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Abstract
Modern programming languages (e.g., Java and C#) provide features to separate error-
handling code from regular code, seeking to enhance software comprehensibility and
maintainability. Nevertheless, the way exception handling (EH) code is structured in such
languages may lead to multiple, different, and complex control flows, which may affect
the software testability. Previous studies have reported that EH code is typically neglected,
not well tested, and its misuse can lead to reliability degradation and catastrophic failures.
However, little is known about the relationship between testing practices and EH testing
effectiveness. In this exploratory study, we (i) measured the adequacy degree of EH test-
ing concerning code coverage (instruction, branch, and method) criteria; and (ii) evaluated
the effectiveness of the EH testing by measuring its capability to detect artificially injected
faults (i.e., mutants) using 7 EH mutation operators. Our study was performed using test
suites of 27 long-lived Java libraries from open-source ecosystems. Our results show that
instructions and branches within catch blocks and throw instructions are less covered,
with statistical significance, than the overall instructions and branches. Nevertheless, most
of the studied libraries presented test suites capable of detecting more than 70% of the
injected faults. From a total of 12,331 mutants created in this study, the test suites were able
to detect 68% of them.

Keywords Exception handling testing · Mutation analysis · Adequacy measurement ·
Effectiveness measurement · Exploratory study

1 Introduction

Exception handling (EH) is a forward-error recovery technique used to improve software
robustness (Shahrokni and Feldt 2013). An exception models an abnormal situation -
detected at run time - that disrupts the normal control flow of a program (Garcia et al. 2001).
When this happens, the EH mechanism deviates the normal control flow to the abnormal
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(exceptional) control flow to deal with such situation. Mainstream programming languages
(e.g., Java, Python, and C#) provide built-in facilities to structure the exceptional control
flow using proper constructs to specify, in the source code, where exceptions can be raised,
propagated, and properly handled (Cacho et al. 2014a).

Recent studies have investigated the relationship between EH code and software
maintainability (Cacho et al. 2014b), evolvability (Osman et al. 2017), architectural ero-
sion (Filho et al. 2017), robustness (Cacho et al. 2014a), bug appearance (Ebert et al. 2015),
and defect-proneness (Sawadpong and Allen 2016). Such studies have shown that the effec-
tiveness of EH code is directly linked to the overall software quality (de Pádua and Shang
2017b; 2018). To ensure and assess the EH code, developers make use of software testing,
which, in this context, is referred to as EH testing (Sinha and Harrold 2000; Martins et al.
2014; Zhang and Elbaum 2014).

Despite the importance and the existence of usage patterns and guidelines for EH imple-
mentation (Wirfs-Brock 2006; Bloch 2008; Gallardo et al. 2014; Jenkov 2013), this is a
commonly neglected activity by developers (mostly by novice ones) (Shah et al. 2010).
Moreover, EH code is claimed as the least understood, documented, and tested part of a
software system (Shah et al. 2008; Shah and Harrold 2009; Shah et al. 2010; Rashkovits
and Lavy 2012; Kechagia and Spinellis 2014; Chang and Choi 2016; Dalton et al. 2020). In
addition, (Ebert et al. 2015) have found, in a survey with developers, that about 70% of the
software companies do not test and have no specific testing technique for EH code. This is
a worrisome finding given the importance of EH testing effectiveness.

In the current landscape of software development, researchers commonly study open-
source systems to acquire insights on many aspects of software development and quality,
including architectural practices (Paixao et al. 2017), refactoring (Bavota et al. 2015),
evolution (Koch 2007) and bug fixing (Vieira et al. 2019), to mention a few.

However, to the best of our knowledge, there is no empirical study that observes and
evaluates EH testing practices in open-source software. As a result, the software engineering
community lacks a thorough and concise understanding of good and openly available EH
testing practices. This prevents the further creation of EH testing guidelines that are based
on real-world software and practices instead of textbooks (Hunt and Thomas 2003; Gulati
and Sharma 2017) and rules of thumb.1

Nevertheless, to evaluate software testing as a whole, and EH testing in specific, is
not a trivial task. First, one needs to define what constitutes a good test. Early in 1975,
(Goodenough and Gerhart 1975) defined the concept of test criterion as a way to pre-
cisely state what constitutes a suitable software test. Currently, the code coverage (e.g.,
instruction, branch, and method) criteria have been widely used as a proxy for testing effec-
tiveness (Ivanković et al. 2019; Yang et al. 2019). However, recent studies provide evidence
that high test coverage alone is not sufficient to avoid software bugs (Antinyan et al. 2018;
Kochhar et al. 2017). In parallel, mutation testing (a.k.a, mutation analysis) provides a way
to evaluate the effectiveness of test suites by artificially injecting bugs that are similar to real
defects (Papadakis et al. 2019). Studies have shown that mutant detection is significantly
correlated with real fault detection (Just et al. 2014).

Hence, in this study, we report on the first empirical study that assesses and evaluates
the practices of EH testing in open-source libraries. We developed a tool, called XaviEH,
to assist in these analyses. XaviEH employs both coverage and mutation analysis as prox-
ies for EH testing effectiveness in a certain system. In addition, XaviEH uses tailored

1http://wiki.c2.com/?ExceptionPatterns
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criteria for EH code, including EH-specific coverage measures and mutation operators. In
total, XaviEH measured the adequacy and effectiveness of EH testing of 27 long-lived Java
libraries. Finally, based on the analysis by XaviEH, we assess whether there are types of EH
bugs that are more difficult to detect by the studied libraries’ test suites than others. Finally,
based on the analysis by XaviEH, we ranked these libraries to assess which ones present
significantly better indicators of EH testing effectiveness.

The main contributions of this paper are listed as follows:

– The first empirical study to evaluate adequacy and effectiveness of EH testing practices
in open-source libraries.

– A tool, called XaviEH, to automatically assess the adequacy and effectiveness of EH
testing in a software system.

– A dataset concerning the analysis of 27 long-lived Java libraries regarding their EH
testing practices (Lima et al. 2021).

Overall, our findings suggest that EH code is, in general, less covered than regular
code (i.e., non-EH). Additionally, we provide evidence that the code within the catch
blocks and throw statements have a low coverage degree. However, despite not being
well-covered, the mutation analysis shows that the test suites are able to detect artificial
EH-related faults.

The remainder of this paper is organized as follows. Section 2 provides a background for
our study. Section 3 presents the experimental design of our study. The study results are
presented in Section 4. In Section 5, our results and implications for researchers and prac-
titioners are discussed. Section 6 presents the threats to validity. Section 7 addresses the
related work, and at last, Section 8 concludes the paper and points out directions for future
work.

2 Background

In this section, we describe the general concepts and definitions that provide a background
to our study.

2.1 Software Test Criteria and Adequacy

Goodenough and Gerhart (1975) state that a software test adequacy criterion defines “what
properties of a program must be exercised to constitute a ‘thorough’ test, i.e., one whose
successful execution implies no errors in a tested program”. To guarantee the correctness
of adequately tested programs, they proposed reliability and validity requirements of test
criteria (Zhu et al. 1997). The former requires that a test criterion always produce consistent
test results (i.e., if the program is tested successfully on a certain test set that satisfies the
criterion, then the program should also be tested successfully on all other test sets that
satisfies the criterion). The later requires that the test should always produce a meaningful
result concerning the program under testing (i.e., for every error in a program, there exists
a test set that satisfies the criterion and it is capable of revealing the error).

Code coverage (also known as test coverage) is a metric to assess the percentage of the
source code executed by a test suite. Code coverage is commonly employed as a proxy for
test adequacy (Kochhar et al. 2017). The percentage of code executed by test cases can be
measured according to various criteria, such as: statement coverage, branch coverage, and
function/method coverage (Antinyan et al. 2018). Statement coverage is the percentage of
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statements in a source file that have been exercised during a test run. Branch coverage is
the percentage of decision blocks in a source file that have been exercised during a test run.
Function/Method coverage, is the percentage of all functions/methods in a source file that
have been exercised during a test run. For the rest of this paper, we use code coverage and
test coverage interchangeably.

2.2 Mutation Testing and Analysis

Mutation analysis is a procedure for evaluating the degree to which a program is properly
tested, that is, to measure a test suite’s effectiveness. According to Ammann and Offutt
(2016), mutation testing is commonly used as a “gold standard” in experimental studies for
comparative evaluation of other test criteria. Mutation testing evaluates a certain test suite
by injecting artificial defects in the source code. In this context, a test suite that is able
to identify artificial defects is likely to be able to pinpoint real defects when these occur.
Hence, to maximize mutation testing’s ability to measure the effectiveness of a test suite,
one must inject artificial defects that are as close as possible to real defects (Just et al. 2014;
Papadakis et al. 2018).

A version of a software system with an artificially inserted fault is called a mutant.
Mutation operators are rule-based program transformations used to create mutants from the
original source code of a software system. When executing the test suite of a system in both
the original and mutant code, if the mutant and the original code produce different outputs
in at least one test case, the fault is detected, i.e., the mutant can be killed by the test suite.

