
Empirical Software Engineering (2021) 26: 11�
https://doi.org/10.1007/s10664-021-10018-0

Maintenance-related concerns for post-deployed
Ethereum smart contract development: issues,
techniques, and future challenges

Jiachi Chen1 ·Xin Xia1 ·David Lo2 · John Grundy1 ·Xiaohu Yang3

Accepted: 6 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Software development is a very broad activity that captures the entire life cycle of a software,
which includes designing, programming, maintenance and so on. In this study, we focus on the
maintenance-related concerns of the post-deployment of smart contracts. Smart contracts
are self-executed programs that run on a blockchain. They cannot be modified once deployed
and hence they bring unique maintenance challenges compared to conventional software.
According to the definition of ISO/IEC 14764, there are four kinds of software maintenance,
i.e., corrective, adaptive, perfective, and preventive maintenance. This study aims to answer
(i) What kinds of issues will smart contract developers encounter for corrective, adaptive,
perfective, and preventive maintenance after they are deployed to the Ethereum? (ii) What
are the current maintenance-related methods used for smart contracts? To obtain the answers
to these research questions, we first conducted a systematic literature review to analyze 131
smart contract related research papers published from 2014 to 2020. Since the Ethereum
ecosystem is fast-growing, some results from previous publications might be out-of-date and
there may be a gap between academia and industry. To address this, we performed an online
survey of smart contract developers on Github to validate our findings and received 165
useful responses. Based on the survey feedback and literature review, we present the first
empirical study on smart contract maintenance-related concerns. Our study can help smart
contract developers better maintain their smart contract-based projects, and we highlight
some key future research directions to improve the Ethereum ecosystem.

Keywords Empirical study · Literature review · Smart contracts · Ethereum ·
Smart contracts maintenance

1 Introduction

With the great success of Bitcoin (Nakamoto 2008), considerable attention has been paid
to the emerging concepts of blockchain technology (Blockchain 2019). However, the usage

Communicated by: Daniel Méndez

� Xin Xia
xin.xia@monash.edu

Extended author information available on the last page of the article.

Published online: 25 August 2021/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10018-0&domain=pdf
http://orcid.org/0000-0002-6302-3256
mailto: xin.xia@monash.edu

Empir Software Eng (2021) 26: 11�

scenario of Bitcoin is limited, as the main application of Bitcoin is storing and transfer-
ring monetary values (Efanov and Roschin 2018). The appearance of Ethereum (2019) at
the end of 2015 removed many of the limitations of blockchain-based systems. Ethereum
leverages a technology named smart contracts, which are Turing-complete programs that
run on the blockchain (Wood 2014). Blockchain technology gives immutable, self-executed,
and decentralized features to these smart contracts. This in turn means that smart contracts
cannot be modified once deployed to the blockchain, and all of their execution depends
on this immutable code. Running these smart contracts across highly distributed servers
costs “gas”, which in turn costs money. These features ensure the trustworthiness of smart
contracts and make the technology attractive to developers and users. By utilizing smart
contracts, developers can easily develop Decentralized Applications (DApps) (2019), which
have been applied to different areas, such as IoT (Chen et al. 2018b), financial (Fabian and
Vitalik 2018), gaming (Cryptokitties 2019), and data security domain (Velner et al. 2017).

Like all computer code, smart contracts may have errors or developers might want to
extend their features in the future. However, some features of Ethereum – like the gas sys-
tem and smart contract immutability – make smart contracts much harder to maintain than
conventional software (Bosu et al. 2019). Ethereum is a permission-less network and sen-
sitive information – transactions, bytecode and balance of smart contracts – are visible to
everyone, and everyone can call the contract by sending transactions (Wood 2014). These
features increase possible security threats and counter-actions needed. Smart contracts on
Ethereum have several other unique characteristics – the use of the “gas” system to fund
running of transactions; relatively few patterns and standards for structuring smart contract
code; lack of source code available for most deployed smart contracts; and relative lack of
tools to check smart contracts for errors, compared to conventional software. All of these
features increase the difficulty of smart contract maintenance.

In software engineering, the term software maintenance refers to the modification of
a software product after delivery to correct faults and to improve performance or other
attributes (Pigoski 1996). It is a very broad activity according to the definition of ISO/IEC
14764 (ISO/IEC 2006). There are four main kinds of maintenance, i.e., adaptive, perfective,
corrective, and preventive maintenance. In the context of the four categories of maintenance,
the following illustrate the potential impact of such factors on smart contract maintenance:

• Adaptive maintenance aims to keep software usable in a changed or changing envi-
ronment. However, the running environment of smart contracts is often unpredictable.
For example, smart contracts usually call other contracts. However, the callee contracts
might crash and cannot work anymore. Since the callee contracts are immutable, the
crash of the callee contract can lead to serious consequences of the caller contract. The
unpredictable environment makes it very difficult to conduct adaptive maintenance for
smart contracts.

• Perfective maintenance is used to improve the performance or maintainability by
adding new requirements and functionalities newly elicited from users. However, the
scalability issues and the gas system of Ethereum make smart contracts difficult to add
too many functionalities, else they become very costly to run and unwieldy.

• Corrective maintenance focuses on fixing discovered bugs and errors in a program.
The lack of tools and community support due to the relative newness of smart contracts
makes it hard to detect and remove smart contract bugs.

• Preventive maintenance aims to remove latent faults of programs before they become
operational faults. For example, a code smell is a characteristic in the source code that
possibly indicates a deeper problem (Fowler and Beck 1999). Refactoring the code

117 Page 2 of 44

Empir Software Eng (2021) 26: 11�

to remove code smells to increase software robustness is a typical preventive maintenance
method. However, due to the immature ecosystem of smart contracts, it is not easy to
find appropriate advanced methods to conduct preventive maintenance for smart contracts.

In this paper, we focus on the maintenance-related concerns of post-deployment smart
contracts. Unlike traditional programs that can be upgraded directly, to maintain a smart
contract, developers usually need to redeploy a smart contract and discard the old ver-
sion. Although maintaining smart contracts is not easy, it is still important to find methods to
maintain them. For example, in 2016, attackers found the DAO (Decentralized Autonomous
Organization) smart contract contains a vulnerability named Reentrancy (Chen et al. 2020b;
Luu et al. 2016). This vulnerability was then utilized by attackers and led to the famous DAO
attack (Siegel D 2018), which made the DAO lose 3.6 million Ethers (about $20/Ether when
the attack happened). According to recent research (Kalra et al. 2018; Liu et al. 2018a), a
similar vulnerability is prevalent in Ethereum smart contracts; all of these contracts can be
attacked and lead to financial loss. Thus, it is important to conduct corrective maintenance
for these contracts to remove issues like the Reentrancy vulnerability to ensure the contracts
are bug-free and robust.

Many previous works (Zou et al. 2019; Parizi et al. 2018a; Bosu et al. 2019; Chakraborty
et al. 2018; Li et al. 2017) conduct empirical studies to investigate the challenges to the
entire software development life cycle of smart contracts. This includes smart contract
design, programming, security, maintenance, documentation and so on. However, none
focus exclusively on smart contract maintenance. To fill this gap, we provide a comprehen-
sive empirical study on smart contract maintenance based on a systematic literature review
that covers 131 smart-contract-related papers selected from a collection of 946 papers to
find maintenance-related challenges, and methods for smart contracts. Our study aims to
answer the following two key research questions:

RQ1: What kinds of maintenance issues will smart contract developers encounter? We
identify 9 issues related to corrective, adaptive, perfective, and preventive maintenance,
and another 4 issues corresponding to the overall maintenance process for smart contracts.
These maintenance issues are extracted from previous publications. Since Ethereum and
smart contracts are fast-evolving, some results from previous works might be outdated.
There might be a gap between academia and industry. For example, Zhou (2019) mentioned
that smart contracts miss the support of exception handling, e.g., the try...catch. However,
Solidity adds the exception handling in v6.0 (Solidity 2020b). To make our results more
reliable, we use an online survey to validate our findings. We sent the survey to 1,500 smart
contract developers on Github, and received 165 useful responses. The feedback from the
survey can also be a supplement to our findings. We analyze the reasons for smart contract
maintenance issues according to the survey results.

RQ2: What are the current maintenance methods for smart contracts? To help devel-
opers maintain smart contracts, we summarize four kinds of current maintenance methods
from 41 publications. 31 publications introduce offline checking methods to help devel-
opers maintain smart contracts. They can help maintain smart contracts before they are
deployed/redeployed to Ethereum. Seven publications introduced online checking methods,
which can help maintain deployed smart contracts by detecting malicious input or auto-
matically upgrading smart contracts. Two previous works suggested developers to use the
Selfdestruct function to undo contracts when emergencies happen. Another work describes
how smart contract can be upgraded by using DELEGATECALL instruction.

Page 3 of 44 117

Empir Software Eng (2021) 26: 11�

The main contributions of this paper are:

• To the best of our knowledge, this is the first in-depth empirical study that focuses on
the maintenance issues of smart contracts on Ethereum, and we divide the issues into
four categories.

• Our study identifies the key current maintenance methods used for smart contracts,
which gives guidance for smart contract developers to better maintain their contracts.

• Our study highlights the limitations and possible future work related to smart contracts
on Ethereum. This gives directions for smart contract developers and researchers to
develop improved tools and focus future research.

The remainder of this paper is organized as follows. In Section 2, we provide background
knowledge of smart contracts and Ethereum. In Section 3, we introduce the methodology to
conduct the literature reviews and the survey. After that, we present the answers to the two
research questions in Sections 4 and 5, respectively. In Section 6, we highlight key threats to
validity. We discuss what should be done in the future to improve the Ethereum ecosystem
in Section 7 and review related work in Section 8. Finally, we conclude the whole study in
Section 9.

2 Background

2.1 Ethereum

In 2008, the first blockchain-based cryptocurrency named Bitcoin was introduced and
demonstrated the enormous potential of blockchain to the world. However, the biggest limi-
tation of Bitcoin is that it only allows users to encode non-Turing-complete scripts to process
transactions, which greatly limits its capability. To address this limitation, Ethereum was
born at the end of 2015 and brought a revolutionary technology named smart contracts.
Nowadays, Ethereum has become the second most popular blockchain system and the most
popular platform on which to run smart contracts. Similar to Bitcoin, Ethereum also pro-
vides its cryptocurrency and names it as Ether. In Jan. 2018, Ether reached its highest value
to $1389 / Ether (Marketcap 2020). Unlike Bitcoin, which has a fixed number of coins (21
million in total), 18 million Ethers are created every year (Wood 2014) (and 72 million Ether
were generated at its launch). Currently, two new Ethers are created with each block, and it
requires about 14-15s to create a new block; the average Ethereum block size is between 20
to 30 KB, and the biggest Ethereum block size is around 2MB (Ethstates 2020). Ethereum
does not support concurrency, and all transactions need to be executed by all nodes, which
leads to a low throughput of Ethereum. Ethereum only allows about 15 transactions per sec-
ond on average (EtherScan 2018), which has become one of its biggest limitations. At the
end of 2017, there is a famous smart-contract-based game named CryptoKitties (Cryptokit-
ties 2019) published in the Ethereum. However, the popularity of the game slowed down all
transactions as too many players sent transactions to the Ethereum blockchain.

2.2 Hard Fork and Soft Fork

Any software or operating system needs periodic upgrades to fix errors or add new func-
tionalities. For the blockchain system, those updates are called a “fork”. There are two kinds
of forks, i.e., hard fork and soft fork.

117 Page 4 of 44

Empir Software Eng (2021) 26: 11�

Hard Fork Figure 1 shows an example of a hard fork. The blockchain system is a decentral-
ized network. All the nodes on the network need to follow the same rules. The set of rules
is known as the protocol. In Fig. 1, the blue block is called a divergence block, where the
blockchain system updates its protocol. When a protocol is updated, and the new protocol
is not backwards-compatible. Some nodes on the blockchain do not accept the new proto-
col, and they choose to use the old version. Thus, the blockchain forks into 2 incompatible
blockchains, which run the new and old protocol, respectively.

Soft Fork Updates of protocols by soft fork are backwards-compatible. Nodes that did not
upgrade to the new version will still be able to participate in validating and verifying trans-
actions. In this case, there is only one chain on the blockchain when using a soft fork. Notice
that the functionality of a node with the old protocol is also affected. As the example in
Fig. 2 shows, the maximum block size allowed by the old protocol is 3MB, and the new pro-
tocol limits the block size to 2MB. The non-upgraded nodes can still process transactions
and push new blocks that are 2MB or less. However, if a non-upgraded node tries to push a
block that is greater than 2MB, the upgraded nodes will reject to broadcast the block, which
encourages the non-upgraded nodes to update the new protocols.

2.3 Smart Contracts

Smart contracts can be regarded as Turing-complete programs that run on the blockchain
(Wood 2014). They are usually developed in a high-level language, e.g., Solidity, Vyper
(2020). Solidity is the most popular programming language with which to develop smart
contracts on Ethereum. Based on the immutable blockchain technology concept, smart con-
tracts cannot be modified once added to the blockchain. Once started, all running of the
contract is based on its code. No one can affect it, not even the creator. Ethereum uses
EVM (Ethereum Virtual Machine) to execute smart contracts. When developers deploy a
smart contract to Ethereum, the contract will be compiled into EVM bytecode, and the byte-
code will be stored on the blockchain forever. The only way to remove the bytecode from
Ethereum is by using the Selfdestruct function (Solidity 2020b). There is a unique 40 bytes
hexadecimal hash value to identify a contract address. Since Ethereum is a permission-less
network; every one can send a transaction and invoke contract functions if they know the
function signatures, which includes its function id and parameter types (Solidity 2020b).

!"# $%&'&(&)

*)+ $%&'&(&)
!"#$
%&#'

Fig. 1 An Example of Hard Fork. The blue block called divergence block, where the blockchain system
updates its protocol. The new protocol for hard fork is not backward-compatible

Page 5 of 44 117

Empir Software Eng (2021) 26: 11�

Fig. 2 An Example of Soft Fork. The blue block called divergence block, where the blockchain system
updates its protocol. The new protocol for soft fork is backward-compatible

Even worse, all the transactions, bytecode, invocation parameters are visible to everyone,
which makes smart contracts face major security challenges.

2.4 The Gas System

In Ethereum, transactions are executed by miners. To incentivize the execution of smart
contracts by miners, transaction senders need to pay an amount of Ether to the miner, the
so-called gas mechanism. For each transaction, the EVM will calculate its gas cost, and the
transaction sender is required to define a gas price, e.g., 20 Gwei / gas unit (1Ether =
109Gwei). The final transaction fee is calculated by gas cost × gas price. Miners have
the right to decide whether or not execute a transaction. Thus, higher gas prices can lead
to faster execution, and lower gas prices can lead to a transaction that is never added to a
block. According to the ETH Gas Station (2020), in May 2020, if the gas price is higher
than 40 Gwei, the transaction can be executed within 2 minutes. If the gas price is lower
than 25 Gwei, the execution time can exceed half an hour.

Another function the “gas” system is to ensure that the execution of smart contracts
can be eventually terminated. In Ethereum, the transaction caller is required to set a gas
limit, which refers to the maximum gas cost of a transaction. If the gas cost of a transaction
exceeds the gas limit, the execution will be terminated with an exception thrown by EVM
named out-of-gas error.

The gas system ensures the normal running of the Ethereum. However, it also increases
the difficulty of smart contract development, as developers need to estimate the maximum
gas cost of the contracts. Ethereum block has a maximum size, which limits the amount of
data that can be included. The current maximum block size limits the maximum gas limit
to 12.5 million gas units (Ethstates 2020). When the maximum gas cost of a transaction
exceeds the 12.5 million, it will be reverted forever.

2.5 Upgradeable Smart Contracts

Even though smart contracts cannot be changed once deployed to the blockchain, there
is a method to develop “upgradeable” contracts. Ethereum provides a function named
DelegateCall, which allows a contract to use code in other contracts, and all storage
changes are made in the caller’s value. Specifically, DelegateCall can be implemented by
addr.delegatecall(bytes memory). addr is the address of the callee contract (The value of
addr can be changed by sending a transaction to the contract). The function selector and
input value are encoded as bytes memory, and will be sent to the callee contract when Del-
egateCall is executed. Once the execution of the function on the callee contract is finished,
the return value will be transferred back to the caller contracts. When bugs are found at the
callee contract, the proxy contract can redirect the addr to a new contract.

