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Abstract
Refactoring is an essential activity during software evolution. Frequently, practitioners rely
on such transformations to improve source code maintainability and quality. As a con-
sequence, this process may produce new source code entities or change the structure of
existing ones. Sometimes, the transformations are atomic, i.e., performed in a single com-
mit. In other cases, they generate sequences of modifications performed over time. To study
and reason about refactorings over time, we rely on refactoring graphs. Using this abstrac-
tion, we provide quantitative and qualitative investigation on 20 popular open-source Java
and JavaScript-based projects. After eliminating trivial graphs, we characterize a large sam-
ple of 1,525 refactoring graphs, providing quantitative data on their size, commits, age,
refactoring composition, ownership, operations over time, and refactoring graph patterns.
Besides, we contact the authors of subgraphs describing large refactoring operations to
understand the reasons behind their operations. We conclude by discussing applications and
implications of refactoring graphs, for example, to improve code comprehension, detect
refactoring patterns, and support software evolution studies.
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1 Introduction

Refactoring is a key activity to preserve and improve the internal design of software systems.
Due to the importance of the practice in modern software development, there is a large body
of studies about refactoring, shedding light on aspects such as usage of refactoring engines
(Murphy-Hill et al. 2009; Negara et al. 2013), documentation of refactorings using commit
messages (Murphy-Hill et al. 2009), motivations for performing refactorings (Silva et al.
2016; Mazinanian et al. 2017; Tsantalis et al. 2013), benefits and challenges of refactoring
(Kim et al. 2012; 2014), among others.

However, time seems to be an underinvestigated dimension in refactoring studies. The
notable exception are studies on refactoring tactics, particularly on repeated refactor-
ing operations, often called batch refactorings. For example, Murphy-Hill et al. (2009)
define batch refactorings as operations that execute within 60 seconds of each another.
They report that 40% of refactorings performed using a refactoring tool occur in batches,
i.e., programmers repeat refactorings. But the authors also mention that “the main lim-
itation of [our] analysis is that, while we wished to measure how often several related
refactorings are performed in sequence, we instead used a 60-second heuristic”. Bib-
iano et al. (2019) investigate the characteristics and impact of batch refactorings on
code elements affected by smells. The authors rely on a heuristic to retrieve batches
(Cedrim 2018), which are groups of refactorings performed by the same author in a
single code element. Thus, their heuristic focus on single methods or classes, most of
the cases resulting in batches with a single commit (93%). However, to our knowl-
edge, refactorings performed over long time windows were not deeply studied by the
literature.

Therefore, in a previous conference paper (Brito et al. 2020), we propose and eval-
uate a novel concept, called refactoring graphs, to study and reason about refactoring
activities over time. In such graphs, the nodes are methods and the edges represent
refactoring operations. For example, suppose that a method foo() is renamed to bar().
This operation is represented by two nodes, foo() and bar(), and one edge connect-
ing them. After this first refactoring, suppose that a method qux() is extracted from
bar(). As a result, an edge connecting bar() to a new node, representing qux(), is
also added to the graph. Furthermore, refactoring graphs do not impose time con-
straints between the represented refactoring operations. In our example, the extract
operation, for instance, can be performed months after the rename. Finally, refactoring
graphs may also express refactorings performed by different developers. In our exam-
ple, the rename can be performed by d1 and the extract operation by another developer
d2.

Quantitative study We formalize an algorithm to build refactoring graphs and use it to
extract graphs for 20 well-known and popular open-source Java and JavaScript projects. In
this first study, our goal is to characterize refactoring subgraphs. Thus, we answer seven
research questions about the following properties:

1. Refactorings over time: In both languages, approximately 30% of refactoring operations
are part of a refactoring subgraph over time.

2. Size: Most refactoring subgraphs are small. In Java, most cases refer to subgraphs with
up to four vertices (85%) and three edges (83%). Similarly, in JavaScript, most refac-
toring subgraphs have up to four nodes (86%) and three edges (85%). However, we also
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found subgraphs due to large refactoring operations (e.g., subgraphs with more than 30
vertices).

3. Commits: Most refactoring subgraphs are generated from two or three commits, e.g.,
95% of Java subgraphs and 93% of JavaScript subgraphs.

4. Age: The age of the refactoring subgraphs ranges from a few days to weeks or even
months. For instance, in both languages, approximately 60% of the subgraphs have
more than one month.

5. Homogeneity: 71% of Java subgraphs and 64% of JavaScript subgraphs include more
than one refactoring type.

6. Ownership: In both languages, about 60% of the refactoring subgraphs are created by a
single developer.

7. Patterns: The most recurring over time patterns of refactoring graphs have two edges.
For example, in Java, the most recurrent case refer to successive rename operations, i.e.,
rename → rename (153 occurrences). In JavaScript, this is the second most recurrent
pattern, appearing in 37 subgraphs in our dataset.

Qualitative study In our quantitative study, we observed that most refactoring subgraphs
are small. However, we also notice subgraphs describing large refactoring operations. Thus,
in this second study, we selected and manually inspected 50 large refactoring subgraphs in
terms of vertices. Then, we contacted the authors of these refactoring instances, asking for
the motivations behind their operations. Based on these developers’ feedback, our results
suggest that large subgraphs relate to two major reasons: improving code design and fixing
bugs or improving existing features.

Paper extension This paper is an extension of a previous study (Brito et al. 2020). We
expand this former work in the following major points:

1. We perform a novel analysis on JavaScript systems (the former paper only included
Java) and extend all RQs with refactoring graphs mined for this language.

2. We propose a new research question (RQ6) where we assess refactoring graph patterns,
and an introductory research question (RQ0) about refactorings that are spread over
multiple commits.

3. We perform a novel qualitative analysis by applying a survey with developers, aiming
to understand the motivations behind large refactoring subgraphs.

4. We designed and implemented a web application to easily visualize refactoring graphs.1

Also, we provide scripts to automatically visualize refactoring subgraphs for Java and
JavaScript projects hosted on GitHub.2

5. We provide a new evaluation of the precision of RefDiff (Silva et al. 2021; Silva and
Valente 2017), which is the tool we used to detect refactoring operations. The evaluation
relies on real-world Java and JavaScript open-source projects, increasing the existing
datasets with new refactoring instances.

1https://refactoring-graph.github.io
2https://github.com/alinebrito/refactoring-graph-generator
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Table 1 Function and method level refactorings detected by REFDIFF

Language Refactoring

Java Rename method, move method, move and rename method, inline
method, extract method, extract and move method, push down method,
pull up method

JavaScript Rename function, move function, move and rename function, inline
function, extract function, extract and move function, internal move
function, internal rename and move function

Structure Section 2 introduces REFDIFF, which is the tool used to detect refactoring oper-
ations. Section 3 defines our concept of refactoring graphs. Section 4 describes the design
of our quantitative study and results. Section 5 presents the second study, based on a survey
with authors of large refactoring subgraphs. We discuss the key applications and implica-
tions in Section 6. Section 7 states threats to validity and Section 8 presents related work.
Finally, we conclude the paper in Section 9.

2 RefDiff tool

REFDIFF (Silva and Valente 2017; Silva et al. 2021) is a tool to detect refactoring oper-
ations. The current version is based on the Code Structure Tree (CST), which provides a
language-agnostic representation of the source code. As a consequence, it is possible to
detect refactorings in multiple languages. In our study, we concentrate on two programming
languages supported by the tool: Java and JavaScript.3 We selected these languages due to
their popularity. For example, they were pointed to amongst the most adopted and loved
programming languages by developers worldwide.4 Besides that, most refactoring research
in the literature discuss refactoring practices only in Java (Bibiano et al. 2019; Sousa et al.
2020; Silva et al. 2016; Pantiuchina et al. 2020). Therefore, by studying JavaScript, we
attempted to contribute with a refactoring study that also considered interpreted, dynamic,
and very popular programming languages. Also, we focus on method or function level
operations since refactoring operations frequently affect these elements (Silva et al. 2021;
Tsantalis et al. 2018; Hora et al. 2018). Table 1 lists the refactorings detected by REFDIFF at
these elements. As we can notice, both languages have well-know refactorings, compris-
ing extract and inline operations, as well as changes in method’s signature (i.e., rename and
move).

Since JavaScript is a dynamic language, inheritance-based refactorings are not detected
in this language (i.e., pull up and push down). In additon, JavaScript-based systems usu-
ally contain large files that are composed of several nested elements. For this reason,
many refactoring occur on a single file. REFDIFF reports these cases as internal oper-
ations. Listing 1 shows an example of an internal move operation. In this case, the
developer moved function f1 from fa to fb. However, both functions are located in a single
file.

3In Section 5.1.1, we detail the results of a precision analysis of RefDiff: Java (87%) and JavaScript (93%)
4https://insights.stackoverflow.com/survey/2020
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3 Refactoring graphs

A refactoring graph G is a set of disconnected subgraphs G′ = (V ′, E′). Each G′ is called
a refactoring subgraph, with a set of vertices V ′ and a set of directed edges E′. In this
way, the history of a software system includes a set of refactoring subgraphs. In refactoring
(sub)-graphs, the vertices are the full signature of methods or functions. For instance, in Java
projects, we labeled a method m() in class Foo and package util as util.Foo#m(). Since
Java is a strongly typed programming language, the signature also includes the type of the
parameters. For example, we label the same method m as util.Foo#m(String) wherever it
requires a string type parameter. In JavaScript graphs, this procedure is not practicable since
it is an untyped language. Thus, we labeled the vertices utilizing the file name. For example,
util.Bar .js.C#f 1 represents a function f 1 in class C, file Bar .js, and directory util.
Finally, the edges indicate the refactoring type (e.g., move method) and they also include
meta-data about the operation (e.g., author name and date).

