
Empirical Software Engineering (2021) 26: 99
https://doi.org/10.1007/s10664-021-09989-x

E-APR: Mapping the effectiveness of automated
program repair techniques

Aldeida Aleti1 ·Matias Martinez2

Accepted: 27 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Automated Program Repair (APR) is a fast growing area with numerous new techniques
being developed to tackle one of the most challenging software engineering problems. APR
techniques have shown promising results, giving us hope that one day it will be possible
for software to repair itself. In this paper, we focus on the problem of objective perfor-
mance evaluation of APR techniques. We introduce a new approach, Explaining Automated
Program Repair (E-APR), which identifies features of buggy programs that explain why a
particular instance is difficult for an APR technique. E-APR is used to examine the diver-
sity and quality of the buggy programs used by most researchers, and analyse the strengths
and weaknesses of existing APR techniques. E-APR visualises an instance space of buggy
programs, with each buggy program represented as a point in the space. The instance space
is constructed to reveal areas of hard and easy buggy programs, and enables the strengths
and weaknesses of APR techniques to be identified.

Keywords Automated program repair · Software features

1 Introduction

Software can not be seen or touched, but it has a physical existence. With software embed-
ded into many devices today, software failures have caused not only inconveniences but also
tragedies, such as the deaths of patients due to massive overdose caused by an avoidable
error in a radiation therapy machine (Kaner et al. 2008). A more recent case is Google’s
self-driving cars (controlled by software), which experienced 272 failures in less than a year.
These failures would have resulted in at least 13 crushes killing their human drivers if they

Communicated by: Christoph Treude

� Aldeida Aleti
aldeida.aleti@monash.edu

Matias Martinez
matias.martinez@uphf.fr

1 Faculty of Information Technology, Monash University, Melbourne, Australia
2 Université Polytechnique Hauts-de-France, Valenciennes, France

/ Published online: 13 July 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09989-x&domain=pdf
http://orcid.org/0000-0002-2945-866X
mailto: aldeida.aleti@monash.edu
mailto: matias.martinez@uphf.fr

Empir Software Eng (2021) 26: 99

had not intervened (Harris 2016). Software failures are also the cause of massive economical
losses, costing the global economy $41 billion annually (Software 2013). Repairing soft-
ware faults, however, is becoming an extremely difficult and expensive task – constituting
up to 90% of the software expenses (Le Goues et al. 2013) – due to the increasing complex-
ity and size of software systems. A modern car, for example, has 100 million lines of code,
and this number is expected to increase to 200-300 millions in the near future (Charette
2009). Hence the critical task of software repair must be automated.

Automated Program Repair (APR) has been identified as the grand challenge in software
engineering research (Mark Harman 2018). Many APR methods have shown promising
results in fixing bugs with minimal, or even no human intervention (Le Goues et al. 2012a;
Le Goues et al. 2012b; Martinez and Monperrus 2015; Xuan et al. 2017). Despite many
studies introducing various APR techniques (APRTs), much remains to be learned, how-
ever, about what makes a particular technique work well (or not) for a specific software
system (Anand et al. 2013). The effectiveness of APRTs is likely to be problem dependent,
which calls for an analysis of the software characteristics that impact their effectiveness in
order to help practitioners select the most appropriate technique for their software system.

In addition, results claiming the superior performance of an APRT over other techniques
on a selected set of software systems may not generalise to untested systems. It is likely that
there are software systems where an APRT excels because it is exploiting some particular
characteristics of the buggy program. Thus, an understanding of conditions under which an
APRT can be expected to succeed or fail is essential, however, this is rarely included in
published studies. The aim of this paper is to address the issue of objective assessment of
APRTs, and we achieve this by answering the following research questions:

RQ1 What impacts the effectiveness of APRTs? - Research introducing new APRTs
or experimental studies investigating the performance of different techniques usually
is based on a carefully selected set of buggy programs. These works offer little insight
into the characteristics of the buggy programs and how they are correlated with the
effectiveness of APRTs. The overwhelming majority of published work in APR only
describes the benefits of the newly introduced technique, while just a few mention the
limitations or present negative results.

Certain limitations of APRTs have previously been discussed in the literature, such
as the issue with patch overfitting (a patch generated by a tool that, while being valid
according to the correctness oracle, they are still incorrect and potentially introduce
new bugs that can not be captured by the correctness oracle). On the other hand, neg-
ative results in terms of why certain techniques can not repair certain bugs have not
been investigated in the literature so far. In this paper, we aim to find out if particular
features of a buggy program correlate with the effectiveness of APRTs, thus provid-
ing insights on why some techniques might be more or less suited to certain software
and bug instances. We achieve these kind of insights by proposing a new method for
analysing the effectiveness of APRTs.
RQ2 Are APR datasets significantly different? - Most research in APR uses well-
known datasets, such Defects4J, which can result in the techniques to be tailored
towards solving particular problems, and as a result not generalise well for other prob-
lems. In this paper, we aim to show how different these datasets are in terms of
the features that have an impact on the effectiveness of existing APRTs. This allows

99 Page 2 of 30

Empir Software Eng (2021) 26: 99

us to understand if existing benchmarks are sufficiently diverse for stress-testing the
effectiveness of APR techniques.
RQ3 How can we select the most suitable APR technique? The final aim of this
research is to investigate the effectiveness of Machine Learning techniques for APRT
selection. We investigate different multi-label classification techniques and report their
effectiveness in terms of recall, precision and f1-score.

To answer these research questions, we introduce a new approach which characterises
both strengths and weaknesses of existing APR techniques. E-APR is inspired from earlier
work on instance space analysis in the area of machine learning (Muñoz et al. 2018) and
search based software testing (SBST) (Oliveira et al. 2018, 2019). These approaches are
concerned with the problem of objective performance evaluation of different algorithms
used in machine learning (Muñoz et al. 2018) and SBST (Oliveira et al. 2018, 2019), and the
impact of the choice of problem instances. The methodology used in these studies extend
the Rice’s framework (1976) with the aim of gaining insights into why some algorithms
might be more or less suited to certain problem instances.

E-APR extends the methodology from Oliveira et al. (2018, 2019) and Muñoz et al.
(2018) to the automated program repair problem. E-APR allows for a more objective assess-
ment of existing APR techniques, and helps in understanding why certain APR techniques
cannot generate plausible patches for certain bugs. We apply our framework on a large study
of 2,141 bugs from 130 projects, and 23,551 repair attempts. E-APR uses software and bug
features to characterise the buggy program instances, and learns which features have an
impact on the effectiveness of APRTs. For human programmers, software repair is challeng-
ing because fixing bugs is a difficult task. While there are bugs that can be trivially fixed,
many of us can remember a bug that took hours, if not days and weeks to be understood and
fixed (Eisenstadt 1997). The approach we devise gives insights into how an APR technique
can be selected to automatically fix bugs.

2 The E-APR Framework

The E-APR framework has two main goals:

– to help designers of APRTs gain insight into why some techniques might be more or
less suited to repair certain buggy programs, thus devising new and better techniques
that address any challenging areas, and

– to help software developers select the most effective APRT for their software system.

E-APR provides a way for objective assessment of the overall effectiveness of an APR
technique. It is based on previous work on instance space analysis and algorithm selection
in the area of Search-Based Software Testing (Oliveira et al. 2018, 2019), machine learn-
ing (Muñoz et al. 2018), and optimisation (Smith-Miles and Tan 2012). The concept of
instance space analysis was first introduced by Smith-Miles in her seminal work looking
at the strengths and weaknesses of optimisation problems, and forms the foundation of the
E-APR approach. Understanding the effectiveness of an APR technique is critical for select-
ing the most suitable technique for a particular buggy program, thus avoiding trial and error
application of APR techniques.

An overview of the E-APR framework is presented in Figure 1. E-APR starts with a set
of buggy programs p ∈ P and a portfolio of APRTs t ∈ T . The performance of APRTs is

Page 3 of 30 99

Empir Software Eng (2021) 26: 99

Fig. 1 An overview of E-APR

measured for each buggy program as y(t, p), which indicates whether a plausible patch has
been found for that program. The first step of E-APR is to identify the significant features
of buggy programs (f (p) ∈ F) that have an impact on how easy or hard they are for a par-
ticular APRT. Next, E-APR constructs the APRT footprints (g(f (P))) ∈ R2 which indicate
the area of strength for each APRT. Finally, E-APR applies machine learning techniques on
the most significant features to learn a model that can be used for APRT selection for future
application.

2.1 Buggy Programs

Buggy Programs, defined in Figure 1 as p ∈ P are software instances used by researchers
to evaluate automated program repair techniques. Most of the APRTs for Java use Defects4J
(Just et al. 2014).

Durieux et al. (2019) is one of the few that uses 5 peer-reviewed Java bug benchmarks:
Bears (Madeiral et al. 2019), Bugs.jar (Saha et al. 2018), IntroClassJava and QuixBugs (Lin
et al. 2017) and Defects4J (Just et al. 2014). Our analysis is based on the experimental
data generated by Durieux et al. (2016b), which is available at github.com/program-repair/
RepairThemAll experiment.

In total, we consider 2,141 bugs from 130 projects, and 23,551 repair attempts. A repair
attempt is the execution of an APRT on a buggy program. The execution of all repair
attempts on the 5 benchmarks by the 11 APRTs took 314 days (Durieux et al. 2019). The
patches considered in this study are plausible patches. These patches produce: a) the failing
test cases (that exposed the bug) pass, and b) the remaining test cases continue to pass. Those
patches are also known as plausible patches (Qi et al. 2015). Previous work have shown that
a test-suite adequate patch can produce passing all tests but they are yet incorrect. Those are
overfitting patches (Smith et al. 2015) and can arise due to the weakness of the test-suite
used for synthesising the patches. Overfitting detection is not yet mature (i.e., not capable
of detecting all overfitting patches) and thus adopting such techniques could introduce some
bias in this work, hence we consider all patches generated by the repair tools executed by
RepairThemAll. This means that we did not filter out the outputs generated by APRTs.

The source of the bugs in the bug benchmark are diverse: Defects4J and Bugs.jar con-
tains real bugs extracted from software repositories, Bears contains real bugs collected
from breaking builds on Travis platforms, IntroClassJava contains buggy subjects from stu-
dents, and QuixBugs contains buggy implementation of well-known algorithms (such as
merge-sort).

