
Empirical Software Engineering (2021) 26: 110
https://doi.org/10.1007/s10664-021-10000-w

FACER: An API usage-based code-example
recommender for opportunistic reuse

Shamsa Abid1 · Shafay Shamail1 ·Hamid Abdul Basit2 · Sarah Nadi3

Accepted: 9 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
To save time, developers often search for code examples that implement their desired soft-
ware features. Existing code search techniques typically focus on finding code snippets for
a single given query, which means that developers need to perform a separate search for
each desired functionality. In this paper, we propose FACER (Feature-driven API usage-
based Code Examples Recommender), a technique that avoids repeated searches through
opportunistic reuse. Specifically, given the selected code snippet that matches the initial
search query, FACER finds and suggests related code snippets that represent features that
the developer may want to implement next. FACER first constructs a code fact repository
by parsing the source code of open-source Java projects to obtain methods’ textual infor-
mation, call graphs, and Application Programming Interface (API) usages. It then detects
unique features by clustering methods based on similar API usages, where each cluster rep-
resents a feature or functionality. Finally, it detects frequently co-occurring features across
projects using frequent pattern mining and recommends related methods from the mined
patterns. To evaluate FACER, we run it on 120 Java Android apps from GitHub. We first
manually validate that the detected method clusters represent methods with similar func-
tionality. We then perform an automated evaluation to determine the best parameters (e.g.,
similarity threshold) for FACER. We recruit 10 professional developers along with 39 expe-
rienced students to judge FACER’s recommendation of related methods. Our results show
that, on average, FACER’s recommendations are 80% precise. We also survey a total of 20
professional Android and Java developers to understand their code search and reuse expe-
riences, and also to obtain their feedback on the usability and usefulness of FACER. The
survey results show that 95% of our surveyed professional developers find the idea of related
method recommendations useful during code reuse.

Keywords Code recommendation · Code search engine · Software features · API usage ·
Code clones

Communicated by: Ali Ouni, David Lo, Xin Xia, Alexander Serebrenik and Christoph Treude

This article belongs to the Topical Collection: Recommendation Systems for Software Engineering

This work is funded by Lahore University of Management Sciences (LUMS), Ignite National
Technology Fund Pakistan (SRG-257), and Prince Sultan University Faculty Research Fund.

� Shamsa Abid
shamsa.abid@lums.edu.pk

Extended author information available on the last page of the article.

Published online: 18 August 2021/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10000-w&domain=pdf
http://orcid.org/0000-0002-7491-8258
mailto: shamsa.abid@lums.edu.pk

Empir Software Eng (2021) 26: 110

1 Introduction

When developers are implementing a given system, they usually have a set of features (i.e.,
units of functionality) they need to implement. For example, a Bluetooth chat application
can have features like setting up Bluetooth, scanning for other Bluetooth devices, connecting
to a remote device, and transferring data over Bluetooth. A feature may be implemented in
a single method or across a group of methods that call each other.

To speed up development, developers often resort to code search to find code that they
can reuse for certain features in their application (Sadowski et al. 2015; Xia et al. 2017).
For example, if Alice is developing a music application, one of the features her application
must support is playing a given media file. Thus, Alice might search for “play media file”
and use the returned code snippet in her code. Our premise is that Alice might then need to
implement “pause media file”, “get current track progress”, “check if media playing”, and
“handle touch event” features. With the availability of very large codebases, additional func-
tionality related to Alice’s query is likely to already exist somewhere in those codebases.
However, most of the existing code search systems focus on providing code corresponding
to a single query related to the current feature the developer needs to implement (Keivanloo
et al. 2014; McMillan et al. 2011; Bajracharya et al. 2010; Chatterjee et al. 2009; Ishihara
et al. 2013; Gu et al. 2018; Lv et al. 2015; Sachdev et al. 2018). As a result, developers may
have to conduct a new search for every next feature they need to implement and later inte-
grate the obtained code. Existing code search and recommendation systems do not support
the need to find code for additional features related to a developer’s query. On the other
hand, existing feature recommendation systems enable the exploration of text-based related
features and either support domain analysis for the requirements gathering phase (He et al.
2019; Chen et al. 2018; Hong et al. 2016; Yu et al. 2013; Dumitru et al. 2011) or enable rapid
prototyping by recommending related code modules (McMillan et al. 2012). However, they
do not provide code examples at a fine-grained method-level for reuse. Hence, we identify
two gaps in existing systems: one is the lack of support for providing related code recom-
mendations in existing code search systems and the other is the inability of existing feature
recommendation systems to provide code for features at the method-level granularity.

Based on this perspective, in this paper, we fill in the above gaps by proposing a rec-
ommendation system that provides developers with related method recommendations that
have functionality relevant to their application under development. Studies of rapid proto-
type development have shown that programmers iteratively add features by reusing source
code examples (Brandt et al. 2008, 2009). This iterative process is known as opportunistic
programming (Brandt et al. 2008). To this end, we propose a system that provides code rec-
ommendations for these related features to support opportunistic code reuse (Jansen et al.
2008); such support enables rapid application development without the need to conduct
multiple searches and thus enhances developer productivity and saves time (Brandt et al.
2008; Abid et al. 2017; Jansen et al. 2008; Hartmann et al. 2008).

Our proposed recommendation system is called FACER, Feature-driven API usage-
based Code Examples Recommender, and works at the granularity of methods, where the
recommended code snippet is a full method itself. We use a combination of static code anal-
ysis, information retrieval, and data mining techniques to build FACER. More precisely,
we add another layer on top of traditional code search techniques in order to additionally
propose code snippets corresponding to features related to the original search query.

FACER generates related method recommendations in two stages. The first stage corre-
sponds to traditional code search where any existing code search technique (Sachdev et al.

110 Page 2 of 58

Empir Software Eng (2021) 26: 110

2018; Gu et al. 2018; Chatterjee et al. 2009; Bajracharya et al. 2010; Keivanloo et al. 2014)
can be used. We use Lucene (2020) to implement the code search engine behind FACER.
Given a developer’s feature query in the form of natural language description, the search
stage of FACER recommends a set of methods that implement the desired feature. Upon
selection of one of these recommended methods by the developer, the second stage of
FACER starts. In this second stage, which is the main contribution of this paper, FACER pro-
vides subsequent recommendation of related methods for reuse. FACER recommends these
related methods based on patterns of frequently co-occurring features which we identify
as frequently co-occurring method clones. Since methods with similar uses of Applica-
tion Programming Interfaces (APIs) are semantically related (Bajracharya et al. 2010), we
identify Method Clone Groups (MCG) based on API usages. Thus, a method clone group
contains code examples for a common feature. To find semantically related features, we
then identify frequently co-occurring Method Clone Groups (which we refer to as Method
Clone Structures), leveraging the idea of market basket analysis (Han et al. 2011). Market
basket analysis attempts to identify associations, or patterns, between the various items that
have been chosen by a particular shopper and placed in their basket (Market-basket analysis
2019). Items that frequently co-occur are related to each other. In our context, one or more
methods of a particular project may be cloned across other projects. Such a pattern of co-
occurring method clones identifies related functionality and forms the basis of suggesting
relevant related methods.

While the concepts behind FACER are not tied to a particular programming language
or type of application, we focus on Java Android apps for building and evaluating the first
version of FACER. According to the latest Stack Overflow developer survey 2020, 57.1% of
65,000 developers surveyed are developing Android apps (Stack Overflow developer survey
2020). A recent exploratory study focusing on code reuse from StackOverflow in the context
of mobile apps found that feature additions and enhancements in apps are the main reasons
for code reuse from StackOverflow (Abdalkareem et al. 2017). Furthermore, findings from
a large-scale empirical study on software reuse in mobile apps indicate a high percentage
of code reuse across applications (Mojica et al. 2013). Since Android development involves
rapid release cycles (McIlroy et al. 2016), there is a need to facilitate opportunistic reuse to
enable rapid application development. An empirical study involving the manual analysis of
5,000 commit messages from 8,280 Android apps found that application enhancement is the
most frequent self-reported activity of Android developers (Pascarella et al. 2018). In the
same study, self-reported activities of Android developers have been categorized and each
development category is seen to be composed of a related set of activities. For example,
activities related to using the device camera include taking a picture when using the app,
when and how to show the preview of a taken picture, usage of the flash light, switching
between front and rear camera. The challenge is whether code for these related activities
can be made available to a developer without the need for the user to explicitly perform a
search for each desired activity, which is what we address in this paper.

We previously proposed the idea of FACER in a short research abstract (Abid 2019)
(FSE student research competition). This manuscript extends that abstract by providing an
elaborate description of an enhanced system design and a full evaluation of the system’s
performance. Thus, this paper makes the following main contributions:

– We present a recommendation approach named FACER that recommends methods to
implement additional features related to the developers’ currently searched feature.
These recommended additional methods are based on API usage-based Method Clone
Groups and Method Clone Structures.

Page 3 of 58 110

Empir Software Eng (2021) 26: 110

– We develop a procedure for the construction of FACER’s code fact repository, (hence-
forth referred to as the FACER repository) that contains methods’ search index, call
graphs, API usages, and API usage-based Method Clone Structures mined from source
code.

– We apply this procedure to 120 Java Android apps to populate our FACER repository.
– We perform a manual validation of a sample of the clone groups that FACER detects

as methods implementing the same feature. We find that 91% of the analyzed clone
groups are valid.

– We perform an automated evaluation of the above 120 apps to determine the best
configuration for parameters that affect the precision of our FACER’s related method
recommendations.

– We engage 10 professional Android developers and 39 experienced students to man-
ually evaluate the performance of FACER for recommending related methods. Our
results show that FACER achieves 80% precision, on average.

– We survey 20 professional Android and Java developers to investigate their code search
and reuse requirements. We find that 70% of the developers face the need to search for
related features which supports the motivation of our work.

– We survey 20 professional Android and Java developers to capture their feedback on
the usability and usefulness of FACER. The survey results show that 90% of the pro-
fessional developers perceive that FACER is effective for their development activities
and 95% of the developers find the related method recommendations useful. We also
survey 39 experienced Masters students to provide their feedback on the usefulness of
FACER, where 85% of the students find the related method recommendations useful.

The rest of this paper is organized as follows: Section 2 includes a problem scenario
as a motivating example for our proposed solution. Section 3 gives an overview of code
search and recommendations systems, discusses related work from the literature, and high-
lights current limitations. Section 4 describes our proposed approach. Section 5 includes the
research questions and details of our dataset.

In Section 6, we discuss the evaluation of clone groups’ validity. In Section 7, we describe
the evaluation which measures the precision of related method recommendations using auto-
mated and manual methods. In Section 8, we describe the user survey. We discuss threats to
validity in Section 9. In Section 10, we discuss aspects of FACER that can be improved as
future work. Finally, Section 11 concludes this article.

2 Motivating Example

We use an example from a real Stack Overflow user question (2020) to demonstrate the
problem of developers spending a lot of time searching for related functionality. The title of
the question is “android:select image from gallery then crop that and show in an imageview”
and the description of the question includes the following:

“I really need this code and I searched for 3 hours on internet but i couldn’t find a
complete and simple code and I tested many codes but some didn’t work and others
[weren’t] good, please help me with a full and simple code ... edit:I have this code for
select image but please give me a full code for all [the] things that i said in title ...”

This question is viewed 50K times on Stack Overflow. The user is looking for code that
allows her to perform three functionalities: first, selecting an image from gallery, second,

110 Page 4 of 58

Empir Software Eng (2021) 26: 110

cropping the image and third, showing the image in an image view. She has spent a lot of
time searching for these related functionalities. StackOverflow lists questions that are linked
to this user question in a “Linked” sidebar. These linked questions include “How to pick
an image from gallery and save within the app after cropping?” and “crop image by taking
photo from camera”. We see that a number of functionalities are frequently desired together;
users who select an image from a gallery need to crop it and then show it in an image
view or save it after cropping. A user may need to crop an image after selecting it from a
gallery or capturing it from the camera. There are numerous Android applications from a
diverse range of categories including photo sharing applications, photo editing applications,
virtual try-on applications for eye glasses, etc. in which all of these functionalities related to
manipulating images are present. The current gap in existing code recommendation systems
is that they do not cater to the user need for finding related functionality. McMillan et al.
highlight programmers’ need of accomplishing a whole task quickly, rather than obtaining
multiple examples for different components of the task (McMillan et al. 2011).

We now explain how our approach could have helped in this situation. To illustrate
this, we collect a set of 30 photo sharing applications from GitHub using the search string
“android photo sharing app”, sort the results by GitHub Stars and choose the top 30 most
relevant apps to populate a sample FACER repository. We then enter a search query to our
system “select image from gallery” and from the recommended methods, we select one
that contains the desired functionality (shown in Fig. 1a). Next, we use FACER to retrieve
related method recommendations against the selected method. The related methods FACER
recommended included methods that implement the above Stack Overflow user’s desired
features of cropping an image and also showing an image in an ImageView as shown in
Fig. 1b and c respectively. FACER also recommended additional related methods, which
include functionality for resizing a bitmap, getting a URI to save the cropped image, get-
ting the URI to an image received from a capture by camera, and decoding an image from
a URI. By receiving such related method recommendations, the developer can obtain infor-
mation about related features, in the form of concrete methods, to enhance her application.
Furthermore, this reduces the need to perform repeated searches.

3 RelatedWork

There are various types of techniques and support systems proposed in the literature to
enable code search, code reuse, and feature exploration. In this section, we discuss these
systems under three major categories; namely, code search, code recommendation, and fea-
ture recommendation systems. We first define each category and describe the purpose of
systems belonging to that category. We then discuss existing systems from each category in
relation to our approach.

Finally, we highlight the limitations of code search and feature recommendation systems
that lead to the inception of our approach.

3.1 Code Search Systems

Code search systems are mainly used to retrieve code samples and reusable open source
code from the web (Bielik et al. 2015; Vechev et al. 2016). To understand why programmers
search for code, Umarji et al. (2008) conducted a web-based survey and categorized code
search purposes along two orthogonal dimensions: motivation (reuse vs. reference exam-
ple) and size of search target. The targets of these searches ranged in size from a block

Page 5 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 1 Motivating example for code recommendations related to “select image from gallery”. a shows the
selected code snippet based on the initial search query and b and c show code snippets corresponding to two
related features, as recommended by FACER

(a few lines of code) to a subsystem (e.g. library or API), to an entire system. A study on
developers’ code search behavior finds that most searches are related to searching for code
examples, discovering a library for some task, or discovering the usage of some API (Sad-
owski et al. 2015). In this section, we discuss code search systems that retrieve code against

110 Page 6 of 58

Empir Software Eng (2021) 26: 110

a user query, because they are related to the first stage of FACER. Chatterjee et al. (2009),
Bajracharya et al. (2010), McMillan et al. (2011), Keivanloo et al. (2014), Ishihara et al.
(2013), Gu et al. (2018), and Sachdev et al. (2018).

Sniff (Chatterjee et al. 2009) is one such system which helps users discover code snippets
involving library usage. It uses the documentation of the library methods to annotate code
with plain English for the purpose of free-form query search. It then takes an intersection of
the candidate code snippets obtained from a query search to generate a set of relevant code
snippets. The drawback of this technique is the dependency on the availability of library
documentation. Our approach is free from this dependency.

The Structural Semantic Indexing (SSI) technique (Bajracharya et al. 2010) finds API
usage examples corresponding to standard keyword-based queries. The authors create a
baseline retrieval system that uses a Lucene-based (2017) search index of code entities based
on their simple name, Fully Qualified Name (FQN), and full method bodies. We implement
a similar technique for the first search stage of FACER, but we additionally support free-
form queries and tokenize API usages for better matching of queries to source code. We
opt for using this technique because of its simplicity and good performance (Linstead et al.
2009; lucenecore 2020).

Keivanloo et al. (2014) propose a system that retrieves code examples from a corpus
of code snippets based on free-form querying (composed of keywords). They create a p-
string (Baker 1993) for each line of a code snippet in the corpus and encode matching
p-strings as a pattern. By applying identifier splitting techniques on all strings that belong
to an encoded pattern, they extract a set of associated keywords. The retrieval involves
matching keywords of a user query with keywords associated with patterns and getting the
most popular code examples containing the matched patterns.

Portfolio retrieves and ranks relevant functions against query terms that are also con-
nected on a call-graph. They output results as a list of function names and a visualization
showing dependencies between retrieved functions. While Portfolio can provide related
functions for opportunistic reuse, the functions are limited to call-graph dependencies and
therefore, do not cover the scope of an entire project. As such, it might not be able to retrieve
related functions that are not necessarily found on call chains.

Ishihara et al. (2013) use source-code clone detection to find instances of copy-paste
reuse scenarios. Keywords are extracted from the clones and saved in a database. Code
is then retrieved against a user query using keyword matching. This search technique is
effective in organizations where similar projects are frequently developed and a local source
code repository is maintained.

Several of the latest code search techniques that find code given a natural language query
rely on machine learning techniques (e.g., NCS (Sachdev et al. 2018), DeepCS (Gu et al.
2018), UNIF (Cambronero et al. 2019), MMAN (Wan et al. 2019), TBCAA (Chen et al.
2019), and CoaCor (Yao et al. 2019)). NCS proposes an enhanced word embedding for a
natural language query (Sachdev et al. 2018). The NCS model captures the co-occurrence
frequency of word pairs from Stack Overflow questions and their respective code solutions.
Using its model, NCS finds synonyms of query words to enhance the query and improve
the quality of recommendations. DeepCS (Gu et al. 2018) introduces the use of a unified
vector representation of code and natural language descriptions. This unified representation
bridges the lexical gap between queries and source code resulting in relevant code fragments
that do not necessarily contain query words.