Figure 1 shows an example of a refactoring graph. A developer extracted three methods
from m1(), which are named x(), y(), and z(). The edges refer to the refactoring operation.
It is worth noting that a refactoring graph can include refactorings performed by multi-
ple developers. For instance, Fig. 2 illustrates a second example, where a developer D1
extracted two methods from m2(), which are named a() and b(). Then, a second developer
D2 renamed b() to c(). After that, a reviewer might have suggested to keep the original
name. Thus, the developer undid the latest refactoring, renaming c() to b() again. In this
case, the graph contains refactorings performed by two authors. Besides, is created a cycle
when the developer reverts the method to the original name.

As presented in Fig. 3, in the case of Java, we center our study on eight distinct refac-
torings at the method level. Rename and move are the most trivial operations since they
involve just changing the method’s signature. Extract operations generate new methods in
the same class (i.e., they create a new node in our subgraphs). It is also possible to extract
a method m() or multiple methods mi from a single method m1(). Furthermore, as illus-
trated in Fig. 3, it is possible to extract m() from multiple methods mi . In this case, the
extracted code is duplicated in each method mi . Inline method is a dual operation, involving
the removal of trivial elements and replacement of the respective calls by their content. As
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Fig. 1 Refactoring subgraph produced by only one developer

in the case of extract, we can inline a method m() in multiple methods mi . We also stud-
ied a refactoring called extract and move that extracts a method to another class. Finally,
inheritance-based refactorings comprise the movement of one or more methods to super-
types or subtypes (i.e., pull up and push down). For example, a pull upmoves methods from
subclasses to a superclass.

Similar refactorings apply to functions in JavaScript. As shown in Fig. 4, in JavaScript,
there are also internal operations, i.e., refactorings performed in a single file.

4 Quantitative study: Characterizing refactoring graphs

4.1 Study design

In this study, our goal is to quantitatively analyze refactoring in multiple programming
languages with the purpose of understanding and characterizing refactoring activities per-
formed over time. The context of the study consists of approximately 1.5K refactoring
subgraphs from 20 Java and JavaScript open-source projects. Since refactoring graphs are

Fig. 2 Refactoring subgraph over time
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Fig. 3 Example of refactoring subgraphs (Java)

a novel abstraction, we see value in starting by shedding light on several of their proper-
ties. In other words, before performing a qualitative study with developers (Section 5), we
found it important to mine the maximum amount of data and information about such graphs.
Specifically, we address the following research questions, aiming to investigate seven prop-
erties: refactorings over time, size, number of commits, age, homogeneity, ownership, and
patterns.

– (RQ0) How many refactoring operations generate subgraphs over time? Most stud-
ies concentrate on refactorings performed in a single commit (Silva et al. 2016; Jiang
et al. 2021; Di Penta et al. 2020; AlOmar et al. 2021). For this reason, the rationale
of this preliminary research question is to assess the prevalence of the key practice we
investigate in our study, i.e., refactorings that are spread over multiple commits.

Fig. 4 Example of refactoring subgraphs (JavaScript)
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– (RQ1)What is the size of refactoring subgraphs?We are interested in investigating the
size of refactoring subgraphs, in terms of number of vertices and edges. This investiga-
tion may provide insights about the impact of refactorings in the design/architecture of
the studied systems.

– (RQ2)How many commits are represented in refactoring subgraphs? Each commit can
contribute to one or more refactoring in a refactoring subgraph. Therefore, our objec-
tive is to investigate how refactoring subgraphs increase over time. This investigation
complements the perspective of previous studies, which rely on refactoring operations
detected in a single commit or in a short time interval (Sousa et al. 2020; Murphy-Hill
et al. 2009).

– (RQ3) What is the age of refactoring subgraphs? We investigate the lifetime of sub-
graphs, i.e., the interval between the first and the latest refactoring operation in a
subgraph. For example, this investigation might also provide insights about large and
long-running changes in the design/architecture of the studied systems.

– (RQ4) Which are the most common refactoring operations in refactoring subgraphs?
In this RQ, we discuss the most recurring refactoring types that occur over time,
complementing the panorama of studies that report the frequency of single-commit
operations (Tsantalis et al. 2020; Silva et al. 2021; Silva et al. 2016; Pantiuchina et al.
2020). We also analyze the homogeneity of refactoring subgraphs. In other words,
we investigate the frequency of subgraphs formed by the same or distinct refactoring
types.

– (RQ5) Are refactoring subgraphs created by the same or by multiple developers? The
rationale of this research question is to investigate whether refactoring operations over
time are performed by distinct developers. That is, we aim to assess whether refactor-
ing operations over time are concentrated on single developers or spread over multiple
ones.

– (RQ6) What are the most common refactoring subgraphs? This research question pro-
vides an overview of recurrent graphs in distinct projects, i.e., refactoring graph patterns
that occur frequently in our dataset.

4.1.1 Selecting projects

In this paper, we analyze the characteristics and frequency of refactoring subgraphs in pop-
ular Java and JavaScript systems. We used the following criteria for selecting the projects
for each programming language. First, the projects should be among the top-100 GitHub
repositories in terms of stars, since stars is a key metric to reveal the popularity of reposi-
tories (Borges et al. 2016; Borges and Valente 2018). Second, the project should have more
than 1K commits (in order to remove recent systems with a short history of refactoring
activity). Finally, the project should be a software system. Thus, we removed, for exam-
ple, code samples (such as iluwatar/java-design-patterns)5 and JavaScript style guides (such
as airbnb/javascript).6 Table 2 describes the selected projects, including basic information,
such as number of stars, commits, files, contributors, and short description. These projects
cover distinct domains, including web development systems and media processing libraries,
for example.

5https://github.com/iluwatar/java-design-patterns
6https://github.com/airbnb/javascript
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Table 2 Selected projects (Java and JavaScript)

Project Stars Com. Cont. Files Bran. Desc.

Elasticsearch 44,489 48,313 1,273 11,770 master Search engine

RxJava 40,622 5,581 237 1,666 3.x Event-based lib.

Square Okhttp 34,484 4,273 189 167 master HTTP client

Square Retrofit 33,801 1,756 129 241 master HTTP client

Spring Framework 32,582 19,752 396 7,203 master Web framework

Apache Dubbo 29,353 3,639 249 1,743 master RPC framework

MPAndroidChart 28,647 2,018 66 220 master Chart lib.

Glide 27,289 2,416 102 647 master Image lib.

Lottie Android 26,952 1,139 76 198 master Animation lib.

Facebook Fresco 15,870 2,158 170 985 master Image lib.

Vue 163,721 3,099 293 432 dev UI framework

React 148,441 13,231 1,383 1,378 master UI library

Parcel 35,651 1,891 233 1,618 v2 Files bundler

Hexo 30,371 3,259 145 272 master Blog framework

Leaflet 27,805 6,843 643 141 master Maps lib.

Quill 26,386 5,199 120 89 develop Text editor

Request 24,553 2,270 286 74 master HTTP client

Nylas Mail 24,529 6,116 89 120 master Mail app

Select2 24,415 2,607 442 230 develop Selector lib.

Carbon 24,061 1,411 125 92 master Screenshot app

4.1.2 Detecting refactoring operations

As mentioned in Section 2, we use REFDIFF (Silva and Valente 2017; Silva et al. 2021) to
detect the refactoring operations represented in refactoring graphs. REFDIFF identifies refac-
torings between two versions of a git-based project. In our study, we focus on well-known
refactoring operations detected by REFDIFF at the method or function level, as presented in
Figs. 3 and 4. REFDIFF works by comparing each commit with its previous version in his-
tory. To avoid analyzing commits from temporary branches, we focus on the main branch
evolution. Particularly, we use the command git log –first-parent to get the list of commits of
each project.7 Additionally, we remove refactorings in packages that are not part of the core
system. For Java projects, we remove refactorings from packages with the keywords test(s),
example(s), and sample(s). In JavaScript, we also filter other keywords. For instance, we
discarded refactorings from the package dist, since it is frequently used to store source code
for distribution. Other cases are specific from a single JavaScript system. For example, in
Vue, we remove refactorings from packages/vue-server-renderer since the documentation
mentions: “This package is auto-generated”.8

7https://git-scm.com/docs/git-log#Documentation/git-log.txt---first-parent
8https://github.com/vuejs/vue/tree/dev/packages/vue-server-renderer
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Table 3 Frequency of refactoring subgraphs (Java)

Project Refactoring Subgraphs

All commit = 1 % commit ≥ 2 %

Elasticsearch 2,150 1,971 91.7 179 8.3

RxJava 1,120 1,034 92.3 86 7.7

Square Okhttp 650 563 86.6 87 13.4

Square Retrofit 182 148 81.3 34 18.7

Spring Framework 3,206 2,705 84.4 501 15.6

Apache Dubbo 486 452 93.0 34 7.0

MPAndroidChart 453 380 83.9 73 16.1

Glide 441 296 67.1 145 32.9

Lottie Android 197 174 88.3 23 11.7

Facebook Fresco 315 279 88.6 36 11.4

All 9,200 8,002 87.0 1,198 13.0

4.1.3 Building refactoring graphs

As mentioned earlier, we identify refactoring subgraphs over time in 20 systems. Algorithm
1 presents the steps to build refactoring graphs. The input comprises a list of refactorings,
e.g., util.Foo#m() moved to util.Bar#m(). First, the algorithm identifies each refactoring
t and the two methods involved, m1 and m2 (line 3). Then, it creates a directed edge repre-
senting this refactoring (line 5). Since V and E are sets, each element is represented only
one time. The edges are labeled with refactoring’s name t . The output includes the sets of
refactoring subgraphs.

Table 3 presents the frequency of refactoring subgraphs for each Java project, and Table 4
presents the results for JavaScript. Considering both languages, we detect a total of 11,341
refactoring subgraphs. In the case of Java, we detect 9,200 subgraphs, whereas 2,141 for
JavaScript.

