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Abstract
Non-functional bugs, e.g., performance bugs and security bugs, bear a heavy cost on both
software developers and end-users. For example, IBM estimates the cost of a single data
breach to be millions of dollars. Tools to reduce the occurrence, impact, and repair time
of non-functional bugs can therefore provide key assistance for software developers racing
to fix these issues. Identifying bug-inducing changes is a critical step in software quality
assurance. In particular, the SZZ approach is commonly used to identify bug-inducing com-
mits. However, the fixes to non-functional bugs may be scattered and separate from their
bug-inducing locations in the source code. The nature of non-functional bugs may there-
fore make the SZZ approach a sub-optimal approach for identifying bug-inducing changes.
Yet, prior studies that leverage or evaluate the SZZ approach do not consider non-functional
bugs, leading to potential bias on the results. In this paper, we conduct an empirical study
on the results of the SZZ approach when used to identify the inducing changes of the
non-functional bugs in the NFBugs dataset. We eliminate a majority of the bug-inducing
commits as they are not in the same method or class level. We manually examine whether
each identified bug-inducing change is indeed the correct bug-inducing change. Our manual
study shows that a large portion of non-functional bugs cannot be properly identified by the
SZZ approach. By manually identifying the root causes of the falsely detected bug-inducing
changes, we uncover root causes for false detection that have not been found by previous
studies. We evaluate the identified bug-inducing changes based on three criteria from prior
research, i.e., the earliest bug appearance, the future impact of changes, and the realism of
bug introduction. We find that prior criteria may be irrelevant for non-functional bugs. Our
results may be used to assist in future research on non-functional bugs, and highlight the
need to complement SZZ to accommodate the unique characteristics of non-functional bugs.
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1 Introduction

Since the first software bug was discovered in 1945, software engineers have been devel-
oping techniques to attempt to fix and prevent them (Gyimothy et al. 2005; Hassan 2009;
Kamei et al. 2013). Bugs are costly to fix, and increase maintenance effort (LaToza et al.
2006). In a world that is ever more reliant on software (Grubb and Takang 2003), it
appears more important than ever before to have quality software and to be able to fix
bugs in a timely manner when they do appear. To this end, researchers have developed sev-
eral approaches to identify prior bug-inducing changes to help development teams avoid
future bugs by learning from their mistakes (Gyimothy et al. 2005; Hassan 2009; Kamei
et al. 2013).

One technique to help with bug localization, called the SZZ approach, attempts to find
the source-code changes that first induces a software bug (Kim et al. 2006; Śliwerski et al.
2005). However, the SZZ approach, like other bug localization techniques (Kim and Lee
2018), is not perfect. Previous studies have shown that the SZZ approach can mislabel some
changes as bug-inducing (Kim et al. 2006). These mislabels include semantically equivalent
changes, directory or file renames, and initial code importing changes (Fan et al. 2019;
da Costa et al. 2017; Neto et al. 2018). An evaluation framework exists to evaluate the
various implementations of the SZZ approach that attempt to remedy these issues (da Costa
et al. 2017). However, the SZZ evaluation framework and the existing SZZ approaches
concentrate on mixed bugs or functional bugs, without verifying the validity of the approach
on non-functional bugs.

Functional changes and their software fixes are mainly localized, while non-functional
bugs may be scattered and require fixes in various parts of the software (Hamill and Goseva-
Popstojanova 2014). For example, if a code change introduces a security vulnerability,
security measures to counteract this may be implemented elsewhere (Williams et al. 2018;
Mahrous and Malhotra 2018; Ping et al. 2011). If a code change introduces a performance
issue, this performance issue may be fixed and improved in a different part of the sys-
tem (Nistor et al. 2013; Jin et al. 2012), for example by changing configuration parameters.
Non-functional bugs can be harder to fix than their functional counterparts. For example,
it has been found that developers will often spend more time fixing performance bugs than
fixing non-performance bugs (Zaman et al. 2011). As performance bugs are a type of non-
functional bug (“What is non functional testing? Types with example.” [Online]. Available:
https://www.guru99.com/non-functional-testing.html), the SZZ approach would seemingly
be useful in helping developers locate where to fix a performance bug in the source code.
Due to the differing nature of non-functional bugs and functional bugs (Radu and Nadi 2019;
Glinz 2007), it is possible for non-functional bugs to present differently in source code, and
therefore have different tooling requirements. Due to the scattered nature of non-functional
bugs, we suspect that the SZZ approach might perform worse on non-functional bugs than
mixed bugs, namely functional bugs which can have a single concrete inducing commit that
can be tracked down through the SZZ approach. In this paper we seek to determine the
usefulness of the SZZ approach in finding the cause of non-functional bugs. This paper pro-
vides an evaluation of the SZZ approach with respect to non-functional bugs, while previous
studies (Kim et al. 2006; Kim and Whitehead 2006; Pan et al. 2009; Kamei et al. 2013) are
evaluated on mixed bugs (both functional and non-functional) without distinction. We lever-
age the NFBugs dataset as a source of identified non-functional bugs (Radu and Nadi 2019).
The NFBugs dataset identifies bugs that specifically affect non-functional requirements, as
well as the root cause of these bugs, for 65 open-source projects (Radu and Nadi 2019).
This dataset presents a vetted source of bugs and their root causes with which to test the
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Fig. 1 Procedure followed to evaluate bug-inducing commits identified by the SZZ approach

SZZ approach. We therefore use this dataset to test the effectiveness of the SZZ approach
on non-functional bugs. To determine the usefulness of the SZZ approach with respect to
non-functional bugs, we evaluate the SZZ approach based on three criteria: (1) the ability
of the SZZ approach to identify bug-inducing changes for non-functional bugs; (2) the dif-
ferences of inducing changes for non-functional bugs when compared to functional bugs;
and (3) the characteristics of bug-inducing commits falsely identified by an SZZ approach
as bug-inducing for non-functional bugs (Fig. 1).

Upon evaluation of the SZZ approach, we filter out commits wrongly identified as
bug-inducting commits by the SZZ approach (false-positives). Furthermore, we conduct a
manual verification of the results of SZZ on our dataset to determine whether bug-inducing
commits identified by the SZZ approach do in fact cause their related non-functional bugs.
We use 132 bug fixes from the NFBugs dataset as our benchmark. For each fixing change,
we run the SZZ approach to find how many bug-inducing changes are identified. In total, for
all 132 bug fixes, we find that there are a total of 376 candidate bug-inducing commits. We
manually observe the commits identified by the SZZ approach to determine whether they are
truly bug-inducing. Furthermore, we use the additional insights gained through our manual
verification of the SZZ approach to create an extension of the NFBugs dataset. Our findings
show that among the 376 identified bug-inducing commits by the SZZ approach, only 79
of them are true positive bug-inducing commits. We manually break down the falsely iden-
tified bug-inducing commits into three reasons: multi-purposes bug-fixing commits, 2) bug
already being there, and 3) not related to the bug. Our findings show that non-functional
bug-inducing commits differ from functional bugs inducing commits, where guidelines to
identify falsely detected bug-inducing commits in functional bugs cannot be used reliably
when using SZZ to detect non-functional bugs.

The following are the primary contributions of this paper:

– To the best of our knowledge this is the first study to focus exclusively on the use of the
SZZ approach to identify the inducing commits of non-functional bugs.

– We manually verify the validity of the SZZ approach on non-functional bugs, and
determine potential problems with the approach in dealing with them.

