
Empirical Software Engineering (2021) 26: 79
https://doi.org/10.1007/s10664-021-09956-6

On systematically building a controlled natural
language for functional requirements

Alvaro Veizaga1 ·Mauricio Alferez1 ·Damiano Torre1 ·Mehrdad Sabetzadeh1,2 ·
Lionel Briand1,2

Accepted: 26 February 2021
© The Author(s) 2021

Abstract
Natural language (NL) is pervasive in software requirements specifications (SRSs). How-
ever, despite its popularity and widespread use, NL is highly prone to quality issues such as
vagueness, ambiguity, and incompleteness. Controlled natural languages (CNLs) have been
proposed as a way to prevent quality problems in requirements documents, while maintain-
ing the flexibility to write and communicate requirements in an intuitive and universally
understood manner. In collaboration with an industrial partner from the financial domain,
we systematically develop and evaluate a CNL, named Rimay, intended at helping ana-
lysts write functional requirements. We rely on Grounded Theory for building Rimay and
follow well-known guidelines for conducting and reporting industrial case study research.
Our main contributions are: (1) a qualitative methodology to systematically define a CNL
for functional requirements; this methodology is intended to be general for use across
information-system domains, (2) a CNL grammar to represent functional requirements; this
grammar is derived from our experience in the financial domain, but should be applica-
ble, possibly with adaptations, to other information-system domains, and (3) an empirical
evaluation of our CNL (Rimay) through an industrial case study. Our contributions draw
on 15 representative SRSs, collectively containing 3215 NL requirements statements from
the financial domain. Our evaluation shows that Rimay is expressive enough to capture, on
average, 88% (405 out of 460) of the NL requirements statements in four previously unseen
SRSs from the financial domain.

Keywords Natural language requirements · Functional requirements · Controlled natural
language · Qualitative study · Case study research

Communicated by: Neil Ernst

� Alvaro Veizaga
alvaro.veizaga@uni.lu

Extended author information available on the last page of the article.

/ Published online: 9 June 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09956-6&domain=pdf
http://orcid.org/0000-0002-4538-1471
mailto: alvaro.veizaga@uni.lu

Empir Software Eng (2021) 26: 79

1 Introduction

Requirements are considered as one of the fundamental pillars of software development.
For many systems in industry, requirements are predominantly expressed in natural lan-
guage (NL). Natural language is advantageous in that it can be used in all application
domains and understood virtually by all project stakeholders (Pohl 2010). Supporting this
statement, studies reported that 71.8% of software requirements specifications (SRSs) are
written in NL (Mich et al. 2004) and that the majority of users (61%) prefer to express
requirements using NL (Kassab et al. 2014). Furthermore, Zhao et al. (2020) posit that
NL will continue to serve as the lingua franca for requirements in the future. Despite
its pervasive use, undisciplined use of NL can bring about a variety of quality issues.
Common problems with NL requirements include: poor testability, inappropriate implemen-
tation, wordiness, under-specification, incompleteness, duplication, omission, complexity,
vagueness, and ambiguity (Mavin and Wilkinson 2010; Fernȧndez et al. 2017).

Further, requirements often change throughout a project’s lifespan until a consensus is
reached among stakeholders. Requirements changes lead to significant additional costs that
vary according to the project phase (Hull et al. 2011); it has long been known that the cost
of fixing problems related to requirements increases rapidly when progressing through the
software development phases (Boehm and Basili 2001).

The ultimate quality of a software system greatly depends on the quality of its require-
ments. Empirical evidence shows that the state of practice for acquiring and documenting
requirements is still far from satisfactory (Sadraei et al. 2007; Solemon et al. 2009; Young
2015). Different studies have reported that one of the main causes of software project fail-
ures in industry is related to poorly written requirements, i.e., requirements that are unclear,
ambiguous, or incomplete (Ahonen and Savolainen 2010; Hull et al. 2011; The Standish
Group 1995). Poorly written requirements are difficult to communicate and reduce the
opportunity to process requirements automatically, for example, to extract models (Arora
et al. 2015) or derive test specifications (Alférez et al. 2019).

The problem we address in this article was borne out of a practical need observed
across many industrial domains. For example, in the financial domain, the current practice
is to write system requirements using a general-purpose text editor without enforcing any
requirement structure. This is the case for our industrial partner, Clearstream Services SA
Luxembourg – a post-trade services provider owned by Deutsche Borse AG. Clearstream
reported that several communication problems and delays arise from requirements that are
not stated precisely enough, particularly in situations where the project development tasks
are divided across several teams in different countries. This problem is compounded by
the fact that Clearstream typically has to deal with SRSs written in NL that are created
by domain experts (from now on, we refer to them as “financial analysts”), who do not
necessarily possess sufficient expertise in requirements elicitation and definition.

Furthermore, other stakeholders at different levels of the organization, e.g., customer
service, also need to be able to process the requirements and validate them according to their
specific needs (Dick et al. 2017). As a result, there is a tension between the pressure to use
NL in practice and the need to be more precise and resorting to formal languages (Yue et al.
2011). Controlled natural languages (CNLs) strike a balance between the usability of NL
on the one hand and the rigour of formal methods on the other. A CNL is a set of predefined
sentence structures that restrict the syntax of NL and precisely define the semantics of the
statements written using these predefined structures (Pohl 2010).

79 Page 2 of 53

Empir Software Eng (2021) 26: 79

In this article, we concern ourselves with developing a CNL for writing requirements
for financial applications. We have named our CNL Rimay, which means “language” in
Quechua. We focus on functional requirements, noting that the vast majority of the require-
ments written by our industrial partner are functional, and that financial analysts find most
of the ambiguity and imprecision issues in functional requirements. The functional require-
ments produced by Rimay are intended to replace unrestricted requirements and, as a result,
enable the automation of certain tasks, such as the generation of acceptance-test crite-
ria (Veizaga et al. 2020). In our context, a functional requirement specifies what system
response an actor is expected to receive when providing certain inputs, if certain conditions
are met. We consider every other type of requirement to be non-functional.

While Rimay is grounded in requirements for financial applications, it also overlaps
with other Requirements Engineering ontologies such as the Core Ontology for REquire-
ments (CORE) (Jureta et al. 2009), whose development was inspired by the work of Zave
and Jackson (1997). In short, CORE aims to cover all the basic concerns that stakeholders
communicate during the requirements elicitation process (beliefs, desires, intentions, and
evaluations) by introducing a set of concepts (Goal, Plan, Domain assumption, and Eval-
uation). Each concept, except Plan, has subcategories. For instance, the goal concept has
three subcategories in CORE: Functional goal, Quality constraint, and Softgoal. The condi-
tion structure and system response of Rimay correspond to the Functional goal concept of
CORE.

Finally, although our work draws on the requirements of financial applications, this
domain shares several common characteristics with other domains where (data-centric)
information systems are developed. We therefore anticipate that our results, including our
methodology, lessons learned, and Rimay itself, can be a useful stepping stone for building
CNLs in other related domains. This said, we acknowledge that additional empirical work
remains necessary to substantiate claims about usefulness beyond our current domain of
investigation, i.e., finance.

Our investigation is guided by the following research questions (RQs):

– RQ1: What information content should one account for in the requirements for
financial applications? In this RQ, we want to identify, in the requirements pro-
vided by our industrial partner, the information content used by financial analysts. This
information is a prerequisite for the design of the Rimay grammar.

– RQ2: Given the stakeholders, how can we represent the information content of
requirements for financial applications? After we identify the information content
used by our industrial partner to represent requirements, we want to find out the
structures of the requirements that our CNL should support. These structures follow
recommended syntactic structures and define mandatory and optional information.

– RQ3: How well can Rimay express the requirements of previously unseen docu-
ments?After building our CNL grammar, we need to determine how well it can capture
requirements in unseen SRSs.

– RQ4: How quickly does Rimay converge towards a stable state? Rimay reaches a
stable state when it does not need to continuously evolve (i.e., no addition of new rules
and no updates to the existing rules) in response to the analysis of new (unseen) SRSs.
To assess stability, we use the notion of saturation. Saturation occurs, in a qualitative
study, when no new information seems to emerge during coding.

In this article, we use a total of 15 SRSs written by financial analysts at Clearstream. These
SRSs describe different projects that cover a range of activities: nine discuss the updating of

Page 3 of 53 79

Empir Software Eng (2021) 26: 79

existing applications, two concern the compliance of the applications with new regulations,
two describe the creation of new applications, and the last two describe the migration of
existing applications to more sophisticated technologies. Of the 15 SRSs, 11 are used in our
qualitative study to answer RQ1 and RQ2, and the other four in our empirical evaluation to
answer RQ3 and RQ4.

We use a combination of Grounded Theory and Case Study Research to address the four
research questions posed above. The main contributions of this work can be summarized as
follows:

(1) A qualitative methodology aimed at defining a CNL for functional requirements
(RQ1). We rely on Grounded Theory for developing Rimay. Grounded Theory is a
systematic methodology for building a theory from data. The goal of Grounded The-
ory is to generate theory rather than test or validate an existing theory (Stol et al.
2016). Our methodology is general and can serve as a good guiding framework
for building CNLs systematically. We rely on an analysis procedure named proto-
col coding (Saldaña 2015), which aims at collecting qualitative data according to a
pre-established theory, i.e., set of codes. Protocol coding allows additional codes to
be defined when the set of pre-established codes is not sufficient. A code in qual-
itative data analysis is most often a word or short phrase that symbolically assigns
a summative, salient, essence-capturing, and/or evocative attribute for a portion of
language-based or visual data (Saldaña 2015). In the context of our article, a code iden-
tifies a group of verbs that share the same information content in an NL requirement.
As explained in Section 3.3.2, most of the codes are pre-existing verb-class identifiers
available in a well-known lexicon named VerbNet1. In addition, we use WordNet2 to
verify the verb senses of the requirements. The fact that we use domain-independent
lexical resources and include no keywords specific to the financial domain in Rimay,
makes our approach more likely to have wider applicability to information systems in
general. We conduct our qualitative study on 11 SRSs that contain 2755 requirements
in total.

(2) A CNL grammar (RQ2) targeting financial applications in particular and information
systems in general. We apply restrictions on vocabulary, grammar, and semantics. The
Rimay grammar accounts for a large variety of system responses and conditions, while
following recommended syntactic structures for requirements (e.g., the use of active
voice). Also, the Rimay grammar defines mandatory information content to enforce
the completeness of functional requirements. In addition to the grammar, we gener-
ate a user-friendly and full-featured editor using the language engineering framework
Xtext.3

(3) An empirical evaluation of Rimay (RQ3 and RQ4). We report on a case study con-
ducted within the financial domain. We evaluate Rimay on four SRSs containing 460
requirements to demonstrate the feasibility and benefits of applying Rimay in a real-
istic context. We use saturation to find the point in our evaluation where enough SRS
content has been analyzed to ensure that Rimay is stable for specifying requirements
for the financial domain. Furthermore, we use a z-test for differences in proportions
to confirm that additional enhancements to Rimay are unlikely to bring significant
benefits.

1https://verbs.colorado.edu/verbnet/ (last access on 26 January 2021)
2https://wordnet.princeton.edu/ (last access on 26 January 2021)
3https://www.eclipse.org/Xtext/ (last access on 26 January 2021)

79 Page 4 of 53

https://verbs.colorado.edu/verbnet/
https://wordnet.princeton.edu/
https://www.eclipse.org/Xtext/

Empir Software Eng (2021) 26: 79

The article is structured as follows: Section 2 introduces the background and related
work. Section 3 presents a qualitative study aimed at analyzing the information content
in the requirements provided by Clearstream (our industrial partner). In Section 4, we
describe the details of Rimay. Section 5 describes a case study that evaluates Rimay.
Threats to the validity of our results are discussed in Section 6. Section 7 discusses
practical considerations and, finally, our conclusions and an outline of future work are
provided in Section 8.

2 Background and related work

This section reviews the lexical resources we rely on in this work and further discusses
related work.

2.1 Lexical resources

In the next subsections, we discuss WordNet and VerbNet. We use the WordNet dictionary
for verb lookup operations and the VerbNet lexicon to cluster verbs with similar semantics
into verb classes.

2.1.1 WordNet

WordNet (Miller 1995) is a domain-independent linguistic resource which provides, among
several other things, more than 117000 synsets. Synsets are synonyms –words that denote
the same concept and are interchangeable in many contexts– grouped into sets. Each synset
contains (a) a brief definition (“gloss”), (b) the synset members, and, in most cases, (c) one
or more short sentences illustrating the use of the synset members. Each synset member is
a synonym sharing the same sense of the other members of the synset. Synset members use
the format word#sense number . For example, in WordNet the verb create has six synsets.
One of those synsets contains the following information: (a) gloss, “create or manufacture
a man-made product”, (b) two synset members, produce#2 and make#6, and (c) an example
of how to use the synset members produce#2 and make#6, “We produce more cars than we
can sell”.

In order to develop Rimay, in Section 3.3.2, we use WordNet to retrieve the different
synonyms and senses of the verbs identified in the NL requirements.

2.1.2 VerbNet

VerbNet (Kipper et al. 2000) is a domain-independent, hierarchical verb lexicon of approxi-
mately 5800 English verbs. It clusters verbs into over 270 verb classes, based on their shared
syntactic behaviors. Each verb in VerbNet is mapped to its corresponding synsets in Word-
Net, if the mapping exists. In VerbNet, a verb is always a member of a verb class and each
verb class is identified by a unique code composed of a name and a suffix. The suffix reveals
the hierarchical level of a verb class, e.g., two of the sub-classes of the root class multiply-
108 aremultiply-108-1 andmultiply-108-2. In VerbNet, the sub-classes inherit features from
the root class and specify further syntactic and semantic commonalities among their verb
members. For example, each of the sub-classes of multiply-108 uses the same syntactic
structure which is defined as a noun phrase followed by a verb, a noun phrase, and a prepo-
sitional phrase. However, each sub-class uses different prepositions in the prepositional

Page 5 of 53 79

Empir Software Eng (2021) 26: 79

phrase. In particular, the subclass multiply-108-1 has the verb members divide and multiply
and uses the preposition by as in the phrase “I multiplied x by y”. The subclass multiply-
108-2 has verb members such as deduct, factor, and subtract and uses the preposition from
as in the phrase “I subtracted x from y”.