UNIF (Cambronero et al. 2019) is an extension of NCS that adds supervision to modify
embeddings during training with the overall effect of improving the performance for code

Page 7 of 58 110

Empir Software Eng (2021) 26: 110

search. MMAN (Wan et al. 2019) is a Multi-Modal Attention Network for semantic source
code retrieval. It generates a code representation that covers both unstructured and struc-
tured features of source code including code tokens, abstract syntax trees, and control flow
graphs to form a single hybrid representation. This has been shown to outperform DeepCS.
TBCAA (Chen et al. 2019) employs tree-based convolution over API-enhanced ASTs for
semantics-based code search. This technique aims to capture semantics by incorporating
API call information into ASTs which is otherwise abstracted as the same AST node type.

CoaCor (Yao et al. 2019) uses reinforcement learning to build a code annotation frame-
work for effective code retrieval. By generating detailed code annotations using multiple
keywords, CoaCor improves the performance of existing code retrieval models.

For our purposes of locating code against a user query in the first stage of FACER, any
of the above code search methods would work. We currently use Lucene (2020) to build the
code search engine behind FACER. Lucene is a popular search library for the development
of various information retrieval solutions because of its scalability, high-performance and
efficient search algorithms (Yang et al. 2017). It is shown to answer the highest number of
queries as compared to other code search approaches (Yan et al. 2020).

3.2 Code Recommendation Systems

In general, recommendation systems aid people to find relevant information and to make
decisions when performing particular tasks. Different recommendation systems use differ-
ent user inputs to provide the output code. The input may be a free form textual query or it
may include components of a user’s currently active code environment like method signa-
tures, keywords, or structural information. We focus on source code-based recommendation
systems (SCoReS) (Mens and Lozano 2014), that is, recommendation systems that pro-
duce their recommendations by essentially analyzing the source code of a software system.
Given our scope, we review only a subset of the research that provides code-snippet based
recommendations as output.

Some of the earliest code recommendation systems for methods are CodeBroker (Ye and
Fischer 2002) and Strathcona (Holmes et al. 2005a, b, 2006). CodeBroker uses comments
and method signatures of a yet-to-be-written method to retrieve relevant code, whereas in
Strathcona, the search query is either the structural information of some class or method
(signature, object instantiations) that the developer needs help for. Others include: A-
Score (Shimada et al. 2009), which recommends a list of classes against user code based on
cosine similarity of code characteristics; Selene (Takuya and Masuhara 2011), which forms
a search query from the code around the user’s cursor in an IDE and provides code exam-
ples from files containing those lines; and ROSF (Jiang et al. 2016), which recommends
code snippets against a free-form query by first generating a candidate set of snippets using
information retrieval followed by re-ranking the code snippets using a learned prediction
model that is trained on a set of user queries and code-snippet features such as text, topic,
and structure.

Among existing code recommendation techniques, Ichii et al. (2009) allow opportunistic
reuse by using collaborative filtering to help developers find components suitable for their
needs. This system extracts a developer’s browsing history when the developer starts navi-
gating through the search results provided by a SPARS-J (Inoue et al. 2005) search engine.
It recommends components to the developer using browsing session similarities based on
the assumption that two developers having similar browsing history require similar compo-
nents. However, it is effective only if developers’ browsing profiles are available. Rascal

110 Page 8 of 58

Empir Software Eng (2021) 26: 110

(Mccarey et al. 2005) is a collaborative filtering-based recommendation system that predicts
the next method that a developer could use by analyzing classes similar to the one currently
being developed. It tracks usage histories of developers for recommending components to
an individual developer. Here, a component refers to a method call made on a class instance.
We rely on a similar notion of collaborative filtering but instead of relying on method usage
profiles of classes or browsing session profiles, we rely on feature co-occurrence profiles
for projects, where a feature represents a collection of API usages. In the context of FACER,
recommended components are complete methods pertaining to a feature.

In previous work, we developed CodeEase (Abid et al. 2017), which provides method
completion recommendations against a partial method as well as related method recom-
mendations for the completed method. CodeEase mines association patterns over a source
code collection of Java projects by first detecting type-2 clones and then finding fre-
quently co-occurring inter-project clones (Ishihara et al. 2012). First, CodeEase uses a
type-2 clone search to suggest method completions. Then, for a selected method completion,
CodeEase looks up methods that occur alongside the selected method in its collection of
association patterns. Our internal experiments on mining Method Clone Structures based
on type-2 clones proved that patterns detected using traditional clone detection were very
rare. This led us to move beyond the notion of detecting similar methods on the basis of
type-2 or type-3 clones and to experiment with the notion of functional similarity based
on common API usages among methods (Bajracharya et al. 2010). Shifting our focus from
syntactic matching in conventional clone detection to API calls matching allows us to
identify clones as a set of methods having similar behavior irrespective of syntactic dif-
ferences. As a result, new co-occurrence patterns emerge, offering more possibilities of
opportunistic reuse.

3.2.1 API Recommendation Systems

API recommendation systems are a type of code recommendation systems focusing par-
ticularly on helping developers use library APIs. Some of these systems recommend code
on the basis of mining API usage patterns (Xie and Pei 2006; Wang et al. 2013; Niu et al.
2017; Nguyen et al. 2019); however, none of these use the notion of opportunistic reuse of
related API usage patterns. There are systems that suggest complete code snippets or usage
sequences that demonstrate how to use a given API (Mandelin et al. 2005; Thummalapenta
and Xie 2007; Wang et al. 2011; Mishne et al. 2012; Lv et al. 2014; Subramanian et al.
2014; Moreno et al. 2015; Gu et al. 2016; Zhao and Liu 2017). API class recommendation
systems (Zhang et al. 2018; Rahman et al. 2016; Thung et al. 2017; Tsunoda et al. 2005)
output only the name of a relevant API class against a query.

Thung et al. recommend additional libraries based on the ones currently used by an
application or project (Thung et al. 2013). Similarly, FACER recommends additional meth-
ods based on the one currently selected. Thung et al. find libraries that are commonly used
together with the currently used libraries. They also find libraries that are used by the n most
similar projects, then rate a library based on how many of the top-n projects use it. Their
technique is a combination of association rule mining and collaborative filtering to find the
top-n libraries. The notion of recommending additional items based on the market-basket
principle of frequent co-occurrence is seen in their systems’ LibRecRULE component.
FACER bases its recommendation of additional methods on the same principle; however,
the goal (library vs method) and code analysis techniques used in both cases are different.

Page 9 of 58 110

Empir Software Eng (2021) 26: 110

3.2.2 Code Completion Systems

Code completion systems (Eclipse code recommender 2018; Hill and Rideout 2004; Bruch
et al. 2009; Raychev et al. 2014; Nguyen et al. 2012; Asaduzzaman et al. 2016) suggest
completions based on the context of the code being currently edited. Completions may
simply be method calls for a given object (Eclipse code recommender 2018; Bruch et al.
2009; Raychev et al. 2014; Nguyen et al. 2012; Asaduzzaman et al. 2016) or can be complete
method code for a given partial code snippet (Hill and Rideout 2004). Code completion
is an integral feature of modern IDEs (Asaduzzaman et al. 2016). Most of the proposed
techniques enable the integration of the code completion recommendations into the active
user context, typically within their Integrated Development Environment (IDE). A code
recommendation technique is typically at the back-end of code completion systems and so
we consider code completion systems to be a sub-type of code recommender systems.

Code completion helps to avoid remembering every detail of the available API methods,
write error-free code, speed up typing, and enables the completion of partial method bodies
(Asaduzzaman et al. 2016). Hill and Rideout (Hill and Rideout 2004) propose automatic
method completion based on the idea of atomic clones. Atomic clones are usually small
units of implementation of 5-10 lines each, such as implementing a listener interface, or
handling a keyboard event. By looking at these atomic clones and comparing them with the
current code, a programmer is able to identify any critical points that she should remember
to address. Lancer (Zhou et al. 2019), a context-aware tool, also assists method completion
by analyzing partial method code to recommend relevant code samples. Lancer predicts
and appends tokens to the current tokens within the context of a partially written method in
order to produce a more complete token sequence for code retrieval. Lancer trains a Library-
Sensitive Language Model (LSLM) on source code files to capture code patterns for each
library separately. Using tokens from the original context, Lancer finds relevant libraries
and predicts more tokens from these libraries. The final set of tokens is used to retrieve code
samples which are further filtered and ranked based on similarity of the original context’s
tokens with tokens of the retrieved code samples. Aroma (Luan et al. 2019) is another tool
that takes partial code as input and recommends code snippets containing the partial code in
order to help developers write additional code and complete programming tasks effectively.

Bruch et al. (2009) make context sensitive method call recommendations against object
instances of a particular framework. Their technique is based on a variant of the K-nearest
neighbors algorithm, called Best Matching Neighbors (BMN). The context of the variable is
extracted and variables used in similar situations are searched in an example codebase, then
method recommendations are synthesized out of these nearest snippets. CSCC (Asaduzza-
man et al. 2016) also performs API method call completion. To recommend completion
proposals, CSCC ranks candidate methods by the similarities between their contexts and the
context of the target call. SLANG (Raychev et al. 2014) is a code completion tool for Java
that synthesizes complete method invocation sequences, including the arguments for each
invocation. It inputs partial code snippet with holes, specified using a special construct and
outputs API method calls with parameters as completions for these holes.

GraPacc (Nguyen et al. 2012) is a graph-based, pattern-oriented, context-sensitive code
completion approach that is based on a database of API usage patterns. GraPacc extracts the
context-sensitive features from the code being edited and uses these features to search and
rank the patterns that best match the current code. When a pattern is selected, the current
code is completed via a graph-based code completion algorithm.

110 Page 10 of 58

Empir Software Eng (2021) 26: 110

MACs (Hsu and Lin 2011) is another system aimed at providing code completions
for reuse and rapid application development. It recommends code against an input state-
ment for completing an API usage sequence inside a method declaration or for completing
code within a class declaration. While MACs facilitates code completions by recommend-
ing statements at the class or method scope, FACER facilitates feature completions at the
project scope. Whereas MACs mines co-occurring associations between individual state-
ments found across code files, FACER mines co-occurring associations between features
found across projects. Our proposed approach goes beyond the completion of a developer’s
current statement or partial method. FACER’s scope of providing completions consists of
the current project being developed and the completion proposals are methods containing
code for the features relevant to the application.

3.3 Feature Recommendation Systems

Feature recommendation systems are meant to help software requirements engineers or
developers with the discovery of new software features for their product by providing a list
of relevant software feature descriptions (He et al. 2019; Chen et al. 2018; Hong et al. 2016;
Yu et al. 2013; Dumitru et al. 2011).

Due to the popularity of mobile applications, recent work proposes solutions for rec-
ommending software features for mobile applications (He et al. 2019; Chen et al. 2018;
Hong et al. 2016). For these recommender systems, a feature is recommended as a textual
description. He et al. (2019) recommend features from applications that are similar to the
developer’s application. Recommended features are those that frequently co-occur with a
developer’s feature across highly similar projects. Chen et al. recommend features against a
given User Interface (UI) based on user interface comparison of mobile applications (Chen
et al. 2018). Their idea is based on the intuition that mobile applications with similar UIs
may have both shared and unique features. They leverage the similarity of a given UI’s com-
ponents to other similar UIs in order to recommend unique features from the text of similar
UIs. Yu et al. propose a hybrid feature recommendation approach that processes both textual
descriptions and code information of mobile applications (Hong et al. 2016). They detect
the most relevant applications against the query and recommend the main features of the
relevant applications.

There are feature recommendation approaches not specific to mobile applications. One is
proposed by Yu et al. in which a list of related textual feature descriptions are offered to users
against an input textual query (Yu et al. 2013). The features are taken from marketing-like
summaries, release notes and feature descriptions on the online profile pages of products.
They perform feature pattern mining from a co-occurrence matrix of software projects and
features. Their approach works for applications hosted on web-based repositories with rich
profiles for effective topic modeling. Another approach facilitates domain analysis by rec-
ommending features derived from mining product descriptions (Dumitru et al. 2011). In
both of these approaches, the recommended features are textual descriptions and do not map
to actual code, whereas FACER’s feature recommendations are methods with API usages.

The closest work to ours in terms of goals is that by McMillan et al. (2012). Given a
natural language query representing a description of their desired product, their system first
uses cosine similarity with existing descriptions in software documentation to find related
features. After the user confirms the desired features, the system does a feature to module
mapping to recommend associated source code modules, specifically Java packages. While
their goals are similar in terms of allowing a developer to quickly locate code for multiple

Page 11 of 58 110

Empir Software Eng (2021) 26: 110

related features, there are fundamental differences in terms of code granularity level, tech-
niques used, and user workflow. First, they recommend code at the level of a Java package
while we recommend a single atomic method that encapsulates the desired functionality.
This allows users to narrow down to relevant code without having to look at an entire pack-
age which may have irrelevant code. Second, while they rely on textual cosine similarity,
FACER identifies features at the code level based on API usages and looks for co-occurring
features in the code. Finally, their system first finds related features and then performs the
feature to module mapping, whereas our system performs the query to method mapping
first through code search and then finds the related methods based on co-occurrence across
different projects.

3.4 Limitations of Code Search and Feature Recommendation Systems

We now summarize the current limitations of code search and recommendation systems that
we have observed in the literature and which we are focusing on in our research work.

1. Existing code search engines do not support opportunistic reuse. They are effective for
locating code against a single feature, but they are not designed to provide code for
additional relevant features (McMillan et al. 2012). As a result, developers might have
to conduct a new search for every next feature that they need to implement and later
integrate the obtained code.

2. Existing feature recommender systems do not provide associated code against recom-
mended features. Only one system allows the location of Java packages relevant to
related features (McMillan et al. 2012). However, packages have a lot of unrelated code
and may be grouping together classes implementing unrelated responsibilities with low
cohesion (Bavota et al. 2014; Ishihara et al. 2013). On the other hand, code sugges-
tions at the method-level granularity provide more concrete reusable code (Ohtani et al.
2015), which the existing feature recommender systems do not provide.

4 Proposed Approach: FACER

To address the limitations discussed in Section 3.4, we propose a system for opportunistic
reuse of related code which allows developers to receive code examples for functionality
they may like to implement next. Allowing developers to receive code for related features
can enhance productivity and save search time (Abid et al. 2017). In this section, we discuss
the components of our proposed Feature-driven API usage-based Code Examples Recom-
mendation (FACER) system. Figure 2 provides an overview of the various components in
FACER and its workflow.

FACER has two main workflows: (1) the offline FACER repository building workflow
which builds facts through mining information from source code repositories and (2) the
online recommendation workflow which uses this information to make recommendations.
From a user perspective, the user provides a feature query as a natural language description;
in other words, this is the task or feature they want to implement. The FACER search engine
then returns a list of matching methods. After the user selects a method from that list, the
FACER recommender then returns a list of related methods that correspond to additional
features the developer may want to implement. We now discuss these two workflows in
more detail.

110 Page 12 of 58

Empir Software Eng (2021) 26: 110

Fig. 2 FACER system components and workflow

4.1 Offline FACER Repository BuildingWorkflow

In order to provide its recommendations, FACER first has an “offline” phase where it pop-
ulates its repository (a MySQL database) with source code information from open-source
Java applications hosted on GitHub (2020). We discuss the details of the data we select
to populate this repository for our evaluation in Section 5.2. Figure 3a shows the three
types of information we extract from each application’s methods using the Eclipse JDT
parser (Eclipse Java development tools 2020): keywords, method calls, and API usages.

4.1.1 Extracting Keywords for Search Index

To implement a simple retrieval scheme (Bajracharya et al. 2010) for code search, FACER’s
program analyzer builds a search index. Any code search technique can be used to retrieve
code. For the purposes of this work, we implement a simple Lucene-based search index.
Lucene is a high-performance, full-featured text search engine library suitable for full-text
search over documents (lucenecore 2020). We use Lucene to build a search index over
methods and store them as a collection of documents. A document is a set of fields. Each
field has a name and a textual value. A field may be stored with the document, in which
case it is returned with search hits on the document. Thus each document should typically
contain one or more stored fields that uniquely identify it (lucenedoc 2020). The program
analyzer extracts all the terms from the simple name, Fully Qualified Name (FQN), and full
text of a method, and tokenizes each set of terms using camel-case and special characters.
It then creates a separate Lucene field to store the extracted terms from the method name,

Fig. 3 Offline FACER repository building components

Page 13 of 58 110

Empir Software Eng (2021) 26: 110

Fully Qualified Name (FQN), and the full text of the method body respectively. To give more
significance to matches with the method name during code search, it assigns the method
name field a higher boost value (Score boosting 2020) than the other fields. Finally, it creates
a Lucene document against every method to build the search index.

4.1.2 Extracting Method Calls, API Calls, and API Call Density

An API usage is a set of API calls found in a method. The underlying premise of FACER
is that these API calls together represent the implementation of a feature. FACER detects
repeatedly co-occurring features on the basis of repeatedly co-occurring API usages. Thus,
in its repository, FACER needs information about API usages. A software application inter-
acts with external libraries or system libraries/packages through various API classes to
implement desired features. For example, building the connection to a Bluetooth device
requires the use of the Bluetooth API package and different methods of the API to setup the
connection. When analyzing a source code project, we parse the class declarations in Java
files and save them as user-defined classes. The Eclipse JDT (Eclipse Java development
tools 2020) parser is able to trace the objects to their respective types. While parsing method
invocations, if a type identified by the parser does not match any user-defined class, then we
consider this type as an API class. Thus, we refer to any method call from an API class as
an API call. For example, BluetoothAdapter.getDefaultAdapter() is an API
call of class BluetoothAdapter from the android.bluetooth API package.