– We augment the NFBugs dataset by including bug fix descriptions that contain the
commits where the true bug-inducing changes reside.1

Paper Organization Section 2 introduces the SZZ approach and other background con-
cepts. Section 3 presents our subject dataset, applications of the SZZ approach, and the
steps of our study. Section 4 presents our approach to determine the bug-inducing commits
for non-functional bugs. Section 5 presents our empirical study of the SZZ approach when

1Our extension of the NFBugs dataset is publicly available and can be found at: https://github.com/
senseconcordia/NFBugsExtended
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used on non-functional bugs. Section 6 presents a manual investigation of the results of our
empirical study, as well as discussion of these results. Section 7 discusses prior work related
to the work presented in this paper. Section 8 presents the threats to the validity of our work.
Finally, Section 9 concludes the paper.

2 Background

2.1 Overview of the SZZ Approach

The SZZ approach was first defined by Sliwerski et al., to identify code changes that induce
bugs (Śliwerski et al. 2005). Originally, the SZZ approach was used to analyze CVS archives
for fix-inducing, or bug-inducing changes (Śliwerski et al. 2005): changes that lead to prob-
lems. To identify a bug-inducing commit, the SZZ approach requires a code-change that
fixes a bug. These code changes are also known as bug-fixing changes. Sliwerski et al. used
the SZZ approach to automatically locate fix-inducing changes by linking a code versioning
archive to a bug database (Śliwerski et al. 2005).

The SZZ approach is used to identify the changes that introduce bugs. The approach
starts from a bug-fixing change, i.e., a change that is known to have fixed a bug (da Costa
et al. 2017). For each identified bug-fixing change, the SZZ approach analyzes the lines
of code that were updated to introduce the fix. In order to identify the change that origi-
nally introduced the bug, the SZZ approach traces through the history of the source code
management system (da Costa et al. 2017). The git annotate function, now replaced by git
blame (Borg et al. 2019) that is provided by most SCM systems is used by the approach to
identify the last time a given line of code was changed before the bug-fixing commit (da
Costa et al. 2017). Figure 2 shows a bug fix and a corresponding identified bug-inducing
change from the SZZ approach.

Because no SZZ approach provides perfect precision and recall of bug-inducing com-
mits, it is necessary to understand the nature of the results given by the SZZ approach. In
an ideal scenario, the SZZ approach can identify the exact changes that introduce a bug.
In this ideal case, we consider the results to be changes identified by the SZZ approach

Time

SZZ

Step 1. Bug Fixing change
Commit#ffac062

Diff with prior version

Step 2. Diff
(++) t = [str(j) + " " + t[i] for i,j in enumerate((y,d,h,m,s)) if j != 0]
(++) t = [i + "s" for i in t if not i.startswith("1")]
(--) t = [] 
(--)    for i,j in enumerate(res):  
(--)        if j != 0:  
(--)            t.append(str(j) + " " + q[i])

Blame

Step 3. Bug-inducing change
Commit#d3a3ac9

Step 2. Diff
(++) t = [] 
(++)    for i,j in enumerate(res):  
(++)        if j != 0:  
(++)            t.append(str(j) + " " + q[i])

Fig. 2 Overview of the SZZ approach. The SZZ approach first looks at the changes made in a bug-fixing
change (Step 1). It then uses git diff to localize the exact fix (Step 2). Finally, the deletions are traced back
to the origin of the deleted code (Step 3). The origin of the deleted code is a potential bug-inducing change
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that are truly bug-inducing changes, i.e. true positives. These results can directly be used
by developers to find the root cause of a known bug. However, if the SZZ approach identi-
fies changes that are not truly bug-inducing changes as bug-inducing, we consider those to
be false positives. False positives can cause developers to needlessly look at faultless code.
False negatives are truly bug-inducing changes that were missed by the SZZ approach. False
negatives would require different tools or manual investigation to find the root cause of a
bug. Various modifications of the SZZ approach attempt to improve its true positive rate
and reduce its false positives and false negative rates.

2.2 Applications of the SZZ Approach

Kamei et al. (2013) study defect prediction models that focus on identifying defect-prone
software change level, rather than file or package level, referred to as “Just-In-Time Quality
Assurance”, where developers can review and test these risky changes while they are still
fresh in their minds. Kamei et al. (2013) use the SZZ approach to determine whether a
change introduces a defect. In this case, the SZZ approach is used to link each defect fix to
the source code change introducing the original defect by combining information from the
version archive with the bug tracking system. Findings from Kamei et al. (2013) indicate
that “Just-In-Time Quality Assurance” may provide an efficient way to focus on the most
risky changes and thus reduce the costs of developing high-quality software.

McIntosh and Kamei (2018) study the effectiveness of JIT defect prediction models as
systems evolve. Through a longitudinal case study of open source systems, they find that
fluctuations in the properties of fix-inducing changes can impact the performance and inter-
pretation of JIT models. They detect whether a change is potentially fix-inducing using
the SZZ approach. McIntosh and Kamei (2018) find that the discriminatory power (AUC)
and calibration (Brier) scores of JIT models drop considerably one year after being trained.
While McIntosh and Kamei (2018) use the data from the SZZ approach to predict future
bug-inducing changes in JIT models and evaluating those models, our paper focuses on the
data itself that is produced by the SZZ approach, i.e., the bug-inducing changes detected by
the SZZ approach.

Current adoption of techniques that predict software quality remains low. One of the rea-
sons for the low adoption rate of current analytics and prediction techniques is the lack of
actionable and publicly available tools. Rosen et al. (2015) present Commit Guru (Rosen
et al. 2015), a publicly available, language agnostic, analytics and prediction tool that iden-
tifies and predicts risky software commits mined from any Git repository. Additionally,
Commit Guru (Rosen et al. 2015) automatically identifies risky (i.e., bug-inducing) changes
and builds a prediction model to assess the likelihood of a recent commit being bug-inducing
in the future. A similar approach to the SZZ approach is used to determine bug-fixing
commits (Rosen et al. 2015).

The wide application of the SZZ approach motivates our research of the usefulness of
the SZZ approach when used to identify the inducing changes on non-functional bugs.

3 Study Design

In this section, we present the design of our exploratory study. We first present the dataset
as the subject of our study. Afterwards, we layout the two steps of our study and their
motivations.
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3.1 Subject Dataset

Because SZZ requires known bugs as inputs, our research hinges on the availability of
vetted non-functional bugs. Datasets of non-functional bugs have been produced and vetted
in prior research (Ohira et al. 2015; Radu and Nadi 2019). However, non-functional bugs
and their causes, sometimes require domain knowledge to be understood and detected. It is
therefore beneficial for the root-causes of each non-functional bug to be clearly indicated as
provided by the NFBugs dataset (Radu and Nadi 2019). Such information is crucial in our
study to verify the bug-inducing changes identified by the SZZ approach.

Fortunately, recent research by Radu and Nadi (2019) initiated an open repository that
contains a dataset of real-world non-functional bugs, with each bug’s detailed information
(see Listing 1). The NFBugs dataset contains bugs from 65 open source GitHub projects: 40
Java projects and 25 Python projects. These projects contain 89 listed Java non-functional
bugs and 43 listed Python non-functional bugs. For each project, NFBugs lists at least one
bug, its respective fix and its detailed root causes. Each listed bug has been manually iden-
tified and has a corresponding YAML file, with the file and method that pinpoints the bug
as well as a short description of the bug, however it contains no mention of commits that
induced the bug. An example of a YAML file is shown in Listing 1. This study makes use
of the NFBugs dataset to advance the state-of-the-art and allow future replication.