117 Page 6 of 44

Empir Software Eng (2021) 26: 11�

Figure 3 is an example of the upgradeable contract, which contains three contracts. The
proxy contract holds the data of a contract, and all the storage changes are made in the
proxy contract. The proxy contract uses DelegateCall to call the functions f() and g(). These
functions are implemented in contract A and B, respectively. Once errors are found or new
functionalities need to be added, contract A and B can be discarded directly. The proxy con-
tract can call the code of the new contract by using DelegateCall. Based on this approach,
OpenZeppelin, a famous smart contract organization, has provided a library (OpenZep-
pelin 2020) to help developers develop upgradeable smart contracts in just a few lines. EIP
2535 (Mudge 2021) (the Diamond Standard) also defines the standard to help developers
design upgradeable smart contracts.

2.6 Software Development andMaintenance

Software development refers to a set of activities that throughout the entire life cycle of
software, which includes the process of designing, creating, deploying and supporting soft-
ware (Bourque et al. 2014). Thus, software maintenance is an important and inevitable part
of the software development life cycle. According to previous work (Boehm and Basili
2005), software maintenance can lead to 60% of software cost. Besides, in many soft-
ware development models, e.g., Spiral model (Boehm 1988), Agile development (Beck
et al. 2001), it is not easy to split the process of development and maintenance. For exam-
ple, Agile software development refers to software development methodologies based on
iterative development. In each iteration, new requirements and solutions will be added to
improve the software. According to the definition of ISO/IEC 14764 (ISO/IEC 2006), there
are four kinds of software maintenance, i.e., corrective, adaptive, perfective, and preventive
maintenance. Among them, Perfective maintenance is used to improve the performance or
maintainability by adding new requirements and functionalities newly elicited from users,
which is similar to the steps of Agile development. Thus, there are many overlaps between
the software maintenance and development.

2.7 Card Sorting

Card sorting is a method to organize data into logical groups (Spencer 2009), which is
widely used to help users organize and structure data. To conduct a card sorting, we first
need to identify the key concepts and write them into labeled cards. A card can be everything
that helps the discussion, e.g., a piece of paper or a virtual card on a laptop. After that,
we are required to group cards into different categories that make sense to them. Due to
the low-tech and inexpensive nature of card sorting, it is usually used to design workflow,
architecture, category tree, or folksonomy.

There are three kinds of card sorting, i.e., open card sorting, closed card sorting, and
hybrid card sorting. Open card sorting is used for organizing data with no predefined groups.

Fig. 3 An Example of the upgradeable contract

Page 7 of 44 117

Empir Software Eng (2021) 26: 11�

Specifically, each card will be clustered into a group with a certain topic or meaning first.
If there is no appropriate group, a new group will be generated. All the groups are low-level
subcategories and will be evolved into high-level subcategories further. Closed card sorting
is used for organizing data with predefined groups. Each card is required to be clustered
into one of the groups. Hybrid card sorting combines open card sorting and closed card
sorting. Hybrid card sorting has predefined groups but allows to create new groups during
the process.

3 Methodology

Figure 4 shows the overview of our methodology, which contains two phases, i.e., literature
review and survey. In phase 1, we perform a systematic literature review, which aims to find
the answers to research questions from prior smart contract related papers. After obtaining
the answers, we use an online survey to validate whether smart contract developers agree
with our findings. In the following subsections, we present the detailed steps of our literature
review and survey.

3.1 Literature Review

In this paper, we follow the method provided by Kitchenham and Charters (2007) to per-
form the literature review. There are three steps in phase 1, i.e., literature search, literature
selection, and data analysis.

Fig. 4 Overview of methodology design

117 Page 8 of 44

Empir Software Eng (2021) 26: 11�

3.1.1 Literature Search

Guided by prior literature reviews (Conoscenti et al. 2016; Segura et al. 2016; Huang
et al. 2019), we select five search engines, i.e., ACM Digital Library, IEEE Xplore Dig-
ital Library, Springer Online Library, Elsevier Science Direct, and Google Scholar. From
these search engines, we can find peer reviewed research papers published in journals,
conferences, workshops, and symposia.

We used keyword search to obtain 946 initial smart contract related papers. The detailed
numbers of the research papers returned by different search engines are shown in Table 1.
(The duplicated papers are removed.) All of these 946 research papers contain at least one
of the keywords “smart contracts” , “smart contract”, “Ethereum”, “blockchain”, “DApps”
in their title. Since there are many other blockchain platforms supporting smart contracts,
and our focus is Ethereum, all the selected papers should contain the keyword ”Ethereum”
or “smart contract” in their abstract.

3.1.2 Literature Selection

Although all the papers that we find in our literature search contain the keywords “smart
contract” or “Ethereum” in their abstract, some of them are still irrelevant to our study. For
example, some research related to other smart contract platforms might also contain the
keyword “Ethereum” in their abstracts. We applied the following five exclusion criteria to
remove irrelevant papers:

Exclusion Criteria

(1) Studies are not written in English.
(2) Master or Ph.D. theses.
(3) Keynote papers.
(4) Studies not related to Ethereum.
(5) Studies not related to smart contracts.

In this study we only focus on maintenance-related concerns for post-deployed Ethereum
smart contract development issues. Thus, research based on underlying blockchain technol-
ogy, e.g., consensus algorithms, are excluded. We only focus on the following topics:

Inclusion Topics

(1) Smart contract empirical studies.
(2) Smart contract security / reliability Analysis.

Table 1 Initial number of smart
contract related research papers
returned by each search engine

Search engine Papers

ACM Digital Library 73

IEEE Xplore Digital Library 177

Springer Online Library 54

Elsevier Science Direct 11

Google Scholar 631

Total 946

Page 9 of 44 117

Empir Software Eng (2021) 26: 11�

(3) Smart contract standards.
(4) Smart contract optimization, e.g., gas optimization.
(5) Other smart contract technologies, e.g, smart contract generation, decompilers.

To reduce errors, we conducted close card sorting (Spencer 2009) to check the collected
data. Card sorting is a common method used to evaluate and derive categories from the
data (Kim et al. 2016). There are three types of card sort, i.e., open card sort, closed card
sort, and hybrid card sorting. Among these three kinds of card sort, closed card sort has
predefined categories. We apply closed card sort to select relevant papers, as there only
two categories, e.g., relevant or irrelevant. For each card, it has a title (the name of the
paper) and description (abstract of the papers). Two experienced researchers with four-year
smart contract related experience (including a non-coauthor) carefully read the abstract of
the initial 946 research papers independently, and then compare their results after finishing
the reading. If there are some differences, they discussed to decide the whether the papers
should be excluded. Finally, 112 relevant papers are selected from initial 946 papers. After
that, we followed the prior study (Huang et al. 2019) to conduct a snowballing step to
enlarge the paper list. We manually checked the references of the identified 112 papers and
from these found another 19 papers. All of these 19 papers are selected from the reference of
the 946 papers with the same selection method. Specifically, we first check whether the title
of the paper on the reference contains the keywords, e.g., “smart contracts”, “Ethereum”,
“blockchain”. Then, the two researchers use open card sorting to analyze the abstract of the
paper to finally decide whether the paper should be included or not. Thus, we finally selected
131 papers for analysis. The paper list can be found at: https://github.com/Jiachi-Chen/
Maintenance.

3.1.3 Data Analysis

The Ethereum proposal was presented in late 2013, and the system went live at the end of
2015. All of the 131 selected papers were published between 2014 to 2020 (for details see
Fig. 5), and the full papers were carefully read by the same two researchers. Considering
our study aims to find answers with categories being unknown in advance (different kinds
of maintenance issues and methods), we decided to adopt an open card sorting approach to
help find the answers of these two RQs. The detailed steps used for this are described in
Fig. 6. The two researchers first read the paper carefully and were required to collect the
answers to the two RQs shown in Table 2, i.e., (1). What are the reported challenges / issues
of smart contract maintenance? (2). What are the used maintenance methods? If we could
not find any answers from a paper, the paper is omitted from our list. For the answers of

Fig. 5 The number of papers published between 2014 to 2020

117 Page 10 of 44

https://github.com/Jiachi-Chen/Maintenance
https://github.com/Jiachi-Chen/Maintenance

Empir Software Eng (2021) 26: 11�

Fig. 6 The steps of open card sorting

(1), the data collected from papers were first summarized into detailed maintenance issues.
For example, previous works (Chen et al. 2018a, 2020c) mentioned that “..over 90% of
real smart contracts suffer from gas-costly patterns in Ethereum...”, which will be summa-
rized into a detailed maintenance issue, i.e., The Difficulty of Handling the Gas System. The
detailed maintenance issues were then clustered according to their maintenance types, e.g.,
corrective, adaptive, perfective maintenance, and common maintenance. For the answers
of (2), they were first grouped according to the technique they used, e.g., programming
analysis or fuzzing. After that, they will be clustered into a higher level according to their
checking types, e.g., off-line / on-line checking.

3.2 Survey

3.2.1 Survey Design

Our smart contract developer survey contains three parts, i.e., demographic questions, smart
contract maintenance related questions, and suggestion related questions. We follow the
previous smart contract related work (Chen et al. 2020b) to design the following five demo-
graphic questions in our survey. Since our survey is based on Google Form, and Google
cannot be accessed in China, we also designed a Chinese version to receive responses from
Chinese developers. The translated version was double-checked to ensure consistence with
the English version.

Demographics

• Professional smart contract developer? : Yes / No
• Involved in open source software development? : Smart Contract Projects only /

Traditional Projects Only / Both / None

Table 2 Data collection for each RQ

RQs Type of data we collected

RQ1 What are the challenges / issues of smart contract maintenance? The data is classified by
corrective, adaptive, perfective, and preventive maintenance.

RQ2 What are the used maintenance methods? e.g., off-line / on-line security checking methods, other
methods.

Page 11 of 44 117

Empir Software Eng (2021) 26: 11�

• Main role in developing smart contract.
• Experience in years
• Current country of residence

These questions aim to understand the background and experience of the respondents,
which allows us to remove some feedback that we wish to exclude, e.g., feedback provided
by very inexperienced respondents.

In the second part of the survey, we designed 15 questions to help provide answers to
the same two research questions that we found from the literature survey. The details of
the survey can be found at: https://github.com/Jiachi-Chen/Maintenance. The list of the
questions included in our survey can be found in Table 3. For questions 1, 3-6, 8-9, 11, we
give the participants several choices that are obtained by literature review. Besides, for these
questions, we give a textbox to allow participants to write comments. For questions 10 and
12, we follow the previous survey (Chen et al. 2020b) to give five scores to participants from
score 1 (lowest agreement) to score 5 (highest agreement), and score 3 refers to “neutral”.

In the third part of the survey, we give a text box to respondents to allow them to give us
final comments or questions.

3.2.2 Survey Design Explanation

In this subsection, we explain how we designed the survey by answering two questions, i.e.,
(1). How we obtain the choices for questions 1, 3-6, 8-9, and 11. (2). Where do the other
questions come from?

Table 3 List of questions included in the survey

ID Question

Q1 How do you obtain your required knowledge about smart contracts?

Q2 Do you believe smart contracts have higher security requirements than traditional, centralized
apps, e.g., mobile apps, web apps?

Q3 How do you test / debug your smart contracts for security and scalability?

Q4 How do you maintain smart contracts after deployment?

Q5-6 Have you developed an upgradeable smart contract before? If not, why?

Q7 Do you believe smart contracts are harder to maintain than traditional centralized apps, e.g., mobile
apps, web apps? Why?

Q8 What maintenance issues do your smart contracts have?

Q9 Which features / limitations of Ethereum can increase the difficulty of maintenance?

Q10 Are you satisfied with the current ecosystem for smart contracts, e.g., platforms for sharing data?

Q11 Have you ever used the code of smart contracts from the following platforms, e.g., Github, Stack
Overflow, Etherscan?

Q12 Give a score for IDE, testing tools, security audit tools, smart contract explorer, Q&A site, Com-
ments from Public (Github, DApp Store), community support, Solidity and Ethereum document,
respectively.

Q13 Do you think smart contracts are suitable for developing a large scale project?

Q14 Do you think it is necessary to have an app store like IOS Store for smart contracts?

Q15 Currently, there are many technologies that can improve the security of smart contracts. Do you
think it is important to merge them into EVM / Ethereum / IDE?

117 Page 12 of 44

https://github.com/Jiachi-Chen/Maintenance

Empir Software Eng (2021) 26: 11�

Below we list howwe obtain the choices for questions 1, 3-6, 8-9, and 11

Question 1: Many previous works have mentioned that smart contract development lacks
appropriate tools / techniques to verify code correctness (See Section 4.2.1). However,
our literature review showed that there are many tools to check the vulnerabilities of
smart contracts. Question 1 was included to validate our hypothesis that practitioners
do not consult academic literature. Only asking developers whether they read academic
papers might lead them to make a binary choice. Thus, we added some sources like
“Books, Blogs, Video Tutorials” to make the choices more representative.

Question 3: Previous works (Zou et al. 2019; Chakraborty et al. 2018) investigated how
developers test a smart contract. All the choices are according to the result of their work.

Question 4: All the choices were selected from our literature reviews. From the literature,
off-line checking is the most common way to maintain a smart contract. However, this
kind of method only works before deploying smart contracts to blockchain, which refer to
the second choice. Online-Checking cannot be used directly (See Section 7.2). Thus, we
didn’t include choices for this method. Besides, the selfdestruct function and upgradeable
function can be used to maintain smart contracts, which refers to the third and the fourth
choices. Also, we added a choice for developers that never maintain a smart contract, as
literature shows that most contracts are never called or used.

Question 5-6: Previous work (Chen et al. 2020a) investigated why developers do not use
selfdestruct function. Based on their results, we design the options to collect the answer
“why developers do not develop upgradeable contracts”.

Question 8-9: All the choices are selected from literature reviews. (All of them can be
found at “Answer to RQ1” , see Section 3.1.3)

Question 11: From our literature reviews, we found that the source code used to evaluate
smart contract tools are from Q&A websites, Github and Etherscan. Besides, according
to authors’ experience in developing smart contracts, we also add choices “Solidity Doc-
uments”, “Code from Google Search or other search engines” and “Other” to make the
result more reliable.

Below we answer where our other survey questions come from

Question 2: Literature shows that smart contracts have higher security requirements than
traditional apps (See Section 4.1.2). We wanted to investigate whether developers agree
with this opinion.

Question 7: Similar to Q2, the literature mentions that the immutability of smart contracts
makes them hard to be modified once deployed, which makes smart contracts hard to be
maintained (See Section 4.1.2). We wanted to investigate whether developers agree with
this opinion.

Question 10 and 12: Literature mentions that smart contracts lack tools to check security
(See Section 4.2.1), lack community support (See Section 4.2.2), high-quality reference
code (See Section 4.5.2), standards (See Section 4.5.3). We wanted to investigate the
attitude of developers about these findings from the literature, and in question 12, we
wanted developers to give a detailed score about these findings.

Question 13: Literature shows that smart contracts have scalability issues that cannot
support a large-scale project. (See Section 4.4.1) We wanted to investigate whether
developers agree with this opinion.

Question 14: In Section 7.1, we discussed that having a DApp store and comment sys-
tem can help to improve the smart contract system. This question is used to investigate
developers’ attitudes about this.

Page 13 of 44 117

Empir Software Eng (2021) 26: 11�

Question 15: In Section 7.2, we discussed that merging cutting-edge technologies can
help to improve Ethereum and Solidity. This question is used to investigate developers’
attitudes about this.

3.2.3 Survey Validation

Guided by Kitchenham and Pfleeger (2008), we utilized an anonymous survey (Tyagi 1989)
to collect personal opinions. To increase response rates, we offered a raffle to respondents
so that they can choose to leave an email to take part in the raffle to win two $50 Amazon
gift cards. We first sent our survey to our research partners to conduct a small scale test to
refine the survey. They were asked to tell us (1) Whether the expressions used in the survey
are clear and easy to understand, (2) How many minutes were needed to complete the whole
survey. The only modifications from this survey validation were the expression of some
questions in the survey to make them clearer/more consistent terminology usage. We only
changed their grammar or rephrased the sentence to make it easier to understand without
adding or deleting questions. All of our research partners said that the survey could be
conducted within 15 minutes. Thus, we didn’t make any other modifications to the survey.