Using the Abstract Syntax Tree (AST) (Abstract Syntax Trees 2020) provided by Eclipse
JDT (Eclipse Java development tools 2020), the Program Analyzer module visits all method
declarations and parses their content to identify calls. For each detected call, we record the
call site, which is the location of the call in the method body and is identified by a line
number. In the FACER repository, we differentiate between user-defined method calls (or
method calls for short), which are invocations of methods that have been defined in the
current project, and API calls which are invocations of API methods. To differentiate the
types of calls, we check the receiver type of the call. API types may be classes from the Java
Class libraries (JCL) (Java Class Libraries 2020) in JDK (Java Development Kit 2020) or
Android classes (Android SDK Classes 2020) in Android SDK (Android Studio SDK 2020)
or any other third-party library imported by the user. FACER stores API calls for every new
API instance created (i.e., constructor calls) and for every API method called, including
static calls. Listing 1 shows an example method where the API calls that FACER extracts
are underlined.

FACER stores API calls that it mines from all the methods in its repository. We encode
the API calls occurring across the entire FACER repository with unique identifiers which
we call API Call IDs. Table 1 shows an example of the information we store.

At this point, the program analyzer also calculates an API call density for each method it
analyzes. We define API call density as the fraction of statements containing API calls over
the total number of statements in the method as shown in (1) as follows:

APICallDensity(M) = |StatementsContainingAPIcalls(M)|
|Statements(M)| (1)

The API call density value of a method indicates the concentration of statements con-
taining API calls with respect to other statements in a method. For example, in Listing 1,
the method contains 8 statements out of which 5 contain API calls. This results in an API
call density score of 0.6. If there are no API calls in a method then its API call density score

110 Page 14 of 58

Empir Software Eng (2021) 26: 110

Listing 1 Example of extracted API calls (underlined) from a given method

will be 0 and if each statement in the method body contains one or more API calls, then its
API call density will be 1.

4.1.3 Mining API Usage-based Method Clone Structures

To find related methods that implement related features, FACER’s high-level idea is to find
similar methods based on their API usages and cluster them together, where a cluster repre-
sents a particular feature. Then, we can find commonly co-occurring method clusters, where
commonly co-occurring method clusters represent related features since they frequently
appear together.

We use the term Method Clone Group to refer to such a method cluster. Traditionally,
a clone group is a set of code snippets in which token sequence similarity exists between
any pair of code snippets (Kamiya et al. 2002). Given our purposes, we specifically look at
similar API usages to identify members of a clone group. Thus, we define a Method Clone
Group (or clone group for short) as a set of methods in which API usage similarity exists
between any pair of methods. These methods may implement the same feature or function-
ality and could be instances of a particular feature. For high-level illustration, Fig. 4a shows
methods found across three projects where methods of the same color have similar API
usages and thus are functionally similar. Thus, methods A1, A2, and A3 belong to the same
clone group A.

Table 1 Assigning API Call IDs
to methods Method ID API name API method API Call ID

6 VideoView setVideoURI 31

6 Uri parse 11

6 MediaController new 32

6 MediaController setAnchorView 12

6 VideoView setMediaController 13

6 VideoView start 33Example based on code shown in
Listing 1

Page 15 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 4 A real example of a API Usage-based Method Clone Structure taken from Bluetooth chat projects.
Highlighting shows common API usages

Since our goal is to find related functionality, we want to find clone groups that frequently
occur together. For example, if methods that implement a connect to Bluetooth functionality
often occur with methods that implement a send file over Bluetooth functionality, then we
know that these two functionalities are related. Accordingly, we use the term Method Clone
Structure (MCS) (Kanwal et al. 2019) to refer to a set of methods that are frequently cloned
together across different projects. In other words, a recurring pattern of method clones is a
Method Clone Structure. The participating methods in a method clone structure all relate

110 Page 16 of 58

Empir Software Eng (2021) 26: 110

to each other. Since our method clones are based on API usages, we call these structures
API usage-based Method Clone Structure. In Fig. 4a, clone groups A, B and C together
form a frequent pattern across the three analyzed projects. Hence, they form a method clone
structure. Based on the heuristic of frequent co-occurrence, members of the clone structure
are all related to each other. Figure 4a and b show some of the corresponding methods taken
from a real clone structure, which we mine from projects implementing Bluetooth chat
functionality. The green highlighting represents clone group A and the pink highlighting
represents the clone group B. The highlighted API usages are the basis of similarity between
members of a clone group.

Figure 3b shows the two steps we take to mine clone structures. We now explain these
steps in detail.

Step 1: Cluster methods by API usage similarity In this step, we group all the methods in
the repository into clusters on the basis of similar API usages and API call densities between
them. We use Figure 5 to explain this process. As explained in Section 4.1.2, we already
record unique API call IDs for all API usages that we analyze across all projects. Assume
that our repository consists of the nine methods listed in the table in Fig. 5a. The sequence
of numbers shown in the second column represents the IDs of the API calls that appear in
each method. For the sake of simplicity, we only demonstrate the effect of clustering on
the basis of API calls similarity without considering the effect of API call density. So, we
assume that all methods have an API call density equal to 1.

Fig. 5 Step 1: Cluster methods by API usage similarity. After this step, each method in our repository has a
clone group ID

Page 17 of 58 110

Empir Software Eng (2021) 26: 110

Distance matrix computation We define the similarity of two methods based on the
intuition that if two methods share a high percentage of API calls (represented by their cor-
responding set of API call IDs), then they perform the same functionality and implement
the same feature. We also factor in the API call density similarity to favor the methods with
similar and high API call density to be clustered together. Otherwise, a method that con-
tains a single statement with API call foo() might be clustered together with a method
that contains 20 statements, only one of which contains the same API call foo().

Let M1 = {u1, u2, ..., un} and M2 = {u1, u2, ..., um} be the sets of API call IDs of two
methods M1 and M2. We compute the API usage similarity of two methods M1 and M2
using the Jaccard index (Jaccard 1901) as follows:

api sim(M1,M2) = |M1 ∩ M2|
|M1 ∪ M2| (2)

The similarity score has a value between 0 and 1, where 0 means completely dissimilar
and 1 means completely similar. Let d1 and d2 be the API call densities (calculated using
(1)) of methods M1 and M2 respectively. We define the API call density similarity of the
two methods as follows:

density sim(M1,M2) = d1 + d2 + (1 − |d1 − d2|)
3

(3)

In (3), 1 − |d1 − d2| indicates the similarity of density values between the two methods.
We factor in individual density values of methods together with density similarity, because
we want to give a higher score to two methods with similar high density than to two methods
with similar low-density values. The final similarity score is calculated as follows:

Sim(M1,M2) = api sim(M1, M2) × density sim(M1,M2) (4)

In preparation for clustering, we calculate the distance between the two methods as
follows and store all pairwise method distances in a distance matrix:

Dist (M1,M2) = 1 − Sim(M1,M2) (5)

Cluster Identification To identify method clusters, we pass the calculated distance matrix
as input to the standard average linkage hierarchical clustering algorithm (Defays 1977).
This algorithm performs a hierarchical cluster analysis using a set of dissimilarities for the
n methods being clustered. Initially, the algorithm assigns each method to its own cluster
and then the algorithm proceeds iteratively, at each stage joining the two most similar clus-
ters, continuing until there is just a single cluster. The result is a tree-based representation of
the methods being clustered which is called a dendrogram (Heirarchical clustering 2019).
Figure 5b shows the dendrogram obtained after clustering the nine methods from Fig. 5a.
Each leaf of the dendrogram corresponds to one method. As we move up the tree, meth-
ods that are similar to each other get linked into branches, which are themselves fused at
a higher height. The height of the fusion, provided on the vertical axis, indicates the dis-
similarity between two methods. In order to identify sub-groups (i.e. clusters), we can cut
the dendrogram at a certain height. A cut is a demarcation line at a certain height of a den-
drogram which results in the intersection of dendrogram branches with the cut. All nodes
of the branch that intersects the cut end up in one cluster. The branches and nodes above the
cut form independent clusters. Choosing the optimal cut-point on a dendrogram is an NP-
complete problem. In our case, we experiment with a number of cut-point values at different
heights corresponding to a similarity threshold α. The height of the cut to the dendrogram
controls the similarity threshold, and thus the number of clusters obtained. The greater the
height of the cut, the looser the similarity threshold and the fewer the number of clusters

110 Page 18 of 58

Empir Software Eng (2021) 26: 110

formed. The smaller the height of the cut, the stricter the similarity threshold and the greater
the number of clusters formed. If we specify a height of 0.7, this means that the final clus-
ters at that height would have at least 1−0.7 = 0.3 similarity score between their members.
Methods joined at height 0 are exactly similar. We obtain a vector containing the clone group
ID (i.e., cluster ID) of each method after cutting at a certain height and store this information
in our repository. In our evaluation in Section 7.1, we evaluate the effect of varying simi-
larity thresholds by obtaining clusters against various values of height ={0.1, 0.3, 0.5, 0.7},
corresponding to similarity thresholds α = {0.9, 0.7, 0.5, 0.3} respectively.

The results of clustering the nine methods from our example are shown in the table of
Fig. 5c. The clone group IDs are obtained using a similarity threshold of 0.3, which implies
a height of 0.7. We can see that the first three methods are assigned to the first cluster,
methods 4, 5 and 6 are assigned to the second cluster, and the last three methods are assigned
to the third cluster. The output of Step 1 is now a mapping of method IDs against the unique
clone group IDs of each cluster.

Step 2: Mining frequent patterns of method clones across projects The idea of frequent
association pattern mining is to find recurring sets of items among transactions. The concept
of transactions originates from sales transactions where one or more items are purchased
in a single sales transaction. In our context, items are clone groups of a project that make
up a transaction in the FACER repository R. We are interested in mining recurrent pat-
terns of clone groups. The strength of a frequent pattern is measured by a support count.
Support count is the number of transactions in R containing a unique pattern of clone
groups. A frequent association pattern describes a set of items that has support greater than
a predetermined threshold called a minimum support threshold which we identify as β.

We have so far identified the clone group IDs of all methods in our repository. To mine
API usage-based method clone structures across projects, we first create a transaction table
where each row of the table contains all the clone group IDs assigned to methods of a project.
Assume that we have a repository of five projects with the transaction table shown in Fig. 6a.

Given this table, we perform frequent item set mining to get frequently co-occurring
clone groups that repeat across projects. Such repeating item sets represent the API usage-
based Method Clone Structures. We can say that for a given clone structure and its constituent
clone groups, the methods mapped to those clone groups are all related to each other.

This is based on the market basket intuition (Han et al. 2011). Market basket analysis
attempts to identify associations, or patterns, between the various items that have been cho-
sen by a particular shopper and placed in their basket (Market-basket analysis 2019). Items
that frequently co-occur are related to each other. In our context, a particular project may
use a group of methods which may be cloned across other projects. Such a pattern of co-

Fig. 6 Step2: Mining frequent patterns of method clones across projects

Page 19 of 58 110

Empir Software Eng (2021) 26: 110

occurring method clones identifies related functionality and forms the basis of suggesting
relevant methods.

We use the frequent closed itemsets mining algorithm FPClose (Grahne and Zhu 2005;
FPClose 2019) to get frequent items. FPClose is an algorithm of the FPGrowth family of
algorithms, designed for mining frequent closed itemsets and is claimed to be one of the
fastest closed itemset mining algorithm. The input to the algorithm is a transaction table
and a support/frequency threshold β. We evaluate the sensitivity of recommendation results
against varying thresholds of β=(3, 5, 10, 15) in Section 7.1. The result of the execution of
FP mining on our example transaction table with β = 2 is shown in the right table in Fig. 6b.
The clone structure C1 indicates that clone groups 5 and 6 are frequently found together.
Similarly, C2 indicates that the clone groups 1, 2 and 3 are frequently found together. This
provides the basis of FACER’s recommendation which we explain next in Section 4.2.

To summarize, Algorithm 1 shows all the steps discussed above which are involved in
mining Method Clone Structures (MCS) in the FACER repository R given a similarity
threshold α and a minimum support threshold β. First, we obtain API calls and API call
densities of all methods in the FACER repository R (Lines 4-7). Then, we obtain pairwise
similarities for all methods (Lines 8–10). The distance matrix is obtained from the similar-
ity matrix and used by the clustering algorithm to detect and label clusters with respect to α

(Lines 11-13). The resulting clusters are saved as clone groups in FACER (Line 14). Next,
in order to mine frequently co-occurring features across all projects, we create a transcation
table where each row contains clone group IDs for a project in the FACER repository R

(Lines 16-19). The resulting table is used to perform frequent item set mining with respect
to a certain threshold β to obtain frequently co-occurring sets of clone groups which are
then saved as Method Clone Structures in the repository R (Lines 20–21).

110 Page 20 of 58

Empir Software Eng (2021) 26: 110

Fig. 7 Stage 1: Method Search

4.2 Online FACER RecommendationWorkflow

We implement FACER as an Eclipse IDE plugin. The “online” workflow is what developers
experience when they interact with FACER. This interaction process is comprised of two
stages. Stage 1 performs retrieval against a user’s feature query to provide a ranked list of top
methods that implement the requested feature. Upon selection of a method by the user, Stage
2 recommends related methods for opportunistic reuse. The FACER system components for
online recommendation workflow are shown in Fig. 2a and are discussed below.

4.2.1 FACER Stage 1: Method Search

This module gets triggered whenever the user types a comment and presses the CTRL+1
key combination afterwards. The comment should describe the feature they wish to imple-
ment. We show an example in Fig. 7 where the developer types the feature query “Connect
to a Bluetooth device”, uses Ctrl+1 and selects “Get Recommendations” from a quick-assist
popup. FACER then processes the input comment (query string) and initiates a search to
retrieve top-N matching methods from the FACER repository. Note that we are not con-
tributing a novel code search engine. Any code search technique (Luan et al. 2018; Sachdev
et al. 2018; Gu et al. 2018; Umarji et al. 2008; Chatterjee et al. 2009; Bajracharya et al.
2010; Keivanloo et al. 2014) can be used here. However, to implement the whole work-
flow, we develop a simple code search engine (B1 (Bajracharya et al. 2010)) using Lucene
(lucene 2017). The performance of such a search engine has been shown to significantly
improve software retrieval performance, increasing the area under the curve (AUC) retrieval
metric to 0.92 – roughly 10–30% better than previous approaches based on text alone (Lin-
stead et al. 2009). Lucene uses the BM25 (Best Matching) textual similarity ranking method
implemented in Okapi (Stephen and et al 1995). The output of this FACER search stage is

Page 21 of 58 110

Empir Software Eng (2021) 26: 110

a ranked list of top matching methods against the input comment. We currently show the
developer the top 20 matching methods. The bottom left of Fig. 7 shows the list of methods
retrieved against the example query. Developers can click on any of these methods to view
their content in the right pane. Once decided, they can get related method recommendations
against the currently selected method by clicking the arrow button on the top right corner of
FACER’s view panel as shown in Fig. 8.

4.2.2 FACER Stage 2: Related Method Recommendations

To obtain a list of related method recommendations, we use the user-selected method (mu)
from the previous step along with a minimum support threshold (β) as input. The clone
structures of co-occurring API usage-based Method Clone Groups mined from Step 2
(Section 4.1.3) are the basis for FACER’s recommendations.

Algorithm 2 summarizes the steps for recommending related methods against an input method
(mu). We first identify which clone group (i.e., cluster) mu belongs to (Line 5), and use it to
get related method recommendations (Line 5). The procedure GETRELATEDMETHODS for
getting recommendations against a clone group ID is shown on Line 14.

In this procedure, FACER retrieves only those Method Clone Structures (MCS) that sat-
isfy the threshold β and performs highest-support-first ordering of the MCS (Line 15). After
obtaining a list of MCS, we gather all distinct clone groups found in each MCS as co-
occurring features against our input feature (Line 17). Next, for each of the clone groups,
we get representative methods and add those methods to the list of recommended related
methods (Lines 19–23). To select a representative method from each clone group, we fol-
low a simple rule: if a clone group contains a method that belongs to the same project as
the user’s already selected mu, then we choose that method as the representative method.
Otherwise, we choose the method with the highest API call density within the clone group.
This is to ensure that the recommended method has the least amount of noise in the form of
statements without API calls.

Fig. 8 Stage 2: Related Method Recommendations

110 Page 22 of 58

Empir Software Eng (2021) 26: 110 Page 23 of 58 110

Empir Software Eng (2021) 26: 110

In case mu’s clone group does not belong to any clone structure (Lines 6-8) or if mu

does not belong to a clone group (Lines 9–11), we scan the neighboring methods of mu to
perform neighborhood-based retrieval. The procedure for getting recommendations based
on neighboring methods is shown on Line 25. We first use the call graph of mu as the source
of neighboring methods to obtain recommendations (Lines 26-27). Specifically, we use the
caller and callee methods of mu as its neighborhood and thus input methods. If this returns
an empty set of related methods, we then use the host file of mu as the source of neighboring
methods to obtain recommendations (Lines 29-30). In this case, all the methods of the host
file containing mu form its neighborhood and are used as input.

Line 34 shows the procedure to perform neighborhood retrieval, regardless of the neigh-
borhood source used. It involves getting the clone groups of all methods in the neighborhood
of mu. For each of these clone groups, we get all the MCS in which they occur (Lines 36–
38). We then sort these MCS in order of highest-support-first and build a list of distinct
clone groups that occur in those MCS (Lines 40-42). Finally, we get representative meth-
ods against the clone groups as before (Lines 43-45) and return the list of related method
recommendations for mu.