99 Page 4 of 30

github.com/program-repair/RepairThemAll_experiment
github.com/program-repair/RepairThemAll_experiment

Empir Software Eng (2021) 26: 99

2.2 APR Techniques

APR techniques are defined in Figure 1 as t ∈ T . In this paper we focus on one family of
repair approaches: test-suite based repair approaches (Le Goues et al. 2012a). Approaches
from this family aim at repairing bugs exposed by at least one failing test case. The main
idea of these approaches is to use failed test cases to localise potential faults and then apply
mutations to the source code until the program satisfies all unit test cases. The mutations that
are applied to the program code can range from small changes like modification, addition or
removal of a single code line (Le Goues et al. 2012a) to complex edit operations (Martinez
and Monperrus 2015; Kim et al. 2013), which are mined from software repositories and
used to fix a fault in a different context.

In this paper we employ 11 repair tools for Java programs similar to the study by Durieux
et al. (2019). These tools can be classified into semantics-based repair tools (Nopol (Xuan
et al. 2017) and DynaMoth (Durieux and Monperrus 2016a)), a metaprogramming-based
tool (NPEFix (Durieux et al. 2017)), and generate-and-validate (ARJA (Yuan and Banzhaf
2018), Cardumen (Martinez M and Monperrus 2018), jGenProg (Martinez M and Mon-
perrus 2016), GenProg-A (Yuan and Banzhaf 2018), jKali (Martinez et al. 2017a), Kali-A
(Yuan and Banzhaf 2018), jMutRepair (Martinez M and Monperrus 2016), and RSRepair-A
(Yuan and Banzhaf 2018)).

jGenProg and GenProg-A are two Java implementations of GenProg (Le Goues et al.
2012a). Both techniques use a generate-and-validate method to produce patches using
a genetic programming approach. The search space consists of patches that are formed
through combinations of removing code, and inserting and replacing code from elsewhere
in the program under repair (Martinez M and Monperrus 2016).

Cardumen (Martinez M and Monperrus 2018) synthesises patches using the existing
code as a basis, by taking code elements from elsewhere in the program and replacing the
variables. Each potential patch is filtered based on location and type compatibility, and
the remaining patches are prioritised based on how frequently the selected variables occur
together.

jKali and Kali-A (Qi et al. 2015) are different implementations of Kali in Java. They
attempt to come up with candidate patches by removing or skipping statements. Neither
jKali nor Kali-A is a ‘repair’ program, instead, they are more useful in identifying weak test
suites and under-specified bugs (Martinez et al. 2017b). Since Kali simply removes or skips
code, if a patch is found, it is a strong indication that the functionally of the removed code
is not specified in the test-suite. In addition, if Kali finds a test-suite adequate patch, so can
jGenProg or Nopol (Martinez et al. 2017b), the patches found by Kali, however, rarely work
beyond the given test-suite.

jMutRepair (Martinez M and Monperrus 2016) performs an exhaustive search of the
code and applies the following three types mutation operators on suspicious if conditions.
The relational mutation operator with the following values (==,!=,≤, ≥, <, >), the logical
mutation operator (AND, OR), and the Unary mutation operator which applies negation and
positivation.

Nopol (Xuan et al. 2017) focuses on repairing IF conditions, which are amongst the most
error-prone elements of Java programs, and many one-change commits simply update an IF
condition. Nopol has three main steps. First, it locates a fix location for a potential patch
using “angelic fix localisation”. This process also involved finding “angelic values”, which

Page 5 of 30 99

Empir Software Eng (2021) 26: 99

are assigned values that can be used at the fix location to make all failing tests pass. Next,
Nopol collects runtime data from a test execution, including a snapshot of the program state
at candidate fix locations. Then, Nopol translates the angelic values and available variables
at the fix location into a Satisfiability Modulo Theorem problem, and attempts to find a
solution, which is then translated into a patch.

RSRepair-A (Qi et al. 2014) is a Java implementation of the RSRepair program repair
tool written for C programs. RSRepair uses a generate-and-validate technique to prepare
patches. It takes inspiration from the GenProg tool, however, instead of using genetic
programming as its search method, RSRepair uses random search.

ARJA (Yuan and Banzhaf 2018) uses Genetic Programming to modify and mutate sus-
picious statements in a program by performing three actions: i) deleting the suspicious
statement, ii) replacing the suspicious statement, or iii) inserting extra statements before or
after the suspicious statement. ARJA reduces the scope of the search and computation time
to speed up the fitness process by applying rules that exclude statements that are not related
to the problem (Yuan and Banzhaf 2018).

NPEFix (Durieux et al. 2017) repairs null pointer exceptions at runtime by using two
strategies. The first strategy assigns an alternative value (which can be a valid value that is
stored in another variable or a random value) for a null dereference. The second strategy
skips the execution of the null dereference, by either skipping a single statement or skip-
ping the complete method. All strategies are applicable for any arbitrary objects, including
instances of library classes, and instances of domain classes.

In summary, the APR techniques discussed in this section can be broadly categorised
based on their high-level repair strategy. For example, jGenProg (Martinez M and Monper-
rus 2016), ARJA (Yuan and Banzhaf 2018) and RSRepair-A (Qi et al. 2014) use or build
upon genetic programming. Other techniques take more unique approaches and are designed
to target specific bugs, like NPEFix (Durieux et al. 2017) targeting null pointer exceptions.
Other repair tools can only function if code is structured in a certain way, like Nopol (Xuan
et al. 2017), which only works when IF conditions are present, and will only find a valid
patch if the patch involves changing IF conditions. These observations further support our
hypothesise that the performance of each technique will likely be affected by the features
of the code. Different repair strategies may favour different code features, and that different
bug targeting will definitely perform badly on code with the wrong type of bug.

2.3 APRT PerformanceMeasures

An APRT Performance Measures y(t, p) ∈ Y takes as input the patches generated by an
APRT t ∈ T for a particular buggy program p ∈ P . There exist various measures of APRT
performance focusing on the quality of the patches produced. In this work we consider
test-suite adequate patches (Le Goues et al. 2012a). We acknowledge that a portion of the
patches may be overfitting, i.e., according to the test suite, the buggy program may appear to
have been fixed by the patch, however, new errors may have been introduced. The problem
of filtering correct patches (e.g., (Yu et al. 2019; Xiong et al. 2018; Xin and Reiss 2017;
Le et al. 2019)) is currently being addressed by many researchers, who are looking at ways
for automating or semi-automating this process, since manually inspecting all generated
patches by automated program repair techniques is not practical. The APRT performance
measures in E-APR (y(t, p) ∈ Y) can easily be extended to new measures, such as patch
correctness.

99 Page 6 of 30

Empir Software Eng (2021) 26: 99

2.4 Significant Features

A critical step of E-APR is identifying features of buggy program instances f (p) ∈ F that
have an impact on the effectiveness of APR techniques. Features are problem dependent
and must be chosen such that the varying complexities of the buggy program instances are
exposed, any known structural properties of the software systems are captured, and any
known advantages and limitations of the different APRTs are related to features.

For the purpose of this work, an APR technique is effective if it can generate a plausible
patch for a buggy software system. While much is known and reported on features that
correlate with software quality, we must consider that there may be other unknown features
that have an impact on the effectiveness of APR techniques. In addition, it is possible that
not all known features are useful for our goal of separating the hard and easy software
instances. The candidate set of features may contain redundancy, with features measuring
aspects of a buggy program that are either similar or not relevant to expose the hardness of
the APR task itself. Thus, a small set of relevant features must be selected.

Learning significant features has two steps: first we define how to measure the quality
of a particular set of features, and second, we apply a Genetic Algorithm to select the set
that maximises this measure. A subset of features is considered of high quality if they result
in an instance space – as defined by the 2-dimensional projection of the subset of features
– with buggy programs that show similar performance of APRTs closer to each other. The
best subset of features is the one that can best discriminate between easy and hard buggy
program instances for APR techniques.

E-APR aims at identifying features that are able to create a clear separation of the buggy
program instances, such that we can clearly see the different clusters of buggy programs
where each APRT is effective. We employ principal component analysis (PCA) (Jolliffe
2011) to locate significant features. PCA learns a linear combinations of the buggy program
features. The first PC is the linear combination of the variables which explain the maximum
amount of variance in the dataset. Each subsequent PC is orthogonal to all previously calcu-
lated PCs and captures a maximum variance under these conditions. In our work, the subset
of variables that have large coefficients and therefore contribute significantly to the variance
of each PC, are identified as the significant features which are selected to explain bugs.

Given |F | software features, we can have at most |F | components which are estimated in
decreasing order of the variance (measured through the eigenvalue of each PC) they explain
in the dataset. We analyse for each PC the features that are found significant. This shows
which dimensions are the main drivers of APR technique effectiveness and help explain why
this is the case. In PCA, usually only the first few components are regarded as important.
We retain the first 2 components, which makes visualising the footprints of the algorithms
much easier.

E-APR uses a genetic algorithm (Aleti et al. 2014) to search the space of possible subsets
of k features, with the classification accuracy on an out-of-sample test set used as the fitness
function to guide the search for the optimal subset. The instance space is generated in itera-
tions, until an optimal subset of features is found (Muñoz et al. 2018). The genetic algorithm
performs the following steps to select the features and generate the instance space:

1. a set of buggy program features is selected;
2. an instance space is generated using the selected features and PCA to reduce the

dimensionality;
3. the fitness of the set of features is evaluated ;
4. if the features are not adequate, go back to step 1.

Page 7 of 30 99

Empir Software Eng (2021) 26: 99

Once the best set of features features is identified, E-APR creates a 2-D instance
space that helps inspect the relationships between problem instances, their features and
objectively assess APRT performance. 2D visualisation has been found to be effective in
visualising footprints (Oliveira et al. 2018, 2019; Muñoz et al. 2018), hence we follow a
similar approach as previous work. Similar approaches have been proposed in the literature
for feature subset selection for machine learning (Bengio and Chapados 2003), optimisa-
tion (Smith-Miles et al. 2014), and search-based software testing tasks (Oliveira et al. 2018).
Certainly, other feature selection methods proposed in the literature (Guyon and Elisseeff
2003) would also be suitable for the task at hand.

2.5 APRT Footprints

The idea of algorithm footprints was first introduced by Smith-Miles and Tan (2012) and
aims to determine the relative performance of different algorithms across various classes of
instances. In the original paper (Smith-Miles and Tan 2012), the authors focused on optimi-
sation problems. Rather than reporting algorithm performance averaged across a chosen set
of benchmark instances, the authors develop metrics for an algorithm’s performance gener-
alised across a diverse set of instances. E-APR extends these ideas to Automated Program
Repair techniques and aims to measure APRT footprint, which gives an indication of the
area of strength of these algorithms.