3.2 Implementation of SZZ

Since its creation, SZZ has been modified and re-implemented with various modifica-
tions (Śliwerski et al. 2005; Kim et al. 2006; da Costa et al. 2017; Davies et al. 2014). In
this paper we concentrate on the MA-SZZ (meta-change aware SZZ) implementation of
SZZ (da Costa et al. 2017). Meta-changes are source code independent changes; source code
management branch changes, source code merges, and changes to file properties such as
end-of-line changes are all examples of meta-changes (da Costa et al. 2017). We concentrate
on the MA-SZZ implementation of SZZ because it is commonly used in prior research (da
Costa et al. 2017) and is language agnostic. The MA-SZZ (da Costa et al. 2017) approach is
an implementation of SZZ that adds meta-change awareness to the AG-SZZ approach (Kim

Listing 1 An example YAML file from the NFBugs dataset for a non-functional bug ffac062 in VS test
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et al. 2006). MA-SZZ uses an annotation-graph to represent the evolution of each line of
code within source files. Depth-first search is performed on the annotation-graph to find
potential bug-inducing changes. We use our own implementation of the MA-SZZ approach
to perform our evaluation of the SZZ approach on non-functional bugs. Because prior
research has used MA-SZZ to observe functional bugs, we also use MA-SZZ to observe
non-functional bugs. We did not want to introduce a different SZZ approach (e.g., RA-
SZZ (Neto et al. 2018)) because although RA-SZZ has shown improvements over other SZZ
approaches (Neto et al. 2018), changing the approach may introduce confounding factors
and make the results impossible to compare fairly. However, while we suspect that refactor-
ings actually can have an effect on non-functional bugs, as they do on functional bugs, we
have not yet found a study that presents the effects of refactoring on non-functional software
bug incidence detection. Therefore, to be conservative, we use an MA-SZZ implementa-
tion of the SZZ approach rather than an RA-SZZ implementation because using RA-SZZ
would potentially change the performance of the method and make the results difficult or
impossible to compare with prior studies.

The SZZ approach requires a bug-fixing change as an input. The approach then performs
its depth-first search to find potential bug-inducing changes. Therefore, we require bug-
fixing changes, specifically bug-fixing commits, to use as inputs for the SZZ approach. The
NFBugs dataset lists the bug-fixing commit hash of each non-functional bug instance. Most
of the closed bug reports identify the fix commit that closed the bug report. We therefore
use these bug-fix commits as input data for our study.

3.3 Steps of Our Study

The results of Step 1: Manually verifying the bug-inducing commits identified by SZZ
are used in Section 4. The results of Step 2: Automatically evaluating the bug-inducing
commits identified by SZZ are used in Section 5. The steps of our study can be found in
Fig. 1. Using the non-functional bug dataset and the MA-SZZ implementation of SZZ, we
first run the SZZ approach to identify bug-inducing commits. Then we carry out our study
in two steps.

Step 1: Manually verifying the bug-inducing commits identified by SZZ
Prior studies have manually evaluated the results that are generated by the SZZ

approach (da Costa et al. 2017). However, those studies do not make a distinction
between functional and non-functional bugs during their evaluation. Nonetheless, it has
been shown that non-functional bugs present different characteristics than functional
bugs (Nistor et al. 2013). In particular, non-functional requirements describe the quality
attributes of a program, as opposed to its functionality (Kotonya and Sommerville 1998).
Therefore, the prior manual evaluation results for SZZ approaches may not generalize to
non-functional bugs.

In addition, in order to further improve the SZZ approach on non-functional bugs,
it is necessary to first obtain a dataset of non-functional bugs with correctly identified
bug-inducing commits. The correct bug-inducing commits are paramount for any further
analysis. In this step, we therefore seek to manually verify the inducing changes for non-
functional bugs and complement the existing dataset of these non-functional bugs by
incorporating their corresponding true inducing changes.
Step 2: Automatically evaluating the bug-inducing commits identified by SZZ

Manually evaluating results from the SZZ approach is time consuming and almost
impossible to scale in practice. However, practitioners may always face the challenge of

Page 7 of 25     71



Empir Software Eng (2021) 26:  71

having falsely identified bug-inducing changes from SZZ approaches. To address such
a challenge, prior work by da Costa et al. (2017) provides characterizations of SZZ
results using three characteristics of bug-inducing changes as guidelines: 1) Earliest bug
appearance, 2) Future impact of a change, and 3) Realism of bug introduction. These bug
characteristics can be used to provide a fine-grained evaluation of the SZZ approach. Ear-
liest bug appearance measures when a bug was introduced. Future impact of a change,
analyzes the number of future bugs that a given bug-inducing change introduces. Finally,
realism of bug introduction analyzes whether the bug-inducing changes found by SZZ
approaches realistically correspond to the actual bug introduction context. If these auto-
mated guidelines cannot reliably identify the falsely identified bug-inducing commits
for non-functional bugs, practitioners and researchers may not adopt these guidelines for
evaluating the results of SZZ approaches on other datasets.

4 Manually Verifying Bug-Inducing Commits for Non-functional Bugs
Identified by the SZZ Approach

In this step, we manually verify the bug-inducing commits that are automatically identified
by the SZZ approach.

Before applying the SZZ approach on our dataset, we first exclude nine bugs (five from
Java and four from Python) where the bug-fix commits are part of merge commits. We
exclude merge commits since studies shows that the SZZ approach should not take merge
commits into account due to the noise that can be introduced by a code merge (Fan et al.
2019).

Afterwards, we run the SZZ approach for the remaining 123 bugs. The SZZ approach
produces a list of bug-inducing candidate commits for each bug. After running the SZZ
approach on the remaining bugs, we obtained a total of 284 candidate bug-inducing commits
for Java and 92 for Python. Each bug in the NFBugs database has been manually identified
and has a corresponding YAML file listing the file(s) and method(s) for the bug as well as a
short description of the bug, as shown in Listing 1. Each of these remaining candidate bug-
inducing commits, are manually verified by three of the authors of this paper independently,
to avoid introducing any bias.

The steps performed in this paper for the manual analysis of bug-inducing commits are
as follows:

– Step A: The reviewers read the description of a non-functional bug from the NFBugs
dataset.

– Step B: The reviewers examine the code from the mentioned bug-fix commit.
– Step C: For each of the candidates identified as bug-inducing commits by the SZZ

approach, the reviewers examine the code that is changed in the commit and determine
whether it induces the corresponding bug.

After all steps are individually completed by the first, third, and fourth authors for all bugs
remaining in the dataset, the reviewers then meet to discuss disagreements. All three review-
ers must have the same classification (i.e., bug-inducing or not bug-inducing) for a candidate
commit, otherwise this is marked as a disagreement. The disagreements are resolved as
follows:

– Step D: The reviewers re-read the bug-fix and the bug-inducing commit in question.

71    Page 8 of 25



Empir Software Eng (2021) 26:  71

– Step E: Each reviewer states the reason why they think the identified commit is bug-
inducing or not bug-inducing.

– Step F: The reviewers discuss until all three agree on a final decision.

All agreements and disagreements are recorded and used to calculate the Multi Kappa Fleiss
score, a robust statistic useful for either interrater or intrarater reliability testing (McHugh
2012). Afterwards, the three individuals meet and discuss any differences and reach a
consensus.

Finally, we manually investigate all the false candidate of bug-inducing commits for
non-functional bugs, in order to uncover reasons of such faults.

Results For the manual examination of the candidate bug-inducing commits, there were
a total of 27 candidate bug-inducing commits disagreements, 20 from Java and 7 from
Python bugs. To quantitatively evaluate how often we agreed during manual evaluation,
we use the Multi Kappa Fleiss score (McHugh 2012). The Multi Kappa Fleiss score was
0.728—a moderate level of agreement for Java, and 0.815—a strong level of agreement
for Python (McHugh 2012). All 27 candidate bug-inducing commit disagreements were
resolved through discussion between the three individuals. In many cases, the disagreements
split 1:2 were resolved due to one individual missing some critical information while man-
ually reviewing the code. After a second look at the code, the reviewers’ response allowed
the three reviewers to reach consensus.