5 Research Questions and Experimental Setup

The ultimate goal of our related feature recommendation system is to support opportunistic
reuse through recommending relevant related methods. Our approach is designed to mini-
mize the number of irrelevant related features recommended, while maximizing the success
rate of obtaining code examples for relevant features. We now discuss our research questions
and the evaluation setup we use.

5.1 Research Questions

We aim to answer the following four research questions (RQs):

– RQ 1: Are the clone groups detected by FACER valid?
– RQ 2: How precise is FACER in terms of recommending related features?
– RQ 3: Do developers need to search for related features?
– RQ 4: What are developers’ perceptions regarding the usefulness and usability of

FACER?

The underlying premise of FACER is that methods with similar API usages are seman-
tically related and can represent methods implementing the same feature. If this is not true
in practice or if our clone groups are meaningless, then the rest of FACER’s workflow will
not be useful. Thus, in RQ1 (Section 6), we manually validate a sample of the clone groups
detected by FACER. The goal is to make sure that methods belonging to the same clone
group implement the same functionality and that different clone groups represent different
functionality. The aim of RQ2 is to evaluate whether the methods recommended in FACER’s
Stage 2 actually implement features that relate to the user’s selected feature/method. To
evaluate this, we perform two types of evaluation in Section 7. The first is an automated
evaluation that compares the recommendations against ground truth data to determine the
best threshold values and the second is a manual evaluation that involves human validation.
The aim of RQ3 is to understand the code search and reuse practices of developers and find
out whether they need to search for related features. In RQ4, we determine how developers
perceive the usability and usefulness of the current FACER tool and its recommendations.

110 Page 24 of 58

Empir Software Eng (2021) 26: 110

To answer RQ3 and RQ4, we conduct a user survey (Section 8) which includes assessing
developers’ code search and reuse practices, presenting the developers with recommenda-
tion scenarios for reviewing FACER’s related method recommendations and then getting
their feedback on the FACER tool’s interface and recommendations.

5.2 Dataset

We collect applications from four different categories of Java-based Android applications:
(1) music player, (2) Bluetooth chat, (3) weather, and (4) file management (FACER Arti-
facts 2020). We choose these categories because of their use in previous research on feature
recommendations (Dumitru et al. 2011) and API usage pattern recommendations (Niu et al.
2017). We include 30 applications from each category, resulting in a total of 120 appli-
cations. We intentionally choose multiple applications from each category to allow the
discovery of frequently co-occurring features across similar category applications.

To collect the applications forming the dataset, we use GitHub’s search where we use each
category name prefixed with android and postfixed with app as search queries. Then, we filter
the search results by choosing Java as the language and sort them using relevance option. We then
select the top 30 relevant GitHub repositories against each search query. We manually judge
the relevance to a category by analyzing the description of each application on GitHub. If an
application is not deemed relevant, we skip it. Figure 9 shows the distribution of star ratings
for the selected applications across the four categories. We can see that the weather category has
the highest starred applications, followed by music, file manager and Bluetooth categories.

Overall, our dataset for the evaluation consists of 120 Java-based Android applications
which we analyze in order to populate the FACER repository.

5.3 Constructing the FACER Repository

To populate the FACER repository in offline mode, we analyze the source code of the col-
lected 120 applications. The time to execute the program analyzer on this dataset is almost

Fig. 9 The number of GitHub repositories from the four categories across different ranges of the number of
stars

Page 25 of 58 110

Empir Software Eng (2021) 26: 110

55 minutes on a Core i7 2.2 GHz machine with 8GB memory running Windows 10. Table 2
summarizes some of the key statistics of the FACER repository that we built from the 120
applications, and which we use to answer our research questions.

During the detection of clone groups, we consider only methods having a minimum of
three unique API calls to ensure that we have meaningful clusters (Han et al. 2012; Yun
and Leggett 2005). We also ignore API calls involving the usage of Log, Intent and Toast
API classes, because want to filter out common API calls which appear in almost every
application and do not contribute towards a particular feature of an application. Thus, out of
the 37,303 methods in the repository, we mine clusters from 7,922 methods. Overall, these
7,922 methods have 7,028 unique API calls.

We input a 7922 × 7028 binary matrix whose rows represent methods and columns
represent all unique API calls found across all the methods. A value of 1 in the matrix
means that the API call exists in the method. One of the challenges of clustering methods
on the basis of API calls is the storage and computation required to process large matrix
sizes when the number of methods and the number of API calls increase. To efficiently
calculate pair-wise API usage similarity between methods, we make use of a third-party
function (binaryDist 2020; Sparse matrix clustering 2019) that performs rapid calculation
of the Jaccard distance of a matrix by making use of raw vectors with the binary data packed
efficiently. For calculating pair-wise API call density-based distances between methods,
we use another third-party library function (parallelDist 2020) to perform distance matrix
computation in parallel using multiple threads. It supports predefined distance measures
and user-defined distance functions. For our purpose, we specify our own distance function
based on our similarity formula shown in (3). Table 3 shows the number of clone groups
and Method Clone Structures that we obtain as a result of clustering and frequent pattern
mining under various similarity thresholds. Increasing the threshold results in fewer clone
groups and Method Clone Structures because of the stricter clustering criteria.

6 RQ1: Method Clone Group Evaluation

In RQ1, we evaluate the Method Clone Groups detected by FACER to determine whether
the methods that FACER clusters into the same clone group actually implement the same
functionality/feature. This is intra-clone group similarity validation. We also evaluate
inter-clone group dissimilarity to verify that the Method Clone Groups do not share any
functionality with each other.

Table 2 FACER code fact
repository statistics Metric Value

No. of applications 120

No. of files 4,369

Lines of comments 175,000

Lines of code (LOC) 498,261

No. of methods 37,303

No. of method calls 150,341

No. of API classes 2,209

No. of unique API calls 7,607

Total no. of API calls 85,386

110 Page 26 of 58

Empir Software Eng (2021) 26: 110

Table 3 Method Clone Groups
(MCG) and Method Clone
Structures (MCS) detected with
varying similarity threshold α

α No. of MCG No. of MCS

0.3 1445 536

0.5 1397 107

0.7 812 37

0.9 347 11

6.1 ValidationMethod

We manually evaluate the clone groups which FACER detects with a minimum similarity
score threshold α = 0.5. This relieves us from evaluating clone groups obtained with larger
threshold values of α since they will always be better due to a higher similarity between
clone group members. We also observe from our automated evaluation in Section 7.1.2 that
this alpha value gives us the optimal precision and success rate. We use this same alpha value
for all our evaluations in this paper. The authors of this paper as well as one professional
senior Android developer conduct the manual validation We first explain how we select the
clone groups that we evaluate and then explain the manual validation process we follow for
inter and intra clone group validation.

6.1.1 Clone Group Sampling

Since manually evaluating all 1,397 clone groups where each clone group has several meth-
ods is not practically feasible, we perform multi-stage sampling to select the clone group
and methods for our evaluation.

We first need to select clone groups to evaluate. We want to make sure we manually
validate a diverse set of clone groups. Thus, we take into account the following clone-group
characteristics during our sampling:

– size: We calculate the size of a clone group as the number of methods in a clone group.
The higher the number of methods in a clone group, the more common the feature
represented by the clone group is. Sampling by size allows us to choose from a spec-
trum of less common features as well as widespread features. Figure 10 shows that the
size of clone groups in our data set varies from 2 to 52. We observe that, not surpris-
ingly, there are a larger number of small-sized clone groups when compared to larger
clone groups. This observation is also reported in previous code clone detection studies
where small clone groups are overwhelmingly the most common of all clone groups
(Venkatasubramanyam et al. 2013; Svajlenko et al. 2013).

– API call size diversity: Each clone group can have methods with a varying number of
unique API calls. We calculate the API call size diversity score of a clone group as
the difference between the minimum and the maximum number of unique API calls
found across all methods of a clone group. For example, if a clone group of size 2 has
a method with API calls A, A, B, and C and the other method has API calls A, B,
C, D, E, and F, then the diversity score of this clone group will be 6-3=3. A higher
diversity value is a proxy for more diverse functionality in the clone group. Sampling
clone groups by diversity enables us to sample methods having various API call sizes
in the next sampling stage.

Page 27 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 10 Frequencies of clone groups of varying sizes with similarity threshold α = 0.5

Given the above two criteria, we select clone groups using a two-stage sampling. In
the first stage, we perform systematic cluster sampling to select clone group sizes. For the
number of different clone group sizes n, we systematically select every alternate clone group
size which results in selecting 50% of the available sizes. In the second sampling stage, we
select clone groups from low, median and high API call size diversity strata found within
each sampled clone group size. For example, from Fig. 11a we can see that for clone groups
of size 2, the API call size diversity values range from 0 to 9 on the x-axis. The median of
these values is 4, and we form strata using the median value as a reference. Values close
to the median value (3 and 5) fall in the median stratum, whereas values (0, 1, 2) lower
than those of the median stratum values fall in the low stratum and values (6, 7, 9) higher
than median stratum values fall in the high stratum. Having determined the strata, we now
randomly select a diversity value from each stratum. From Fig. 11a, we choose the API
diversity values 0, 3, and 5. We then continue randomly selecting one clone group from the
sampled diversity values until we sample at least 10% of the total number of clone groups
of a particular clone group size. Table 4 shows the results of our sampling criteria until this
step. This sample size of 126 clone groups gives us an 8% margin of error at a 95% level of
confidence.

6.1.2 Method Sampling

Note that we have so far identified clone groups to evaluate but not the particular methods
that we will manually validate from those clone groups. Thus, we now discuss how we
identify the particular methods for validation.

Fig. 11 Example API call size diversity for clone groups of size 2 and 6

110 Page 28 of 58

Empir Software Eng (2021) 26: 110

Table 4 Two-stage sampling of 126 clone groups from a total of 1,397 available clone groups

Sampled clone group sizes
(Stage 1 sampling)

No. of clone groups in
each size

No. of sampled clone groups of
each size (Stage 2 sampling)

2 918 92

4 111 12

6 29 3

8 19 3

10 4 3

12 7 3

14 7 3

16 7 3

18 2 1

26 1 1

37 1 1

52 1 1

For sampled clone groups of size 2 which only contain two methods, we include both
methods in our sample. However, it is a big manual overhead to manually validate each
method for large-sized clone groups. Thus, we sample representative methods from the
selected clone groups for manual validation. To sample these methods, we take into account
the following method characteristics:

– API-call size: We select methods with the smallest, median and largest number of
unique API calls within a sampled clone group. This allows us to sample methods of
various API call sizes. Figure 12 shows the distribution of API-call sizes for all meth-
ods in our selected sample of 126 clone groups from Table 4. We use this distribution to
sample methods on the basis of API-call size. The number of unique API calls ranges
from a minimum of 3 (due to our clustering criteria explained in Section 5.3) to a
maximum of 46.

– API-call density: In addition to selecting methods by API-call size, we select methods
with the highest and lowest API-call densities to add more methods to the sample.
Note that the previous sampling using API-call size may already contain a high and
low density method from each clone group, in which case we do not need to add more
methods from this step. Figure 13 shows the distribution of all the methods from our
sampled clone groups across different API-call density ranges. We observe that almost
99% of methods in our sampled clone groups have API-call density values greater than
50%. This implies that API calls form a major part of the code of these methods and
also supports our technique of clustering methods on the basis of API calls to detect
common functionality. We sample methods on the basis of API-call density from this
distribution.

Based on the above sampling criteria, our final sample consists of 126 clone groups with
a total of 305 methods.

6.1.3 Intra-clone group similarity validation

Setup All four authors of this paper and one professional Android developer perform the
manual intra-clone group validation where our goal is to check whether methods of a clone

Page 29 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 12 Distribution of API call size for all the methods from our sampled clone groups in Table 4

group are functionally similar. We first explain the evaluation procedure and then explain
how the clone groups were distributed among the evaluators.

We follow the following evaluation procedure for all 126 clone groups. For each method
of a clone group, the evaluator writes a feature description describing what the method is
doing. This description is based on using the code in the method body (including method
invocations and API calls), any Javadoc comments, the method name, and any inline com-
ments. Once the evaluator writes feature descriptions for all methods in the clone group,
they then write a feature description for the clone group which represents the functionality
shared by all the methods in the clone group. For methods having functionality that does
not match with the core functionality of the clone group, this functionality is noted by the
evaluator as a divergent feature. Finally, the evaluator gives a decision regarding the validity
of the clone group. A clone group is valid if all of its member methods (or the analyzed sub
sample) implement similar functionality. A clone group is invalid if the evaluator is able to
identify one or more of its member methods having several divergent functionalities. Hav-
ing too many divergent features in a method indicates that the methods do not implement
the same functionality, which affects the validity of the clone group. In other words, the
decision to assign a valid label to a clone group is based on the following observations:

– The resulting feature description of a clone group describes the common functionality
in the clone group.

– There are no major divergent features inside any member method or the number
of divergent features is few or minor in comparison to the clone group’s feature
description.

Fig. 13 Method distribution from sampled clone groups based on API call density

110 Page 30 of 58

Empir Software Eng (2021) 26: 110

We first assign the evaluation of each sampled clone group to two authors such that we
get two unique author evaluations per clone group. Each author independently evaluates
their assigned clone groups and labels each clone group as valid or invalid.

To ensure external validation and reduce author subjectivity, we also recruit a pro-
fessional Android developer to evaluate and label all 126 clone groups. We recruit the
professional Android developer using a freelance website Fiverr (Fiverr - freelance services
marketplace for businesses 2021). The developer has six years of experience developing
Android applications such as online food ordering, shopping, personalization, video players,
live streaming, VPN, utility apps, and customized apps for several businesses.

We provide the professional developer with the evaluation data accompanied by instruc-
tions about the evaluation procedure we described above. This means that each of the 126
clone groups are evaluated by two authors and one external professional developer. For all
agreements between authors, we compare the professional developers’ evaluation with the
author evaluations to see whether their rating matches ours. We obtain the final labels of all
clone groups using a majority vote of the three ratings.

Intra-clone group similarity results We evaluate 126 clone groups containing a total of
305 methods. For the author ratings, we obtain an 84% agreement rate and a Cohen’s kappa
score (Cohen 1960; Richard Landis and Koch 1977) of 0.38, which indicates a fair agree-
ment. There were a total of 20 disagreements between the author ratings, which we resolve
using the majority vote of all three ratings.

There were 106 clone groups for which both authors agreed on the label. We compare
these 106 ratings to the corresponding ratings of the professional developer to check whether
the authors’ perception matches that of an impartial third party. The authors and the pro-
fessional developer agreed on 97 clone groups being valid and five being invalid. Overall,
we find that the authors had a 96% agreement rate with the professional developer and a
Cohen’s kappa of 0.69, indicating a substantial agreement (Cohen 1960; Richard Landis and
Koch 1977). Overall, after resolving all disagreements across the 126 clone groups using
majority vote, we confirm that 115/126 (91%) clone groups are valid.

In Fig. 14a-e, we provide examples of two valid clone groups, one with size 10 and one
with size 37. We can see that the member methods of each clone group do share common
functionality. For the first clone group in Fig. 14a and b, the shared functionality checks
for the availability and connectivity of network, and for the second clone group shown in
Fig. 14c-e, the shared functionality sends a failure message to some activity and restarts
a service. We also present an example of clone groups with longer methods in our online
artifact page. Additionally, all the data and labels from this manual evaluation are provided
in our online artifact page (FACER Artifacts 2020).

6.1.4 Inter-clone group dissimilarity validation

Setup We also verify whether the clone groups detected by FACER share any functionality
with each other. The idea is to look at clone group descriptions and decide whether any two
clone groups are semantically similar. Ideally, there should be minimal functionality overlap
between clone groups. This evaluation is performed by the first author of this paper and
the same professional Android developer who performed the intra-clone group similarity
validation.

Page 31 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 14 Examples of evaluated clone groups. a and b show two methods from a clone group of size = 10. c-e
show three methods from a clone group of size = 37

Each evaluator uses their own previously written feature descriptions so that it is easier
for them to perform the task and because that reflects how they perceive the clone group’s
functionality. For each evaluator, we first collect the feature descriptions of all 115 clone
groups that we resolve as valid in the intra-clone group validation phase. To reduce manual
effort and chances of incurring human error while analyzing all

(115
2

) = 6555 combinations
of feature descriptions, we form a subset of the clone group descriptions of each evalua-
tor based on TF-IDF (Sammut and Webb 2010) similarity. After stemming all words in the

110 Page 32 of 58

Empir Software Eng (2021) 26: 110

descriptions, we calculate pair-wise similarity between all feature descriptions of an eval-
uator using a TF-IDF similarity score. We filter out the clone group pairs with a similarity
score less than or equal to 0.5 and assume that these are dissimilar. The clone group pairs
that have a similarity score greater than 0.5 are the ones we need the evaluators to manually
validate. We then ask the evaluator to analyze the similar pairs of clone group descriptions
(i.e., those with a TF-IDF score of > 0.5) and their associated code to determine whether
the clone group pairs are similar or distinct. The two evaluators discuss any disagreements
on labels for commonly evaluated clone group pairs until they reach a resolution.