Once the significant features have been identified, they are used to analyse and visualise
the footprints of the APR techniques. In order to facilitate the visualisation of the footprints,
similar to previous work (Smith-Miles and Tan 2012; Oliveira et al. 2018, 2019), we utilise
the 2-D instance space created using PCA as a dimensionality reduction technique, and
project the instances to two dimensions, while making sure that we retain as much informa-
tion as possible. PCA rotates the data to a new coordinate system Rk , with axes defined by
linear combinations of the selected F ∗ features, where k = |F ∗|. The k new axes are the
eigenvectors of the k × k covariance matrix.

We retain the two principal eigenvectors which correspond to the two largest eigenval-
ues of the covariance matrix. The instance space is then projected on this two-dimensional
space. We use the variance explained in the data by the two principal components as a mea-
sure of the loss in information due to dimensionality reduction. Following a similar approach
to previous work on dimensionality reduction (Smith-Miles et al. 2014), we accept the new
two dimensional instance space as adequate if most of the variance in the data is explained
by the two principal axes. The two principal components z1 and z2 are then used to visualise
the footprints of the APR technique (APRT).

If our goal was only to make performance predictions on the best APR tool for repair-
ing a particular software system, we could use machine learning algorithms to identify the
relationship between software features and APR performance. Machine learning on its own
does not allow for explanations as to why a particular APRT works well. Our goal in this
paper is much broader than only making prediction, as we aim to visualise the footprints of
the different APR approaches and provide insights into the workings of these methods.

Next, we calculate the relative size of APRT footprints by estimating the area of the hull
covering the software instances where the technique is expected to perform well. This is a
metric of the relative goodness of the APRT across the software instance space. Formally,
given the convex hull H(S) of an area defined by points S = {(xi, yi)}, ∀i = 1, ..., n, the

99 Page 8 of 30

Empir Software Eng (2021) 26: 99

area A(H(S)) is given by

A(H(S)) = 1

2

k∑

j=1

(xj yj+1 − yjxj+1) + (xky1 − ykx1), (1)

where the subset {(xj , yj), ∀j = 1, ..., k}, k ≤ n defines the extreme points of H(S). Using
(1), we compare the relative size of the footprint of each APRT to determine which APRT
has the largest footprint and explore the degree of overlap of the footprints.

2.6 APRT Selection

In the final step, E-APR predicts, based on the most significant software features, the most
effective APR technique for repairing particular buggy programs. E-APR uses the most
significant features as an input to machine learning algorithms to learn the relationship
between the instance features and APR method performance. For this purpose, we can use
a variety of machine learning algorithms, such as decision trees, or support vector machines
for binary labels (effective/ineffective), or statistical prediction methods, such as regression
algorithms or neural networks for continuous labels (e.g., time complexity of the approach).

In this work, we investigate four machine learning approaches for multi-label classifi-
cation (Madjarov et al. 2012). These methods are support vector machine (SVM) (Boser
et al. 1992), a random forest classifier (RFC) (Prabhu and Varma 2014), a decision tree
(DT) (Quinlan 1996) and a multi-layer perceptron (MLP) (Ruck et al. 1990). We now briefly
describe those techniques.

Support Vector Machine (SVM) is a supervised learning model with associated learning
algorithms that analyse data for classification and regression analysis. For classification,
SVM aims at finding a hyper-plane in the feature space, which separates the training data
into two classes while maximising the margin (in the feature space) between this hyper-
plane and the two classes (Vapnik 1995).

Decision Tree (DT) uses observations about an item (represented in the branches) to learn
an item’s target value (represented in the leaves). Classification trees are those trees where
the target variable can take a discrete set of value, leaves represent class labels and branches
represent conjunctions of features that lead to those class labels.

RandomForest Classifier (RFC) is an ensemble learning method for classification that oper-
ates by constructing a multitude of decision trees at training time and outputting the class
that is the mode of the classes.

Multi-Layer Perceptron (MLP) consists of a feed-forward artificial neural network which
is a system of interconnected neurons representing a nonlinear mapping between an input
vector and an output vector. MLP is used for classification by assigning output nodes to
represent each class. MLPs are typically trained using a supervised learning technique called
back-propagation.

At the end of this process, E-APR produces a model that can be used for algorithms
selection in automated program repair. This model can be retrained and extended with more
APR tools and features.

Page 9 of 30 99

Empir Software Eng (2021) 26: 99

3 Experimental Design

We implement the E-APR framework described in Section 2, and conduct a set of experi-
ments and analysis to answer the research questions stated in Section 1. In this section, we
describe: the automated program repair techniques, the benchmark of buggy programs, and
the set of software features.

3.1 Buggy Program Features

Features are problem dependent and must be chosen so that the varying complexities of the
problem instances are exposed, any known structural properties of the buggy programs are
captured, and any known advantages and limitations of the different program repair tech-
niques are related to features. The most common measures and metrics used to characterise
features of a software system are extracted from code.

Among others, we use object-oriented code metrics based on measurement theory and
expertise of experienced software developers (Chidamber and Kemerer 1994b). These met-
rics are also mapped to the Quality Model for Object-Oriented Design (El-Wakil et al.
2004), which is a comprehensive model that establishes a clearly defined and empirically
validated model to assess object-oriented design quality attributes such as understandability
and reusability, and relates them through mathematical formulas with structural object-
oriented design properties such as encapsulation and coupling. The set of code metrics,
presented in Table 1, includes simple metrics, which count the number of methods or lines of
code, to more complex metrics that measure the interaction between methods and the depth
of inheritance tree. As in this paper we focus on Java APR, we also include Java-Specific
method features, which are presented in Table 2.

In addition to code features widely used by software practitioners and researchers, we
also consider a set of Observation-based features (Yu et al. 2019). Those features were
manually crafted for targeting different open challenges from automated program repair’s
field such as prediction of source code transformations on buggy code (Yu et al. 2019) and
detection of incorrect patches (Ye et al. 2019).

Observation-based features capture different characteristics of a buggy program. Ini-
tially, Defects4J (Just et al. 2014) was considered as a starting point, which is a dataset of
real Java bugs and the corresponding human-written patches, widely used in evaluations of
automated program repair tools (Durieux et al. 2019). We recorded the following informa-
tion for each code element in the buggy code affected by the patch and in the patched code:
a) the characteristics of the elements (e.g., the type of a variable is primitive), and b) the
relation of such elements with respect to the rest of the buggy and patched file, respectively.
Finally, the designers defined a set of features from those observations. For example, from
Listing 1, it was observed that the buggy statement references to a variable (p1) which has
compatible type and similar name to another variable (p2) in scope. From this observation,
they created a feature named “HVSN” (Has Variable with Similar Name).

Observation-based features were included in the set of buggy program features because
they allow us to capture the characteristics of code elements related to bug that: a) can be
repaired by a tool, and b) cannot be repaired by any tool.

Thus, our approach could predict whether a buggy program can be repaired (or not) by
a particular repair tool, and to determine which is the most adequate repair tool to face the
bug. A simple example to illustrate the intention behind the adoption of such features: the
buggy version of bug Chart-11 from Listing 1 has the feature HV SN with a true value and
it is successfully repaired by Cardumen (Martinez M and Monperrus 2018) but neither by

99 Page 10 of 30

Empir Software Eng (2021) 26: 99

Table 1 Object-oriented features

WMC Weighted methods per class is a measure of complexity in a class (Chi-
damber and Kemerer 1994a).

DIT Depth of inheritance is the depth of inheritance of the class (i.e. number
of ancestors in direct lineage) (Chidamber and Kemerer 1994a).

NOC Number of children is an indication of the scope of properties. It counts
the sub-classes that inherit the methods of the parent class (Chidamber
and Kemerer 1994a).

CBO Coupling between object classes is a count of the number of other
classes to which the current class is coupled (Chidamber and Kemerer
1994a).

RFC Response for a class measures the interaction of the class’ methods with
other methods (Chidamber and Kemerer 1994a).

LCOM Lack of cohesion in methods. This metric counts the sets of methods
in a class that are not related through the sharing of some of the class’s
fields (Chidamber and Kemerer 1994a).

CA Afferent coupling is a measure of how many other classes use the
specific class.

CE Efferent couplings. This is a measure of how many other classes are
called within the given class.

LCOM3 Lack of cohesion in methods. This metric is defined as the number of
connected components in the call graph.

NPM Number of public methods for a class

LOC Lines of code. As the name indicates, this measure counts the lines of
code in a class. We take the average lines of code per class in a buggy
program.

DAM Data access metric. This metric is the ratio of the number of private
and protected attributes to the total number of attributes declared in the
class.

MOA Measure of aggregation. This is the percentage of data declaration in
the system whose types are of user defined classes (i.e., data types other
than system defined classes such as integers, real numbers etc).

MFA Measure of functional abstraction is the ratio of the number of meth-
ods inherited by a class to the total number of methods accessible by
members in the class.

CAM Cohesion among methods of class computes the relatedness among
methods of a class based upon the parameter list of the methods.

IC Inheritance coupling calculates the number of parent classes to which a
given class is coupled.

CBM Coupling between methods measures the total number of new/redefined
methods to which all the inherited methods are coupled.

AMC Average method complexity measures the average method size (the
number of java binary codes in the method) for each class.

for instance Arja nor GenProg (Durieux et al. 2019). Thus, our intuition is that other bugs
having that feature could be repaired by Cardumen.

Observation-based features are grouped into three categories: 1) features related to the
Usage of code elements, for example, the feature OUIA indicates if a statement references
a local variable that has not been referenced in other statements before it, 2) features related
to the Syntax of code elements, for example, the feature HVSN (Has Variable with Similar
Name) indicates whether, given a statement that references a variable, there exist other vari-

Page 11 of 30 99

Empir Software Eng (2021) 26: 99

Table 2 Java specific method features

AC Abstract methods count is the number of abstract methods in a class.

ASMC Abstract static methods count is the number of static methods in a class.

DAMC Default abstract methods count.

DASMC Default abstract static methods count.

DMC Default methods.

DSM Default static methods count.

GMC General methods count

GSMC General static methods count

MC Methods count.

PriAMC Private abstract methods count.

PriASMC Private abstract static methods count.

PMC Private methods count.

PSMC Private static methods count.

ProAMC Protected abstract methods count.

ProASMC Protected abstract static methods count.

ProMC Protected methods count.

ProSMC Protected static methods count.

PubAMC Public abstract methods count.

PubASMC Public abstract static methods count.

PubMC Public methods count.