Spring Framework has the highest number of subgraphs (3,206), while Square Retrofit
has the lowest amount (182). Overall, 87% of the refactoring subgraphs comprise operations
performed in a single commit. This ratio varies from 67.1% (Glide) to 93% (Apache Dubbo).
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Table 4 Frequency of refactoring subgraphs (JavaScript)

Project Refactoring Subgraphs

All commit = 1 % commit ≥ 2 %

Vue 281 218 77.6 63 22.4

React 843 737 87.4 106 12.6

Parcel 108 96 88.9 12 11.1

Hexo 196 168 85.7 28 14.3

Leaflet 268 206 76.9 62 23.1

Quill 217 197 90.8 20 9.2

Request 59 43 72.9 16 27.1

Nylas Mail 72 67 93.1 5 6.9

Select2 69 63 91.3 6 8.7

Carbon 28 19 67.9 9 32.1

All 2,141 1,814 84.7 327 15.3

The results follow a similar trend in JavaScript systems. The percentage of single-commit
subgraphs ranges from 67.9% (Carbon) to 93.1% (Nylas Mail).

From RQ1 to RQ5, we assess 1,525 subgraphs with number of commits ≥ 2, because
they are the ones that represent refactorings over time.

4.1.4 Mining frequent graphs

In our last research question (RQ6), we investigate frequent graphs, i.e., graph patterns that
occur frequently in our dataset. For this analysis, we use GSpan, a well-known algorithm
that identifies subgraphs whose incidence is greater than a given support (Yan and Han 2002;
Leung 2010). Figure 5 shows a simple example of graph pattern. For instance, suppose that
GSpan reports the operation move method followed by a rename method as a pattern that
occurs repeatedly in our dataset. As we can notice, G1 contains this pattern (grey vertices),
which refers to two distinct commits over time.

G2 illustrates a second example, a pattern with three extractmethod operations, as shown
in Fig. 6. However, in this case, there are two possible situations: (i) the three extract oper-
ations were performed in a single commit, or (ii) the extract operations were performed in
multiple commits over time.

Therefore, there are two categories of refactoring patterns: possibly atomic refactoring
patterns and over time refactoring patterns. Over time patterns represent frequent refactor-
ings performed in distinct commits (e.g., G1). In contrast, possibly atomic patterns can be
detected in single or multiple commits. In other words, we cannot safely infer they include

EXTRACT

EXTRACT

G1
MOVE RENAME

Fig. 5 Example of over time graph patterns
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Fig. 6 Example of possibly
atomic graph patterns

RENAME
EXTRACT

EXTRACT

EXTRACT

G2

refactorings over time (e.g., G2).9 Besides that, GSpan can report more than one pattern
in the same subgraph. For instance, the algorithm can identify a pattern with two extract
operations and a second pattern with three extract operations in G2.

Finally, it is also worth noting that refactorings graphs might have cycles, as in the
example of Fig. 7. In this subgraph, the extract refactorings were performed in the same
commit. After that, in a second commit, one of the extract was reverted using an inline
operation. If we do not take precaution, GSpan might detect the following pattern in
this graph: inline → extract (assuming this pattern also happens in other subgraphs).
However, this is a misleading pattern, since the inline happened before the extract. As
the reader might have already concluded, misleading patterns are only possible when
at least one edge is part of a cycle. For this reason, in order to answer RQ6, we
implemented a script to identify and remove subgraphs with cycles from our dataset.
As a result, we discarded 289 subgraphs in Java (3%) and 47 subgraphs in JavaScript
(2%).

Since patterns can be detected in any number of commits (i.e., even in a single com-
mit), in RQ6, we do not separate the dataset by the number of commits. As a result, in this
RQ, we assess 8,911 subgraphs in Java,10 and 2,094 subgraphs in JavaScript.11 We fixed
support = 13 (Java) and support = 8 (JavaScript). We set these thresholds after experi-
ments where we strived to balance two variables: execution time and a reasonable number
of occurrences that would allow us to classify the retrieved graphs as patterns. The thresh-
old for JavaScript is lower because the number of graphs we mined for this language is also
lower.

4.1.5 Overview of data collection and analysis

Table 5 presents an overview of the dataset we use to address the research questions. RQ0
provides an introductory analysis, considering the frequency of multiple-commits opera-
tions in the subgraphs over time. From RQ1 to RQ5, we work on the same sample, which
includes 1,525 refactoring subgraphs over time (1,198 Java and 327 JavaScript). In the
case of RQ6, we consider all subgraphs without cycles to investigate refactoring graph
patterns.

9GSpan output does not include information about the edges, such as commit or date. The algorithm only
reports the occurrence of a pattern in a set of subgraphs. As a consequence, for graph patterns involving a
single element (i.e., refactoring from the same source or refactoring to the same target), it is not possible to
infer they include refactorings over time.
10All 9,200 subgraphs presented in Table 3 minus the 289 subgraphs with cycles.
11All 2,141 subgraphs presented in Table 4 minus the 47 subgraphs with cycles.
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Fig. 7 Example of an misleading
refactoring graph pattern (inline
→ extract)

EX
TRA

CT

EX
TR

A
C
T

INLINE

Table 5 Numbers of the quantitative study

Description RQs All Java JS

All refactoring operations RQ0 15,945 13,162 2,783

All refactoring subgraphs RQ0 11,341 9,200 2,141

Ref. subgraphs (commit ≥ 2) RQ1 to RQ5 1,525 1,198 327

Ref. subgraphs without cycles RQ6 11,005 8,911 2,094

Table 6 Frequency of refactoring operations in subgraphs (Java)

Project Refactoring Operations

All Atomic % Over time %

Elasticsearch 2,969 2,394 80.6 575 19.4

RxJava 1,421 1,235 86.9 186 13.1

Square Okhttp 1,147 694 60.5 453 39.5

Square Retrofit 249 164 65.9 85 34.1

Spring Framework 4,640 3,071 66.2 1,569 33.8

Apache Dubbo 596 489 82.0 107 18.0

MPAndroidChart 720 423 58.8 297 41.3

Glide 734 323 44.0 411 56.0

Lottie Android 288 209 72.6 79 27.4

Facebook Fresco 398 307 77.1 91 22.9

All 13,162 9,309 70.7 3,853 29.3
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Table 7 Frequency of refactoring operations in subgraphs (JavaScript)

Project Refactoring Subgraphs

All Atomic % Over time %

Vue 394 221 56.1 173 43.9

React 1,029 759 73.8 270 26.2

Parcel 130 99 76.2 31 23.8

Hexo 264 178 67.4 86 32.6

Leaflet 376 216 57.4 160 42.6

Quill 255 206 80.8 49 19.2

Request 108 43 39.8 65 60.2

Nylas Mail 88 73 83.0 15 17.0

Select2 98 67 68.4 31 31.6

Carbon 41 19 46.3 22 53.7

All 2,783 1,881 67.6 902 32.4

4.2 Results

4.2.1 (RQ0) Howmany refactoring operations generate subgraphs over time?

In this first research question, we provide an overview of the refactoring operations in our
sample. Specifically, we discuss how many refactorings result in subgraphs over time. As
presented in Table 6, for Java, 29.3% of the operations are part of a refactoring subgraph
over time (3,853 occurrences).

In the case of JavaScript, this rate is 32.4% (902 occurrences), as shown in Table 7.
Interestingly, in three projects, more than 50% of the detected refactorings correspond to
edges of subgraphs overtime: Carbon (53.7%), Request (60.2%), and Glide (56%).

4.2.2 (RQ1) what is the size of refactoring subgraphs?

As presented in Fig. 8, in Java, most refactoring subgraphs have three vertices (630 occur-
rences, 53%). The other recurrent cases comprise subgraphs with two (19%) or four vertices
(13%). Square Okhttp holds the largest subgraph regarding the number of vertices (57),
which are most related to inline operations. Concerning the number of edges, most sub-
graphs have two (67%) or three edges (16%). MPAndroidChart has the largest subgraph in
terms of edges. It has 61 edges, most representing extract and move operations. Therefore,
most subgraphs contain few methods (vertices) and refactoring operations (edges).

Figure 9 shows a real example of a refactoring subgraph from MPAndroidChart, which
includes three distinct refactoring operations. In the first commit C1, a developer renamed
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Fig. 8 Size of refactoring
subgraphs (Java)
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method drawYLegend() to drawYLabels().12 In the subsequent commit performed 13
days later, the same developer extracted a new method from drawYLabels() at com-
mit C2.13 Two days after the second operation, in commit C3, he made new extractions
from drawYLabels() to another class, creating a subgraph with five vertices and four
edges.14

In the case of JavaScript, most subgraphs also have three vertices (57%), as shown in
Fig. 10. Other common cases refer to subgraphs with two (11%) or four vertices (18%).
Regarding the number of edges, the subgraphs also are small, 92% of them involve up to
four edges.

Figure 11 presents an example of a refactoring subgraph from Quill, which includes five
edges and three distinct refactoring operations. In commit C1, a developer renamed function
f ormatCursor to f ormat .15 Seven months later, in commit C2, the same developer made
four extract operations to function isEnable, aiming the removal of a single duplicated
line.16

12https://github.com/PhilJay/MPAndroidChart/commit/13104b26
13https://github.com/PhilJay/MPAndroidChart/commit/063c4bb0
14https://github.com/PhilJay/MPAndroidChart/commit/d930ac23
15https://github.com/quilljs/quill/commit/aee9b867
16https://github.com/quilljs/quill/commit/e1d76d9f
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Fig. 9 Example of a refactoring subgraph from MPAndroidChart (Java)

Fig. 10 Size of refactoring
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Fig. 11 Example of a refactoring
subgraph from Quill (JavaScript)
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Fig. 12 Number of commits by
refactoring subgraph
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4.2.3 (RQ2) Howmany commits are represented in refactoring subgraphs?