3.2.4 Recruitment of Respondents

The ideal respondents of our survey are smart contract developers. We aimed to send
our survey to Github developers who contributed to smart contract related projects. We
first searched for projects on Github by using keywords “Smart Contract”, “Ethereum”,
“Blockchain”, and ranked the projects by the most stars. Then, to increase the response
rate and exclude non-smart-contract developers, we manually selected relevant projects by
reading the descriptions of the projects. After that, we crawled the emails and names of con-
tributors of the selected projects by using Github Developer API1. We finally obtained 1,500
emails of developers and sent an email to invite them to participate in our survey. We also
have some industry partners working in well-known companies, e.g, Alibaba, Facebook,
and sent our survey to them (The number of industry partners is 20). Since some developers
might not be familiar with “software maintenance”, we inform the concept in the email to
reduce the misleading.

3.2.5 Data Analysis

We received a total of 178 valid responses from 32 different countries (The response rate
is about 11.87%), which is a good response number and rate compared to previous smart
contract related surveys (Chen et al. 2020b; Zou et al. 2019; Bosu et al. 2019; Chakraborty
et al. 2018; Chen et al. 2020a). Among these 178 respondents, 13 of them claim that they do
not have any experience in smart contract development. Thus, we removed them from our
dataset and used the remaining 165 for further analysis. The top three countries in which
respondents reside are China (35.76%), USA (15.15%) and UK (9.09%). The average years
of experience in developing smart contracts of our respondents are 2.31 years. Among these
respondents, 106 (64.24%) of them claim their main role is development, 42 (25.45%) indi-
cate testing/maintenance/evolution, 29 (17.58%) indicate project management, 6 (3.64%)

1https://developer.github.com/v3/

117 Page 14 of 44

https://developer.github.com/v3/

Empir Software Eng (2021) 26: 11�

indicate risk analysis, 4 (2.42%) indicate research. (Some respondents have multiple job
roles; thus the total number exceeds 165.)

4 RQ1: What are themaintenance issues of smart contracts?

There are four broad kinds of maintenance, i.e., corrective, adaptive, perfective, and preven-
tive maintenance. In this section, we identify the key maintenance issues for smart contracts
considering these four aspects. We also introduce some common maintenance issues (CMI),
which appear in all kinds of maintenance. All the findings are obtained by literature reviews
(the source are cited), and we give survey results to cross-validate each finding. It should be
noted that software maintenance is a very broad activity. Some kind of maintenance, e.g.,
perfective maintenance also requires developers to develop new functionalities as well as
change old. Thus, some of the challenges we discuss can be encountered in both smart con-
tract development and maintenance phases. We use Tables 4 and 5 to help readers better
understand the relation between the survey results and the findings collected from litera-
ture. The first column of the tables is the survey ID (detailed information can be found at
Table 3). The survey results shown in the third column are used to validate the findings we
collected by literature review that are listed in the second column of the table. For example,
many literature mentioned that smart contracts have high requirements for security. Thus,
in Q2 of the survey, we found that 78.18% of the respondents agree with this result, which
shows its correctness.

4.1 CommonMaintenance Issues

4.1.1 No Ideal Deployed Contract Modification Methods

Immutability is an important feature of smart contracts, which makes smart contracts dis-
tinct from traditional apps in their stability. However, this feature also leads – intentionally
– to great difficulty for their modification.

From our survey, we received four answers 2 for the question “How do you maintain
your smart contracts” (Q4 in Table 3). The four answers are:

1. I never maintained a contract (18.79%)
2. I discard the old contract directly and deploy a new one (39.39%)
3. I use Selfdestruct function to destroy the old contract and deploy a new one (38.79%)
4. I develop upgradeable contracts. (35.76%).

However, all of these four answers are imperfect and can lead to high financial loss in
some situations.

For answer (1), this method is very inadvisable as some bugs are usually inevitable. With-
out maintenance, the usefulness life of the programs will be much shortened and attackers
can freely attack existing contracts that contain vulnerabilities.

For answer (2), this method can lead to enormous financial loss for the contract own-
ers, as the Ethers cannot be transferred unless a specific code is included in the contract.
Although the contract owners find there is a bug like the reentrancy (Liu et al. 2018a; Rodler

2The questions are multi-choice. Thus the sum of each options can exceed 100%. The same with the other
questions.

Page 15 of 44 117

Empir Software Eng (2021) 26: 11�

Table 4 Part 1 - The mapping between survey results and our findings collected from the literature

Survey ID Findings and Related Section Survey Result

Q1 Inconsistent: Previous works reports smart
contract development lacks appropriate tools
to verify code correctness v.s. Academia
proposed many tools in recent years.
(S4.2.1)

52.1% respondents obtain knowledge from
journal and conference papers → The meth-
ods to require knowledge is not the main
reason for the inconsistent.

Q2 Smart contracts have high requirements for
security (S4.1.2)

Smart contracts have higher security require-
ments (78.18%)

Q3 Inconsistent: Previous works reports smart
contract development lacks appropriate tools
to verify code correctness v.s. Academia
proposed many tools in recent years.
(S4.2.1)

Respondents use program analysis
(28.48%), formal verification(9.09%), unit
testing(80.61%), code reviews(73.94%),
functional and integration testing (70.91%)
to test smart contracts → Most of tools pro-
posed by academia are hard to used and not
user friendly

Q4 The immutable of smart contracts lead to
the great difficulty for their modification.
(S4.1.1)

Four methods to maintain a smart contract,
and all of them are imperfect.

Q5-6 Developing upgradeable contracts is also not
a ideal method to maintain smart contracts
(S4.1.1)

Developing upgradeable contracts can
increase development cost and security
risks. (32.17% and 33.04%)

Q7 Smart contracts have high requirement for
security (S4.1.2)

Smart contracts are harder to maintain com-
pared to traditional apps (64.85%)

Q8 Smart contract development lacks appropri-
ate tools to verify code correctness (S4.2.1)

Lack of tools / techniques to audit code.
(66.2%)

The grammar of Solidity is too simple to
support large projects, which lead to the
scalability issues (S4.4.1)

There are not enough useful libraries and
APIs (49.7%); not easy to handle the mem-
ory and storage in Solidity programming
(38.79%)

Gas system is also not easy to use, especially
when the scale of the project becomes larger.
(S4.4.2)

It is not easy to handle the gas system when
maintaining smart contracts (38.79%)

The qualities of open-source smart contracts
are poor in Ethereum (S4.5.2)

Solidity lacks useful reference code.
(38.18%)

There are only limited numbers of smart
contract related standards (S4.5.3)

Ethereum lacks standards (49.7%)

et al. 2018) in their smart contracts, there was no way to modify the contract, as the con-
tract did not contain a Selfdestruct function and was not develop as an upgradeable contract,
which might lead to an enormous financial loss for the organization.

For answer (3), adding a Selfdestruct function can reduce the financial loss when emer-
gencies happen. Using the DAO attack as an example, if the DAO contract had this function,
the DAO organization could use it to destruct the contract and transfer all the Ethers when
the attack was detected. After fixing the bugs, they can deploy a new contract, and trans-
fer the Ethers to the new contract. However, this method is still harmful to both contract
owners and users in some situations. Our previous work (Chen et al. 2020a) investigated
the reasons why developers do not add Selfdestruct functions in their contracts. Developer
feedback showed the following reasons. First, adding a Selfdestruct function also opens
an attack vector to the attackers. Thus, developers need to pay more effort to test smart

117 Page 16 of 44

Empir Software Eng (2021) 26: 11�

Table 5 Part 2 - The mapping between survey results and our findings collected from the literature

Survey ID Findings and related section Survey result

Q9 There is more financially attractive for
attacking smart contracts compared to tradi-
tional software, thus leading to more attack
(S4.1.2)

There is more financially attractive for
attacking smart contracts (49.09%)

Ethereum smart contracts run on a permission-
less network, which lead to higher require-
ment for security (S4.1.2)

The permission-less feature could increase
the difficulty of maintenance. (55.76%)

Making smart contracts readable is a chal-
lenge (S4.1.3)

89.1% respondents use the source code of
smart contracts (Q11), and 57.14% of them
said the poor readability of smart contracts
increases the difficulty of code reuse.

Some unplanned forks can increase the diffi-
culty of smart contract maintenance.(S4.3.1)

Ethereum might add new functions through
hard fork, which might affect the cur-
rents contracts running on the blockchain.
(50.3%)

Many callee contracts on Ethereum con-
tain vulnerabilities, which might lead to the
crash and make the contracts cannot work
anymore.(S4.3.2)

It would make their contracts hard to be
maintained if the callee contracts crashed or
be destructed. (62.42%)

Q10 Ethereum lacks advanced software engineer-
ing theories to perform preventive mainte-
nance. (S4.5)

Only 7.88% and 16.97% respondents said
they are very satisfied or satisfied with the
current ecosystems of smart contracts.

Q11 Making smart contracts readable is a chal-
lenge (S4.1.3)

89.1% respondents use the source code of
smart contracts, and 57.14% of them said the
poor readability of smart contracts increases
the difficulty of code reuse. (Q9)

Q12 Community support is not enough for smart
contract developers. (S4.2.2)

The community support receives an average
score of 3.03

Q13 The Scalability Issues of Smart contracts
cannot support large scale projects (S4.4.1)

Only 14.55% respondents believe smart con-
tracts are suitable for developing a large
scale project

Q14 DApp Store and Comment System can
improve the smart contract ecosystem. (S7.1)

Having positive opinions about the need for
a DApp store like the Android Google Play
Store (84.24%)

Q15 Merging Cutting-Edge technologies can
improve the performance of Ethereum and
Solidity (S7.2).

90.9% respondents hold positive opinions
about merging cutting-edge technologies
into the EVM and updated by nodes on
Ethereum.

contract security and permissions. The testing can add additional complexity to the devel-
opment, which can increase the development cost. Second, adding a Selfdestruct function
can also lead to a trust concern for the smart contract users. This is because many users trust
Ethereum because of the immutability of smart contracts. All the execution of the contract
depends on its code; even the owner cannot transfer Ethers on the contract balance. This
feature is important in financial applications as it ensure the asset safety of contract users.
However, the Selfdestruct function breaks the immutability of the contracts. It gives power
to the contract owners to transfer all the Ethers of the contracts. Thus, this method can lead
to the reduction of the number of users of the smart contract using it. Finally, the Selfde-
struct function can also lead to a financial loss in some situations, as the Ethers that were

Page 17 of 44 117

Empir Software Eng (2021) 26: 11�

sent to the contract after destroying it will be lost. Thus, this method is still not a perfect
method to maintain smart contracts.

For answer (4), still raises the same trust concern similar to answer (3), as the smart con-
tract immutability features are also be broken. According to our survey (Q5-6 in Table 3),
we found that only 29.70% of the respondents have developed upgradeable smart contracts.
There are three reasons why developers do not develop upgradeable contracts. 41.74% of
the respondents claim that they do not know how to develop upgradeable smart contracts.
Thus, to develop upgradeable smart contracts, they need to pay a learning cost. 32.17% and
33.04% of the respondents said developing upgradeable contracts can increase the develop-
ment cost and security risks. Thus, this method still incurs a high cost for maintenance.

To summarize, all of these four methods have disadvantages or limitations, and can lead
to a high cost of smart contract maintenance.

4.1.2 High Requirement for Security

Unlike traditional programs that can be upgraded directly, developers need to redeploy a new
smart contract to the blockchain. Ensuring the security of the contract before redeploying
it to the blockchain is important, as each the modification can cost a lot (see Setion 4.1.1).
According to our survey (Q2 and Q7), 129 (78.18%) respondents believe smart contracts
have higher security requirements. 107 (64.85%) respondents said smart contracts are harder
to maintain compared to traditional apps. The reasons introduced below lead to the high-
security requirement of the smart contracts.

1. The immutability Features. All the transactions and the code of smart contracts
are immutable, which means that developers need to ensure the security of the code
and each transaction. Once any bugs are detected, there is no direct way to patch
them. Attackers can utilize the errors / bugs to steal Ethers or lock the balance mali-
ciously (Atzei et al. 2017). Thus, immutability raises a high security requirement for
the smart contracts.

2. Financial Attractiveness. Financial profit is an important motivation for attackers.
According to our survey (Q9), about 81 (49.09%) respondents believe that there is
more financially attractive for attacking smart contracts compared to traditional soft-
ware, thus leading to more attack (Torres et al. 2019). Since many contracts hold Ethers,
attackers can earn profits through their attacks. Even worse, the sensitive information
of smart contracts are visible to anyone, e.g., bytecode, Ethers on the balance. Attack-
ers can launch precision strikes to the vulnerable contracts. Thus, developers need to
pay more efforts to ensure the security of smart contracts.

3. Permission-less Network. Ethereum smart contracts run on a permission-less network;
everyone can execute the smart contracts by sending a transaction. 92 (55.76%) respon-
dents (Q9) mentioned that the permission-less feature could increase the difficulty of
the maintenance. They need to pay more effort to test the permission of the contracts.
Previous work (Chen et al. 2020a) introduced a security issue named Limits of Permis-
sions. Some contracts do not check the permission of their sensitive functions. Attackers
can utilize the vulnerabilities of the permission check to steal Ethers.

4.1.3 Low Readability

Readability is important to help developers understand the smart contracts and maintain
their smart contracts (Zou et al. 2019). According to our survey, 147 (89.1%) respondents

117 Page 18 of 44

Empir Software Eng (2021) 26: 11�

(Q11) claim that they use the source code of other smart contracts from open sourced plat-
forms, e.g., Etherscan, Github to help author and maintain their smart contracts. 57.14%
of the respondents (Q9) also said the poor readability of smart contracts increases the dif-
ficulty of code reuse. Making smart contracts readable is a challenge, as developers need
to balance the readability with gas consumption. For example, optimizing code is a com-
mon method to reduce gas consumption. The more gas-efficient code usually corresponds
to shorter code. However, this shorter code can lead to poorer readability.

4.1.4 The Lack of Experienced Developers and Researchers.

Experienced developers and researchers are the main inventors of new advanced SE methods
to address the limitation of smart contracts, e.g., developing tools, improving ecosys-
tem. However, our survey results and literature review shows that less experienced people
programming in Ethereum compared to traditional development.

Ethereum is a young system, which was published in 2016. The most experienced devel-
opers and researchers of the respondents of the survey have 4 years experience (22 respon-
dents) in smart contracts development, the minimum, average, and median numbers are 0.2,
2.31, and 2.5 years, respectively. Compared to the experiences of the respondents (including
developers and researchers) of previous works, e.g., in machine learning (Wan et al. 2019)
(min: 3, max: 16, median: 6, avg: 7.6 years), in desktop software development (Wan et al.
2018) (min: 3, max: 12, avg: 6.5 years), the smart contract developers and researchers seem
less experienced.

4.2 Corrective Maintenance Issues

It is not easy to discover all potential bugs before deploying smart contracts to the
blockchain. Some bugs / errors of the contracts might be exposed to the public under certain
situations. Corrective maintenance is the modification of a smart contract after deployment
to the blockchain to correct discovered bugs / errors. Diagnosing errors of smart contracts
is the major task in corrective maintenance. However, it is painful and difficult to diagnose
errors in a smart contract. According to our survey, 96 (66.2%) respondents (Q8) complain
that debugging and testing is not easy. There are two main reasons that lead to the difficulty
of the diagnosing errors, i.e., the lack of mature tools and community support.

4.2.1 The Lack of Mature Tools

Many previous works (Zou et al. 2019; Norvill et al. 2017; Bosu et al. 2019) mentioned that
smart contract development lacks appropriate tools / techniques to verify code correctness.
Thus, it is not easy to fix bugs in smart contracts. A similar theme is also received in our
survey. 96 (66.2%) respondents (Q8) claim that they cannot find useful tools to debug /
test / audit their contracts. However, with the development of smart contract ecosystems, a
large number of tools have been developed. For example, tools based on static analysis (Luu
et al. 2016; Liu et al. 2018a; Tikhomirov et al. 2018) and formal verification (Bhargavan
et al. 2016; Bigi et al. 2015; Hildenbrandt et al. 2018) have been proposed. Some tools have
excellent performance and speed in detecting common security issues. Thus, “lack of tools”
seems to be addressed with the effort of researchers and developers. There is a gap between
academia and industry, as many tools developed in academia are not yet known about and
used in industry.