In Section 3.3.2, we describe how we used VerbNet to identify the verb classes of the
verbs that we found in our NL requirements.

2.2 Related work

Numerous studies have been conducted with a focus on NL requirements quality improve-
ment. Pohl (2010) presents three common techniques for improving the quality of NL
requirements by reducing vagueness, incompleteness and ambiguity:

Glossaries. Requirements glossaries make explicit and provide definitions for the
salient terms in a SRS. Requirements glossaries may further provide information about
the synonyms, related terms, and example usages of the salient terms (Arora et al.
2017).
Patterns. They are pre-defined sentence structures that contain optional and mandatory
components. Patterns restrict the syntax of the text and are meant to help stakeholders in
writing more standardized NL requirements and thus circumventing frequent mistakes.
Controlled natural languages. They are considered an extension of the pattern cat-
egory which, in addition to restricting the syntax (the grammatical structures), also
provide language constructs with which it is possible to precisely define the semantics
of NL requirements.

In this article, we build a CNL to represent functional requirements in the financial
domain. However, given that Rimay does not rely on any domain-specific constructs (Sec-
tions 2.1 and 3), it could also be applied to other (data-centric) information systems in
different domains.

Given our objective, we focus here on approaches and studies related to CNLs and pat-
terns for expressing NL requirements. We searched relevant approaches and studies in four
well-known digital libraries: ACM, IEEE, Springer, and ScienceDirect. In addition, we con-
sidered relevant surveys that discuss CNLs and patterns for expressing NL requirements.
We selected 11 studies, directly relevant to our work, that focus on improving NL require-
ments through the use of patterns or CNLs. Table 1 outlines the main characteristics of
these studies. The first column of the table provides a reference to each study. The sec-
ond column indicates the type of the approach, i.e., Pattern or CNL. In order to obtain a
more thorough picture of the literature, although our work is focused on functional require-
ments, our analysis of the related work does not exclude references that exclusively address
non-functional requirements. The third column shows the type of the requirements that the
approach supports: Functional Requirements (FR), Non-Functional Requirements (NFR),
or both. Additionally, the third column includes the domain in which the patterns and CNLs
were created. There are two strands of work: domain-independent and domain-specific (i.e.,
automotive, business, healthcare, performance, embedded systems, and data-flow reactive
systems).

The fourth column indicates whether an empirical study was conducted and evaluated
in a systematic manner. The fifth column shows whether the proposed CNL or pattern was
somehow evaluated. Finally, the sixth column reports on whether tool support was provided.

We discuss the selected studies next.

79 Page 6 of 53

Empir Software Eng (2021) 26: 79

Table 1 Summary of related work

Study Type of Type of Systematic Evaluation Tool

Reference Approach Requirements Study Support

Pohl and Rupp (2011) Pattern FR (Domain-Independent) No No No

Mavin et al. (2009) Pattern FR (Domain-Independent) No Yes Yes

Withall (2007) Pattern Both (Business) No No No

Riaz et al. (2014) Pattern NFR (Healthcare) No No Yes

Eckhardt et al. (2016) Pattern NFR (Performance) Yes Yes No

Denger et al. (2003) Pattern FR (Embedded Systems) No Yes No

Konrad and Cheng (2005b) CNL NFR (Automotive) No Yes Yes

Fuchs et al. (2008) CNL Both (Several) No No Yes

Post et al. (2011) CNL FR (Automotive) No Yes Yes

Crapo et al. (2017) CNL FR (Domain-Independent) No No Yes

Carvalho et al. (2014) CNL Both (Data-Flow Reactive systems) No No Yes

2.2.1 Patterns

Pohl and Rupp (2011) discuss a single pattern to specify functional requirements. The
authors claim that the requirements that comply to this pattern are explicit, complete and
provide the necessary details to test such requirements.

Mavin et al. (2009) define the Easy Approach to Requirements Syntax (EARS), which
is a set of five patterns enabling analysts to describe system functions. The authors demon-
strate, through a case study in the aviation domain, that using EARS leads to requirements
which are easier to understand and which exhibit fewer quality problems, particularly in
relation to ambiguity. Tool support for the EARS patterns was presented in a follow-up
paper (Lúcio et al. 2017).

Withall (2007) identifies 37 patterns to specify structured functional and non-functional
requirements for the business domain. The study provides insights regarding the creation
and extension of the patterns.

Riaz et al. (2014) define a set of 19 functional security patterns. They provide a tool
that assists the user in selecting the appropriate pattern based on the security information
identified in the requirements.

Eckhardt et al. (2016) propose patterns to specify performance requirements. The pat-
terns were derived from a content model built from an existing performance classification.

Page 7 of 53 79

Empir Software Eng (2021) 26: 79

Eckhardt et al. (2016) define the content elements that a performance requirement must
contain to be considered complete.

Denger et al. (2003) propose a set of patterns to describe requirements for embed-
ded systems. The patterns were derived from a metamodel that captures several types of
embedded-system requirements. The authors validate their patterns through a case study.

In contrast to the other four studies, Riaz et al. (2014) and Mavin et al. (2009) provide
tool support to guide analysts in defining requirements. Eckhardt et al. (2016) follow a
systematic process to develop a framework for the creation of performance requirements
patterns, and presented a well-defined evaluation of their approach.

2.2.2 Controlled natural languages

Konrad and Cheng (2005b) provide a restricted natural language for the automotive and
appliance domains, enabling analysts to express precise qualitative and real-time properties
of systems. They evaluated their approach through a case study and introduced their tool in
a follow-up paper (Konrad and Cheng 2005a).

The approach described by Fuchs et al. (2008) was identified from the survey and
classification of CNLs conducted by Kuhn (2014).

Fuchs et al. (2008) propose the Attempto Controlled English, which is a CNL that defines
a subset of the English language intended to be used in different domains, such as software
specification and the Semantic Web. Attempto can be automatically translated into first-
order logic.

Post et al. (2011) identify three new rules that extend the approach proposed by Konrad
and Cheng (2005b) to express requirements in the automotive domain. They validated their
rules through a case study, and described their tool in another paper (Post and Hoenicke
2012).

Crapo et al. (2017) propose the Semantic Application Design Requirements Language
which is a controlled natural language in English for writing functional requirements. Their
language supports the mapping to first-order logic. Carvalho et al. (2014) propose a CNL
called SysReq-CNL that allows analysts to describe data-flow requirements. Their sentence
rules are nonetheless not mapped onto any formal semantics. None of the above approaches
have been empirically evaluated.

To summarize, no previous strand of work describes a systematic process to build CNL
grammar rules. However, all the above approaches provide tool support to assist analysts
with specifying requirements.

2.2.3 Differences between the related work and our approach

No other work, in our knowledge, follows a systematic process for creating and evaluating
a CNL to specify functional requirements, either in the financial domain (the main focus
of our investigation) or any other domain. More precisely, our work differs from the exist-
ing work in the following respects: (a) we derive Rimay from the analysis of a large and
significant number of requirements from the financial domain; (b) we create Rimay by
following a rigorous and systematic process; (c) we evaluate Rimay through a case study
based on industrial data while following empirical guidelines for conducting Case Study
Research (Runeson et al. 2012); and (d) we fully operationalize Rimay through a usable
prototype tool.

79 Page 8 of 53

Empir Software Eng (2021) 26: 79

3 Qualitative study

In this section, we report on a qualitative study aimed at characterizing the information
content found in the functional NL requirements provided by Clearstream. In the following,
every time we speak of “requirements”, we mean functional NL requirements.

Other techniques, such as grammar induction (Stevenson and Cordy 2014), could have
been used to learn the syntax of the functional requirements in an automated manner. How-
ever, we believe that the limited number of available requirements would not have resulted
in a reliable learning model. Therefore, we opted to conduct a qualitative study to build a
semi-automated strategy enabling the creation of the grammar rules in a precise manner.

First, we describe the context of the qualitative study along with the criteria used to
select SRSs. Then, we present the analysis procedure of our qualitative study where we
show the codes that identify different groups of requirements. Each group of requirements
is characterized by different information content. In this work, information content refers to
the meaning assigned to the text of the requirements.

The result of the analysis procedure is a grammar that defines the syntax of a CNL that is
able to specify all the information content found in the analyzed requirements. A grammar
is a set of controlled and structured syntax rules (also known as grammar rules) describing
the form of the elements that are valid according to the language syntax (Bettini 2013).
In our context, our grammar controls the structure of functional requirements by applying
syntax rules. Section 3.3.5 (Step 5.2) describes how we produce the Rimay grammar rules,
and Section 4 describes all the grammar rules of Rimay.

3.1 Research question

The goal of this qualitative study is to answer the following research question: RQ1: What
information content should one account for in the requirements for financial applications?
RQ1 aims to identify the mandatory and optional information content used by Clearstream
to describe requirements. This is essential in order to design a CNL that will help financial
analysts write requirements that are as complete and as unambiguous as possible.

3.2 Study context and data selection

We conducted this study in collaboration with Clearstream Services SA Luxembourg, which
is a securities services company with 2500 customers in 110 countries. More concretely, we
worked with the Investment Fund Services (IFS) division. An Investment Fund is a capital
that belongs to a number of investors and is used to collectively invest in stocks and bonds.
Among other tasks, the IFS division takes care of (a) the development of new applications,
(b) upgrading existing ones, and (c) the migration of applications to more sophisticated
technologies to provide their clients with state-of-the-art solutions that comply with the
regulations in force. The Clearstream units involved with IFS are project management, IFS
and market operations, design, functional and business analysis, development, and testing.

Clearstream performs the aforementioned tasks following a methodology grounded in
best practices and years of experience. For instance, financial analysts specify requirements
using a combination of UMLmodels and natural language requirements following the Rupp
template (Pohl and Rupp 2011). Clearstream follows a carefully planned software devel-
opment process (Sommerville 2011) based on the V-Model, that is suitable for a heavily
regulated industry, such as finance.

Page 9 of 53 79

Empir Software Eng (2021) 26: 79

Clearstream is continuously delivering new software projects in the financial domain and
employs English as the primary language for specifying requirements. Two members of our
research team were embedded in the Clearstream - IFS to get familiar with the company’s
development process and its organizational culture for over a month before starting the
project described in this article. Our members participated in training sessions and numerous
meetings organized by Clearstream. Additionally, all the research team members have been
interacting, both electronically and through face-to-face meetings, with the members of the
IFS team for two years.

We validated our results and conclusions with a team of experts. The team was composed
of eight financial analysts: (a) two were senior financial analysts with more than 20 years of
experience in specifying requirements in the financial domain. Their areas of expertise are
business analysis, functional design, functional architecture, requirements engineering, and
project management; (b) Four of them were mid-career financial analysts with more than
10 (but less than 20) years of experience in business and functional analysis in the financial
domain. One of themid-career analyst had software programming and testing skills; and (c)
two were junior financial analysts with two to five years of experience in business analysis.
This validation activity was performed over a year in an iterative and incremental manner
with face-to-face, bi-weekly sessions with the team of experts, with each of these sessions
lasting between two to three hours. This activity was concluded when the experts did not
have any additional suggestions for improving the clarity, completeness, or correctness of
the requirements.

Among all those available in Clearstream, we selected SRSs which: (a) belong to recently
concluded projects, (b) contain at least 15 requirements, (c) contain requirements written
in English, and (d) are written by different financial analysts. The senior financial analysts
from Clearstream selected 11 representative SRSs according to the four criteria defined
above. Each one of the SRSs contained the following types of information: business con-
text, goals and objectives, project scope, current and future overview, general information
(e.g., glossary, related documentation, acronyms and abbreviations), and Unified Modeling
Language (UML) diagrams for the high-level functional decomposition of the systems and
requirements. In total, the 11 SRSs contained 2755 requirements.

3.3 Analysis procedure

Figure 1 shows an overview of our semi-automated analysis procedure. In Step 1, we first
extracted 2755 requirements from 11 SRSs. In Step 2, we identified a dictionary of 41
codes from the extracted requirements. For example, the code send 11.1 identifies five
verbs used in the extracted requirements: “return”, “send”, “forward”, “pass”, “export”
and “import”(Tables 4 and 5 shows the 41 codes and verbs identified in our qualitative
study and the evaluation). Our analysis procedure for identifying the codes followed pro-
tocol coding (Saldaña 2015), which is a method for collecting qualitative data according
to a pre-established theory, i.e., a set of codes. As explained later in this section, our pre-
established set of codes was identified from VerbNet. Using a coding system based on a
predefined set of codes helps us to save analysis time and mitigate coding bias. In Step 3,
two annotators (first and second authors of this article) labeled the extracted requirements
with one or more of the codes discovered in the previous step. In Step 4, we grouped the
extracted requirements by their labels. The purpose of grouping requirements is to ease
the identification of common information content to create grammar rules. For example,
all the requirements that use the verbs members of the code send 11.1 share the semantic
roles INITIAL LOCATION (a place where an event begins or a state becomes true) and

79 Page 10 of 53

Empir Software Eng (2021) 26: 79

Requirements

Labelled
Requirements

Identify Codes2

Label Requirements3

Group Requirements4

Create Grammar5

Extract Requirements1

Requirements
by Label

Rimay
Grammar

SRSs

Dictionary of
Codes

Fig. 1 Overview of our analysis procedure

DESTINATION (a place that is the end point of an action and exists independently of the
event). In Step 5, we iteratively created and integrated the grammar rules into Rimay. Each
of the five steps in Fig. 1 shows one or two icons denoting whether a given step was carried
out (1) automatically (i.e., the three gears icon), (2) manually (i.e., the human icon), or (3)
semi-automatically (i.e., both icons).