Only 41 out of 123 bugs have fully correct bug-inducing changes identified by the SZZ
approach. 27 bugs have fully wrong identified bug-inducing changes. For the bugs where the
SZZ approach was not able to identify any truly bug inducing commits, we manually look
in the repository to find the commits that were bug-inducing for bugs: accounting for 27
out of 123 bugs. 19 bugs have a combination of correct bug-inducing changes and incorrect
bug-inducing changes, e.g., in the case of multi-purpose bug-fixing commits, some code
changes in the commit are not done to fix the bug, tracking such changes may result in
falsely identified bug-inducing commits.

Out of the 376 bug-inducing commits, 217 commits were ruled out as false positive bug-
inducing commits which were not in the same method or class from the total 376 identified
bug-inducing commits. For the remaining 159 bug-inducing commits, there are a total of
80 bug-inducing commits that are false positives and therefore were falsely labelled as bug-
inducing commits by the SZZ approach shown in Fig. 3. Based on our findings on the
NFBugs dataset, there are 55 performance bugs that have 94 bug-inducing commits with
45 truly bug-inducing commits, and there are five security bugs that have five bug-inducing
commits with four truly bug-inducing commits.

Prior studies have reported that the SZZ approach still needs improvements to accurately
identify bug-inducing changes (da Costa et al. 2017). For MA-SZZ, da Costa et al. (2017)
report a 0% to 17% disagreement ratio, where they count a bug as a disagreement if all of the
candidate bug-inducing changes identified by the SZZ approach for that bug are classified
as incorrect. However, based on our manual analysis results, the SZZ approach performs
even worse on non-functional bugs (Table 1).
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Flagged as bug-
inducing

376 commits

In the same
method/class
159 commits

Not in the same
method/class
217 commits

Bug already there
7 commits

Multi-purpose
16 commits

Truly bug-inducing
79 commits

Not related
57 commitsFiltered out

Falsely bug-
inducing commits

Fixes are merge
commits
(9 bugs)

Remove bugs
with merge

commit fixes
123 bugsNFBugs

132 bugs

Manual
verificationMA_SZZ

Section 5: Step 1

Section 5: Step 2
Section 5: Step 2

Fig. 3 Breakdown of false positive bug-inducing commits which were not in the same method/class
mentioned from the bug-fix description from NFBugs

We manually identify three reasons that account for all of falsely identified bug-inducing
commits for non-functional bugs: 1) multi-purposes bug-fixing commits, 2) bug already
being there, 3) not related to the bug shown in Table 2 and Fig. 3. Reasons for not related
to the bug include modifications of Javadoc or comments, the additional or removal of Java
modifiers to variables, reverting changes, and some where we cannot find overlapping lines
between removed lines in the fix commit and added lines in the identified bug-inducing
commit.

Multi-purposes Bug-Fixing Commits Our SZZ approach tracks all the code changes in the
bug-fixing commits to identify bug-inducing commits. However, if a bug-fixing commit
has multiple purposes, (i.e., some code changes in the commit are not done to fix the bug),
tracking such changes would result in falsely identified bug-inducing commits. Unfortu-
nately, we find a large number of cases where the bug-fixing commits are not dedicated to
fixing a non-functional bug. For example, the commit message of commit 2391544 from the
Catacomb-Snatch (in Java) project is “Code Cleanup: Closed resource leaks, and removed
or commented out unused code/resources, and did some code layout clean up (braces on
ifs and correct indentation)”. The first part of the commit message is clearly related to the
non-functional bug of system resource leaks; while on the other hand, removing the unused
code and the code layout cleanup may introduce noise to the SZZ approach.

In total, eight out of 54 falsely identified bug-inducing commits in Java and eight out of
26 in Python are due to multi-purpose bug-fixing commits. We would like to further verify
whether these falsely identified bug-inducing commits are from a small number of bugs
that are fixed in a multi-purpose manner. We find that these falsely identified bug-inducing
commits originated from only five bugs in Java and one bug Python. Since there exists five
bugs in Java and two bugs in Python with multi-purpose fixes, that have all true-positive
identified bug-inducing commits. By manually looking at these bug-fixing commits, we find
that all of the changes that are not associated with bug fixing are adding lines of source code,
not affecting results of SZZ approaches. On the other hand, since the SZZ approach has

Table 1 Java and Python Projects: True-Positives and False-Positive after filtering based on relevant method
and class based on the description provided

Language No. pairs of identified bug-inducing commits TP FP

Java 284 109 175

Python 92 50 42
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Table 2 Breakdown of falsely identified non-functional bug-inducing commits into multi-purposes bug-
fixing commits, 2) bug already being there, 3) not related to the bug

Total Multi-purpose Bug already being there Not related to the bug

Java 54 8 7 39

Python 26 8 0 18

become an application of automated bug-detection tools, multi-purpose bug-fixing commits
have become a shortcoming of automatically applying SZZ for other downstream tasks,
such as Just-In-Time Quality Assurance (Kamei et al. 2013). Our results can be used to
understand how badly the input noise actually affects the results of the SZZ approach and
later impact its downstream tasks.

We also want to see whether commits of single-purpose or multi-purpose affect the per-
formance of the SZZ approach in identifying bug-inducing commits. To do this, we also
breakdown the single-purpose fixes based on whether the identified bug-inducing com-
mits are false positive-bug-inducing commits or true positive-bug-inducing commits in
Table 3. 23 out of 48 and 17 out of 25 single-purpose bug fixing commits, for Java and
Python, respectively, lead to false positives. The results are comparable with the ones with
multi-purpose bug fixing commits.

Bug Already Being There For seven out of 54 falsely identified bug-inducing commits in
Java and no cases in Python, when we examine the bug-inducing commit, we find that
the non-functional bug already exists. Such a finding shows that in many cases, after the
non-functional bugs are induced, developers may change the same lines of code, while not
realising there exists a non-functional bug. In some other cases, the developers refactor
or reformat the same line of code without actually changing the functionality. In either
scenario, the SZZ approach may consider the later changes as bug-inducing instead of the
original changes. This phenomenon is intuitive since non-functional bugs often take a long
time to be discovered and fixed (Nistor et al. 2013). Therefore, considering the most recent
code change before the bug reporting date may not be a suitable heuristic for non-functional
bugs. We did not find any cases of bugs already being there in our Python dataset.

We present an example of a semantically equivalent change wrongly identified as a bug-
inducing change in Fig. 4. The bug-inducing code lines that the SZZ approach looks for are
results = [‘total: ’.format(sum(c.values()))] + map( and lambda n: ‘{}: {}’.format(n[0],
n[1]), c.items()). These lines are shown as additions in this commit in green, however, in this
same commit, the lines are also shown as a removal in red. The difference between these two
is the string formatting, no logic is altered. The commit message is: “String formatting”.
The SZZ approach stops at this commit and flags it as bug-inducing, since the bug-inducing
code has technically been added in this line. However, although this is technically correct,
this code was actually first introduced further back in time with different formatting in a

Table 3 Number of single-
purpose and multi-purpose bugs
with false positive and all true
positive bug-inducing changes

Single-purpose Multi-purpose

Language With FP With all TP With FP With all TP

Java 23 25 5 5

Python 17 8 1 2
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Fig. 4 Simplified example of an “Already there/Re-factoring” bug-inducing code line that was modified to
semantically equivalent code

different commit. The approach wrongly suspects the beautifying commit as a bug-inducing
commit, which we describe as a case of “Bug already being there”.