Page 19 of 44 117

Empir Software Eng (2021) 26: 11�

To find the reason, we asked how developers obtain their required knowledge about
smart contracts. The Solidity documentation, blogs, and Q&A website are the top three most
popular sources to acquire knowledge; the numbers are 149 (90.3%), 114 (69.1%), and 88
(53.3%), respectively (Q1). The state-of-art tools usually published in academic journal and
conference papers, and 86 (52.1%) respondents (Q1) said journal and conference papers are
an important approach to require knowledge. Thus, the methods to require knowledge is not
the main reason why developers think that there are not enough tools.

We also investigated the usage conditions for different kinds of tools and how developers
test their contracts. We found that only 47 (28.48%) and 15 (9.09%) respondents (Q3) use
static analysis tools and formal verification tools to test their smart contracts. Unit testing,
code reviews, functional and integration testing are still the most popular methods to test
smart contracts. About 80.61%, 73.94%, and 70.91% of respondents (Q3) choose these
methods to test their contracts. Developer comments said that “although there are many
tools that can be chosen, most of them are hard to use and not user friendly”. Thus, although
there is a large number of tools that have been developed, developers still complain there
are only a few tools they think can be used in practice.

4.2.2 The Lack of Community Support

Community support is a primary source of knowledge for blockchain software projects
(Chakraborty et al. 2018). Community support consists of many parts. For example, when
developers encounter technical problems, a Q&A website such as Stack Overflow is an
important source to help them address the problems. Developers can open source their
projects to Github. Other developers can submit issue reports to help them polish the
projects. The App store is also an important place to receive reviews. Reviews might con-
tain feature requests, user feedbacks, issue reports that can help developers upgrade their
software.

However, community support is not enough for smart contract developers. Previous
works (Zou et al. 2019; Hegedűs 2019) found that smart contract developers lack commu-
nity support as the blockchain technology is new and there are not enough smart contract
developers to answer their questions. Since more and more developers take part in smart
contract development, we used our survey to investigate whether community support is still
lacking in Ethereum.

In our survey, we asked respondents to give a score for the community support (Q12).
Score 1 refers to ‘very unsatisfied’, 3 refers to ‘neutrality’, and 5 means ‘very satisfied’. The
community support receives an average score of 3.03, while the score for other comparative
items e.g., Solidity document, and Smart contract Explorer receive scores of 3.53 and 3.52,
respectively. Thus developers still believe that community support is not sufficient com-
pared to other resources. Surprisingly, the score for the Q&A website, e.g, Stack Overflow,
is 3.43, which can show that the Q&A website is not the culprit for the lack of community
support. We found that the score for the “Comments from public (E.g., DApp, Github)” is
only 2.57, which is the lowest score among all the comparative items.

Previous works (Zou et al. 2019; Hegedűs 2019) claimed that smart contract developers
lack community support because there are not enough smart contract developers to answer
technical questions. However, our survey shows a different answer. The culprit for the lack
of community support is not the Q&A website, but the comments from the public, e.g., issue
reports from Github, comments from App Store.

117 Page 20 of 44

Empir Software Eng (2021) 26: 11�

4.3 Adaptive Maintenance Issues

Adaptive maintenance aims to keep a software product usable in a changed or changing
environment. In traditional software, the environment changes are usually reflected in the
upgrading of the operating systems, the hardware, or software, e.g., database. Conducting
adaptive maintenance for the traditional environment changing is not difficult, as these kinds
of environment changes are predictable. For example, the updated operating systems usually
will give a specific date and detailed API documents.

However, the environment of smart contracts is more unpredictable. In this subsection,
we highlight two challenges, which makes it is not easy to conduct adaptive maintenance
for smart contracts.

4.3.1 Unpredictable Fork Problems

Ethereum uses soft forks and hard forks (See Section 2.2) to update the blockchain system.
Some forks are planned, while some are controversial unpredictable forks, which might
result in smart contract maintenance needs.

In a planned fork, developers are informed in advance, and they usually do not need to
update the code of smart contracts. For example, in 2017, a hard fork named “Byzantium”
of Ethereum added a ‘REVERT’ opcode, which permits error handling without consuming
all gas (Mushegian 2020). The function revert() in smart contract code will refer to the new
opcode automatically. Thus, the planned forks are more likely to be accepted by miners and
developers.

However, unplanned forks are also common in Ethereum, which can increase the diffi-
culty of smart contract maintenance. The first unplanned fork happened in July 2016 and
was the result of the DAO attack (Siegel D 2018). The DAO attack made the DAO (Decen-
tralized Autonomous Organization) lose 3.6 million Ethers. To retrieve the loss, the DAO
appealed for a hard fork. The hard fork reversed all the transactions to the block before the
attack. This hard fork is controversial, as many miners believe it breaks the law of Ethereum.
The opposition miners did not take part in the fork, and a new blockchain was generated,
named Ethereum Classic (ETC) (2018). After the hard fork, both ETC and Ethereum con-
tain the same smart contracts. Thus, which contracts to maintain might be a problem for
some developers. The same situation also happened to their callee contracts. For exam-
ple, contract A has two callee contracts, i.e., contract B and C. Unfortunately, contract B
chooses to maintain the contract on ETC, while contract C chooses to maintain the contract
on Ethereum. Thus, contract A will always have a unmaintained callee contract.

In Oct. 2016 and Nov. 2016, two unpredictable hard forks were launched to address
different problems that have arisen from the DoS attacks. These two hard forks named
“EIP-150 Hard Fork” (2020) and “Spurious Dragon” (2020), respectively. In “EIP-150 Hard
Fork”, Ethereum increased the gas cost of every type of call from 40 to 700 unit. The “Spuri-
ous Dragon” also increases the gas cost of the “EXP” opcode. This increased gas cost might
increase the risk of “out-of-gas error”. Thus, some contracts need to refactor their code to
handle these gas cost changes.

According to our survey, 83 (50.30%) respondents (Q9) are afraid that the forks of
Ethereum might result in various potential problems for their smart contracts. Moreover, the
unpredictable forks make it difficult for developers to perform adaptive maintenance.

Page 21 of 44 117

Empir Software Eng (2021) 26: 11�

4.3.2 Unpredictable Callee Contracts

Ethereum is a permission-less network; everyone can call the function of the smart con-
tract by sending a transaction. Michael et al. (Frowis and Bohme 2017) investigated the call
relations of smart contracts on Ethereum by checking the hard code address on their byte-
code. They found that it is very common for smart contracts to call each other in Ethereum.
However, they also found that many callee contracts on Ethereum contain vulnerabilities.
These vulnerabilities might lead to the crash and make the contracts cannot work anymore.
Beside, many callee contracts also contain selfdestruct function, which allow their contract
owners to destruct the contracts. Once a contract is destructed, the contract cannot be called
anymore, and all the Ethers sent to the destructed contract will be locked forever.

According to our survey (Q9), 103 (62.42%) respondents said it would make their
contracts hard to be maintained if the callee contracts crashed or be destructed.

4.4 Perfective Maintenance Issues

As long-lived software (Lohr and Peldszus 2020), users are likely to elicit new requirements
during the entire smart contract life cycle. Thus, adding additional functionalities, perfor-
mance enhancement, and efficiency and maintainability improvements for smart contracts
are necessary to respond to the new requirements. This is called the perfective maintenance
of smart contracts. Thus, there is an overlap between perfective maintenance issues with
development issues, as some new functionalities are required to be developed during this
maintenance process.

However, due to the scalability issues of Solidity and EVM, it is not easy to add too
many functionalities to smart contract-based projects. The Gas system also increases the
difficulty of perfective maintenance. Due to these issues, we find that only 24 (14.55%) of
the respondents (Q13) of our survey believe smart contracts are suitable for developing a
large scale project.

4.4.1 The Scalability Issues

Solidity Solidity is the most popular programming language for smart contract develop-
ment, which is an object-oriented language and a bit like JavaScript. However, the grammar
of Solidity is too simple to support large projects, which lead to the scalability issues of
smart contracts (Zou et al. 2019). First, 82 (49.70%) respondents (Q8) to our survey said
there are not enough useful libraries and APIs. Thus, developers need to develop various
kinds of APIs and libraries which increases the difficulty of implementing new require-
ments. Besides, 62 (37.58%) and 64 (38.79%) respondents (Q8) also said it is also not
easy to handle the memory and storage in Solidity programming, respectively. For exam-
ple, Solidity only allows creating 16 local variables in a function. Thus, developers have
to use storage variables instead of local variables. Peter et al. (Hegedűs 2019) investigated
more than 40,000 smart contracts on Ethereum using 16 metrics, e.g., LOC, nesting level.
They found the smart contracts are neither overly complex nor coupled much, and do not
rely heavily on inheritance. Their results also prove that real-world smart contracts are
small-scale programs and do not contain too many functionalities.

EVM The Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts
in Ethereum. Some features of EVM make it scale poorly to support large-scale projects.
First, EVM does not support multi-thread execution, which makes the execution of smart

117 Page 22 of 44

Empir Software Eng (2021) 26: 11�

contracts inefficient. In some large-scale projects, it is important to execute multiple func-
tionalities in parallel to increase execution speed (Zou et al. 2019). Second, EVM limits the
maximum size of stack to 1024 items with 256 bits for each item. The limited stack sizes
can easily lead to vulnerabilities and increase the difficulty of developing complex appli-
cations (Luu et al. 2016). Finally, EVM uses a key-value store, which is a very simplistic
database and can lead to low efficiency (Grech et al. 2019).

Ethereum Ethereum does not support concurrency. To construct the blockchain and ensure
security, each node on Ethereum stores the entire transaction history and current state of
Ethereum, e.g., account balance, contract variables. Thus, all transactions must be executed
and verified by all the nodes. This mechanism makes Ethereum support only around 15
transactions per second, leading to serious scalability issues of smart contract applications.
(Bez et al. 2019)

4.4.2 The Difficulty of Handling the Gas System

Ethereum adopts a unique gas system to execute the computational cost of each transaction.
The gas system ensures the normal running of the Ethereum system, e.g., giving rewards for
miners, avoiding DoS Attack. However, this gas system is also not easy to use, especially
when the scale of the project becomes larger. According to our survey, 64 (38.79%) respon-
dents (Q8) claim that it is not easy to handle the gas system when maintaining their smart
contracts.

First, users need to pay Ethers for the gas cost, and the gas cost depends on the com-
putational cost of the code. Thus, it is important for developers to reduce the gas cost. As
we discussed in Section 4.1.3, there is a trade-off between the gas cost and the readabil-
ity, and readability is very important for maintenance and large-scale projects. According to
previous works (Chen et al. 2018a, 2020c), over 90% of real smart contracts suffer from gas-
costly patterns in Ethereum. However, fixing these gas-costly patterns reduce the readability
of smart contracts.

4.5 Preventive Maintenance Issues

Preventive maintenance aims to lessen the likelihood of a sudden breakdown of the
programs (Tai and Alkalai 1998). Guided by advanced software engineering theories, pre-
ventive maintenance usually involves some form of redesign or refactor of a smart contract
to remove latent faults / errors/ bugs. For example, a code smell is not a bug but are any
characteristics in the source code that possibly indicates a deeper problem (Fowler and Beck
1999). Refactoring the code to remove code smells in software to increase its robustness is a
typical preventive maintenance method. However, due to the immature ecosystem of smart
contracts, it is not easy to find appropriate advanced software engineering (SE) methods,
e.g., code smells for smart contracts, to perform preventive maintenance. According to our
survey (Q15), only 13 (7.88%) and 28 (16.97%) respondents said they are very satisfied or
satisfied with the current ecosystems of smart contracts.

4.5.1 The Lack of Advanced SE Approach and Research Data

During our literature review, we found that there are only a small number of works that
propose advanced SE methods to help conduct the preventive maintenance of smart con-
tracts. Most of these works aim to improve the reliability of smart contracts, e.g., security

Page 23 of 44 117

Empir Software Eng (2021) 26: 11�

check tools (detailed introduced in Section 5). Compared to traditional software, the main-
tenance methods of smart contracts to remove latent errors are much less, e.g., code smell
removal (Fontana et al. 2016), bug prediction (Giger et al. 2012), self-admitted technical
debt determination (Yan et al. 2018). The lack of research data is an important issue.

In traditional software maintenance, a large number of MSR (Mining Software Reposi-
tory) methods have been developed to help conduct preventive maintenance. For example,
history bug reports can be utilized to predict whether a source code file contains latent errors
(Zhang et al. 2019). User reviewers can provide feature requests to help developers improve
the programs (Maalej and Nabil 2015; Grano et al. 2017). Comments in source code can
be used to detect self-admitted technical debate, which can be used to signal future errors
(Yan et al. 2018). Privacy policies, Stack Overflow (SO) posts, error messages, and commit
messages are wildly used to help maintain traditional apps. These methods are not difficult
to be applied to smart contract projects. However, the lack of related research data makes it
is not easy to develop advanced SE methods for smart contracts.

4.5.2 The Lack of High Quality Reference Code

High-quality reference source code can be a good example when developers conduct pre-
ventive maintenance. However, the qualities of open-source smart contracts are poor in
Ethereum, and 63 (38.18%) respondents (Q8) of our survey mentioned that Solidity lacks
useful reference code.

He et al. (2019) found that the copy-paste vulnerabilities were prevalent in Ethereum, and
over 96% of smart contracts have duplicates, which means the ecosystem of smart contracts
on Ethereum is highly homogeneous. Among these contracts, 9.7% of them have similar
vulnerabilities. Similar findings are reported by Kiffer et al. (Kiffer et al. 2018); they inves-
tigated 1.2 million contracts, and they can be reduced to 5,877 contract “clusters” that have
highly-similar bytecode. The highly homogeneous nature of smart contracts show that only
a limited number of contracts can be referenced during maintenance and development.

Kiffer et al. (2018) also found that more than 60% of smart contracts are never actu-
ally called. Most of these contracts are useless and hard to be reused. Similar findings
were also reported by Di and Salzer (2019). They analyzed the bytecode of smart con-
tracts on Ethereum and found 44,883 are useless and hard to be reused. Only 0.6% of the
contracts have more than 1,000 transactions, while most of the active contracts are similar
ERC20 contracts (Fabian and Vitalik 2018), which are used to make tokens. Thus, the active
contracts also cannot provide too much reference value.

Hegedűs (2019) analyzed more than 40 thousand Solidity source files. They found that
the open sourced smart contract code either quite well-commented or not commented at all.
Without comments in the source code, it is not easy for developers to understand and reuse
the reference code.

4.5.3 The Lack of Standards

Standards can give guidance for developers to increase the maintainability and reliability of
their smart contracts, which is the main motivation for preventive maintenance. For exam-
ple, the ERC 20 (Fabian and Vitalik 2018) standard defines some rules for token-related
contracts. The rules contain 9 functions (3 are optional) and 2 events. This standard allows
any tokens on Ethereum to be re-used by other applications, e.g., wallets, decentralized
exchanges. At the end of 2017, the Cryptokitties (2019) was published and swept the globe.

117 Page 24 of 44

Empir Software Eng (2021) 26: 11�

To help other developers develop similar applications, ERC 721 was published in Jan. 2018.
ERC 721 is a standard that describes how to build non-fungible tokens (NFTs) on Ethereum,
and a NFT is a unit of data on blockchain that represents an unique digital asset, e.g., a
photo or a game. Developers can conduct preventive maintenance to make their contracts
follow the ERC 721 standard. Thus, their applications can much more easily interact with
other similar applications.

However, there are only limited numbers of smart contract related standards (EIP 2020).
According to our survey (Q8), 82 (49.70%) respondents said Ethereum lacks standards,
which increases the difficulty of the maintenance of smart contracts.

5 RQ2: What are the current maintenancemethods for smart
contracts?

We discuss answers found for our second Research Question, and introduce the current
smart contract maintenance methods identified from 41 analysed research papers.