Inter-clone group results We first execute the TF-IDF similarity calculation on the clone
group descriptions (of valid clone groups) written by the professional developer. As a
result, we obtain 23 clone group pairs having > 0.5 clone group description similarity.
We then execute the TF-IDF similarity calculation on the clone group descriptions (of
valid clone groups) written by the first author. As a result, we obtain 27 clone group
pairs having > 0.5 clone group description similarity. Both the author and the profes-
sional developer then evaluate the clone group pairs obtained from their own respective
descriptions and having a TF-IDF similarity > 0.5. The professional developer manually
evaluates each of their 23 clone group pairs by looking at the corresponding code for the
sampled methods of a clone group and concludes that 16 of these pairs are semantically
similar to each other. The first author manually evaluates each of their 27 clone group
pairs by looking at the corresponding code for sampled methods of a clone group and
concludes that only two pairs of clone groups are semantically similar to each other. We
note that there are seven clone group pairs in common between the 23 clone group pairs
obtained from the developer’s descriptions and the 27 clone group pairs obtained from the
author’s descriptions. Thus, based on the descriptions from both evaluators, there are a total
of 43 unique clone group pairs that are potentially similar based on a TF-IDF similarity
threshold > 0.5.

For the seven clone group pairs evaluated by both the author and the developer, there
was an agreement on only one clone group pair being similar. After resolving the six dis-
agreements through discussion, we find that out of the 43 unique clone group pairs across
both evaluators, 31 are dissimilar, and 12 are similar. Thus overall, out of 6,555 clone group
pairs formed from 115 unique clone groups, only 12 clone group pairs are semantically sim-
ilar. This means that 99.8% of the clone group pairs are dissimilar, which means that our
clustering based on API usages works well.

Overall, our manual evaluation results for both intra- and inter- clone group validation
give us confidence that common API usages can indeed be used as a proxy for similar
functionality, and that the clone groups detected by FACER are meaningful. With that, we
can proceed to evaluate FACER’s recommendations of related functionality.

Page 33 of 58 110

Empir Software Eng (2021) 26: 110

7 RQ2: Recommending Related Features

In this section, we discuss the evaluation of the main contribution of FACER, recommend-
ing related features. This is the functionality for FACER’s Stage 2 described in Section 4.
We have two evaluation goals. One is to determine the optimal threshold parameters for
similarity (α) and minimum support (β) used in providing recommendations. We determine
these thresholds using an automated evaluation setup. The second goal is to determine the
precision of the related methods that FACER recommends as judged by a human. Specif-
ically, given a query and a selected method matching this query, we recruit participants to
evaluate whether the related methods recommended by FACER indeed represent additional
functionality related to the initial query, considering the application being developed.

7.1 Automated Evaluation for Determining Thresholds

7.1.1 Evaluation Methodology

In a real recommendation scenario, a developer inputs a feature query and gets match-
ing methods against the query from the FACER repository. Then, the developer selects
one of those methods for reuse and based on her selection, gets additional related method
recommendations. If she finds them relevant, she can reuse them as part of her application.

In an automated evaluation scenario, we need to verify that the related method recom-
mendations are relevant by measuring their precision against a ground truth. In other words,
we need a criteria for automatically specifying that a recommended method is indeed related
to the input method since using human validation for different recommendations at different
thresholds is infeasible due to overloading our human participants. We thus create a proxy
ground truth for automated evaluation as follows. Given an input method m from a project p

in FACER’s repository, we consider any method in p as the ground truth for related method
recommendations for m. Thus, we consider the project to which the input method m belongs
to as the ground truth project. The ground truth we use in our automated evaluation is a
proxy for a subjective decision that should be made by the developer. Methods appearing
in the same project typically represent related functionality, and thus conceptually match
FACER’s intended purpose.

As part of the recommendation process, FACER maps an input method to a clone group,
gets related clone groups through examining the Method Clone Structures, and finally
returns representative methods from the related clone groups. For our automated evaluation,
we consider that a true positive recommendation occurs whenever FACER returns a repre-
sentative method for related clone groups that happens to be from the ground truth project.
Inversely, a false positive occurs when the representative method for the related clone group
happens to be from a different project.

We now discuss how we select test input methods to evaluate FACER, as well as the metrics
we use for the evaluation. In total, we evaluate 20 recommendation scenarios corresponding
to 20 test input methods, which we also use for the manual evaluation in the next section.

To obtain related method recommendations from FACER, we need to start with a feature
query and then select a relevant method from FACER’s Stage 1 recommendations. Methods
recommended in Stage 1 may or may not yield related method recommendations. While get-
ting related method recommendations from Stage 2 is optional for a user, we only consider
recommendation scenarios that include related method recommendations for the purpose of
our evaluation. The feature query, selected method, and related method recommendations
together make up a recommendation scenario. Since we have four categories of Android

110 Page 34 of 58

Empir Software Eng (2021) 26: 110

applications, we want to evaluate a few recommendation scenarios for each category. Thus,
we evaluate a total of 20 recommendation scenarios with five for each of the four categories
of applications. We need to simulate these recommendation scenarios by issuing feature
queries and then selecting a method that corresponds to Stage 1 recommendations, against
which FACER Stage 2 can then return related method recommendations for evaluation.

To make our evaluation as realistic as possible, we create feature queries by manually
gathering a list of feature descriptions from the README files of all applications in the
FACER repository. These feature descriptions are mainly short phrases that begin with
an action verb. We then short-list the feature descriptions that are common across multi-
ple applications within a particular category. This results in a set of 10 queries. To collect
an additional 10 queries, we manually locate methods from the back-end FACER reposi-
tory using SQL queries that look for certain domain-specific keywords in the API calls of
methods belonging to Method Clone Structures. One of the authors then assigns a feature
description to the method using its name, comments and body. This feature description is
then input to FACER Stage 1 to retrieve a set of matching methods. Thus, the 20 queries are
a mix of feature descriptions we get from README files and some that we manually create.

We use each feature description of the 20 queries as the feature query to FACER Stage
1 and manually examine the list of returned recommendations. We select a method from
the set of Stage 1 recommendations based on the following criteria: (1) the method name,
comments and variable names indicate that it implements the desired functionality, (2) it is
capable of generating related method recommendations. We consider criterion 2, because
we want to evaluate the quality of related methods FACER recommends, which we cannot
do for scenarios where FACER makes no related recommendations. Such a scenario would
occur when the input method does not belong to any Method Clone Structure, which can
be solved with considering more input repositories for the mining stage. Thus, given our
evaluation goals, we focus on the case when FACER can find any related methods and
evaluate the quality of these related recommendations.

One of the authors having professional experience with Android development first selects
methods against queries using the FACER tool in a way that a real developer would do
by looking through the complete list of retrieved methods, then clicking on a few methods
which look relevant by name, scanning method bodies to check for desired functionally, and
finally checking whether these methods have any related method recommendations (without
evaluating the related recommendations). This way, we obtain a set of 20 test input meth-
ods corresponding to the 20 feature queries. We then use the ID of the selected method as
input to FACER Stage 2 to get related method recommendations. These related method rec-
ommendations are what we evaluate. The 20 queries, the method identifiers of the selected
relevant methods for the queries, and their application category names are shown in Table 5.

Evaluation Metrics We use the following metrics to evaluate the related method recom-
mendations:

Precision: Precision measures FACER’s ability to correctly recommend related methods.
The precision of recommendations is calculated as the fraction of recommended methods
that are relevant i.e., belonging to the ground truth project of the input method, as shown in
(6). If all the recommended methods occur at least once in the test project, we have 100%
precision.

Precision@N = |recommended methods ∩ test project methods|
|recommended methods| (6)

Page 35 of 58 110

Empir Software Eng (2021) 26: 110

Table 5 Feature queries

No. Feature description Method ID Category

1 receive paired devices name and address 33 Bluetooth chat

2 update list of paired Bluetooth devices 80 Bluetooth chat

3 do discovery of Bluetooth devices 423 Bluetooth chat

4 send message over Bluetooth 1066 Bluetooth chat

5 connect to a Bluetooth device 1161 Bluetooth chat

6 create new folder 2250 File Manager

7 browse to file or directory 2616 File Manager

8 move file 2642 File Manager

9 put file to cache 2971 File Manager

10 draw bitmap 3017 File Manager

11 set data source for media player 14435 Music Player

12 receive key press to start stop pause media 14490 Music Player

13 search for song 15214 Music Player

14 download music 22968 Music Player

15 play music 24068 Music Player

16 save forecast in database 28669 Weather

17 send Http request to get weather 29298 Weather

18 check if network connection available 29947 Weather

19 check and add permissions for location access 31838 Weather

20 create new memory cache to store weather icons 33549 Weather

Success Rate: This metric measures the rate at which the recommender can return at least
one relevant recommendation against an input method. The success rate is defined as shown
in (7).

SuccessRate = |queries answered|
|queries| (7)

where queries represents the set of test input methods FACER receives and queries
answered represents the number of times FACER successfully retrieves at least one correct
recommendation against a test input method.

Mean Reciprocal Rank: The mean reciprocal rank is the average of the reciprocal ranks of
the results for the number of test input methods M. It is defined in (8).

MRR = 1

|M|
|M|∑

i=1

1

ranki

(8)

where ranki refers to the rank position of the first relevant result for the i-th test input
method.

7.1.2 Automated Evaluation Results

Using the 20 test input methods we obtain, we evaluate related method recommendations
from FACER using different configurations. We obtain top N recommendation sets by vary-
ing the similarity threshold α and minimum support threshold β across a range of values.
Table 6 shows the precision (P), success rate (SR), and mean reciprocal rank (MRR) @N

110 Page 36 of 58

Empir Software Eng (2021) 26: 110

Table 6 Automated evaluation results using various thresholds of similarity α and minimum support β

α β P@5 P@10 P@15 SR MRR

0.3 3 0.86 0.79 0.75 1.00 0.97

5 0.85 0.78 0.79 0.85 0.97

10 0.80 0.81 0.81 0.45 1.00

15 1.00 1.00 1.00 0.15 1.00

0.5 3 0.90 0.83 0.80 1.00 1.00

5 0.92 0.91 0.91 0.60 1.00

10 1.00 1.00 1.00 0.15 1.00

15 1.00 1.00 1.00 0.15 1.00

0.7 3 0.92 0.89 0.89 0.65 1.00

5 0.88 0.90 0.90 0.35 1.00

10 1.00 1.00 1.00 0.10 1.00

0.9 3 1.00 0.85 0.85 0.30 1.00

5 1.00 1.00 1.00 0.20 1.00

The success rate (SR) and mean reciprocal rank (MRR) values are for all N={5,10,15}

= {5, 10, 15} for the recommendations obtained using different configurations of similar-
ity threshold α={0.3, 0.5, 0.7, 0.9} and minimum support thresholds β ={3, 5, 10, 15}. α

indicates the strength of intra-clone group similarity between methods and β indicates the

Fig. 15 Precision and success rate of recommendations across varying similarity threshold (alpha) and
minimum support (beta)

Page 37 of 58 110

Empir Software Eng (2021) 26: 110

minimum support a Method Clone Structure should have to be considered a source for
recommending methods.

Figure 15 is a visual summary of the same results, showing the precision@N for the rec-
ommendations obtained using different configurations of α and β. The success rate is same
across all values of N = {5, 10, 15} and is shown in Fig. 15d. Our objective is to determine
the best combination of α and β that gives us a good precision without compromising suc-
cess rate. From Fig. 15a, we notice that for the same α=0.3, the precision decreases as β
increases from 3 to 10, but then increases when β is further increased to 15. This is counter-
intuitive but there is a reason behind the decreasing precision with increasing minimum
support. In case increasing the minimum support does not yield any recommendations from
the test input method itself, the recommendation algorithm switches strategy to obtain rec-
ommendations from the neighborhood of an input method. This results in a new pool of
recommendations and thus a different precision value. We also observe a general trend of
increasing precision as the similarity threshold α increases; however, it can have an opposite
effect on success rate which decreases as α increases. Intuitively, increasing α makes the
criteria for clustering of methods into clone groups more strict and results in fewer but more
precise clone groups and also fewer but more precise recommendations. This intuition is
also reflected in the graphs. According to this sensitivity analysis, we choose the following
configuration for our manual user evaluation: we fix N at top 5, α = 0.5, and β = 3.

7.2 Manual Evaluation of FACER’s Precision

For our second evaluation, we recruit professionals and students to manually evaluate the
recommended related methods and to determine the relevance of FACER’s recommenda-
tions. We use the same feature queries and test methods used in our automated evaluation
in Section 7.1.1. For each test method, we ask FACER to generate the top 5 related method
recommendations from the optimal similarity thresholds α=0.5 and β = 3. We then ask the
participants to evaluate the relevance of these recommended methods to the input query
and test method considering the category of the test method’s project. A recommendation
against a test input method is deemed relevant by a participant if she is able to identify the
functionality of the method as being relevant to the application domain of the test method.

7.2.1 Manual Evaluation Setup

We recruit 10 industry professionals and 39 Master’s students to participate in the man-
ual evaluation. The industry professionals have both Android and Java experience and the
39 students have some experience in Java and/or Android. This number already excludes
the evaluations of two students who had no Android/Java experience. To identify relevant
industry professionals, we use LinkedIn’s search option which allows one to search for
professionals based on their job titles. We search for Android developers and send direct
messages to multiple professionals to invite them to participate in our evaluation. We also
use our own professional/academic contacts to recruit additional professional participants.
The students were required to participate in the evaluation as a graded instrument for the
Software Development: Tools and Processes graduate course at the Lahore University of
Management and Sciences. The detailed demographics of our subjects for manual evalua-
tion are shown in Table 7. The students have varying levels of experience with Android and
Java. From the table, we see that all 39 students have Java experience and 36 of them also
have Android experience.

110 Page 38 of 58

Empir Software Eng (2021) 26: 110

We ask participants to imagine themselves as being in the process of developing an
Android application of a certain category and that they have just written a method to imple-
ment a certain feature of the application. That method is the test method we have selected
for each query. Based on that method, FACER provides top 5 related method recommenda-
tions which they need to evaluate and see whether they are relevant for the application they
are developing. We assign two recommendation scenarios to each student. We assign at least
4 recommendation scenarios to each of the 10 professional developers. This guarantees that
we have at least three evaluations for each scenario.

We create a set of 20 files containing the recommendation scenarios to be evaluated.
Each file consists of an evaluation ID (method ID), the application category name, the code
for the test method with its feature description, followed by the code for top 5 related meth-
ods retrieved by FACER. In our evaluation instructions, we ask the subjects to understand
the features being implemented by the recommended methods by looking at the name of
the method, its comments (if any), its API calls, other variables, and the overall semantics.
We also ask the subjects to rate the relevance of the recommended methods on a three-point
Likert scale with an integer range from zero to two, where two is relevant, one ismaybe
relevant and zero means irrelevant. We also require the students to write a feature descrip-
tion for each method that they evaluate to make sure that they understand the functionality
before rating it. The students input their evaluation in a Google form. Five professionals
provide their evaluations through a Google form and the other five provide their evaluations
through e-mail.

Measuring precision We calculate the relevance of a recommended method m as the
median of the relevance ratings of the participants who evaluate m. We obtain separate rel-
evance ratings for student and professional ratings and obtain a median relevance over all
ratings for each query.

We calculate the precision of recommendations of a query as a fraction of relevant meth-
ods over the total methods recommended. For each query, we consider a recommendation
as relevant only if its median relevance is greater than or equal to 1. We calculate FACER’s
overall precision as the mean precision of all queries Q as shown in the (9):

Precision =
∑|Q|

q=1 |relevantMethods(q)/recMethods(q)|
|Q| (9)

Table 7 Participant demographics for the manual evaluation of FACER’s related methods recommendation
(Precision)

Type of participant Range of experience No. of participants

Professional developers 1-2 years 6

3-4 years 4

Students with Android experience <1 year 34

1-2 years 2

Students with Java experience <1 year 26

1-2 years 10

3-4 years 3

Page 39 of 58 110

Empir Software Eng (2021) 26: 110

7.2.2 Manual Evaluation Results

We first obtain separate precision values for student and professional ratings for 14 of the
20 test queries. The remaining six test queries are evaluated by professionals only and two
are evaluated by students only. We then perform a paired samples Wilcoxon test (Wilcoxon
test 2020) on the ratings of the 14 queries to test our null hypothesis which asserts that the
medians of the precision values for students and professionals are identical. A p-value of
0.33 means that we cannot reject the null hypothesis, and accordingly there is no statistically
significant difference between both groups. We therefore combine the relevance ratings of
the 20 test queries of all student and professional participants to obtain the median value
for a recommendation. We calculate the number of relevant recommendations for a query
considering those median values that are greater than or equal to one. Table 8 shows the
precision of related method recommendations for each query. Recall that we use FACER’s
top 5 recommendations. For 18 of the scenarios, FACER returns 5 related recommendations,
while for the two remaining scenarios, FACER produces only 2 related recommendations.
Overall, the evaluation contains 94 related method recommendations over the 20 scenarios.
We obtain an average precision of 79.5% over the 20 recommendation scenarios.

8 RQ3 and RQ4: User Survey

The research questions RQ1 and RQ2 allow us to evaluate FACER’s effectiveness in terms
of its clustering of similar functionality and its precision for related method recommen-
dations, respectively. In RQ3 and R4, we want to additionally understand professional
developers’ code search and reuse practices to make sure that FACER can serve real needs,
and to assess the usability and usefulness of our FACER tool and its recommendations.
To investigate these points, we survey 20 professional developers including 15 Android
developers and 5 Java developers. The detailed demographics of our professional survey
participants are shown in Table 9.