Not Related to the Bug For Java we find 39 out of 54 falsely identified bug-inducing
commits in Java and 18 out of 26 in Python that are not related to the non-functional
bug. Figure 5 shows two candidate commit bugs for a bug from the NFBugs dataset.
The corresponding YAML file is shown in Listing 1. Upon manual analysis by the three
reviewers, commit 6b8266c in Fig. 5 is identified as a false positive bug-inducing commit
whereas commit d3a3ac9 in Fig. 5 is identified as a true positive bug-inducing com-
mit. Commit 6b8266c in Fig. 5 was ruled out because it does not have a relation to the
builtins.list.append and use list comprehension instead of list.append loops to create
lists efficiently as stated in the Listing 1 bug description. From the description, the reviewers
knew to look for a commit that refers to builtins.list.append.

5 Automatically Evaluating Bug-Inducing Commits Identified
by the SZZ Approach

In this step, we apply the three automated guidelines that are proposed by da Costa et al.
(2017), i.e., 1) Earliest bug appearance, 2) Future impact of a change, and 3) Realism of
bug introduction, in order to study whether such automated guidelines can help identify the
falsely detected bug-inducing commits by the SZZ approach when used on non-functional
bugs. The results are summarized in Table 4.

– Earliest bug appearance. For the corresponding candidate bug-inducing changes of
each bug, we check the time of the change and the impacted version of the software. If
the impacted version of the software is earlier than the candidate bug-inducing change,
the candidate bug-inducing change is considered false.

– Future impact of a change. For each bug-inducing change, we calculate the count of
induced bugs and the time-span of the induced bugs. If one change induces too many
bugs or the induced bugs are across a long period of time, the bug-inducing change may
be false.

– Realism of bug introduction. For each bug, we calculate the time-spans between the
bug-inducing changes for each bug. If the time-span is too long, the bug-inducing
changes may be false. We also consider bug-inducing changes after a bug-fixing change.

We use the results of the guidelines presented above for all bugs (functional and non-
functional) as a baseline. For each of the two languages in NFBugs: Java and Python, we
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Fig. 5 Example of a bug-fix (ffac062) with two inducing commits, one bug-inducing (d3a3ac9), and one
falsely bug-inducing (6b8266c)

pick the top two projects with the largest number of reported bugs in the NFBugs dataset.
We pick the top two projects since the project with the third highest number of reported
bugs had significantly fewer reported bugs compared to the top two, making the sample size
too small for comparison. In particular, we focus on four projects that are included in the
NFBugs dataset, i.e, Elasticsearch and Jenkins (in Java) and Falcon and Gae-boilerplate
(in Python). We choose these four projects since they contribute a large number of bugs for
their respective language in the NFBugs dataset. We first extract all bugs (both functional
and non-functional). For Falcon and Jenkins we look at their JIRA bug reports, meanwhile
the other projects rely on GitHub’s issue tracker. All of the issue trackers in our data are
open to access. In order to study the functional and non-functional bugs that are around the
same time period during development, we extract all the commits that are in a time period
that is between six months before the reporting date of the first non-functionally bug and
six months after the date of the last reported non-functional bug. We use the issue id (e.g.,
# with a number in GitHub issue tracker) in the commit message to link each issue and its
issue fixing commit. We only consider the issues that are tagged with a bug label in either
the GitHub issue tracker or JIRA. We assessed the functional-bug fixes in these four projects
in the dataset, using a search for the issue id in the commit messages to identify the bug
fixing commits, and then we further identify the bug-inducing commits related to them by
running the SZZ approach. For the manual analysis of functional bugs, we pick a random
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Table 4 Percentages of bugs that will be identified by the three guidelines proposed by da Costa et al. (2017)

Reported by the prior study Reported by NFBugs

Future impact (commit level) 95% 54%

Earliest bug appearance (bug level) 0–3% 0–17%

Realism of a bug (bug level) 46% 3%

sample with a confidence interval of 95%±10% and end up with 96 identified bug-inducing
commits in Java, and 91 identified bug-inducing commits in Python. We execute the MA-
SZZ approach on the non-functional and functional bugs. Afterwards, we evaluate the three
criteria: earliest bug appearance, future impact of a change, and realism of bug introduction
using scripts that we created to calculate these guidelines proposed by da Costa et al. (2017).

Finally, we calculate the metrics that correspond to the three guidelines used by da Costa
et al. (2017), i.e., 1) Earliest bug appearance, 2) Future impact of a change, and 3) Realism
of bug introduction.

Results We summarize the breakdown of results based on the three guidelines proposed
Costa et al.’s (2017) prior work, for identifying falsely detected bug-inducing commits by
the SZZ approach. We compare our results to Costa et al.’s (2017) in Table 4.

Earliest bug appearance and Realism of bug introduction da Costa et al. (2017) are
not effective in identifying false candidate of inducing changes of non-functional bugs
from SZZ approaches. We observed only one case of Earliest bug appearance where there
is a bug-inducing change for which the bug report for the corresponding fix was made even
before the bug-inducing change date. This is unrealistic as it is not possible to report a bug
in the software before the bug was introduced.

In their study, da Costa et al. (2017) uncovered some unrealistic changes. da Costa et al.
(2017) found that 46% of bugs are caused by bug-inducing changes that span at least one
year. It is unlikely that 46% of all bugs were caused by code changes that are years apart.
We identify another type of unrealistic result in our own findings where a bug-inducing
change was fixed or reported even before the bug change commit time. However, we only
observed one case of Realism of bug introduction where for a bug, the time span between
the bug-inducing changes is too long.

Therefore, since the Earliest bug appearance and Realism of bug introduction guidelines
from da Costa et al. (2017) occur infrequently in the NFBugs dataset, we cannot reliably
use them to identify false bug-inducing commit candidates.

Future impact of a change can be used as an indicator to identify false candidate of
inducing changes of non-functional bugs from SZZ approaches.

We observed 36 cases of Future impact of a change, where one change induced many
bugs or induced bugs across a long period of time. Part of Costa et al.’s (2017) findings
show that 29% of the bug-inducing changes lead to multiple future bugs that span at least
one year. This suggests that SZZ approaches still lack mechanisms to accurately flag bug-
inducing changes as it is unlikely that all 29% of the bug-inducing changes in a project
introduce bugs that took years to be discovered.

Functional and non-functional bug-inducing commits do not overlap. We find that
there are no cases within the four projects that we examined where a bug-inducing commit
for a non-functional bug had also induced a functional bug. This indicates that non-
functional bugs and functional bugs are quite different in nature. Non-functional bugs have
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may require different tooling requirements if they manifest differently in the source code,
and are scattered across and require fixes in various parts of the software.

Based on Figs. 6 and 7 we can see that the median non-functional bugs appear to take
a longer time on average to fix, compared to functional bugs. However, we cannot make
any statistically significant conclusions due to the insufficient sample size. We use the data
presented in violin plots in Figs. 6 and 7, and perform Wilcoxon rank sum tests, comparing
the non-functional and functional bugs. Elasticsearch’s comparison for functional bugs and
non-functional bugs of days between all bug-inducing changes for fixing changes is the only
statistically significant comparison (p = 0.004).

The Cliff’s Delta value for Elasticsearch’s comparison for functional bugs and non-
functional bugs of days between all bug-inducing changes for fixing changes is: −0.251.
Cliff’s Delta indicates that the type of bug (Functional or Non-Functional) has a small effect
on the number of days between inducing changes and fixing changes for the Elasticsearch
project.

