p
ro

ce
ss

 m
et

ric
s a

re
 b

et
te

r
12

20
13

IC
SE

U
si

ng
 c

la
ss

 im
ba

la
nc

e
le

ar
ni

ng
 fo

r s
of

tw
ar

e
de

fe
ct

 p
re

di
ct

io
n

10
20

13
TR

Sa
m

pl
e

Si
ze

 v
s.

B
ia

s i
n

D
ef

ec
t P

re
di

ct
io

n
12

20
13

FS
E

Pr
ed

ic
tin

g
B

ug
s U

si
ng

 A
nt

ip
at

te
rn

s
2

20
13

IC
SM

E
Em

pi
ric

al
 st

ud
y

of
 th

e
cl

as
si

fic
at

io
n

pe
rfo

rm
an

ce
 o

f l
ea

rn
er

s o
n

im
ba

la
nc

ed
 n

oi
sy

 so
ftw

ar
e

qu
al

ity
 d

at
a

1
20

14
IS

Le
ar

ni
ng

 to
 ra

nk
 re

le
va

nt
 fi

le
s f

or
 b

ug
 re

po
rts

 u
si

ng
 d

om
ai

n
kn

ow
le

dg
e

6
20

14
FS

E
W

hi
ch

 p
ro

ce
ss

 m
et

ric
s c

an
 si

gn
ifi

ca
nt

ly
 im

pr
ov

e
de

fe
ct

 p
re

di
ct

io
n

m
od

el
s?

 a
n

em
pi

ric
al

 st
ud

y
11

20
14

M
SR

Th
e

im
pa

ct
 o

f m
is

la
be

lli
ng

 o
n

th
e

pe
rfo

rm
an

ce
 a

nd
 in

te
rp

re
ta

tio
n

of
 d

ef
ec

t p
re

di
ct

io
n

m
od

el
s

5
20

15
IC

SE
D

ev
el

op
er

 M
ic

ro
 In

te
ra

ct
io

n
M

et
ric

s f
or

 S
of

tw
ar

e
D

ef
ec

t P
re

di
ct

io
n

6
20

16
TS

E
H

yd
ra

: M
as

si
ve

ly
 c

om
po

si
tio

na
l m

od
el

 fo
r c

ro
ss

-p
ro

je
ct

 d
ef

ec
t p

re
di

ct
io

n
10

20
16

TS
E

Su
pe

rv
is

ed
 v

s U
ns

up
er

vi
se

d
M

od
el

s:
 A

 H
ol

ist
ic

 L
oo

k
at

 E
ffo

rt-
A

w
ar

e
Ju

st-
in

-T
im

e
D

ef
ec

t P
re

di
ct

io
n

6
20

17
IC

SM
E

Em
pi

ric
al

 a
na

ly
si

s o
f c

ha
ng

e
m

et
ric

s f
or

 so
ftw

ar
e

fa
ul

t p
re

di
ct

io
n

1
20

18
C

EE
C

LE
V

ER
: C

om
bi

ni
ng

 C
od

e
M

et
ric

s w
ith

 C
lo

ne
 D

et
ec

tio
n

fo
r J

us
t-I

n-
Ti

m
e

Fa
ul

t P
re

ve
nt

io
n

an
d

Re
so

lu
tio

n
in

La

rg
e

In
du

str
ia

l P
ro

je
ct

s
1

20
18

M
SR

Fi
ne

-g
ra

in
ed

 ju
st-

in
-ti

m
e

de
fe

ct
 p

re
di

ct
io

n
10

20
19

IS
T

M
in

in
g

de
fe

ct
s:

 S
ho

ul
d

w
e

co
ns

id
er

 a
ffe

ct
ed

 re
le

as
es

?
6

20
19

IC
SE

Page 5 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

500 days of CPU (using five machines, 16 cores, 7days). Our process metrics, on the
other hand, were an order of magnitude faster to collect.4

Since product versus process metrics is such an important issue, we revisited the Rah-
man et al. and Kamei et al. study. To check their conclusions, we ran an analytics in-the-
large study that looked at 722,471 commits from 700 Github projects.

All in all, this paper explores eight hypotheses using two widely used validation cri-
teria. One is release-based (where given R releases of the software, we trained on data
from release 1 to R − 3 , then tested on release R − 2 , R − 1 , and R) and another is cross-
validation based (where the data is randomly divided into N stratified bins. Each bin, in
turn, becomes the test set and a model is trained on the remaining bins.) After comparing
conclusions seen in the prior analytics-in-the-small to the analytics-in-the-large, we find
two cases where we disagree and six where we agree. So what is the value of a paper
with 75% agreement with prior work? We assert that this paper makes several important
contributions:

–	 Firstly, in the two cases where we disagree, we very strongly disagree:

–	 We find that the use of any learner is not appropriate for analytics-in-large. Our
results suggest that any learner that generates a single model may get confused by
all the intricacies of data from multiple projects. On the other hand, ensemble learn-
ers (that make the conclusions by polling across many models) know how to gener-
ate good predictions from an extensive sample.

–	 Also, in terms of what recommendations we would make to improve software qual-
ity, we find that the conclusions achieved via analytics-in-the-large are very differ-
ent from those achieved via analytic-in-the-small. Later in this paper, we compare
those two sets of conclusions. We will show that changes to software projects that
make sense from analytics-in-the-small (after looking at any five projects) can be
wildly misleading since, once we get to analytics-in-the-large, a very different set of
attributes is most effective

–	 Secondly, in the case where our conclusions are the same as prior work, we have suc-
cessfully completed a valuable step in the scientific process: i.e., reproduction of prior
results. Current ACM guidelines5 distinguish replication and reproduction as follows:
the former uses artifacts from the prior study while the latter does not. Our work is a
reproduction6 since we use ideas from the Rahman et al. and Kamei et al. study, but
none of their code or data. We would encourage more researchers to conduct and report
more reproduction studies.

5  https://www.acm.org/publications/policies/artifact-review-and-badging-current
6  To be clear: technically speaking, this paper is a partial reproduction of Rahman et al. or Kamei et al.
When we tried their methodology, we found in some cases, our results needed a slightly different approach
(see Section 3.4).

4  This is because process metrics can be calculate using the change history of a file. While calculating the
product metrics, the tool needs to download the specific version of the file, then go through the actual code
to gather the necessary statistics to calculate the actual metrics.

60 Page 6 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Specifically, this paper asks eight research questions

In a result that agrees with Rahman et al., we find that how we build code is more indica-
tive of what bugs are introduced than what we build (i.e., process metrics make best defect
predictions).

Rahman et al. said that it does not matter what learner is used to build prediction mod-
els. We make the exact opposite conclusion. For analytics-in-the-large, the more data we
process, the more variance in that data. Hence, conclusions that rely on a single model get
confused and exhibit significant variance in their predictions. To mitigate this problem, it
is important to use learners that make conclusions by averaging over multiple models (i.e.,
ensemble Random Forests are far better for analytics than the Naive Bayes, Logistic Regres-
sion, or Support Vector Machines used in prior work).

Kamei et al. said in their study that although the file-level prediction is better than package-
level prediction when measured using Popt20, the difference is very little and we agree with
this result. However, when measured via other evaluation measures, the difference is signifi-
cantly different. Thus for analytics-in-the-large, when measured using other criteria, it is evi-
dent the granularity of the metrics matter and file-level prediction shows significantly better
results than package-level prediction.

When measured in terms of stability of performance across the last 3 releases by using
all other previous releases for training the model, our results agree with Rahman et al. in all
traditional evaluation criteria (i.e., recall, pf, precision). We find that the performance across
the last 3 releases does not significantly differ in all evaluation criteria except for effort-aware
evaluation criteria Popt20.

Page 7 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

In this result, we agree with Rahman et al.. We can see product metrics are significantly
more correlated than process metrics. We measure this correlation in both release-based and
JIT-based settings. Although we can see process metrics have a significantly lower corre-
lation than product metrics in both release-based and JIT-based settings, the difference is
lower in case of JIT-based settings. Also, when lifting process metrics from file-level to
package-level, as explored by Kamei et al., we can see a significant increase in correla-
tion in case of process metrics. This can explain the drop in performance in package-level
prediction.

Rahman et al. warn that, when reasoning over multiple releases, models can stagnant,
i.e., fixate on old conclusions and miss new ones. For example, if a defect occurs in the
same file in release one and release two, and another defect appears in a new file in the sec-
ond release, the model will catch the file as defective, which was defective in first release,
but will miss the defect in the new file.

Here we measure the stagnation property of the models built using the metrics. Our
results agree with Rahman et al.: we see a significantly higher correlation between the pre-
dicted probability and learned probability in the case of product metrics than process met-
rics. This signifies models built using product metrics tend to be stagnant.

In these results, we try to evaluate if models built with product and process metrics tend
to predict recurrent defects. Our results concur with Rahman et al. and we see models built
with product metrics tend to predict recurrent defects, while models built with process data
do not suffer from this effect.

Numerous prior analytics in-the-small publications offer conclusions on the relative
importance of different metrics. For example, Kamei et al. (2010); Gao et al. (2011); Moser
et al. (2008); Kondo et al. (2020); D’Ambros et al. (2010) offer such conclusions after an
analysis of 1,1,3, 6,and 26 software project, respectively. Their conclusions are far more
specific than process-vs-product; rather, these prior studies call our particular metrics are
being most important for prediction.

60 Page 8 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Based on our analysis, we must now call into question any prior analytics in-the-small
conclusions that assert that specific metrics are more important than any other (for defect
prediction). We find that the relative importance of different metrics found via analytics
in-the-small is not stable. Specifically, when we move to analytics in-the-large, we find
very different rankings for metric importance.

The rest of this paper is structured as follows. Some background and related work are
discussed in Section 2. Our experimental methods are described in Section 3. Data collec-
tion in Section 3.1 and learners used in this study in Section 3.2. Followed by the experi-
mental setup in Section 3.4 and evaluation criteria in Section 3.5. The results and answers
to the research questions are presented in Section 4. Which is followed by threats to valid-
ity in Section 5. Finally, the conclusion is provided in Section 6.

Note that all the scripts and data used in this analysis are available online at https://
github.com/Suvodeep90/Revisit_process_product.7

2 � Background and related work

2.1 � Defect prediction

This section shows that software defect prediction is a (very) widely explored area with
many application areas. Specifically, in 2020, software defect prediction is now a “subrou-
tine” that enables much other research.

A defect in software is a failure or an error represented by incorrect, unexpected, or
unintended behavior of a system caused by an action taken by a developer. As today’s
software proliferates both in size and number, software testing for capturing those defects
plays more and more crucial roles. During software development, the testing process often
has some resource limitations. For example, the effort associated with coordinated human
effort across a large codebase can grow exponentially with the scale of the project (Fu et al.
2016).