Consider M(s) to be the set of mutants created for system s and KM(s) the set of killed
mutants for system s. Mutation score, as detailed in (1), indicates the ratio of killed mutants
compared to all created mutants (Zhu et al. 1997; Ammann and Offutt 2016). Mutation
score indicates the effectiveness of a certain test suite, as it evaluates the test suite’s ability
to find defects.

MutationScore(s) = |KM(s)|
|M(s)| (1)

There are cases where it is not possible to find a test case that could kill a mutant. The
mutant is behaviorally equivalent to the original program. This kind of mutants are referred
to as equivalent mutants. Therefore, to obtain a more accurate mutation score, it is necessary
remove the equivalent mutants E(s) from the set of created mutants, resulting in improved
definition of mutation score, as depicted in (2).

MutationScore(s) = |KM(s)|
|M(s) − E(s)| (2)

A certain variant of a software system is considered a first-order mutant when only a
single artificial defect has been introduced. Differently, higher-order mutants are the ones
generated by combining more than one mutation operator. We focus on first-order mutants
for this study (see Section 3.2).

2.3 Java Exception Handling

In the Java programming language, “an exception is an event, which occurs during the
execution of a program, which disrupts the normal flow of the program’s instructions” (Gal-
lardo et al. 2014). When an error occurs inside a method, an exception is raised. In Java,
the raising of an exception is called throwing. Exceptions are represented as objects fol-
lowing a class hierarchy and can be divided into two categories: checked and unchecked.
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Checked exceptions are all exceptions that inherit, directly or indirectly, from Java’s
Exception class, except those that inherit, directly or indirectly, from Error or
RuntimeException classes, named unchecked ones. Checked exceptions represent
exceptional conditions that, hypothetically, a robust software should be able to recover
from. Unchecked exceptions represent an internal (RuntimeException) or an external
(Error) exceptional condition that a software usually cannot anticipate or recover from. In
Java, only the handling of checked exceptions is mandatory, which obligate developers to
write error-handling code to catch and handle them.

When an exception is raised, the execution flow is interrupted and deviated to a spe-
cific point where the exceptional condition is handled. In Java, exceptions can be raised
using the throw statement, signaled using the throws statement, and handled in the
try-catch-finally blocks. The “throw new E()” statement is an example of
throwing the exception E. The “public void m() throws E,T” shows how the
throws clause is used in the method declaration to indicate the signaling of exceptions E
and T to the method that call m().

The try block is used to enclose the method calls that might throw an exception. If an
exception occurs within the try block, that exception is handled by an exception handler
associated with it. Handlers are represented by catch blocks that are written right below
the respective try block. Multiple catch blocks can be associated with a try block. Each
catch block catches a specific exception type and encloses the exception handler code.
The finally block is optional, but when declared, it always executes when the try block
finishes, with or without an exception occurring and/or being handled. Finally blocks are
commonly used for coding cleanup actions.

3 Experimental Design

Our study aims at investigating practices for EH testing in open-source libraries. To achieve
this, we selected 27 long-lived Java libraries to serve as subjects in our empirical evaluation
(see Section 3.1). Hence, we ask the following research questions:

RQ1. What is the test coverage of EH code in long-lived Java libraries?

First, we measure EH testing adequacy in terms of code coverage measures. We employ
a variant of long-established coverage criteria in the literature (see Section 3.4) to provide
the first insight regarding the extent to which the test suites of the studied Java libraries
exercise EH code.

RQ2. What is the difference between EH and non-EH code coverage in long-lived Java
libraries?

In addition to measuring the coverage of EH code, we also measure the coverage of non-
EH code in each library. By controlling the EH coverage with its non-EH counterpart, we
can reason on how EH testing differs from other testing activities to better understand how
(in)adequate EH testing may be.

RQ3. What is the effectiveness of EH testing in long-lived Java libraries?

We employ mutation testing to assess the effectiveness of EH testing. By leveraging EH
mutation operators derived from real EH bugs, we create artificial defects that are similar to
EH bugs found in real-world software libraries. Next, we measure the mutation score and
use it as a proxy for the effectiveness of EH testing.
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RQ4. To what extent are there EH bugs that are statistically harder to detect by test suites
of long-lived Java libraries?

We employ a combination of the Friedman (Friedman 1940) and Nemenyi (Demšar 2006)
tests to statistically assess whether there are types of EH bugs that are more difficult to
detect by the studied libraries’ test suites than others. We aspire to find a set of EH bugs that
developers must be aware of during testing, aiming at fostering knowledge and improving
the effectiveness of EH testing.

The rest of this section details the methodology employed in our empirical study to
answer the research questions presented above. The complete dataset, source code and
results for this empirical study are available in our replication package (Lima et al. 2021).

3.1 Selection of Long-lived Java Libraries

Our study focuses on the study of EH testing. However, EH is not a trivial activity in
software development (Shah et al. 2010). First, the need for EH commonly arises as sys-
tems evolve and are exposed to a wide range of usage scenarios that expose runtime
flaws (Cacho et al. 2014b; de Pádua and Shang 2018; Chen et al. 2019). Second, EH test-
ing is considered more challenging than non-EH testing due to its (i) complex runtime and
(ii) flakiness (Zhang and Elbaum 2014; Eck et al. 2019). Flaky tests are the ones that can
intermittently pass or fail even for the same code version (Luo et al. 2014). Consider a test
aimed at reproducing the (un)availability of resources at runtime, such as internet connec-
tion or databases, for example. Most of such resources cannot be easily mocked, and the test
execution is bound to an external state of the system, which may cause a flaky behavior.

Hence, to properly study EH testing, we need long-lived subject systems that cater to
a large number of users and usage scenarios. In addition, we need systems with reputably
good quality to maximize the chances that the development team is versed and employ good
practices in both EH and testing.

Therefore, we turned our attention to the Apache Software Foundation ecosystem.2

The Apache Foundation is a well-known open-source software community that leads the
continuous development of open-source general-purpose software solutions. Not only this
community hosts long-lived systems in active development (Apache’s Commons Collec-
tions library, for instance, is now 17 years old) but it is also known to follow good software
engineering practices, where its systems have been the object of a plethora of previous
empirical studies (Shi et al. 2011; Barbosa et al. 2014; Ahmed et al. 2016; Schwartz et al.
2018; Hilton et al. 2018; Digkas et al. 2018; Vieira et al. 2019; Zhong and Mei 2019).

For this particular study, we considered libraries of the Apache Commons Project, which
is an Apache project focused on all aspects of reusable Java components.3 We focused on
libraries because they tend to be more generic and present more usage scenarios than other
systems. As a selection criteria for our study, a library should: (i) be developed in Java; (ii)
employ Maven or Gradle as build system; (iii) present an automatically executable and pass-
ing test suite; (iv) be a long-lived system; and (v) be correctly handled by Spoon (Pawlak
et al. 2016), one of the tools we used to build XaviEH (see Section 3.2). To identify long-
lived libraries, we computed the distribution of the age of all Apache Commons’s libraries
in years. Hence, we considered long-lived systems to be all libraries above the 3rd quartile

2https://apache.org/index.html#projects-list
3https://commons.apache.org/
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in the distribution, which, for this study, represent systems with more than 11 years of active
development.

As a result, we selected 21 libraries out of the 96 available in Apache Commons. We
provide details about each selected library in the first section of Table 1. Nevertheless, while
fit for our empirical study, to consider only libraries from the Apache community would
represent a threat to the study’s generability and diversity (Nagappan et al. 2013). Hence,
we selected 6 additional non-Apache libraries that adhere to the same inclusion criteria
discussed above. These were selected considering their ranking on open-source platforms,
such as GitHub, and personal experience from the authors in using these libraries. The
additional libraries are depicted in the second section of Table 1. In total, our empirical
study considered 27 long-lived libraries from different open-source ecosystems.

Table 1 Summary of selected libraries. While the first section depicts the libraries from Apache Commons,
the second section indicates the selected libraries from other ecosystems. We provide the version we studied
of each library followed by size metrics, such as LoC, number of throw instructions, number of try blocks
etc

Library Version #LoC #Classes #Throw #Try #Catch #Finally #Years

BCEL 6.2 61100 344 406 147 143 5 18

BeanUtils 1.9.3 32150 98 364 126 164 0 18

CLI 1.4 6245 21 29 12 11 1 17

Codec 1.11 18559 55 97 28 22 8 16

Collections 4.2 68319 270 725 28 44 1 18

Compress 1.18 47741 183 425 137 73 39 16

Configuration 2.4 66869 178 306 235 159 96 16

DBCP 2.5 23132 50 279 796 846 23 18

DbUtils 1.7 8850 39 46 41 40 20 16

Digester 3.3.2 22858 132 110 68 72 7 18

Email 1.5 6115 19 74 36 32 9 15

Exec 1.3 4600 26 29 23 23 6 14

FileUpload 1.3.3 6884 23 50 25 26 6 17

Functor 1.0 17617 135 115 0 0 0 16

IO 2.6 28691 112 292 106 80 8 17

Lang 3.8.1 78174 124 380 76 81 5 17

Math 3.6.1 223110 740 1494 118 124 4 16

Net 3.6 47107 175 159 174 180 24 17

Pool 2.6.1 13629 33 79 132 70 79 18

Proxy 1.0 4112 37 36 23 31 0 11

Validator 1.6 17677 62 68 40 49 1 17

Gson 2.8.5 14863 52 222 56 75 5 11

Hamcrest 2.1 7834 77 19 12 13 0 13

Jsoup 1.11.3 18111 55 46 33 32 3 11

JUnit 4.12 17200 149 101 99 119 17 19

Mockito 2.23.11 33505 297 236 91 98 20 12

X-Stream 1.4.11.1 37475 313 461 248 362 19 16
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After selecting the 27 libraries employed in the study, we performed the data collection.
On March 2019, we downloaded the latest available release of each library in which we
could automatically build and execute the test suite without any failing test.