PubSMC Public static methods count.

SMC Static methods count

Observation-based Features (see complete list at (Yu et al. 2019))

Usage Related to usage of e.g. variables and invocations

Syntax Related to syntax of e.g. variable’s identifiers

Types Related to types of e.g. variables, and parameters.

ables in the same scope that have a similar identifier name with that variable; 3) features
related to the Types of code elements, for example, the feature VTSV indicates whether,
given a statement that references a variable, there exist other variables in the same scope
that are type compatible with that variable.

In total, we have 146 Observation-based features. The complete list is available in
our (Appendix 2020). These features can be computed using the open-source tool Coming
(Martinez and Monperrus 2019), which is available online at https://github.com/SpoonLabs/
coming.

Listing 1 Human-written for bug Chart-11 from Defects4J

99 Page 12 of 30

https://github.com/SpoonLabs/coming
https://github.com/SpoonLabs/coming

Empir Software Eng (2021) 26: 99

3.2 E-APR Input Data

For each buggy program, we first create a vector where each dimension corresponds to a
particular feature. We add to that vector an additional dimension per each APRT considered
in this experiment: its value is ‘1’ if the corresponding APRT produced a plausible patch and
a ‘0’ otherwise. Table 3 shows an example of the features extracted from 4 buggy programs.
Each row has the values of the features extracted for a program, and it is a vector of features.
From the second to the fifth column, it shows the values corresponding to 4 object-oriented
features (wmc, dit, npc and cbo). The last two columns indicate whether the buggy program
could be repaired by two approaches (Kali and Arja).

To create a vector with features for each buggy program, we compute the Object-oriented
and Java-Specific method features, which are calculated at the class-level. Then we cal-
culate the average value of these features over all classes for each buggy program. Next,
we compute the Observation-based features. Instead of considering all statements from the
buggy program, we focus on a subset of them: those that, with a given probability, could
have the bug. Note that, for predicting which is the most suitable tool given a program
bug (Section 4.3), our approach does not know in which statement(s) the bug is located
or the human patch. For this reason we apply fault localisation to filter the statements. To
retrieve those statements, we compute the suspicious value of each statement using GZoltar
tool (Campos et al. 2012), which uses the Ochiai formula (Abreu et al. 2007) to compute the
suspiciousness value. GZoltar is the most prominent fault localisation tool used by the Java
repair systems considered in this study. For each buggy program, we select the 100 most
suspicious statements returned by GZoltar. We consider 100 as it is a common cut-off value
used in program repair experiment, e.g., see analysis from (Long and Rinard 2016a). If a
patch we obtain from our dataset is applied in a statement not included in the mentioned list
of suspicious statements returned by the fault localisation tool, we include that statement in
the list, with the goal of also analysing it. We found 75 bugs having, at least, one patch of
such case. Next, we compute the Observation-based features for each of those statements.
Finally, we compute the average of the features that characterise the suspicious statements.

4 Results

We present the results for each research question, and aim to provide insights into why the
different APR techniques work. First we present the most significant features that impact

Table 3 A snapshot of the dataset

Buggy program wmc dit noc cbo Kali Arja

Jackrabbit 9.37 0.78 0.23 12.51 1 0

Accumulo 11.94 0.81 0.22 13.23 1 0

Flink 8.43 0.75 0.31 10.79 1 1

Wicket 8.84 0.58 0.41 11.01 0 1

All buggy programs in this example are from project Bugs.jar

Page 13 of 30 99

Empir Software Eng (2021) 26: 99

APRT effectiveness. Second, we investigate the diversity of exiting buggy datasets used
for APR. Next, we investigate the differences between exiting APRTs by analysing their
strengths and weaknesses using the most significant features. Finally, we present the results
from the Machine Learning algorithms used for APRT selection.

4.1 RQ1. What impacts the effectiveness of existing APRTs?

We performed feature learning on the total list of features (described in Section 3.1) that
were extracted from 1,282 buggy programs. The aim is to select the best set of features
that highlights the strengths and weaknesses of the APR techniques. To account for the
randomness in the results, each trial of feature learning was run 10 times on each buggy
program for each approach, using different random seeds, and the mean was considered.
Out of the 146 features that were part of the study, E-APR identified the following 9 optimal
features which best capture the difficulty in generating patches for APR:

(F1) MOA: Measure of Aggregation.
(F2) CAM: Cohesion Among Methods
(F3) AMC: Average Method Complexity
(F4) PMC: Private Method Count
(F5) AECSL: Atomic Expression Comparison Same Left indicates the number of state-

ments with a binary expression that have more than an atomic expression (e.g., variable
access). This feature belongs to Syntax category.

(F6) SPTWNG: Similar Primitive Type With Normal Guard indicates the number of
statements that contain a variable (local or global) that is also used in another statement
contained inside a guard (i.e., an If condition). This feature belongs to Usage category.

(F7) CVNI: Compatible Variable Not Included is the number of local primitive type
variables within the scope of a statement that involves primitive variables that are not part
of that statement. This feature belongs to Usage category.

(F8) VCTC: Variable Compatible Type in Condition measures the number of variables
within an If condition that are compatible with another variable in the scope. This feature
belongs to Type category.

(F9) PUIA: Primitive Used In Assignment measures the number of primitive variables
in assignments. This feature belongs to Type category.

Using these features we were able to define the footprints of the techniques with with the
highest topological preservation of 87% (explained variance). In essence, we can conclude
the following.

To visualise the results in a 2-D instance space, we apply PCA as a dimensionality reduc-
tion technique on the optimal subset of features. Two new axes were created, which are
linear combinations of the selected set of most significant features. The coordinate system

99 Page 14 of 30

Empir Software Eng (2021) 26: 99

that defines the new instance space is defined as:

[
z1
z2

]
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.38 −0.02
−0.16 0.19
0.37 −0.04

−0.06 0.36
0.08 0.28
0.17 0.22
0.07 0.31

−0.34 0.01
0.12 0.16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MOA
AECSL

PMC
SPTWNG

AMC
CVNI
VCTC
CAM
PUIA

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The new coordinates (depicted in (2)) are a combination of the 9 features. CAM, PMC
and MOA have the highest contribution on z1, and SPTWNG, AMC and VCTC contribute
the most to z2. CVNI, AECSL, and PUIA contribute equally to both coordinates.

We plot the footprints of the 11 APRTs in Figure 2. Each point in the 2-D instance
space represents a buggy program. If an APR technique produced a patch for a particular
program, it is considered Effective, otherwise, we label it as Ineffective. Each graph in
Figure 2 represents the footprint of one of the techniques that we study in this paper. The
x-axis and y-axis are the two principal components z1 and z2, defined in (2).

A visual inspection of the footprints shows that while some techniques appear more
similar than others (for example, jKali is more similar to jMutRepair than NPEFix), each
technique has its unique strengths.

All APRTs apart form NPEFix repaired bugs located at the top-right of the instance
space. These are bugs from Defects4J benchmark (see Figure 4), which confirms a long
held hypothesis that APRTs are being perfected to repair bugs from this dataset.

4.1.1 Footprints Size

Table 4 shows the area size of the APRT footprints, measured using (1). The size of the
footprint is an indication of the overall performance of the APRT. The larger the footprint,
the more diverse bugs an APRT can repair.

While most techniques have relatively similar footprint size, jGenProg is the winner. The
footprint size is not based on the number of programs that a technique was able to repair.
Instead, the effectiveness of an APRT is measured in terms of the diversity of the features
of these programs and their spread in the instance space. An APRT that can repair more
diverse bugs is considered to be more effective.

4.1.2 Significant Software Features

Figure 3 depicts the feature footprints, which shows how the buggy program instances score
in terms of the most significant features.

MOAandPMC The cluster of buggy programs where mostly jMutRepair, RSRepair, Nopol,
GenProgA and Arja are effective has a lower measure of aggregation (MOA) and private
methods count (PMC). MOA (as defined in Table 1) is the percentage of data declaration in
the system whose types are of user defined classes, as opposed to those of system defined
classes, such as integers, real numbers etc. It indicates that, compared to other approaches,
it is easier for jMutRepair, RSRepair, Nopol, GenProgA and Arja to repair bugs originat-
ing from buggy programs that have fewer user declared types and lower number of private

Page 15 of 30 99

Empir Software Eng (2021) 26: 99

Fig. 2 APR technique footprints. Each point is a buggy class, and is labelled as Effective, if the technique
was able to generate a plausible patch for it

methods. jMutRepair, RSRepair, GenProgA and Arja are from the class of generate-and-
validate APR techniques, with GenProgA and RSRepair being variations of GenProg. These
tools make use of mutation operators to generate patches, which in general can be an effec-
tive way to fix bugs, but it proves ineffective in programs with many private methods and
user defined types. This indicates that more sophisticated operators are required to fix such
programs.

99 Page 16 of 30

Empir Software Eng (2021) 26: 99

Table 4 Performance differences between the APRTs

APRT Footprint size APRT Footprint size

jMutRepair 0.223 jKali 0.215

jGenProg 0.388 RSRepair 0.006

Nopol 0.236 NPEFix 0

KaliA 0.052 GenProgA 0.004

DynaMoth 0.169 Cardumen 0.257

Arja 0.016

CAM The third most significant feature is cohesion among methods in a class (CAM),
which is a measure of class cohesion. The cluster of buggy programs where mostly jMutRe-
pair, RSRepair, Nopol, GenProgA and Arja are effective is high in terms of CAM. High
class cohesion is a desirable property and has previously been linked with high software
quality. As mentioned above, MutRepair, RSRepair, GenProgA and Arja use mutation to
generate new patches for buggy programs, which is quite simple and works well with highly
cohesive programs where related program elements are in the same place (in this case,
class). Mutation applies random changes in code, and is less likely to introduce new bugs
if classes are highly cohesive. On the other hand, DynaMoth is effective at repairing bugs

Fig. 3 Feature footprints. The values of features have been normalised between 0 and 1, and the colour
scheme is used to represent the values of features

Page 17 of 30 99

Empir Software Eng (2021) 26: 99

from programs with low cohesion. DynaMoth is a semantic-based APR tool, which per-
forms a dynamic synthesis of patches for repairing conditional bugs. The tool specifically
addresses the issue of complex method calls and low cohesion, which explains its superior
performance in buggy programs with low CAM.

AMC Average Method Complexity is relatively high in the upper right part of the instance
space, where most APRTs are able to generate plausible patches. AMC is defined as the
average method size (the number of java binary codes in the method) for each class,
indicating that APRTs are usually more effective with longer methods.