The next subsections describe in details Steps 1 to 5.

3.3.1 Extract requirements (Step 1)

We read the 11 SRSs and extracted 2755 requirements. In our case, all the requirements
were written in tables in which all the requirements were clearly identified and distin-
guished from other information. The structure of the SRSs clearly separates functional from
non-functional requirements. Furthermore, we checked that no functional requirement was
mistakenly placed in the non-functional requirements section.We verified that the content of
the requirements presenting lists and tables was correctly captured by our automatic extrac-
tion algorithm. If there was any error, we manually corrected it. This step was automated

Page 11 of 53 79

Empir Software Eng (2021) 26: 79

Table 2 Three requirements extracted from a SRS during Step 1 of Fig. 1

Id Description Rationale

TNG.INPUT.010 If the message contains “FISN”,
then the System must ignore the
message.

FISN is an official ISO Standard
created to enhance the quality of
financial messaging.

TRAN.0030 The System must regenerate the
outbound XML according to the
new XML specification “SR2017”.

The previously created orders,
which their status are activated,
must be changed to comply with
the new XML specification.

Data.SAA.060 The data of the System older than
13 months must be archived for at
least 10 years.

This requirement complies to a
legal rule.

using the Apache POI API,4 which is a well-known Java library for reading and writing
files in Microsoft Office formats.

Table 2 shows three requirements extracted from a SRS. The column “Id” identifies the
requirements, the column “Description” contains the original text of the requirements, and
the column “Rationale” presents the reasoning behind the creation of a given requirement.

3.3.2 Identify codes (Step 2)

The coding approach is intended to (1) obtain a number of codes that allow the language
to be expressive enough for the financial domain, (2) be systematic to allow others to repli-
cate the procedure, and (3) ensure that Rimay remains as broadly applicable as possible by
minimizing reliance on domain-specific terms. The requirements specify the expected sys-
tem behavior using verb phrases, e.g., “send a message” and “create an instruction”. We
used the verb lexicon named VerbNet (Section 2.1.2) to identify the codes from our SRSs.
Section 3.3.5 will explain in details how, by using verb classes, we obtain the grammar rules
of Rimay.

We followed a semi-automated process to identify codes and their corresponding verbs.
We automated some of the sub-steps of Step 2 by using the NLTK5 library for Python. In the
remainder of this section, we describe in detail which sub-steps of Step 2 were automated.
From the 41 codes that we proposed in this qualitative study, 32 codes (78%) correspond
to verb class ids from VerbNet (referred to thereafter as VerbNet codes), and nine (22%)
are codes that we proposed because they were missing from VerbNet but were needed to
analyze the requirements. We use below the following terms to describe this process:

– REQS: Set of requirements to analyze.
– LEMMAS: List of lemmas found in the action phrases of REQS.
– CODES: Dictionary of codes and their corresponding verb members found during our

analysis procedure. There are two types of codes: VerbNet codes and codes proposed
by us.

– AUX: Auxiliary list of the lemmas that are not members of any code in CODES.
– SYNS: Dictionary of lemmas and their corresponding applicable synonyms.

4https://poi.apache.org/ (last access on 26 January 2021)
5https://www.nltk.org/ (last access on 26 January 2021)

79 Page 12 of 53

https://poi.apache.org/
https://www.nltk.org/

Empir Software Eng (2021) 26: 79

– VN: Read-only dictionary of all the publicly available VerbNet codes and their
corresponding verb members.

In Fig. 2, we show a running example of our process to identify the codes. The process
steps are as follows:

Extract lemmas (Step 2.1) We extracted the verbs of each requirement in REQS (upper-left
corner of Fig. 2) to obtain lemmas. A lemma is the base form of the verb. For example, from
“archived”, the lemma is “archive”. We stored the resulting lemmas in LEMMAS.

Separate lemmas that do not belong to any VerbNet code (Step 2.2) We retrieved for
every lemma in LEMMAS its corresponding VerbNet codes from VN. We stored these Verb-
Net codes and their corresponding lemmas (including their sense number, depicted as a
number after the symbol #) in CODES. For example, the key-value pair {engender-27, gen-
erate#1} in CODES of Fig. 2 (Step 2.2) means that the lemma generate (Step 2.1 of Fig. 2)
with the sense number one (i.e., “bring into existence”) is a member of the VerbNet code
engender-27.

If a lemma in LEMMAS was not a member of any VerbNet code in VN, we added it to an
auxiliary list of lemmas named AUX. For example, in Fig. 2 (Step 2.2) we added to AUX the
lemmas ignore, regenerate and synchronize that were not identified in VN, but were found
in the analyzed requirements.

Identify new VerbNet codes by using synonyms (Step 2.3) We analyzed the synonyms
and senses of the lemmas in AUX to discover new VerbNet codes that can be added to
CODES. We describe this process in more details as follows:

Find applicable synonyms (Step 2.3.1) We used WordNet to retrieve all the synonyms of
each auxiliary lemma in AUX. We stored in SYNS only the synonyms whose senses match
the sense of an auxiliary lemma as used in REQS.

As an example, Table 3 shows the list of synonyms of the lemma regenerate, which is
one of the lemmas in AUX shown in Fig. 2 (Step 2.2). The synonyms in Table 3 are grouped
according to the sense numbers of the lemma regenerate, namely 1, 3, 4 and 9 (according to
WordNet, the verb regenerate has nine senses, but Table 3 only shows the senses that have
at least one synonym). From the four senses in Table 3, we chose the ones that match the
sense of the verb regenerate used in REQS. In this case, we chose sense number 1 since it
was the only sense that was applicable to the requirements. Finally, we store in SYNS the
synonyms and their chosen sense numbers. In the case of the lemma regenerate, we only
added renew#1 to SYNS.

Add applicable synonyms (Step 2.3.2) We retrieved, for every synonym in SYNS, its cor-
responding VerbNet codes from VN. Then, we stored the retrieved VerbNet codes and the
corresponding synonym (including the sense number) in CODES. For example, given that
the synonym neglect (Step 2.3.1 of Fig. 2) with sense number four (i.e., neglect#4) is a
member of the VerbNet code neglect-75-1-1, we created the key-value pair {neglect-75-1-1,
neglect#4} in CODES (Step 2.3.2 of Fig. 2). If none of the synonyms of a lemma is a mem-
ber of any code in VN, then we move the lemma from SYNS to AUX. For example, if the
synonym is renew#1 and it is not a member of any VerbNet code in VN, if it is a synonym
of regenerate we then move regenerate from SYNS to AUX.

Page 13 of 53 79

Empir Software Eng (2021) 26: 79

Codes Members

set#5set

synchronize#1,2,4,5synchronize

store#1keep-15.2

neglect#4neglect-75-1-1

engender-27 generate#1, regenerate#1

CODES: Verb members by code

Analyze remaining lemmas (Step 2.5)

synchronize, regenerate, set

AUX: Lemmas that do not belong to
any VerbNet class

Remove VerbNet codes (Step 2.4)

store#1keep-15.2

Codes

neglect#4neglect-75-1-1

engender-27

Members

generate#1

CODES: Verb Members by code

Identify new VerbNet codes
by using synonyms (Step 2.3)

synchronize, regenerate

AUX: Lemmas that do not belong to
any code

Remove lemmas (Step 2.3.3)

Add applicable synonyms
(Step 2.3.2)

neglect#4

keep-15.2

pocket-9.10

grow-26.2

force-59-1

set#22

judgment-33

archive#1

store#(1,2)

set#6

put-9.1-2

generate#(2,3)

Codes

snub#1

set#25

neglect-75-1-1

braid-41.2.2

generate#1

set#(7, 22)

set#(1,6,12,17)

image_impression-25.1

preparing-26.3-2

engender-27

Members

CODES: Verb members by code

Find applicable synonyms
(Step 2.3.1)

contemporize#1,
contemporize#2, sync#1

synchronize

renew#1regenerate

cut#31, snub#1,
disregard#1, disregard#3,
neglect#4

Applicable synonyms
with their
corresponding senses

ignore

Lemma

SYNS: Applicable synonyms

ignore,
regenerate,
synchronize

AUX: Lemmas
that do not

belong to any
code

keep-15.2 store#(1,2)

archive#1pocket-9.10

set#22

force-59-1

image_impression
-25.1

engender-27

set#(1,6,12,17)

generate#(2,3)

Codes

set#6

preparing-26.3-2

set#(7, 22)

put-9.1-2

braid-41.2.2

Members

grow-26.2

set#25

generate#1

CODES:
Verb members by code

Separate lemmas that do not belong to any
VerbNet code (Step 2.2)

set, generate, ignore, regenerate, archive,
synchronize, store

LEMMAS: Lemmas found in REQS

Extract lemmas (Step 2.1)

 IFSIG must store
retention period

DEP0020

VIS003
Oxygen must synchronize to Vestima+, the
current version of the time dependent
elements

Data.SAA.060
SAA data older than 13 months must be
archived for at least 10 years.

then the System must ignore the Message.

TRAN.0030

ID Description

Vestima must generate a new Clearstream

TNG.INPUT.010

V.ORDR.N.0040

When VertimaTango generates a settlement
instruction (not an allegement), the input

be set

Vestima must regenerate the outbound TNP
XML based on the new SR2017 TNP XML

TNG.CXID.010

REQS: Set of requirements

Fig. 2 Identify codes (Step 2)

79 Page 14 of 53

Empir Software Eng (2021) 26: 79

Table 3 Senses and synonyms of the verb regenerate retrieved from WordNet

Sense Sense Definition Synonyms and Chosen

Number Their Sense Number Sense?

1 Reestablish on a new, usually
improved, basis or make new or like
new

renew#1 Yes

3 Bring, lead, or force to abandon a
wrong or evil course of life, con-
duct, and adopt a right one

reform#2, reclaim#3, rectify#3 No

4 Return to life, get or give new life
or energy

restore#2, rejuvenate#4 No

9 Restore strength revitalize#1 No

Remove VerbNet codes (Step 2.4) In this step, our goal is to remove the VerbNet codes
(from CODES) that are either not relevant to the SRSs in the financial domain or redundant.
We performed this step during several offline validation sessions. Each session was attended
by three to four financial analysts with the presence of at least one senior and one mid-career
financial analyst.

At the end of Step 2.4 (Fig. 2), we went from 11 to three VerbNet codes (i.e., a reduction
of 72,7%). Considering all the VerbNet codes used during this qualitative study, not only the
11 VerbNet codes shown in Step 2.4 in Fig. 2, we decreased the number of VerbNet codes
from 158 to 32 (i.e., a reduction of 79,7%). The two strategies that we employed to reduce
VerbNet codes are as follows:

– Strategy 1. Discard redundant verbs. For example, between the verbs archive and store,
we discard the verb archive because the verb store is more frequent and both verbs are
semantically similar.

– Strategy 2. Discard verbs that do not have applicable senses. For example, the Verb-
Net code image impression-25.1 (Step 2.3.2 of Fig. 2) involves only the member set#6
whose sense is defined by WordNet as: “a relatively permanent inclination to react in
a particular way”. Since this latter sense is not used in REQS, we finally discarded
image impression-25.1 from CODES. After applying this strategy, if a verb was dis-
carded from CODES, we added only its lemma to AUX for further manual analysis as
we explain next in Step 2.5. For example, given that the verb set was discarded from
CODES, we added its lemma (e.g., only the word set without sense#) to AUX.

Analyze remaining lemmas (Step 2.5) In this step, we manually checked inWordNet if the
senses of the remaining lemmas in AUX could be included in CODES. This step was carried
out with the help of two senior and two mid-career financial analysts from Clearstream. We
updated CODES when we identified an appropriate sense in WordNet that referred to one of
the remaining lemmas. For example, in Fig. 2, we created the code set with a member set#5
whose sense is used in REQS, and updated the VerbNet code engender-27 with the member
regenerate#1.

Coding results Tables 4 and 5 present the resulting codes identified during our qualitative
study described in Section 3.3.2 (“Identify Codes” (Step 2)). We finally obtained 41 codes,
where 32 were obtained from VerbNet and nine were proposed by us.

Page 15 of 53 79

Empir Software Eng (2021) 26: 79

Table 4 VerbNet codes identified during our qualitative study

Codes Members

Class name Hierarchy

Level

admit 65 exclude

advise 37.9-1 instruct

allow 64.1 allow, authorize

beg 58.2 request

begin 55.1-1 begin

concealment 16-1 hide

contribute 13.2 restore

create 26.4 compute, publish

enforce 63 enforce

engender 27 create, generate

exchange 13.6 replace

forbid 67 prevent

herd 47.5.2 aggregate

involve 107 include

keep 15.2 store

limit 76 limit, restrict, reduce

mix 22.1-2 add

mix 22.1-2-1 link

neglect 75-1-1 neglect, ignore

obtain 13.5.2 accept, receive, retrieve

other cos 45.4 close

put 9.1 insert

reflexive appearance 48.1.2 display, show

remove 10.1 extract, remove, delete

say 37.7-1 report, propose

see 30.1-1 detect

send 11.1 return, send, forward, pass

shake 22.3-2-1 concatenate

throw 17.1 discard

transcribe 25.4 copy

turn 26.6.1 convert, change, transform

use 105 apply

Total: 32

Table 4 provides the 32 VerbNet codes and their members. The first column of the
table lists the codes, where each code is composed of a class name and a hierarchy level
(Section 2.1.2). The second column shows the verb members related to the code. Table 5
shows the nine codes that we proposed. The first column of the table lists the codes and the
second column provides the verb members associated to the code.