5.1 Distribution

Among our 131 smart contract selected papers, 41 papers proposed methods that can be used
to maintain smart contracts. Unlike traditional software where programs can be upgraded
directly, smart contracts need to redeploy new versions to the blockchain and discard old
versions. Most maintenance methods check security issues of smart contracts before rede-
ploying them to the blockchain, which are so-called offline checking methods. There are
31 papers related to this topic. 7 research papers propose methods that can help maintain a
deployed smart contracts. This kind of method is called an online checking method. The final
three papers introduce a method that uses DELEGATECALL to upgrade a smart contract,
and a method that redeploys smart contracts by using Selfdestruct function, respectively.
The distribution of these methods is shown in Fig. 7.

Fig. 7 Distribution of maintenance methods

Page 25 of 44 117

Empir Software Eng (2021) 26: 11�

5.2 Offline CheckingMethods

Table 6 summarises the 31 publications which use offline checking methods to help main-
tain smart contracts. Developers can use the proposed methods to check for security
vulnerabilities to help them to maintain smart contracts. For example, using the proposed
methods to locate bugs during corrective maintenance, and checking for vulnerabilities of
the update versions before redeploying them to Ethereum. We divide the methods presented
in these papers into five categories – program analysis, fuzzing, formal verification, machine
learning, and others. In the following subsections, we discuss some key examples.

Table 6 Literature of offline checking methods

Category Name of Publications Years

Program Analysis OSIRIS: Hunting for Integer Bugs in Ethereum Smart Con-
tracts (Torres et al. 2018)

2018

The art of the scam: Demystifying honeypots in Ethereum
smart contracts (Torres et al. 2019)

2019

Security Assurance for Smart Contract (Zhou et al. 2018) 2018

Vandal: A Scalable Security Analysis Framework for Smart
Contracts (Brent et al. 2018)

2018

MadMax: surviving out-of-gas conditions in Ethereum smart
contracts (Grech et al. 2018)

2018

Finding The Greedy, Prodigal, and Suicidal Contracts at
Scale (Nikolić et al. 2018)

2018

sCompile: Critical Path Identification and Analysis for Smart
Contracts (Chang et al. 2019)

2019

teether: Gnawing at Ethereum to Automatically Exploit Smart
Contracts (Krupp and Rossow 2018)

2018

Making Smart Contracts Smarter (Luu et al. 2016) 2016

Manticore: A User-Friendly Symbolic Execution Framework
for Binaries and Smart Contract (Mossberg et al. 2019)

2019

SmartCheck: Static Analysis of Ethereum Smart Con-
tracts (Tikhomirov et al. 2018)

2018

TokenScope: Automatically Detecting Inconsistent Behaviors
of Cryptocurrency Tokens in Ethereum (Chen et al. 2019a)

2019

Towards saving money in using smart contracts (Chen et al.
2018a)

2018

GasChecker: Scalable Analysis for Discovering Gas-Inefficient
Smart Contracts (Chen et al. 2020c)

2020

Securify: Practical Security Analysis of Smart Contracts
(Tsankov et al. 2018)

2018

Formal Verification Formal Verification of Smart Contracts (Bhargavan et al. 2016) 2016

A formal verification tool for Ethereum VM bytecode (Park
et al. 2018)

2018

Kevm: A complete formal semantics of the Ethereum virtual
machine (Hildenbrandt et al. 2018)

2018

Towards verifying Ethereum smart contract bytecode in
Isabelle/HOL (Amani et al. 2018)

2018

ZEUS: Analyzing Safety of Smart Contracts (Kalra et al. 2018) 2018

117 Page 26 of 44

Empir Software Eng (2021) 26: 11�

Table 6 (continued)

Category Name of Publications Years

Fuzzing ContractFuzzer: fuzzing smart contracts for vulnerability
detection (Jiang et al. 2018)

2018

ReGuard: Finding Reentrancy Bugs in Smart Contracts (Liu
et al. 2018a)

2018

EVMFuzz: Differential Fuzz Testing of Ethereum Virtual
Machine (Fu et al. 2019)

2019

sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Con-
tracts (Nguyen et al. 2020)

2020

Exploiting the Laws of Order in Smart Contracts (Kolluri et al.
2019)

2019

Machine Learning S-gram: Towards Semantic-Aware Security Auditing for
Ethereum Smart Contracts (Liu et al. 2018b)

2018

Hunting the Ethereum Smart Contract: Color-inspired Inspec-
tion of Potential Attacks (Huang 2018)

2018

Towards Safer Smart Contracts: A Sequence Learning
Approach to Detecting Security Threats (Tann et al. 2018)

2019

Checking Smart Contracts with Structural Code Embed-
ding (Gao et al. 2020)

2020

Others Designing Secure Ethereum Smart Contracts: A Finite State
Machine Based Approach (Mavridou and Laszka 2018)

2018

Mutation Testing for Ethereum Smart Contract (Li et al. 2019) 2019

5.2.1 Program Analysis

CFG (Control Flow Graph) Based Tools In 2016, Luu et al. (2016) identified four kinds of
new security issues of smart contracts and proposed the first tool, named Oyente, to detect
them through Ethereum bytecode. Although EVM is a stack-based machine, similar to JVM,
Ethereum bytecode has many differences compared to the Java bytecode. For example,
Java bytecode has a clearly-defined set of targets for every jump, but the jump position of
Ethereum bytecode needs to be calculated during symbolic execution. Thus, Oyente first
splits opcodes into several blocks and then uses symbolic execution to build CFG (Control
Flow Graph). CFG stores the relationship between blocks, e.g., jump, conditional jump.
Based on the CFG, Oyente defines several rules to detect related security issues.

A similar method to that of Oyente has been widely applied by other tools. For instance,
GasReducer (Chen et al. 2018a) and GasChecker (Chen et al. 2020c) are tools used to detect
some gas-inefficient patterns. They use the CFG generated by Oyente, and design patterns
to detect related security vulnerability patterns. Besides, Torres et al. (2019), Chang et al.
(2019), Nikolić et al. (2018), Zhou et al. (2018), Krupp and Rossow (2018), and Mossberg
et al. (2019) also use similar methods that design rules based on the CFG to detect other
smart contract vulnerabilities.

Some works make optimizations, e.g., Maian (Nikolić et al. 2018) validate the results of
the symbolic execution by using a concrete validation step. In the concrete validation, they
create a private fork of Ethereum and then run the result generated by the symbolic execution
to check its correctness. Since the results are generated by symbolic execution, and concrete
validation is used to increase performance, we also classify Maian in this category.

Page 27 of 44 117

Empir Software Eng (2021) 26: 11�

Decompilers Vandal (Brent et al. 2018) is a decompiler for smart contract bytecode. Its
output includes a control-flow graph, three-address code for all operations, and function
boundaries. Based on Vandal, developers and researchers can develop other tools to main-
tain their smart contracts. For example, MadMax (Grech et al. 2018) uses logic-based
specifications to detect gas-focused vulnerabilities of smart contracts based on the output of
Vandal. Tsankov et al. (2018) proposed a tool named Securify, which uses semantic infor-
mation to detect vulnerabilities of smart contracts bytecode. Securify first decompiles the
EVM bytecode. It then analyzes the data flow and control flow dependencies. Finally, it
uses several patterns to check related vulnerabilities.

Transaction-based Tools TokenScope (Chen et al. 2019a) is the first tool that uses trans-
action histories to detect inconsistent behaviors of ERC20 Tokens. By using the stored
Ethereum transaction records, TokenScope identifies three key information of contract byte-
code, i.e., core data structures, standard interfaces, and standard events. It then compares
the key information with the standard to find any inconsistent tokens.

Source Code Level Static Analysis Detecting vulnerabilities through bytecode is not
easy as EVM removes some key information while compiles source code to bytecode.
SmartCheck (Tikhomirov et al. 2018) takes smart contract source code as input, and con-
verts the code to the AST (abstract syntax tree) (AST 2020). Based on the AST, SmartCheck
uses several patterns to detect 21 kinds of smart contract issues.

5.2.2 Formal Verification

Formal verification is a method that uses formal methods of mathematics to prove or dis-
prove the correctness of a system (Drechsler and et al 2004). This method usually uses a
formal proof on an abstract mathematical model to make the verification.

Bhargavan et al. (2016) proposed the first formal verification tool for smart contracts
based on the F* proof assistant (Swamy et al. 2016), and Amani et al. (2018) presented a
tool based on Isabelle/HOL (Nipkow et al. 2002). However, both of these the tools only use
incomplete semantics of EVM, which might lead to errors. Thus, Park et al. (2018) use a
complete and thoroughly tested formal semantics of EVM to enhance the efficacy of their
tool.

Kalra et al. (2018) introduced 11 kinds of vulnerabilities of smart contracts and proposed
a tool named Zeus to detect seven of them. Zeus takes source code as input and translates
the Solidity source code to LLVM bytecode (2021). Based on the LLVM bytecode, Zeus
designs several policy violations and uses a verifier to determine assertion violations.

5.2.3 Fuzzing

Fuzzing for smart contracts is an automated testing technique which uses random, unex-
pected, or invalid data as the input to the contract. Such input data is expected to lead to
detecting some unwanted behaviors, e.g., crashes, failure of some functions, permission
errors.

Jiang et al. (2018) proposed the first fuzzing tool named ContractFuzzer, which applies
fuzzing to detect seven kinds of security issues. ContractFuzzer utilizes smart contract
ABI (Solidity 2020b) to generate fuzzing inputs. Then, they define test oracles and use
static analysis to log smart contracts runtime behaviors. Finally, ContractFuzzer analyzes

117 Page 28 of 44

Empir Software Eng (2021) 26: 11�

the logs to find security issues. The following works make some optimization. For exam-
ple, sFuzz (Nguyen et al. 2020) can cover more branches to find more security issues.
EthRacer (Kolluri et al. 2019) can run directly on Ethereum bytecode and without the need
of ABI, which enlarges the usage scenario. ReGuard (Liu et al. 2018a) provides a web ser-
vice for developers to make it is easy to use. EVMFuzz (Fu et al. 2019) designs a differential
fuzz testing framework, which supports different programming languages for EVM smart
contracts.

5.2.4 Machine Learning

With the development of the Ethereum ecosystem, some developers have used machine
learning to help maintain smart contracts. Machine learning related methods need a ground
truth to train the model. S-gram (Liu et al. 2018b) uses Oyente to obtain the ground truth
and utilizes a combination of N-gram language modeling and lightweight static semantic
labeling to predict potential vulnerabilities. SmartEmbed (Gao et al. 2020) uses SmartCheck
to label the vulnerabilities and utilizes deep-learning to train the model to predict smart
contract vulnerabilities. Tann et al. (2018) use MAIAN to label the security issues and use
LSTM to predict potential issues. Huang (2018) first translate the bytecode into RGB color.
Based on a manually labeled dataset, they use a convolutional neural network to train the
model and predict the security issues.

5.2.5 Other Approaches

Mavridou and Laszka (2018) proposed a tool, named FSolidM, to automatically generate
smart contracts. They claim that the generated contracts are bug-free and can reduce devel-
opment efforts. FSolidM regards smart contracts as finite state machines (FSMs). Based
on FSMs, they provide a set of plugins that contain common contract design patterns and
a graphical interface. Developers can add plugins to the contracts to improve security and
functionalities.

Wu et al. (Li et al. 2019) use mutation testing to enhance the security of smart contracts.
Mutation testing is a type of white-box software testing technique that changes some state-
ments of the code and check if the test cases can find some errors. This method is based on
well-defined mutation operators, and the mutation operators only make minor changes to
the programs. Wu et al. designed 15 mutation operators, e.g., variable units, keywords, and
use them to find bugs on smart contracts.

5.3 Online CheckingMethods

Online checking methods can help smart contract developers defend their contracts against
attacks even after they have been deployed. Table 7 introduces seven publications that use
online checking methods to help maintain smart contracts. However, most of the online
checking methods cannot be used directly and need to be merged into the EVM if an
EIP3 (2020) adopts any of those in a new version.

Ayoade et al. (Ayoade et al. 2019) proposed a method that can automatically detect vul-
nerable EVM bytecode segments and uses a guarded bytecode segment to replace it. Their

3Ethereum Improvement Proposals (EIPs) describe standards for the Ethereum platform, including core
protocol specifications, client APIs, and contract standards.

Page 29 of 44 117

Empir Software Eng (2021) 26: 11�

Table 7 Literatures of online checking methods

Methodology Name of Publications Years

Bytecode Rewriting Smart Contract Defense through Bytecode Rewriting (Ayoade
et al. 2019)

2019

Bytecode Rewriting Monitoring smart contracts: ContractLarva and open chal-
lenges beyond (Azzopardi et al. 2018)

2018

Input Detection Town Crier: An Authenticated Data Feed for Smart Con-
tracts (Zhang et al. 2016)

2016

Input Detection FSFC: An input filter-based secure framework for smart con-
tract (Wang et al. 2020)

2020

Transactions Detection ÆGIS: Smart Shielding of Smart Contracts (Ferreira et al.
2019)

2019

Transactions Detection VULTRON: Catching Vulnerable Smart Contracts Once and
for All (Wang et al. 2019a)

2019

State Detection Sereum: Protecting Existing Smart Contracts Against Re-
Entrancy Attacks (Rodler et al. 2018)

2018

Intrusion Detection ContractGuard: Defend Ethereum Smart Contracts with
Embedded Intrusion Detection (Wang et al. 2019b)

2019

tool is based on predefined policy rules and can only support a limited number of sim-
ple rules. Similarly, ContractLarva (Azzopardi et al. 2018) insert protection code into the
source code of smart contracts. This updated bytecode can defend against related attacks.

TownCrier (Zhang et al. 2016) and FSFC (Wang et al. 2020) provide approaches to
detect malicious input to protect smart contracts. TownCrier can be regarded as a bridge
between the smart contracts and front-end programs, e.g., websites. When a frond-end pro-
gram sends transactions to smart contracts, TownCrier uses a combination of Software
Guard Extensions (Costan and Devadas 2016) and Intel’s recently released trusted hardware
capability (Intel 2015) to check whether the input data can be trusted. FSFC is a filter-based
security framework for smart contracts. It uses several firewall rules and uses a monitor to
identify malicious input.

ÆGIS (Ferreira et al. 2019) and VULTRON (Wang et al. 2019a) detect and reverse
malicious transactions to protect smart contracts. ÆGIS uses predefined patters to identify
malicious transactions. VULTRON compares the actual transferred Ethers and the normal
transfered Ethers to find malicious transactions.

Sereum (Rodler et al. 2018) monitors state updates of smart contracts, such as changes
to storage variables, to detect re-entrancy attacks. There are two components of Sereum,
i.e., a taint engine and an attack detector. Sereum focuses on conditional jumps and the data
that influences the conditional jumps. The taint engine is used to detect the change of state
update, which loads to conditional jumps. When a re-entrancy attack happens, the state will
be updated multiple times. Once the attack detector detects such malicious behaviors, the
transaction will be reversed.

ContractGuard (Wang et al. 2019b) is the first intrusion detection system for smart con-
tracts against attacks. It monitors the network for abnormal behaviors. To detect abnormal
behaviors, ContractGuard deploys smart contracts on a testbed and trains a model. When
malicious activities are detected, ContractGuard will reverse the transactions to recover the
contract states and raise an alarm to the contract owner.

117 Page 30 of 44

Empir Software Eng (2021) 26: 11�

5.4 Other Methods

Colombo et al. (2018) introduced a specification-driven method that uses the DELEGATE-
CALL instruction to upgrade smart contracts when unwanted behaviors are detected. To
detect unwanted behaviors, they predefined several checkpoints for smart contracts. The
checkpoints monitor the important state of smart contracts, e.g., its balance. When an
unexpected behavior is detected, the checkpoints will revert the transactions to ensure the
safety of the contracts. Finally, developers are required to upgrade contracts by using the
DELEGATECALL instruction.

Marino and Juels (2016) defined several standards for smart contracts and suggested
developers add a Selfdestruct function in the contracts. When the contract is attacked, the
developers can undo the contracts. A similar suggestion is given by Chen et al. (2020b).
They suggest developers add an interrupter in the contracts. Interrupter is a mechanism to
stop the contract when unwanted behaviors are detected, and Selfdestruct function is an easy
way to stop the contract.