In this second question, we investigate the number of commits per subgraph. As presented in
Fig. 12, most cases include subgraphs with two or three commits. In Java, 95% of subgraphs
(1,135 occurrences) are created from up to three commits. The largest subgraph in terms
of commits is again from Square Okhttp (18 commits). Similarly, in JavaScript, 93% of
subgraphs (304 occurrences) also comprise two or three commits.

Figure 13 shows an example from Elasticsearh. In commit C1, a developer moved two
methods from class SocketSelector to NioSelector .17 After approximately three months,
in commit C2, a second developer extracted duplicated code from three methods to a new
method named handleT ask(Runnable).18 Among the source methods, two methods are
the ones moved early. As a consequence, these two commits create a refactoring subgraph
with six vertices and five edges.

4.2.4 (RQ3) What is the age of refactoring subgraphs?

To assess interval, we compute the number of days between the most recent and the oldest
commit in a subgraph. Figure 14 presents the results for Java. Considering the median of the
distributions, the youngest subgraphs are found in Lottie Android and RxJava, which are 3
and 3.4 days, respectively. On the other side, the oldest subgraphs are found in Glide (489.8
days), Spring Framework (121.9), and Fresco (167.8). The other systems have subgraphs
with age between 45.4 (Elasticsearch) and 84 days ( MPAndroidChart). Regarding the matu-
rity of the target systems, the youngest project is Lottie Android (3 years) while the oldest

17https://github.com/elastic/elasticsearch/commit/9ee492a3f07
18https://github.com/elastic/elasticsearch/commit/11fe52ad767
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Fig. 13 Example of a refactoring
subgraph from Elasticsearch
(Java)
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Fig. 14 Age of the refactoring subgraphs (Java)
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Fig. 15 Age of the refactoring subgraphs (JavaScript)

Fig. 16 Example of a refactoring
subgraph from Spring Framework
(Java)
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Commit C1     (August, 2016)

EXTRACT

EXTRACT

EXTRACT

EXTRACT

Commit C2     (Setember, 2016)

Commit C3     (November, 2016)

Commit C4     (November, 2017)

Fig. 17 Example of a refactoring subgraph from Vue (JavaScript)

one is Elasticsearch (9 years). We run the Spearman’s test to assess the correlation between
the systems age and the median time of their refactoring subgraphs. The correlation coef-
ficient (rho) is 0.115, suggesting a negligible correlation (Borges and Valente 2018; Hinkle
et al. 2003). In other words, there are subgraphs with different ages in both old and young
systems.

Figure 15 presents the distribution of age in JavaScript. Considering the median, the
youngest subgraphs are from Carbon and Nylas Mail, with approximately 25 days. In con-
trast, there are also older subgraphs. For instance, in Hexo, the median is around four years.
Thus, the age of refactoring subgraphs also diverse in JavaScript. Spearman’s test suggest a
moderate correlation in our sample (rho = 0.624). In other words, the older the system, the
older its the median time of their refactoring subgraphs.

Figure 16 shows an example of a subgraph describing refactorings performed in few
days on Spring Framework. In commit C1, a developer renamed method bef ore(...) to
f ilterBef ore(...).19 After six days, the same developer reverted the operation in commit
C2, renaming f ilterBef ore(...) to the original name.20 Figure 17 presents a second exam-
ple, a subgraph with more than one year in Vue. The first operation occurs in August 2016,
in commit C1, when a developer extracts a function from createElm.21 The same developer
performs more three operations during 15 months, extracting functions createChildren,22

createComponent ,23 and isUnknownElement .24

19https://github.com/spring-projects/spring-framework/commit/794693525f
20https://github.com/spring-projects/spring-framework/commit/91e96d8084
21https://github.com/vuejs/vue/commit/351aef3c
22https://github.com/vuejs/vue/commit/7a2c9867
23https://github.com/vuejs/vue/commit/de7764a3
24https://github.com/vuejs/vue/commit/df82aeb0
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Table 8 Frequency of refactoring operations (Java)

Refactoring Occurrences %

Rename 752 20

Move 677 18

Extract and move 673 17

Extract 653 17

Inline 489 13

Pull up 369 10

Push down 148 4

Move and rename 92 2

All 3,853 100

4.2.5 (RQ4) Which are the most common refactoring in refactoring subgraphs?

Table 8 presents the most common refactoring operations in Java. Most cases include
rename method (20%), move method (18%), and extract and move method (17%). By con-
strast, we detected only 92 occurrences of move and rename operations. There are also
few inheritance-based refactorings, i.e., pull up (369 occurrences) and push down (148
occurrences).

We also divided our sample of 1,198 subgraphs into two groups. The homogeneous
group includes subgraphs with a single refactoring operation. In contrast, the heterogeneous
group comprises subgraphs with at least two distinct refactoring operations. As presented in
Table 9, around 28.9% of the subgraphs are homogeneous, while 71.1% are heterogeneous.
The results per system follow a similar tendency. Most of the projects have more heteroge-
neous subgraphs than homogeneous ones; the sole exception is RxJava (52.3% vs 47.7%).
In addition, as presented in Fig. 18, heterogeneous subgraphs often include two distinct
refactoring types (60%); in contrast, 8% have three and only 3% have four or more distinct
refactoring types.

Table 9 Homogeneous vs heterogeneous refactoring subgraphs (Java)

Project Homogeneous % Heterogeneous %

Elasticsearch 63 35.2 116 64.8

RxJava 45 52.3 41 47.7

Square Okhttp 22 25.3 65 74.7

Square Retrofit 12 35.3 22 64.7

Spring Framework 140 27.9 361 72.1

Apache Dubbo 8 23.5 26 76.5

MPAndroidChart 16 21.9 57 78.1

Glide 29 20.0 116 80.0

Lottie Android 5 21.7 18 78.3

Facebook Fresco 6 16.7 30 83.3

All 346 28.9 852 71.1

125    Page 20 of 43



Empir Software Eng (2021) 26:  125

Fig. 18 Number of distinct
refactorings by subgraph (Java)
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Table 10 Frequency of refactoring operations (JavaScript)

Refactoring Occurrences %

Extract 238 26

Move 234 26

Rename 214 24

Internal move 88 10

Inline 53 6

Extract and move 29 3

Move and rename 36 4

Internal mode and rename 10 1

All 902 100

Table 11 Homogeneous vs heterogeneous refactoring subgraphs (JavaScript)

Project Homogeneous % Heterogeneous %

Vue 21 33.3 42 66.7

React 44 41.5 62 58.5

Parcel 3 25.0 9 75.0

Hexo 4 14.3 24 85.7

Leaflet 27 43.5 35 56.5

Quill 3 15.0 17 85.0

Request 10 62.5 6 37.5

Nylas Mail 1 20.0 4 80.0

Select2 2 33.3 4 66.7

Carbon 3 33.3 6 66.7

All 118 36.1 209 63.9

Fig. 19 Number of distinct
refactorings by subgraph
(JavaScript)
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EXTRACT

Commit C2

EXTRACT EXTRACT

Commit C1 Commit C3

EXTRACT

Fig. 20 Example of a homogeneous refactoring subgraph from Facebook Fresco (Java)

As shown in Table 10, in JavaScript, 76% of the refactorings refer to extract, move,
and rename operations. There are also 88 occurrences of internal move operations, that
is, the movement of nested functions into a single file. Among the 902 refactorings,
628 cases (69.6%) denote to heterogeneous subgraphs, which is the largest group, as
presented in Table 11. Besides that, as shown in Fig. 19, heterogenous subgraphs fre-
quently include two distinct refactoring operations, following the same tendency of Java
subgraphs.

Figure 20 shows an example of a homogeneous subgraph from Facebook Fresco. In
this case, the subgraph represents four extract operations performed over time. First, in
commit C1, a developer extracted f etchDecodedImage(...) from two methods into class
ImageP ipeline.25 The next operations happened years later when a second developer
made two new extract operations in commits C226 and C3.27

As a second example, we present a heterogenous subgraph from Parcel in Fig. 21. In this
case, a single developer performed three distinct operations in nine months by renaming
function resolveModule to resolveAsset ,28 moving it to another file,29 and extracting
function getLoadedAsset .30

4.2.6 (RQ5) Are refactoring subgraphs created by the same or by multiple developers?

In the fifth question, we separate the refactoring subgraphs into two groups. The first group
includes subgraphs with refactoring operations performed by a single developer. The sec-
ond category is the opposite; it holds subgraphs by multiple developers. As presented in
Table 12, in Java, most subgraphs have a single author (61.4%). It is also possible to notice
a similar tendency in JavaScript, i.e., 203 subgraphs (62.1%) include refactoring operations
performed by a sole developer, as shown in Table 13.