As part of our survey, we first capture the developer’s profile which includes the number
of years of experience, and also the types of applications they have previously developed.
We then ask them about their current code search and reuse practices. Next, we ask the
developers to review recommendations from FACER. At this point, our survey breaks into
three parts based on whether the developer has Android or Java expertise and whether they
opt for a short review of recommendations or a longer evaluation of recommendations.
The longer evaluation includes evaluating the 20 recommendation scenarios discussed in
Section 7.1.1 which we distribute across the evaluators assigning four scenarios per eval-
uator. Eight Android developers opt for this longer evaluation and the evaluation of five
of these developers is included in the manual evaluation results we reported in Section 7,
whereas for the remaining three developers, the evaluation results were incomplete and
were not included in the manual evaluation. Table 10 summarizes the information of the
number of professional developers reviewing recommendations from various recommenda-
tion scenarios. Overall, eight Android developers are part of the longer evaluation, seven
Android developers opt for a shorter evaluation where they review recommendations from

110 Page 40 of 58

Empir Software Eng (2021) 26: 110

Table 8 Manual Evaluation of
FACER’s related method
recommendations (Relevant =
no. of recommendations that are
relevant, Recommended = total
no. of system generated
recommendations, Precision =
Relevant/Recommended)

Method ID Recommended Relevant Precision

33 5 5 1.0

80 5 5 1.0

423 5 5 1.0

1066 5 5 1.0

1161 5 5 1.0

2250 5 3 0.6

2616 5 4 0.8

2642 5 4 0.8

2971 5 5 1.0

3017 5 0 0.0

14435 5 5 1.0

14490 5 5 1.0

15214 5 4 0.8

22968 5 4 0.8

24068 5 4 0.8

28664 5 3 0.6

29298 2 2 1.0

29947 5 5 1.0

31838 5 1 0.2

33549 2 1 0.5

Average 0.795

our motivating example discussed in Section 2, and five Java developers review Java recom-
mendation scenarios. We discuss the setup for reviewing the recommendation scenario from
the motivating example and the recommendation scenarios generated from Java information
management systems (IMS) in Section 8.1.2. Having developers review real recommenda-
tions from FACER allows us to ask them about their perceptions of its usefulness in the next
section.

Finally, we get feedback from the professional developers on the tool’s interface, its
potential to speed up development, their interest in future adoption of this tool, their
perception of reduced time-to-search, and an overall satisfaction with the quality of recom-
mendations. We then ask them to give their comments on our approach. Finally, we ask them

Table 9 Demographics of the professional participants who participated in our user survey

Type of participant Range of experience No. of participants

Professional Android developers 1-2 years 3

3-4 years 8

5-6 years 3

7-10 years 1

Professional Java developers 1-2 years 1

3-4 years 2

7-10 years 2

Page 41 of 58 110

Empir Software Eng (2021) 26: 110

to give ratings on the perceived overall usefulness and usability of FACER. Note that we also
ask the 39 students who perform the manual evaluation of the 20 Android scenarios from
Section 7.2 to provide an overall rating on the usefulness of FACER’s recommendations.
We also ask these students to provide comments on our recommendation approach.

8.1 Survey Design

8.1.1 Section 1: Developer Code Search and Reuse Practices

In this part of the survey, we focus on understanding developer practices while searching
for (related) features.

We ask about those practices before they review specific recommendations from FACER
to avoid biasing their opinion in any way. Specifically, we capture the frequency of perform-
ing the following 7 activities on a scale of 1 - 5 (where 1=never, 2= rarely, 3= sometimes,
4= often, 5= always).

1. Whenever I need to implement a new feature for the application I am developing, I start
by searching for code examples.

2. When I search for a code example to help me implement a feature, I find what I am
looking for in the results of the first search query.

3. If I get the desired code after a successful online search, I need to search again for
related functionality to proceed with development.

4. While implementing the features of my application, I need to perform repeated online
searches to find code for various features.

5. I reuse code for various functionalities from my previously developed applications.
6. While writing code for some feature, I recall that I have written similar code in the past

and want to search for it again.
7. When writing a new application, I find myself reusing multiple methods which

implement different functionality from a single application I have developed before.

8.1.2 Section 2: Recommendation Scenarios

In this section of the survey, we present participants with code recommendations to give
them a demonstration of the capabilities of FACER. Eight Android developers opting for a
longer evaluation evaluate the recommendations from the 20 scenarios discussed previously.
Since the manual evaluation results are discussed in the previous section, we do not discuss
them here again.

Table 10 Professional developers involved in reviewing recommendation scenarios for user survey

Recommendation
scenarios

Dataset No. of professionals Professional
expertise

Manual evaluation
participants?

Assigned from 20
scenarios

120 Android apps 5 Android Yes

Assigned from 20
scenarios

120 Android apps 3 Android No

Motivating exam-
ple scenario

30 Android apps 7 Android No

Java IMS scenarios 53 Java IMS 5 Java No

110 Page 42 of 58

Empir Software Eng (2021) 26: 110

We present recommendations from the motivating example (discussed in Section 2) to
seven of the Android developers. The recommended methods evaluated by the developers
include those for cropping an image, showing it in ImageView, as well as for resizing image
and getting the uniform resource identifier (URI) of a captured image. After understanding
the scenario and reviewing the recommendations, the developers provide responses against
two questions. The first question asks whether the recommended methods are related to the
given method (select image) and system (photo sharing application) being developed. The
second question asks whether the recommended methods are useful and can be reused in
the context of their method and system being developed.

We present recommendations from Java projects implementing information management
systems to the developers with Java experience. We create a separate FACER repository
of Java projects related to information management systems. Our choice of selecting the
information management systems domain is based on our premise that most of the pro-
fessional Java developers would be familiar with information management systems. Thus,
they would easily be able to understand recommendation scenarios and review recommen-
dations for information management systems. This was also evident from the profile of
all our survey participants who are Java professionals (we explicitly ask the Java devel-
opers about their experience with developing information management systems to confirm
that our assumption is true). We collect Java projects from GitHub using the search query
“Java information management systems” and get 187 results which we sort by star rat-
ings and select the top 53 projects. The remaining projects had no stars. We create five
recommendation scenarios from the Method Clone Structures detected by FACER on
these projects. These recommendation scenarios are available in our online artifact page
(FACER Artifacts 2020).

8.1.3 Section 3: Feedback on FACER Tool’s Interface and its Usefulness

Finally, in the last section, we use Figs. 7 and 8 to show them how the interface of FACER
looks like and present them with five statements to get feedback on the tools interface,
its capacity to speed up development, their interest in future adoption of this tool, their
perception of reduced time-to-search, and an overall satisfaction with the quality of recom-
mendations. We capture all responses to these five statements on a five-point Likert scale,
which allows us to measure the strength of their agreement.

1. The organization of information on the tool screens is clear.
2. I perceive that this tool can speed up my development.
3. I would be interested in using this tool.
4. This tool can reduce the need to perform repeated online searches to find code for

various features of an applications.
5. Based on my evaluation of the various recommendation scenarios, on average, the rec-

ommender was successfully able to predict related functionality or set of functionalities.

We also ask the developers to provide open-ended feedback on the advantages or
disadvantages of our approach and any other comments they might have.

8.1.4 Section 4: Usability and Usefulness Ratings

We ask the professional participants to rate the perceived usability of the FACER tool for
their development activities and the usefulness of FACER’s recommendations on a scale of

Page 43 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 16 Analysing developer’s code search and reuse practices

1 to 5 where 1 indicates a low rating and 5 indicates a high rating. We ask the developers to
provide ratings as follows:

1. Rate the usability of this recommendation tool for your development activities on a
scale of 1-5.

2. Rate the usefulness of these recommendations based on their ability to provide relevant
functionality for your application on a scale of 1-5.

For student participants, we only ask for a rating on the usefulness of FACER’s
recommendations and we ask them to provide any comments as feedback.

8.2 User Survey Results

Developer code search and reuse practices We measure the frequency of code search or
reuse activities performed by professional developers and obtain their feedback on a scale
of 1 to 5 (where 1=never, 2= rarely, 3= sometimes, 4= often, 5= always). The results are
shown in Fig. 16. We plot these results in a series of 100% stacked bar charts which show the
percentage of subjects responding to a certain value between 1 to 5 indicated by 5 different
colors respectively. When reporting results to indicate that a developer does a given activity,
we consider ratings 3 (sometimes) to 5 (always).

The first bar in Fig. 16 indicates that 65% of the developers start implementing a new
feature by first searching for code examples with 50% doing this at least often. This obser-
vation is in line with previous studies on developer’s need to search for code examples. The
second bar plot indicates that the first search attempt is successful for 85% of the devel-
opers. They do not need to reformulate their query again. Next, we investigate whether the
developers need to search again for related functionality after getting code for their initial
search. We observe that 70% of the developers need to find functionality related to code
that is obtained from their initial search to proceed with development. This strengthens our
motivation to provide developers with code for related features. From the fourth bar plot,

110 Page 44 of 58

Empir Software Eng (2021) 26: 110

we observe that 65% of the developers face the problem of performing repeated searches
for finding code for various features of an application they are developing. This also indi-
cates the need for a code recommender that assists developers in providing related code for
their application being developed. We also investigate whether the developers tend to search
and reuse the code they already wrote in the past. Our findings from the fifth and sixth bar
plot indicate that 85% of the developers reuse their own code from previously developed
applications and 75% need to write code for features they have previously implemented
and thus search for their already written code. This indicates that applications share some
common features which is coherent with our approach of mining repeatedly co-occurring
features across applications. The last bar plot in Fig. 16 indicates that 80% of the developers
reuse multiple functionality from a single application that they previously developed. Thus,
building the FACER repository on an organization’s code base can discover such repeatedly
co-occurring functionality and using FACER can allow the developer to receive related code
recommendations without explicitly searching for them.

Analyzing developer’s feedback on FACER’s recommendations for motivating example
We analyze the feedback of seven professional Android developers who review the recom-
mendation scenario from the motivating example we discussed in Section 2. In response to
whether the recommended methods are related to the given method (select image) and sys-
tem being developed (photo sharing application), one developer strongly agreed, while four
agreed and two were neutral. In response to whether the recommended methods are useful
and can be reused in the context of their method and system being developed, six developers
agreed and one developer was neutral. The high level of agreement shows that FACER can
provide relevant recommendations that can be reused for the development of our motivation
example of the photo sharing application.

Developer feedback on FACER tool’s interface and its usefulness Figure 17 summarizes
developer’s feedback on FACER. It shows a series of bar plots which capture the percent-
age of developers agreeing to some statements describing the FACER tool. The levels of
agreement are on a scale from 1 to 5 with 1 indicating a strong disagreement and 5 indicat-
ing a strong agreement. We observe that 75% of the developers agree (on level 4 or 5) that
the organization of information on the tool screens is clear. 65% of the developers agree
(on level 4 or 5) that the tool can speed up their development. 75% agree (on level 4 or 5)
that they would be interested in using the tool. It is very encouraging to see that 75% of the
developers perceive (on level 4 or 5) that FACER can reduce the need to perform repeated
online searches to find various features of an application. 50% of the developers agree (on
level 4 or 5) that overall FACER can successfully recommend related functionality.

Developers’ comments on FACER’s recommendations We received positive comments
from the professional developers regarding FACER’s IDE-integrated interface which elim-
inates the need to leave the development IDE to search for code. One professional also
claims to never have seen such a recommendation approach for Android development. The
following are quotes of some of the feedback we got:

Page 45 of 58 110

Empir Software Eng (2021) 26: 110

Fig. 17 Analysing developer’s feedback on FACER

– “The best thing about this approach is that everything is on a single interface, which
would make the process of searching methods quite simple and efficient. This would
help generate more relevant ideas to the developers, which would improve the overall
functionality of application.”

– “This work is really good and appreciable. No such thing is available so far in Android
Development. By using this user/Developer can easily search for related code/solution
and implement it, using this plugin, without moving outside Eclipse/AndroidStudio”

– “Developer can search the related code in the IDE window rather then going to the web.”

The professional developers also commented on the ability of FACER to save time as
shown below:

– “It can speed up the creating of basic structure of any application feature. And after
that a person can customize that according to his need.”

– “That seems quite reasonable and helpful!... This tool will save a lot of time.”
– “Time saving. Less time will be spent on checking each link shown in Google search.”

There were some general comments of the professional subjects indicating a positive
impact of the FACER tool for helping developers. One subject was of the view that FACER
can not totally eliminate online searches for required code but can act as a supplementary
tool to speed up development.

– “I am really impressed by the overall idea of your tool. It will definitely help developers
in the long run”

– “As a beginner in the industry, I used to do some online searches and check some
snippets and understand the underlying objective and start implementing code as per
my requirement. your FACER is good but what I’m thinking is using your tool, I don’t
think every suggested method solves my problem and maybe checking all suggestions
and re-write the method save some time compared to my approach. so we need to both
and can’t replace one another, and I’d love to use it in future.”

The professional developers also made some suggestions on improving FACER’s recom-
mendations. One participant expresses the need for more relevant recommendations. This

110 Page 46 of 58

Empir Software Eng (2021) 26: 110

is definitely something we can address in future. Another participant suggests making pre-
dictions based on business use case, which we think can be implemented by filtering and/or
prioritizing the recommendations that directly relate to the business logic of the application.
Another comment refers to the need for the source of code recommendations to be always
up to date, so that new solutions are available. We plan to address this need by having a
continuous repository update mechanism in place.

We also received comments suggesting UI enhancements like the recommendations to
appear on the right side. FACER’s Eclipse plugin allows the developer to move the panel
containing code recommendation to their desired position, so this is not difficult to achieve.
Furthermore, we also received suggestions to show details of the parent class of the rec-
ommended methods. In future, we can integrate the ability to browse the complete class
for a recommended method. One participant mentioned the need for providing alternate
solutions against recommended functionalities. Sometimes developers are looking for opti-
mal implementations of some functionality in terms of conciseness, exception handling and
other quality factors. The fact that our recommended methods come from clone groups with
multiple implementations of the same functionality provides a solution for the subject’s
requirement. In future, we can learn to distinguish between different methods of a clone
group using quality parameters to provide alternate solutions for a recommendation.

Students’ comments on FACER’s recommendations We also received some positive com-
ments about FACER’s recommendations from the subjects who are Master’s students. They
indicated the usefulness of recommendations in writing code faster and thus saving time.
One student commented that FACER’s recommendations having concise implementations
added to his knowledge of writing improved code. Some of their comments are as follows:

– “Recommendations are quite good and can aid a developer to code [faster] given he
knows where to head”

– “These recommendations contained concise code. In my past experience, I remember
doing things [with a comparably] difficult approach”

– “I found 4 useful method[s] out of 5 so I like these recommendations”
– “[Avoids the need for] writing the whole code or searching for [a] new module... quite

helpful [recommendations].... time saving...”

The students further expressed their opinion on using FACER for future personal projects
and stated its benefit of enhancing a developer’s capabilities and reusability of code.

– “Thanks for this, I hope I can use it for my future projects if [need] be”
– “I think it is good idea to build this system which [enhances] the capability of [a]

developer”
– “..in OOP driven development environments, I can see this system having a lot of value

in enhancing re-usability of code... can act as code auto-complete ...”

A few student participants had some concerns regarding the recommendations. One
participant pointed out that some of FACER’s results are inaccurate. Another participant
pointed to the fact that some method recommendations are very generic. These comments
are as follows:

– “[some] prediction[s] are very close and some ...are very [inaccurate]”
– “the method you have [recommended] is very generic not ... serving a specific purpose”

Page 47 of 58 110

Empir Software Eng (2021) 26: 110

The reason for inaccurate and generic recommendations may be due to the recommended
methods containing API calls that do not necessarily translate to a core feature for an appli-
cation’s product domain, instead they may be implementing Android framework-specific
code which glues together the core features of an application. In future, we want to be able
to distinguish between domain-relevant features and other more generic framework-specific
helper features.

Analyzing developer’s ratings on the usefulness and usability of FACER As discussed
in Section 8.1.4, we ask the professional subjects to rate the usability and usefulness of
our approach on a scale of 1 to 5 where 1 indicates a low rating and 5 indicates a high
rating. Figure 18 shows that 90% of the professional developers give moderate to high
ratings (ranging from 3 to 5 on 5-point Likert scale) on the usability of the tool for their
development activities. We also find that 95% of the professionals give a moderate to high
rating (ranging from 3 to 5) on the usefulness of FACER’s recommendations to provide
relevant functionality for their application; 70% give a high usefulness rating (ranging from
4 to 5). This indicates that professional developers find the tool and its recommendations
helpful for their development tasks.

Figure 19 shows ratings from the students on the usefulness of our approach. It indicates
that 85% of the students give a moderate to high rating (ranging from 3 to 5) on the useful-
ness of FACER’s recommendations to provide help in their development; 68% give a high
usefulness rating (ranging from 4 to 5). This indicates that students, like professionals, find
the tools recommendations helpful for their development tasks.

Based on the above feedback, we can conclude that, overall, participants expressed the
desire to use the system for their needs and feel that it could help save time by avoiding the
need to search or write code.

9 Threats to Validity

Internal Validity We rely on third-party tools in FACER’s implementation such as the JDT
parser (Eclipse Java development tools 2020) and clustering algorithms. Any inaccuracies

Fig. 18 Professional developer’s ratings on the usefulness and usability of FACER

110 Page 48 of 58

Empir Software Eng (2021) 26: 110

Fig. 19 Student developer’s ratings on the usefulness of FACER

in these tools will affect our results. However, most of these tools have been widely used
and tested. That said, we notice that there are certain types of Android framework-specific
calls that have no object reference; such calls are not detected by the JDT parser (Eclipse
Java development tools 2020) as method invocations and are, therefore, not parsed as API
calls. This can result in some functionalities being ignored while clustering methods into
clone groups. Furthermore, in the calculation of the number of statements of methods con-
taining API calls, we proxied statements using line numbers which has resulted in density
percentage values higher than 100% for some methods. While this can have an effect on the
clustering of methods into clone groups, our manual analysis of the validity of clone groups
formed as a result of the clustering algorithm gives us reassurance in the results.