79 Page 16 of 53

Empir Software Eng (2021) 26: 79

Table 5 Codes proposed during
the qualitative study Codes Members

cancel cancel

enable disable enable, disable

get from download

interrupt interrupt

migrate migrate

select unselect select, unselect

synchronize synchronize

update update

validate validate, check

Total: 9

3.3.3 Label requirements (Step 3)

In Step 3 (Fig. 1), two annotators (the two first authors of this article) manually labeled
the requirements extracted in Step 1 with one or more of the codes identified in Step 2.
The labeling process required to (a) read the requirements and identify the verbs used in
the system response of the requirements, (b) attempt to match the identified verbs with
members of the codes found in Step 2, and (c) when there is a match, label the requirement
with the corresponding code. This task required expert knowledge to abstract the main
action verbs of the requirement and assign the correct code(s) to it. Because this activity
can be challenging due to the polysemy of the main action verb, it was conducted by both
annotators. We divided the set of 2755 requirements, used in our qualitative study, into
two equal parts. All the requirements of the first part were annotated by the first annotator
and reviewed by the second annotator and vice versa. If there was disagreement between
annotators, we consulted a financial analyst to reach an agreement using a consensus-based
decision-making strategy (Bolander and Sandberg 2013).

We describe below the three activities of the labeling process for requirement DEP0020
in REQS shown in Fig. 2:“IFSIG must store all data for a configurable retention period”.
Specifically, (a) we identified that the verb used in the system response is store, (b) we
detected that store matches one of the members of the VerbNet code keep-15.2, and (c) we
labeled the requirement with the VerbNet code keep-15.2.

3.3.4 Group requirements (Step 4)

In Step 4 (Fig. 1), we grouped and copied the labeled requirements to different spreadsheets
based on their labels. The purpose of having the requirements grouped by label is to make
it easier for us to identify common information content among them.

3.3.5 Create grammar (Step 5)

In Step 5 (Fig. 1) we created the grammar of Rimay to capture relevant information content
from the requirements. Figure 3 shows the steps that we carried out to create grammar rules
for the VerbNet code Send 11.1 (Table 4). The box in the upper-right corner of Fig. 3 shows
four examples of requirements related to the VerbNet code Send 11.1 that will be used to

Page 17 of 53 79

Empir Software Eng (2021) 26: 79

Fig. 3 Obtaining CNL grammar rules from requirements related to the VerbNet code Send 11.1

illustrate this step. The same sub-steps (i.e., from 5.1 to 5.6) were carried out for the rest of
the codes presented in Tables 4 and 5.

79 Page 18 of 53

Empir Software Eng (2021) 26: 79

Identify content in the requirements (Step 5.1) In this step we identify semantic roles
and keywords in the requirements. VerbNet provides the syntax and the examples that show
most of the semantic roles and the keywords (e.g., the prepositions) related to the VerbNet
codes in Table 4. For example, the box in the upper-left corner of Fig. 3 shows the syntax and
examples related to the VerbNet code Send 11.1. The syntax contains the prepositions from
and to, and the semantic roles AGENT (a participant that initiates an action), THEME (an
entity which is moved by an action, or whose location is described), INITIAL LOCATION
(a place where an event begins or a state becomes true) and DESTINATION (a place that is
the end point of an action and exists independently of the event).

In Fig. 3, we use different colors to show the correspondence between the semantic roles
and the parts of the requirements that represent the semantic roles. When some content in the
requirements was not related to any VerbNet semantic role, we proposed a new semantic role
to identify that content. For example, in Step 5.1 of Fig. 3, we proposed the new semantic
role CHANNEL to identify the content in the phrase “through System-K”.

Propose grammar rule (Step 5.2) Based on the syntax provided by VerbNet, we defined
the order of appearance of the content, and its repetition in Rimay. The symbols ?, * and
+ indicate that the users of Rimay can repeat what is before the symbol at most once, any
number of times, and at least once, respectively. Step 5.2 in Fig. 3 shows that the grammar
rule for the VerbNet code Send 11.1 contains keywords such as (i) connectors (and and or),
(ii) prepositions shown in the VerbNet syntax (from and to), (iii) prepositions related to new
content (through) and (iv) the negation of a modal verb (not).

Add VerbNet code members (Step 5.3) We added a complete list of all the members of
each VerbNet code related to its corresponding rule. For example, forward and send are
two of the members of the VerbNet code Send 11.1 that we added to its corresponding
rule VERB SEND 11 1. We also added the conjugated forms of the verbs to the rule (e.g.,
forwards, sends).

Create generic rules (Step 5.4) We created the rules related to the generic English
grammar, e.g., we created the rules ARTICLE, MODAL VERB, and QUANTIFIER.

Decompose rules (Step 5.5) We decomposed the grammar rules created in Step 5.2 to
make them easier to understand and reuse. For example, we decomposed the example rule
in Step 5.2 into three rules: SYSTEM RESPONSE, ACTION PHRASE, and SEND 11 1.

Refine grammar rules (Step 5.6) With the help of four financial analysts (including one
senior and one mid-career financial analyst), we replaced some of the semantic role
names with other ones that were more familiar to both financial analysts and engineers.
In our case, financial analysts and engineers working for Clearstream were familiar with
the UML (OMG 2017). For example, in the grammar rules SYSTEM RESPONSE and
SEND 11 1 (Step 5.4 in Fig. 3), we chose to replace the role AGENT with ACTOR, because
an agent can be represented as an UML actor, i.e., a role played by a human user or a system
who initiates and carries out an event or action.

Method The method that we used to create Rimay was iterative and incremental. This
means that we first followed Steps 5.1 to 5.6 in Fig. 3 to create the grammar rules related
to one of the groups of requirements produced in Step 4 of Fig. 1. Second, we gener-
ated a requirements editor using Xtext. Third, we used the generated editor to rephrase

Page 19 of 53 79

Empir Software Eng (2021) 26: 79

the requirements in the first requirements group to test the grammar and its corresponding
editor. We tested that our grammar and the editor were expressive enough to allow us to
write all the information content for the first group of requirements. If the grammar was not
expressive enough, we analyzed and extended the grammar, regenerated the editor and ver-
ified the requirements until there were no errors in all the rephrased requirements. For each
remaining requirements groups produced in Step 4 (Fig. 1), we repeated Steps 5.1 to 5.6 as
performed for the first requirements group.

4 Controlled natural language for functional requirements

In this section, we describe how a requirement is structured in Rimay in order to
answer RQ2: “Given the stakeholders, how can we represent the information content of
requirements for financial applications?”.

In recent years, different patterns have been increasingly used by the industry to improve
the quality of the requirements. Patterns like EARS (Mavin et al. 2009) and Rupp (Pohl and
Rupp 2011) provide general constructs and concepts to specify requirements (Section 2).
However, these templates are not amenable to the type of analyses enabling task automation
because they allow the introduction of unstructured text. On the other hand, CNLs provide
structures with more specialized concepts and constructs, enabling automated analysis. As
we report in our recent work, Rimay enables the generation of abstract test cases (Veizaga
et al. 2020). Since we could not find any comparable work in the financial domain, we
applied Grounded Theory analysis for building Rimay. However, as we explain below, some
constructs and concepts of Rimay are inspired by the EARS template.

The rule REQUIREMENT shown in Listing 1 provides the overall syntax for
a requirement in Rimay. The rule shows that the presence of the SCOPE and
CONDITION STRUCTURES is optional, but the presence of an ACTOR, MODAL VERB and
a SYSTEM RESPONSE is mandatory in all requirements.

In a requirement, an actor is expected to achieve a system response if some condi-
tions are true. An actor is a role played by an entity that interacts with the system by
exchanging signals, data or information (OMG 2017). Moreover, requirements written in
Rimay may have a scope to delimit the effects of the system response. One example
of a requirement in Rimay is: “

”. The requirement has

Listing 1 Overall syntax of Rimay

79 Page 20 of 53

Empir Software Eng (2021) 26: 79

a scope (), does not have any conditions, and has
an actor () and a system response (

).
Throughout this section, we simplify the description of Rimay by considering that the

keywords are not case-sensitive. Also, we use grammar rules that are common in English
such as MODAL VERB (e.g., shall, must) and MODIFIER that includes articles (e.g., a, an,
the) and quantifiers (e.g., all, none, only one, any). Sections 4.1 and 4.3 will explain the
CONDITION STRUCTURES and SYSTEM RESPONSE, respectively.

4.1 Condition structures

The grammar rule named CONDITION STRUCTURE shown in Listing 2 defines different
ways to use system states, triggering events, and features, to express conditions that must
hold for the system responses to be triggered.

The condition structures WHILE, WHEN, WHERE and IF that we use in our gram-
mar are inspired by the EARS template (Mavin et al. 2009). EARS is considered by
practitioners as beneficial due to the low training overhead and the quality and readabil-
ity of the resultant requirements (Mavin et al. 2016). Additionally, we proposed the rule
TEMPORAL STRUCTURE to be used when the system responses are triggered before or
after an event. Below, we describe the types of CONDITION STRUCTURE used in Rimay:

– The WHILE STRUCTURE is used for system responses that are triggered while the
system is in one or more specific states.

– The WHEN STRUCTURE is used when a specific triggering event is detected at the
system boundary.

– The WHERE STRUCTURE is used for system responses that are triggered only when a
system includes particular features. The features are described in free form using the
rule TEXT.

– The IF STRUCTURE is used when a specific triggering event happens or a system state
should be hold at the system boundary before triggering any system responses.

The rule CONDITION STRUCTURE shown in Listing 2 allows combining condition
structures using logical operators. We can, for example, combine the IF and WHEN
structures using the operator in the structure “

” to separate the conditions in which the requirement can be invoked
(i.e., the preconditions) and the event that initiates the requirement (i.e., the trigger).

Figure 4 depicts examples of the WHEN STRUCTURE, TEMPORAL STRUCTURE, and
IF STRUCTURE.

Listing 3 shows the grammar rules TRIGGER and PRECONDITION STRUCTURE
referenced by the condition structures in Fig. 4.

The rule TRIGGER in Listing 3 defines that a triggering event is always caused by
an ACTOR that performs some actions. The actions performed by the actor are defined

Listing 2 Condition structures

Page 21 of 53 79

Empir Software Eng (2021) 26: 79

Listing 3 Trigger and precondition structure

by the rule ACTIONS EXPRESSION which enables the combination of any number of
actions using logic connectors to express complex system events. The WHEN STRUCTURE
in Fig. 4 shows an example of a trigger composed of an actor and an action expression:
“ ”.

The rule PRECONDITION STRUCTURE in Listing 3 gives freedom for the users to
decide how to describe conditions. The rule ITEMIZED CONDITIONS (Listing 3) is
appropriate for writing long lists of conditions that must evaluate to True. Conversely, the
rule CONDITIONS EXPRESSION (Listing 3) is suitable for only one condition, multiple
conditions combined with logical operators, or parentheses that denote priority in the eval-
uation order of operations. The IF STRUCTURE in Fig. 4 shows examples of non-itemized
and itemized conditions.

4.2 Conditions

In the previous subsection, we introduced the rule PRECONDITION STRUCTURE to spec-
ify conditions. This rule is composed of operands and operators which are described as
follows.

Fig. 4 Examples of condition structures and system responses

79 Page 22 of 53

Empir Software Eng (2021) 26: 79

4.2.1 Operands

The operands are represented by the rules ACTOR, CLASS, PROPERTY, INSTANCE,
ELEMENT and TEXT. The meaning of the operands is the same as in the UML (OMG 2017),
therefore an Actor specifies a role played by the user or another system that interacts with
our system. The Class represents a domain concept (e.g., Instruction). A Property repre-
sents the attributes of the Class. An Instance represents a specific realization of a Class and
an Element is a constituent of a model.

The users of Rimay can use the dot notation to refer to a property of a class,
e.g.,“ ”. In the cases where there is only one instance
of a class in a requirement, the users do not need to declare any instance. For example, given
that in Fig. 4 there is only one instance of an instruction, we used “ ” instead
of “ ”.

4.2.2 Operators

Rimay uses the following families of operators and its negative forms:

– COMPARE, such as “ ”, “ ”, etc.,
– CONTAINS such as “ ”, “ ”, etc.,
– OTHER OPERATORS such as “ ”

An example of a condition that conforms to Rimay is: “

”. This condition uses operators of type CONTAINS and COMPARE.

4.2.3 Condition rule

The operators and operands defined in the previous subsections are used in the five grammar
rules shown in Listing 4 conditions such as the ones shown in Fig. 4.

The types of conditions are described as follows:

(1) INSTANCE OR CLASS HAS PROPERTIES evaluates if the instance of a class, or
a class itself defines one or more specific properties. The properties can be defined

Listing 4 Conditions rules

Page 23 of 53 79

Empir Software Eng (2021) 26: 79

in a document (e.g., “
”), or directly in the requirement (e.g., “

”).
(2) CONVENTION checks if a property conforms to a format or standard, e.g.,

“
”.

(3) CLASS OR PROPERTY OPERATOR ELEMENT is a condition composed of an
operand-1, an operator and an operand-2. The operand-1 is a reference to a CLASS
or PROPERTY. The auxiliary rule OPERATOR VALUES EXPR defines the operator
and the operand-2 of the condition, e.g., “

”. The operand-2 is any type of operand
described in Section 4.2.1.

(4) INSTANCE OR PROPERTY OPERATOR VALUE is an operand-operator-value
condition. The operand is a reference to an INSTANCE or PROPERTY and
the value represent any literal or number. An example of this type of con-
dition is: “

”.
(5) UI COMPONENT INSTANCE OPERATOR ELEMENT is a condition composed by

an operand-1, operator, and operand-2 for a requirement related to the user inter-
face (UI). The operand-1 is an instance of a UI component identified by a free
form TEXT followed by a reference to the type of UI COMPONENT. Rimay con-
tains a list of common UI component types to help the user to create the requirements
(e.g., tab, page, bar, field, calendar, checkbox, menu, message). The auxiliary rule
OPERATOR VALUES EXPR defines the operator and the operand-2 of the condi-
tion. An example that displays this type of condition is: “

”.