It is common to match the quality assurance (QA) effort to the perceived criticality and
bugginess of the code for managing resources efficiently. Since every decision is associ-
ated with a human and resource cost to the developer team, it is impractical and inefficient
to distribute equal effort to every component in a software system (Briand et al. 1993).
Creating defect prediction models from either product metrics (like those from Table 1) or
process metrics (like those from Table 2) is an efficient way to take a look at the incoming
changes and focus on specific modules or files based on a suggestion from defect predictor.

Recent results show that software defect predictors are also competitive widely-used
automatic methods. Rahman et al. (2014b) compared (a) static code analysis tools Find-
Bugs, Jlint, and PMD with (b) defect predictors (which they called “statistical defect pre-
diction”) built using logistic regression. No significant differences in cost-effectiveness
were observed. Given this equivalence, it is significant to note that defect prediction can be
quickly adapted to new languages by building lightweight parsers to extract product met-
rics or use common change information by mining git history to build process metrics. The
same is not true for static code analyzers - these need extensive modification before they

7  Note to reviewers: Our data is so large we cannot place it in the Github repo. Zenodo.org will host our
data. https://github.com/Suvodeep90/Revisit_process_product only contains a sample of our data. We will
link that repository to link to data stored at Zenodo.org.

Page 9 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

can be used in new languages. Because of this ease of use and its applicability to many pro-
gramming languages, defect prediction has been extended in many ways, including:

1.	 Application of defect prediction methods to locate code with security vulnerabili-
ties (Shin and Williams 2013).

2.	 Understanding the factors that lead to a greater likelihood of defects such as defect-
prone software components using code metrics (e.g.,, ratio comment to code, cyclomatic
complexity) (Menzies et al. 2010, 2007) or process metrics (e.g.,, recent activity).

3.	 Predicting the location of defects so that appropriate resources may be allocated
(e.g., Bird et al. 2009)

4.	 Using predictors to proactively fix defects (Arcuri and Briand 2011)
5.	 Studying defect prediction not only just release-level (Chen et al. 2018) but also change-

level or just-in-time (Rosen et al. 2015).
6.	 Exploring “transfer learning” where predictors from one project are applied to

another (Krishna and Menzies 2018; Nam et al 2018).
7.	 Assessing different learning methods for building predictors (Ghotra et al. 2015). This

has led to the development of hyper-parameter optimization and better data harvesting
tools (Agrawal et al. 2018; Agrawal and Menzies 2018).

2.2 � Process vs product

Defect prediction models are built using various machine learning classification methods
such as Random Forest, Support Vector Machine, Naive Bayes, Logistic Regression (Tan-
tithamthavorn et al. 2016; Zhang et al. 2016; Jacob et al. 2015; Zhang et al. 2007; Ibrahim
et al. 2017; Wang and Yao 2013; Krishna and Menzies 2018; Sun et al. 2012; Menzies
et al. 2018; Seiffert et al. 2014; Seliya et al. 2010; Ghotra et al. 2015; Zhang et al. 2017; He
et al. 2012; Nam et al. 2013; Pan et al. 2010) etc. All these methods input project metrics
and output a model that can make predictions. Fenton and Neil (2000) say that a “metric”
is an attempt to measure some internal or external characteristic and can broadly be clas-
sified into product (specification, design, code-related) or process (constructing specifica-
tion, detailed design related). The metrics are computed either through parsing the codes
(such as modules, files, classes or methods) to extract product (code) metrics or by inspect-
ing the change history by parsing the revision history of files to extract process (change)
metrics.

In September 2020, we conducted the following literature review to understand the
current thinking on the process and product metrics. Starting with Rahman and Devanbu
(2013) and Kamei et al. (2010), we used Google Scholar to trace citations forward and
backward-looking for papers that offered experiments on the process or product metrics
for defect prediction or that suggested why certain process or product metrics are better for
defect prediction. This gave us a list of 76 papers. Following the advice of Mathew et al.
(2017), we examined:

–	 Highly cited papers, i.e., those with at least ten cites per year.
–	 Papers from senior SE venues, i.e., those listed at “Google Scholar Metrics Software

Systems”.

60 Page 10 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Next, using our domain expertise, we augmented that list of papers we considered impor-
tant or highly influential papers that focus on the benefits of using process or/and product
metrics that were not included in the above two criteria). This leads to the 45 papers that
are listed in Table 3.

Within this set of papers, we observe that studies on product metrics are more com-
mon than on process metrics (and very few papers experimentally compare both product
and process metrics: see Fig. 1). The product metrics community (Wang and Yao 2013;
Sun et al. 2012; Menzies et al. 2018; Seiffert et al. 2014; Seliya et al. 2010; Kamei et al.
2007; Menzies et al. 2006; Zimmermann et al. 2007; Turhan et al. 2009; Zimmermann
et al. 2009; Xia et al. 2016) argues that many kinds of metrics indicate which code modules
are buggy:

–	 For example, for lines of code, it is usually argued that large files can be hard to com-
prehend and change (and thus are more likely to have bugs);

–	 For another example, for design complexity, it is often argued that the more complex
a design of code, the harder it is to change and improve that code (and thus are more
likely to have bugs).

On the other hand, the process metrics community (Bird et al. 2011; Nagappan
and Ball 2007; Rahman and Devanbu 2011; Rahman et al. 2011; Weyuker et al. 2008;
Madeyski and Jureczko 2015; Choudhary et al. 2018; Nayrolles and Hamou-Lhadj
2018; Tantithamthavorn et al. 2015; Pascarella et al. 2019; Rahman et al. 2013; Huang
et al. 2017; Ye et al. 2014) explore many process metrics, including (a) developer’s
experience; and (b) how many developers worked on certain file (and, it is argued, many

Fig. 1   Number of papers exploring the benefits of the process and product metrics for defect prediction.
The papers in the intersection are (Rahman and Devanbu 2013; Moser et al. 2008; Graves et al. 2000;
Arisholm et al. 2010; Kamei et al. 2010; Giger et al. 2012) explore and compare both process and product
metrics. Note that prior to this EMSE paper, prior work that looked at the process and product metrics
explored analytics-in-the-small

Page 11 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

developers working on a single file is much more susceptible to defects); and (c) how
long it has been since the last change (and, it is argued, a file which is changed fre-
quently may be an indicator for bugs).

The rest of this section lists prominent results from the Fig. 1 survey. From the prod-
uct metrics community, Zimmermann et al. (2007), in their study on Eclipse project
using file and package-level data, showed complexity-based product metrics are much
better in predicting defective files. Zhang (2009), in their experiments, showed that lines
of code-related metrics are good predictors of software defects using NASA datasets.
In another study using product metrics, Zhou et al. (2010) analyzed a combination of
ten object-oriented software metrics related to complexity to conclude that size metrics
were a much better indicator of defects. A similar study by Zhou and Leung (2006)
evaluated the importance of individual metrics and indicated that while CBO, WMC,
RFC, and LCOM metrics are useful metrics for fault prediction, but DIT is not useful
using NASA datasets. Menzies et al. (2006), in their study regarding static code met-
rics for defect prediction, found product metrics are very effective in finding defects.
Basili et al. (1996), in their work, showed object-oriented ck metrics appeared to be use-
ful in predicting class fault-proneness, which was later confirmed by Subramanyam and
Krishnan (2003). Nagappan et al. (2006), in their study, reached a similar conclusion
as Menzies et al. (2006), but concluded, “However, there is no single set of complexity
metrics that could act as a universally best defect predictor”.

In other studies related to process metrics, Nagappan et al. (2010) emphasized the
importance of change bursts as a predictor for software defects on Windows Vista data-
set. They achieved a precision and recall value at 90% in this study and achieved a pre-
cision of 74.4% and recall at 88.0% in another study on Windows Server 2003 datasets.
In another study by Matsumoto et al. (2010) investigated the effect of developer-related
metrics on defect prediction. They showed improved performance using these metrics
and proved module that is revised by more developers tends to contain more faults. Sim-
ilarly, Schröte et al. (2006), in their study, showed a high correlation between the num-
ber of developers for a file and the number of defects in the respective file.

As to the six papers that compare process versus product methods:

–	 Four of these papers argue that process metrics are best. Rahman and Devanbu
(2013) found process metrics perform much better than product metrics in both
within-project and cross-project defect prediction settings. Their study also showed
product metrics do not evolve much over time and that they are much more static.
Hence, they say, product metrics are not good predictors for defects. Similar conclu-
sions (about the superiority of process metrics) are offered by Moser et al. (2008),
Giger et al. (2012), and Graves et al. (2000).

–	 Only one paper argues that both process and product metrics perform similarly.
Arisholm et al. (2010) found one project where both process and product metrics
perform similarly.

–	 Only one paper argues that the combination of process and product metrics is better
at predicting deefects. Kamei et al. (2010) found 5 out of 9 versions of 3 projects
where combination of process and product metrics perform better than just using
process metrics and 9 out of 9 cases they are better than just using product metrics.

Of these papers, Moser et al. (2008); Arisholm et al. (2010); Kamei et al. (2010); Rahman
and Devanbu (2013); Graves et al. (2000) and Giger et al. (2012) based their conclusions

60 Page 12 of 42 Empirical Software Engineering (2022) 27: 60

1 3

on 1,1,3,12,15,21 projects (respectively). That is to say, these are all analytics in-the-small
studies. The rest of this paper checks their conclusions using analytics in-the-large.

3 � Methods

This section describes our methods for comparatively evaluating process versus product
metrics using analytics in-the-large.

3.1 � Data collection

To collect data, we search Github for Java projects from different software development
domains. Although Github stores millions of projects, many of these are trivially very
small, not maintained, or are not about -software development projects. To filter projects,
we used the standard Github “sanity checks” recommended in the literature (Kalliamvakou
et al. 2014; Munaiah et al. 2017; Agrawal et al. 2018):

–	 Collaboration: refers to the number of pull requests. This is indicative of how many
other peripheral developers work on this project. We required all projects to have at
least one pull request. This will prove the repository is a part of distributed develop-
ment model where others have forked/created a branch on this repository to make inde-
pendent changes and submitted those changes to the main repository to be merged with
the main branch. We also validated and remove any project where all pull requests are
submitted by same developers by checking unique ids of pull request submitter.

–	 Commits: The project must contain more than 20 commits as recommended in the lit-
erature. Commits in a Github repository represent the amount of activity in the project.
More than 75% of the projects found in Github have less than 20; thus 20 is a good
number for this filtering criteria.

–	 Duration: The project must contain software development activity of at least 50 weeks.
Kalliamvakou et al. show in their paper the 75% of the project are active for less than
14 weeks; thus 50 weeks as a minimum duration for the filtering criteria is used as sug-
gested by other researchers.