6 Threats To Validity

6.1 Internal Validity

In this paper, we answered two research questions by performing a literature review. Most
of the papers (74.05%) are published between 2017 to 2019, and their findings and studies
may be outdated as the Ethereum ecosystem is fast-evolving. For example, Solidity, the most
popular programming language for smart contracts, has 80 versions from Jan. 2016 to Jun.
2020 (Solidity 2020a). Thus, it is likely that some findings and results in the publications are
out-of-date. To reduce this threat, we used an online survey to collect the opinion from many
real-world smart contract developers. We compared our literature review findings with the
feedback from developers to help ensure the overall validity of our findings.

It is possible that the respondents to our survey may provide some dishonest or unpro-
fessional answers. To reduce this influence, we first informed developers that we will not
collect personal information when sending the invitation emails. The survey is anonymous
and we cannot trace their information if they do not leave their email address. All questions
are optional, which means developers can choose to answer a part of the questions. Accord-
ing to Ong and Weiss (2000) work, confidentiality and anonymity are useful to obtain
un-biased data from survey respondents.

To collect more responses, we translated our survey into a Chinese version to address the
language barrier and as Google cannot be visited in China. There might be inconsistency
between the Chinese and English versions of our surveys. Besides, all the respondents are
written in Chinese, which needs to translate to English when analyzing the data. This pro-
cess also might lead to some errors. To reduce this risk, two Chinese authors with good
English skills read the survey and responded several times to ensure the correctness of the
translation.

6.2 External Validity

We collected responses to our survey by sending emails to Github developers. However, we
might have missed some other developers who might have different opinions. Fortunately,

Page 31 of 44 117

Empir Software Eng (2021) 26: 11�

the survey results show that the respondents to our survey have a wide variety of back-
grounds in terms of experience in developing smart contracts, job roles, and open source
projects they contribute to. Thus, the diversity of backgrounds help us to trust the survey
results and can reflect real-world situations of Ethereum smart contract development.

In the future, new functionalities will be added to Ethereum and Solidity. They might
also be updated to help better address some smart contract maintenance issues. Thus, some
findings and results in this paper might be out-of-date in the future. This is an inevitable
trend for smart contract related empirical studies. While the methods we have identified are
still working, our findings can help developers and researchers.

7 Discussion

In this section, we discuss some future research directions and give suggestions for both
developers and researchers according to our RQ1 and RQ2 findings presented in Sections 4
and 5.

7.1 Improving the Smart Contract Ecosystem

DApp Store and Comment System Although there are some DApp stores for smart con-
tracts, none of them have a smart contract verification system. They neither reject cloned
contracts, nor have a rating system. As we discussed in RQ1, many copy-paste vulnerabil-
ities are prevalent in the Ethereum blockchain’s deployed smart contracts. There are also
many useless smart contracts i.e. “dead” contracts in Ethereum. These contracts are the
noisy data on the blockchain and increase the difficulty of finding useful smart contracts.
According to our survey, 139 (84.24%, Q14) developers have positive opinions about the
need for a DApp store like the Android Google Play Store. Such a DApp store could regulate
the behaviors of smart contracts. For example, rejecting copied contracts, rating useful con-
tracts, giving various classifications for contracts. Thus, developers could more easily find
high quality contracts for reference or for use as callee contracts. A review system would
allow smart contract users to submit reviews when they find bugs or suggest features that
need to be improved. Such comments can help developers better maintain their contracts. It
could also be a valuable research dataset. Based on such a dataset, many traditional MSR
methods can be applied to help improve and maintain smart contracts. For example, as we
introduced in the previous section, there are five machine learning-based methods to help
maintain smart contracts. However, four of them use other tools to label the ground truth,
and there are many false positives / negatives of the tools were used to label the ground
truths. Thus, the performance of these tools is not very good. Real-world produced data, e.g.,
review comments, could substantially improve the performance of these machine learning
tools, just as it has for many traditional software maintenance activities and tools.

Call for High-Quality Standards, Libraries and Reference Code Although Ethereum has
had a rapid improvement in its ecosystem, developers still claim there is a lack of stan-
dards, libraries, and useful reference code. Currently, most of the standards are published on
EIPs (2020), and many teams provide libraries and referee code, e.g., OpenZepplelin Con-
tracts (2020), Smart contract best practice (ConsenSys 2020). However, the number is still
small and not enough for the vast Ethereum ecosystem.

117 Page 32 of 44

Empir Software Eng (2021) 26: 11�

More User Friendly Tools In previous sections, we introduced 41 works which can help
maintain smart contracts. However, according to our survey, 96 (66.2%, Q8) respondents
claim they cannot find useful tools to debug / test / audit their contracts, or such tools are
too hard to use or deploy in real-world smart contract development. An important reason
for this inconsistency is that most current tools are not easy to use for practitioners. Thus,
making these tools easier to deploy and use is an important task for the future. For example,
merging some tools into smart contract IDEs, or adding a user interface to the tools.

7.2 Improving Ethereum and Solidity

Merging Cutting-Edge Technologies The previous section introduced eight online check-
ing methods that could improve the security and maintainability of smart contracts after
they have been deployed. However, most of these online checking methods cannot be used
directly. Specifically, transaction detection methods can revert malicious transactions only
if they were merged into the EVM and updated by nodes on Ethereum. Then, a node (miner)
could revert malicious transactions instead of broadcasting to the whole Ethereum network.
Similar to bytecode rewriting tools, these methods can fix a buggy bytecode snippet after
they are deployed. However, this kind of method requires modification of the code stored
on the blockchain, which cannot be done directly. To use such a method, there should be
a well-thought-out plan to ensure the correctness of smart contracts and the concerns of
breaking the immutability (discussed in Section 4.1.1). For example, there could be a DAO
(Decentralized Autonomous Organization) responsible for updating code periodically by
using the bytecode rewriting tools. When the DAO detects a smart contract needs to modify
its bytecode, the DAO should inform the contract users / owners and allow them to vote to
decide whether the code should be updated. According to our survey (Q15), 150 (90.9%)
respondents hold positive opinions about merging cutting-edge technologies into the EVM
and updated by nodes on Ethereum.

Mitigating Scalability Issues The scalability issue is one of the main challenges for smart
contract maintenance. Several methods have been proposed to help redesign Ethereum to
mitigate this issue. First, the sharding technology is a future direction for Ethereum to
address the scalability issues. Currently, all the nodes on Ethereum need to process every
transaction, which leads to low throughput. By applying sharding to Ethereum, the whole
network can be split into several smaller parts, called shards. A subset of the total miner
nodes would only process transactions on a certain shard. Thus, it can improve the through-
put of Ethereum multiple times. Such sharding technology can also enable a smart contract
to be executed by multiple threads. A contract could then be split into several parts and exe-
cuted by different nodes. Enlarging the maximum stack sizes and reduce the gas cost of the
storage can also mitigate the scalability issues. This mechanism aims to reduce the bulky
problems of Ethereum, where all the nodes store the whole blockchain data. If the bulky
problem is addressed, it is not difficult to make an optimization for stack size, database
performance, and price for storage. Bruce (2014) proposed a new data structure named an
account tree. The account tree holds the balance of all non-empty addresses, which enables
us to remove old transactions. Thus, new nodes do not need to store all transactions and can
reduce the total bulk of the blockchain.

TrustedModificationMethods In Section 4.1.1, we introduced four modification methods
for smart contracts. Among them, using the Selfdestruct function and developing upgrade-
able contracts cost the least. However, these two methods can lead to a major trust concern

Page 33 of 44 117

Empir Software Eng (2021) 26: 11�

from the users and other security issues. Previous work (Chen et al. 2020a) introduced a
method to reduce the trust and security concern for the usage of the Selfdestruct function,
which can also be applied to upgradeable contracts. This method suggests that developers
should distribute the rights to the users of the contracts. They could vote to decide whether
the contracts should be destructed or upgraded. Using consensus protocols, such as PoS
(2019) and DPoS (2019) are examples of such voting. For example, if a user invests 100
Ethers to the contract, the user has 100 score to vote. The more Ethers users invest con-
tracts, the more rights they have. When the voting process finished, users who do not agree
can transfer their Ethers to other accounts. Also, the delay can reduce the risk of the Ethers
locking, as Ethers transferred to the destructed address will be locked forever. During the
voting and delaying steps, developers should suspend the function of the contracts to prevent
attacks or other unwanted behaviors.

8 RelatedWork

We review previous key empirical studies on smart contracts, and highlight the difference
between our work at the end of the section.

8.1 Survey Based Smart Contract Empirical Studies

Bosu et al. (2019) pre-designed some questions and used an online survey to collect the
opinions from developers on Github. Their work aimed to answer who contributes to smart
contracts and their motivation for development, what is the difference between smart con-
tract development and traditional software development, the challenges of smart contract
development, and what kinds of tools that developers feel they need.

Chakraborty et al. (2018) sent an online survey to 1,604 developers on Github and
received 145 responses. Their survey aimed to find the best current software development
practices for smart contracts. Their findings suggest that some traditional software engi-
neering practices are still working for blockchain projects. They identified that the smart
contract ecosystem is immature and needs more SE methods, resources, and tools.

Chen et al. (2020b) defined 20 contract defects by analyzing posts on Stack Exchange.
They divided the defects into five categories, i.e., security, availability, performance, main-
tainability, and reusability defects. They claimed that removing these contract defects can
improve the robustness and enhance development efficiency. To validate whether real-world
developers regard these contracts as harmful, they use an online survey to collect develop-
ers’ opinions. The results show that all the 20 contract defects are potential harmful to smart
contracts.

Novelty and Differences of this work Both our work and Bosu et al.’s work (2019)
investigated the challenges of smart contract development. Our work investigated the
maintenance-related challenges for post-deployed Ethereum Smart Contract development,
which is much more comprehensive than Bosu et al.’s work. The only similarity between
the two works is that we both reported a lack of tools as one of the challenges for smart con-
tract development / maintenance. Our work has a deeper analysis for the reasons why the
academia proposed many tools with excellent performance but the smart contract developers
also feel they lack tools to check smart contract security. (See Section 4.2.1).

117 Page 34 of 44

Empir Software Eng (2021) 26: 11�

There is a big difference between Chakraborty et al.’s work (2018) and our work. Both
works used surveys to collect developers’ opinions; their work used surveys to find the
answers of pre-defined research questions, while our survey aimed to validate the findings
that we collected from our literature review. Their work aims to understand the software
development practices of smart contract projects. For example, how smart contract devel-
opers test their code, e.g., using unit testing or code review; what’s the requirement during
the development, e.g., the needs for community discussion, while our work focuses on the
challenges during smart contract maintenance.

Chen et al.’s work (2020b) reported detailed patterns / code that are harmful for smart
contract development / maintenance, while our work is at a higher level that reports the
challenges of smart contract maintenance instead of specific code patterns.

8.2 Literature Review Based Smart Contract Empirical Studies.

Conoscenti et al. (2016) proposed an empirical study to help developers understand how
to use smart contracts and blockchain technology to build a decentralized and private-by-
design IoT system. To obtain key related information they conducted a systematic literature
review based on 18 publications. Their work introduced several use cases of blockchain in
the IoT domain and the factors affect integrity, anonymity, and adaptability of blockchain
technology.

Udokwu et al. (2018) selected 48 publications from 496 papers. Based on the selected
papers, they described the key current usages of smart contract technology and challenges
in adopting smart contracts to other applications. Their analysis showed that the most pop-
ular applications of smart contracts are supply chain management, finance, healthcare,
information security, smart city, and IoT. They also identified 18 limitations of blockchain
technology that affects the adoption of smart contracts for other applications.

Macrinici et al. (2018) pre-defined seven research questions and selected 64 publications
to find answers. Their results show that the most popular topic in smart contract research is
offering solutions to address related problems, e.g, developing tools, proof-of-concepts, and
designing protocols. They also summarized 16 smart contract related problems and divided
them into three categories, i.e., blockchain mechanism, contract source code, and EVM
problems.

Novelty and Differences of this work Our work is the most comprehensive literature
review based on smart contract empirical study (our 131 publications v.s. Conoscenti et al.
’s 18 publications v.s. Udokwu et al. ’s 48 publications v.s. Macrinici et al.’s 64 publica-
tions). There might be a gap between academia and industry knowledge, usage, practices,
and desired outcomes. Thus, findings based on previous published literature might be out-
of-date. Ours is the only work that uses an online survey to validate our findings from the
literature review. Also, the fast-growing ecosystem of Ethereum can make even recent find-
ings quickly out of date. Thus, the findings based exclusively on literature reviews might
not be reliable. For example, Zou et al. (2019) mention that Solidity lacks the support of
try-catch, which increases the difficulty of the development. However, Solidity added this
support from version 0.6.0 (Solidity 2020b). Also, our work is the only one that focuses on
smart contract maintenance issues, while the mentioned three works focus on IoT, adopting
smart contracts to other applications, and the most popular topic in smart contract research,
respectively.

Page 35 of 44 117

Empir Software Eng (2021) 26: 11�

8.3 Security Related Smart Contract Empirical Studies.

Li et al. (2017) reviewed security issues for the blockchain systems from 2015 to 2017. They
classified these issues into nine categories and introduced the related causes. For example,
one of the categories is the “51% vulnerability” and the cause is the consensus mechanism.
To help developers understand such attacks better, they also gave example real attacks as
case studies and analyzed the vulnerabilities utilized by the attackers.

Bartoletti et al. (2020) found that the infamous Ponzi scheme has migrated to Ethereum.
Misbehaving developers use smart contracts to design a Ponzi scheme to make money. Bar-
toletti et al. manually checked real-world smart contracts and summarized four kinds of
Ponzi smart contracts, i.e., tree-shaped, chain-shaped, waterfall, handover Ponzi scheme. To
help further research on Ponzi scheme detection, they manually labeled a dataset that con-
tains 184 schemes. A follow-up work (Weili et al. 2018; Chen et al. 2019b) used this dataset
to design machine learning methods to detect Ponzi smart contracts.

Delmolino et al. (2016) are the lectures of a university who teach smart contract
programming. They documented the pitfalls of smart contracts according to their teach-
ing experiences. The pitfalls include errors in encoding state machines, failing to use
cryptography, misaligned incentives, and Ethereum-specific mistakes.

Atzei et al. (2017) studied attacks on smart contracts on Ethereum between 2015 to
2017, and provided a classification of programming pitfalls which might lead to the security
issues of smart contracts. Their work introduced six vulnerabilities in the Solidity level,
three vulnerabilities in the EVM level, and three vulnerabilities in the blockchain level. For
most of the vulnerabilities introduced in the paper, a detailed introduction, code examples,
and attack examples are given to help readers better understand.

Novelty andDifferences of thiswork The motivation between our work and these security-
related smart contract empirical studies have big differences. Our work aims to highlight the
maintenance-related concerns for post-deployed Ethereum smart contract development, and
security concerns is only a very small part of our work. These works focus on only security
issues with more detailed information, e.g., the specific code patterns and attack examples.

8.4 Other Smart Contract Empirical Studies

Zheng et al. (2020) described the challenges of developing smart contracts in the whole
life cycle, including creation challenges, deployment challenges, execution challenges, and
completion challenges. Their work not only focused on the Ethereum platform, but is
also more narrow in other ways. Thus, they also analysed some differences between six
smart contract platforms. Another work (Zheng et al. 2018) discussed the challenges of
the blockchain system, and the opportunities of blockchain technology. For the challenge,
they mainly focused on the architecture of blockchain and consensus algorithms. For the
opportunities, they introduced the applications of blockchain, e.g., IoT, Finance. Reyna
et al. (2018) investigated the challenges of applying blockchain technology to the IoT to
increase the security and reliability. Mohanta et al. (2018) introduced seven uses cases for
smart contracts, including supply chain, IoT, and healthcare systems. Many empirical stud-
ies also focus on the performance of smart contract tools (Perez and Livshits 2019; Parizi
et al. 2018a), programming languages (Harz and Knottenbelt 2018; Schrans et al. 2018;
Parizi et al. 2018b), ecosystem (Kiffer et al. 2018; He et al. 2019; Hegedűs 2019), permis-
sions (Vukolić 2017), design patterns (Bartoletti and Pompianu 2017), life cycle (Di and

117 Page 36 of 44

Empir Software Eng (2021) 26: 11�

Salzer 2019), call relations (Bistarelli et al. 2019). Durieux et al. (2020) presented an empiri-
cal study of 9 state-of-art smart contract vulnerability analysis tools. To evaluate these tools,
they use two datasets, i.e., a small-scale dataset consists of 69 vulnerable smart contracts and
a large-scale dataset with all verified smart contracts (47, 518 contracts) on Etherscan. They
found that only 42% of vulnerable smart contracts in small-scale dataset can be detected
by all the 9 tools. About 97% of smart contracts are labeled as vulnerable by at least one
tool. According to their analysis result, Mythril (Software C 2019) has the highest accuracy
(27%) in detecting smart contract vulnerabilities.