4.3 System response

The rule SYSTEM RESPONSE in Listing 5 allows the user to express the behavior of
the system in two manners using the rules: (a) RESPONSE BLOCK ITEMIZED, that
is suitable for writing lists of actions; and (b) SYSTEM RESPONSE EXPRESSION,
that is appropriate for writing one or multiple actions combined with logical
operators, or parentheses that denote the priority of the actions. The previ-
ous rules include the rule ATOMIC SYSTEM RESPONSE and logical operators.
Each ATOMIC SYSTEM RESPONSE contains an ACTION PHRASE and option-
ally, a frequency (e.g.,). Fig. 4 depicts examples of the
ATOMIC SYSTEM RESPONSE as well as more complex examples, such as
SYSTEM RESPONSE EXPRESSION and RESPONSE BLOCK ITEMIZED.

All the types of ACTION PHRASE rules are available in Appendix A. The rule
OBTAIN 13 5 2 in Table 6 is one type of ACTION PHRASE rule. The column “Grammar

Listing 5 System response

79 Page 24 of 53

Empir Software Eng (2021) 26: 79

Ta
bl
e
6

G
ra
m
m
ar

ru
le
:O

B
T
A
I
N
1
3
5
2

Page 25 of 53 79

Empir Software Eng (2021) 26: 79

Fig. 5 Screenshot of the requirements entry dialog box in the Rimay editor

Rule Name” shows the name of the grammar rule related to the code obtain 13.5.2 that
we discovered during the qualitative study (Tables 4 and 5). The column “Grammar Rule
Summary” describes the syntax of OBTAIN 13 5 2, and the column “Examples” shows
requirements that conform to that syntax.

4.3.1 Rimay editor

We developed the Rimay editor using the Xtext language engineering framework (Bettini
2013) which enables the development of textual domain-specific languages. We inte-
grated the Rimay editor into an existing and widely known modeling and code-generation
tool: Sparx Systems Enterprise Architect6. Enterprise Architect was already being used at
Clearstream. In particular, we created a form composed of the Rimay editor, and fields
related to key properties of a requirement, such as “Requirement ID”, “Rationale”, and
“Examples”. Figure 5 shows a screenshot of the form.

To operationalize our technology-independent grammar (created in Step 5), we need to
enhance it with some additional information. In particular, Xtext requires one to declare the
name of the language, and further, import reusable terminals such as INT, STRING and ID
for the syntax of integers, text, and identifiers, respectively.

The input that we provided to Xtext is an EBNF-like grammar composed of rules that
are similar to the ones that we discussed in this section. Xtext automatically generates a
web-based editor with the following helpful features (Bettini 2013): (a) syntax highlight-
ing, it allows to have the requirements colored and formatted with different visual styles
according to the elements of the language; (b) error markers, when the tool automatically
highlights the parts of the requirements indicating errors; and (c) content assist, a feature
that automatically, or on demand, provides suggestions to the financial analysts on how to
complete the statement/expression. In practice, these features are important to facilitate the
adoption of Rimay by financial analysts. The implementation of our grammar and its editor
are available online7.

6https://sparxsystems.com/products/ea/ (last access on 26 January 2021)
7https://gitlab.uni.lu/aveizaga/dsl rimay/ (last access on 26 January 2021)

79 Page 26 of 53

https://sparxsystems.com/products/ea/
https://gitlab.uni.lu/aveizaga/dsl_rimay/

Empir Software Eng (2021) 26: 79

5 Empirical evaluation

In this section, we describe a case study that evaluates Rimay developed in Sections 3 and 4.
Throughout the section, we follow best practices for reporting on Case Study Research in
Software Engineering (Runeson et al. 2012).

5.1 Case study design

As stated in the introduction, our evaluation aims to answer the following research
questions:

– RQ3: How well can Rimay express the requirements of previously unseen docu-
ments?

– RQ4: How quickly does Rimay converge towards a stable state?

Figure 6 shows the iterative process that we follow in order to answer these two questions.
To evaluate our approach, we needed to collect new SRSs that had not been used for the
construction of Rimay. We applied the four steps presented in Fig. 6 to collect new SRSs
and examine the expressiveness and stability of Rimay using them: (Step 1) The financial
analysts, on an opportunistic basis, gave us a new SRS that we had not seen before; we
extracted from the given SRS its NL requirements (“Extract Requirements”, Section 5.1.1).
(Step 2) We attempted to rephrase the extracted requirements using the rules of Rimay,
keeping the intent of the original requirements and ensuring that we did not lose any infor-
mation content. In this step, we had to keep track of the requirements, if any, that were
non-representable as well as the causes for such limitations (“Rephrase Requirements Using
Rimay”, Section 5.1.2). (Step 3) We analyzed the requirements that were marked as non-
representable and enhanced Rimay to make these requirements representable (“Improve
Rimay”, Section 5.1.3). (Step 4) We checked whether there was a significant change in
Rimay’s ability to capture previously unseen content. As we argue in Section 5.4.2, it
turned out that with four SRSs (i.e., four iterations of the process in Fig. 6), we were able
to reach saturation. At that point, we stopped analyzing more SRSs (“Check Rimay’s Sta-
bility”, Section 5.1.4). In the remainder of this section, we will not repeatedly be stating
that these four SRSs were collected and analyzed iteratively and in a sequence. Instead, for
succinctness, we refer to these four SRSs collectively when it is more convenient to do so.

With regard to our research questions, Step 1 and Step 2 of the process in Fig. 6 answer
RQ3, as these two steps provide information about the expressiveness of Rimay, i.e., the
requirements that were representable or non-representable with Rimay. Step 3 and Step 4
of the process address RQ4, as these steps provide information about the improvements
necessary for maturing Rimay to a stable state.

Page 27 of 53 79

Empir Software Eng (2021) 26: 79

Non-Representable
Requirements

Extract Requirements1

Rephrase Requirements
Using Rimay2

Improve Rimay 3

Improved Rimay

New SRS

Requirements

4

Stable Rimay

Rimay is not stable

Fig. 6 Case study design

5.1.1 Extract Requirements (Step 1 of Fig. 6)

In Step 1 of Fig. 6, we extract the requirements from our four new, previously unseen SRSs.
These SRSs were selected by senior financial analysts from Clearstream according to the
criteria described in Section 3.2. The selected SRSs did not contain any requirement that
was already analyzed while building Rimay’s grammar in the qualitative study of Section 3.

5.1.2 Rephrase requirements using Rimay (Step 2 of Fig. 6)

This rephrasing activity was performed in an iterative manner. Rephrasing the requirements
of the four SRSs into Rimay took four iterations over two months, with each iteration requir-
ing approximately two weeks. Each iteration was interleaved with a face-to-face session of
two to three hours with at least six financial analysts (including one senior and one mid-
career financial analyst). During the face-to-face validation sessions, the financial analysts
checked that the intent of the requirements expressed in Rimay did not deviate from their
original intent. A team composed of two annotators (the first and second authors of this
article) rephrased the requirements using Rimay. Both annotators rephrased together the
first 20% of the requirements (i.e., 92 requirements) in order to internalize a clear proce-
dure for (1) rephrasing a requirement into Rimay and (2) collecting the appropriate data
from each requirement (i.e., representability of a requirement and possible causes of non-
representability). Having a systematic procedure for rephrasing the requirements alongside
the experience that the annotators had already gained while conducting our qualitative study
helped ensure the quality of the rephrasing activity over the remaining 80%, i.e., the 368
(460-92) of the requirements that were rephrased by the first annotator.

79 Page 28 of 53

Empir Software Eng (2021) 26: 79

A requirement can be composed of a scope, pre-conditions, an actor, and a system
response. The scope and pre-conditions are optional, but the presence of at least one system
response and one actor is mandatory.

Step 2 considers a requirement to be non-representable when some information content
of the requirement cannot be captured using Rimay. A requirement is considered rep-
resentable, otherwise. A requirement that is non-representable is annotated with one of
following three causes:

– Cause 1. The requirement contains a verb that is not supported by Rimay rules.
Therefore, we can either extend a Rimay rule with the verb or create a new rule.

– Cause 2. Part of the requirement (excluding the verb) includes information content that
is not supported by Rimay. For example, the rule Send 11.1 initially defines the fol-
lowing information content: an AGENT who can move a THEME (e.g., data) from an
INITIAL LOCATION to a DESTINATION. If a given requirement involves some infor-
mation content not considered by Send 11.1 (e.g., the CHANNEL through which the
THEME is sent), then we consider that requirement to not be representable according
to Cause 2.

– Cause 3. The meaning of the requirement is unclear and no financial analyst could
clarify it.

5.1.3 Improve Rimay (step 3 of Fig. 6)

To improve Rimay, we analyzed the causes for requirements marked as non-representable.
Concretely, we enhanced Rimay grammar by: (a) creating a new grammar rule when such
requirement was marked with Cause 1. To create a new grammar rule, we first identi-
fied, for each requirement, the codes according to the steps described in Section 3.3.2. The
resulting codes were either identified from VerbNet or proposed by us. We then created the
grammar rules following the steps described in Section 3.3.5; and (b) updating an existing
grammar rule created in Section 3 to include either a new verb of a requirement labeled with
Cause 1 or missing content of a requirement labeled with Cause 2.

Requirements labeled with Cause 3 were not addressed in Rimay. We discuss such
requirements in Section 6, dedicated to threats to validity.

5.1.4 Check Rimay’s stability (step 4 of Fig. 6)

This step verifies whether there was a significant change in Rimay’s capacity to capture
the content of previously unseen NL requirements. If there is no significant change, we say
that Rimay is stable, and we stop the evaluation process. Otherwise, we iterate over Step 1
to Step 4 using a new SRS until Rimay becomes stable. We refer to the notion of satura-
tion to determine the point where Rimay is stable. Saturation is defined mathematically for
capturing, in a simple way, when to stop our evaluation. In other words, we stop our evalu-
ation when Rimay is expressive enough to capture all the verbs in the NL requirements of
a SRS (i.e., the number of errors due to Cause 1 is zero). In our case study, we reached the
saturation point during the evaluation of SRS 4.

5.2 Data collection

We answered RQ3 and RQ4 by collecting data from the execution of the four steps described
in Section 5.1. Figure 7 shows the data model of the requirements collected during the

Page 29 of 53 79

Empir Software Eng (2021) 26: 79

Fig. 7 Data model of the collected requirements

empirical evaluation. In our data model, a Requirement has an Id which is a unique
code assigned to each requirement, an Original Description and a Rationale. A
requirement is either Representable or Non Representable. If the requirement is
Representable, we recorded its Rephrased Description. If the requirement is
Non Representable, we recorded the CAUSE (i.e., Cause 1, Cause 2 or Cause 3).

In total, we collected 460 requirements from the four SRSs used in our evaluation. We
improved the grammar rules after rephrasing one SRS and assessed the improved grammar
on the next.

5.3 Collecting evidence and results

This section describes the execution and the raw data collected from our case study. The
case study required the work of two annotators for two months, adding up to approximately
200 person-hours. In Section 5.1.2, we describe how the two annotators performed this task.

Table 7 provides the data for each of the four SRSs. For each SRS, we present the number
of requirements that can and cannot be represented using Rimay. For example, the second
row of Table 7 shows that 65 (74,7%) out of 87 of the requirements of the first SRS are
representable in Rimay.

Table 7 shows, for the four SRSs, the frequency of the three causes (described in
Section 5.1.2) in the requirements labeled as non-representable. For example, the second
column of Table 7, for SRS 1, shows that for 11 requirements, the verb was not supported by
Rimay (Cause 1). For nine requirements, some other content was not supported by Rimay
(Cause 2). Two requirements were unclear and no financial analyst could clarify them
(Cause 3). In total, 22 out of 87 requirements (25,3%) in SRS 1 were non-representable.

Next, we provide examples of non-representable requirements for each of the causes
described above.

Table 7 Percentage of representable requirements and frequencies of causes for non-representable
requirements

Requirements SRS Total

1 2 3 4

Representable and Non-representable 87 113 192 68 460

Representable 65 96 180 64 405

Non-representable 22 17 12 4 55

Non-representable - Cause 1 11 6 2 – 19

Non-representable - Cause 2 9 8 7 4 28

Non-representable - Cause 3 2 3 3 – 8

79 Page 30 of 53

Empir Software Eng (2021) 26: 79

– Cause 1 - SRS 2: “On receipt of a request from System-A to update positions, System-B
must recalculate all positions impacted by the confirmed order”. Rimay does not have
any grammar rule that has the verb recalculate.

– Cause 2 - SRS 1: “When the Market Calendar does not exist in the System, the Sys-
tem must add a record about the missing Market Calendar to the exception log”. The
grammar rule Mix-22.1-2, that contains the verb “add” does not support the following
information content “about missing market calendar”.

– Cause 3 - SRS 3: “System-A must be able to process System-B′s instructions with
input media INPUT”. The requirement is vague since the verb “process” is not precise
enough (Femmer et al. 2014).

Finally, we improved Rimay by addressing the non-representable requirements labeled
with Causes 1 and 2, as explained in Section 5.1.3.

5.3.1 Coding results

Tables 8 and 9 show the codes and their verb members identified during our empirical
evaluation. Recall from Section 3 that a code represents a group of verbs that convey the
same information in NL requirements. The structures of Tables 8 and 9 are the same as the
structures of Tables 4 and 5 reporting the coding results of our qualitative study discussed
in Section 3.