The false results of SZZ on functional and non-functional bugs may be different. We
further perform manual analysis on the functional bugs from Elasticsearch, Jenkins, Falcon,
and Gae-boilerplate. Upon performing manual analysis on the functional identified bug-
inducing commits following the steps listed in Section 4 we have calculated the Multi Kappa
Fleiss score to be 0.736 - a moderate level of agreement for Java, and 0.822 - a substantial
level of agreement for Python. Through our validation of the functional bugs, we further dis-
carded three bugs from the Python projects and six bugs from the Java projects, because they
were non-functional bugs, rather than functional bugs. For Python, out 56 of the examined
bugs, 40 of them have at least one truly identified bug-inducing commit. For Java, out of 76
of the examined bugs, 31 of them have at least one truly identified bug-inducing commit.
50 out of the 88 identified bug-inducing commits were not truly bug-inducing for Python,
and 59 out 89 identified bug-inducing commits in Java were not truly bug-inducing. In sum-
mation, 61.7% of the functional commits identified by the SZZ approach were not truly
bug inducing compared to 80.0% for non-functional bugs. Similarly to Table 2, we break
down the falsely identified functional bug-inducing commits in Table 5. Through observa-
tion, non-functional bugs experience more false positives bug-inducing commits because
of multi-purposes bug-fixing commits. While it is possible for commits to be falsely iden-
tified due to multi-purpose bug-fixing commits in functional bugs, this occurs more rarely
in functional bugs than in non-functional bugs. The bug already there reason for false pos-
itive bug incidence detection does appear in functional and non-functional bugs, however,
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Fig. 6 Comparison of Functional (left) and Non-Functional (right) bugs for days between inducing changes
and fixing changes

Page 15 of 25     71



Empir Software Eng (2021) 26:  71
0

50
0

10
00

15
00

20
00

25
00

30
00

1

a

0
50

0
10

00
15

00
20

00
25

00

1

b

0
50

0
10

00
15

00
20

00
25

00

1

c

0
10

0
20

0
30

0
40

0

1

d

Fig. 7 Comparison of Functional (left) and Non-Functional (right) bugs for days between earliest inducing
changes and fixing changes

they appear to experience different magnitudes of this fault: 20.2% for functional bugs, and
8.7% for non-functional bugs. Therefore, our results show that not only is functional bug
incidence detection more accurate than non-functional bug incidence detection, but
functional bug false positive incidences also present themselves differently than for
non-functional bugs.

6 Discussion

Prior studies found that SZZ implementations still have room for improvement and suggest
handling special cases to more accurately detect bug-inducing changes (da Costa et al. 2017;
Kim et al. 2006). The three cases of improvement include handling are:

– Semantically equivalent changes: Some implementations of the SZZ approach, includ-
ing the one used for the purpose of the paper, take into account comments, blank lines,
indentation and white-space changes. However, even adjusted SZZ approaches, still
have problems with other types of format changes such as reordering and renaming
parameters (Williams and Spacco 2008).

– Directory or file re-names: the SZZ approach cannot flag potential bug-inducing
changes that are actually directory/file renaming changes since version control systems
may not accurately track renamed files. Therefore, the SZZ approach cannot connect
code changes that are performed on older versions of a renamed file (da Costa et al.

Table 5 Breakdown of falsely identified functional bug-inducing commits into multi-purposes bug-fixing
commits, 2) bug already being there, 3) not related to the bug

Total Multi-purpose Bug already being there Not related to the bug

Java 59 2 14 43

Python 50 0 8 42
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2017). Broken historical links could be recovered heuristically by using repository
mining techniques (Steidl et al. 2014).

– Initial code important changes: In cases where a project has been migrated from one
version control system to another, SZZ approaches should trace back into the old version
control system data since in those cases the initial commit of an version control system
may not be the actual starting point of the project. However, current SZZ approaches
are not able to trace back across different version control system and therefore cannot
handle imported changes from a change in version control system (da Costa et al. 2017).

We examine whether the above three improvements would help improve identifying the
true bug-inducing commits for non-functional bugs. In order to perform such examination,
we need to have all of the true bug-inducing commits for all of the non-functional bugs
in NFBugs. Therefore, we examine the 28 non-functional bugs that do not have true bug-
inducing commits detected from the first step of our study (cf. Section 5). We manually
check the history of the source code in each project and try to identify the true bug-inducing
commits for each of those bugs. In particular, the first author of the paper proposed true bug-
inducing commits for each bug and the third and fourth authors independently verified the
proposed bug-inducing commits. If at least one author does not agree about a proposed bug-
inducing commit, the three authors conduct further discussion about the specific case. If a
proposed bug-inducing commit was deemed to be false, the first author did another round of
examination to propose other commits as bug-inducing. This procedure was repeated until
all three authors agreed that the bug-inducing commit was correctly identified.

We find that 60 out of 82 of the true bug-inducing commits for the non-functional bugs
in Java and 21 out of 32 in Python, are actually the initial version of the corresponding code
snippet. In other words, the non-functional bugs were induced when developers first
introduced the code into the project.

Finally, we manually examine whether the above three improvements would help detect
the true bug-inducing commits as bug-inducing. We only find two cases where addressing
semantically equivalent cases can avoid mistakes, while the other two improvements do not
have any impact on the results. We believe that this is the case since our subject systems
all use Git as version control systems, where directory or file re-names are handled by
the version control systems. In addition, the subject dataset may not have many cases of
migrating version control systems. Therefore, the improvements proposed by prior studies
may not help address the falsely detected bug-inducing commits for the non-functional bugs
in NFBugs. However, they may indeed help when if the non-functional bugs are from a
project that uses an older version control system (like Subversion) and/or has gone through
migrations from one version control system to another.

7 RelatedWork

In this section, we situate our work within the context of past studies that have evaluated
SZZ approaches and studying non-functional bugs. In addition, we present a comparison
between our findings and the ones from related work in Table 6.

7.1 Implementations of SZZ

The first SZZ approach was defined by Śliwerski et al. (2005), to identify the changes that
introduce bugs. SZZ begins with a bug-fixing change, i.e., a change that is known to have
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Table 6 Our key findings with comparison to previous literature

Our findings Findings in previous literatures Implications

Our findings show that among Fan et al. (2019) find that While Fan et al. (2019) find

the 376 identified bug-inducing the percentage of the that the false positives

commits for 123 bugs, only 79 false positives in the percentage in the bug-

true positive bug-inducing bug-inducing changes inducing changes labeled

commits are identified by the labeled by MA-SZZ is 1%–6%. by MA-SZZ is 1%–6%,

SZZ approach. Only 40 bugs Borg et al. (2019), state we found a rate of 79%.

have fully correctly identified that JIT bug prediction Similarly to Borg et al.

bug-inducing changes. using SZZ, corresponding (2019), we find that

to an F1 score of 0.10–0.15 is the false positives of

insufficiently accurate to be of the SZZ approach are too

practical value for developers. numerous for developers

At the same time the classifier to trust the predictions.

would miss too many truly Furthermore, we also

bug-introducing commits. find that MA-SZZ

missed many truly bug-

inducing commits.

With MA-SZZ, we find a 67.5% For MA-SZZ, da Costa et al. The large difference

disagreement ratio for non- (2017) report a 0% to 17% in the disagreement ratio

functional bugs, where a bug disagreement ratio. would be an important

counts as a disagreement if all of complement to previous

the candidate bug-inducing changes literature.

identified by the SZZ approach for

that bug are classified as incorrect.