–	 Issues: The project must contain more than 10 issues as recommended in the literature.
–	 Releases: The project must contain at least 4 releases. This is because the release-based

validation strategy used in this study requires 3 test releases and at least one training
release.

–	 Personal Purpose: The project must not be used and maintained by one person. The
project must have at least eight contributors as suggested by other researchers.

–	 Software Development: The project must only be a placeholder for software develop-
ment source code.

–	 Defective Commits: The project must have at least 10 defective commits with defects
on Java files. This is because the SMOTE algorithm that we are using for balancing the
datasets requires at least 10 examples of the minority class.

–	 Forked Project: The project must not be a forked project from the original repository.
This is to remove any potential duplicity and remove any project from the study that is
not the project’s main branch. We used the Github API to check for the “Forked” flag,
and we removed any project which is flagged as yes.

Page 13 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

Ta
bl

e 
4  

S
ta

tis
tic

al
 m

ed
ia

n
an

d
IQ

R
 v

al
ue

s f
or

 th
e

m
et

ric
s u

se
d

in
 th

is
 st

ud
y

(I
Q

R
 d

en
ot

es
 th

e
(7

5-
25

)th
 p

er
ce

nt
ile

 ra
ng

e)

Pr
od

uc
t M

et
ric

s
Pr

oc
es

s M
et

ric
s

D
at

a
St

at
ist

ic
s

M
et

ric
 N

am
e

M
ed

ia
n

IQ
R

M
et

ric
 N

am
e

M
ed

ia
n

IQ
R

M
et

ric
 N

am
e

M
ed

ia
n

IQ
R

D
at

a
Pr

op
er

ty
M

ed
ia

n
IQ

R

A
vg

C
yc

lo
m

at
ic

1
1

C
ou

nt
Li

ne
75

.5
15

0
la

14
38

.9
D

ef
ec

t R
at

io
37

.6
0%

20
.6

0%
A

vg
C

yc
lo

m
at

ic
M

od
ifi

ed
1

1
C

ou
nt

Li
ne

B
la

nk
10

.5
20

ld
7.

9
12

.2
Li

ne
s o

f C
od

e
82

K
20

0K
A

vg
C

yc
lo

m
at

ic
St

ric
t

1
1

C
ou

nt
Li

ne
C

od
e

53
10

5
lt

92
12

1.
8

N
um

be
r o

f F
ile

s
17

1
35

8
A

vg
Es

se
nt

ia
l

1
0

C
ou

nt
Li

ne
C

od
eD

ec
l

18
32

ag
e

28
.8

35
.1

N
um

be
r o

f D
ev

el
op

er
s

31
34

A
vg

Li
ne

9
10

C
ou

nt
Li

ne
C

od
eE

xe
29

66
dd

ev
2.

4
1.

2
N

um
be

r o
f P

R
s.

55
10

1
A

vg
Li

ne
B

la
nk

0
1

C
ou

nt
Li

ne
C

om
m

en
t

5
18

nu
c

5.
8

2.
7

N
um

be
r o

f C
om

m
its

21
7

37
9

A
vg

Li
ne

C
od

e
7

8
C

ou
nt

Se
m

ic
ol

on
24

52
ow

n
0.

9
0.

1
D

ur
at

io
n

18
6(

W
)

19
1(

W
)

A
vg

Li
ne

C
om

m
en

t
0

1
C

ou
nt

St
m

t
35

72
.3

m
in

or
0.

2
0.

4
N

um
be

r o
f R

el
ea

se
s

20
32

C
ou

nt
C

la
ss

B
as

e
1

0
C

ou
nt

St
m

tD
ec

l
15

28
nd

ev
22

.6
22

.1
N

um
be

r o
f D

ef
ec

tiv
e

C
om

-
m

its
77

13
9

C
ou

nt
C

la
ss

C
ou

pl
ed

3
4

C
ou

nt
St

m
tE

xe
19

43
.8

nc
om

m
71

.1
49

.5
N

um
be

r o
f I

ss
ue

s
46

67
C

ou
nt

C
la

ss
C

ou
pl

ed
M

od
ifi

ed
3

4
M

ax
C

yc
lo

m
at

ic
3

4
ad

ev
6.

1
2.

9
N

um
be

r o
f u

ni
qu

e
PR

su

bm
itt

er
5

6

C
ou

nt
C

la
ss

D
er

iv
ed

0
0

M
ax

C
yc

lo
m

at
ic

M
od

ifi
ed

2
4

na
de

v
71

.1
49

.5
C

ou
nt

D
ec

lC
la

ss
M

et
ho

d
0

0
M

ax
C

yc
lo

m
at

ic
St

ric
t

3
5

av
g_

nd
de

v
2

1.
8

C
ou

nt
D

ec
lC

la
ss

Va
ria

bl
e

0
1

M
ax

Es
se

nt
ia

l
1

0
av

g_
na

de
v

7
5.

2
C

ou
nt

D
ec

lIn
st

an
ce

M
et

ho
d

4
7.

5
M

ax
In

he
rit

an
ce

Tr
ee

2
1

av
g_

nc
om

m
7

5.
2

C
ou

nt
D

ec
lIn

st
an

ce
Va

ria
bl

e
1

4
M

ax
N

es
tin

g
1

2
ns

1
0

C
ou

nt
D

ec
lM

et
ho

d
5

9
%

La
ck

O
fC

oh
es

io
n

33
71

ex
p

34
8.

8
17

2.
7

C
ou

nt
D

ec
lM

et
ho

dA
ll

7
12

.5
%

La
ck

O
fC

oh
es

io
nM

od
ifi

ed
19

62
se

xp
14

5.
7

70
C

ou
nt

D
ec

lM
et

ho
dD

ef
au

lt
0

0
R

at
io

C
om

m
en

tT
oC

od
e

0.
1

0.
2

re
xp

2.
5

3.
4

C
ou

nt
D

ec
lM

et
ho

dP
riv

at
e

0
1

Su
m

C
yc

lo
m

at
ic

8
17

nd
1

0
C

ou
nt

D
ec

lM
et

ho
dP

ro
te

ct
ed

0
0

Su
m

C
yc

lo
m

at
ic

M
od

ifi
ed

8
17

sc
tr

−
0.

2
0.

1
C

ou
nt

D
ec

lM
et

ho
dP

ub
lic

3
6

Su
m

C
yc

lo
m

at
ic

St
ric

t
9

18
Su

m
Es

se
nt

ia
l

6
11

60 Page 14 of 42 Empirical Software Engineering (2022) 27: 60

1 3

We started with 8023 Github projects from various domains collected using Github search
API. After applying the sanity checks mentioned above, we selected 700 projects. The Data
Statistics section of Table 4 shows the median and IQR of each of the filtering criteria for
the selected projects. For this research, we collected file-level process metrics and file-level
product metrics to answer our research questions (RQ1, RQ3-RQ8) as suggested by Rah-
man and Devanbu (2013). We also followed the suggested aggregation process used by
Kamei et al. (2010) in their paper to calculate the package-level metrics by lifting the file-
level metrics to the package-level to investigate and answer RQ2 .

This data was extracted once and stored as pickle files in the following four steps:

1.	 We collected 21 process metrics (following the definition either from commit_guru or
from the definitions shared by Rahman et al.) for each file in each commit by extract-
ing the commit history of the project, then analyzing each commit for our metrics. We
used a modified version of Commit_Guru (Rosen et al. 2015) code for this purpose,
where instead of aggregating file-specific metric values for a commit, we store metric
values for each file. We create objects for each new file we encounter and keep track of
details (i.e., developer who worked on the file, LOCs added, modified, deleted by each
developer, etc.) that we need to calculate. We also keep track of files modified together
to calculate co-commit-based metrics. After collecting the 21 metrics as mentioned in
Table 4 for each project, it is stored as a pickle file to be used for prediction.

2.	 Secondly, we use Commit_Guru (Rosen et al. 2015) code to identify buginducing and
bugfixing commits. This process involves identifying bugfixing commits using a key-
word8 based search. Using these commits, the process uses the commit_guru’s SZZ
algorithm (Williams and Spacco 2008; Rosen et al. 2015) to find commits that were
responsible for introducing those changes and marking them as buginducing.9 This pro-
cess is performed on all commits throughout the life cycle of the project. Note here for
a buginducing, each file that is labeled as a buggy file (buginducing) will have another
instance of the same file, which is non-buggy (bugfixing). If a file has been fixed mul-
tiple times throughout the project history, it will have multiple instances in the dataset.

3.	 Thirdly, we used Github tag API to collect the release information for each of the
projects. We use the release number, release date information supplied from the API
to group commits into releases and thus dividing each project into multiple releases
for each of the metrics. Note here we refer to a release number as the tags provided by
the contributors of the repository, not by Github. Thus we apply regular expressions to
match the release number to either “X.X.X.X” or “X.X.X” format. Here for a tag to be
considered as a release, it needs to be different in the section before the third dot.

4.	 Finally, we used the Understand from Scitools10 to extract the 45 product metrics used
in this study. Understand has a command-line interface to analyze project codes and
generate metrics from that. We use the data collected from the first 2 steps to generate
a list of commits and their corresponding files, along with class labels for defective and
non-defective files. Next, we download the project codes from Github, then used the
git commit information to move the git head to the corresponding commit to match
the code for that commit. Understand uses this snapshot of the code to analyze the

10  http://www.scitools.com/

8  The keywords used are - bug, fix, error, issue, crash, problem, fail, defect and patch. These keywords are
taken used by Rosen et al. in their commit_guru (Rosen et al. 2015) paper.
9  From this point onwards, we will denote the commit which has bugs in them as a “buginducing”

Page 15 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

metrics for each file and store the data in temporary storage. We do this for all commits
throughout the project history. To ensure for every analyzed commit, we only consider
the files which were changed, and we only keep files which was changed as part of that
commit. Here we also added the class labels to the metrics. To only mark files that were
defective, we use commit Ids along with file names to add labels. After the last step is
done, the 45 product metrics collected for each project are stored in a separate file to
answer the research questions for this study.

Note that steps one and two required 2 days (on a single 16 cores machine), while step four
required 7 days (on 5 machines with 16 cores) of computation, respectively. The data col-
lected in this way are summarized in Table 4.

3.2 � Learners

In this section, we briefly explain the four classification methods we have used for this
study. We selected the following based on a prominent paper by Ghotra et al.’s (2015).
Also, all these learners are widely used in the software engineering community. For all the
following models, we use the implementation from Scikit-Learn.11 We applied Differential
Evolution (DE) as a hyperparameter optimization (Tantithamthavorn et al. 2018) to tune
the models discussed here. However, as shown below, the performance of the Random For-
est model with default parameters was so promising that we applied hyperparameter opti-
mization on 3 of the models except for Random Forest.