3.2 Assessing Exception Handling Testing with XaviEH

To perform our study, we developed the XaviEH tool. Given a certain software system,
XaviEH is able to automatically perform an analysis regarding the system’s practices on
EH testing. It provides a report on the adequacy and effectiveness of the system’s test suite
when testing EH code. However, before explaining in detail the XaviEH execution steps, it
is worth to mention the limitations of existing tools for test coverage regarding EH code.

Overall, existing test coverage tools (e.g., Cobertura4, JaCoCo5, and OpenClover6) com-
pute all instruction, branch, and method coverages, and outputs such information within a
coverage report following a specific format. In JaCoCo, for instance, one can choose to gen-
erate an XML-based report, which follows a well-defined DTD format7. Figure 1 shows an
example fragment of a JaCoCo XML-based report8. On the upper part of Fig. 1, one can
see the class name that was the target of the test coverage. In the middle of Fig. 1, for each
line of code (comments and empty lines are not taken into account), the report gives the
following information: the line number in the source code file (nr), the number of missed
instructions (mi), covered instructions (ci), missed branches (mb), and covered branches
(cb). Finally, at the bottom of Fig. 1, the report provides a summary for the class under con-
sideration concerning the JaCoCo general coverage metrics (e.g., instruction, branch, line
of code, and method). From this report, one may see that the main limitation of JaCoCo
(which is shared by other test coverage tools) is that it does not differ EH code from non-
EH code. Thus, this information remains hidden in the coverage report. To overcome this
limitation, XaviEH employs static code analysis to determine which parts of the coverage
report are related to EH code and non-EH code.

Figure 2 illustrates the execution steps of XaviEH for a software system. In Step (1),
XaviEH obtains the system’s source code. In case the system is hosted on GitHub, one
can provide the GitHub URL, and XaviEH will use JGit9 to download the source code.
Otherwise, one can simply provide the local source code path to XaviEH.

In Step (2), XaviEH executes the system’s test suite to verify that all tests are pass-
ing. This is necessary to ensure that the next steps will be correctly executed. XaviEH
uses the maven-invoker10 and gradle-tooling-api11 libraries to run the tests
automatically and to identify whether a test suite is passing or not.

Step (3) involves the mutation analysis. XaviEH generates all possible first-order mutants
of the system being analyzed. To do this, XaviEH first searchs the system’s source code
to identify all classes eligible for mutation. In this study, a class is considered eligible if it
has any code structure that can be affected (mutated) by at least one of the seven mutation

4http://cobertura.github.io/cobertura/
5https://www.jacoco.org/jacoco/
6http://openclover.org/
7https://www.jacoco.org/jacoco/trunk/coverage/report.dtd
8https://www.jacoco.org/jacoco/trunk/coverage/jacoco.xml
9https://www.eclipse.org/jgit/
10https://maven.apache.org/shared/maven-invoker/
11https://docs.gradle.org/current/userguide/embedding.html
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Fig. 1 Fragment of a JaCoCo XML-based test coverage report

operators we employ (see Section 3.3). By doing so, XaviEH creates an in-memory data
structure that tracks eligible classes and mutation operators that can be applied to each class.

Next, for each eligible class, XaviEH applies all mutation operators that can be applied
to the class, recording which operator was applied to which class. A mutation operator may
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Fig. 2 Internal steps performed by XaviEH when evaluating the EH testing practices of a software system

be applied to an eligible class more than once. In this case, XaviEH ensures that successive
changes made by a specific mutation operator within the same eligible class do not affect
the same location twice, preventing duplicate mutants from being generated. To perform
both code search and mutant generation tasks, XaviEH uses Spoon12, a library for parsing
and transforming Java source code.

For each mutant, XaviEH runs the system’s test suite against it, recording the pass-
ing and failing test cases. This task is also performed using the maven-invoker and
gradle-tooling-api. Finally, at the end of Step (3), XaviEH provides a mutation
analysis report of the system being analyzed.

In Step (4), XaviEH performs the test coverage analysis using JaCoCo, a Java code cover-
age library for monitoring and tracking code coverage. JaCoCo was chosen for this step for a
couple of reasons. First, some Apache projects already employ JaCoCo as their official tool
for test code analysis within their projects13. Second, JaCoCo is the tool of choice in previ-
ous related empirical studies (Saha et al. 2018; Turner et al. 2016). Hence, by employing a
tool used by both practitioners and researchers, we would enhance XaviEH’s relevance and
actionability. Finally, one of the authors of the paper had previous experience with JaCoCo,
which gave us more control over its integration into XaviEH.

Hence, XaviEH uses JaCoCo to generate a XML-based coverage report for each sys-
tem under analysis. Next, for each system under consideration, XaviEH uses information
from the coverage report and the static code analysis data provided by Spoon to deter-
mine what code parts referred to in the JaCoCo report are related or not to EH code. For
instance, XaviEH employs Spoon to identify which lines of code of a class are within

12https://spoon.gforge.inria.fr/
13https://commons.apache.org/proper/commons-io/project-reports.html
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try-catch-finally blocks and triangulates such information with code line numbers
provided by JaCoCo report to track what instructions and branches within try-catch-
finally blocks are covered or not. Finally, for each system under analysis, XaviEH
collects all information needed to compute a suite of 24 test coverage metrics, as detailed in
Section 3.4.

Finally, in Step (5), XaviEH summarizes the mutant and coverage analysis for the sys-
tem under study. It generates two main reports in CSV files. The first one contains a pair
of values (in the columns) needed to compute the coverage metrics. For instance, consider
the metric CATCH IC (see Section 3.4). In the report, we have the number of instruc-
tions missed (CATCH MI) and covered (CATCH CI) within the catch blocks. In this
case, CATCH IC is computed as CATCH CI/(CATCH MI + CATCH CI). The second report
file contains, for each mutation operator, the number of mutants killed and alive (in the
columns), making it easy to compute the mutation score (see Section 2.2). It is important to
notice that XaviEH does not perform any kind of statistical analysis and, as a limitation, it
only can be employed in the analysis of programs written in Java, automatically built using
Maven or Gradle, and that use JUnit to run its unit tests.

3.3 Mutation Operators and Analysis

As discussed in Section 2.2, we used mutation testing to assess the effectiveness of the test
suites under study on identifying defects related to EH code. Hence, we employed a set of
EH-specific mutation operators proposed in previous studies (Ji et al. 2009; Kumar et al.
2011). Such mutation operators are based on real-world defects collected from empirical
studies in open-source software. Thus, they mirror real defects introduced by developers.
In total, we employed 7 mutation operators, as detailed in Table 2. The first 5 mutation
operators (CBR, CBI, CBD, PTL, and CRE) were proposed by (Ji et al. 2009), and the final
2 operators (FBD and TSD) were proposed by (Kumar et al. 2011).

The meaning of some mutation operators are very straightforward such as CBD, CRE,
FBD, and TSD but the others are not so simple. Thus, to ease the understanding, we provide

Table 2 Mutation operators employed in this study. All operators are based on real-world defects from open-
source systems.

Operator Transformation in the Code

CBR Catch Block Replacement. Replaces the catch block with exception types
present in the invoking exception hierarchy (IEH) (Ji et al. 2009).

CBI Catch Block Insertion. Creates complete catch modules to conceal all types of
exceptions (Ji et al. 2009).

CBD Catch Block Deletion. Deletes the whole catch block to propagate the thrown
exceptions (Ji et al. 2009).

PTL Placing Try Block Later. Brings into the try block, statements placed after the
try block that reference variables inside the try block (Ji et al. 2009).

CRE Catch and Rethrow Exception. Re-throws the caught exceptions which are
propagated to the upper modules (Ji et al. 2009).

FBD Finally Block Deletion. Deletes the whole finally block to propagate the
thrown exceptions (Kumar et al. 2011).