Observation-based features These metrics capture different characteristics of the buggy
parts of the programs. Out of the 146 features, E-APR identified 5 significant Observation-
based – SPTWNG, VCTC, PUIA, CVNI and AECSL – whose footprints we show in
Figure 3. Four of these five features – SPTWNG, VCTC, PUIA, CVNI – have very similar
footprints.

SPTWNG (Similar Primitive Type With Normal Guard) indicates the number of state-
ments that contain a variable (local or global) that is also used in another statement contained
inside a guard (i.e., an If condition). VCTC (Variable Compatible Type in Condition) mea-
sures the number of variables within an If condition that are compatible with another
variable in the scope. PUIA (Primitive Used In Assignment) measures the number of prim-
itive variables in assignments. CVNI (Compatible Variable Not Included) is the number of
local primitive type variables within the scope of a statement that involves primitive vari-
ables that are not part of that statement. Finally, AECSL (Atomic Expression Comparison
Same Left) indicates the number of statements with a binary expression that have more than
an atomic expression (e.g., variable access). Programs with a high value of these features
are more likely to be repaired by most techniques, while jMutRepair, Arja, KaliA, Nopol
and RSRepair can generate plausible patches even for programs with low feature values.
Since these features measure properties of the potential buggy locations, it makes sense that
programs with such high feature values are more likely to be repaired.

In summary, the effectiveness of APRTs is impacted by software features, which makes
these methods problem dependent, and as such, no technique can be considered the best in
all cases. We observe different strengths and weaknesses of existing APRTs, which calls for
methods that make it possible to select the most suitable technique given a buggy program
with particular features.

4.2 RQ2. Are existing APR datasets significantly different?

The 2-D instance space that was constructed to analyse the effectiveness of APRTs, also
allows us to analyse the location of the different benchmarks, which reveals how diverse
they are. The dataset footprint presented in Figure 4 shows the reduced feature space with
instances labelled according to the dataset they belong to. Each point is a bug from a
particular dataset.

The features that were eventually found as significant and used to create this instance
space, are the ones that have a good linear relationship with algorithm performance. For
some APRTs, the choice of features may be better than for others, however, our approach
chooses a common feature set that performs well on average across all algorithms.

We observe that there is a distinctive cluster on the left of Figure 4 composed of only
bugs from IntroClassJava. It is clear that this dataset is significantly different from the
other datasets. Further away from this cluster, is the footprint of Defects4J, which is on

99 Page 18 of 30

Empir Software Eng (2021) 26: 99

Fig. 4 Benchmark footprint. Each point corresponds to a bug from a particular benchmark dataset

the rightmost side of the graph. This indicates that Defects4J is significantly different from
IntroClassJava.

On the other hand, the footprints of Bears, Bugs.jar and QuixBugs overlap to a greater
extent. They are spread between IntroClassJava and Defects4J and have a higher spread than
the other datasets. Bugs.jar covers a larger are and encompasses that one from Quixbugs.

Bugs.jar contains some bugs obtained from the same software as the other datasets (e.g.,
Apache, Commons, Math), thus the bugs are eventually the same. QuixBugs is a set of
buggy implementation of well known algorithms (e.g., Quixsort), and each buggy program
in this dataset is a single class. The others datasets are real buggy programs, composed of
several classes.

In summary, the answer to the second research question is as follows:

The dataset footprint also helps us understand if a dataset is biased, that is if it doesn’t fill
the possible instance space, and lies within the ‘footprint’ (area of strength) of one APRT
only, and doesn’t give other algorithms a chance to show their strength. We particularly
observe that the footprint of Defects4J lies within the area of strength of most APRTs apart
from NPEFix, whose footprint is shown in Figure 2. What this means is that if the perfor-
mances of APRTs are compared solely on this dataset, the evaluation can be biased and
demonstrate only the strengths of these approaches. The footprints of Bugs.jar, Quixbugs
and Bears lie within the area where most APRTs apart from NPEFix are not able to generate
plausible patches, indicating that these datasets are quite challenging for these approaches
and exhibit less bias.

Our finding from this research task can inform researchers who develop new APRTs in
the selection of the bug benchmark to test their technique. It wouldn’t be sufficient to test a

Page 19 of 30 99

Empir Software Eng (2021) 26: 99

new APRT on just one dataset, and a technique that works for Defects4J may not produce
good results when repairing IntroClassJava.

4.3 RQ3. How can we select themost suitable APRT?

To answer this question, the E-APR framework uses multi-label classification algorithms
to predict the most suitable APRT to repair buggy programs with particular features. We
use 10-fold cross validation to evaluate the performance of four notable Machine Learning
techniques: Support Vector Machine (SVM), Random Forest Classifier (RFC), Decision
Tree (DT), and Multi-Layer Perceptron (MLP).

We use the scikit-learn Python implementation of these approaches and employed
MLSMOTE (Charte et al. 2015) to address the class imbalance problem. The performance
of the two approaches is evaluated in terms of precision, recall, and f1-score. Precision is
the fraction of instances that are correctly predicted, calculated as:

P = T P

T P + FP
(3)

where TP is the true positives and FP is the false positives. Recall measures how accurately
the model is able to identify the relevant data.

R = T P

T P + FN
(4)

where FN is false negatives. F1-Score is the harmonic mean of P and R, computed as
follows:

F1 = 2
P · R

P + R
(5)

Results are shown in Table 5.

Table 5 The performance of Support Vector Machine (SVM), Random Forest Classifier (RFC), Decision
Tree (DT) and Multi-Layer Perceptron (MLP) classifier in terms of precision (P), recall (R) and f1-score (F1)

SVM RFC DT MLP

P R F1 P R F1 P R F1 P R F1

Arja 0.83 0.76 0.80 0.89 0.87 0.88 0.96 0.84 0.90 0.96 0.86 0.91

Cardumen 0.77 0.71 0.74 0.86 0.86 0.86 0.86 0.68 0.76 0.85 0.59 0.70

DynaMoth 0.68 0.78 0.72 0.93 0.81 0.87 0.83 0.81 0.82 0.94 0.89 0.91

GenProgA 0.72 0.93 0.81 0.86 0.83 0.85 0.79 0.81 0.80 0.85 0.59 0.70

KaliA 0.92 0.84 0.88 0.87 0.91 0.89 0.88 0.79 0.83 0.88 0.79 0.83

NPEFix 0.47 0.82 0.60 0.82 0.82 0.82 0.56 0.83 0.67 0.00 0.00 0.00

Nopol 0.61 0.93 0.74 0.92 0.73 0.81 0.83 0.76 0.79 0.71 0.45 0.56

RSRepair 0.90 0.81 0.85 0.86 0.75 0.80 0.82 0.87 0.85 0.85 0.74 0.79

jGenProg 0.65 0.42 0.51 0.80 0.77 0.78 0.81 0.81 0.81 0.79 0.83 0.81

jKali 0.87 0.77 0.81 0.93 0.88 0.90 0.86 0.91 0.89 0.89 0.87 0.88

jMutRepair 0.77 0.48 0.59 0.85 0.52 0.65 0.75 0.50 0.60 0.84 0.67 0.74

micro avg 0.76 0.76 0.76 0.88 0.81 0.84 0.84 0.79 0.82 0.87 0.74 0.80

macro avg 0.74 0.75 0.73 0.88 0.81 0.84 0.81 0.78 0.79 0.78 0.67 0.72

weighted avg 0.78 0.76 0.76 0.88 0.81 0.84 0.84 0.79 0.81 0.85 0.74 0.79

99 Page 20 of 30

Empir Software Eng (2021) 26: 99

The results indicate that, while all ML algorithms perform well in the task of APRT
selection, the performance of RFC is clearly better than SVM. As a comparison, the work
from Le et al. (2015) presents a similar task (predict whether a bug can be repaired by
a genetic-programming based repair approach i.e., GenProg (Le Goues et al. 2012a)) and
reports a precision of 72%.

Given the high performance of E-APR for predicting the most suitable APRT, it is of
high-priority for us to integrate this approach to existing repair infrastructures such as
RepairThemAll (Durieux et al. 2019) or Repairnator (Monperrus et al. 2019). For example,
RepairThemAll has 11 automated repair techniques, but it does not offer any capabilities or
guidelines in terms of which technique to select. Integrating E-APR with RepairThemAll
would make it possible for users to select the most suitable APRT on the fly. Repairna-
tor, on the other hand, is a software bot that automatically repairs broken Travis builds.
Given a buggy program that produces a build to fail, Repairnator executes different repair
approaches (including jGenProg, Nopol, among others) one by one, and the execution order
is hard-coded. By incorporating E-APR, Repairnator could first execute E-APR to obtain
the most suitable repair approaches for the buggy program, and execute them accordingly. In
the future, we will investigate the effectiveness of integrating our approach with automated
program repair infrastructure, such as RepairThemAll and Repairnator.

The overhead of using E-APR to select the most suitable APRT within existing APR
infrastructures is minimal. APRT first must extract the code features by doing static analysis
of the buggy program (it takes a few seconds to extract the nine feature we have identified as
significant). Then, based on the extracted features, APRT uses the trained model to perform
the prediction in few milliseconds.

5 Discussion and Threats to Validity

5.1 Features selection

A threat to the validity of this study is the selection of the considered features. Our approach
E-APR considers 3 sets of features, each of them selected with a clear purpose: one aims
at capturing object-oriented features, the second aims at capturing features specific to Java,
and the third aims at capturing features related to the bug fixing activity (Observation-
based features). Thus, we consider that the set of features is diverse enough to capture the
characteristics of the program under analysis.

In this work, we complement extensively used features (e.g., Object-oriented features
(Chidamber and Kemerer 1994b)) with a novel set of features (Observation-based features)
that aim at characterising buggy programs. As the latter features are novel, there is a risk
they do not precisely characterise buggy programs. However, a recent work (Yu et al. 2019)
used Observation-based features to successfully predict source code transformations applied
on buggy program. For this reason, we consider that Observation-based features can be used
to predict the most suitable APR tool to apply to a buggy program.

Page 21 of 30 99

Empir Software Eng (2021) 26: 99

5.2 Correctness of Patches

A threat to the validity is the correctness of patches. In our experiment from Section 4 we
consider all generated patches (plausible) rather than focusing only on correct patches. One
of the reasons is the availability of data on patch correctness. The number of correct patches
generated by APRTs is much lower than the number of plausible patches. For instance, the
recent manual evaluation done by Tian et al. (2020) of the patches we have used in this
paper (more than 67,000 patches from RepairThemAll (Durieux et al. 2019)) found only
900 correct patches, from 20 different bugs (14 from Defects4J, 5 from Quixbugs and 1 from
Bugs.jar). We reproduce our experiment, available in our (Appendix 2020), by considering
the bugs that could be repaired by at least one correct patch. We found that the dataset
consisting of 20 bugs that were correctly repaired is not sufficient for the machine learning
algorithms used to identify significant features and create the algorithm footprints.