3.2.1 � Support vector machine

This is a discriminative classifier, which tries to create a hyper-plane between classes by
projecting the data to a higher dimension using kernel tricks (Ryu et al. 2016; Cao et al.
2018; Tomar and Agarwal 2015; Menzies et al. 2018). The model learns the separating
hyper-plane from the training data and classifies test data based on which side the example
resides.

3.2.2 � Naive bayes

This is a probabilistic model, widely used in software engineering community (Wang and
Yao 2013; Sun et al. 2012; Menzies et al. 2018; Seiffert et al. 2014; Seliya et al. 2010), that
finds patterns in the training dataset and builds predictive models. This learner assumes
all the variables used for prediction are not correlated, identically distributed. This classi-
fier uses Bayes rules to build the classifier. When predicting for test data, the model uses
the distribution learned from training data to calculate the probability of the test example
belonging to each class and report the class with maximum probability.

11  https://scikit-learn.org/stable/index.html

60 Page 16 of 42 Empirical Software Engineering (2022) 27: 60

1 3

3.2.3 � Logistic regression

This is a statistical predictive analysis method similar to linear regression but uses
a logistic function to make predictions. Given 2 classes Y=(0 or 1) and a metric vector
X = x1, x2,, xn , the learner first learns coefficients of each metrics vector to best match
the training data. When predicting for test examples, it uses the metrics vectors of the
test example and the coefficients learned from training data to make the prediction using
a logistic function. Logistic regression is widely used in defect prediction (Ghotra et al.
2015; Zhang et al. 2017; He et al. 2012; Nam et al. 2013; Pan et al. 2010).

3.2.4 � Random forest

This is a type of ensemble learning method, which consists of multiple classification
decision trees built on random metrics and bootstrapped samples selected from the
training data. Test examples are classified by each decision tree in the Random Forest
and then the final classification decision is decided using a majority voting. Random
forest is widely used in software engineering domain (Tantithamthavorn et al. 2016;
Zhang et al. 2016; Jacob et al. 2015; Zhang et al. 2007; Ibrahim et al. 2017; Wang
and Yao 2013; Krishna and Menzies 2018) and has proven to be effective in defect
prediction.

Later in this paper, the following distinction will become very significant. Of the four
learners we apply, Random Forests make their conclusion via a majority vote across multi-
ple models while all the other learners build and apply a single model.

3.3 � Differential evolution (DE)

In this section, we explain the hyper-parameter optimizer used in this study to
fine-tune an ML model’s parameters. There are several parameters for each ML
model, which decide how an ML model learns to discriminate between desirable
and undesirable outcomes. These parameters of the models can greatly affect the
performance of the models. In this study, we used Differential Evolution (DE)
as the hyper-parameter optimized as has been widely used in software engineer-
ing and machine learning community (Tantithamthavorn et al. 2018; Agrawal and
Menzies 2018; Xia et al. 2018; Onan et al. 2016). DE is a stochastic population-
based optimization algorithm (Storn and Price 1997). DE starts with a frontier
of randomly generated candidate solutions. For example, when exploring tuning,
each member of the frontier would be a different possible set of control settings
for (say) an Support Vector Machine.

After initializing this frontier, a new candidate solution is generated by extrapolating
by some factor f between other items on the frontier. Such extrapolations are performed
for all attributes at probability cf. If the candidate is better than one item of the frontier,
then the candidate replaces the frontier item. The search then repeats for the remain-
ing frontier items. For the definition of “better”, this study uses F1-score; i.e., “better”

Page 17 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

means maximizing the objective score of the model-based F1 Score. This process is
repeated for lives number of repeated traversals of the frontier. For full details of DE,
see Fig. 2. As per Storn’s advice (Storn and Price 1997), we use

Out of the 4 learners, as mentioned in Section 3.2, we have tuned 3 learners
(a) Logistic Regression, (b) Naive Bayes, and (c) Support Vector Machine. We did not
include the Random Forest learner as it was already reporting near-perfect results for
most performance measures. The parameters tuned in DE for each learner are -

–	 Logistic Regression: (a) penalty: Used to specify the norm used in the penalization,
(b) C: Inverse of regularization strength, (c) solver: Algorithm to use in the optimi-
zation problem, and (d) max_iter: Maximum number of iterations taken for the solv-
ers to converge.

–	 Naive Bayes: (a) var_smoothing: Portion of the largest variance of all features that
are added to variances for calculation stability.

–	 Support Vector Machine: (a) C: Regularization parameter, (b) gamma: Kernel
coefficient, (c) kernel: Specifies the kernel type to be used in the algorithm, and
(d) coef0: Independent term in kernel function.

3.4 � Experimental framework

Figure 3 illustrates our experimental rig. For each of our 700 selected Java projects, we
first use the project’s revision history to collect file-level change metrics, along with
class labels (defective and non-defective commits). Then, using information from the
process metrics, we use Understand’s command-line interface to collect and filter the
product metrics. Next, we join the two metrics to create a combined metrics set for each
project.

f = 0.75, cf = 0.3, lives = 60

Fig. 2   Differential evolution based on storn’s DE optimizer

60 Page 18 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Using the evaluation strategy mentioned above, the data is divided into train,
validation and test sets. The data is then filtered depending on metrics we are inter-
ested in (i.e., process, product, or combined) and pre-processed (i.e., data normali-
zation, filtering/imputing missing values, etc.). After pre-processing and metric fil-
tering is completed, the data is processed using SMOTE algorithm to handle data
imbalance. As described by Chawla et al. (2002), SMOTE is useful for re-sampling
training data such that a learner can find rare target classes. For more details in
SMOTE, see Chawla et al. (2002); Agrawal and Menzies (2017). Note one technical
detail: when applying SMOTE, it is important that it is not applied to the validation
or test data since data mining models need to be tested on the kinds of data they
might actually see in practice.

Finally, we select one learner from four and it is applied to the training set to build a
model. If hyperparameter optimization is to be performed, then the model is tuned using
the validation data. Finally, the model is tested using the test data. As to how we gener-
ate our train/test sets, we report results from two methods:

1.	 release-based
2.	 cross-validation

Both these methods are defined below. We use both methods since (a) other
software analytics papers use cross-validation while (b) release-based is the
evaluation procedure of Rahman et al. As we shall see, these two methods offer
very similar results so debates about the merits of one approach to the other are
something of a moot point. But by reporting on results from both methods, it is
more likely that other researchers will be able to compare their results against
ours.

In a cross-validation study, we select all the files collected using the process
described in Section 3.1. This includes the files that were labeled as buggy and
non-buggy (this can include multiple copies of the same file if it was commit-
ted multiple times) throughout the project history. This data for each project is
sorted randomly M times. Then for each time, the data is divided into N strati-
fied bins. Each bin, in turn, becomes the test set and the remaining data is fur-
ther divided into training and validation sets. For this study, we used M = N = 5.

Project Code

Change History

Product Metric
Extraction Code

Process Metric
Extraction Code

Product Metrics

Process Metrics

Combined Metrics

Pr
oj

ec
t A

Cross
validation

Release
validation
(thick slice)

Validation Strategy

Train Data

Test Data

Data Pre-
Processing

Learner

SMOTE

Defect
Prediction
Model

PerformanceDefect Prediction

GitHub

Commit_Guru

DE

Fig. 3   Framework for this analysis

Page 19 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

An alternative to cross-validation is a release-based approach such as the one used
by Rahman et al. Here; given R releases of the software, we divide all the data into R
parts. Then we trained on data from release 1 to R − 3 , then tested on release R − 2 ,
R − 1 , and R. This temporal approach has the advantage that the future data never
appears in the training data.

3.5 � Evaluation criteria

In this section, we introduce the following 6 evaluation measures used in this study to
evaluate the performance of machine learning models. Based on the results of the defect
predictor, humans read the code in order of what the learner says is most defective. Dur-
ing that process, they find true negative, false negative, false positive, and true positive
(labeled TN, FN, FP, TP, respectively) reports from the learner.

Recall: This is the proportion of inspected defective changes among all the actual
defective changes; i.e., TP/(TP+FN). Recall is used in many previous studies (Kamei
et al. 2012; Tu and Nair 2018; Yang et al. 2016, 2017; Xia et al. 2016; Yang et al. 2015).
When recall is maximal, we are finding all the target class items. Hence we say that
larger recalls are better.

Precision: This is the proportion of inspected defective changes among all the
inspected changes; i.e., TP/(TP+FP). When precision is maximal, all the reports of
defect modules are actually buggy (so the users waste no time looking at results that do
not matter to them). Hence we say that larger precision is better.

Pf: This is the proportion of all suggested defective changes that are not actual defec-
tive changes divided by everything that is not actually defective; i.e., FP/(FP+TN). A
high pf suggests developers will be inspecting code that is not buggy. Hence we say that
smaller false alarms are better.

Popt20: A good defect predictor lets programmers find the most bugs after read-
ing the least amount of code (Arisholm and Briand 2006). Popt20 models that crite-
ria. First, we divide the test data into (a) those that are predicted to be defective and
(b) those that are not. Second, we sorted the sets (a,b) on LOC. Third, we returned the
test in the order sorted (a) followed by sorted (b). Within that sort, we then report the
percent of actual bugs found by inspecting the first 20% of the code (measured in terms
of LOC). We say that larger Popt20 values are better.

IFA: Parnin and Orso (2011) warn that developers will ignore the suggestions
of static code analysis tools if those tools offer too many false alarms before report-
ing something of interest. Other researchers echo that concern (Parnin and Orso 2011;
Kochhar et al. 2016; Xia et al. 2016). IFA counts the number of initial false alarms
encountered before we find the first defect. We say that smaller IFA values are better.

AUC_ROC: This is the area under the curve for receiver operating characteristic.
This is designated by a curve between true positive and false positive rates and created
by varying the thresholds for defects between 0 and 1. This creates a curve between
(0,0) and (1,1), where a model with random guess will yield a value of 0.5 by connect-
ing (0,0) and (1,1) with a straight line. A model with better performance will yield a
higher value with a more convex curve in the upper left part. Hence we say that larger
AUC values are better.

60 Page 20 of 42 Empirical Software Engineering (2022) 27: 60

1 3

3.6 � Statistical tests

When comparing the results of different models in this study, we used a statistical signifi-
cance test and an effect size test:

–	 Significance test is useful for detecting if two populations differ merely by random
noise.

–	 Effect sizes are useful for checking that two populations differ by more than just a
trivial amount.

For the significance test, we use the Scott-Knott procedure recommended at
TSE’13 (Mittas and Angelis 2013) and ICSE’15 (Ghotra et al. 2015). This technique
recursively bi-clusters a sorted set of numbers. If any two clusters are statistically indis-
tinguishable, Scott-Knott reports them both as belonging to the same “rank”.