TSD Throw Statement Deletion. Deletes the throw statement that should raise an
exception (Kumar et al. 2011).
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in Fig. 3 an illustrative exception handling code sample (1) and its two exception hierar-
chies (2) and (3). The semantic exception hierarchy (2) indicates the inheritance relationship
between the exception types involved in the EH scenario. The invoking exception hierarchy
(3) aims at organizing the structure of the program according to the relationship of differ-
ent exception handlers using information from the method calls’ chain. In (3), the exception
type of the catch block attached to the try block in methodOne() (caller method)
represents the root node (i.e., FileNotFoundException). Each type of exception
(i.e., IllegalArgumentException and IOException) thrown by methodTwo(),
which is called in the try block of methodOne(), is linked to the root node. These hier-
archies help mutation operators determine how to transform the original program and inject
defects.

Based on the EH code of Fig. 3, we provide in Fig. 4 an illustrative example of the
transformations performed by each EH mutation operator.

3.4 Code CoverageMetrics

In this study, we adopted three different criteria to measure code coverage: instruction,
branch, and method coverage. We have used the XaviEH tool to compute the code coverage
metrics. Instead of statements, XaviEH (through JaCoCo) computes the code coverage by
analyzing bytecode instructions. Thus, we chose instruction coverage instead of statement
coverage for compliance purposes.

We considered four sets of coverage metrics. In the first set, we computed the overall
instruction, branch and method coverage, i.e., considering the library’s entire code base

Fig. 3 An illustrative example of exception handling source code (1), semantic exception hierarchy (2), and
invoking exception hierarchy (3) adapted from (Ji et al. 2009)
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Fig. 4 An illustrative example of the transformations performed by each EH mutation operator regarding the
EH code example shown in Fig. 3

(EH code and non-EH code). This is necessary for us to have a baseline of each library’s
general coverage, so that we can assess whether the EH code coverage presents any disparity
when compared to the overall coverage. We detail the overall code coverage metrics in the
first section of Table 3. Next, the TRY CATCH BC coverage metric represents a specific
EH-related metric that counts different catch blocks associated with a try block being
selected depending on the raised exception type as a case of branching. It is important to
notice that BC metric of the first section of Table 3 does not take try-catch statements
into account to compute branch coverage, which make TRY CATCH BC and BC distinct
coverage metrics.

Next, the coverage metrics in the third set are tailored for EH code. It considers the
instructions and branches inside try, catch and finally blocks. These are detailed
in the third section of Table 3. Finally, the fourth set of coverage metrics is applied to the
code outside try, catch and finally blocks, i.e., non-EH code. Considering the overall
coverage metrics as the baseline (first section), the non-EH coverage metrics (fourth section)
are mathematical complements to the EH coverage metrics (third section). For instance, BC
= EH BC + NON EH BC.
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Table 3 Code coverage metrics computed by XaviEH

Metric Meaning

IC Instruction Coverage. The percentage of instructions exercised by the test suite.

BC Branch Coverage. The percentage of branches exercised by the test suite.

MC Method Coverage. The percentage of methods exercised by the test suite.

TRY CATCH BC Try-Catch Branch Coverage. The percentage of branches of try-catch exer-
cised by the test suite. Each catch block associated with a try block can be
seen as a possible branch based on the exception type.

EH IC Exception Handling Instruction Coverage. Instructions, catch, and finally
blocks plus all throw instructions exercised by the test suite.

EH BC Exception Handling Branch Coverage. The percentage of branches in try,
catch, and finally blocks exercised by the test suite.

TRY IC Try Instruction Coverage. The percentage of instructions in try blocks exer-
cised by the test suite.

TRY BC Try Branch Coverage. The percentage of branches in try blocks exercised by
the test suite.

CATCH IC Catch Instruction Coverage. The percentage of instructions in catch blocks
exercised by the test suite.

CATCH BC Catch Branch Coverage. The percentage of branches in catch blocks exercised
by the test suite.

FINALLY IC Finally Instruction Coverage. The percentage of instructions in finally
blocks exercised by the test suite.

FINALLY BC Finally Branch Coverage. The percentage of branches in finally blocks
exercised by the test suite.

THROW IC Throw Instruction Coverage. The percentage of throw instructions exercised
by the test suite.

THROWS MC Throws Method Coverage. The percentage of methods with a throws clause in
its signature exercised by the test suite.

NON EH IC Non-Exception Handling Instruction Coverage. The percentage of instructions
exercised by the test suite that are not throw and not in try, catch, and
finally blocks.

NON EH BC Non-Exception Handling Branch Coverage. The percentage of branches exer-
cised by the test suite that are not in try, catch, and finally blocks.

NON TRY IC Non-Try Instruction Coverage. The percentage of instructions exercised by the
test suite that are not in try blocks.

NON TRY BC Non-Try Branch Coverage. The percentage of branches exercised by the test
suite that are not in try blocks.

NON CATCH IC Non-Catch Instruction Coverage. The percentage of instructions exercised by
the test suite that are not in catch blocks.

NON CATCH BC Non-Catch Branch Coverage. The percentage of branches exercised by the test
suite that are not in catch blocks.

NON FINALLY IC Non-Finally Instruction Coverage. The percentage of instructions exercised by
the test suite that are not in finally blocks.

NON FINALLY BC Non-Finally Branch Coverage. The percentage of branches exercised by the test
suite that are not in finally blocks.

NON THROW IC Non-Throw Instruction Coverage. The percentage of instructions exercised by
the test suite that are not throw.

NON THROWS MC Non-Throws Method Coverage. The percentage of methods exercised by the test
suite without a throws clause in its signature.

The first and second set of metrics are computed considering the library’s entire code base. The third set of
coverage metrics are specific for exception handling code. Finally, the fourth set is composed of mathematical
complements to the exception handling coverage metrics in the third section
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4 Study Results

4.1 Preliminary Observation of the Libraries’ Overall Coverage

To properly assess EH testing adequacy in terms of EH code coverage, we need to observe
the libraries’ overall coverage to serve as a point of comparison. Otherwise, any high (or
low) levels of EH code coverage that we observe in a library may be due to the high (or low)
levels of overall coverage in the library. Thus, this serves as baseline that we can take into
account when drawing conclusions from our observations.

Figure 5 presents boxplots depicting the distribution of overall instruction, branch, and
method coverage, as detailed in Section 3.4 and Table 3. Note that the distributions were
computed considering all the 27 studied libraries. The median values for Instruction Cov-
erage (IC), Branch Coverage (BC) and Method Coverage (MC) are 82%, 78% and 83%,
respectively. One must notice that apart from 2 outliers, all studied libraries tend to present
coverage degrees in medium to high echelons, reaching more than 95% of coverage for
some libraries in all metrics. This indicates that the libraries under study exhibit mature
testing practices for the libraries’ overall source code.

4.2 RQ1. What is the Test Coverage of EH Code in Long-Lived Java Libraries?

Table 4 presents the computed code coverage metrics of the first three sections of Table 3
for all libraries included in this study.Not all metrics could be computed for all libraries.
For instance, the BeanUtils library presents no finally block in its source code. As a
result, all finally-related coverage metrics (FINALLY IC and FINALLY BC) could not

Fig. 5 Overall code coverage boxplots of the 27 studied libraries (IC - Instruction Coverage, BC - Branch
Coverage, and MC - Method Coverage)
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be computed. We indicate with a ‘-’ all cases in which a certain coverage metric could not
be computed for a certain library.

The boxplots in Fig. 6 show the distribution of general coverage metrics for EH-related
code. These are the EH coverage metrics that correspond to the overall coverage metrics
displayed in Fig. 5 plus the TRY CATCH BC metric. The coverage degree of EH IC ranges
from 55% to 74%, EH BC ranges from 54% to 78%, THROWS MC ranges from 79% to
94%, and TRY CATCH BC ranges from 18% to 47%. Additionally, one should notice there
exist libraries with 100% coverage for EH BC and THROWS MC and with about 2% for
TRY CATCH BC.

We can draw interesting observations when comparing the EH-related coverage with the
equivalent coverage metrics for the whole library displayed in Fig. 5. First, we observe a
larger deviation in the adequacy of EH testing than in overall testing. This is depicted by
how the boxplots for EH coverage tend to be less compact than the overall ones, which tend
to indicate that the EH testing practices tend to be less mature than the overall testing ones.
When considering instruction coverage for EH code, for example, we see libraries with
less than 40% of their EH instructions being covered, where the smallest overall instruc-
tion coverage is above 60%. Nevertheless, this is not always the case. We observed that a
few libraries reached 100% EH method coverage, which did not occur for overall method
coverage in any library. Particularly, looking at the TRY CATCH BC boxplot, we can also
observe that coverage of catch blocks (i.e., the reachability of these blocks instead of the
instructions or branches within them) is very low, indicating that the test suites of the studied
libraries are not able to exercise the code derived from exceptional control flows.