While we think that considering correct patches is an important next step, and a priority
for our future work, the results with plausible patches provide some important insights into
how APRTs work and how effective they are. Current APRTs find it challenging to even
produce plausible patches, and E-APR helps understand why this is the case, and what kind
of weaknesses future research into APRT should focus on. Moreover, recent studies shows
that a plausible patch, even being overfitting and not adequate for repairing a bug, could
give developer a valuable piece of information. For instance, Ginelli et al. (2020) studied
code-removal patches, which works on manual machine patch analyses (e.g., Qi et al. 2015)
labelled most of them as overfitting patches. They found that in 95.8% of the cases having
an overfitting code-removal patch, it reveals different kinds of problems affecting the test
suites that are relevant for the developers. Thus, they show this type of overfitting patches
is useful: it exposes a particular weakness of the test suites.

5.3 Selection of Repair Tools

During the last years, several repair tools have been presented to repair Java bugs. Two
previous works have tried to execute the tools (i.e., the materialization of repair approaches)
on real bugs: (Durieux et al. 2019) could executed 11 repairs tools, and (Liu et al. 2020)
executed 16 tools. Both papers list the reasons about why other repair approaches and tools
could not be executed.

In this paper we consider the execution data from 11 tools. The main reason is that
those tools were executed on 5 different bug benchmarks and generated patches are publicly
available (Durieux et al. 2019). Other tools have exclusively focused on Defects4J, and we
were not able to generate results for other datasets we consider in this study. For example,
(Liu et al. 2020) evaluated 16 repair approaches only on Defects4J. We have included in
our (Appendix 2020) initial results of an experiment done by considering the patches of
that experiment, which includes, in addition to 10 repair tools considered in our paper (all
except NPEfix), another 6: ACS (Xiong et al. 2017), Avatar (Liu et al. 2019a), FixMiner
(Koyuncu et al. 2020), kPar (Liu et al. 2019), SimFix (Jiang et al. 2018), TBar (Liu et al.
2019b). From those initial results, we could not draw conclusive results. Our conjecture is
the experiment has not enough diverse data: a single dataset evaluated (Defects4J), which
contains bugs extracted from only 5 projects (Commons Math, Commons Lang, Joda Time,
jFree Chart, and Closure).

We prioritised in this paper having a larger dataset, and found that the techniques we
consider are diverse enough to demonstrate the capabilities of the proposed technique. We

99 Page 22 of 30

Empir Software Eng (2021) 26: 99

consider that this point (i.e., the selection of evaluated tools) does not invalidate the novelty
of our technique.

5.4 Failure Information

Some repair techniques are designed to fix specific bugs, and their effectiveness can be
limited by the nature of the bug that is addressed (Monperrus 2018; Gazzola et al. 2019).
For instance, NPEFix repairs null pointer exceptions and is unlikely to be useful in other
cases. In this paper, we decided to focus on the features that allow to characterise the buggy
program under repair, without considering, for instance, the type of failure. Our approach,
however, can easily be extended to include failure information. For instance, an extension
could include a new set of features that characterise the failure, for example null pointer
exceptions, stack overflow, array index error.

E-APR does not consider failure information since most of the bugs considered in this
study do not produce a failure, but an incorrect output. The incorrect output is exposed
by the failing test case via assertions. For instance, by inspecting Defects4J Dissection
(Sobreira et al. 2018) we found that 304 out of 395 (77%) bugs from Defects4J are due
to incorrect output. We explored the meta-data of bugs using http://program-repair.org/
defects4j-dissection (Sobreira et al. 2018) and found that 275 bugs are due to an Assertion-
FailedError (for example, Chart-7: junit.framework.AssertionFailedError:
expected:<1> but was:<3>) or unit.framework.ComparisonFailure (e.g.
junit.framework.ComparisonFailure: expected:<String[[]]> but
was:<String[;]>). Both exceptions are thrown by the testing framework after
detecting the incorrect output.

5.5 Integration with Repair Infrastructures

To our knowledge, repair infrastructures such as Repairnator or RepairThemAll do not have
the ability to predict, given a buggy program taken as input, with is the most suitable APR
tool to generate a test-suite adequate patch for it. Repairnator calls APR tools in a fixed
order, independently of the characteristics of the program under analysis. On the contrary,
the user of RepairThemAll must decide the APR to be call. In both cases, our approach E-
APR could be integrated to both of them. For Repairnator, E-APR could determine the order
of the APR tools to be called with the goal of calling first the tools that are most suitable for
a given buggy program. Similarly, for RepairThemAll, E-APR could suggest the user the
APR tool to be invoked.

6 RelatedWork on the Effectiveness of APR Techniques

Researchers working in the area of APR have acknowledged that evaluating the quality
of patches produced by APR techniques is crucial (Martinez et al. 2017a; Smith et al.
2015). To this end, Qi et al. (2015) studied the plausible generated by GenProg (Le Goues
et al. 2012b) for C programs, and classified them as plausible (passing all tests), overfitting
(plausible and incorrect) and correct (plausible, and do not have latent defects and do not
introduce new defects or vulnerabilities (Long and Rinard 2016a)). They found that most of
the reported patches were overfitting. Long and Rinard (2016a) analysed the patch search
space of two repair tools, SPR (Long and Rinard 2015) and Prophet (Long and Rinard

Page 23 of 30 99

http://program-repair.org/defects4j-dissection
http://program-repair.org/defects4j-dissection

Empir Software Eng (2021) 26: 99

2016b), and found that overfitting patches are typically orders of magnitude more abundant
than correct patches.

Other works have studied the ability of APR techniques to repair buggy Java programs.
For example, Martinez et al. (2017a) manually studied the correctness of patches produced
by three APR techniquess over defects from Defects4J benchmark. They found that only a
small number of bugs (9/47) could be correctly repaired.

Liu et al. (2020) executed 16 repairs tools on Defects4J and manually analyzed the gen-
erated patches following the procedure defined in that work. They found that the percentage
of patches correctness varies between the tools at is belong of the 37% for 15/16 tools.

Ye et al. (2019) studied the repairability of bugs from QuixBugs (Lin et al. 2017), a
dataset of 40 small buggy programs (between 9 and 69 LOC). They found that 15 bugs
could be repaired by Nopol (Xuan et al. 2017) and approaches from Astor (Martinez M and
Monperrus 2016), which generated in total 64 plausible patches. However, they found that
33 of them were incorrect.

The presence of overfitting patches has motivated researchers to investigate the amount
of the overfitting patches (e.g., (Yu et al. 2019; Wang et al. 2020)), detect overfitting patches
(e.g., DiffTGen (Xin and Reiss 2017), PatchSim (Xiong et al. 2018), Static code feature via
learning (Wang et al. 2020), ODS (Ye et al. 2019)), and to avoid generating such patches
(e.g., UnsatGuided (Yu et al. 2019), CapGen (Wen et al. 2018), Anti-pattern (Tan et al.
2016)). Empirical studies also have studied overfitting patches in detail. For example, Liu
et al. (2020) conducted an large-scale empirical study which analyzed the correctness of
patches generated by 16 repairs tools (10 mentioned in Section 2.2 (all except NPEFix) and
ACS (Xiong et al. 2017), Avatar (Liu et al. 2019a), FixMiner (Koyuncu et al. 2020), kPar
(Liu et al. 2019), SimFix (Jiang et al. 2018), TBar (Liu et al. 2019b)). One of their main
findings is that many plausible patches are related to wrong locations of the patches. As
previously found by Liu et al. (2019), the accuracy of fault localization tool has a direct and
substantial impact on the performance of APR tools.

Our work extends existing research in analysing the effectiveness of APR techniques by
examining what software features impacts the repairability of a software system. We char-
acterise a software system using code features (e.g., depth of inheritance tree and method
cohesion) and determine the most significant features that have impact on whether an APR
technique can generate a patch.

There has also been some research in characterising patches generated by APR
techniques to investigate how these patches differ from the ones generated by human
programmers.

Wang et al. (2019) compared the difference between 177 correct patches for Defects4J
bugs generated by APR techniques and the patches written by developers. To characterise
the bugs, the authors considered 6 metrics: a) Patch size, b) Number of chunks c) Number
of modified files, d) Number of modified methods e) Line coverage, and f) Branch cover-
age. They found that automatically generated patches are on average syntactically different
compared to the patches generated by developers. Patches generated by APR techniques are
usually longer, have a higher number of chunks, and have a higher line and branch coverage.

Similarly, Smith et al. (2015) studied the quality of patches generated by two C program
repair approaches (GenProg and TprAutoRepair). The authors used two metrics that were
dynamically computed (i.e., by running the program under repair): a) number of passing
and failing test cases, and b) test suite coverage.

99 Page 24 of 30

Empir Software Eng (2021) 26: 99

Both Wang et al. (2019) and Smith et al. (2015) focus on analysing the kind of patches
generated by APR techniques. The aim of these works is to understand how good the patches
are, and how they are different from developer-generated patches. Our work, instead, aims
at understanding what kind of software systems and bugs APR techniques are able to repair.
This will help explain how and why they work, and as a result, make it possible to select the
right technique given a new buggy software system.

In their research, Smith et al. (2015) state that “Automatic repair should be used in
the appropriate contexts” and that “Our results suggest that more work is needed to fully
understand and characterise test suite quality beyond coverage metrics alone”. The E-APR
framework addresses these two research challenges by investigating 146 features, and build-
ing a machine learning model that enables the selection of the most suitable APR technique
for a given buggy program.

Another related work is the one by Motwani et al. (2018) which investigates correla-
tions between the effectiveness of APR techniques and different aspects of bugs, such as
bug importance and bug complexity. Results were analysed at course-grained level, with
the findings showing weak to moderate correlation between bug importance and the ability
of the APR technique to produce a patch. The results also show that APR techniques are
effective in repairing easy bugs - as measured by the number of files and lines that have to
be changed to fix the bug - while struggling with more complex bugs. This study makes an
important step towards understanding where APR techniques work. In this paper, we take
this research one step further by providing a more detailed analysis of the effectiveness of
different APR techniques. The framework we propose allows us to examine the effective-
ness of individual techniques in a visual and numerical way. We measure the footprints
of the different APR techniques and whether their results overlap. This helps us under-
stand the strengths and weaknesses of individual techniques, and their similarities in a more
fine-grained way.