Seven out of 13 codes in Tables 4 and 5 were found during our empirical evaluation.
We placed the symbol “*” before the seven new codes to differentiate them from the codes
that we had already identified in the qualitative study. For each new code, we created a new
grammar rule. Considering that, in total, we found 48 codes during the qualitative study and
the empirical evaluation, the seven (14,6%) new codes found in the empirical evaluation did
not prompt drastic modifications to Rimay.

5.4 Analysis of collected data

In this section, we analyze the collected data and answer RQ3 and RQ4.

Table 8 VerbNet codes identified
during our empirical evaluation Codes Members

Class name Hierarchy Level

begin 55.1-1 start

∗establish 55.5-1 establish

other cos 45.4 reverse

remove 10.1 deduct

∗search 35.2 search

send 11.1 export

∗stop 55.4 stop

use 105 use

Total: 8

Page 31 of 53 79

Empir Software Eng (2021) 26: 79

Table 9 Codes proposed during
our empirical evaluation Codes Members

∗calculate calculate, recalculate

∗split split

∗subscribe subscribe

∗upload upload

update set

Total: 5

5.4.1 Performance of Rimay on previously unseen SRSs (RQ3)

Table 7 shows that 405 out of 460 requirements (88%) across all four SRSs can be expressed
using Rimay. For SRS 1, we use the version of Rimay resulting from our qualitative study
while, for the following SRSs (second to fourth), we use a version of Rimay that includes
the improvements made based on the previous SRS(s).

With regard to SRS 1, we note that we found five occurrences of a new verb, “use”, which
we had not encountered during our qualitative study. The relatively low expressiveness in
this first SRS is largely explained by the high frequency of appearance of this single verb. As
one can see from Table 7, most requirements can be represented in Rimay across all SRSs.
The improvements to the expressiveness of Rimay are brought about by small changes to
Rimay. In other words, while the expressiveness of our grammar did improve as the result
of analyzing more SRSs, we did not have to make major changes to the grammar. Our
changes involved only the introduction of a few new verbs (as shown in Tables 8 and 9), and
the enhancements of a small number of grammar rules created during our qualitative study
(Section 3).

The most common causes for a requirement to be non-representable, in order of
prevalence, are Cause 2 with 28 occurrences (50.9%), followed by Cause 1 with 19 occur-
rences (34.5%), and, finally Cause 3 with 8 occurrences (14.5%). We conjecture that the
main reason why Cause 2 turns out to be the most frequent cause is that VerbNet – the lex-
icon we use for deriving our grammar rules – is domain-independent and may not contain
certain information content that is specific to the financial domain. During our qualitative
study, we identified some new content and extended the grammar rules accordingly. For
example, the syntax for the rule Send 11.1 in VerbNet specifies that an AGENT can move
a THEME (e.g., data) from an INITIAL LOCATION to a DESTINATION. Then, during
the qualitative study, we identified new information content such as the temporal structure
(e.g., “Before 1h00 CET”) used at the beginning of requirements. Furthermore, in the eval-
uation, we identified extra information content such as a valid channel to send the THEME
(e.g., a subsystem that encrypts the data).

79 Page 32 of 53

Empir Software Eng (2021) 26: 79

5.4.2 Ensuring the stability of Rimay (RQ4)

We refer to the notion of saturation to determine the point in our evaluation where we
have been through enough SRSs to be confident that the updated version of Rimay is as
expressive as possible to specify requirements for the financial domain. To determine if a
statistically significant change is observed in the percentage of representable requirements,
we conduct z-tests for differences in proportions of representability across different SRSs.

Saturation Usually, saturation is reached in a qualitative study when “no new informa-
tion seems to emerge during coding, i.e., when no new properties, dimensions, conditions,
actions/interactions, or consequences are seen in the data” (Glaser 2006). In our evaluation,
the saturation point is reached when all the verbs analyzed in a SRS are already considered
by Rimay (i.e., when Cause 1 is not triggered). Specifically, as shown in Table 7, SRS 4 was
the only SRS where no requirement was classified as non-representable due to Cause 1.

As can be seen from Table 7, the increment in the percentage of requirements that can
be written in Rimay is tangible evidence that the changes made to Rimay were beneficial
(although not extensive).

Z-test. The z-test is a standard statistical test used for checking the difference between two
proportions (Dietterich 1998). We run one-tailed z-tests to check if the proportion (p1) of
representable requirements in one SRS (SRS i) is larger than or equal to the proportion (p2)
of representable requirements in another SRS (SRS j) analyzed thereafter. Our null and
alternative hypotheses are as follows:

H0 : p1 ≥ p2

H1 : p1 < p2

– H0 : The percentage of representable requirements does not increase from SRS i to
SRS j .

– H1 : The percentage of representable requirements increases from SRS i to SRS j .

Each sample contains more than 30 independent data points and, though sample sizes are
not equal, they are not drastically different, thus allowing the use of z-tests (Zikmund et al.
2013). In total, we run six z-tests, at a level of significance of 0.05. The SRS pairs cov-
ered by these tests, alongside their corresponding proportions, are shown in Table 10. For
example, the first row of Table 10 shows the input for performing a z-test over the (SRS 1,
SRS 2) pair. SRS 1 contains 65 requirements that are representable with Rimay out of 87
requirements, and SRS 2 contains 96 requirements that are representable with Rimay out of
113 requirements.

The z-scores and p-values for the z-tests are shown in Table 11. We conclude that the null
hypothesis, H0, is rejected in the first five z-tests. Therefore, there is significant evidence to
claim that proportion p1 is less than proportion p2 at the 0.05 significance level for the first
five document pairs. Concretely, this means that the proportion of representable require-
ments in SRS 2, SRS 3, and SRS 4 are significantly better than that of SRS 1. Similarly, the
proportion of representable requirements in SRS 3 and SRS 4 are significantly better than
that of SRS 2. However, the null hypothesis cannot be rejected in the last z-test. Therefore,
the proportion of representable requirements in SRS 4 is not significantly better than that
of SRS 3. We therefore concluded our analysis of new SRSs after completing SRS 4.

Page 33 of 53 79

Empir Software Eng (2021) 26: 79

Table 10 Z-tests inputs

Test Input

Document Pair Sample Sample Representable Representable

SRS i, SRS j Size in Size in Requirements Requirements

SRS i SRS j in SRS i in SRS j

(p1) (p2)

1 SRS 1, SRS 2 87 113 65 96

2 SRS 1, SRS 3 87 192 65 180

3 SRS 1, SRS 4 87 68 65 64

4 SRS 2, SRS 3 113 192 96 180

5 SRS 2, SRS 4 113 68 96 64

6 SRS 3, SRS 4 192 68 180 64

6 Threats to validity

In the following subsections, we analyze potential threats to the validity of our empirical
work according to the categories suggested by Wohlin et al. (2012) and adapted by Runeson
et al. (2012) for case studies in software engineering.

6.1 Construct validity

Construct validity reflects to what extent the operational measures that are studied really
represent what the researcher has in mind and what is investigated according to the research
questions (Runeson et al. 2012).

We measured the percentages of the requirements that can be represented with Rimay
according to the grammar rules we identified. If the criteria that we used to assess whether
a requirement is representable are incomplete or too strict, this could constitute a threat.

Table 11 Z-test results
Test Document Pair z p − value

SRS i, SRS j

1 SRS 1, SRS 2 −1,81 0,03

2 SRS 1, SRS 3 −4,50 3,35 E-06

3 SRS 1, SRS 4 −3,21 6,67 E-4

4 SRS 2, SRS 3 −2,53 0,01

5 SRS 2, SRS 4 −1,86 0,03

6 SRS 3, SRS 4 −0,11 0,46

79 Page 34 of 53

Empir Software Eng (2021) 26: 79

We therefore proposed three criteria (named Causes) that alleviate the risk of introducing
inadequate information content into Rimay. We analyzed the Causes of the requirements
marked as non-representable in order to enhance the Rimay grammar by (a) creating new
grammar rules (i.e., Cause 1); (b) updating grammar rules to include some missing con-
tent (i.e., Cause 1 and Cause 2), and (c) not considering incomplete, ambiguous or unclear
information content (i.e., Cause 3). Cause 1 and Cause 2 are meant to capture missing parts
that need to be included in the Rimay grammar. On the other hand, Cause 3 focuses on the
requirements that describe incorrect information content that we do not want to include in
Rimay. To be sure that no important information was excluded from Rimay, we looked at
the eight non-representable requirements labelled with Cause 3 (Table 7) with the senior
financial analysts from Clearstream, who agreed with our decision to discard them.

A second threat to construct validity is related to potential biases in the interpretation
of requirements and the application of the qualitative codes while conducting Step 3 (i.e.,
Label Requirements) in Section 3. Ideally, to prevent biases in the coding process, one could
have involved third parties in carrying out the step. However, we did not do so for two main
reasons: (1) the confidentiality agreement with our industrial partner did not allow us to
share the requirements with external parties, and (2) it was infeasible to identify third par-
ties that had the specialized knowledge required for the coding process driven by linguistic
resources, notably, VerbNet and WordNet. Despite not having third parties involved in this
activity, we were able to mitigate potential biases and ensure the quality of the results by
primarily relying on linguistic resources (VerbNet and WordNet, as noted above). Further-
more, whenever we were unable to conclusively interpret a requirement, we escalated the
case to our collaborating financial analysts for deciding about the interpretation.

6.2 Internal validity

Internal validity is of concern when causal relations are examined (Runeson et al. 2012).
The results and the conclusions of our study strongly rely on two key activities that were

performed manually: (1) the identification of codes (carried out by using protocol coding)
and their members, and (2) the transformation process of requirements into Rimay. This can
represent an important threat to the internal validity of our study. To mitigate biases, these
two activities were systematically performed by a pair of researchers (the first and second
author of this article). Afterward, a third researcher (the third author of this article) reviewed
and challenged some of the results of these activities. We finally improved steps (1) and (2)
upon reaching an agreement between these three researchers.

Another threat to the internal validity is related to the assumption that all the require-
ments in SRSs should be used to create Rimay. If all the requirements in SRSs are used,
incomplete and unclear requirements might be easily misinterpreted and as a consequence,
incorrect information content might be included in Rimay. To tackle this threat, in Step 2
“Rephrase Requirements Using Rimay” (Fig. 6), we first classified as non-representable
due to Cause 3 the requirements that contained either incomplete or unclear information
and we then discarded those requirements.

6.3 External validity

External validity is concerned with the extent to which it is possible to generalize the
study findings, and to what extent the findings are of interest to other people outside the
investigated case (Runeson et al. 2012).

Page 35 of 53 79

Empir Software Eng (2021) 26: 79

The generalizability of our results is subject to certain limitations. For instance, by
design, Rimay is focused on and applicable to functional requirements in the financial
domain. In addition, overfitting is a potential threat because of the similarity in back-
ground among the eight financial analysts involved in the creation and validation of Rimay
(Section 3.2). To mitigate this threat, we designed our analysis procedure (Section 3.3) by
minimizing reliance on domain-specific terms from the financial domain. In particular, the
fact that our procedure is rooted in domain-independent lexical resources (i.e., VerbNet and
WordNet) significantly reduces the risk of overfitting. For this reason, we conjecture that
many of our findings can be generalized to information systems in other similar domains.

A company who would want to reuse Rimay should first assess how complete Rimay is
in capturing all their requirements; second, it should identify the changes required to our
methodology to achieve a satisfactory degree of completeness in their given domain.

6.4 Reliability validity

Reliability validity is concerned with the extent to which the data and the analysis are
dependent on the specific researchers involved (Runeson et al. 2012). In order to achieve
acceptable reliability, research steps must be repeatable, i.e., other researchers have to be
able to replicate our results (Badampudi et al. 2016).

It is impossible to build a CNL that is able to represent all software requirements, and
as we already acknowledged, some requirements could not be represented with Rimay. The
main issues that may constitute a threat to reliability are related to how we built our CNL to
be as expressive as possible. To mitigate this threat, we described in details the steps of our
qualitative study and empirical evaluation following a systematic process. This process was
performed by the first and second authors and monitored by the other authors of the article.

7 Practical considerations

In this section, we present some practical considerations for the different audiences who
may be interested in the work reported in this article. These considerations are based on
both our experience and our interactions with our industrial partner.

Considerations for CNL builders The creation of a language editor entails a significant
level of effort because there are many tasks to support, such as auto-completion and syntax
highlighting. Mature language engineering frameworks make these tasks less complicated
or even fully automated. For instance, we used Xtext to generate a basic editor based only
on the grammar of Rimay. For us, the most challenging part of defining a grammar was to
understand how to model nested expressions. The effort to customize the generic behavior
of the editor generated by Xtext should be considered. In our case, we use the generic editor
for our evaluation, but we are in the process of customizing the editor to further improve
usability. In particular, we are simplifying the error messages shown by Rimay’s editor,
since they are difficult to understand for people without technical knowledge.

Considerations for companies investing into a CNL Additional effort is to be anticipated
for integrating a CNL with existing software development tools. In our case, our industrial
partner uses Sparx Systems Enterprise Architect for modeling UML Use Case, Class, and
Activity Diagrams. A key consideration for our partner was therefore to be able to refer-
ence (from requirements) the elements of UML models in Enterprise Architect. To provide

79 Page 36 of 53

Empir Software Eng (2021) 26: 79

such functionality, Rimay’s editor dynamically tracks the model elements that need to be
referenceable from requirements. This allows Rimay’s editor to provide context-sensitive
auto-completion assistance as analysts type in their requirements. Furthermore, if an analyst
introduces in a requirement an element that does not already exist in the UML model, our
editor will notify the analyst, asking whether the new element should be added to the UML
model.