We also plotted boxplots detailing the internal distribution of EH IC (see Fig. 7) and
EH BC (see Fig. 8). Looking at Fig. 7 and the data in Table 4, one can see that instructions
in try and finally blocks have the best coverage degrees. In fact, they assume high
levels of coverage if one consider the interquartile interval, ranging from 77% to 91% for
TRY IC and from 64% to 99% for FINALLY IC. Differently, when considering the lowest
quartile, the throw instructions and catch blocks have the worst coverage, with 25% and

Fig. 6 Distribution of general EH-related code coverage metrics for the libraries under study
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Fig. 7 EH instruction code coverage boxplots of studied libraries

17%, respectively. Hence, this suggests that THROW IC and CATCH IC are the metrics that
impact the general EH IC the most.

Looking at Fig. 8 and the data in Table 4, one can see that the branches in try and
finally blocks have the better coverage when compared to the branches in catch
blocks. In fact, if one consider the median of TRY BC (73%) and FINALLY BC (70%), one
will see that about three-quarters of CATCH BC is covered less than the median coverage
of TRY BC and FINALLY BC. Thus, this suggests that CATCH BC coverage is the one that
impact most of the EH BC coverage.

When analyzing the details of both instruction and branch coverage for EH code, we
find a similar pattern, where try and finally blocks are largely more covered than

Fig. 8 EH branch code coverage boxplots of studied libraries
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throw instructions and catch blocks. This is a worrisome observation because try and
finally blocks are always executed in non-exceptional behaviors. Hence, we deduct that
the test suites of the studied libraries are failing to raise internal (coded in the library) and
external (signaled from third-party libraries as a return of a method call) exceptions. Thus,
despite presenting high coverage for instruction and branches in the overall source code and
EH code, the tests are still mostly exercising non-exceptional flows within the programs,
where the exceptional control flows are not being well tested. This is supported by the
results of the TRY CATCH BC metric.

4.3 RQ2. What is the Difference Between EH and Non-EH Code Coverage
in Long-Lived Java Libraries?

To answer this research question, we first computed the complementary code coverage
metrics (see Table 3) for each studied library and summarize them in Table 5. Next, we
employ two statistical tests to compare EH and non-EH code coverage values, in which we
can verify whether there are statistically significant differences between them. The first test
is the Kolmogorov–Smirnov test (KS), and the second is the Mann-Whitney test (MW), as
detailed in the next paragraphs. We also compute the effect size using Cliff’s delta statis-
tic (Cliff 1993), a non-parametric measure that quantifies the amount of difference between
two groups of observations (EH and non-EH code coverage). This measure can be seen as a
complementary analysis for the corresponding hypothesis testing and p-values. We display
the values for the Cliff’s delta measure and their respective interpretation in the last column
of Table 6.

The KS is a two-sided test for the null hypothesis that two independent samples are
drawn from the same continuous distribution. We test this null hypothesis by taking into
account pairs of samples of non-EH and EH coverage metrics (see Tables 3, 4 and 5). Con-
sider instruction coverage, for example, where we abbreviate it to simply A for brevity. We
measured both EH IC and NON EH IC for all 27 libraries under study. We formulate our
null hypothesis as HA

0 : NON EH IC = EH IC. In case this KS null hypothesis cannot be
rejected, we assume that non-EH and EH code coverage measures have the same distribu-
tion, i.e., there is no statistical difference in instruction coverage for EH and non-EH code
when considereing all libraries. However, in case the KS null hypothesis is rejected, we
assume the alternative hypothesis HA

1 : NON EH IC �= EH IC, which indicates statistical
difference in instruction coverage between EH and non-EH code.

In case statistical difference is indicated by the KS test, we can employ the MW test to
assert whether the coverage values in non-EH code are higher than the coverage values in
EH code, or vice-versa. It is important to observe that the MW test is only performed if the
null hypothesis of KS is rejected. Consider the instruction coverage metric, for example.
The MW test considers the null hypothesis HA

0 : NON EH IC > EH IC. If the MW null
hypothesis cannot be rejected, we assume that the instruction coverage of non-EH code
is significantly greater than the instruction coverage in EH code. Otherwise, we assume
MW’s alternative hypothesis (HA

1 : NON EH IC < EH IC), which indicates that instruction
coverage in EH code is significantly greater than in non-EH code. Table 6 presents the
statistical tests results for all coverage metrics with the significance level of α < 0.05.
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To enhance this analysis, in Fig. 9, we depict boxplots for the instruction, branch and
method coverage for both non-EH and EH code. When comparing the boxplots, one can
see that the EH instruction coverage (EH IC) is lower than non-EH instruction coverage
(NON EH IC). This perception is confirmed by the statistical tests results that reject the
KS null hypothesis HA

0 : NON EH IC = EH IC and did not reject the MW null hypothesis
HA

0 : NON EH IC > EH IC. This indicates that not only the instruction coverage of EH
and non-EH code are statistically different but also that non-EH code is statistically more
covered than EH code.

On the other hand, when considering branch coverage, EH code (EH BC) seems to be
more covered than non-EH code (NON EH BC). Indeed, this perception is confirmed by the
statistical tests results that reject the KS null hypothesis HB

0 : NON EH BC = EH BC and
also reject the MW null hypothesis HB

0 : NON EH BC > EH BC. This is a counterintuitive
observation given the results previously observed in our study. We address this during our
study’ discussion (see Section 5).

Finally, different from instruction and branch coverage, the values of method cover-
age for EH code (THROWS MC) and non-EH code (NON THROWS MC) are visually similar.
However, this perception is not confirmed by the statistical tests that reject both the KS
null hypothesis HC

0 : NON THROWS MC = THROWS MC and the MW null hypothesis HC
0 :

NON THROWS MC > THROWS MC. This indicates that methods without a throws clause
are significantly less covered than methods with a throws clause. Implications for this
finding are also addressed in our discussion section.

Figure 10 presents boxplots detailing instruction coverage metrics for non-EH and EH
code. It depicts coverage values for throw instructions and instructions in try, catch
and finally blocks, respectively. When comparing the boxplots of THROW IC and
NON THROW IC metrics, one may notice that the throw instructions are less covered than
the non-throw instructions. This perception is confirmed by the statistical tests results
that reject the KS null hypothesis HD

0 : NON THROW IC = THROW IC and accept the MW
null hypothesis HD

0 : NON THROW IC > THROW IC. This indicates that even though the

Fig. 9 Overall EH and non-EH code coverage boxplots of studied libraries
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Fig. 10 The EH and non-EH instruction coverage boxplots of studied libraries

libraries under study present a fairly high level of instruction coverage (see Fig. 5), the
instructions that actually raise exceptions are not well covered.

When comparing the boxplots of CATCH IC and NON CATCH IC coverage, one can
see that the instructions inside catch blocks are covered less than the instructions outside
catch blocks. Once again, the statistical tests results confirm this perception by rejecting
the KS null hypothesis HF

0 : NON CATCH IC = CATCH IC and accepting the MW null
hypothesis HF

0 : NON CATCH IC > CATCH IC. This represents additional evidence that
EH code is considerably less covered than non-EH code.

However, when we look at the coverage inside try and finally blocks and their
counterparts (i.e., the coverage of instructions outside try and finally blocks) we real-
ize they are similar. This perception is confirmed by the statistical tests when both the
KS and MW null hypotheses (HE

0 : NON TRY IC = TRY IC and HG
0 : NON FINALLY IC

= FINALLY IC) are accepted. Since try and finally blocks are commonly executed
when no exceptional behavior is exercised, this observation corroborates with previous
findings that code that handle exceptions are not properly tested.

The boxplots of Fig. 11 shows the branch coverage distribution of EH and non-EH
code. When comparing the boxplots of CATCH BC and NON CATCH BC, one must notice
that branches inside catch blocks are less covered than branches outside catch blocks.
Once more, the statistical test results confirm this perception by rejecting the KS null
hypothesis HI

0: NON CATCH BC = CATCH BC and accepting the MW null hypothesis HI
0:

NON CATCH BC > CATCH BC.
However, when we compare the coverage of branches inside try and finally blocks

with their counterparts (the coverage of branches outside try and finally blocks)
we realize they are similar. This perception is also confirmed by the statistical tests
when both the KS and MW null hypotheses (HH

0 : NON TRY BC = TRY BC and HJ
0 :

NON FINALLY BC = FINALLY BC) are accepted. Once again, all findings regarding
branch coverage add to the observation that code which raises and handle exceptions are
statistically less covered than regular code.

Page 23 of 39     85



Empir Software Eng (2021) 26:  85

Fig. 11 The EH and non-EH branch coverage boxplots of studied libraries

4.4 RQ3. What is the Effectiveness of EH Testing in Long-Lived Java Libraries?

In this study, we employ mutation testing to assess the effectiveness of EH testing in
the libraries under study, as detailed in Section 3.2. In Table 7, we present results of the
mutation testing analysis we performed. For each mutation operator (see Section 3.3), we
show the number of mutants killed by the test suite, the number of mutants left alive, and
the mutation score.