Le et al. (2015) present a work that has a similar goal to ours: they build an oracle that
can predict whether fixing a failure should be delegated to a genetic-programming-based
automated repair technique. The authors first extract features from an early stage of running
a repair tool. Then, they pass the values of these features to learn a discriminative model
capable of predicting whether continuing a genetic programming search will lead to a repair
within a desired time limit.

Beyond the similarities, there are notable differences between our work and the work by
Le et al. (2015).

First, Le et al. (2015) focus on genetic-programming-based automated repair technique,
while our approach is independent of the type of repair technique. For instance, it consid-
ers genetic-programming-based technique (Arja and Genprog), semantic-based techniques
(Nopol) and exhaustive methods (jMutRepair). Le et al. (2015) consider 27 features, 18 of
which are related to genetic-programming. We use 3 sets of features (in total more than 200
features) that are independent of any repair technique and aim to describe the buggy pro-
gram under repair. Le et al. (2015) analyse the early stage of a genetic-programming-based
technique to extract 18 features. This means that it could be necessary to modify a repair
approach to extract those features or to monitor the execution logs. E-APR considers the
features extracted from a buggy program and trains the prediction model using the output
from previous executions (i.e., a bug was patched or not by a technique). Le et al. (2015)
considers one dataset of bugs (ManyBugs (Le Goues et al. 2015) with 105 bugs) and one
repair tool (GenProg), while we consider 11 repair tools and 5 datasets (1282 bugs).

Page 25 of 30 99

Empir Software Eng (2021) 26: 99

Lin et al. (2020) studied the non-repairability factors of various APR techniques. They
analysed 11,818 execution logs from 27 Java tools, and found that 25.7% of them contained
unexpected exceptions that prevent those tools to find a patch.

7 Conclusion

In this paper, we introduced E-APR, which is a novel framework for assessing strengths and
weaknesses of APR techniques for Automated Program Repair (APR). We identified nine
significant software features that have an impact on APRT effectiveness. These features
were then used to provide explanations on an APR technique’s effectiveness across a range
of buggy programs. We introduced a method for visualising APRT footprints, which reveal
strengths and weaknesses of the APR techniques in fixing buggy programs.

We conducted an analysis of 11 different APR techniques applied to 2,141 bugs from
130 projects, constituting in total 23,551 repair attempts. Our approach effectively identified
APRT footprints and the features that impact the effectiveness of an automated program
technique. Using the most significant features, we applied two machine learning approaches
that learns the relationship between software features and APRT effectiveness. Random
Forest Classifier showed the best performance, with 88% precision, 81% recall and 84%
f1-score.

Acknowledgements The authors would like to acknowledge Prof. Kate Smith-Miles and her team working
on matilda.unimelb.edu.au. The methodology on Instance Space Analysis constitutes the foundations of this
work. Matilda was used to create the instance spaces presented in Figures 2 and 3.

References

Abreu R, Zoeteweij P, van Gemund AJC (2007) On the accuracy of spectrum-based fault localization.
In: Testing: Academic and Industrial Conference Practice and Research Techniques - MUTATION
(TAICPART-MUTATION 2007), pp. 89–98

Aleti A, Moser I, Meedeniya I, Grunske L (2014) Choosing the appropriate forecasting model for predictive
parameter control. Evolutionary computation 22(2):319–349

Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M, Harrold MJ, Mcminn P
(2013) An orchestrated survey of methodologies for automated software test case generation. Journal of
Systems Software 86(8):1978–2001

Appendix (2020) Appendix e-apr. https://github.com/UPHF/eapr
Bengio Y, Chapados N (2003) Extensions to metric-based model selection. J Mach Learn Res 3(Mar):1209–

1227
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In:

Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ser. COLT ’92.
New York, NY, USA: Association for Computing Machinery, p. 144–152. [Online]. Available:
https://doi.org/10.1145/130385.130401

Campos J, Riboira A, Perez A, Abreu R (2012) Gzoltar: an eclipse plug-in for testing and debugging. In:
2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pp 378–381

Charette RN (2009) This Car Runs on Code. [Online; accessed 10-December-2018]. [Online]. Available:
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Charte F, Rivera AJ, del Jesus MJ, Herrera F (2015) Mlsmote: approaching imbalanced multilabel learning
through synthetic instance generation. Knowl-Based Syst 89:385–397

Chidamber S, Kemerer C (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. Software Engineering, IEEE
Transactions on 20(6):476–493

99 Page 26 of 30

matilda.unimelb.edu.au
https://github.com/UPHF/eapr
https://doi.org/10.1145/130385.130401
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

Empir Software Eng (2021) 26: 99

Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic Patch Generation for Null Pointer Excep-
tions Using Metaprogramming. In: Proceedings of the 24th IEEE International Conference on Software
Analysis. Evolution and reengineering (SANER ’17). IEEE, pp 349–358

Durieux T, Madeiral F, Martinez M, Abreu R (2019) Empirical review of java program repair tools: A large-
scale experiment on 2,141 bugs and 23,551 repair attempts, in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, pp. 302–313

Durieux T, Monperrus M (2016) Dynamoth: Dynamic Code Synthesis for Automatic Program Repair, in
International Workshop on Automation of Software Test. ACM, pp 85–91

Durieux T, Monperrus M (2016) Introclassjava: A Benchmark of 297 Small and Buggy Java Programs,
University of Lille, University of Lille, Tech. Rep #hal-01272126

Eisenstadt M (1997) My hairiest bug war stories. Commun ACM 40(4):30–37
El-Wakil M, El-Bastawisi A, Boshra M, Fahmy A (2004) Object-oriented design quality models a survey

and comparison. In: 2nd International Conference on Informatics and Systems, pp 1–11
Gazzola L, Micucci D, Mariani L (2019) Automatic Software Repair: A Survey. IEEE Transactions on

Software Engineering 45(1):34–67
Ginelli D, Martinez M, Mariani L, Monperrus M (2020) A comprehensive study of code-removal patches in

automated program repair,” arXiv, Tech. Rep. 2012.06264, [Online]. Available: 2012.06264
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. Journal of machine learning

research 3(Mar):1157–1182
Harris M (2016) Google reports self-driving car mistakes: 272 failures and 13 near misses, [Online;

accessed 10-December-2018]. [Online]. Available: https://www.theguardian.com/technology/2016/jan/
12/google-self-driving-cars-mistakes-data-reports

Jiang J, Xiong Y, Zhang H, Gao Q, Chen X (2018) Shaping Program Repair Space with Existing Patches and
Similar Code, in Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’18). ACM, pp 298–309

Jolliffe I (2011) Principal component analysis. Springer
Just R, Jalali D, Ernst MD (2014) Defects4j: A Database of Existing Faults to Enable Controlled Testing

Studies for Java Programs, in Proceedings of the 23rd International Symposium on Software Testing and
Analysis. ACM, pp. 437–440

Kaner C, Bach J, Pettichord B (2008) Lessons learned in software testing. John Wiley & Sons
Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches. In:

International Conference on Software Engineering. IEEE Press, pp 802–811
Koyuncu A, Liu K, Bissyandé T, Kim D, Klein J, Monperrus M, Le Traon Y (2020) Fixminer: Mining rele-

vant fix patterns for automated program repair. Empir Softw Eng 25(3):1980–2024. [Online]. Available:
https://doi.org/10.1007/s10664-019-09780-z

Le X-BD, Bao L, Lo D, Xia X, Li S, Pasareanu C (2019) On reliability of patch correctness assessment. In:
Proceedings of the 41st International Conference on Software engineering, ser. ICSE ’19. IEEE Press,
p. 524–535. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00064

Le Goues C, Nguyen T, Forrest S, Weimer W (2012a) Genprog: a generic method for automatic software
repair. Software Engineering, IEEE Transactions on 38(1):54–72

Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012b) A systematic study of automated program repair:
Fixing 55 out of 105 bugs for $8 each. In: International Conference on Software engineering ser. ICSE
IEEE Press. pp. 3–13

Le Goues C, Forrest S, Weimer W (2013) Current challenges in automatic software repair. Softw Qual J
21(3):421–443

Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W (2015) The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Trans Softw Eng 41(12):1236–1256

Le XD, Le TB, Lo D (2015) Should fixing these failures be delegated to automated program repair? In: 2015
IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), pp 427–437

Lin D, Koppel J, Chen A, Solar-Lezama A (2017) Quixbugs: A Multi-Lingual Program Repair Bench-
mark Set Based on the Quixey Challenge, in ACM SIGPLAN International Conference on Systems,
Programming, Languages, and applications: Software for Humanity. ACM, pp 55–56

Lin B, Wang S, Wen M, Zhang Z, Wu H, Qin Y, Mao X (2020) Understanding the non-repairability factors
of automated program repair techniques, p 10

Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y (2019) You cannot fix what you cannot find!
an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019
12th IEEE Conference on Software Testing Validation and Verification (ICST), pp 102–113

Page 27 of 30 99

http://arxiv.org/abs/2012.06264
https://www.theguardian.com/technology/2016/jan/12/google-self-driving-cars-mistakes-data-reports
https://www.theguardian.com/technology/2016/jan/12/google-self-driving-cars-mistakes-data-reports
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ICSE.2019.00064

Empir Software Eng (2021) 26: 99

Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) AVATAR: Fixing semantic bugs with fix patterns of static
analysis violations,” in Proceedings of the 26th. IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, pp 456–467

Liu K, Koyuncu A, Kim D, Bissyandé TF (2019) Tbar: Revisiting template-based automated program repair.
In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analy-
sis, ser. ISSTA 2019. New York, NY, USA: Association for Computing Machinery, p. 31–42. [Online].
Available: https://doi.org/10.1145/3293882.3330577

Liu K, Wang S, Koyuncu A, Kim K, Bissyandé TF, Kim D, Wu P, Klein J, Mao X, Traon YL (2020) On
the efficiency of test suite based program repair: A systematic assessment of 16 automated repair sys-
tems for java programs. In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ser. ICSE ’20. New York, NY, USA: Association for Computing Machinery, p. 615–627.
[Online]. Available: https://doi.org/10.1145/3377811.3380338

Long F, Rinard M (2015) Staged program repair with condition synthesis. In: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015.
New York, NY, USA: Association for Computing Machinery, pp. 166–178. [Online]. Available:
https://doi.org/10.1145/2786805.2786811