Figure 22 presents an example of a refactoring subgraph from Square Okhttp. First,
in commit C1, developer D1 renamed three methods from class OkHttpClient .31

25https://github.com/facebook/fresco/commit/02ef6e0f
26https://github.com/facebook/fresco/commit/b76f56ef
27https://github.com/facebook/fresco/commit/017c007b
28https://github.com/parcel-bundler/parcel/commit/38d4a830
29https://github.com/parcel-bundler/parcel/commit/e4cee192
30https://github.com/parcel-bundler/parcel/commit/dd3ea464
31https://github.com/square/okhttp/commit/daf2ec6b9

125    Page 22 of 43

https://github.com/facebook/fresco/commit/02ef6e0f
https://github.com/facebook/fresco/commit/b76f56ef
https://github.com/facebook/fresco/commit/017c007b
https://github.com/parcel-bundler/parcel/commit/38d4a830
https://github.com/parcel-bundler/parcel/commit/e4cee192
https://github.com/parcel-bundler/parcel/commit/dd3ea464
https://github.com/square/okhttp/commit/daf2ec6b9


Empir Software Eng (2021) 26:  125

RENAME MOVE EXTRACT

Commit C1 Commit C2 Commit C3

Fig. 21 Example of a heterogenous refactoring subgraph from Parcel (JavaScript)

Table 12 Developers by refactoring graphs (Java)

Project Single dev. % Multiple devs. %

Elasticsearch 67 37.4 112 62.6

RxJava 77 89.5 9 10.5

Square Okhttp 32 36.8 55 63.2

Square Retrofit 14 41.2 20 58.8

Spring Framework 309 61.7 192 38.3

Apache Dubbo 20 58.8 14 41.2

MPAndroidChart 70 95.9 3 4.1

Glide 125 86.2 20 13.8

Lottie Android 11 47.8 12 52.2

Facebook Fresco 11 30.6 25 69.4

All 736 61.4 462 38.6

Table 13 Developers by refactoring graphs (JavaScript)

Project Single dev. % Multiple devs. %

Vue 41 65.1 22 34.9

React 55 51.9 51 48.1

Parcel 9 75.0 3 25.0

Hexo 10 35.7 18 64.3

Leaflet 56 90.3 6 9.7

Quill 20 100.0 0 0.0

Request 4 25.0 12 75.0

Nylas Mail 1 20.0 4 80.0

Select2 3 50.0 3 50.0

Carbon 4 44.4 5 55.6

All 203 62.1 124 37.9

Fig. 22 Example of a refactoring
subgraph created by multiple
developers in Square Okhttp
(Java)
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Fig. 23 Example of a refactoring
subgraph created by a single
developer in Facebook React
(JavaScript)
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Basically, the developer removed the prefix set from their names. After 10 months, a
second developer D2 removed a duplicated code from these methods, extracting method
checkDuration(...).32 Then, after seven months, D2 moved this method to a new class
named Util, in commit C3.33 As a result, these two developers are responsible for a refac-
toring subgraph with eight vertices and seven edges. Figure 23 shows an opposite scenario, a
subgraph from Facebook React, which was created by a single developer. After performing
five inline operations,34 the developer renamed a function, adding the prefix deprecated.35

4.2.7 (RQ6) What are the most common refactoring subgraphs?

In this last research question, we mine frequent refactoring patterns. Specifically, we search
for patterns that occur frequently in our dataset.

As presented in Table 14, in Java, we detect a total of 38 patterns using GSpan (Yan and
Han 2002). Most cases refer to over time patterns (60.5%, 23 occurrences), i.e., patterns
that happen over multiple commits. In contrast, 15 patterns (39.5%) refer to possibly atomic
patterns, that is, they can happen in single or multiple commits.

Figure 24 shows the distribution of the 38 patterns by the number of distinct projects and
their support in Java. Interestingly, four patterns appear in all studied systems. Furthermore,
75% of the patterns occur in up to eight projects, and support values range from 14 to 153.

In JavaScript, GSpan reports 15 patterns, 11 of then in the over time category (73%).
Figure 25 presents the distribution of the detected patterns. The support median is 18,
varying from 8 to 50.

In the remainder of the section, we provide an analysis of refactoring patterns consider-
ing their number of vertices. As shown in Table 14, this number ranges from three to five
vertices.

32https://github.com/square/okhttp/commit/c5a26fefd
33https://github.com/square/okhttp/commit/a32b1044a
34https://github.com/facebook/react/commit/50988911
35https://github.com/facebook/react/commit/9fe10312
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Table 14 Refactoring patterns

Vertices Java Patterns JavaScript Patterns

Over Time P. Atomic All Over Time P. Atomic All

3 23 10 33 11 3 14

4 0 4 4 0 1 1

5 0 1 1 0 0 0

All 23 15 38 13 2 15

6

2 7 8 10

Projects

27

14 19 39 153

Support (log scale)

Fig. 24 Patterns distribution (Java)
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Fig. 25 Patterns distribution (JavaScript)
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Fig. 27 Example of a refactoring graph pattern from Glide (Java, 153 occurrences)

Refactoring graph patterns with three vertices As we can observe in Table 14, in Java,
all over time patterns have three vertices. Figure 26 shows the top-5 over time patterns in
terms of support. Interestingly, the most recurrent patterns are homogeneous, that is, they
refer to successive rename operations (P1′, 153 occurrences) and move operations (P2′, 65
occurrences). In fact, P1′ appears in all studied Java systems.

Figure 27 presents a subgraph from Glide with pattern P1′. A single developer per-
formed the operations that represent the over time pattern in commits C1 and C2. First,
he renamed buildStreamOpener to buildStreamLoader .36 The developer repeated the
same operation ten days later, replacing the prefix build by get in the method’ name.37

In the case of JavaScript, support values are lower due to the sample size. However,
the results show a similar tendency. All over time patterns have three vertices, as shown in
Table 14. Besides, as presented in Fig. 26, the top-2 patterns are homogeneous.

Refactoring graph patterns with four vertices In both languages, all patterns with
four vertices belong to the possibly atomic group. Figure 28 presents an example
from Spring Framework. This graph describes multiple extract operation from method
processConstraintV iolations(...) to three methods.38 This pattern occurs in 19 sub-
graphs in our dataset.

Refactoring graph patterns with five vertices In Java, the sole graph pattern occurs in 16
subgraphs and it includes four inline operations. Figure 29 shows a refactoring subgraph
from RxJava with this pattern (P7′). In this subgraph, the inline operations involve the
removal of method threadPoolForComputation, and replacement of the respective calls
in six methods.39 There are no occurrences of patterns with five vertices in JavaScript.

36https://github.com/bumptech/glide/commit/6bbe4343c
37https://github.com/bumptech/glide/commit/c572847b4
38https://github.com/spring-projects/spring-framework/commit/c43acd7675
39https://github.com/ReactiveX/RxJava/commit/320495fde
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Fig. 28 Example of a possibly
atomic graph pattern from Spring
Framework (Java, 19
occurrences)
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5 Qualitative study: Investigating large subgraphs

5.1 Survey design

As we reported in Section 4, most subgraphs are small in terms of their number of ver-
tices, edges, and commits. For this reason, we showed small examples when discussing our
quantitative RQ results. However, we also found subgraphs describing major refactoring
operations. Therefore, the goal of this second study is to qualitatively analyze such sub-
graphs, with the purpose of investigating the motivation behind large refactoring operations
performed over time. Specifically, we conducted a survey with the developers responsi-
ble for these refactorings. The context of the study consists of nine developers’ feedback
about 66 refactoring operations from eight subgraphs. These subgraphs represent the top-1%
largest graphs in our dataset, by number of vertices.

5.1.1 Selecting refactoring subgraphs

We started by selecting the top-1% subgraphs by the number of vertices per programming
language. In this way, for Java, we picked subgraphs with at least seven vertices, resulting
in 132 instances. In the case of JavaScript, the top-1% refer to 27 subgraphs with at least six

Fig. 29 Example of a refactoring
graph pattern from RxJava (Java,
16 occurrences)
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Table 15 Precision (Java)

Refactoring # TP FP Prec. Commit Proj. Subgraphs

Extract and move 243 226 17 0.93 43 7 22

Inline 117 81 36 0.69 21 5 12

Extract 90 80 10 0.89 31 5 18

Push down 38 30 8 0.79 6 4 6

Move 24 24 0 1.00 15 7 12

Rename 23 23 0 1.00 15 6 9

Pull up 19 19 0 1.00 3 2 3

Move and rename 3 3 0 1.00 3 2 2

All 557 486 71 0.87 120 8 33

vertices. For both languages, we ordered the subgraphs by the number of vertices and we
executed the following steps for each one:

1. We identified the authors of the commits associated with the subgraph. If one of the
developers selected in this step was previously contacted, we also discarded her. Our
goal is to avoid sending more than one email per developer, reducing the perception of
our survey as spam.

2. In this last step, we manually inspected the selected subgraphs to confirm whether the
edges and vertices refer to true positives operations. As a result, we cleaned the sub-
graphs by removing false positive edges. Lastly, after those filtering steps, we contacted
the authors.

We manually inspected 50 subgraphs (33 in Java and 17 in JavaScript), comprising 16
distinct projects.40 In Java, the 33 subgraphs refer to 557 refactorings, which were detected
by RefDiff in 120 commits, as shown in Table 15. Overall, the tool presents a high preci-
sion: 486 out of 557 (87%) refactorings are true positives. For instance, the precision for
extract and move method is 93%, which is the most frequent refactoring operation (243
occurrences).

5.1.2 Contacting developers

From July to August 2020, we sent emails to 62 developers asking for the motivations
behind the refactoring subgraphs (see the template in Fig. 30). In the emails, we added a
short description of our research goals and a screenshot of the subgraph they are responsible
for. We also implemented a web app to navigate the graph structures, i.e., by using this app,
our survey participants could check the vertices names, edges, and commits. Therefore, we
included a link to the surveyed subgraphs in the survey message, as in the following example
from Elasticsearch: https://refactoring-graph.github.io/#/elastic/elasticsearch/713

We followed the same steps in JavaScript by inspecting 133 refactoring operations in
60 distinct commits, as presented in Table 16. We notice that the overall precision is also
high (93%). For instance, the most common refactoring operation is extract function (79
occurrences), whose the precision is 97%.