Whether an organization should invest into a CNL for requirements also depends on how
requirements are elaborated and used within the organization. Generic text editing tools
may suffice for analysts working on small projects. In our case, the types of projects our
industrial partner is engaged in justified the construction of a CNL; the projects are not
only large and complex but also involve multiple analysts from geographically dispersed
locations. Systematic requirements writing practices that help mitigate incompleteness and
ambiguity are thus key for our partner. In addition, organizations are interested in extracting
accurate information from the requirements as a prerequisite step for automating such tasks
as consistency checking between models and (textual) requirements, as well as generating
test cases from requirements. Working toward such automation objectives would be very
difficult without structured requirements, thus further justifying investment into a CNL. In
more recent work (Veizaga et al. 2020), our partners recognized that generating acceptance
criteria exclusively from models would miss critical information that is available only in NL
requirements. In that work, we elaborate on how acceptance-criteria-relevant information in
NL requirements expressed via Rimay can be used for enriching requirements models and
subsequently obtaining more precise and complete acceptance criteria.

Extending Rimay to other domains In this paper, we focused on the financial domain.
However, Rimay may be adapted for use in other domains. We recommend the following
steps to adapt Rimay to a given organization:

1. Select requirements. The organization selects functional requirements that are represen-
tative of commonly used conditions and action phrases.

2. Rephrase requirements using Rimay. The organization first rewrites the requirements
selected in the previous step using Rimay, and second, labels each non-representable
requirement with one of the three causes described in Section 5.1.2. Domain experts
must ensure that the intents of the requirements written in Rimay do not deviate from
the original ones.

3. Improve Rimay. For each non-representable requirement, the organization should
enhance Rimay’s grammar by either updating the existing grammar rules or creating
new ones. The organization must follow the methodology described in Section 5.1.3 to
perform this step.

4. Generate and integrate Rimay’s editor. Once the organization has enhanced Rimay’s
grammar to support previously non-representable requirements, it generates and inte-
grates the extended version of Rimay’s editor into the modeling and development tool
used within the organization, if available. If the editor is created using the Xtext lan-
guage engineering framework, it can be used as an Eclipse-based plugin or integrated
into web applications.

The time required for an organization to extend Rimay is difficult to estimate since
doing so depends on several factors: (1) the number of requirements to be rephrased using
Rimay, (2) the degree of access to engineers who know Rimay’s methodology and have a
background in language engineering, and (3) sufficient access to domain experts.

Page 37 of 53 79

Empir Software Eng (2021) 26: 79

Since there is currently no extension of Rimay, to gain insights into the time required
to extend Rimay, we discuss relevant aspects of the evaluation and refinement of Rimay
presented in Section 5. The evaluation of Rimay included (1) a set of 460 functional require-
ments, (2) two engineers (first two authors of this article), and (3) six domain experts. The
entire evaluation and refinement process required 200 hours from the engineers and eight
hours from domain experts over a span of two months (Section 5.3). The (approximate)
distribution of effort observed across the four steps of our approach was as follows: Select
requirements (10%), Rephrase requirements using Rimay (60%), Improve Rimay (25%),
and Generate and integrate Rimay’s editor (5%).

8 Conclusions

In this article, we proposed a rigorous methodology to define controlled natural languages
(CNLs) for requirements specifications. We applied this methodology to develop a CNL,
which we named Rimay, for expressing functional requirements in the financial domain.
Rimay’s grammar was derived from a qualitative study based on the analysis of 2755
requirements from 11 distinct projects. In this qualitative study, we identified the infor-
mation content that financial analysts should account for in the requirements of financial
applications.

We conducted an empirical evaluation of Rimay in a realistic setting. This evaluation
measured the percentage of requirements that can be represented using Rimay. We observed
that, on average, 88% of the requirements that we evaluated in our case study (405 out of
460) could be expressed using Rimay. Additionally, we analyzed how quickly Rimay would
converge and stabilize to even higher percentages when refined after each new requirements
specification was analyzed.

To a large extent, because it was specifically designed to be domain independent, we
believe that Rimay can address the broader domain of data-intensive information systems.
That said, future investigations remain necessary to determine whether and how Rimay can
be specialized for other domains.

While CNLs and requirements patterns have generated a lot of attention in recent years
as a vehicle for improving the quality of natural-language requirements, to our knowledge,
no previous study has proposed and evaluated a CNL based on a qualitative analysis of a
large number of industrial requirements and following a systematic process using lexical
resources. A significant portion of this article was dedicated to developing and discussing
such a systematic process with the goal of making this process repeatable; this way, other
researchers and practitioners interested in developing their own CNLs can benefit from our
proposed process and possibly even use Rimay as a starting point.

For future work, we intend to conduct a user study on the usefulness of Rimay. This
would assess in a more conclusive manner whether financial analysts benefit from using
Rimay for specifying functional requirements.

Appendix A: Action Phrases in Rimay

Tables 12 and 13 show the name, summary, and examples of the Rimay grammar rules
related to action phrases. Table 12 displays the rules built during the qualitative study and
Table 13 depicts the rules created in the empirical evaluation.

79 Page 38 of 53

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

Ty
pe
s
of

ac
tio

n
ph
ra
se

ru
le
s
in

R
im

ay
(f
ro
m

Q
ua
lit
at
iv
e
St
ud
y)

Page 39 of 53 79

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

79 Page 40 of 53

Empir Software Eng (2021) 26: 79
Ta
bl
e
12

(c
on
tin

ue
d)

Page 41 of 53 79

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

79 Page 42 of 53

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

Page 43 of 53 79

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

79 Page 44 of 53

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

Page 45 of 53 79

Empir Software Eng (2021) 26: 79

Ta
bl
e
12

(c
on
tin

ue
d)

79 Page 46 of 53

Empir Software Eng (2021) 26: 79

Ta
bl
e
13

Ty
pe
s
of

ac
tio

n
ph
ra
se

ru
le
s
in

R
im

ay
(f
ro
m

E
m
pi
ri
ca
lE

va
lu
at
io
n)

Page 47 of 53 79

Empir Software Eng (2021) 26: 79

Ta
bl
e
13

(c
on
tin

ue
d)

79 Page 48 of 53

Empir Software Eng (2021) 26: 79

Acknowledgements This project has received funding from Clearstream, Escent, FNR of Luxembourg
under the BRIDGES program (grant BRIDGES18/IS/13234469/IMoReF), and NSERC of Canada under the
Discovery, Discovery Accelerator and CRC programs.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahonen JJ, Savolainen P (2010) Software engineering projects may fail before they are started: Post-
mortem analysis of five cancelled projects. J Syst Softw 83(11):2175–2187. https://doi.org/10.1016/j.jss.
2010.06.023

Alférez M, Pastore F, Sabetzadeh M, Briand LC, Riccardi J (2019) Bridging the gap between require-
ments modeling and behavior-driven development. In: Kessentini M, Yue T, Pretschner A, Voss
S, Burgueṅo L (eds) 22nd ACM/IEEE International conference on model driven engineering lan-
guages and systems, MODELS 2019, Munich, Germany, September 15-20, 2019. IEEE, pp 239–249.
https://doi.org/10.1109/MODELS.2019.00008

Arora C, Sabetzadeh M, Briand LC, Zimmer F (2015) Automated checking of conformance to require-
ments templates using natural language processing. IEEE Trans Software Eng 41(10):944–968.
https://doi.org/10.1109/TSE.2015.2428709

Arora C, Sabetzadeh M, Briand LC, Zimmer F (2017) Automated extraction and clustering of requirements
glossary terms. IEEE Trans Software Eng 43(10):918–945. https://doi.org/10.1109/TSE.2016.2635134

Badampudi D, Wohlin C, Petersen K (2016) Software component decision-making: In-house, oss, COTS
or outsourcing - A systematic literature review. J Syst Softw 121:105–124. https://doi.org/10.1016/j.jss.
2016.07.027

Bettini L (2013) Implementing domain-specific languages with Xtext and Xtend. Packt Publishing, Birming-
ham

Boehm B, Basili V (2001) Top 10 list [software development]. Computer 34(1):135–137. https://doi.org/10.
1109/2.962984

Bolander P, Sandberg J (2013) How employee selection decisions are made in practice. Organ. Stud.
34(3):285–311

Carvalho G, Falcȧo D, de Almeida Barros F, Sampaio A, Mota A, Motta L, BlackburnMR (2014) Nat2testscr:
Test case generation from natural language requirements based on SCR specifications. Sci Comput
Program 95:275–297. https://doi.org/10.1016/j.scico.2014.06.007

Crapo AW, Moitra A, McMillan C, Russell D (2017) Requirements capture and analysis in ASSERT(TM).
In: Moreira A, Arau̇jo J, Hayes J, Paech B (eds) 25th IEEE international requirements engineering
conference, RE 2017, Lisbon, Portugal, September 4-8, 2017. IEEE Computer Society, pp 283–291.
https://doi.org/10.1109/RE.2017.54

Denger C, Berry DM, Kamsties E (2003) Higher quality requirements specifications through natu-
ral language patterns. In: 2003 IEEE International conference on software - science, technology
and engineering (SwSTE 2003), 4-5 November, 2003. IEEE Computer Society, Herzelia, p 80.
https://doi.org/10.1109/SWSTE.2003.1245428

Dick J, Hull MEC, Jackson K (2017) Requirements engineering, 4th edn. Springer, Berlin.
https://doi.org/10.1007/978-3-319-61073-3

Dietterich TG (1998) Approximate statistical test for comparing supervised classification learning algo-
rithms. Neural Comput. 10(7):1895–1923. https://doi.org/10.1162/089976698300017197

Eckhardt J, Vogelsang A, Femmer H, Mager P (2016) Challenging incompleteness of performance
requirements by sentence patterns. In: 24th IEEE international requirements engineering confer-
ence, RE 2016, Beijing, China, September 12-16, 2016. IEEE Computer Society, pp 46–55.
https://doi.org/10.1109/RE.2016.24

Femmer H, Fernȧndez DM, Ju̇rgens E, Klose M, Zimmer I, Zimmer J (2014) Rapid requirements checks
with requirements smells: two case studies. In: Tichy M, Bosch J, Goedicke M, Larsson M (eds) 1st

Page 49 of 53 79

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2010.06.023
https://doi.org/10.1016/j.jss.2010.06.023
https://doi.org/10.1109/MODELS.2019.00008
https://doi.org/10.1109/TSE.2015.2428709
https://doi.org/10.1109/TSE.2016.2635134
https://doi.org/10.1016/j.jss.2016.07.027
https://doi.org/10.1016/j.jss.2016.07.027
https://doi.org/10.1109/2.962984
https://doi.org/10.1109/2.962984
https://doi.org/10.1016/j.scico.2014.06.007
https://doi.org/10.1109/RE.2017.54
https://doi.org/10.1109/SWSTE.2003.1245428
https://doi.org/10.1007/978-3-319-61073-3
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1109/RE.2016.24

Empir Software Eng (2021) 26: 79

International Workshop on Rapid Continuous Software Engineering, RCoSE 2014, Hyderabad, India,
June 3, 2014. ACM, pp 10–19. https://doi.org/10.1145/2593812.2593817

Fernȧndez DM, Wagner S, Kalinowski M, Felderer M, Mafra P, Vetro A, Conte T, Christiansson M, Greer
D, Lassenius C, Mȧnnistȯ T, Nayabi M, Oivo M, Penzenstadler B, Pfahl D, Prikladnicki R, Ruhe G,
Schekelmann A, Sen S, Spı́nola RO, Tuzcu A, de la Vara JL, Wieringa RJ (2017) Naming the pain in
requirements engineering - contemporary problems, causes, and effects in practice. Empir Softw Eng
22(5):2298–2338. https://doi.org/10.1007/s10664-016-9451-7

Fuchs NE, Kaljurand K, Kuhn T (2008) Attempto controlled english for knowledge representation. In:
Reasoning web. Springer, pp 104–124

Glaser BG (2006) The discovery of grounded theory : strategies for qualitative research, [reprinted] edn.
Aldine Transaction, New Brunswick London

Hull MEC, Jackson K, Dick J (eds) (2011) Requirements engineering. Springer, Berlin. https://doi.
org/10.1007/978-1-84996-405-0

Jureta I, Mylopoulos J, Faulkner S (2009) A core ontology for requirements. Appl Ontol 4(3-4):169–244.
https://doi.org/10.3233/AO-2009-0069

Kassab M, Neill CJ, Laplante PA (2014) State of practice in requirements engineering: contemporary data.
Innov Syst Softw Eng 10(4):235–241. https://doi.org/10.1007/s11334-014-0232-4

Kipper K, Dang HT, Palmer MS (2000) Class-based construction of a verb lexicon. In: Kautz HA, Porter
BW (eds) Proceedings of the seventeenth national conference on artificial intelligence and twelfth con-
ference on on innovative applications of artificial intelligence, July 30 - August 3, 2000. AAAI Press /
The MIT Press, Austin, pp 691–696. http://www.aaai.org/Library/AAAI/2000/aaai00-106.php

Konrad S, Cheng BHC (2005a) Facilitating the construction of specification pattern-based properties. In:
13th IEEE International conference on requirements engineering (RE 2005), 29 August - 2 September,
2005. IEEE Computer Society, Paris, pp 329–338. https://doi.org/10.1109/RE.2005.29

Konrad S, Cheng BHC (2005b) Real-time specification patterns. In: Roman G, Griswold WG, Nuseibeh
B (eds) 27th International conference on software engineering (ICSE 2005), 15-21 May, 2005. ACM, St.
Louis, pp 372–381. https://doi.org/10.1145/1062455.1062526

Kuhn T (2014) A survey and classification of controlled natural languages. Comput Linguistics 40(1):121–
170. https://doi.org/10.1162/COLI a 00168