For the evaluation of inter-clone group dissimilarity, the human evaluators manually val-
idate only the clone group descriptions of pairs with a TF-IDF similarity threshold greater
than 0.5. By relying on TF-IDF, we may have incorrectly automatically marked some clone
groups with a TF-IDF score less than 0.5 as dissimilar. However, we decided to use this tech-
nique, because it is impossible to ask an external validator to manually validate thousands
of combinations.

Construct Validity The ground truth we use in our automated evaluation is a proxy for a
subjective decision that should be made by the developer. There could be a method from
another project that is actually relevant but that we consider as a false positive. How-
ever, our automated evaluation only helps us in determining the appropriate thresholds. We
engage professional developers and students for a manual evaluation to determine FACER’s
precision in practice.

We do not currently report the number of times FACER is able to provide related method
recommendations against all methods retrieved in Stage 1 of FACER. Currently, the FACER
repository is built on 120 projects only. Once we increase the size of the repository, we can
calculate the overall success rate of providing related method recommendations.

Our manual validation of the recommendations as well as user survey setup does not rep-
resent a real development scenario that a developer would go through to really use FACER.
Our setup, while contrived, reduces the cognitive load and expectations of actual develop-
ment from participants and allows them to focus on a well-defined task. Since we provide
the description of the test method as well as the domain of the application, participants can
easily determine whether a recommended method is indeed related or not. Such an evalu-
ation gives us a fair indication of FACER’s precision by human subjects. In the future, we
plan to conduct a long-term user study where developers use FACER for real tasks and we
evaluate how often they use the recommended related features and what their perception of
the tool is.

Page 49 of 58 110

Empir Software Eng (2021) 26: 110

External Validity The limited number of professional developers involved in evaluating
FACER is a threat to external validity.

Only one professional developer performed the evaluation of 126 clone groups. We
reduce the threat to validity of evaluation by ensuring that the evaluator is experienced and
also by including all authors of this paper in the evaluation.

We reported the precision of FACER based on our dataset that consists only of Android
applications. Applications from our datasets were chosen to have some common domains
such that we can indeed find meaningful co-occurring features. While we cannot generalize
beyond our analyzed applications, we do not see any conceptual reasons why FACER cannot
be applied to more projects and domains with similar results. While the number of queries
we use is limited, we wanted to make sure we evaluate with meaningful queries that repre-
sent actual functionality. Since FACER’s Stage 2 requires that the user has selected a method
from FACER’s repository in Stage 1, this limits our ability to use external queries from
Stack Overflow, for example, since they may represent features not in FACER’s repository.

10 Discussion and FutureWork

FACER got positive feedback from users participating in our survey. However, there is still
room for improvement. One of the professional developers who participated in our survey
had a concern regarding the results of FACER being bound to data in the FACER reposi-
tory. For now, we can build the FACER repository on any collection of Java source code
projects whether they are downloaded from online sources (GitHub, SourceForge, etc.) or
found within local code repositories in an organization. FACER may miss out on code rec-
ommendations if they are not part of the raw source code projects it mines. This has two
implications: (1) The repository needs to be constantly updated. This can be an offline pro-
cess applied once a month for example. Or in future, we may switch to mining Method
Clone Structures on-the-fly from the results of online code searches. (2) In an industrial con-
text, an organization often needs to develop similar products for a product line (Apel et al.
2013). If FACER is built on an organization’s code repositories, then developers can get
effective recommendations for the software being developed. Our findings from our survey
indicate that 85% of the developers reuse their own code from previously developed appli-
cations and 75% need to write code for features they have previously implemented and thus
search for already written code. This indicates that applications share some common fea-
tures which is coherent with our approach of mining repeatedly co-occurring features across
applications. Our results show that 80% of the developers reuse multiple functionality from
a single application that they previously developed. Thus, building the FACER repository
on an organization’s code base can discover such repeatedly co-occurring functionality and
using FACER can allow the developer to receive related code recommendations without
explicitly searching for them.

In our motivating example from Section 2, the StackOverflow user is having problems
finding “a complete and simple code”. The user states that the code she tested did not work
or was not good. FACER prioritizes making recommendations from the same project from
which a user selects a method in the first stage of FACER. This way, FACER is likely
to recommend code that can integrate without problems in a developer’s existing code.
However, ensuring that a recommended method can integrate and work without problems
requires an understanding and awareness of the developer’s context. In the future, we plan
to work on making FACER context-aware to make context-sensitive recommendations that

110 Page 50 of 58

Empir Software Eng (2021) 26: 110

integrate well. The quality of the recommended code snippet may depend on several quali-
tative factors such as ease of integration, conciseness, readability, and optimized execution.
Currently, FACER does not incorporate these qualitative aspects of code while making
recommendations. However, this is something we plan to pursue in future.

We also plan to extend our evaluation to larger Android/Java code bases and evaluate
with more queries including those from Stack Overflow. Additionally, we plan to evaluate
FACER by conducting a live study in an open forum or in the context of an organized work-
shop, where we can also investigate whether FACER can effectively speed up development
in real settings. In future, we intend to have developers perform some programming tasks
using their conventional methods and compare task completion time with that of tasks com-
pleted using FACER. From a survey, we can check which code search tools developers use
currently, and use them as baselines for comparison.

11 Conclusion

Current code recommendation and code search systems focus on the immediate require-
ments of the developer. They retrieve code against a specific query. For a new but related
task, the developer has to perform a new search. The need to perform repeated searches
for associated functionality can impede the performance and productivity of the developer.
In this paper, we proposed a solution that allows developers to receive recommendations
for their potential future requirements. Our main contribution is a recommendation sys-
tem FACER that provides developers with method recommendations having functionality
relevant to their current feature under development.

FACER works in two stages. The first stage is a simple code search engine which given
a query returns a code snippet implementing the feature in the query. The second stage,
which is the main contribution of this paper, is a recommender which given a selected
method from Stage 1 recommends related methods that implement related functionality. For
example, if a developer is currently implementing the “connect to Bluetooth” feature and
found a relevant method to reuse, FACER would recommend a method implementing the
“disconnect from Bluetooth” functionality as a related feature the developer may need to
implement. To accomplish this, FACER relies on clustering methods according to their API
usages, where a cluster represents methods implementing the same or similar functionality.
It then finds frequently co-occurring method clusters which it uses to recommend related
functionality.

To evaluate FACER, we extracted data from 120 open-source GitHub projects from four
different domains. We first performed a manual validation of the detected method clusters
to ensure that clustering methods based on API usages results in meaningful clusters with
functionally similar methods. Our results show that 91% of the analyzed method clusters are
valid. We then performed an automatic evaluation with different FACER settings to deter-
mine the best configuration for related method recommendations. Once we determined the
best configuration, we performed a user evaluation with 10 professional and 39 experienced
student participants to determine whether the related methods recommended by FACER are
indeed relevant to the original method and feature. Our results show that FACER’s related
method recommendations are, on average, 80% precise. We also received positive feedback
about FACER’s functionality, which encourages us to further improve FACER and release
it to developers soon. The current prototype implementation for FACER, along with all the
data from our evaluations is available on our online artifact page (FACER Artifacts 2020).

Page 51 of 58 110

Empir Software Eng (2021) 26: 110

Acknowledgments The authors are thankful to the Lahore University of Management Sciences (LUMS),
Ignite National Technology Fund Pakistan (SRG-257), and Prince Sultan University for funding our research.
The last author’s research is funded by the Canada Research Chairs Program. The authors would also like to
thank the professional developers and students who participated in the user survey and evaluation.

References

Abdalkareem R, Shihab E, Rilling J (2017) On code reuse from stackoverflow: an exploratory study on
android apps. Inf Softw Technol 88:148–158

Abid S (2019) Recommending related functions from api usage-based function clone structures. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp 1193–1195

Abid S, Javed S, Naseem M, Shahid S, Basit HA, Higo Y (2017) Codeease: harnessing method clone
structures for reuse. In: 2017 IEEE 11th international workshop on Software clones (IWSC). IEEE, pp
1–7

Abstract Syntax Trees (2020) https://www.eclipse.org/jdt/core/r2.0/dom [Online; accessed 28-Sep-2020]
Android SDK Classes (2020) https://developer.android.com/reference/classes. [Online; accessed 28-Sep-

2020]
Android Studio SDK (2020) https://developer.android.com/studio. [Online; accessed 28-Sep-2020]
Apel S, Batory D, Kästner C, Saake G (2013) Software product lines. In: Feature-oriented software product

lines. Springer, pp 3–15
Asaduzzaman M, Roy CK, Schneider KA, Hou D (2016) A simple, efficient, context-sensitive approach for

code completion. J Softw Evol Process 28(7):512–541
Bajracharya SK, Ossher J, Lopes CV (2010) Leveraging usage similarity for effective retrieval of examples

in code repositories. In: Proceedings of the eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, pp 157–166

Baker BS (1993) A theory of parameterized pattern matching: algorithms and applications. In: Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pp 71–80

Bavota G, De Lucia A, Marcus A, Oliveto R (2014) Recommending refactoring operations in large software
systems. In: Recommendation systems in software engineering. Springer, pp 387–419

Bielik P, Raychev V, Vechev M (2015) Programming with” big code”: Lessons, techniques and applications.
In: LIPIcs-Leibniz International Proceedings in Informatics, vol 32. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik

Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic program-
ming: interleaving web foraging, learning, and writing code. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, pp 1589–1598

binaryDist (2020) https://github.com/NikNakk/binaryDist/
Brandt J, Guo PJ, Lewenstein J, Klemmer SR (2008) Opportunistic programming: How rapid ideation and

prototyping occur in practice. In: Proceedings of the 4th international workshop on End-user software
engineering, pp 1–5

Bruch M, Monperrus M, Mezini M (2009) Learning from examples to improve code completion systems. In:
Proceedings of the the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering. ACM, pp 213–222

Cambronero J, Li H, Kim S, Sen K, Chandra S (2019) When deep learning met code search. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp 964–974

Chatterjee S, Juvekar S, Sen K (2009) Sniff: A search engine for java using free-form queries. Fund Approach
Softw Eng:385–400

Chen L, Ye W, Zhang S (2019) Capturing source code semantics via tree-based convolution over api-
enhanced ast. In: Proceedings of the 16th ACM International Conference on Computing Frontiers, pp
174–182

Chen X, Zou Q, Fan B, Zheng Z, Luo X (2018) Recommending software features for mobile applications
based on user interface comparison. Requir Eng:1–15

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46
Defays D (1977) An efficient algorithm for a complete link method. Comput J 20(4):364–366
Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C, Mirakhorli M (2011) On-

demand feature recommendations derived from mining public product descriptions. In: Proceedings of
the 33rd International Conference on Software Engineering. ACM, pp 181–190

110 Page 52 of 58

https://www.eclipse.org/jdt/core/r2.0/dom
https://developer.android.com/reference/classes
https://developer.android.com/studio
https://github.com/NikNakk/binaryDist/

Empir Software Eng (2021) 26: 110

Eclipse code recommender (2018) http://www.eclipse.org/recommenders. [Online; accessed 16-May-2018]
Eclipse Java development tools (2020) https://www.eclipse.org/jdt/. [Online; accessed 28-Sep-2020]
FACER Artifacts (2020) https://github.com/shamsa-abid/FACER Artifacts
Fiverr - freelance services marketplace for businesses (2021) https://www.fiverr.com/. [Online; accessed 3-

Feb-2021]
FPClose (2019) https://www.philippe-fournier-viger.com/spmf/FPClose.php. [Online; accessed 1-Feb-2019]
GitHub (2020) https://github.com/. [Online; accessed 28-August-2020]
Grahne Gösta, Zhu Jianfei (2005) Fast algorithms for frequent itemset mining using fp-trees. IEEE

transactions on knowledge and data engineering 17(10):1347–1362
Gu X, Zhang H, Kim S (2018) Deep code search. In: 2018 IEEE/ACM 40Th international conference on

software engineering (ICSE). IEEE, pp 933–944
Gu X, Zhang H, Zhang D, Kim S (2016) Deep api learning. In: Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering. ACM, pp 631–642
Han J, Kamber M, Pei J (2012) 9 - classification: Advanced methods, 3rd edn. Han J, Kamber M, Pei

J (eds), Morgan Kaufmann, Boston. ISBN 978-0-12-381479-1. http://www.sciencedirect.com/science/
article/pii/B9780123814791000095

Han J, Pei Jx, Kamber M (2011) Data mining: concepts and techniques. Elsevier
Hartmann B, Doorley S, Klemmer SR (2008) Hacking, Mashing, gluing: Understanding opportunistic design.

IEEE Pervasive Comput 7(3):46–54
He J, Zhang J, Li X, Ren Z, Lo D, Wu X, Luo Z (2019) Recommending new features from mobile app

descriptions. ACM Trans Softw Eng Methodol (TOSEM) 28(4):22
Heirarchical clustering (2019) https://rdrr.io/r/stats/hclust.html, December 2019
Hill R, Rideout J (2004) Automatic method completion. In: Proceedings of the 19th IEEE international

conference on Automated software engineering. IEEE Computer Society, pp 228–235
Holmes R, Murphy GC (2005a) Using structural context to recommend source code examples. In: 2005.

ICSE 2005. Proceedings. 27th international conference on Software engineering. IEEE, pp 117–125
Holmes R, Walker RJ, Murphy GC (2005b) Strathcona example recommendation tool. In: ACM SIGSOFT

Software engineering notes, vol 30. ACM, pp 237–240
Holmes R, Walker RJ, Murphy GC (2006) Approximate structural context matching: An approach to

recommend relevant examples. IEEE Trans Softw Eng 32(12)
Hong Y, Lian Y, Yang S, Tian L, Zhao X (2016) Recommending features of mobile applications for

developer. In: International conference on advanced data mining and applications. Springer, pp 361–373
Hsu S-K, Lin S-J (2011) Macs: Mining api code snippets for code reuse. Expert Syst Appl 38(6):7291–7301
Ichii M, Hayase Y, Yokomori R, Yamamoto T, Inoue K (2009) Software component recommendation using

collaborative filtering. In: 2009 ICSE Workshop on search-driven development-users, infrastructure,
tools and evaluation. IEEE, pp 17–20

Inoue K, Yokomori R, Yamamoto T, Matsushita M, Kusumoto S (2005) Ranking significance of software
components based on use relations. IEEE Trans Softw Eng 31(3):213–225

Ishihara T, Hotta K, Higo Y, Igaki H, Kusumoto S (2012) Inter-project functional clone detection toward
building libraries-an empirical study on 13,000 projects. In: 2012 19th working conference on Reverse
engineering (WCRE). IEEE, pp 387–391

Ishihara T, Hotta K, Higo Y, Kusumoto S (2013) Reusing reused code. In: 2013 20th working conference on
Reverse engineering (WCRE). IEEE, pp 457–461

Jaccard P (1901) ÉTude comparative de la distribution florale dans une portion des alpes et des jura. Bull Soc
Vaudoise Sci Nat 37:547–579

Jansen S, Brinkkemper S, Hunink I, Demir C (2008) Pragmatic and opportunistic reuse in innovative start-up
companies. IEEE Softw 25(6):42–49

Java Class Libraries (2020) https://docs.oracle.com/javase/8/docs/api/allclasses-frame.html. [Online;
accessed 28-Sep-2020]

Java Development Kit (2020) https://www.oracle.com/java/technologies/javase-downloads.html. [Online;
accessed 28-Sep-2020]

Jiang H, Nie L, Sun Z, Ren Z, Kong W, Zhang T, Luo X (2016) Rosf: Leveraging information retrieval and
supervised learning for recommending code snippets. IEEE Transactions on Services Computing

Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: a multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans Softw Eng 28(7):654–670

Kanwal J, Maqbool O, Basit HA, Sindhu MA (2019) Evolutionary perspective of structural clones in
software. IEEE Access 7:58720–58739

Keivanloo I, Rilling J, Zou Y (2014) Spotting working code examples. In: Proceedings of the 36th
International Conference on Software Engineering. ACM, pp 664–675

Page 53 of 58 110

http://www.eclipse.org/recommenders
https://www.eclipse.org/jdt/
https://github.com/shamsa-abid/FACER_Artifacts
https://www.fiverr.com/
https://www.philippe-fournier-viger.com/spmf/FPClose.php
https://github.com/
http://www.sciencedirect.com/science/article/pii/B9780123814791000095
http://www.sciencedirect.com/science/article/pii/B9780123814791000095
https://rdrr.io/r/stats/hclust.html
https://docs.oracle.com/javase/8/docs/api/allclasses-frame.html
https://www.oracle.com/java/technologies/javase-downloads.html

Empir Software Eng (2021) 26: 110

Linstead E, Bajracharya S, Ngo T, Rigor P, Lopes C, Baldi P (2009) Sourcerer: mining and searching
internet-scale software repositories. Data Min Knowl Disc 18(2):300–336

Lucene (2017) https://lucene.apache.org. [Online; accessed 28-August-2017]
Lucene Core (2020). https://lucene.apache.org/core/ (2020). [Online; accessed 29-Sep-2020]
Lucene Document (2020). https://lucene.apache.org/core/7 2 0/core/org/apache/lucene/document/

Document.html . [Online; accessed 29-Sep-2020]
Luan S, Di Y, Barnaby C, Sen K, Chandra S (2019) Aroma: Code recommendation via structural code search.