40https://docs.google.com/spreadsheets/d/1eBsZW37z1w1dt77S6DIukdgGZF9fndrsVZ2vYyIh5pg
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Fig. 30 Email sent to the authors of refactoring subgraphs

Table 16 Precision (JavaScript)

Refactoring # TP FP Prec. Commit Proj. Subgraphs

Extract 79 77 2 0.97 36 8 16

Move 19 19 0 1.00 9 5 7

Internal move 9 9 0 1.00 3 3 3

Rename 9 9 0 1.00 8 6 8

Extract and move 11 4 7 0.36 4 3 3

Move and rename 4 4 0 1.00 3 2 3

Inline 1 1 0 1.00 1 1 1

Internal move and rename 1 1 0 1.00 1 1 1

All 133 124 9 0.93 60 8 17

Table 17 Numbers of the qualitative study

Large refactoring subgraphs sent to authors 50

Inspected refactoring operations (edges) 690

Emails sent to author 62

Received answers 9

Response ratio 15%

Table 18 Reasons to perform large refactoring subgraphs

Motivation Subgraphs Refactorings

Fix bugs or improve existing features 5 35

Improve code design 2 30

Unclear 1 1
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Fig. 31 Example of a large subgraph from Request (G1, JavaScript)

Table 17 summarizes the numbers and statistics about this qualitative study, as previ-
ously described in this section. We received nine answers, which represents a response
ratio of 15%. Each of them corresponds to the developer’s motivation to perform a set of
refactorings. In a single case, the developer did not remember the motivation to perform
the refactorings because it involved old commits. Overall, the answers are from relevant
open-source developers. For example, we received replies from developers working in
VMware, Elasticsearch, and Square. Besides, seven developers are among the top-10 con-
tributors in the studied systems. In summary, our qualitative study contains answers from
66 refactorings instances represented in seven refactoring subgraphs. We used labels D1
to D9 to designate the developers and their responses and labels G1 to G7 to indicate the
subgraphs.

5.2 Survey results

As presented in Table 18, the survey answers suggest two major reasons behind large refac-
toring subgraphs. In the following paragraphs, we explain and provide examples for each
motivation.

Improve code design With 30 edges and two subgraphs, this category was inspired by
a recent theme proposed in the literature (Pantiuchina et al. 2020). Essentially, it groups
large refactoring operations to improve maintainability or encapsulation. As examples, we
have the following answers from two authors of the same subgraph, which is shown in
Fig. 31.41

In the first answer, D2 performed two refactoring operations by extracting a function
and moving it to a distinct file. Similarly, D3 also moved a function. In their answers, the
developers emphasized their major motivation was to improve the code design:

“Specifically in the case of [Function Name] all of the code was in a single file. The
first step toward making it more maintainable is by reducing scope, also known as
encapsulation. (...) I moved [Function Name] out, and a bunch of other functions into
separate modules in order to reduce scope, or at least try to minimize it (...)” (D2, 2
refactorings in subgraph G1)

41https://refactoring-graph.github.io/#/request/request/0
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Fig. 32 Example of a large subgraph from Square Okhttp (G4, Java)

“It was a large file. It is easier to maintain by separating in several components (...)”
(D3, 1 refactoring in subgraph G1)

Figure 32 shows a second example in this category.42 In this case, the author of one move
operation and 26 extract and move operations points that the major reason was to migrate
parts of the code to the appropriate container:

“Most of the refactorings here move code that’s logically related to also be physically
related.” (D6, 27 refactorings in subgraph G4)

Fix bugs or improve existing features In five answers (56%), developers essentially men-
tion opportunistic refactorings performed during changes to fix bugs or improve features,
which are also reported in a recent study (Paixao et al. 2020). This category includes 35
refactorings located in five distinct subgraphs. As a first example, we show an answer
related to several extract and move operations performed to create two methods, as repre-
sented in the subgraph in Fig. 33.43 D5 explains his motivation was to improve the usage of
events subscription feature:

“I did those to make sure that empty/error cases use the right objects and call the
right methods everywhere they are needed. In addition, they would now indicate in
the original method that there are no extra actions intended to be performed on those
code paths.” (D5, 15 refactorings in subgraph G3)

D8 also points to the maintainability of a feature by pushing down a method to nine
subclasses, as presented in Fig. 34.44 In this example, the goal is to support a non-mutable
communication option:

“We have a concept in [Project Name] used for reading/writing objects when forming
requests/responses for inter-node communication. That concept originally depended
on using default constructors, with mutable members (...) In order to allow non muta-
ble state in these requests/responses, we changed this model (...) I found there were

42https://refactoring-graph.github.io/#/square/okhttp/485
43https://refactoring-graph.github.io/#/ReactiveX/RxJava/784
44https://refactoring-graph.github.io/#/elastic/elasticsearch/308

Page 31 of 43     125

https://refactoring-graph.github.io/#/square/okhttp/485
https://refactoring-graph.github.io/#/ReactiveX/RxJava/784
https://refactoring-graph.github.io/#/elastic/elasticsearch/308


Empir Software Eng (2021) 26:  125

Fig. 33 Example of a large subgraph from RxJava (G3, Java)

many layers at the top of the hierarchy of classes that were no longer needed (...) The
change referenced here was to remove the [Method Name] from base classes that no
longer contained any logic.” (D8, 9 refactorings in subgraph G6)

As a last example involving fixing an existing thread-related bug, we show D7’s answer.
In this case, the developer performed the refactorings to provide a safe mode to instantiate
a class, generating the subgraph in Fig. 35:45

“We pushed everything from the front-facing API class (...) that enabled us to call the
existing [Class Name] thread safe because each use of it would now create and use a
new instance (...) Prior to the change if two threads had the same [Class Name] and
called parse at the same time, I think it would get into a mess.” (D7, 6 refactorings in
subgraph G5)

Finally, in two answers, the motivation is also related to fixing bugs:

“(...) I centralized some repeated code around timeouts and fixed a bug where it wasn’t
cleared properly.” (D1, 3 refactorings in subgraph G1)

“I was doing closure elimination and memory leakage fix in the two refactoring (...)”
(D4, 2 refactorings in subgraph G2)

6 Discussion and implications

Refactoring over time & programming languages In this paper, we analyzed refactoring
graphs in two different programming languages: JavaScript and Java. These languages have
distinct styles. Java is a strongly-typed and object-oriented programming language, while
JavaScript is an interpreted and dynamic language. Despite their distinct properties, our
results regarding refactoring operations over time are similar in both languages, as sum-
marized in Table 19. For example, in both languages, most subgraphs are small (RQ1) and
heterogeneous (RQ4). On the other hand, there is a significant variation in the absolute num-
ber of detected refactoring subgraphs. We found 1,198 subgraphs over time in Java and 327
subgraphs in JavaScript. However, considering the relative rate, the results remain similar
(13% in Java, 15% in JavaScript).

Detecting refactorings over time Several tools and techniques are proposed in the lit-
erature to detect refactoring operations, such as Refactoring Crawler (Dig et al. 2006),

45https://refactoring-graph.github.io/#/spring-projects/spring-framework/2820

125    Page 32 of 43

https://refactoring-graph.github.io/#/spring-projects/spring-framework/2820


Empir Software Eng (2021) 26:  125

Fig. 34 Example of a large
subgraph from Elasticsearch
(G6, Java)

RefFinder (Kim et al. 2010), Refactoring Miner (Tsantalis et al. 2013; Silva et al. 2016),
and, more recently, RefDiff (Silva and Valente 2017) and RMiner (Tsantalis et al. 2018;
Tsantalis et al. 2020). In common, those approaches only detect atomic refactorings, i.e.,
operations that happen in a single commit and performed by a single developer. However,
as presented in Section 4, there is a significant rate of refactoring operations spreading
over multiple commits (RQ0). In contrast, our approach, refactoring graphs, focuses on the
detection of refactorings over time, i.e., operations over multiple commits and performed by
multiple developers. Moreover, differently from the batch refactoring (Murphy-Hill et al.
2009; Bibiano et al. 2019; Cedrim 2018), our approach is not constrained by the number of
developers nor to a time window. Indeed, we found refactoring subgraphs with age rang-
ing from weeks to months (RQ3) and created by multiple developers (RQ5). Therefore, we
contribute to the refactoring literature with a novel approach to detect and explore refac-
toring operations in a broader perspective to complement existing tools and techniques. In
addition, these tools do not cluster refactoring operations performed in multiple steps. For
example, suppose a developer extracted class Foo from class Bar in commit C1. In this
case, the tool used in this paper detects an Extract Class, since the refactoring generates a
new entity. However, if she keeps moving methods fromBar to Foo in the next commits, the
tool does not group these operations. Instead, it reports them as isolated move operations.
Therefore, we also envision studies on new strategies to cluster or group related refactorings
performed in multiple steps. Besides, it would be interesting to evaluate the impact of such
“missing” operations in the results and findings of previous empirical studies that relied on
atomic refactoring detection tools (Bibiano et al. 2019; Sousa et al. 2020; Hora et al. 2018;
Paixao et al. 2020; AlOmar et al. 2021; Vassallo et al. 2019; Brito et al. 2018).

Refactoring comprehension and improvement When performing code review, develop-
ers often adopt diff tools to better understand code changes, and decide whether they will
be accepted or not. In this process, developers may also look for defects and code improve-
ment opportunities (Bacchelli and Bird 2013). However, if the reviewed change is large and

Fig. 35 Example of a large
subgraph from Spring Framework
(G5, Java)
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Table 19 Summary of refactoring graphs properties

RQ Description Java JavaScript

− Refactoring sub-
graphs over time

1,198 subgraphs (13%) 327 subgraphs (15%)

− Level Method Function

RQ0 Refactoring ope-
rations over time

3,853 (29%) operations are part of
subgraphs over time

902 (32%) operations are part of
subgraphs over time

RQ1 Size in vertices Most subgraphs are small (median
= 3)

Most subgraphs are small (median
= 3)

RQ1 Size in edges Most subgraphs are small (median
= 2)

Most subgraphs are small (median
= 2)

RQ2 Number of
commits

Most subgraphs are created from at
most three commits (1,135 occur-
rences, 95%)

Most subgraphs are created from
at most three commits (304 occur-
rences, 93%)

RQ3 Age 64% have more than one month 67% have more than one month

RQ4 Refactoring
types

Most subgraphs represent rename
method (20%), move method
(18%), and extract and move
method (17%)

Most subgraphs represent extract
function (26%), move function
(26%), and rename function (24%)

RQ4 Homogeneity Most subgraphs are heterogeneous
(852 occurrences, 71%)

Most subgraphs are heterogeneous
(209 occurrences, 64%)

RQ5 Ownership Most subgraphs are created by a
single developer (736 occurrences,
61%)

Most subgraphs are created by a
single developer (203 occurrences,
62%)

RQ6 Refactoring
Patterns

The top-3 over time patterns are
rename → rename (153 occur-
rences), move → move (65), and
rename → move (44)

The top-3 over time patterns are
move → move (41 occurrences),
rename → rename (37), and
rename → move (29)

complex, this task becomes challenging (Bacchelli and Bird 2013). To alleviate this issue,
refactoring-aware code review tools were proposed (Hayashi et al. 2013; Ge et al. 2014; Ge
et al. 2017; Brito and Valente 2021) to better understand changes mixed with refactorings.
Refactoring graphs can contribute to handle this issue by providing navigability at method
level. That is, a code reviewer may navigate back in a method to reason how a similar
change was performed. For example, in Fig. 22, a code reviewer may investigate whether
all methods were properly renamed in the past, before accepting commit C3. Thus, refactor-
ing graphs can be integrated to code review tools to better support code understating and
improvement.