Lúcio L, Rahman S, Cheng C, Mavin A (2017) Just formal enough? automated analysis of EARS require-
ments. In: Barrett CW, Davies M, Kahsai T (eds) NASA formal methods - 9th international symposium,
NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, Lecture Notes in Computer
Science, vol 10227. pp 427–434. https://doi.org/10.1007/978-3-319-57288-8 31

Mavin A, Wilkinson P (2010) Big ears (the return of “easy approach to requirements engineer-
ing”). In: RE 2010, 18th IEEE International Requirements Engineering Conference, Sydney, New
South Wales, Australia, September 27 - October 1, 2010. IEEE Computer Society, pp 277–282.
https://doi.org/10.1109/RE.2010.39

Mavin A, Wilkinson P, Harwood A, Novak M (2009) Easy approach to requirements syntax (EARS). In: RE
2009, 17th IEEE International requirements engineering conference, Atlanta, Georgia, USA, August 31
- September 4, 2009. IEEE Computer Society, pp 317–322. https://doi.org/10.1109/RE.2009.9

Mavin A, Wilkinson P, Gregory S, Uusitalo E (2016) Listens learned (8 lessons learned applying EARS).
In: 24th IEEE international requirements engineering conference, RE 2016, Beijing, China, September
12-16, 2016. IEEE Computer Society, pp 276–282. https://doi.org/10.1109/RE.2016.38

Mich L, Franch M, Inverardi PN (2004) Market research for requirements analysis using linguistic tools.
Requir Eng 9(1):40–56. https://doi.org/10.1007/s00766-003-0179-8

Miller GA (1995) Wordnet: A lexical database for english. Commun ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748

OMG (2017) Unified modeling language. version 2.5.1. https://www.omg.org/spec/UML/, accessed 30 April
2020

Pohl K (2010) Requirements engineering - fundamentals, principles, and techniques. Springer, Berlin
Pohl K, Rupp C (2011) Requirements engineering fundamentals - a study guide for the certified professional

for requirements engineering exam: Foundation Level - IREB compliant. Rocky Nook, San Rafael
Post A, Hoenicke J (2012) Formalization and analysis of real-time requirements: A feasibility

study at BOSCH. In: Joshi R, Müller P, Podelski A (eds) Verified software: theories, tools,
experiments - 4th international conference, VSTTE 2012, Philadelphia, PA, USA, January 28-
29, 2012. Proceedings, Springer, Lecture Notes in Computer Science, vol 7152. pp 225–240,
https://doi.org/10.1007/978-3-642-27705-4 18

Post A, Menzel I, Podelski A (2011) Applying restricted english grammar on automotive requirements
- does it work? A case study. In: Berry DM, Franch X (eds) Requirements engineering: founda-
tion for software quality - 17th internatil working conference, REFSQ 2011, Essen, Germany, March

79 Page 50 of 53

https://doi.org/10.1145/2593812.2593817
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1007/978-1-84996-405-0
https://doi.org/10.1007/978-1-84996-405-0
https://doi.org/10.3233/AO-2009-0069
https://doi.org/10.1007/s11334-014-0232-4
http://www.aaai.org/Library/AAAI/2000/aaai00-106.php
https://doi.org/10.1109/RE.2005.29
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1162/COLI_a_00168
https://doi.org/10.1007/978-3-319-57288-8_31
https://doi.org/10.1109/RE.2010.39
https://doi.org/10.1109/RE.2009.9
https://doi.org/10.1109/RE.2016.38
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1145/219717.219748
https://www.omg.org/spec/UML/
https://doi.org/10.1007/978-3-642-27705-4_18

Empir Software Eng (2021) 26: 79

28-30, 2011. Proceedings, Springer, Lecture Notes in Computer Science, vol 6606. pp 166–180.
https://doi.org/10.1007/978-3-642-19858-8 17

Riaz M, King JT, Slankas J, Williams LA (2014) Hidden in plain sight: automatically identifying security
requirements from natural language artifacts. In: Gorschek T, Lutz RR (eds) IEEE 22nd interna-
tional requirements engineering conference, RE 2014, Karlskrona, Sweden, August 25-29, 2014. IEEE
Computer Society, pp 183–192. https://doi.org/10.1109/RE.2014.6912260

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering: guidelines and
examples, 1st edn. Wiley Publishing, Hoboken

Sadraei E, Aurum A, Beydoun G, Paech B (2007) A field study of the requirements engineering practice in
australian software industry. Requir. Eng. 12(3):145–162. https://doi.org/10.1007/s00766-007-0042-4

Saldaña J (2015) The coding manual for qualitative researchers. Sage, Thousand Oaks
Solemon B, Sahibuddin S, Ghani AAA (2009) Requirements engineering problems and practices in soft-

ware companies: An industrial survey. In: Advances in software engineering - international conference
on advanced software engineering and its applications, ASEA 2009, vol 59. Springer, pp 70–77.
https://doi.org/10.1007/978-3-642-10619-4 9

Sommerville I (2011) Software engineering
Stevenson A, Cordy JR (2014) A survey of grammatical inference in software engineering. Sci Comput

Program 96:444–459. https://doi.org/10.1016/j.scico.2014.05.008
Stol K, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review

and guidelines. In: Dillon LK, Visser W, Williams LA (eds) Proceedings of the 38th international con-
ference on software engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, ACM, pp 120–131.
https://doi.org/10.1145/2884781.2884833

The Standish Group (1995) The chaos report. https://www.standishgroup.com/, accessed 30 April 2020
Veizaga A, Alfėrez M, Torre D, Sabetzadeh M, Briand LC, Pitskhelauri E (2020) Leveraging natural-

language requirements for deriving better acceptance criteria from models. In: Syriani E, Sahraoui HA,
de Lara J, Abrahȧo S (eds) MoDELS ’20: ACM/IEEE 23rd international conference on model driven
engineering languages and systems, virtual event, Canada, 18-23 October, 2020. ACM, pp 218–228.
https://doi.org/10.1145/3365438.3410953

Withall S (2007) Software requirement patterns. Pearson Education, London
Wohlin C, Runeson P, Hȯst M, Ohlsson MC, Regnell B (2012) Experimentation in software engineering.

Springer, Berlin. https://doi.org/10.1007/978-3-642-29044-2
Young R (2015) The main thing is keeping the main thing the main thing. Requir Eng Mag 1
Yue T, Briand LC, Labiche Y (2011) A systematic review of transformation approaches between user

requirements and analysis models. Requir Eng 16(2):75–99. https://doi.org/10.1007/s00766-010-0111-y
Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans Softw Eng Methodol

6(1):1–30. https://doi.org/10.1145/237432.237434
Zhao L, Alhoshan W, Ferrari A, Letsholo KJ, Ajagbe MA, Chioasca E, Batista-Navarro RT (2020)

Natural language processing (NLP) for requirements engineering: A systematic mapping study.
arXiv:2004.01099

Zikmund W, Babin B, Carr J, Griffin M (2013) Business Research Methods. Cengage Learning. https://
books.google.lu/books?id=veM4gQPnWHgC

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Alvaro Veizaga is a doctoral candidate at the Interdisciplinary Centre
for Security, Reliability and Trust (SnT), University of Luxembourg.
Alvaro received his MSc degree from the Faculty of Electrical Engi-
neering and Computer Science at the Leibniz University of Hanover
(Germany), in 2018. Among his research interest areas are require-
ments engineering, software testing, machine learning, and natural
language processing.

Page 51 of 53 79

https://doi.org/10.1007/978-3-642-19858-8_17
https://doi.org/10.1109/RE.2014.6912260
https://doi.org/10.1007/s00766-007-0042-4
https://doi.org/10.1007/978-3-642-10619-4_9
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1145/2884781.2884833
https://www.standishgroup.com/
https://doi.org/10.1145/3365438.3410953
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1145/237432.237434
http://arxiv.org/abs/2004.01099
https://books.google.lu/books?id=veM4gQPnWHgC
https://books.google.lu/books?id=veM4gQPnWHgC

Empir Software Eng (2021) 26: 79

Mauricio Alferez is a research associate at the Software Verification
and Validation Lab, University of Luxembourg. Mauricio received
his PhD degree in Computer Science in 2012, from the Nova Uni-
versity of Lisbon, in Portugal. He has gained working experience
as researcher, project manager, lecturer and engineer in international
organizations. His research interests include model-driven engi-
neering, software verification and testing, variability management,
requirements engineering, and natural language processing.

Damiano Torre is a research associate at the Software Verification
and Validation Lab, University of Luxembourg. His research inter-
ests are focused on software engineering, and more specifically on
model-based development, empirical software engineering and legal
and regulatory compliance. Torre is involved in research projects with
industry partners from the legal and finance domain. Prior to going
to Luxembourg, Torre received his B.Sc. from the University of Bari
(Italy), M.Sc. from the University of Castilla-La Mancha (Spain) and
Ph.D. from Carleton University (Canada) in 2009, 2011 and 2018,
respectively. He regularly serves on the organizing / program commit-
tees of ISSRE main conference, and satellite events of EMSE, ICSE,
and ASE.

Mehrdad Sabetzadeh is an Associate Professor at the School of
Electrical Engineering and Computer Science of the University of
Ottawa and a part-time Faculty Member at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT), University of Lux-
embourg. Previously, Sabetzadeh worked as a permanent member of
the research staff at Simula Research Laboratory (Norway), and as
an NSERC postdoctoral fellow at University College London (UK).
Sabetzadeh received his Ph.D. in Computer Science from the Uni-
versity of Toronto. His main research interests are in software engi-
neering with an emphasis on requirements engineering, model-based
development, and regulatory compliance. Sabetzadeh is passionate
about fostering stronger ties between academia and industry; in the
past decade, he has conducted most of his research in close collab-
oration with industry partners. His experience spans several sectors,
including government, finance, legal services, telecommunications,
maritime, energy, aerospace, railways, and automotive. Sabetzadeh
has co-authored more than 70 scientific papers and secured more than

$6M of research funding as lead investigator. He regularly serves on the organizing / program committees of
several international conferences such as RE, ICSE, ESEC/FSE, and MODELS.

79 Page 52 of 53

Empir Software Eng (2021) 26: 79

Lionel Briand is professor of software engineering and has shared
appointments between (1) School of Electrical Engineering and Com-
puter Science, University of Ottawa, Canada and (2) The SnT centre
for Security, Reliability, and Trust, University of Luxembourg. He
is the head of the SVV department at the SnT Centre and a Canada
Research Chair in Intelligent Software Dependability and Compli-
ance (Tier 1). He holds an ERC Advanced Grant, the most prestigious
European individual research award, and has conducted applied
research in collaboration with industry for more than 25 years, includ-
ing projects in the automotive, aerospace, manufacturing, financial,
and energy domains. He is a fellow of the IEEE and ACM. He was
also granted the IEEE Computer Society Harlan Mills award (2012)
and the IEEE Reliability Society Engineer-of-the-year award (2013)
for his work on model-based verification and testing. His research
interests include: Model-driven development, testing and verifica-
tion, search-based software engineering, requirements engineering,
and empirical software engineering.

Affiliations

Alvaro Veizaga1 ·Mauricio Alferez1 ·Damiano Torre1 ·Mehrdad Sabetzadeh1,2 ·
Lionel Briand1,2

Mauricio Alferez
mauricio.alferez@uni.lu

Damiano Torre
damiano.torre@uni.lu

Mehrdad Sabetzadeh
m.sabetzadeh@uottawa.ca

Lionel Briand
lbriand@uottawa.ca

1 SnT Centre for Security, Reliability and Trust, University of Luxembourg,
Luxembourg City, Luxembourg

2 School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Page 53 of 53 79

http://orcid.org/0000-0002-4538-1471
mailto: mauricio.alferez@uni.lu
mailto: damiano.torre@uni.lu
mailto: m.sabetzadeh@uottawa.ca
mailto: lbriand@uottawa.ca

	On systematically building a CNL for functional requirements...
	Abstract
	Introduction
	Background and related work
	Lexical resources
	WordNet
	VerbNet

	Related work
	Patterns
	Controlled natural languages
	Differences between the related work and our approach

	Qualitative study
	Research question
	Study context and data selection
	Analysis procedure
	Extract requirements (Step 1)
	Identify codes (Step 2)
	Extract lemmas (Step 2.1)
	Separate lemmas that do not belong to any VerbNet code (Step 2.2)
	Identify new VerbNet codes by using synonyms (Step 2.3)
	Find applicable synonyms (Step 2.3.1)
	Add applicable synonyms (Step 2.3.2)
	Remove VerbNet codes (Step 2.4)
	Analyze remaining lemmas (Step 2.5)
	Coding results

	Label requirements (Step 3)
	Group requirements (Step 4)
	Create grammar (Step 5)
	Identify content in the requirements (Step 5.1)
	Propose grammar rule (Step 5.2)
	Add VerbNet code members (Step 5.3)
	Create generic rules (Step 5.4)
	Decompose rules (Step 5.5)
	Refine grammar rules (Step 5.6)
	Method

	Controlled natural language for functional requirements
	Condition structures
	Conditions
	Operands
	Operators
	Condition rule

	System response
	Rimay editor

	Empirical evaluation
	Case study design
	Extract Requirements (Step 1 of Fig. 6)
	Rephrase requirements using Rimay (Step 2 of Fig. 6)
	Improve Rimay (step 3 of Fig. 6)
	Check Rimay's stability (step 4 of Fig. 6)

	Data collection
	Collecting evidence and results
	Coding results

	Analysis of collected data
	Performance of Rimay on previously unseen SRSs (RQ3)
	Ensuring the stability of Rimay (RQ4)
	Saturation
	Z-test.

	Threats to validity
	Construct validity
	Internal validity
	External validity
	Reliability validity

	Practical considerations
	Considerations for CNL builders
	Considerations for companies investing into a CNL
	Extending Rimay to other domains

	Conclusions
	Appendix: A: Action Phrases in Rimay
	References
	Affiliations