Proc ACM Programm Lang 3(OOPSLA):1–28
Luan S, Di Y, Sen K, Chandra S (2018) Aroma: Code recommendation via structural code search.

arXiv:1812.01158
Lv C, Jiang W, Liu Y, Hu S (2014) Apisynth: a new graph-based api recommender system. In: ICSE

Companion, pp 596–597
Lv F, Zhang H, Lou J-g, Wang S, Zhang D, Zhao J (2015) Codehow: Effective code search based on api

understanding and extended boolean model (e). In: 2015 30Th IEEE/ACM international conference on
automated software engineering (ASE). IEEE, pp 260–270

Mandelin D, Xu L, Bodı́k B, Kimelman D (2005) Jungloid mining: helping to navigate the api jungle. In:
ACM SIGPLAN Notices, vol 40. ACM, pp 48–61

Market-basket analysis (2019) https://www.kdnuggets.com/2016/10/association-rule-learning-concise-
technical-overview.html, December 2019

McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical study of frequently-updated mobile apps in
the google play store. Empir Softw Eng 21(3):1346–1370

McMillan C, Grechanik M, Poshyvanyk D, Xie Q, Fu C (2011) Portfolio: finding relevant functions and their
usage. In: Proceedings of the 33rd International Conference on Software Engineering. ACM, pp 111–120

McMillan C, Hariri N, Poshyvanyk D, Cleland-Huang J, Mobasher B (2012) Recommending source code
for use in rapid software prototypes. In: Proceedings of the 34th International Conference on Software
Engineering. IEEE Press, pp 848–858

Mccarey F, Cinnéide M, Kushmerick N (2005) Rascal: A recommender agent for agile reuse. Artif Intell Rev
24(3-4):253–276

Mens K, Lozano A (2014) Source code-based recommendation systems. In: Recommendation systems in
software engineering. Springer, pp 93–130

Mishne A, Shoham S, Yahav E (2012) Typestate-based semantic code search over partial programs. In: Acm
sigplan notices, vol 47. ACM, pp 997–1016

Mojica IJ, Adams B, Nagappan M, Dienst S, Berger T, Hassan AE (2013) A large-scale empirical study on
software reuse in mobile apps. IEEE Softw 31(2):78–86

Moreno L, Bavota G, Di Penta M, Oliveto R, Marcus A (2015) How can i use this method?. In: 2015
IEEE/ACM 37th IEEE international conference on Software engineering (ICSE), vol 1. IEEE, pp
880–890

Nguyen P, Di Rocco J, Ruscio D, Ochoa L, Degueule T, Di Penta M (2019) Focus: A recommender sys-
tem for mining api function calls and usage patterns. In: 41St ACM/IEEE international conference on
software engineering (ICSE)

Nguyen AT, Nguyen TT, Nguyen HA, Tamrawi A, Nguyen HV, Al-Kofahi J, Nguyen TN (2012)
Graph-based pattern-oriented, context-sensitive source code completion. In: Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, pp 69–79

Niu H, Keivanloo I, Zou Y (2017) Api usage pattern recommendation for software development. J Syst Softw
129:127–139

Ohtani A, Higo Y, Ishihara T, Kusumoto S (2015) On the level of code suggestion for reuse. In: 2015 IEEE
9th international workshop on Software clones (IWSC). IEEE, pp 26–32

parallelDist (2020) https://cran.r-project.org/web/packages/parallelDist/index.html. [Online; accessed 14-
Sept-2020]

Pascarella L, Geiger F-X, Palomba F, Di Nucci D, Malavolta I, Bacchelli A (2018) Self-reported activities of
android developers. In: 2018 IEEE/ACM 5Th international conference on mobile software engineering
and systems (MOBILESoft). IEEE, pp 144–155

Rahman MM, Roy CK, Lo D (2016) Rack: Automatic api recommendation using crowdsourced knowledge.
In: Software analysis, evolution, and reengineering (SANER), 2016 IEEE 23rd international conference
on, vol 1. IEEE, pp 349–359

Raychev V, Vechev M, Yahav E (2014) Code completion with statistical language models. In: ACM
SIGPLAN Notices, vol 49. ACM, pp 419–428

Richard Landis J, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics,
pp 159–174

110 Page 54 of 58

https://lucene.apache.org
https://lucene.apache.org/core/
https://lucene.apache.org/core/7_2_0/core/org/apache/lucene/document/Docu ment.html
https://lucene.apache.org/core/7_2_0/core/org/apache/lucene/document/Docu ment.html
http://arxiv.org/abs/1812.01158
https://www.kdnuggets.com/2016/10/association-rule-learning-concise-technical-overview.html
https://www.kdnuggets.com/2016/10/association-rule-learning-concise-technical-overview.html
https://cran.r-project.org/web/packages/parallelDist/index.html

Empir Software Eng (2021) 26: 110

Sachdev S, Li H, Luan S, Kim S, Sen K, Chandra S (2018) Retrieval on source code: A neural code
search. In: Proceedings of the 2Nd ACM SIGPLAN International Workshop on Machine Learning
and Programming Languages, MAPL 2018. ACM, New York, pp 31–41. ISBN 978-1-4503-5834-7.
https://doi.org/10.1145/3211346.3211353

Sadowski C, Stolee KT, Elbaum S (2015) How developers search for code: a case study. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM, pp 191–201

Sammut C, Webb GI (eds.) (2010) TF–IDF, Springer, Boston. ISBN 978-0-387-30164-8. https://doi.org/10.
1007/978-0-387-30164-8 832

Score boosting (2020) https://lucene.apache.org/core/3 5 0/scoring.html#Score [Online; accessed 27-Sep-
2020]

Shimada R, Hayase Y, Ichii M, Matsushita M, Inoue K (2009) A-score: Automatic software component
recommendation using coding context. In: 2009 31St international conference on software engineering-
companion volume. IEEE, pp 439–440

Sparse matrix clustering (2019) https://stackoverflow.com/questions/30944701/clustering-a-large-very-
sparse-binary-matrix-in-r/30945176?noredirect=1#comment106303086 30945176

Stack Overflow developer survey (2020) Most loved, dreaded, and wanted platforms. https://insights.
stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-platforms. [Online;
accessed 16-September-2020]

Stack Overflow Question. (2020) https://stackoverflow.com/questions/25490928/androidselect-image-from-
gallery-then-crop-that-and-show-in-an-imageview. [Online; accessed 16-Sep-2020]

Stephen E et al (1995) Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu, Mike Gatford
Okapi at trec-3. Nist Special Publ Sp 109:109

Subramanian S, Inozemtseva L, Holmes R (2014) Live api documentation. In: Proceedings of the 36th
International Conference on Software Engineering. ACM, pp 643–652

Svajlenko J, Keivanloo I, Roy CK (2013) Scaling classical clone detection tools for ultra-large datasets An
exploratory study. In: 2013 7Th international workshop on software clones (IWSC). IEEE, pp 16–22

Takuya W, Masuhara H (2011) A spontaneous code recommendation tool based on associative search. In:
Proceedings of the 3rd International Workshop on Search-Driven Development: Users, Infrastructure,
Tools, and Evaluation. ACM, pp 17–20

Thummalapenta S, Xie T (2007) Parseweb: a programmer assistant for reusing open source code on the
web. In: Proceedings of the twenty-second IEEE/ACM international conference on Automated software
engineering. ACM, pp 204–213

Thung F, Lo D, Lawall J (2013) Automated library recommendation. In: 2013 20Th working conference on
reverse engineering (WCRE). IEEE, pp 182–191

Thung F, Oentaryo RJ, Lo D, Tian Y (2017) Webapirec: Recommending web apis to software projects via
personalized ranking. arXiv:1705.00561

Tsunoda M, Kakimoto T, Ohsugi N, Monden A, Matsumoto K-I (2005) Javawock: A java class recommender
system based on collaborative filtering. In: SEKE, pp 491–497

Umarji M, Sim S, Lopes C (2008) Archetypal internet-scale source code searching. Open source develop-
ment, communities and quality, pp 257–263

Vechev M, Yahav E et al (2016) Programming with ”big code”. Found Trends® Programm Lang 3(4):231–
284

Venkatasubramanyam RD, Gupta S, Singh HK (2013) Prioritizing code clone detection results for clone
management. In: 2013 7Th international workshop on software clones (IWSC). IEEE, pp 30–36

Wan Y, Shu J, Sui Y, Xu G, Zhao Z, Wu J, Yu PS (2019) Multi-modal attention network learning for semantic
source code retrieval. arXiv:1909.13516

Wang J, Dang Y, Zhang H, Chen K, Xie T, Zhang D (2013) Mining succinct and high-coverage api
usage patterns from source code. In: Proceedings of the 10th Working Conference on Mining Software
Repositories. IEEE Press, pp 319–328

Wang L, Lu F, Wang L, Li G, Xie B, Yang F (2011) Apiexample: An effective web search based usage exam-
ple recommendation system for java apis. In: Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer Society, pp 592–595

Wilcoxon test (2020) https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wilcox.test.
[Online; accessed 18-Oct-2020]

Xia X, Bao L, Lo D, Kochhar PS, Hassan AE, Xing Z (2017) What do developers search for on the web?
Empir Softw Eng 22(6):3149–3185

Xie T, Pei J (2006) Mapo: Mining api usages from open source repositories. In: Proceedings of the 2006
international workshop on Mining software repositories. ACM, pp 54–57

Page 55 of 58 110

https://doi.org/10.1145/3211346.3211353
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://lucene.apache.org/core/3_5_0/scoring.html#Score
https://stackoverflow.com/questions/30944701/clustering-a-large-very-sparse-binary-matrix-in-r/30945176?noredirect=1#comment106303086_30945176
https://stackoverflow.com/questions/30944701/clustering-a-large-very-sparse-binary-matrix-in-r/30945176?noredirect=1#comment106303086_30945176
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dr eaded-and-wanted-platforms
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dr eaded-and-wanted-platforms
https://stackoverflow.com/questions/25490928/androidselect-image-from-gallery-then-crop-that-and-show-in-an-imageview
https://stackoverflow.com/questions/25490928/androidselect-image-from-gallery-then-crop-that-and-show-in-an-imageview
http://arxiv.org/abs/1705.00561
http://arxiv.org/abs/1909.13516
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/wil cox.test

Empir Software Eng (2021) 26: 110

Yan S, Yu H, Chen Y, Shen B, Jiang L (2020) Are the code snippets what we are searching for? a benchmark
and an empirical study on code search with natural-language queries. In: 2020 IEEE 27Th international
conference on software analysis, evolution and reengineering (SANER). IEEE, pp 344–354

Yang P, Fang H, Lin J (2017) Anserini: Enabling the use of lucene for information retrieval research. In: Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp 1253–1256

Yao Z, Peddamail JR, Sun H (2019) Coacor: Code annotation for code retrieval with reinforcement learning.
In: The world wide web conference, pp 2203–2214

Ye Y, Fischer G (2002) Supporting reuse by delivering task-relevant and personalized information. In:
Proceedings of the 24th international conference on Software engineering. ACM, pp 513–523

Yu Y, Wang H, Yin G, Bo L (2013) Mining and recommending software features across multiple web
repositories. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware. ACM, pp 9

Yun U, Leggett JJ (2005) Wlpminer: weighted frequent pattern mining with length-decreasing support
constraints. In: Pacific-asia conference on knowledge discovery and data mining. Springer, pp 555–567

Zhang J, He J, Ren Z, Chen X (2018) Recommending apis for api related questions in stack overflow. IEEE
Access 6:6205–6219

Zhao J, Liu Y (2017) Detecting and ranking api usage pattern in large source code repository: A lfm based
approach. In: International cross-domain conference for machine learning and knowledge extraction.
Springer, pp 41–56

Zhou S, Shen B, Zhong H (2019) Lancer: Your code tell me what you need. In: 2019 34Th IEEE/ACM
international conference on automated software engineering (ASE). IEEE, pp 1202–1205

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Shamsa Abid is a Ph.D. Candidate in the Department of Computer
Science at the Lahore University of Management Sciences (LUMS),
Lahore, Pakistan. She received her B.S. degree in Computer Science
from Lahore College for Women University, Lahore, Pakistan, in 2004
and the M.S. degree in Computer Science from the Lahore University
of Management Sciences (LUMS), Lahore, Pakistan, in 2013. Her
research interests include software reuse, code recommendation sys-
tems and information retrieval. Before joining her Ph.D. program, she
worked in both the software industry as well as in the academia. She
has experience working as a Senior Software Engineer in Techlogix
Pvt. Ltd., where her work experience included the development of
Android applications. She has held Visiting Lecturer positions at the
National University of Computer and Emerging Sciences (NUCES
FAST), Lahore, Kinnaird College for Women University, Lahore,
and Beaconhouse National University, Lahore, Pakistan. She has also
served as a member of the Shadow Program Committee for the
Mining Software Repositories (MSR) conference in 2021.

110 Page 56 of 58

Empir Software Eng (2021) 26: 110

Shafay Shamail completed his BSc Electrical Engineering from UET
Lahore, MSc Electronics from University of Wales, UK and Ph.D. in
Electrical Engineering from University of Bath U.K. He has over 30
years of teaching experience during which he has also been involved
in curriculum design and implementation. He has worked in the soft-
ware industry as well where he gained experience in E-commerce
technologies. His current research interests encompass study of qual-
ity aspects of software engineering including software development
tools, software process improvement, software quality prediction, &
autonomic systems, and utilization of cloud infrastructure and ser-
vices for developing e-government and e-commerce solutions. He
is currently working as Professor in the Department of Computer
Science, LUMS, Lahore. He is a Senior Member of IEEE.

Hamid Abdul Basit is an Associate Professor at the department of
Computer Science, College of Computer and Information Sciences,
Prince Sultan University. He received his Ph.D. from National Uni-
versity of Singapore. His area of research is software engineering;
focusing on software reuse, software maintenance, code clones, code
recommendation systems, and secure software development. He has
several publications in the top conferences and journals of the field.

SarahNadi is an Assistant Professor in the Department of Computing
Science at the University of Alberta, and a Tier II Canada Research
Chair in Software Reuse. She obtained her Master’s (2010) and PhD
(2014) degrees from the University of Waterloo in Canada. Before
joining the University of Alberta in 2016, she spent approximately
two years as a post-doctoral researcher at the Technische Universit?t
Darmstadt in Germany. Sarah’s research focuses on providing intel-
ligent support for software maintenance and reuse across three main
themes: developing variability analysis strategies to help developers
deal with the complexity of highly configurable software systems
designed to enable large-scale code reuse, providing software inte-
gration support for consolidating changes from multiple versions of
the same system as they evolve over time, and creating recommender
systems to guide developers through correctly and securely reusing
individual functionality from external libraries.

Page 57 of 58 110

Empir Software Eng (2021) 26: 110

Affiliations

Shamsa Abid1 · Shafay Shamail1 ·Hamid Abdul Basit2 · Sarah Nadi3

Shafay Shamail
sshamail@lums.edu.pk

Hamid Abdul Basit
hbasit@psu.edu.sa

Sarah Nadi
nadi@ualberta.ca

1 Lahore University of Management Sciences, Lahore, Pakistan
2 Prince Sultan University, Riyadh, Saudi Arabia
3 University of Alberta, Edmonton, Canada

110 Page 58 of 58

http://orcid.org/0000-0002-7491-8258
mailto: sshamail@lums.edu.pk
mailto: hbasit@psu.edu.sa
mailto: nadi@ualberta.ca

	FACER: An API usage-based code-example recommender for opportunistic reuse
	Abstract
	Introduction
	Motivating Example
	Related Work
	Code Search Systems
	Code Recommendation Systems
	API Recommendation Systems
	Code Completion Systems

	Feature Recommendation Systems
	Limitations of Code Search and Feature Recommendation Systems

	Proposed Approach: FACER
	Offline FACER Repository Building Workflow
	Extracting Keywords for Search Index
	Extracting Method Calls, API Calls, and API Call Density
	Mining API Usage-based Method Clone Structures
	Step 1: Cluster methods by API usage similarity
	Step 2: Mining frequent patterns of method clones across projects

	Online FACER Recommendation Workflow
	FACER Stage 1: Method Search
	FACER Stage 2: Related Method Recommendations

	Research Questions and Experimental Setup
	Research Questions
	Dataset
	Constructing the FACER Repository

	RQ1: Method Clone Group Evaluation
	Validation Method
	Clone Group Sampling
	Method Sampling
	Intra-clone group similarity validation
	Setup
	Intra-clone group similarity results

	Inter-clone group dissimilarity validation
	Setup
	Inter-clone group results

	RQ2: Recommending Related Features
	Automated Evaluation for Determining Thresholds
	Evaluation Methodology
	Evaluation Metrics
	Precision:
	Success Rate:
	Mean Reciprocal Rank:

	Automated Evaluation Results

	Manual Evaluation of FACER's Precision
	Manual Evaluation Setup
	Measuring precision

	Manual Evaluation Results

	RQ3 and RQ4: User Survey
	Survey Design
	Section 1: Developer Code Search and Reuse Practices
	Section 2: Recommendation Scenarios
	Section 3: Feedback on FACER Tool's Interface and its Usefulness
	Section 4: Usability and Usefulness Ratings

	User Survey Results
	Developer code search and reuse practices
	Analyzing developer's feedback on FACER's recommendations for motivating example
	Developer feedback on FACER tool's interface and its usefulness
	Developers' comments on FACER's recommendations
	Students' comments on FACER's recommendations
	Analyzing developer's ratings on the usefulness and usability of FACER

	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Discussion and Future Work
	Conclusion
	References
	Affiliations