Detecting refactoring patterns and smells In our qualitative study, we investigated sub-
graphs describing large refactoring operations (RQ1). As we can notice, these subgraphs
may represent the improvement of pieces of code. For instance, Fig. 32 shows a large
subgraph from our dataset. Among the refactoring instances, there are 21 extract method
operations, generating a single method with two lines of code. This method is represented
as a node in the subgraph (in the bottom), which is the node with the highest in-degree, i.e.,
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the highest number of edges coming to it. Therefore, it may indicate a pattern to move a spe-
cific duplicated code to an appropriate container. In addition, there is an interesting question
in this context: could the developer extract these two lines from another part of the project?
In other words, should the graph have more edges? In the same way, a high out-degree of
a node, i.e., a high number of edges leaving it, can suggest an anomaly on a method. For
example, Fig. 17 shows a subgraph with four extract operations from a single method. In this
case, it is probably a frequent behavior during a method evolution, since in RQ6, we identify
refactoring graph patterns that are formed by three extract operations (Fig. 28). However,
a method which is decomposed several times over time (i.e., high out-degree) can reveal
a code design problem. Thus, refactoring graphs can foment the detection of refactoring
anomalies over time and drive future research agenda on refactoring patterns.

Understanding and assessing software evolution During software evolution, developers
often perform refactoring operations. Consequently, the link between methods may be lost
(Hora et al. 2018). For example, if a method a() is renamed to b() and then extracted to c(),
it becomes quite hard to trace a() to c(), and vice versa. This has several implications to
software evolution research, particularly on studies that assess multiple code versions, such
as code authorship detection (Avelino et al. 2016; Rahman and Devanbu 2011; Meneely and
Williams 2012; Spinellis 2017; Hattori and Lanza 2009), code evolution visual supporting
(Gómez et al. 2010; 2015), bug introducing change detection (Kim et al. 2006; Zimmer-
mann et al. 2006; Rahman et al. 2011; Chen et al. 2014; Ray et al. 2016), to name a few. In
practice, these studies often rely on tools provided by Git and SVN, such as git blame
and svn blame, which show what revision and author last modified each line of a file.
However, this process is sensitive to refactoring operations (Avelino et al. 2016; Hora et al.
2018). As Git and SVN tools cannot track fine-grained refactoring operations, particularly
at method level, these approaches may miss relevant data. For instance, in the aforemen-
tioned example, it would be not possible to detect that method c() was originated in method
a(). Consequently, we would be not able to find the real creator of method c() nor the devel-
oper who introduced a bug on c(). As shown in Section 4, most subgraphs are small (RQ1)
and have few commits (RQ2), suggesting that the whole history of the elements may con-
tain a few ruptures due to refactoring. However, it still may reflect a significant impact on
the retrieval of source code changes (Grund et al. 2021; Hora et al. 2018). With refactoring
graphs, we are able to resolve method names over time, thus, software evolution studies can
benefit as more precise tools can be created on the top.

7 Threats to validity

Generalization of the results We analyzed 1,525 refactoring subgraphs from 20 popular
and open-source Java and JavaScript systems. Therefore, our dataset is built over credible
and real-world software systems. Our qualitative study reinforces recent results about moti-
vations to refactor a source code (Paixao et al. 2020; Silva et al. 2016; Pantiuchina et al.
2020), which were reported in another contexts. Also, the motivations are based on answers
from relevant contributors to the open-source community. Despite these observations, our
findings—as usual in empirical software engineering—may not be directly generalized to
other systems, particularly commercial, closed source, and the ones implemented in other
languages than Java and JavaScript. Finally, we focus our study on eight refactorings at
method level (Java) and eight refactorings at function level (JavaScript). Thus, other refac-
toring types can affect the size of subgraphs. We plan to extend this research to cover
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software systems implemented in other programming languages and refactorings at class
level.

Adoption of REFDIFF We adopted REFDIFF to detect refactoring operations because it is
the sole refactoring detection tool that is multi-language, working for Java, JavaScript, C,
and Go (Brito and Valente 2020; Silva et al. 2021). It is also extensible to other program-
ming languages. In our first study (Brito et al. 2020), we concentrated on Java systems.
In this second study, we include refactoring subgraphs in JavaScript. Thus, as we planned
to extend this research to cover other programming languages than Java, REFDIFF was the
proper solution. Besides, despite being multi-language, REFDIFF accuracy is quite high. For
example, in the current version (Silva et al. 2021), the authors provide an evaluation of the
tool for three languages: Java (precision: 96.4%; recall: 80.4%), JavaScript (precision: 91%;
recall: 88%), and C (precision: 88%; recall: 91%). The recent evaluation for Go reports
92% of precision and 80% of recall (Brito and Valente 2020). In our dataset, the tool also
presents a high precision for Java (557 refactoring instances; precision: 87%) and JavaScript
(133 refactoring instances; precision: 93%). Recently, Tsantalis et al. (2018, 2020) proposed
the refactoring detection tool REFACTORINGMINER. In the current version (Tsantalis et al.
2020), REFACTORINGMINER has a precision of 99.6% and recall of 94%, improving on
REFDIFF’s overall accuracy. However, REFACTORINGMINER works only for Java projects.
Finally, REFDIFF detects refactorings using a generic data structure called Code Structure
Tree (CST). The generation of this data structure for JavaScript relies on a simplified call
graph due to the dynamic nature of the language. This might result in a higher rate of false
negatives. However, the authors mention the tool “works well even when the information
encoded in the CST is not completely precise”(Silva et al. 2021).

Building refactoring graphs When creating the refactoring graphs, we cleaned up our data
(i.e., vertices and edges) to keep only meaningful subgraphs. For instance, in Java, we
removed constructor methods (vertices) from our analysis because they include mostly ini-
tialization settings, and do not have behavior as conventional methods. In JavaScript, we
removed refactorings in anonymous functions, i.e., functions without a name, since it is
necessary to generate the vertices in the refactoring subgraphs. We also removed some very
specific cases of refactoring (edges) in which REFDIFF reported operations in same ele-
ment. However, these cases are not likely to affect our results because they only represent a
fraction of the refactoring operations. For example, REFDIFF detected 89% of the removed
operations in anonymous functions in only two systems (Facebook React, 85 occurrences;
Hexo, 82 occurrences). Finally, the refactoring subgraphs can include unintentional opera-
tions (e.g., reverted commits by automatic deployment systems). To mitigate this threat, we
focus our study on the main branch evolution to avoid experimental or unstable versions.
Additionally, our results can miss refactoring operations that have not been merged on the
main branch. However, as mentioned in previous studies (Hora et al. 2018), this strategy
provides a safe overview of the system, avoiding refactorings performed in experimental
code. Also, the qualitative study confirmed the selected branches are active ones. For exam-
ple, developers mentioned large refactoring operations to implement features or improve
code design in commits from these branches.

Detection of developers In RQ5, we investigate the number of developers per refactoring
subgraphs. We used the email available on git log to distinguish the author of the commits.
Thus, our results can include, for example, the same developer committing with different
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email addresses. But, we already found that most cases are subgraphs created by a single
developer.

Large refactoring graphs motivations In the qualitative study, the refactoring subgraphs
were manually inspected by the first paper’s author. Although this inspection might be an
error-prone task, it was carefully performed during about a month. Furthermore, we did not
receive complaints from the survey participants about false positives that were not detected
in this analysis. Our analysis is also publicly available.46

8 Related work

8.1 Studies on refactoring evolution

Refactoring is an usual practice during software evolution and maintenance. Constantly,
developers refactor the source code for different purposes (Silva et al. 2016; Wang 2009;
Pantiuchina et al. 2020). For this reason, several studies concentrate on this research field
(Murphy-Hill et al. 2009; Bibiano et al. 2019; Lin et al. 2019; Dig et al. 2006; Kim et al.
2014; Kim et al. 2016; Szóke et al. 2016; Bavota et al. 2015; Bavota et al. 2012; Dig and
Johnson 2005; Shen et al. 2019; Terra et al. 2018; Alves et al. 2014; Lin et al. 2016; Chaparro
et al. 2014; Hora and Robbes 2020). Among those, some research focus on assessing sets
of related refactoring. Specifically, these studies analyze batch refactorings (Murphy-Hill
et al. 2009; Bibiano et al. 2019; Fernandes 2019; Tenorio et al. 2019; Fernandes et al. 2019;
Cedrim 2018). Murphy-Hill et al. (2009) analyzed four datasets from different sources,
all of these including metadata about the usage of Eclipse IDE. For instance, the dataset
named Everyone contains Eclipse refactoring commands used by developers. Based on
these datasets, the authors discuss usage and configurations of refactoring tools, frequency
of refactoring operations, and commit messages. They also investigated refactorings oper-
ations executed in 60 seconds, which are named batches. The authors state that the some
refactorings types are more common in batches, such as rename, introduce a parameter,
and encapsulate field. Besides that, about 47% of refactorings performed using a refactor-
ing tool happen in batches. However, the baches involve a short period: the study does not
investigate refactorings operations that occur in different moments over time.