We manually identify three reasons – Although we find that

for falsely identified bug-inducing these same reasons are

commits for non-functional bugs not unique to falsely

including 1) multi-purposes bug- identified non-functional

fixing commits, 2) bug already bugs, we show that the

being there, and 3) changes not proportions of these reasons

related to the bug. are expressed differently

in functional bugs

and non-functional bugs.

Non-functional bug-inducing da Costa et al. (2017) propose Our findings show that

commits differ from functional a framework to evaluate the prior guidelines may

bugs inducing commits. Guidelines the implementations of not be useful for non-

to identify falsely detected bug- the SZZ approach, comprised functional bugs.

inducing commits by the SZZ of three criteria:

approach such as Earliest bug (1) earliest bug appearance,

appearance and Realism of bug (2) future impact

introduction cannot be reliably of changes, and (3) realism

used when using SZZ to detect of bug introduction.

non-functional bugs.
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Table 6 (continued)

Our findings Findings in previous literatures Implications

We find that 60 out of 82 of the true – We find that this

bug-inducing commits for the non- phenomenon is not

functional bugs in Java and 21 out found in functional

of 32 in Python, are actually the bugs.

initial version of the corresponding

code snippet. In other words,

the non-functional bugs were

induced when developers first

introduced the code into the project.

fixed a bug. B-SZZ (the basic SZZ implementation) has several limitations, as it may flag
style changes (Kim et al. 2006), which do not affect the system. Since then, there has been
several improvements: instead, Kim et al. (2006) proposed an SZZ implementation that
excludes style changes from the analyses. Furthermore, Kim et al. (2006) propose the use
of the annotation graph. We refer to the SZZ implementation that is proposed by Kim et al.
as AG-SZZ.

da Costa et al. (2017) propose the MA-SZZ implementation, which is built on top
of AG-SZZ, however potential bug-introducing changes that are meta-changes are now
removed. They find that B-SZZ has the lowest disagreement ratio in general (0%–9%),
followed by the MA-SZZ (0%–17%) (da Costa et al. 2017). The bugs analyzed by MA-
SZZ have the shortest time-span of bug-introducing changes (316 days), while B-SZZ has
the longest time-span of bug-introducing changes (da Costa et al. 2017). da Costa et al.
(2017) also report that MA-SZZ returns the second highest count of future bugs and sec-
ond highest timespan of future bugs, following B-SZZ. Costa et al.’s (2017) study aims
to evaluate the SZZ approach rather than studying the characteristics of bug-inducing
changes that are detected by SZZ. Prior work in Just-In-Time defect prediction uses MA-
SZZ to identify bug-inducing changes (McIntosh and Kamei 2018; Kamei et al. 2013) as a
ground truth for building the prediction models. Prior work in studying refactoring changes
also uses MA-SZZ by incorporating it with RefDiff to propose a refactoring aware SZZ
implementation (Neto and Barbalho 2018).

Borg et al. (2019) propose an open implementation of the SZZ approach for git reposito-
ries. The authors include a usage example for the Jenkins project and conclude with a case
study on JIT bug prediction. The SZZ Unleashed implementation is based on Sliwerski et
al.’s (2005) work, as well as later enhancements by Williams and Spacco (2008). Because
MA-SZZ is also based on Sliwerski et al.’s (2005) work, our findings on non-functional
bugs may benefit SZZ Unleashed (Borg et al. 2019) as its purpose is for git repositories,
which can contain a mixture of functional and non-functional bugs.

7.2 Evaluating SZZ Approaches

Kim et al. present algorithms to identify bug-inducing changes automatically and accurately.
They compare their algorithms to the SZZ (Kim et al. 2006) approach. They removed false
positives and false negatives by using annotation graphs, and ignored non-semantic code
changes and outlier fixes. They also manually inspected the commits listed as bug fixing
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to determine if they were indeed changes that fixed a bug in the code. In our paper, we
evaluate our dataset with MA-SZZ, while Kim et al. (2006) evaluated the approach on the
first version of the SZZ approach.

Williams et al. revisit the SZZ approach by outlining several improvements to the
approach (Williams and Spacco 2008). They replace annotation graphs with linear num-
ber maps to track unique source code lines as they change over software evolution. Their
enhanced approach uses weights to map the evolution of a line. They also use DiffJ, a Java
syntax-aware diff tool to ignore comments and ignore cosmetic changes (Jpace 2018). Fur-
thermore, they verify how often bug-inducing changes identified by the SZZ approach are
truly bug-inducing changes. We want to compare an improved SZZ approach implementa-
tion: MA-SZZ, as the study performed by Williams et al. compared their improvements to
the first SZZ approach implementation (Śliwerski et al. 2005).

da Costa et al. (2017) introduced a framework to evaluate the results of SZZ approach
implementations. They note that little effort has been made to evaluate SZZ’s results, despite
its role as the foundation of several research areas in software engineering (da Costa et al.
2017). The framework evaluates the approach with three criteria: the earliest bug appear-
ance, the future impact of changes, and the realism of bug introduction (da Costa et al. 2017).
The framework is evaluated on five SZZ implementations using data from ten open source
projects. Their findings show that previous proposed improvements to SZZ approaches tend
to inflate the number of false positive bug-inducing changes. A single bug-inducing change
may be blamed for introducing hundreds of future bugs and SZZ implementations report
that at least 46% of the bugs are caused by bug-inducing changes that are years apart from
one another (da Costa et al. 2017). Our study builds on the work from Costa et al. by using
their evaluation criteria as well as new evaluation criteria to evaluate SZZ approaches on
non-functional bugs rather than on a mixed dataset containing both functional and non-
functional bugs. Similarly to da Costa et al. (2017), in Fig. 7 we evaluate our data on the
earliest bug appearance, in Fig. 6 we evaluate our data on the future impact of changes.

Fan et al. (2019) studied the impact of mislabelled changes of the SZZ approach on JIT
prediction. They analyze four different SZZ implementations and build the JIT prediction
models using the labeled data of these four variants (Fan et al. 2019). For MA-SZZ, Fan et al.
(2019) find that the labeled data has low false positive and false negative rates, compared
to AG-SZZ, which contains a much larger number of false negatives. The low false positive
and false negative rates may not be likely to impact the prediction of the MA models (Fan
et al. 2019). Checking the impact of performance bugs on the NFBugs data is an avenue for
future work to advance studies pertaining non-functional bugs.

7.3 Studying Non-functional Bugs

Software quality research and practice concerns itself with a variety of different types of
bugs. Non-functional bugs, including those of performance and security can be particularly
costly bugs (Zaman et al. 2011). Tools can help reduce the cost overhead caused by these
bugs (Jin et al. 2012). In this study we concentrate on the applicability of the SZZ approach
to determine the root cause of these non-functional bugs.

Jin et al. (2012) studied real-world performance bugs to better guide software practition-
ers. Their findings show that developers need tool support to automatically fix such types of
performance issues (Jin et al. 2012). They also find that performance issues of newer soft-
ware versions can be inherited easily from previous versions. This study calls for further and
more detailed research on performance diagnosis, performance testing, and performance
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issue detection. Our study contributes to furthering software performance research by evalu-
ating a tool to help developers automatically locate buggy code in the software. In theory, the
SZZ approach should be able to locate at which point in time non-functional bugs, includ-
ing performance issues, are introduced from previous versions, given that the performance
issue has been detected.