To generate these ranks, Scott-Knott first looks for a break in the sequence that maxi-
mizes the expected values in the difference in the means before and after the break.
More specifically, it splits l values into sub-lists m and n to maximize the expected value
of differences in the observed performances before and after divisions. e.g.,, list l, m and
n of size ls, ms and, ns where l = m ∪ n , Scott-Knott divides the sequence at the break
that maximizes:

Scott-Knott then applies some statistical hypothesis test H to check if m and n are sig-
nificantly different. If so, Scott-Knott then recurses on each division. For this study, our
hypothesis test H was a conjunction of the A12 effect size test (endorsed by Arcuri and
Briand (2011)) and non-parametric bootstrap sampling (Efron and Tibshirani 1994), i.e.,
our Scott-Knott divided the data if both bootstrapping and an effect size test agreed that the
division was statistically significant (90% confidence) and not a “small” effect ( A12 ≥ 0.6).

4 � Results

To answer this question, we use Figs. 4, 5, 6, and 7 to compares Recall, Pf, AUC,
Popt20, Precision, and IFA across four different learners using process, product, and
combined metrics. In those figures, the metrics are marked as P (process metrics), C
(product metrics), and combined (P+C). Figures 4, 5, and 6 represents the cross-valida-
tion results, while Fig. 7 represent the release-based results.

For this research question, the key thing to watch in these figures is the vertical
colored box plots. The box plots were generated using results from all 700 Github pro-
jects, where each data point for a project is the (a) median result from 5-fold cross-vali-
dation repeated 5 times for Figs. 4, 5, 6, and (b) median result from 3 release for Fig. 7.
These horizontal lines running across their middle show the median performance of a

(1)E(�) =
ms

ls
× abs(m.� − l.�)2 +

ns

ls
× abs(n.� − l.�)2

Page 21 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

learner across 700 Github projects. As we said above in Section 3.5, the best learners
are those that maximize recall, precision, AUC, Popt20 while minimizing IFA and false
alarms.

Reading the median line in the box plots, we say that compared to the Rahman et al.
analytics in-the-small study, this analytics in-the-large study says some things are the
same and some things are different. Like Rahman et al., these results show clear evi-
dence of the superiority of process metrics since, except for Popt20 (no significant dif-
ference across process, product, and process+product metrics) across all learners, the
median process results from process metrics are clearly always better. That is to say,
returning to our introduction, this study strongly endorses the Hersleb hypothesis that

Support Vector MachineLogistic RegressionRandom Forest Naive Bayes

P
f

R
ec

al
l

Fig. 4   Cross-validation recall and false alarm results for Process(P), Product(C) and, Combined (P+C)
metrics. The vertical box plots in these charts run from min to max while the thick boxes highlight the
25,50,75th percentile. Each box plot is built using 700 Github projects, where each data point is the(a)
median result from 5-fold cross-validation repeated 5 times

60 Page 22 of 42 Empirical Software Engineering (2022) 27: 60

1 3

how we build software is a major determiner of how many bugs we inject into that
software.

As to where we differ from the prior analytics in-the-small study, Random Forest with
process metrics is statistically significantly better (achieving different statistical rank
in Scott-Knott test) than any learner in all performance measure, other than Popt20 and
IFA. In the case of Popt20 and IFA, all learners achieve the same statistical ranking from
the Scott-Knott test. With these results we need to keep in mind, the Logistic Regression,
Naive Bayes, and Support Vector Machine were tuned using hyper-parameter optimization,
while the result for Random Forest was using default parameters. Thus the hyper-parameter
tuned Logistic Regression and Support Vector Machine models were much costlier to build
(256 hours for hyper-parameter tuned Support Vector Machine for vs 10 hours for default
Random Forest). So, unlike the Rahman et al. analytics in-the-small study, we would argue
that it is very important which learner is used to for analytics in-the-large. Certain learning
in widespread use such as Naive Bayes, Logistic Regression, and Support Vector Machines

Random Forest Logistic Regression Naive Bayes Support Vector Machine
A

U
C

Po
pt

20

Fig. 5   Cross-validation AUC and Popt20 results for Process(P), Product(C), and Combined (P+C) metrics.
Same format as Fig. 4

Page 23 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

may not be the best choice for reasoning from hundreds of software projects. Rather, we
would recommend the use of Random Forests.

We also performed a small experiment to see if certain metrics only capture certain
defects as part of this study. We analyzed the defects that are only captured by process
metrics vs the defects that are only captured by product metrics. Looking into our results,
we see that:

–	 Process metrics capture nearly all the defects; evidence: see the very high recall scores
for Random Forest process metrics in Fig. 4.

–	 As to product metrics, they tended to miss many defects; observe how, for all learners
in Fig. 4, the product metrics recall are much lower than than the process metrics. For
example. in the case of Random Forests, we found that the product metrics missed 48%
of the defects found by process metrics,

Naive Bayes Support Vector MachineLogistic RegressionRandom Forest

P
re

ci
si

o
n

IF
A

Fig. 6   Cross-validation IFA and precision results for Process(P), Product(C), and Combined (P+C) metrics.
Same format as Fig. 4

60 Page 24 of 42 Empirical Software Engineering (2022) 27: 60

1 3

On the other hand, there are indeed a small number of defects captured by product met-
rics and not process metrics. But this case is definitely in the minority (less than 1% in all
our studies). Hence we say that process metrics are superior at finding nearly all types of
defects in a software system, while product metrics are not able to do that.

Before going on, we comment on certain other aspects of these results:

–	 We see no evidence of any added value of combining process and product metrics. If
we compare the (P+C) results to the (P) results, there is no case in Figs. 4, 5, and 6
where process + product (P+C) metrics do better than just using process (P) metrics.

–	 Similar to Kamei et al. in the case of effort-aware evaluation criteria process metrics
are superior to product metrics, as can be seen in Fig. 6. Note in that figure, many of
our learners using process metrics have near-zero IFA scores. This is to say that, using
process metrics, programmers will not be bombarded with numerous false alarms. But

0.2

0.0

0.6

0.8

1.0

0.4

Fig. 7   Release based results for Random Forests. Here the training data was till t-3 th release and the rest
was test release

Page 25 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

unlike Kamei et al., we do not see any significant benefit when accessing the perfor-
mance in regards to the Popt20, which is another effort-aware evaluation criteria used
by Kamei et al. and this study.

–	 Figure 7 shows the Random Forest results using release-based test sets. As stated in
Section 3.5 above, there is very little difference in the results between release-based
test generation and the cross-validation method o Figs. 4 and 5, and 6. Specifically, in
both our cross-val and release-based results, (a) process metrics do best; (b) there is no
observed benefit in adding in product metrics and, when using process metrics then ran-
dom forests have (c) very high precision and recall and AUC, (d) low false alarms; and
(e) very low IFA.

To answer this research question, we assess our learners not by their median perfor-
mance but by their variability.

Rahman et al. commented that many different learners might be used for defect predic-
tion since, for the most part, they often give the same results. While that certainly holds
for their analytics in-the-small case study, the situation is very different when reasoning
at-scale about 700 projects. Looking at the process metrics results for Figs. 4 and 5 and 6,
we see that -

1.	 The performance for Random Forests is statistically significantly better in case all per-
formance measures, other than Popt20 and IFA.

2.	 The box plots for Random Forests are much smaller than for other learners in the case of
precision, recall, and AUC. That is, the variance in the predictive performance is much
smaller for Random Forest than for anything else in this study.

3.	 These results for Random Forests are without hyper-parameter optimization, while other
learners are optimized with hyper-parameter optimization. This makes the model build-
ing for Random Forest orders of magnitude faster.

The size of both these effects is quite marked. Random Forest is usually better (median)
than Logistic Regression. As to the variance, the Random Forest variance is smaller than
the other learners.

Why is Random Forest doing so well? We conjecture that when reasoning about 700
projects that there are many spurious effects. Since Random Forests make their conclusions
by reasoning across multiple models, this kind of learner can avoid being confused. Hence,
we recommend ensemble methods like Random Forest for analytics in-the-large.

In this research question, we try to evaluate if the granularity of the metrics mat-
ters when predicting for defects when measuring at scale. This is one of the research
questions asked in study by Kamei et al.. Here we try to measure if package-level

60 Page 26 of 42 Empirical Software Engineering (2022) 27: 60

1 3

prediction better identifies defective packages than file-level prediction. There are
multiple strategies for creating package-level metrics such as lifting file-level met-
rics to package-level, collecting metrics designed for package-level, and lifting file-
level prediction results for package-level as explored by Kamei et al. in their study.
We explore the first strategy that is to lift the file-level metrics to package-level. We
select this strategy as Kamei et al. in their paper has shown the metrics designed for
package-level does not produce good results and both file and result lift ups have
similar performance and have been explored by many other researchers. To build a
defect predictor using package-level data, we use the process metrics collected for our
tasks. For each commit/release, if there are multiple files from the same package, we
aggregate them to their package-level by taking the median values.

Figure 8 shows the difference in performance between file-level prediction
results and package-level prediction results. It is evident from the results, that
file-level prediction shows statistically significant improvement than package-
level prediction, with an exception in the case of Popt20. This result agrees with
Kamei et al., and we conclude that the granularity of the metrics set does mat-
ter and file-level level prediction has superior performance than package-level
prediction.

To answer this research question, we first tag each commit into a release by using
the release information from Github. Using this release information, we divide the data
into train and test data using the last 3 releases as test releases one by one and other
older releases as training data. If a model build using either process and product data
significantly differ across last 3 releases, that would imply the model built using that
set of metrics will need to be rebuilt for each subsequent release, this in-tern will create
instability. To verify the stability of the models built using metrics, we build the models
using the training data and then check each of the 3 subsequent releases in term of the
evaluation criteria used in this study. We compare both process and product metrics
across all 6 criteria mentioned in Section 3.5.

Figure 9 shows the performance of the models. The first row of the figure represents
the process metrics, while the second row represents the product metrics. Each column
represents the evaluation criteria that we are measuring and inside each plot, each box
plot represents one of the last 3 releases. We applied Scott-Knott statistical test on the
results to check for each evaluation criteria if any of the releases are statistically sig-
nificantly different than the others. The results show no significant difference between 3
releases in all evaluation criteria (all releases for each evaluation criteria in each metric
type) except Popt20. Popt20 is an effort-aware criterion as explained in Section 3.5, and
we see in both process-based and product-based models the Popt20 does significantly
better in the third release. Which may be because third release have more smaller pre-
dicted defective files than two releases. If that is the case, based on how Popt20 is calcu-
lated it can explain the increase in Popt20 score. That being said, the result shows none
of the models build using process and product metrics degrades over time, thus reducing
the instability of the models. We can also say, as over time, the performance does not

Page 27 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

degrade and we have already seen in terms of performance process metrics performs
much better than product metrics, it is wiser to use process metrics in predicting defects.