In another context, Bibiano et al. (2019) point out that sets of related refactorings can
solve problems due to code smells. The authors studied 54 GitHub projects and three closed
systems. First, they used RMiner tool to detect 13 well-know refactorings (Tsantalis et al.
2018), resulting in 24,893 operations. Then, the authors applied a heuristic to compute batch
refactorings, i.e., set of related refactorings (Cedrim 2018). The heuristic includes two main
requirements do retrieve a batch refactoring: (i) there are more than two refactoring oper-
ations in a single entity and (ii) the operations are from a single developer. The results are
4,607 batch refactorings. Next, the authors used another tool and scripts to identify more
than 41K code smell occurrences in these systems. Finally, the authors computed the effect
of batch refactorings to remove code smells. The main results show that most batches have
only one commit (93%) and two refactoring types. Also, the authors state that batches have a
negative or neutral effect on code smells (81%). However, the authors focus on code smells

46https://docs.google.com/spreadsheets/d/1eBsZW37z1w1dt77S6DIukdgGZF9fndrsVZ2vYyIh5pg
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and operations performed by a single developer. In our study, the subgraphs involve refac-
toring over time (i.e., more than one commit), including subgraphs by multiples developers
and different code elements. A second study reuses the heuristic proposed Bibiano et al.
(2019) and introduces two new ones (Sousa et al. 2020), which are based on refactorings in
the same commit and scope of the operations. As in our first study (Brito et al. 2020), the
authors also discuss refactorings properties as the number of commits and refactoring types.
However, the study focuses on code smells and a single programming language (Java). Other
studies also discuss the impact of batches to eliminate code smells, proposing approaches to
reuse or suggest sets of related refactoring operations (Tenorio et al. 2019; Fernandes et al.
2019; Jiau et al. 2013; Bibiano et al. 2020). Thus, they do not focus on related refactoring
operations over time.

In his seminal book on refactoring, Fowler (1999) dedicates a chapter—co-authored with
Kent Beck—to a similar term called big refactoring. The author points out that most refac-
torings are atomic, i.e., they are finished in a few minutes. By contrast, big refactorings are
performed during months or years. However, in Fowler’s book such refactorings are dis-
cussed in the context of large modularization performing to improve the architecture of a
system.

Hora et al. (2018) analyze untracked changes during software development. The authors
show that refactorings invalidate several tracking strategies to evaluate system evolution. As
in our study, they represent evolutionary changes as graphs. In this case, each node refers to a
class or a method, and the edges indicate tracked changes (i.e., entities that keep their names
after a modification) and untracked changes (i.e., entities that change their names after a
refactoring). That is, a graph represents traceable changes or alterations that split the entity’s
history. The results point up to 21% of the changes at the method level and up to 15% at the
class level are untraceable. By contrast, in our study, the goal is to investigate refactorings
performed over long time windows; we do not concentrate on tracked modifications on
source code.

Meananeatra (2012) also reports changes during software evolution as graphs. However,
the study concentrates on refactoring sequences to remove long methods. The author pro-
poses an approach based on two main criteria to detect an optimal set of refactorings. An
optimal refactoring sequence centers on four metrics: number of removed bad smells, size
of the refactoring sequence, number of the affected code elements, and the maintainability
value (i.e., analyzability, changeability, stability, and testability). The technique represents
candidate refactoring sequences as graphs. In this case, a graph contains a root node rep-
resenting the original method version with smells. Each new node denotes a new method
version after a refactoring operation. As in our study, the edges refer to refactorings. By
contrast, the nodes represent the same method before and after the changes. Each path in
the graph is a candidate refactoring sequence, which can meet the selection criteria. Thus,
the study does not focus on real refactorings over time. Instead, the graph model represents
steps to decompose a long method.

8.2 Studies on refactoring comprehension

The literature proposes several studies on refactoring comprehension. In this case, the goal
involves understanding refactoring activities by investigating, for example, benefits and
challenges (Kim et al. 2012; 2014), merge conflicts (Mahmoudi et al. 2019), motivations to
refactor a source code (Wang 2009; Silva et al. 2016; Pantiuchina et al. 2020; Peruma et al.
2018), association with technical debt (Iammarino et al. 2019), and refactoring opportunities
(Catolino et al. 2020).
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Silva et al. (2016) performed firehouse interviews to understand the reasons behind refac-
toring operations in GitHub projects. Based on 195 developers’ answers, the authors found
44 reasons to refactor methods and attributes in Java. As in our study, the authors con-
tacted GitHub developers by email and used thematic analysis to examine the responses
(Cruzes and Dyba 2011). Five refactoring instances are also in our study: extract method,
move method, inline method, pull up method, and push down method. Besides that, there are
related motivations in our category improve code design (e.g., the movement of elements
to an appropriate container). However, in our research, we investigate sets of refactoring
operations that generate large subgraphs in Java and JavaScript systems. This is different
from the mentioned study, which focuses on motivations behind refactorings performed in
a single commit and Java projects. That is, in this study, we explore another perspective,
centering on a large set of refactoring activities over time in distinct software ecosystems.

A recent study also assesses motivations behind refactoring instances (Pantiuchina et al.
2020). The authors conducted quantitative and qualitative research on a large scale by ana-
lyzing refactoring activities in 150 GitHub projects. In the quantitative part, the authors
discuss metrics involving code quality (e.g., number of elements, the coupling between
classes), code smells, and process-related factors (e.g., number of commits in releases, num-
ber of fixed bugs). The qualitative results extend the catalog proposed by Silva et al. (2016),
adding 26 new ones. The motivations are based on discussions in 551 pull requests, as well
as comments in the related commits. Our category improve code design is inspired by a core
theme proposed by this research, involving the improvement of encapsulation and main-
tainability. Besides, our category “fix bugs or improve existing features” also incorporates
another theme, which is called “Prevent Bugs”. Interestingly, the main authors’ findings
point out that 52% of the cases, the discussions do not focus on a particular refactoring, i.e.,
the developers mention a combination of refactoring operations. However, the study focuses
only on operations mentioned in pull requests and Java projects.

Lastly, the improvement of existing features is also reported in a recent study about
refactoring operations in the code review process (Paixao et al. 2020). Similar to our results
and previous researches (Silva et al. 2016; Pantiuchina et al. 2020; Palomba et al. 2017),
the authors mention the occurrence of refactoring operations associated with feature main-
tenance or bug fixing. The authors also reinforce the idea that refactoring is not a sole
operation by investigating sequences in code reviews. The main findings point to extract
methods occurring with other refactoring types in the Java ecosystem. In RQ6, we used the
Gspan algorithm to investigate refactoring patterns in the subgraphs (Yan and Han 2002).
However, in our study, the most recurrent pattern in Java refers to successive rename oper-
ations, occurring in 153 subgraphs. Our results also suggest that patterns do not necessarily
occur between reviews. That is, refactoring patterns can happen in a single commit, i.e.,
atomic subgraphs.

9 Conclusion

In this paper, we present refactoring graphs, an approach to assess refactoring operations
over time. We analyzed 1,525 refactoring subgraphs from 20 popular systems and two pro-
gramming languages, Java and JavaScript. We then investigate seven research questions to
evaluate the following properties of refactoring graphs: operations over time, size, commits,

Page 39 of 43     125



Empir Software Eng (2021) 26:  125

age, homogeneity, ownership, and patterns. In both languages, the results suggest a similar
tendency. We summarize our findings as follows:

– Approximately 30% of refactoring operations are part of a refactoring subgraph over
time.

– The majority of the refactoring subgraphs are small (four nodes and three edges).
However, there also outliers with dozens of nodes and edges.

– Most refactoring subgraphs have up to three commits.
– Refactoring subgraphs span from few days to months.
– Refactoring graphs are often heterogeneous, that is, they are composed by several types

of refactoring.
– Refactoring graphs are mostly created by a single developer.

In the last research question, we mine graph patterns in approximately 9k subgraphs in
Java and 2k subgraphs in JavaScript. Our results point to recurring graph patterns over time
formed by two edges (e.g., successive rename operations). As a complementary perspective,
we also perform a qualitative study with large refactoring subgraphs from our dataset, i.e.,
subgraphs with several vertices and edges. We contacted the developers, asking for the moti-
vation for their operations. Considering nine developers’ answers, 66 refactoring instances,
and seven subgraphs, our results suggest that large refactoring subgraphs are motivated by
well-know maintenance activities, involving the improvement of code design, fixing bugs,
or the improvement of features. However, it is also important to mention that a single graph
may include multiple of such motivations.

Based on our findings, we provided further discussion and implications to our study.
Particularly, (i) we discuss our contributions regarding refactoring tools as a novel approach
to explore refactoring operations in a broader perspective; (ii) we argue that refactoring
graphs can be integrated to code review tools to better support code comprehension; (iii)
we claim that refactoring graphs can play a role on the detection of refactoring patterns and
anomalies; and (iv) we state the importance of refactoring graphs to resolve method names
and support software evolution studies.

Further studies can consider refactoring graphs based on class level; novel approaches
to complement existing tools and techniques that focus on atomic refactorings; and also
other popular programming languages and ecosystems (e.g., the current REFDIFF version
also supports languages C and Go (Brito and Valente 2020; Silva et al. 2021)). Also, we
are planning future studies on using refactoring graphs to track changes at the method level.
Specifically, we intend to design and implement an Application Interface Programming
(API) for incorporating refactoring graphs in software mining and tracing tools (Grund et al.
2021; Higo et al. 2020; da Cost et al. 2017; Neto et al. 2018; Spadini et al. 2018). In such
future studies and tools, we also point out possible improvements in the current refactoring
graph design, such as an alternative design that handles cycles and different presentation
layouts to distinguish the temporal distance between edges.
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