Novelty and Differences of this work In this paper, we summarized the key maintenance
issues and current maintenance methods for smart contracts as evidence from our literature
review, which has a different topic with the smart contract empirical studies mentioned
above. Ours is also the only work to date that has conducted a literature review to collect
maintenance issues of smart contracts and used an online survey to validate these findings
with practitioners.

9 Conclusion

In this paper, we conducted the first empirical study on the Ethereum smart contract mainte-
nance issues. We performed a systematic literature review to obtain related information and
used an online survey to validate our findings with practitioners. Our study contains two
research questions. In RQ1, we identified 9 kinds of issues related to corrective, adaptive,
perfective, and preventive maintenance of smart contacts, and another 4 issues correspond-
ing to the overall maintenance process for smart contracts. In RQ2, we summarized current
maintenance methods used for smart contracts from 41 publications and divided them into
three categories, offline checking methods, online checking methods, and other methods.
We also highlighted two kinds of future research directions and discussed some suggestions
for both smart contract developers and researchers according to the previous RQ answers
and our survey results.

References

Amani S, Bégel M, Bortin M, Staples M (2018) Towards verifying Ethereum smart contract bytecode in
Isabelle/HOL

AST (2020) Abstract syntax tree. https://en.wikipedia.org/wiki/Abstract syntax tree
Atzei N, Bartoletti M, Cimoli T (2017) A survey of attacks on Ethereum smart contracts (sok). In:

International conference on principles of security and trust. Springer, pp 164–186
Ayoade G, Bauman E, Khan L, Hamlen K (2019) Smart contract defense through bytecode rewriting, IEEE
Azzopardi S, Ellul J, Pace GJ (2018) Monitoring smart contracts: Contractlarva and open challenges beyond.

In: International conference on runtime verification. Springer, pp 113–137
Bartoletti M, Pompianu L (2017) An empirical analysis of smart contracts: platforms, applications, and

design patterns. In: International conference on financial cryptography and data security. Springer,
pp 494–509

Bartoletti M, Carta S, Cimoli T, Saia R (2020) Dissecting Ponzi schemes on Ethereum: identification,
analysis, and impact. Futur. Gener. Comput. Syst. 102:259–277

Beck K, Beedle M, Van BennekumA, Cockburn A, Cunningham W, Fowler M, Grenning J, Highsmith J,
Hunt A, Jeffries R et al (2001) Manifesto for agile software development

Bez M, Fornari G, Vardanega T (2019) The scalability challenge of Ethereum: An initial quantitative analysis.
In: 2019 IEEE international conference on service-oriented system engineering (SOSE). IEEE, pp 167–
176

Page 37 of 44 117

https://en.wikipedia.org/wiki/Abstract_syntax_tree

Empir Software Eng (2021) 26: 11�

Bhargavan K, Delignat-Lavaud A, Fournet C, Gollamudi A, Gonthier G, Kobeissi N, Kulatova N, Ras-
togi A, Sibut-Pinote T, Swamy N et al (2016) Formal verification of smart contracts: Short paper. In:
Proceedings of the 2016 ACM workshop on programming languages and analysis for security. pp 91–96

Bigi G, Bracciali A, Meacci G, Tuosto E (2015) Validation of decentralised smart contracts through game the-
ory and formal methods. In: Programming languages with applications to biology and security. Springer,
pp 142–161

Bistarelli S, Mazzante G, Micheletti M, Mostarda L, Tiezzi F (2019) Analysis of Ethereum smart con-
tracts and opcodes. In: International conference on advanced information networking and applications.
Springer, pp 546–558

Blockchain (2019) What is blockchain. https://en.wikipedia.org/wiki/Blockchain
Boehm B, Basili VR (2005) Software defect reduction top 10 list. Found Empir Softw Eng 426(37):426–431
Boehm BW (1988) A spiral model of software development and enhancement. Computer 21(5):61–72
Bosu A, Iqbal A, Shahriyar R, Chakraborty P (2019) Understanding the motivations, challenges and needs

of Blockchain software developers: a survey. Empir. Softw. Eng. 24(4):2636–2673
Bourque P, Fairley RE et al (2014) Guide to the software engineering body of knowledge (SWEBOK (R)):

Version 3.0. IEEE Computer Society Press, Washington
Brent L, Jurisevic A, Kong M, Liu E, Gauthier F, Gramoli V, Holz R, Scholz B (2018) Vandal: A scalable

security analysis framework for smart contracts. arXiv:1809.03981
Bruce J (2014) The mini-blockchain scheme. White paper
Chakraborty P, Shahriyar R, Iqbal A, Bosu A (2018) Understanding the software development practices

of blockchain projects: a survey. In: Proceedings of the 12th ACM/IEEE international symposium on
empirical software engineering and measurement. pp 1–10

Chang J, Gao B, Xiao H, Sun J, Cai Y, Yang Z (2019) sCompile: Critical path identification and analysis for
smart contracts. In: International conference on formal engineering methods. Springer, pp 286–304

Chen J, Xia X, David L, John G (2020a) Why do smart contracts self-destruct? investigating the selfdestruct
function on ethereum. arXiv:2005.07908

Chen J, Xia X, Lo D, Grundy J, Luo X, Chen T (2020b) Defining smart contract defects on ethereum. IEEE
Trans Softw Eng

Chen T, Li Z, Zhou H, Chen J, Luo X, Li X, Zhang X (2018a) Towards saving money in using smart contracts.
In: 2018 IEEE/ACM 40th International conference on software engineering: new ideas and emerging
technologies results (ICSE-NIER). IEEE, pp 81–84

Chen T, Zhang Y, Li Z, Luo X, Wang T, Cao R, Xiao X, Zhang X (2019a) TokenScope: automatically
detecting inconsistent behaviors of cryptocurrency tokens in ethereum. In: Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security. pp 1503–1520

Chen T, Feng Y, Li Z, Zhou H, Luo X, Li X, Xiao X, Chen J, Zhang X (2020c) GasChecker: scalable analysis
for discovering gas-inefficient smart contracts. IEEE Trans Emerg Topics Comput

Chen W, Ma M, Ye Y, Zheng Z, Zhou Y (2018b) IoT service based on jointcloud blockchain: The case study
of smart traveling. In: 2018 IEEE symposium on service-oriented system engineering (SOSE), IEEE,
pp 216-221

Chen W, Zheng Z, Ngai ECH, Zheng P, Zhou Y (2019b) Exploiting blockchain data to detect smart Ponzi
schemes on Ethereum. IEEE Access 7:37575–37586

Colombo C, Ellul J, Pace GJ (2018) Contracts over smart contracts: Recovering from violations dynamically.
In: International symposium on leveraging applications of formal methods. Springer, pp 300–315

Conoscenti M, Vetro A, De Martin JC (2016) Blockchain for the internet of things: a systematic litera-
ture review. In: 2016 IEEE/ACS 13th International conference of computer systems and applications
(AICCSA). IEEE, pp 1–6

ConsenSys (2020) Smart contract best practices. https://github.com/ConsenSys/smart-contract-best-practices
Costan V, Devadas S (2016) Intel SGX explained. IACR Cryptology ePrint Archive 2016(086):1–118
Cryptokitties (2019) https://www.cryptokitties.co/
DApp (2019) Decentralized application. https://en.wikipedia.org/wiki/Decentralized application
Delmolino K, Arnett M, Kosba A, Miller A, Shi E (2016) Step by step towards creating a safe smart contract:

Lessons and insights from a cryptocurrency lab. In: International conference on financial cryptography
and data security. Springer, pp 79–94

Di AngeloM, Salzer G (2019) Mayflies, breeders, and busy bees in Ethereum: smart contracts over time. In:
Proceedings of the third ACM workshop on blockchains, cryptocurrencies and contracts. pp 1–10

DPoS (2019) Delegated proof of stake. https://lisk.io/academy/blockchain-basics/how-does-blockchain-
work/delegated-proof-of-stake

Drechsler R et al (2004) Advanced formal verification, vol 122. Springer, Berlin

117 Page 38 of 44

https://en.wikipedia.org/wiki/Blockchain
http://arxiv.org/abs/1809.03981
http://arxiv.org/abs/2005.07908
https://github.com/ConsenSys/smart-contract-best-practices
https://www.cryptokitties.co/
https://en.wikipedia.org/wiki/Decentralized_application
https://lisk.io/academy/blockchain-basics/how-does-blockchain-work/delegated-proof-of-stake
https://lisk.io/academy/blockchain-basics/how-does-blockchain-work/delegated-proof-of-stake

Empir Software Eng (2021) 26: 11�

Durieux T, Ferreira JF, Abreu R, Cruz P (2020) Empirical review of automated analysis tools on 47,587
Ethereum smart contracts. In: Proceedings of the ACM/IEEE 42nd International conference on software
engineering. pp 530–541

Efanov D, Roschin P (2018) The all-pervasiveness of the blockchain technology. Procedia Comput Sci
123:116–121

EIP (2020) The ethereum improvement proposal repository. https://github.com/Ethereum/EIPs
EIP150 (2020) EIP-150. https://blog.Ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-

gas-cost-changes/
ETC (2018) Ethereum classic. https://Ethereumclassic.github.io/
Ethereum (2019) Ethereum.org. https://www.Ethereum.org/
EtherScan (2018) https://etherscan.io/
Ethstates (2020) Ethereum network status. https://ethstats.net/
Fabian V, Vitalik B (2018) ERC20. https://github.com/Ethereum/EIPs/blob/master/EIPS/eip-20.md
Ferreira TorresC, Baden M, Norvill R, Jonker H (2019) ÆGIS: smart shielding of smart contracts.

In: Proceedings of the 2019 ACM SIGSAC conference on computer and communications security.
pp 2589–2591

Fontana FA, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine learning
techniques for code smell detection. Empir. Softw. Eng. 21(3):1143–1191

Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley Professional,
Boston

Frowis M, Bohme R (2017) In code we trust? Measuring the control flow immutability of all smart contracts
deployed on Ethereum. LNCS 10436:357–372

Fu Y, Ren M, Ma F, Jiang Y, Shi H, Sun J (2019) Evmfuzz: Differential fuzz testing of Ethereum virtual
machine. arXiv:1903.08483

Gao Z, Jiang L, Xia X, Lo D, Grundy J (2020) Checking smart contracts with structural code embedding.
IEEE Trans Softw Eng

GasStation (2020) ETH gas station. https://ethgasstation.info/
Giger E, D’Ambros M, Pinzger M, Gall HC (2012) Method-level bug prediction. In: Proceedings of the

2012 ACM-IEEE International symposium on empirical software engineering and measurement, IEEE,
pp 171–180

Grano G, Di Sorbo A, Mercaldo F, Visaggio CA, Canfora G, Panichella S (2017) Android apps and user
feedback: a dataset for software evolution and quality improvement. In: Proceedings of the 2nd ACM
SIGSOFT international workshop on app market analytics. pp 8–11

Grech N, Kong M, Jurisevic A, Brent L, Scholz B, Smaragdakis Y (2018) Madmax: Surviving out-of-
gas conditions in Ethereum smart contracts. Proceedings of the ACM on programming languages
2(OOPSLA):1–27

Grech N, Brent L, Scholz B, Smaragdakis Y (2019) Gigahorse: thorough, declarative decompilation of smart
contracts, IEEE

Harz D, Knottenbelt W (2018) Towards safer smart contracts: A survey of languages and verification
methods. arXiv:1809.0980

He N, Wu L, Wang H, Guo Y, Jiang X (2019) Characterizing code clones in the Ethereum smart contract
ecosystem. arXiv:1905.00272

Hegedűs P (2019) Towards analyzing the complexity landscape of solidity based Ethereum smart contracts.
Technologies 7(1):6

Hildenbrandt E, Saxena M, Rodrigues N, Zhu X, Daian P, Guth D, Moore B, Park D, Zhang Y, Stefanescu
A et al (2018) Kevm: A complete formal semantics of the Ethereum virtual machine, IEEE

Huang R, Sun W, Xu Y, Chen H (2019) Towey D, A survey on adaptive random testing. IEEE Trans Softw
Eng, Xia X

Huang THD (2018) Hunting the Ethereum smart contract: Color-inspired inspection of potential attacks.
arXiv:1807.01868

Intel (2015) Intel corporation. Intelà software guard extensions evaluation SDK user’s guide for windows*
OS. https://software.intel.com/sites/products/sgx-sdk-users-guide-windows

ISO/IEC (2006) ISO/IEC/IEEE international standard for software engineering - software life cycle pro-
cesses - maintenance. ISO/IEC 14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998),
pp 1–58

Jiang B, Liu Y, Chan W (2018) Contractfuzzer: Fuzzing smart contracts for vulnerability detection. In:
Proceedings of the 33rd ACM/IEEE international conference on automated software engineering.
pp 259–269

Kalra S, Goel S, Dhawan M, Sharma S (2018) ZEUS: analyzing safety of smart contracts. In: The network
and distributed system security symposium (NDSS). pp 1–12

Page 39 of 44 117

https://github.com/Ethereum/EIPs
https://blog.Ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-gas-cost-changes/
https://blog.Ethereum.org/2016/10/13/announcement-imminent-hard-fork-eip150-gas-cost-changes/
https://Ethereumclassic.github.io/
https://www.Ethereum.org/
https://etherscan.io/
https://ethstats.net/
https://github.com/Ethereum/EIPs/blob/master/EIPS/eip-20.md
http://arxiv.org/abs/1903.08483
https://ethgasstation.info/
http://arxiv.org/abs/1809.0980
http://arxiv.org/abs/1905.00272
http://arxiv.org/abs/1807.01868
https://software.intel.com/sites/products/sgx-sdk-users-guide-windows

Empir Software Eng (2021) 26: 11�

Kiffer L, Levin D, Mislove A (2018) Analyzing ethereum’s contract topology. In: Proceedings of the internet
measurement conference, vol 2018, pp 494–499

Kim M, Zimmermann T, DeLine R, Begel A (2016) The emerging role of data scientists on software
development teams, IEEE

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering. EBSE Technical Report

Kitchenham BA, Pfleeger SL (2008) Personal opinion surveys. In: Guide to advanced empirical software
engineering. Springer, pp 63–92

Kolluri A, Nikolic I, Sergey I, Hobor A, Saxena P (2019) Exploiting the laws of order in smart contracts.
In: Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis.
pp 363–373

Krupp J, Rossow C (2018) Teether: Gnawing at Ethereum to automatically exploit smart contracts. In: 27th
USENIX security symposium. pp 1317–1333

Li X, Jiang P, Chen T, Luo X, Wen Q (2017), A survey on the security of blockchain systems. Future Gener
Comput Syst

Li Z, Wu H, Xu J, Wang X, Zhang L, Chen Z (2019) MuSC: A tool for mutation testing of Ethereum smart
contract. In: 2019 34th IEEE/ACM International conference on automated software engineering (ASE).
IEEE, pp 1198–1201

Liu C, Liu H, Cao Z, Chen Z, Chen B, Roscoe B (2018a) Reguard: finding reentrancy bugs in smart
contracts. In: 2018 IEEE/ACM 40th international conference on software engineering: companion
(ICSE-Companion). IEEE, pp 65–68

Liu H, Liu C, Zhao W, Jiang Y, Sun J (2018b) S-gram: towards semantic-aware security auditing for
Ethereum smart contracts. In: Proceedings of the 33rd ACM/IEEE international conference on automated
software engineering. pp 814–819

LLVM (2021) The llvm project. https://llvm.org/
Lohr M, Peldszus S (2020) Maintenance of long-living smart contracts. In: CEUR workshop proceedings
Luu L, Chu DH, Olickel H, Saxena P, Hobor A (2016) Making smart contracts smarter. In: Proceedings of

the 2016 ACM SIGSAC conference on computer and communications security. ACM, pp 254–269
Maalej W, Nabil H (2015) Bug report, feature request, or simply praise? on automatically classifying app

reviews, IEEE
Macrinici D, Cartofeanu C, Gao S (2018) Smart contract applications within blockchain technology: A

systematic mapping study. Telematics Inform. 35(8):2337–2354
Marino B, Juels A (2016) Setting standards for altering and undoing smart contracts. In: International

symposium on rules and rule markup languages for the semantic web. Springer, pp 151–166
Marketcap (2020) https://www.ccn.com/marketcap/
Mavridou A, Laszka A (2018) Designing secure Ethereum smart contracts: A finite state machine based

approach. In: International conference on financial cryptography and data security. Springer, pp 523–540
Mohanta BK, Panda SS, Jena D (2018) An overview of smart contract and use cases in blockchain technol-

ogy. In: 2018 9th international conference on computing, communication and networking technologies
(ICCCNT). IEEE, pp 1–4

Mossberg M, Manzano F, Hennenfent E, Groce A, Grieco G, Feist J, Brunson T, Dinaburg A (2019) Man-
ticore: A user-friendly symbolic execution framework for binaries and smart contracts. In: 2019 34th
IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 1186–1189

Mudge N (2021) Eip2535: diamond standard. https://eips.ethereum.org/EIPS/eip-2535
Mushegian N (2020) EIP-140. https://github.com/Ethereum/EIPs/issues/140
Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system
Nguyen TD, Pham LH, Sun J, Lin Y, Minh QT (2020) sFuzz: an efficient adaptive fuzzer for solidity smart

contracts. ICSE
Nikolić I, Kolluri A, Sergey I, Saxena P, Hobor A (2018) Finding the greedy, prodigal, and suicidal contracts

at scale. In: Proceedings of the 34th annual computer security applications conference. pp 653–663
Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL: a proof assistant for higher-order logic, vol 2283.