In this research question, we try to find the reason behind the difference in perfor-
mance in models built using process and product data. Most models try to learn how to
differentiate between two classes by learning the pattern in the training data and tries to
identify similar patterns in the test data to predict for defects. Throughout the life cycle
of a project, different parts of the project are updated and changed as part of regular

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8   File vs package-level prediction for models built using file-level process data and package-level pro-
cess data

60 Page 28 of 42 Empirical Software Engineering (2022) 27: 60

1 3

enhancements. This results in introduction of bugs and thus bug fixes for those defective
changes. The metrics that we use to create the defect prediction models should be able
to reflect those changes, so the model is able to identify the difference between defective
and non-defective changes. This means if either process or product metrics can capture
such differences, then the metric values for a file between release R and R + 1 would not
be highly correlated, and models built with such metrics will be able to better differenti-
ating defective and non-defective change.

To measure the stasis of the metrics, we used Spearman correlation for every file
between two consecutive releases (to check releases-based prediction) and two consecutive
commits where the file was changed (to check for JIT-based predictions). Here the metrics
for each file for a release are calculated from the last time the file was changed before the
release. Thus for comparing between release R and R + 1 for a file, we select the commit
the file was changed last both for release R and R + 1 and compute the Spearman correla-
tion between them. Figure 10 shows the Spearman correlation values for every file between
two consecutive releases/commits for all the projects explored as a violin plot for each type
of metric. A wide and short violin plot represents the majority of the value concentrated
near a certain value. In contrast, a thin and long violin plot represents values being in a dif-
ferent range. Figure 10 shows the correlation scores for process and product metrics in both
release-based and JIT-based settings. The process and product metrics in release-based set-
tings are denoted by P_R and C_R respectively, while in JIT-based setting they are denoted
by P_J and C_J respectively. In the figure, the P_P_J represents the package-level process
metrics in JIT-based setting. We can see from Fig. 10, the product metrics form a wide
and short violin plot and are very highly correlated. While the process metrics form a thin
and long violin plot ranging between 0.2 to 1 for release-based setting and 0.5 to 1 for JIT-
based setting. If we compare the correlations between release-based and JIT-based metric
sets, we see the correlation value for process metrics increases in JIT-based metric sets.
The reason behind this increase in correlation value can be explained as in JIT-based met-
rics, we compare between commits. Here the amount of the change in file is less than the
change when measured between two releases (here each release contains multiple com-
mits). Similarly, when the process metrics has been lifted from file-level to package-level,
the correlation increases.

So why process metrics outperform product metrics? We think the stasis property of
the metric set is one of the main reasons as product metrics seems to be more static, thus
changing very little with time and between defective files and non-defective files. When
models are created with such static metric sets, it is hard for the model to learn a pat-
tern and differentiate between defective and non-defective changes. While process metrics
change over time and much less correlated between changes, thus making them a poten-
tially better metric for creating defect prediction models.

In this research question, we try to measure the stagnation property of the models built
using the process and product metrics. As suggested by Rahman et al., we use Spear-
man rank correlation between the learned probability from the training set and predicted
probability from the test set to calculate the correlation between these two. To learn the
learned probability and predicted probability, we use the defect-proneness from the learner

Page 29 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

(Random Forest in this research question) across all pairs of training-test releases. For each
pair of training-test releases, if a file has been committed multiple times during a release,
we consider the file instance that was changed last. Here a high correlation between the
learned and predicted probability, which will indicate the models are probably learning
to predict the same set of files defective. It is finding the same probabilities in the test
set as training set and thus, it is not able to properly differentiate between defective and
non-defective files. Figure 11 shows a box plot of Spearman rank correlation between the
learned and predicted probability for models built using process and product metrics on
700 projects used as part of this study. We can see that, a model built using product data
has significantly higher correlation than a model built using process data. Although this
value is slightly lower, both in the case of process and product metrics than what Rahman
et al. reported in their project, the results signify the models built with product metrics are
significantly more stagnant than the models built using process metrics.

Here we try to verify the stagnation property of the metrics as seen in the previous

research question. If a model is stagnant, it will predict the same file as defective regard-
less of whether the file actually contains defects or not. To evaluate whether or not model
built on process and product data is predicting the same files as defective, we follow the
same approach suggested by Rahman et al. For each training test pairs, if there are multiple
instances of the same file in a release, we select the last instance when it was changed for
both training and test data. We then divide the test data into 3 parts (a) part 1 only contains
files that are defective in both training and test set, we call this recurrent set (b) part 2 con-
sists of files that are defective in the training set but not in the test set, this is train only set
and finally (c) part 3 only contains files that are defective in the test and not in the training
set, we call this test only set. A model, if stagnant, will have a high recall for recurrent set,
high pf for train only set, low recall for test only set and that will show the model is actu-
ally predicting the same set of files as defective and not able to identify new defective files.
Figure 12 shows the recall and pf of the models build using process and product metrics on
all 3 types of test sets. We can see from the figure that models built using either process or
product metrics can identify recurrently defective files in case of recurrent set. However,
we can see a significant difference between process and product metrics, where process
metrics is doing much better in recognizing recurrently defective files. In case of train only
test set, we can see very high pf (median value ≈ 0.8 ) for model build using product data,
while the model built using process data has a low pf (median value ≈ 0.0 ). This is a clear

Fig. 9   Stability of the models across the last 3 releases built using process (P) and product (C) metrics.
Each plot shows one of the six performance criteria used in this study for the last 3 releases. The first row
shows the results for the process metrics denoted as Metric Type = P and the second row shows the results
for product metrics denoted as Metric Type = C 

▸

60 Page 30 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Recall PfPrecision

M
etric T

y
p
e =

 P
M

etric T
y
p
e =

 C

AUC Popt_20 IFA

0.1

0.2

0.4

0.6

0.8

1.0

1.0

0.8

0.6

0.4

0.2

0.1

Page 31 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

Fig. 10   The plot represents the Spearman correlation of every file between two consecutive checkpoints.
Here x-axis label P_R and C_R represents the process and product metrics when the correlation was cal-
culated in release level. While the P_J, C_J, and P_P_J represent the process, product, and package-level
process metrics when calculated in JIT-based setting

Fig. 11   The plot represents the
Spearman correlation between
probabilities of defect-proneness
across all pairs of training-test
releases

60 Page 32 of 42 Empirical Software Engineering (2022) 27: 60

1 3

indication that model built using product metrics is stagnant and identifies the same set of
files as defective regardless of whether they are actually defective or not. While the test
only set shows a very low recall for model built using product data, while high recall for
model built using process data. This indicates model built using product data is unable to
identify new defects. Thus this result bolsters the claim that process metrics are better at
identifying defects than product metrics.

To answer this question, we test if what is learned from studying some projects is the
same as what might be learned from studying all 700 projects. That is, we compare the
rankings given to process metrics using all the projects (analytics in-the-large) to the rank-
ings that might have been learned from analytics in-the-small projects looking at 5 projects
(where those projects were selected at random).

Figure 13 shows the metric importance of metrics in the combined (process + prod-
uct) data set. This metric importance is generated according to what metrics are important
while building and making predictions in Random Forest. The metric importance returned
by Random Forest is calculated using a method implemented in Scikit-Learn. Specifically:
how much each metric decreases the weighted impurity in a tree. This impurity reduction
is then averaged across the forest and the metrics are ranked. In Fig. 13 the metric impor-
tance increases from left to right. That is, in terms of defect prediction, the most important

Fig. 12   Performance of the
models build using process and
product metrics on recurrent,
train only and test only test sets

Page 33 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

metric is the average number of developers in co-committed files (avg_nadev) and the least
important metric is the number of directories (nd).

In that figure, the process metrics are marked with two blue asterisks**. Note that nearly
all of them appear on the top. That is, in a result consistent with Rahman et al., process
metrics are far more important than process metrics.

Figure 14 compares the process metrics rankings learned from analytics in-the-large
(i.e., from 700 projects) versus a simulation of an in-the-small study that looks at five
projects selected at random. In the figure, the X-axis ranks metrics via analytics in-the-
large (using Random Forests applied to 700 projects), and Y-axis ranks process metrics
using analytics in-the-small (using Random Forests applied to randomly select 5 pro-
jects). For both x and Y-axis rankings, the metrics were sorted by the metric importance
returned by the Random Forest Classifier.

In an ideal scenario, when the ranks are the same, this would appear in Fig. 14 as a
straight line at a 45-degree angle, running through the origin. To say the least, this not
what is observed here. We would summarize Fig. 14 as follows: the importance given
to metrics by a few analytics in-the-small studies is very different from the importance
learned via analytics in-the-large.

5 � Threats to validity

As with any large scale empirical study, biases can affect the final results. Therefore, any
conclusions made from this work must be considered with the following issues in mind:

(a)	 Evaluation Bias: In all research questions in this study, we have shown the performance
of models built with process, product and, process+product metrics and compared
them using statistical tests on their performance to conclude which is better and more
generalizable predictor for defects. While those results are true, that conclusion is
scoped by the evaluation metrics we used to write this paper. It is possible that using
other measurements, there may be a difference in these different kinds of projects (e.g.,
G-score, harmonic mean of recall, and false-alarm reported in Tu et al. (2020)). This
is a matter that needs to be explored in future research.

(b)	 Construct Validity: At various places in this report, we made engineering decisions
about (e.g.,) choice of machine learning models, selecting metric vectors for each
project. While those decisions were made using advice from the literature, we acknowl-
edge that other constructs might lead to different conclusions.

(c)	 External Validity: For this study, we have collected data from 700 Github Java projects.
The product metrics collected for each project were done using a commercialized tool
called “Understand” and the process metrics were collected using our own code on top
of Commit_Guru repository. There is a possibility that calculation of metrics or labe-
ling of defective vs non-defective using other tools or methods may result in different
outcomes. That said, the “Understand” is a commercialized tool with detailed docu-
mentation about the metrics calculations. We have shared our scripts and processes to
convert the metrics to a usable format and has described the approach to label defects.

(d)	 Sampling Bias: Our conclusions are based on the 700 projects collected from Github. It
is possible that different initial projects would have lead to different conclusions. That
said, this sample is very large, so we have some confidence that this sample represents
an interesting range of projects.

60 Page 34 of 42 Empirical Software Engineering (2022) 27: 60

1 3

(e)	 Selection Bias: Our comparison between process, product and, process+product met-
rics are based on metrics used in prior work (Rahman and Devanbu (2013); Kamei
et al. (2010)). It is certainly true that other metrics might be more important than those
explored here. For future work, we strongly recommend exploring a wider range of
metrics; e.g., such as those suggested by other researchers (Radjenović et al. 2013;
Pascarella et al. 2020; Li et al. 2018).