Furthermore, in Fig. 12, we present boxplots showing the mutation score distribution for
all libraries and each mutation operator. Note that we computed the distributions considering
only the mutation scores of libraries in which we were able to generate at least one mutant
using the mutation operator associated with the boxplot. In this study, we generated a total
of 12,331 software mutants as follows: 98 (CBI), 2,519 (CBD), 2,519 (CRE), 404 (FBD), 84
(PTL), 80 (CBR), and 6,627 (TSD). Considering all 12,331 created mutants, we computed a
global mutation score of 0.68, which means that 68% of all mutants were killed. Since we
do not eliminate the equivalent mutants, this 0.68 can be seen as a lower boundary value for
the mutation score.

When looking at both the table and figure, one must notice that the libraries under
study achieved mean and median mutation scores above 70% for all but one mutation
operator (FBD), which is considerably high when compared with other studies in the lit-
erature (Reales et al. 2014; Gopinath et al. 2014; Inozemtseva and Holmes 2014a). When
taking into account all mutation operators, the median mutation score achieved is 78%. This
indicates that the test suites in the studied libraries managed to detect a median of 78% of
artificially injected defects. Operators such as CBR and PTL, for example, present median
mutation scores of 100%, indicating that the test suites of most of the libraries under study
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Fig. 12 Mutation scores distribution bloxpots

identified all bugs related to wrongly declared exceptions in catch blocks and wrongly
placed instructions in try blocks.

Nevertheless, this is not the case for all mutation operators. We observe a median muta-
tion score of 59% for the FBD operator, reaching even 0% for some libraries. This indicates
that the libraries under study struggle in identifying defects in finally blocks. This is an
interesting observation because we showed in the previous research question that finally
blocks are highly covered. Hence, although being able to exercise EH code in finally
blocks, the test suites have difficulties in actually identifying defects in them.

It is important to notice that not all mutation operators generated a similar number of
mutants. On the contrary, there are large differences between operators, such as TSD gener-
ating a total of 6,627 mutants for all libraries and CBR generating only 80 mutants overall.
This is due to how each operator generates mutants (see Section 3.3). While TSD simply
deletes a throw statement, CBR identifies a catch block and searches the exception hier-
archy to replace the exception for a derived type. Hence, it is expected that there will be
much more throw statements to be deleted throughout all libraries than derived exceptions
in catch blocks to be replaced. However, there seems to be no relationship between the
number of mutants generated to the mutation score achieved. For example, two operators
with a small number of generated mutants, such as FBD and PTL, represent the operators
with smallest and highest median of mutation score, respectively. The relationship between
number of mutants and the respective effectiveness of the test suite for this type of defects
is still open for investigation.

4.5 RQ4. ToWhat Extent are there EH Bugs that are Statistically Harder to Detect
by Test Suites of Long-Lived Java Libraries?
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To properly answer this research question, we employed a statistical test to verify
whether there is any significant difference between the effectiveness of the studied libraries’
test suites in detecting different types of artificially injected EH bugs (i.e., EH mutants).
We used the Friedman test (1940), which aims at quantifying the consistency of the results
obtained by a test suite when applied over several types of EH bugs. We applied each of the
7 mutation operators to each library, collecting the mutation score for each case. Next, we
rank the 7 operators for each library according to their mutation score (the highest muta-
tion score getting rank 1, the second-highest rank 2 and so on). We leverage the Friedman
test to check whether the mutation score for any of the 7 mutation operators ranks consis-
tently higher or lower than the others. In the current setting, the null hypothesis states that
there is no statistical difference in detecting different types of EH bugs. If the Friedman
null hypothesis is rejected, a post-hoc test must be applied to identify what type of EH bug
is significantly easier/harder to detect than others. For this purpose, we adopt the post-hoc
Nemenyi test (Demšar 2006).

To ensure that the Friedman’s test will yield significant results, the data points cannot
present missing values. Since XaviEH could not generate mutants for a few operators in
some libraries (see Table 7), we selected for this analysis only the test suites of libraries that
XaviEH could generate mutants for all mutation operators, which represents a total of 15
studied libraries. Despite losing data points for this analysis, we can still observe statistically
significant results because Friedman’s test guidelines state that p-values are reliable for
more than 6 measurements14 (libraries’ test suites in our study).

For each libraries’ test suite, we used the set of all 7 EH mutation operators and ranked
them according to their mutation scores. Consider the BCEL library, for example. The PTL
operator presented the highest mutation score, which indicates that this was the easiest type
of EH bug to detect in this library, yielding a rank 1. Similarly, the FBD operator received the
rank 7 because it presented the lowest mutation score for all operators in the BCEL library.
Next, we averaged the rankings for all mutation operators and produced the final average
ranking. We present all computed rankings in Table 8.

According to the Friedman test, the average ranking difference is significant with p-value
= 1.2×10−4. Hence, we attest that there exists types of EH bugs that are statistically harder
to identify by the test-suites under study. Next, we employed Nemenyi’s post-hoc test, which
showed a Critical Difference of CD = 2.32. In this context, the performance of two mutation
operators is said to be significantly different if their average ranking differ by at least the CD
level. The CD metric is computed using (3), where k is the number of mutation operators, N
is the number of test suites (libraries), and qα is a pre-calculated critical value that one must
pick up from a reference table by observing the value of k and the confidence interval (α).
Thus, for our study k = 7, N = 15, α = 0.05, and q0.05 = 2.948.

CD = qα

√
k(k + 1)

6N
(3)

Based on these results, we can conclude that the FBD and TSD mutation operators gen-
erate EH bugs that are statistically more difficult to detect than EH bugs generated by the
PTL and CBR mutation operators. Additionally, the CRE and CBD operators generate EH
bugs that are significantly harder to detect than EH bugs generated by the PTL operator.
Even though we observe differences in the ranking between FBD, TSD, CRE, and CBD, we

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
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Table 8 The ranks and average rank of mutation scores

Library CBI CBD CRE FBD PTL CBR TSD

BCEL 3.0 4.5 4.5 7.0 1.0 2.0 6.0

Compress 1.5 3.0 4.0 6.0 1.5 7.0 5.0

Configuration 7.0 4.5 4.5 3.0 1.5 1.5 6.0

DBCP 5.0 7.0 6.0 3.0 1.5 1.5 4.0

Digester 7.0 3.5 3.5 5.0 1.0 2.0 6.0

Email 2.0 5.0 6.0 7.0 2.0 2.0 4.0

IO 2.0 6.0 7.0 5.0 2.0 2.0 4.0

Lang 2.0 4.0 6.0 5.0 2.0 2.0 7.0

Math 6.0 3.0 2.0 7.0 1.0 5.0 4.0

Net 3.5 5.0 2.0 7.0 3.5 1.0 6.0

Pool 6.0 3.5 3.5 7.0 1.5 1.5 5.0

Validator 2.0 4.0 6.0 7.0 2.0 2.0 5.0

Gson 2.0 5.0 4.0 7.0 2.0 2.0 6.0

JUnit 2.5 4.0 5.0 7.0 2.0 2.0 6.0

X-Stream 4.0 3.0 2.0 6.0 1.0 7.0 5.0

Average rank 3.7 4.3 4.4 5.9 1.7 2.7 5.3

cannot ascertain significant statistical difference between them. This indicates that, accord-
ing to our empirical study, these are equally the most difficult types of EH bugs to detect.

5 Discussion

In this section, we sum up the most important findings of our empirical study and discuss
their implications. Finally, we briefly discuss how XaviEH could be used in practice.

5.1 On the Adequacy of EH Testing

In RQ1-2, we present empirical and statistical evidence that EH code is less covered than
regular code in the libraries under study. Moreover, we show that within coverage of EH
code, instructions and branches inside catch blocks and throw instructions are statis-
tically less covered than instructions and branches in try and finally blocks. This
indicates that not only these test suites do not properly cover EH code (statements in catch
blocks) but also that these suites are not able to exercise the code parts responsible for rais-
ing exceptions (throw statements). We followed on this insight by computing two sets of
Spearman’s correlations considering all the libraries under study.

The first correlation was computed between throw instruction coverage (THROW IC)
and catch blocks’ instruction coverage (CATCH IC), and the second between throw
instruction coverage (THROW IC) and catch blocks branch (CATCH BC) coverage. The
results show a strong correlation in both cases with ρ = 0.582664 (THROW IC and
CATCH IC) and ρ = 0.674882 (THROW IC and CATCH BC). The correlation results con-
firm that these coverage values are strongly connected, as empirically observed. We suggest
two possible scenarios that may explain such correlations. In the first scenario, the catch
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blocks not being covered are the ones responsible for catching the exceptions not being
raised. Differently, in the second scenario, the two elements (throw statements and catch
blocks) are not connected, which may include JRE and other external exceptions not being
caught, for instance. Further studies are needed to thoroughly understand this phenomenon.

Our study shows that developers need better support in designing test cases that exercise
exceptional behaviors. In addition to creating guidelines, this may be accomplished through
search-based testing (McMinn 2004), where optimization algorithms and metaheuristics
are used to generate test cases according to a certain objective function automatically. In
this case, one could set the coverage of throw instructions and branches and instructions
inside catch blocks as a goal. To the best of our knowledge, there is existing work in this
direction (Romano et al. 2011).