Springer Science & Business Media, Berlin
Norvill R, Pontiveros BBF, State R, Awan I, Cullen A (2017) Automated labeling of unknown contracts in

Ethereum. In: 2017 26th international conference on computer communication and networks (ICCCN).
IEEE, pp 1–6

Ong AD, Weiss DJ (2000) The impact of anonymity on responses to sensitive questions 1. J. Appl. Soc.
Psychol. 30(8):1691–1708

OpenZeppelin (2020) OpenZeppelin upgradeable smart contract document. https://docs.openzeppelin.com/
learn/upgrading-smart-contracts

Openzepplelin (2020) Openzepplelin contracts. https://github.com/OpenZeppelin/openzeppelin-contracts

117 Page 40 of 44

https://llvm.org/
https://www.ccn.com/marketcap/
https://eips.ethereum.org/EIPS/eip-2535
https://github.com/Ethereum/EIPs/issues/140
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://docs.openzeppelin.com/learn/upgrading-smart-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts

Empir Software Eng (2021) 26: 11�

Parizi RM, Dehghantanha A, Choo KKR, Singh A (2018a) Empirical vulnerability analysis of auto-
mated smart contracts security testing on blockchains. In: Proceedings of the 28th annual international
conference on computer science and software engineering. IBM Corp., pp 103–113

Parizi RM, Dehghantanha A, et al. (2018b) Smart contract programming languages on blockchains: An
empirical evaluation of usability and security. In: International conference on blockchain. Springer,
pp 75–91

Park D, Zhang Y, Saxena M, Daian P, Roşu G (2018) A formal verification tool for Ethereum VM bytecode.
In: Proceedings of the 2018 26th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. pp 912–915

Perez D, Livshits B (2019) Smart contract vulnerabilities: Does anyone care? arXiv:1902.06710
Pigoski TM (1996) Practical software maintenance: best practices for managing your software investment.

Wiley, Hoboken
PoS (2019) Proof of stake. https://en.wikipedia.org/wiki/Proof of stake
Reyna A, Martı́n C, Chen J, Soler E, Dı́az M (2018) On blockchain and its integration with IoT. Challenges

and opportunities. Future Gener Comput Syst 88:173–190
Rodler M, Li W, Karame GO, Davi L (2018) Sereum: Protecting existing smart contracts against re-entrancy

attacks. arXiv:1812.05934
Schrans F, Eisenbach S, Drossopoulou S (2018) Writing safe smart contracts in Flint. In: Conference

companion of the 2nd international conference on art, science, and engineering of programming.
pp 218–219

SDHardFork (2020) Spurious dragon hard fork. https://blog.Ethereum.org/2016/11/18/hard-fork-no-4-
spurious-dragon/

Segura S, Fraser G, Sanchez AB, Ruiz-Cortés A (2016) A survey on metamorphic testing. IEEE Trans Softw
Eng 42(9):805–824

Siegel D (2018) Understanding the DAO attack. https://www.coindesk.com/understanding-dao-hack-
journalists/

Software C (2019) Mythril: Security analysis tool for evm bytecode. https://github.com/ConsenSys/mythril
Solidity (2020) Releases of solidity. https://github.com/Ethereum/solidity/releases
Solidity (2020) Solidity document. http://solidity.readthedocs.io
Spencer D (2009) Card sorting: Designing usable categories, Rosenfeld Media, New York
Swamy N, Hriţcu C, Keller C, Rastogi A, Delignat-Lavaud A, Forest S, Bhargavan K, Fournet C, Strub PY,

Kohlweiss M et al (2016) Dependent types and multi-monadic effects in F. In: Proceedings of the 43rd
annual ACM SIGPLAN-SIGACT symposium on principles of programming languages. pp 256–270

Tai AT, Alkalai L (1998) On-board maintenance for long-life systems. In: Proceedings. 1998 IEEE workshop
on application-specific software engineering and technology. ASSET-98 (Cat. No. 98EX183). IEEE,
pp 69–74

Tann A, Han XJ, Gupta SS, Ong YS (2018) Towards safer smart contracts: A sequence learning approach to
detecting vulnerabilities. arXiv:1811.06632. pp 1371–1385

Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alexandrov Y (2018)
Smartcheck: Static analysis of Ethereum smart contracts. In: Proceedings of the 1st international
workshop on emerging trends in software engineering for blockchain. pp 9–16

Torres CF, Schütte J, State R (2018) Osiris: Hunting for integer bugs in Ethereum smart contracts. In:
Proceedings of the 34th Annual computer security applications conference. pp 664–676

Torres CF, Steichen M et al (2019) The art of the scam: Demystifying honeypots in Ethereum smart contracts.
In: 28th {USENIX} security symposium ({USENIX} security, vol 19, pp 1591–1607

Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Buenzli F, Vechev M (2018) Securify: Practical security
analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security. ACM, pp 67–82

Tyagi PK (1989) The effects of appeals, anonymity, and feedback on mail survey response patterns from
salespeople. J. Acad. Mark. Sci. 17(3):235–241

Udokwu C, Kormiltsyn A, Thangalimodzi K, Norta A (2018) The state of the art for blockchain-enabled
smart-contract applications in the organization. In: 2018 Ivannikov Ispras Open Conference (ISPRAS).
IEEE, pp 137-144

Velner Y, Teutsch J, Luu L (2017) Smart contracts make Bitcoin mining pools vulnerable. In: International
conference on financial cryptography and data security. Springer, pp 298–316

Vukolić M (2017) Rethinking permissioned blockchains. In: Proceedings of the ACM workshop on
blockchain, cryptocurrencies and contracts. pp 3–7

Vyper (2020) Vyper document. https://vyper.readthedocs.io
Wan Z, Xia X, Hassan AE, Lo D, Yin J, Yang X (2018) Perceptions, expectations, and challenges in defect

prediction. IEEE Trans Softw Eng

Page 41 of 44 117

http://arxiv.org/abs/1902.06710
https://en.wikipedia.org/wiki/Proof_of_stake
http://arxiv.org/abs/1812.05934
https://blog.Ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://blog.Ethereum.org/2016/11/18/hard-fork-no-4-spurious-dragon/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://www.coindesk.com/understanding-dao-hack-journalists/
https://github.com/ConsenSys/mythril
https://github.com/Ethereum/solidity/releases
http://solidity.readthedocs.io
http://arxiv.org/abs/1811.06632
https://vyper.readthedocs.io

Empir Software Eng (2021) 26: 11�

Wan Z, Xia X, Lo D, Murphy GC (2019) How does machine learning change software development
practices? IEEE Trans Softw Eng

Wang H, Li Y, Lin SW, Ma L, Liu Y (2019a) Vultron: catching vulnerable smart contracts once and for all.
In: 2019 IEEE/ACM 41st International conference on software engineering: new ideas and emerging
results (ICSE-NIER). IEEE, pp 1–4

Wang X, He J, Xie Z, Zhao G, Cheung SC (2019b) ContractGuard: Defend ethereum smart contracts with
embedded intrusion detection. IEEE Trans Serv Comput

Wang Z, Dai W, Choo KKR, Jin H, Zou D (2020) FSFC: An input filter-based secure framework for smart
contract. J Netw Comput Appl :102530

Weili C, Zibin Z, Jiahui C, Edith N, Peilin Z, Yuren Z (2018) Detecting ponzi schemes on ethereum: towards
healthier blockchain technology. In: Proceedings of the 2018 world wide web conference on world wide
web, international world wide web conferences steering committee, pp 1409–1418

Wood G (2014) Ethereum: A secure decentralised generalised transaction ledger. Project Yellow Paper
Yan M, Xia X, Shihab E, Lo D, Yin J, Yang X (2018) Automating change-level self-admitted technical debt

determination. IEEE Trans. Softw. Eng. 45(12):1211–1229
Zhang F, Cecchetti E, Croman K, Juels A, Shi E (2016) Town crier: An authenticated data feed for smart con-

tracts. In: Proceedings of the 2016 aCM sIGSAC conference on computer and communications security.
pp 270–282

Zhang T, Chen J, Zhan X, Luo X, Lo D, Jiang H (2019) Where2Change: Change request localization for app
reviews. IEEE Trans Softw Eng

Zheng Z, Xie S, Dai HN, Chen X, Wang H (2018) Blockchain challenges and opportunities: A survey. Int J
Web Grid Servi 14(4):352–375

Zheng Z, Xie S, Dai HN, Chen W, Chen X, Weng J, Imran M (2020) An overview on smart contracts:
Challenges, advances and platforms. Futur. Gener. Comput. Syst. 105:475–491

Zhou E, Hua S, Pi B, Sun J, Nomura Y, Yamashita K, Kurihara H (2018) Security assurance for smart
contract, IEEE

Zou W, Lo D, Kochhar PS, Le XBD, Xia X, Feng Y, Chen Z, Xu B (2019) Smart contract development:
Challenges and opportunities. IEEE Trans Softw Eng

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Jiachi Chen is currently a Ph.D student at the Faculty of Information
Technology, Monash University, Australia. Prior to join Monash Uni-
versity, he spent two years at the Hong Kong Polytechnic University
and half a year at Zhejiang University in China both as a research
assistant. His research interests include mining software repository
and smart contract analysis.

117 Page 42 of 44

Empir Software Eng (2021) 26: 11�

Xin Xia is the director of the software engineering application tech-
nology lab, Huawei, China. Prior to joining Huawei, he was an
ARC DECRA Fellow and a lecturer at Monash University, Aus-
tralia. Xin received his Ph.D in computer science from Zhejiang
University in 2014. To help developers and testers improve their pro-
ductivity, his current research focuses on mining and analyzing rich
data in software repositories to uncover interesting and actionable
information.More information at: https://xin-xia.github.io/

David Lo is a ACM Distinguished Member and a Professor of Infor-
mation Systems at Singapore Management University. He received
his PhD in Computer Science from National University of Singa-
pore in 2008. His research interest is in the intersection of software
engineering and data science, encompassing socio-technical aspects
and analysis of different kinds of software artefacts, with the goal of
improving software quality and developer productivity. His work has
been published in premier and major conferences and journals in the
area of software engineering, AI, and cybersecurity.

John Grundy is Australian Laureate Fellow and Professor of Soft-
ware Engineering at Monash University, Australia. He has pub-
lished widely in automated software engineering, domain-specific
visual languages, model-driven engineering, software architecture,
and empirical software engineering, amoung many other areas. He is
Fellow of Automated Software Engineering and Fellow of Engineers
Australia.

Page 43 of 44 117

https://xin-xia.github.io/

Empir Software Eng (2021) 26: 11�

Xiaohu Yang is a professor at College of Computer Science &
Technology, Zhejiang University. He is the Director of Blockchain
Research Center and Vice Director of Computer Software Institute at
Zhejiang University. His research interests include software engineer-
ing, blockchain, and cloud computing. He received the B.S. degree,
the M.S. degree and the Ph.D. degree all in computer science at
Zhejiang University in 1988, 1990, and 1993, respectively.

Affiliations

Jiachi Chen1 ·Xin Xia1 ·David Lo2 · John Grundy1 ·Xiaohu Yang3

Jiachi Chen
jiachi.chen@Monash.edu

David Lo
davidlo@smu.edu.sg

John Grundy
John.Grundy@monash.edu

Xiaohu Yang
yangxh@zju.edu.cn

1 Faculty of Information Technology, Monash University, Melbourne, Australia
2 School of Information Systems, Singapore Management University, Singapore, Singapore
3 College of Computer Science and Technology, Zhejiang University, Hangzhou, China

117 Page 44 of 44

http://orcid.org/0000-0002-6302-3256
mailto: jiachi.chen@Monash.edu
mailto: davidlo@smu.edu.sg
mailto: John.Grundy@monash.edu
mailto: yangxh@zju.edu.cn

	Maintenance-related concerns for post-deployed Ethereum smart contract development: issues, techniques, and future challenges
	Abstract
	Introduction
	RQ1: What kinds of maintenance issues will smart contract developers encounter?
	RQ2: What are the current maintenance methods for smart contracts?

	Background
	Ethereum
	Hard Fork and Soft Fork
	Hard Fork
	Soft Fork

	Smart Contracts
	The Gas System
	Upgradeable Smart Contracts
	Software Development and Maintenance
	Card Sorting

	Methodology
	Literature Review
	Literature Search
	Literature Selection

	Exclusion Criteria
	Inclusion Topics
	Data Analysis
	Survey
	Survey Design

	Demographics
	Survey Design Explanation
	Below we list how we obtain the choices for questions 1, 3-6, 8-9, and 11
	Below we answer where our other survey questions come from

	Survey Validation
	Recruitment of Respondents
	Data Analysis

	RQ1: What are the maintenance issues of smart contracts?
	Common Maintenance Issues
	No Ideal Deployed Contract Modification Methods
	High Requirement for Security
	Low Readability
	The Lack of Experienced Developers and Researchers.

	Corrective Maintenance Issues
	The Lack of Mature Tools
	The Lack of Community Support

	Adaptive Maintenance Issues
	Unpredictable Fork Problems
	Unpredictable Callee Contracts

	Perfective Maintenance Issues
	The Scalability Issues
	Solidity
	EVM
	Ethereum

	The Difficulty of Handling the Gas System

	Preventive Maintenance Issues
	The Lack of Advanced SE Approach and Research Data
	The Lack of High Quality Reference Code
	The Lack of Standards

	RQ2: What are the current maintenance methods for smart contracts?
	Distribution
	Offline Checking Methods
	Program Analysis
	CFG (Control Flow Graph) Based Tools
	Decompilers
	Transaction-based Tools
	Source Code Level Static Analysis

	Formal Verification
	Fuzzing
	Machine Learning
	Other Approaches

	Online Checking Methods
	Other Methods

	Threats To Validity
	Internal Validity
	External Validity

	Discussion
	Improving the Smart Contract Ecosystem
	DApp Store and Comment System
	Call for High-Quality Standards, Libraries and Reference Code
	More User Friendly Tools

	Improving Ethereum and Solidity
	Merging Cutting-Edge Technologies
	Mitigating Scalability Issues
	Trusted Modification Methods

	Related Work
	Survey Based Smart Contract Empirical Studies
	Novelty and Differences of this work

	 Literature Review Based Smart Contract Empirical Studies.
	Novelty and Differences of this work

	 Security Related Smart Contract Empirical Studies.
	Novelty and Differences of this work

	 Other Smart Contract Empirical Studies
	Novelty and Differences of this work

	Conclusion
	References
	Affiliations