Long F, Rinard M (2016) An analysis of the search spaces for generate and validate patch generation
systems. In: Proceedings of the 38th International Conference on Software Engineering, ser. ICSE
’16. New York, NY, USA: Association for Computing Machinery, p. 702–713. [Online]. Available:
https://doi.org/10.1145/2884781.2884872

Long F, Rinard M (2016) Automatic patch generation by learning correct code. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL
’16. New York, NY, USA: Association for Computing Machinery, p. 298–312. [Online]. Available:
https://doi.org/10.1145/2837614.2837617

Madeiral F, Urli S, Maia M, Monperrus M (2019) Bears: An Extensible Java Bug Benchmark for Auto-
matic Program Repair Studies. In: Proceedings of the 26th, IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER ’19), pp 468–478. Hangzhou, China: IEEE

Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) An extensive experimental comparison of methods
for multi-label learning. Pattern recognition 45(9):3084–3104

Mark Harman PO (2018) From start-ups to scale-ups: Opportunities and open problems for static and
dynamic program analysis. In: IEEE International Working Conference on Source Code Analysis and
Manipulation, pp. 1–23

Martinez M, Durieux T, Sommerard R, Xuan J, Monperrus M (2017) Automatic Repair of Real Bugs in
Java:, A Large-scale Experiment on the Defects4J Dataset. Empir Softw Eng 22(4):1936–1964

Martinez M, Durieux T, Sommerard R, Xuan J, Monperrus M (2017) Automatic repair of real bugs in java:
a large-scale experiment on the defects4j dataset. Empir Softw Eng 22(4):1936–1964

Martinez M, Monperrus M (2016) ASTOR: A Program Repair Library For Java. In: Proceedings of the 25th
International Symposium on Software Testing and Analysis, Demonstration Track. ACM, pp 441–444

Martinez M, Monperrus M (2018) Ultra-Large Repair Search Space with Automatically Mined Templates:
the Cardumen Mode of Astor. In: Colanzi TE, McMinn P (eds) International Symposium on Search-
Based Software Engineering. Lecture Notes in Computer Science, vol 11036, Springer, pp. 65–86

Martinez M, Monperrus M (2015) Mining software repair models for reasoning on the search space of
automated program fixing. Empir Softw Eng 20(1):176–205

Martinez M, Monperrus M (2019) Coming: A tool for mining change pattern instances from
git commits,” in Proceedings of the 41st International Conference on Software Engineer-
ing: Companion proceedings, ser. ICSE ’19. IEEE Press, p. 79–82. [Online]. Available:
https://doi.org/10.1109/ICSE-Companion.2019.00043

Monperrus M (2018) Automatic Software Repair: a Bibliography. ACM Comput Surv 51(1):17:1–17:24.
[Online]. Available: https://doi.org/10.1145/3105906

Monperrus M, Urli S, Durieux T, Martinez M, Baudry B, Seinturier L (2019) Repairnator patches programs
automatically. Ubiquity, vol. 2019

Motwani M, Sankaranarayanan S, Just R, Brun Y (2018) Do automated program repair techniques repair
hard and important bugs? Empir Softw Eng 23(5):2901–2947

Muñoz MA, Villanova L, Baatar D, Smith-Miles K (2018) Instance spaces for machine learning classifica-
tion. Mach Learn 107(1):109–147

Oliveira C, Aleti A, Grunske L, Smith-Miles K (2018) Mapping the effectiveness of automated test suite
generation techniques. IEEE Trans Reliab 67(3):771–785

Oliveira C, Aleti A, Li Y-F, Abdelrazek M (2019) Footprints of fitness functions in search-based software
testing. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1399–1407

99 Page 28 of 30

https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1109/ICSE-Companion.2019.00043
https://doi.org/10.1145/3105906

Empir Software Eng (2021) 26: 99

Prabhu Y, Varma M (2014) Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learn-
ing. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp 263–272

Qi Z, Long F, Achour S, Rinard M (2015) An Analysis of Patch Plausibility and Correctness for Generate-
and-Validate Patch Generation Systems. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA ’15),. ACM, vol 2015, pp 24–36

Qi Y, Mao X, Lei Y, Dai Z, Wang C (2014) The Strength of Random Search on Automated Program Repair.
In: Proceedings of the 36th International Conference on Software Engineering. ACM, pp 254–265

Quinlan JR (1996) Learning decision tree classifiers. ACM Computing Surveys (CSUR) 28(1):71–72
Rice JR et al (1976) The algorithm selection problem. Advances in computers 15(65-118):5
Ruck DW, Rogers SK, Kabrisky M, Oxley ME, Suter BW (1990) The multilayer perceptron as an approxi-

mation to a bayes optimal discriminant function. IEEE transactions on neural networks 1(4):296–298
Saha RK, Lyu Y, Lam W, Yoshida H, Prasad MR (2018) Bugs.jar: A Large-scale, Diverse Dataset of Real-

world Java Bugs, in International Conference on Mining Software Repositories. ACM, pp 10–13
Smith EK, Barr ET, Le Goues C, Brun Y (2015) Is the Cure Worse Than the Disease? Overfitting in Auto-

mated Program Repair, in Proceedings of the 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE ’15). ACM, pp 532–543

Smith-Miles K, Baatar D, Wreford B, Lewis R (2014) Towards objective measures of algorithm performance
across instance space. Computers & Operations Research 45:12–24

Smith-Miles K, Tan TT (2012) Measuring algorithm footprints in instance space. In: 2012 IEEE Congress
on Evolutionary Computation. IEEE, pp. 1–8

Sobreira V, Durieux T, Madeiral F, Monperrus M, Maia MA (2018) Dissection of a Bug dataset: Anatomy
of 395 Patches from Defects4J. In: Proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER ’18),. Campobasso, Italy: IEEE, pp 130–140

Software RW (2013) University of Cambridge Study: Failure to Adopt Reverse Debugging Costs Global
Economy $ 41 Billion Annually, [Online; accessed 10-December-2018]. [Online]. Available:. https://
www.roguewave.com/company/news/2013/university-of-cambridge-reverse-debugging-study

Tan SH, Yoshida H, Prasad MR, Roychoudhury A (2016) Anti-patterns in search-based program repair. In:
ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 727–738

Tian H, Liu K, Kaboré AK, Koyuncu A, Li L, Klein J, Bissyandé TF (2020) Evaluating representation
learning of code changes for predicting patch correctness in program repair, Inproceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering ACM

Vapnik VN (1995) The nature of statistical learning theory. Berlin heidelberg: Springer-Verlag
Wang S, Wen M, Chen L, Yi X, Mao X (2019) How different is it between machine-generated and developer-

provided patches? an empirical study on the correct patches generated by automated program repair
techniques

Wang S, Wen M, Lin B, Wu H, Qin Y, Zou D, Mao X, Jin H (2020) Automated patch correctness assessment:
How far are we?. 2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp 968–980

Wen M, Chen J, Wu R, Hao D, Cheung S-C (2018) Context-Aware Patch generation for better automated
program repair. In: International conference on software engineering. ACM, pp 1–11

Xin Q, Reiss S (2017) Identifying test-suite-overfitted patches through test case generation. In: Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: Association for Computing Machinery, p. 226–236. [Online]. Available:
https://doi.org/10.1145/3092703.3092718

Xiong Y, Liu X, Zeng M, Zhang L, Huang G (2018) Identifying patch correctness in test-based pro-
gram repair. In: Proceedings of the 40th International Conference on Software Engineering, ser. ICSE
’18. New York, NY, USA: Association for Computing Machinery, p. 789–799. [Online]. Available:
https://doi.org/10.1145/3180155.3180182

Xiong Y, Wang J, Yan R, Zhang J, Han S, Huang G, Zhang L (2017) Precise Condition Synthesis for Program
Repair, in Proceedings of the 39th International Conference on Software Engineering (ICSE ’17). IEEE
Press, pp 416–426

Xuan J, Martinez M, Demarco F, Clement M, Marcote SRL, Durieux T, Berre DL, Monperrus M (2017)
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE, Transactions Software
Engineering 43(1):34–55

Ye H, Martinez M, Durieux T, Monperrus M (2019) A Comprehensive Study of Automatic Program Repair
on the QuixBugs Benchmark, in International Workshop on Intelligent Bug Fixing (co-located with
SANER). IEEE, pp 1–10

Ye H, Gu J, Martinez M, Durieux T, Monperrus M (2019) Automated classification of overfitting patches
with statically extracted code features. arXiv, Tech. Rep. 1910.12057, [Online]. Available: 1910.12057

Page 29 of 30 99

https://www.roguewave.com/company/news/2013/university-of-cambridge-reverse-debugging-study
https://www.roguewave.com/company/news/2013/university-of-cambridge-reverse-debugging-study
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1145/3180155.3180182
http://arxiv.org/pdf/1910.12057

Empir Software Eng (2021) 26: 99

Yu Z, Martinez M, Bissyandé TF, Monperrus M (2019) Learning the relation between code features and code
transforms with structured prediction,” arXiv, Tech. Rep. 1907.09282, [Online]. Available: 1907.09282

Yu Z, Martinez M, Danglot B, Durieux T, Monperrus M (2019) Alleviating patch overfitting with automatic
test generation: a study of feasibility and effectiveness for the nopol repair system. Empir Softw Eng
24(1):33–67

Yuan Y, Banzhaf W (2018) ARJA: Automated Repair Of Java Programs via Multi-Objective Genetic
Programming, IEEE Transactions on Software Engineering, vol PP

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

99 Page 30 of 30

http://arxiv.org/abs/1907.09282

	E-APR: Mapping the effectiveness of automated program repair techniques
	Abstract
	Introduction
	The E-APR Framework
	Buggy Programs
	APR Techniques
	APRT Performance Measures
	Significant Features
	APRT Footprints
	APRT Selection
	Support Vector Machine (SVM)
	Decision Tree (DT)
	Random Forest Classifier (RFC)
	Multi-Layer Perceptron (MLP)

	Experimental Design
	Buggy Program Features
	E-APR Input Data

	Results
	RQ1. What impacts the effectiveness of existing APRTs?
	Footprints Size
	Significant Software Features
	MOA and PMC
	CAM
	AMC
	Observation-based features

	RQ2. Are existing APR datasets significantly different?
	RQ3. How can we select the most suitable APRT?

	Discussion and Threats to Validity
	Features selection
	Correctness of Patches
	Selection of Repair Tools
	Failure Information
	Integration with Repair Infrastructures

	Related Work on the Effectiveness of APR Techniques
	Conclusion
	References