Fig. 13   Metric importance of process+product combined metrics based on Random Forest. Process metrics
are marked with two blue asterisks**. Blue denotes the median importance in 700 projects while the pink
region shows the (75-25)th percentile

Page 35 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

6 � Conclusion and discussion

Much prior work in software analytics has focused on in-the-small studies that used a few
dozen projects or less. Here we checked what happens when we take specific conclusions
generated from analytics in-the-small, then review those conclusions using analytics in-
the-large. While some conclusions remain the same (e.g., process metrics generate better
predictors than product metrics for defects), other conclusions change (e.g., learning meth-
ods like logistic regression that work well in-the-small perform comparatively much worse
when applied in-the-large).

We find here that issues that may not seem critical in-the-small become significant prob-
lems in-the-large. For example:

–	 Recalling Fig. 14, we can say that what seems to be an important metric, in-the-small,
can prove to be very unimportant when we start reasoning in-the-large.

–	 Further, when reasoning in-the-large, variability in predictions becomes a concern.

Fig. 14   X-axis ranks metrics via analytics in-the-large (using Random Forests applied to 700 projects).
Y-axis ranks process metrics using analytics in-the-small (using Random Forests selected from random
sample of 5 projects)

60 Page 36 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Thus when researchers or industry practitioners attempt to:

–	 Generate guidelines or best practices to either train new researchers or developers;
–	 Create tools for quality measurements, guide developers to follow best practices or

helping developers or researchers in other ways;
–	 Study data to find general defect-related trends/properties of open-source projects;

then it is better to use findings from in-the-large analysis. The reason being, if the lessons
learned change from project to project, it will be very hard to generate guidelines or create
tools that are stable enough for an organization. This is an issue since:

–	 If the guidelines or tools are not stable, then developers or researchers will lose trust in
those tools.

–	 Also, when trying to find general trends in software projects, trends found from an in-
the-small study might change when the selected projects are changed and thus, those
will not be general trends but project specific trends.

–	 We found that certain systems issues seem unimportant in-the-small. However, when
scaling up to in-the-large, it becomes a critical issue that product metrics are an order
of magnitude to harder to manage. We listed one case study above where the systems
requirements needed for product metrics meant that, very nearly, we almost did not
deliver scientific research in a timely manner.

Based on this experience, we say:

–	 Industrial practitioners should make use of in-the-large findings or re-validate in-the-
small findings with in-the-large analysis before applying them to organizational level
either to create guidelines or to make tools.

–	 Analysts performing analytics in-the-large should use process metrics and ensemble
methods like random forests since they can better handle the kind of large scale spuri-
ous singles seen while reasoning effectively over hundreds of projects.

–	 SE researchers must now:

–	 Revisit many of the conclusions previously obtained via analytics in-the-small to
find if those findings still hold true for in-the-large analysis.

–	 Perform in-the-large analysis when trying to find general trends in software projects
in their research.

More generally, what is this work saying about the notions/need/benefits of quantitative
versus qualitative in defect-related research in-the-large? Quantitative studies can scale
to a very large number of projects (as shown by this study), while qualitative studies can
find specific, nuanced features that are specific to that small set of projects (evidence, see
Fig. 14). However, it would be wrong to use this study to say (e.g.,) “stop qualitative stud-
ies” since, in our experience, more can be achieved by combining the two approaches (than
just mono-focusing on just qualitative or quantitative).

For example, previously, with Chen and Stolee et al. (2019), we have argued for a mar-
riage of qualitative and quantitative methods to effectively reduce the effort associated
with the partial replication and enhancement of qualitative studies. In the case study of
that paper (Chen et al. 2019), a qualitative study explored factors influencing the fate of
GitHub pull requests using extensive qualitative analysis of 20 pull requests. Guided by
their findings, we mapped some of their qualitative insights onto quantitative questions. To

Page 37 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

determine how well their findings generalize, we collected much more data (ten times as
many additional pull requests from hundreds of GitHub projects). This combined approach
resulted in a new predictor for whether code would be merged. That predictor was far more
accurate than one built from the study’s qualitative factors (F1=90 vs 68%), illustrating the
value of a mixed-methods approach and replication to improve prior results. We conjecture
that that case study is representative of an underlying methodology for scaling and extend-
ing primary qualitative studies that require expert opinions.

Hence, we argue that one future direction for this research could be to encourage more
studies that replicate parts of primary qualitative studies using quantitative methods (since
these scale to a large number of projects). Further, we should not stop there. The insights
gained from this combined qualitative/quantitative approach could be used to design
insightful subsequent studies.

Acknowledgements  This work was partially funded by NSF Grant #1908762.

References

Agrawal A, Menzies T (2018) Is better data better than better data miners?: on the benefits of tuning smote
for defect prediction. In: IST. ACM

Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? and how to fix it using search-
based software engineering. Information and Software Technology 98:74–88

Agrawal A, Menzies T (2017) Better data is better than better data miners (benefits of tuning SMOTE for
defect prediction). arXiv:1705.03697

Agrawal A, Rahman A, Krishna R, Sobran A, Menzies T (2018) We don’t need another hero? the impact
of heroes on software development. In: Proceedings of the 40th international conference on software
engineering: software engineering in practice. pp 245–253

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in
software engineering. In: 2011 33rd international conference on software engineering (ICSE). IEEE,
pp 1–10

Arisholm E, Briand LC (2006) Predicting fault-prone components in a java legacy system. In: ESEM. ACM
Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of methods

to build and evaluate fault prediction models. Journal of Systems and Software 83(1):2–17
Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.

IEEE Transactions on Software Engineering 22(10):751–761
Bird C, Nagappan N, Gall H, Murphy B, Devanbu P (2009) Putting it all together: Using socio-technical

networks to predict failures. In: ISSRE
Bird C, Nagappan N, Devanbu P, Gall H, Murphy B (2009) Does distributed development affect software

quality? an empirical case study of windows vista. In: 2009 IEEE 31st international conference on
software engineering. IEEE, pp 518–528

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code! examining the effects of
ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. pp 4–14

Briand LC, Brasili VR, Hetmanski CJ (1993) Developing interpretable models with optimized set reduc-
tion for identifying high-risk software components. IEEE Transactions on Software Engineering
19(11):1028–1044

Cao Y, Ding Z, Xue F, Rong X (2018) An improved twin support vector machine based on multi-objec-
tive cuckoo search for software defect prediction. International Journal of Bio-Inspired Computation
11(4):282–291

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling tech-
nique. Journal of Artificial Intelligence Research 16:321–357

Chen D, Fu W, Krishna R, Menzies T (2018) Applications of psychological science for actionable analytics.
FSE’19

Chen D, Stolee KT, Menzies T (2019) Replication can improve prior results: A github study of pull request
acceptance. In: Proceedings of the 27th international conference on program comprehension, ICPC
’19. IEEE Press, pp 179–190

60 Page 38 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Choudhary GR, Kumar S, Kumar K, Mishra A, Catal C (2018) Empirical analysis of change metrics for
software fault prediction. Computers & Electrical Engineering 67:15–24

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: 2010
7th IEEE working conference on mining software repositories (MSR 2010). IEEE, pp 31–41

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Mono Stat Appl Probab, London
Fenton NE, Neil M (2000) Software metrics: roadmap. In: Proceedings of the conference on the future of

software engineering. pp 357–370
Fu W, Menzies T, Shen X (2016) Tuning for software analytics: Is it really necessary? Information and Soft-

ware Technology 76:135–146
Gao K, Khoshgoftaar TM, Wang H, Seliya N (2011) Choosing software metrics for defect prediction: an

investigation on feature selection techniques. Software: Practice and Experience 41(5):579–606
Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-

mance of defect prediction models. In: 2015 37th ICSE
Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the impact of classification techniques on the perfor-

mance of defect prediction models. In: 37th ICSE, vol 1. IEEE Press, pp 789–800
Giger E, D’Ambros M, Pinzger M, Gall HC (2012) Method-level bug prediction. In: Proceedings of the

2012 ACM-IEEE international symposium on empirical software engineering and measurement.
IEEE, pp 171–180

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change history. TSE
He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the feasibility of cross-project defect pre-

diction. Automated Software Engineering 19(2):167–199
Herbsleb J (2014) Socio-technical coordination (keynote). I: Companion Proceedings of the 36th inter-

national conference on software engineering, ICSE Companion 2014. Association for Computing
Machinery, New York, NY, USA, p 1

Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: A holistic look at effort-aware just-in-
time defect prediction. In: 2017 IEEE international conference on software maintenance and evolu-
tion (ICSME). IEEE, pp 159–170

Ibrahim DR, Ghnemat R, Hudaib A (2017) Software defect prediction using feature selection and random
forest algorithm. In: 2017 International conference on new trends in computing sciences (ICTCS).
IEEE, pp 252–257

Jacob SG, et al. (2015) Improved random forest algorithm for software defect prediction through data min-
ing techniques. Int J Comput Appl 117(23)

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils
of mining github. In: Proceedings of the 11th working conference on mining software repositories,
MSR 2014. ACM, New York, NY, USA, pp 92–101

Kamei Y, Matsumoto S, Monden A, Matsumoto K, Adams B, Hassan AE (2010) Revisiting common bug
prediction findings using effort-aware models. In: 2010 IEEE international conference on software
maintenance. pp 1–10

Kamei Y, Matsumoto S, Monden A, Matsumoto K-I, Adams B, Hassan AE (2010) Revisiting common bug
prediction findings using effort-aware models. In: 2010 IEEE International Conference on Software
Maintenance. IEEE, pp 1–10

Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto K-I (2007) The effects of over and under
sampling on fault-prone module detection. In: First international symposium on empirical software
engineering and measurement (ESEM 2007). IEEE, pp 196–204

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical
study of just-in-time quality assurance. IEEE Transactions on Software Engineering 39(6):757–773

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on automated fault localization. In: Pro-
ceedings of the 25th international symposium on software testing and analysis. ACM, pp 165–176

Kondo M, German DM, Mizuno O, Choi E-H (2020) The impact of context metrics on just-in-time defect
prediction. Empirical Software Engineering 25(1):890–939

Krishna R, Menzies T (2018) Bellwethers: A baseline method for transfer learning. IEEE Trans Softw Eng
Li Z, Jing X-Y, Zhu X (2018) Progress on approaches to software defect prediction. IET Software

12(3):161–175
Lumpe M, Vasa R, Menzies T, Rush R, Turhan B (2012) Learning better inspection optimization policies.

International Journal of Software Engineering and Knowledge Engineering 22(5):621–644
Madeyski L (2006) Is external code quality correlated with programming experience or feelgood factor?