5.2 On the Effectiveness of EH Testing

RQ3-4 shows that despite not properly covering EH code, the test suites of the libraries
under study are surprisingly effective in identifying artificially injected faults (EH mutants).
Most of the libraries presented mutation scores of more than 68% for most mutation opera-
tors. However, this was not the case for all operators. In fact, we showed that there do exist
statistically harder types of EH bugs to identify. These are commonly related to mutations
in throw statements and catch and finally blocks. This is an interesting finding that
corroborate with what we have previously discussed. The code in EH mechanism that actu-
ally raises (throw statements) and handles exceptions (statements in catch blocks) seems
to be the most fragile, in which it is less covered and more difficult to identify faults.

5.3 On Qualitatively Assessing our Results

Despite our paper having the main goal of quantitatively assessing EH testing practices in
real-world libraries, we found a few interesting cases among the data in which a closer
inspection may yield interesting insights.

First, we noticed that the coverage results for the different libraries presented a wide
variation. For this analysis, we take the value of TRY CATCH BC as our metric of compar-
ison. We chose this metric because it is a good representative of EH testing adequacy, as
previously discussed in our results sections. Based on this metric, CLI presented the best
coverage results with 73% of its catch blocks being covered. As its counterpart, BCEL
only covers 2% of its catch blocks. This may be explained by the size of each library.
While BCEL is composed of 344 classes and contains 143 catch blocks, CLI is composed
of 21 classes and contains only 11 catch blocks. However, this behavior is not repeated
through the whole dataset. Math, for instance, is the largest library with 740 classes, and
it covers 47% of its 180 catch blocks. We suggest that further studies are needed to fully
understand this phenomenon.

In our study, we collected data from Apache and non-Apache libraries. Although the
number of libraries in both subsets does not allow for statistical comparisons, we can still
observe a few interesting details. All of the non-Apache libraries achieve less than 50%
catch blocks coverage, as according to TRY CATCH BC. Differently, 5 out of 21 Apache
libraries cover more than half of its catch blocks. This observation is especially interesting
because 3 of the non-Apache libraries are testing-related frameworks (Hamcrest, JUnit
and Mockito). This attests to the well-known quality control of the Apache ecosystem.
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5.4 On the Usefulness of XaviEH

Our empirical study was powered by XaviEH, a tool that automatically generates a complete
analysis and report of EH coverage and mutation testing for a certain Java system. XaviEH
can be easily employed by developers as an EH testing diagnostics tool. Based on XaviEH
outputs, developers can plan and improve their test suites regarding EH code.

Furthermore, given its full automated features, XaviEH could be also accommodated
in continuous integration pipelines. In this context, developers would receive EH testing
reports in each commit, which could create and foster a culture of continuous improvement
of EH testing practices. In addition, XaviEH’s outputs could be employed as metrics and
proxies of testing effectiveness, as well as goals to be achieved by the development team.

6 Threats to Validity

The threats to the validity of our investigation are discussed using the four threats classification
(conclusion, construct, internal, and external validity) presented by (Wohlin et al. 2012).

6.1 Conclusion Validity

Threats to the conclusion validity are concerned with issues that affect the ability to draw
correct conclusions regarding the treatment and the outcome of an experiment. To deal with
this threat, we carefully chose proper statistical tests (KS, MW, Friedman, and Nemenyi
tests) that have been investigated and validated in previous studies (Kumar et al. 2011; Ji
et al. 2009). We also selected correlation measures (Spearman’s rank-order correlation coef-
ficient) to investigate the relationship between different aspects of EH testing (by means of
code coverage and mutation analysis) and its effectiveness. Additionally, we have observed
the assumptions (e.g., samples distribution, dependence, and size) of all statistical tests we
used, trying to avoid wrong conclusions. Finally, regarding the limited set of long-lived Java
libraries, we collected them from open-source communities following a carefully defined
set of criteria to ensure the disposal of other libraries that were not aligned with the study.

6.2 Internal Validity

Threats to internal validity are influences that can affect the independent variable with
respect to causality, without the researcher’s knowledge. Thus they threat the conclusion
about a possible causal relationship between treatment and outcome. Even not being inter-
ested in drawing causal relationships in our study, we have identified that some independent
variables not known by us have some influence on the relationship between the EH code
coverage and the mutation scores distribution in the studied libraries.

6.3 Construct Validity

Construct validity concerns generalizing the result of the study to the concept or theory
behind the study. To avoid inconsistencies in the interpretation of the results and research
question, a peer debriefing approach was adopted for both research design validation and
document review. Additionally, we developed a tool, XaviEH, in order to automate most of
the study’s parts, with an aim to avoid or alleviate the occurrence of human-made mistakes
(or bias) during the execution of our experiments.
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6.4 External Validity

Threats to external validity are conditions that limit our ability to generalize the results of
our study to industrial practice. The main threats to this validity are related to the domain
and sample size (i.e., the 27 libraries) we used in this study. Concerning the sample domain,
we try to deal with this threat by arguing that the library domain is an interesting one that
presents several and different usage scenarios, which is quite interesting from a testing eval-
uation point of view. Additionally, concerning the sample size, we dealt with this threat by
using diversity and longevity criteria. We chose libraries from Apache and picked up other
well-know libraries developed by other development teams to get more diversity in terms of
team knowledge, skills, and coding practices. Finally, we chose libraries that are long-lived
as a way to guarantee a degree of maturity and stability.

7 RelatedWork

In this section, we present the related work that, in some way, are related to our study.

7.1 Exception Handling and Software Bugs

Previous work has investigated and provided evidence on the positive correlation between
exception handling code and software defect proneness (Marinescu 2011; 2013). This
correlation emerges from sub-optimal exception handling practices (i.e., anti-patterns and
flow characteristics) current adopted by software developers (Sawadpong and Allen 2016;
de Pádua and Shang 2018). Additionally, the exception handling is usually neglected by
developers (mainly by novices ones) and is considered as one of the least understood, doc-
umented, and tested part of a software system (Shah et al. 2010; Zhang and Elbaum 2014;
Chang and Choi 2016; Oliveira et al. 2018).

The studies conducted by Barbosa et al. (2014) and Ebert et al. (2015) gather evidence
that erroneous or improper usage of exception handling can lead to a series of fault patterns,
named “exception handling bugs”. This kind of faults refer to bugs in which the primary
source is related to (i) the exception definition, throwing, propagation, handling or docu-
mentation; (ii) the implementation of cleanup actions; and (iii) wrong throwing or handling
(i.e., when the exception should be thrown or handled and it is not). Barbosa et al. (2014) cat-
egorizes 10 causes of exception handling bugs, analyzing two open-source projects, Hadoop
and Apache Tomcat. Ebert et al. (2015) extends Barbosa et al. (2014) study, presenting a
comprehensive classification of exception handling bugs based on a survey of 154 devel-
opers and the analysis of 220 exception handling errors reported from two open-source
projects, Apache Tomcat and Eclipse IDE. Kechagia and Spinellis (2014) studied undocu-
mented runtime exceptions thrown by the Android platform and third-party libraries. They
mined 4,900 different stack traces from 1,800 apps looking for undocumented API meth-
ods with undocumented exceptions participating in the crashes. They found that 10% of
crashes might have been avoided if the correspondent runtime exceptions had been properly
documented.

de Pádua and Shang (2017a, b, 2018) conducted a series of studies concerning excep-
tion handling and software quality. In the first study, they conducted an investigation on
the prevalence of exception handling anti-patterns across 16 open-source projects (Java and
C#). They claim that the misuse of exception handling can cause catastrophic software fail-
ures, including application crashes. They found that all 19 exception handling anti-patterns
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taken into account in the study are broadly present in all subject projects. However, only 5
of them (unhandled exception, generic catch, unreachable handler, over-catch, and destruc-
tive wrapping) are prevalent. Next, de and Shang (2017a) conducted a study revisiting the
exception handling practices by analyzing the flow of exceptions from the source of excep-
tions until its handling blocks in 16 open-source projects (Java and C#). Once researchers
understood that exception handling practices might lead to software failures, their identi-
fication highlight the opportunities of leveraging automated software analysis to assist in
exception handling practices.

de Pádua and Shang (2018) focuses on understanding the relationship between excep-
tion handling practices and post-release defects. They investigated the relationship between
post-release defect proneness and: (i) exception flow characteristics; and (ii) 17 exception
handling anti-patterns. Their finds suggest that development teams should find a way to
improve their exception handling practices and avoid the anti-patterns (e.g., dummy han-
dler, generic catch, ignoring interrupted exception, and log and throw), that are found to
have a relationship with post-release defects.