Zaman et al. (2011) conduct both qualitative and quantitative studies on performance
and non-performance issues in Mozilla Firefox and Google Chrome, two open source web
browsers. The study aims to understand the difference between performance issues and
non-performance issues. Their findings show that developers spend more time fixing perfor-
mance issues rather than non-performance issues (Zaman et al. 2011). This study advocates
the importance of identifying root causes for performance issues and evaluating the impact
of changes on performance issues, which are one of the many types of non-functional soft-
ware issues. Our study differs as we only analyze non-functional bugs. However, in Zaman
et al.’s (2011) study, they only differentiate performance and non-performance bugs, where
performance is a subset of non-functional software features. In our study, for each bug
reported, their type (e.g., performance, security) has already been reported by the NFBugs
dataset, therefore the true bug-inducing changes can also be linked to a non-functional bug
type.

Nistor et al. (2013) studied software performance since performance is critical for how
users perceive the quality of software products. Performance bugs lead to poor user expe-
rience and low system throughput (Molyneaux 2009; Bryant and O’Hallaron 2015). Their
study includes how performance bugs are discovered, fixed, and compares the results with
those for non-performance bugs from three popular code bases: Eclipse JDT, Eclipse SWT
and Mozilla Firefox (Team ; Guindon ).

Their results include suggestions of techniques to help developers reason about perfor-
mance and suggest that better profiling techniques are needed for discovering performance
bugs. Our study on the evaluation of an SZZ approach on non-functional bugs, can help
determine whether it is reliable for developers to use references to past inducing code from
past performance bugs to locate and fix new bugs with the help of an SZZ-implemented tool.

The absence of bug-inducing knowledge in issue trackers forces researchers to rely on
alternative sources of information, such as the SZZ approach, which can be used as a heuris-
tic approach to identify bug-inducing changes (Borg et al. 2019). In a recent systematic
literature review, it was determined that few researchers have made their SZZ implemen-
tations publicly available, causing extra research effort to be spent, as new projects based
on SZZ output need to initially re-implement the approach (Borg et al. 2019). The repeated
re-implementation of SZZ also raises the risk that newly developed SZZ implementations
have not been properly tested (Borg et al. 2019). Borg et al. (2019) present SZZ Unleashed,
an open implementation of the SZZ approach for Git repositories. Our paper uses the same
implementation of SZZ as McIntosh and Kamei (2018).

Automatic identification of the differences between two versions of a file is a common
and basic task in several applications of mining code repositories, commonly by using the git
diff command (Nugroho et al. 2019). Nugroho et al. (2019) empirically analyze the impact
of diff algorithms in three major applications: code churn metrics of the SZZ approach, and
patches extraction. The results of locating bug-inducing changes using the SZZ approaches
relies on the diff results. Nugroho et al. (2019) find that 25% of purposes of using the git
diff command is for identifying bug-inducing change identification in the SZZ approach.
Meanwhile, the work presented in this paper evaluates the detected-bug-inducing changes
of the SZZ approach.
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8 Threats to Validity

In this section we discuss the threats to the validity of our research.

External Validity Threats to external validity are concerned with the extent to which we
can generalize our results. Our dataset contains a total of 65 open source GitHub projects:
40 Java projects and 25 Python projects. It is possible that our results might not generalize
to all programming languages. However, since our dataset consists of both Java and Python
projects, we are confident that our results should have the potential to be generalized to
projects of other languages. Furthermore, to further mitigate any language bias, the SZZ
approach we used is language agnostic. While Ohira et al.’s (2015) dataset can be seen as
complementary to the NFBugs dataset, it does not contain enough information in terms of
bug descriptions, for us to fully be sure of the results when we do a manual evaluation as
some information (the cause of the bug) that is available in the NFBugs dataset is missing.
We require this information since we are not domain experts for the projects in the dataset.
It should be possible, however, for domain experts to use Ohira et al.’s (2015) dataset to
replicate our study. For future work, we plan to extend our study of non-functional bugs
from other datasets, e.g., the data from Ohira et al. (2015).

While the reasons for falsely detected bug-inducing commits for non-functional bugs
presented in this paper are shown to have an effect on the detection of non-functional
bugs, we do not claim that these reasons are unique to non-functional bugs. Because non-
functional bugs are the focus of this paper, we did not study how these reasons could affect
functional bugs.

Construct Validity Threats to construct validity are concerned with the validity of our con-
clusions within the constraints of the dataset we used. The dataset used for this paper
contains a total of 65 open source GitHub projects: 40 Java projects and 25 Python projects.
Very few of the projects have an issue tracking system, and so for many, looking for the
creation time of bug reports for a bug in the system was inapplicable. For these cases, we
use the time when a bug fix was introduced instead of a bug report creation time to cal-
culate the span between the introduction of a bug to the fix of that bug. A total of 27 of
the bugs in the dataset had fully wrong identified bug-inducing changes, so we looked for
false negatives, which are truly bug-inducing bugs that have been missed and then included
in the augmented NFBugs dataset. We may still miss some information that introduced the
non-functional bugs, which we attempt to mitigate by having each reviewer study the bug
fix description and the nature of the bug in order to evaluate whether the identified changes
from the SZZ approach induced the bug along with the methods being reported in the bug
descriptions provided by the NFBugs dataset.

Internal Validity Threats to internal validity are concerned with how our experiments were
designed. Our manual analysis of the candidate bug-inducing commits for known bug fix-
ing commits were subject to our own opinion and could therefore be biased by the opinion
of the experimenter. In order to mitigate bias, we had three reviewers analyze the candidate
bug-inducing commits separately and in parallel. Following our manual analysis, we com-
pute the Multi Kappa Fleiss scores of the agreement of the three individuals. We obtained
moderate to strong levels of agreement. The reviewers later met together to discuss disagree-
ments. These measures allow us to mitigate and measure the internal bias of our manual
study. Moreover, for the bugs where the SZZ approach was not able to identify any truly bug
inducing commits, we tried our best manually to look in the repository to find the commits
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that were bug-inducing for bugs. It is still possible that we may miss some bug inducing
commits.

Nugroho et al. reported that different diff algorithms produce different bug-fix commit
identification and they show that the histogram diff is better than the default diff setting in
Git. However, in this paper, we used the default diff setting in Git because we wanted to
allow a comparison to prior studies (da Costa et al. 2017) with as few confounding factors
as possible. Future work and commercial approaches, should consider using histogram diff
rather than the default diff setting to further improve the results presented in this work.

9 Conclusion

In this paper we compared our evaluation of the SZZ approach to prior work that eval-
uates the approach on functional bugs. We use the NFBugs dataset as a ground truth for
non-functional bugs. The NFBugs dataset contains 65 open source GitHub projects: 40 Java
projects and 25 Python projects. We examine the 89 listed Java bugs and 43 listed Python
bugs to uncover root causes for false bug-inducing commit detection that have not been
found by previous studies. Furthermore, we conduct an empirical study to evaluate the per-
formance of the SZZ approach in terms of its ability to locate bug-inducing commits in
the code on the 132 listed bugs. Finally, we manually look at the results and discuss their
implications.

Our findings show that the vast majority (297 out of 376) of the automatically identified
bug-inducing commits by the SZZ approach for non-functional bugs are false positives. In
addition, although there exists guidelines from prior study to assist in automatically iden-
tify falsely detected bug-inducing commits for functional bugs, these guidelines cannot be
reliably used for non-functional bugs. Finally, the existing improvements to SZZ approach
cannot help improve identifying the bug-inducing commits for non-functional bugs.

Our paper is the first to focus exclusively on the use of the SZZ approach on non-
functional bugs. Moreover, we augment the NFBugs dataset by adding a field to each bug
description introducing bug-inducing commits that we manually analyzed as truly bug-
inducing. By extending the dataset, we hope this information proves useful to help future
research in locating bug-inducing commits, particularly with respect to non-functional bugs.
Our findings indicate that new or adjusted tooling should be designed by considering
the unique characteristics of non-functional bugs in order to accurately identify their bug
inducing changes.
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