In: International conference on extreme programming and agile processes in software engineering.
Springer, pp 65–74

Madeyski L, Jureczko M (2015) Which process metrics can significantly improve defect prediction models?
an empirical study. Software Quality Journal 23(3):393–422

Page 39 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

Mathew G, Agrawal A, Menzies T (2017) Trends in topics at se conferences (1993-2013). In: 2017 IEEE/
ACM 39th international conference on software engineering companion (ICSE-C). IEEE, pp 397–398

Matsumoto S, Kamei Y, Monden A, Matsumoto K, Nakamura M (2010) An analysis of developer metrics
for fault prediction. In: 6th PROMISE

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. TSE
Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code fea-

tures: Current results, limitations, new approaches. ASE
Menzies T, Greenwald J, Frank A (2006) Data mining static code attributes to learn defect predictors. IEEE

Transactions on Software Engineering 33(1):2–13
Menzies T, Majumder S, Balaji N, Brey K, Fu W (2018) 500+ times faster than deep learning:(a case study

exploring faster methods for text mining stackoverflow). In: 2018 IEEE/ACM 15th international con-
ference on mining software repositories (MSR). IEEE, pp 554–563

Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y (2008) Implications of ceiling effects in defect
predictors. In: Proceedings of the 4th international workshop on Predictor models in software engi-
neering. ACM, pp 47–54

Mittas N, Angelis L (2013) Ranking and clustering software cost estimation models through a multiple
comparisons algorithm. IEEE Transactions on Software Engineering 39(4):537–551

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings of the 30th international conference on software
engineering, ICSE ’08. Association for Computing Machinery, New York, NY, USA, pp 181–190

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings of the 30th International conference on software
engineering. ACM, pp 181–190

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engineered software projects.
Empirical Software Engineering 22(6):3219–3253

Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field failures: An
empirical case study. In: First international symposium on empirical software engineering and meas-
urement (ESEM 2007). IEEE, pp 364–373

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: Proceedings of the
28th international conference on software engineering. ACM, pp 452–461

Nagappan N, Zeller A, Zimmermann T, Herzig K, Murphy B (2010) Change bursts as defect predictors. In:
2010 IEEE 21st international symposium on software reliability engineering. IEEE, pp 309–318

Nam J, Fu W, Kim S, Menzies T, Tan L (2018) Heterogeneous defect prediction. IEEE TSE
Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: 2013 35th international conference on software

engineering (ICSE). IEEE, pp 382–391
Nayrolles M, Hamou-Lhadj A (2018) Clever: combining code metrics with clone detection for just-in-time

fault prevention and resolution in large industrial projects. In: Proceedings of the 15th international
conference on mining software repositories. pp 153–164

Onan A, Korukoğlu S, Bulut H (2016) A multiobjective weighted voting ensemble classifier based on differ-
ential evolution algorithm for text sentiment classification. Expert Systems with Applications 62:1–16

Ostrand TJ, Weyuker EJ, Bell RM (2004) Where the bugs are. In: ISSTA ’04: Proceedings of the 2004
ACM SIGSOFT international symposium on Software testing and analysis. ACM, New York, NY,
USA, pp 86–96

Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE
Transactions on Neural Networks 22(2):199–210

Parnin C, Orso A (2011) Are automated debugging techniques actually helping programmers? In: Proceed-
ings of the 2011 international symposium on software testing and analysis. ACM, pp 199–209

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time defect prediction. Journal of Systems
and Software 150:22–36

Pascarella L, Palomba F, Bacchelli A (2020) On the performance of method-level bug prediction: A nega-
tive result. Journal of Systems and Software 161:110493

Radjenović D, Heričko M, Torkar R, Živkovič A (2013) Software fault prediction metrics: A systematic
literature review. Information and Software Technology 55(8):1397–1418

Rahman F, Devanbu P (2011) Ownership, experience and defects: a fine-grained study of authorship. In:
Proceedings of the 33rd international conference on software engineering. pp 491–500

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: Proceedings of the 2013 interna-
tional conference on software engineering. IEEE Press, pp 432–441

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: 2013 35th international confer-
ence on software engineering (ICSE). IEEE, pp 432–441

60 Page 40 of 42 Empirical Software Engineering (2022) 27: 60

1 3

Rahman F, Khatri S, Barr ET, Devanbu P (2014a) Comparing static bug finders and statistical prediction.
In: Proceedings of the 36th international conference on software engineering, ICSE 2014. Associa-
tion for Computing Machinery, New York, NY, USA, pp 424–434

Rahman F, Khatri S, Barr ET, Devanbu P (2014b) Comparing static bug finders and statistical prediction.
In: Proceedings of the 36th international conference on software engineering. ACM, pp 424–434

Rahman F, Posnett D, Herraiz I, Devanbu P (2013) Sample size vs. bias in defect prediction. In: Proceedings
of the 2013 9th joint meeting on foundations of software engineering. pp 147–157

Rahman F, Posnett D, Hindle A, Barr E, Devanbu P (2011) Bugcache for inspections: hit or miss? In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. pp 322–331

Rosen C, Grawi B, Shihab E (2015) Commit guru: Analytics and risk prediction of software commits.
ESEC/FSE 2015

Rosen C, Grawi B, Shihab E (2015) Commit guru: analytics and risk prediction of software commits.
In: Proceedings of the 2015 10th joint meeting on foundations of software engineering. ACM, pp
966–969

Ryu D, Choi O, Baik J (2016) Value-cognitive boosting with a support vector machine for cross-project
defect prediction. Empirical Software Engineering 21(1):43–71

Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A (2014) An empirical study of the classification perfor-
mance of learners on imbalanced and noisy software quality data. Information Sciences 259:571–595

Seliya N, Khoshgoftaar TM, Van Hulse J (2010) Predicting faults in high assurance software. In: 2010 IEEE
12th international symposium on high assurance systems engineering. IEEE, pp 26–34

Shin Y, Williams L (2013) Can traditional fault prediction models be used for vulnerability prediction?
EMSE

Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization 11(4):341–359

Subramanyam R, Krishnan MS (2003) Empirical analysis of ck metrics for object-oriented design complex-
ity: Implications for software defects. IEEE Transactions on Software Engineering 29(4):297–310

Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble learning to improve software defect predic-
tion. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
42(6):1806–1817

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization on defect prediction models. IEEE Transactions on Software Engineering pp 1–1

Tantithamthavorn C, McIntosh S, Hassan AE, Ihara A, Matsumoto K (2015) The impact of mislabelling on
the performance and interpretation of defect prediction models. In: 2015 IEEE/ACM 37th IEEE inter-
national conference on software engineering, vol 1. IEEE, pp 812–823

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2016) Automated parameter optimization of
classification techniques for defect prediction models. In: ICSE 2016. ACM, pp 321–332

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization on defect prediction models. IEEE Transactions on Software Engineering 45(7):683–711

Tomar D, Agarwal S (2015) A comparison on multi-class classification methods based on least squares twin
support vector machine. Knowledge-Based Systems 81:131–147

Tu H, Nair V (2018) While tuning is good, no tuner is best. In: FSE SWAN
Tu H, Yu Z, Menzies T (2020) Better data labelling with emblem (and how that impacts defect prediction).

IEEE Trans Softw Eng
Turhan B, Menzies T, Bener AB, Di Stefano J (2009) On the relative value of cross-company and within-

company data for defect prediction. Empirical Software Engineering 14(5):540–578
Wang S, Yao X (2013) Using class imbalance learning for software defect prediction. IEEE Transactions on

Reliability 62(2):434–443
Weyuker EJ, Ostrand TJ, Bell RM (2008) Do too many cooks spoil the broth? using the number of develop-

ers to enhance defect prediction models. Empirical Software Engineering 13(5):539–559
Williams C, Spacco J (2008) Szz revisited: verifying when changes induce fixes. In: Proceedings of the

2008 workshop on Defects in large software systems. ACM, pp 32–36
Xia T, Krishna R, Chen J, Mathew G, Shen X, Menzies T (2018) Hyperparameter optimization for effort

estimation. arXiv:1805.00336
Xia X, Bao L, Lo D, Li S (2016) Automated debugging considered harmful considered harmful: A user

study revisiting the usefulness of spectra-based fault localization techniques with professionals using
real bugs from large systems. In: 2016 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 267–278

Xia X, Lo D, Pan SJ, Nagappan N, Wang X (2016) Hydra: Massively compositional model for cross-project
defect prediction. IEEE Transactions on Software Engineering 42(10):977–998

Page 41 of 42 60Empirical Software Engineering (2022) 27: 60

1 3

Xia X, Lo D, Wang X, Yang X (2016) Collective personalized change classification with multiobjective
search. IEEE Transactions on Reliability 65(4):1810–1829

Yang X, Lo D, Xia X, Sun Jianling (2017) Tlel: A two-layer ensemble learning approach for just-in-time
defect prediction. Information and Software Technology 87:206–220

Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep learning for just-in-time defect prediction. In: 2015
IEEE international conference on software quality, reliability and security. IEEE, pp 17–26

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect pre-
diction: simple unsupervised models could be better than supervised models. In: Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering. ACM,
pp 157–168

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge. In:
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engi-
neering. pp 689–699

Zhang F, Keivanloo I, Zou Y (2017) Data transformation in cross-project defect prediction. Empirical Soft-
ware Engineering 22(6):3186–3218

Zhang F, Zheng Q, Zou Y, Hassan AE (2016) Cross-project defect prediction using a connectivity-based
unsupervised classifier. In: 2016 IEEE/ACM 38th international conference on software engineering
(ICSE). IEEE, pp 309–320

Zhang H (2009) An investigation of the relationships between lines of code and defects. In: 2009 IEEE
international conference on software maintenance. IEEE, pp 274–283

Zhang H, Zhang X, Gu M (2007) Predicting defective software components from code complexity meas-
ures. In: 13th Pacific Rim international symposium on dependable computing (PRDC 2007). IEEE,
pp 93–96

Zhou Y, Leung H (2006) Empirical analysis of object-oriented design metrics for predicting high and low
severity faults. IEEE Transactions on Software Engineering 32(10):771–789

Zhou Y, Xu B, Leung H (2010) On the ability of complexity metrics to predict fault-prone classes in object-
oriented systems. Journal of Systems and Software 83(4):660–674

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In: Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering. ACM, pp 91–100

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: Proceedings of the Third
international workshop on predictor models in software engineering. IEEE Computer Society, p 9

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

60 Page 42 of 42 Empirical Software Engineering (2022) 27: 60

	Revisiting process versus product metrics: a large scale analysis
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Defect prediction
	2.2 Process vs product

	3 Methods
	3.1 Data collection
	3.2 Learners
	3.2.1 Support vector machine
	3.2.2 Naive bayes
	3.2.3 Logistic regression
	3.2.4 Random forest

	3.3 Differential evolution (DE)
	3.4 Experimental framework
	3.5 Evaluation criteria
	3.6 Statistical tests

	4 Results
	5 Threats to validity
	6 Conclusion and discussion
	Acknowledgements
	References