Coelho et al. (2017) mined 6,000 stack traces from over 600 open-source projects issues
on GitHub and Google Code searching for bug hazards regarding exception handling. Addi-
tionally, they surveyed 71 developers involved in at least one of the projects analyzed. As a
result, they found four bug hazards that may cause bugs in Android applications: (i) cross-
type exception wrapping; (ii) undocumented unchecked exceptions raised by the Android
platform and third-party libraries; (iii) undocumented check exceptions signaled by native
C code; and (iv) programming mistakes made by developers. The survey’s results corrobo-
rate the stack trace findings, indicating that developers are unaware of frequently occurring
undocumented exception handling behavior.

Similar to the mentioned studies, our study investigates EH testing practices in 27 long-
lived Java libraries with more than 11 years of active development. We generated a total of
12,331 software mutants and observed that the systems present effective test suites for EH
code, where more than 68% of the defects were identified. However, the libraries present
difficulties in identifying defects in finally blocks.

7.2 Exception Handling Testing

Ji et al. (2009) proposes 5 types of exception handling code mutants: Catch Block Replace-
ment (CBR), Catch Block Insertion (CBI), Catch Block Deletion (CBD), Placing Try Block
Later (PTL), Catch and Rethrow Exception (CRE). Kumar et al. (2011) develops 5 types of
mutants for exception handling code, namely: Catch Clauses Deletion (CCD), Throw State-
ment Deletion (TSD), Exception Name Change (ENC), Finally Clause Deletion (FCD) and
Exception Handling Modification (EHM). These operators try to replace, insert, delete some
catch blocks, add statements to re-throws a caught exception, and try to rearrange try
blocks by including statements with some relevant references after the catch blocks. In
our study, we employed 7 mutation operators, 5 (CBR, CBI, CBD, PTL, and CRE) from Ji
et al. (2009) and 2 (FCD we call FBD and TSD) from Kumar et al. (2011).

Zhang and Elbaum (2014) presents an automated approach to support the detection of
faults in exception handling code that deals with external resources. The study revealed that
22% of the confirmed and fixed bugs have to do with poor exceptional handling code, and
half of those correspond to interactions with external resources. In our study, we identified
as a result that despite presenting high coverage for instruction and branches in the overall
source code and EH code, the tests are still mostly exercising non-exceptional flows within
the programs, where the exception behaviors are not being tested.
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Goffi et al. (2016) presented a technique to automatically generate test oracles for
exceptional behavior, called Toradocu. Toradocu uses natural language processing to auto-
matically extract conditional expressions regarding exceptional behavior from Javadoc
comments. An empirical evaluation shows that Toradocu improves the fault-finding effec-
tiveness of EvoSuite and Randoop test suites by 8% and 16% respectively, and reduces
EvoSuite’s false positives by 33%.

Zhai et al. (2019) undertook a study of code coverage in popular Python projects: flask,
matplotlib, pandas, scikit-learn and scrapy. In this study, the authors found that coverage
depends on the control flow structure, with more deeply nested statements being signifi-
cantly less likely to be covered. Other findings of the study were that the age of a line per
se has a small (but statistically significant) positive effect on coverage. Finally, they found
that the kind of statement (e.g., try, if, except, and raise) has a varying impact on coverage,
with exception handling statements being covered much less often. The results suggest that
developers in Python projects have difficulty writing test sets that cover deeply-nested and
error-handling statements, and might need assistance covering such code.

Dalton et al. (2020) performed a study to understand how 417 open source Java projects
are testing the exceptional behavior. They looked at test suites coded using JUnit and
TestNG frameworks, and the AssertJ library. Overall, they count test methods that expect
exceptions to be raised, which they called “exceptional behavior testing”. They found that
(i) 60.91% of projects have at least one test method dedicated to testing the exceptional
behavior; (ii) the number of test methods for exceptional behavior with respect to the total
number of test methods lies between 0% and 10% in 76.02% of projects; and (iii) 57.31% of
projects test only up to 10% of the used exceptions in the system under test. They triangulate
such results with a survey with 66 developers from the studied projects. The survey respon-
dents confirm the findings and support the claim that developers often neglect exceptional
behavior tests. However, different from our study, Dalton et al. (2020) did not evaluate the
adequacy and effectiveness of exceptional behavior testings itself (i.e., did not run the test
methods that exercise the exceptional behaviors of the system under test). Instead, they per-
formed a static analysis of the testing code to gather evidence on whether or not there are
test methods intended to test the exceptional behavior.

Our study used long-lived Java libraries and our results shows that in spite of the low cov-
erage for instruction and branches related to EH code, the unit tests of the studied libraries
were able to detect a significant amount of artificially injected faults.

7.3 Code Coverage

Gligoric et al. (2013) presented an extensive study that evaluates coverage criteria over
non-adequate test suites. The authors analyzed a large set of plausible criteria, including
statement and branch coverage, as well as stronger criteria used in recent studies. Two crite-
ria performed best: branch coverage and intra-procedural acyclic path coverage. The study’s
results suggest that researchers should use branch coverage to compare suites whenever
possible, but all evaluated criteria performed well to predict mutation scores.

Inozemtseva and Holmes (2014b) conducted one of the first large studies that investi-
gated the correlation between code coverage and test effectiveness. Their study took into
account 31,000 test suites generated for five large Java systems. They measured code cov-
erage (statement, branch, and modified condition) using these test suites and employed
mutation testing to evaluate the effectiveness of such test suites in revealing the injected
faults. They found that there is a low to moderate correlation between coverage and effec-
tiveness when the number of test cases in the suite is controlled for this purpose. Kochhar
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et al. (2015) conducted a study seeking out to investigate the correlation between code cov-
erage and its effectiveness in real bugs. The experiment was performed, taking into account
67 and 92 real bugs from Apache HTTPClient and Mozilla Rhino, respectively. They used a
tool called Randoop, to generate random test suites with varying levels of coverage and run
them to analyze the capability of these synthetic test suites in detecting the existing bugs in
both systems. They found that there is a statistically significant correlation between code
coverage and bug detection effectiveness.

Chekam et al. (2017) conducted a study using a robust experimental methodology that
provided evidence to support the claim that strong mutation testing yields high fault rev-
elation, while statement, branch and weak mutation testing enjoy no such fault revealing
ability. The findings also revealed that only the highest levels of strong mutation coverage
attainment have strong fault-revealing potential.

Kochhar et al. (2017) performed a large scale study concerning the correlation between
real bugs and code coverage of exiting test suits. This study took into account 100 large
open-source Java projects. They extracted real bugs recorded in the project’s issue tracking
system after the software release and analyzed the correlations between code coverage and
these bugs. They found that the coverage of actual test suites has an insignificant correlation
with the number of bugs that are found after the software release.

Schwartz et al. (2018) argues that previous work provides mix results concerning the
correlation between code coverage and test effectiveness (i.e., some studies provide evi-
dence on a statistically significant correlation between these two factors, while others do
not). Thus, they hypothesize that the fault type is one of the sources that may be leading
to these mixed results. To investigate this hypothesis, they have studied 45 different types
of faults and evaluated how effectively human-created test suites with high coverage per-
centages were able to detect each type of fault. The study was performed on 5 open-source
projects (Commons Compress, Joda Time, Commons Lang, Commons Math, and JSQL
Parser), which have at least 80% statement coverage. The mutation testing technique was
employed to seed 45 types of faults in the program’s code to evaluate the effectiveness of
the existing unit test suites in the detection of such fault types. Their findings showed that,
with statistical significance, there were specific types of faults found less frequently than
others. Additionally, based on their findings, they suggest developers should put more focus
on improving test oracles strength along with code coverage to achieve higher levels of test
effectiveness.

Our study analyzes the test coverage compared to the EH code. We developed a tool,
called XaviEH, which employs both coverage and mutation analysis as proxies for the effec-
tiveness of EH testing in a certain libraries. Our findings suggest that EH code is, in general,
less covered than regular code (i.e., non-EH).

8 Conclusion and Final Remarks

In this study, we empirically explored EH testing practices by analyzing in which degree
the EH code is covered by unit-test suites of 27 long-lived java libraries and how effective
these test suites are in detecting artificially injected EH faults. Our findings suggest that,
indeed, EH code is, in general, less covered than non-EH code. Additionally, we gather
evidence indicating that the code within catch blocks and the throw statements have a
low coverage degree. However, even being less covered, the mutation analysis shows that
the test suites can detect most of the artificial EH faults.
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To the best of our knowledge, this is the first study that empirically addresses this con-
cern. Thus, the results achieved in this study can be seen as a starting point for further
investigation regarding testing practices for EH code.

This study was deeply supported by the XaviEH tool. Without this level of automa-
tion, it would not be possible to manually extract and synthesize information regarding
EH code coverage and EH mutation scores. Therefore, we freely turn it available to the
community (Lima et al. 2021). We include XaviEH’s source code and usage instructions.

As future work, we are interested in (i) investigating the performance of the libraries test
suites against real-world bugs; (ii) investigating the performance of the libraries test suites
in a software evolution scenario; (iii) exploring libraries from different domains; and (iv)
inspecting the test suites to identify and catalog what practices make a test suite better than
others regarding EH testing.
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