
Empirical Software Engineering (2021) 26: 68
https://doi.org/10.1007/s10664-021-09954-8

On using Stack Overflow comment-edit pairs
to recommend codemaintenance changes

Henry Tang1 · Sarah Nadi1

Accepted: 26 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Code maintenance data sets typically consist of a before version of the code and an after
version that contains the improvement or fix. Such data sets are important for various soft-
ware engineering support tools related to code maintenance, such as program repair, code
recommender systems, or Application Programming Interface (API) misuse detection. Most
of the current data sets are typically constructed from mining commit history in version-
control systems or issues in issue-tracking systems. In this paper, we investigate whether
Stack Overflow can be used as an additional source for building code maintenance data sets.
Comments on Stack Overflow provide an effective way for developers to point out prob-
lems with existing answers, alternative solutions, or pitfalls. Given its crowd-sourced nature,
answers are then updated to incorporate these suggestions. In this paper, we mine comment-
edit pairs from Stack Overflow and investigate their potential usefulness for constructing
the above data sets. These comment-edit pairs have the added benefit of having concrete
descriptions/explanations of why the change is needed as well as potentially having less
tangled changes to deal with. We first design a technique to extract related comment-edit
pairs and then qualitatively and quantitatively investigate the nature of these pairs. We find
that the majority of comment-edit pairs are not tangled, but find that only 27% of the stud-
ied pairs are potentially useful for the above applications. We categorize the types of mined
pairs and find that the highest ratio of useful pairs come from those categorized as Correc-
tion, Obsolete, Flaw, and Extension. These categories can provide data for both corrective
and preventative maintenance activities. To demonstrate the effectiveness of our extracted
pairs, we submitted 15 pull requests to popular GitHub repositories, 10 of which have been
accepted to widely used repositories such as Apache Beam (https://beam.apache.org/) and
NLTK (https://www.nltk.org/). Our work is the first to investigate Stack Overflow comment-
edit pairs and opens the door for future work in this direction. Based on our findings and

Communicated by: Bram Adams

� Henry Tang
hktang@ualberta.ca

Sarah Nadi
nadi@ualberta.ca

1 University of Alberta, Edmonton, Canada

/ Published online: 11 May 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09954-8&domain=pdf
http://orcid.org/0000-0001-6771-4559
https://beam.apache.org/
https://www.nltk.org/
mailto: hktang@ualberta.ca
mailto: nadi@ualberta.ca

Empir Software Eng (2021) 26: 68

observations, we provide concrete suggestions on how to potentially identify a larger set of
useful comment-edit pairs, which can also be facilitated by our shared data.

Keywords Stack Overflow · Comment-edit pairs · Bug-fix data sets

1 Introduction

Software maintenance is an essential activity in the software development lifecycle. In
his seminal article, Swanson differentiated between three types of maintenance activi-
ties (Swanson 1976). Corrective maintenance involves fixing faults in response to observed
failures of the program (e.g., the shopping cart of a customer gets suddenly deleted dur-
ing checkout). Adaptive maintenance involves changes needed to adapt the software to new
data or processing environments, while preventative maintenance is performed to improve
the code such as eliminating processing inefficiencies, enhancing performance, or improv-
ing maintainability. All three types of code maintenance activities are necessary for projects
to keep their code base up-to-date and ensure the system’s quality on the long run. We refer
to any code changes that address the above maintenance categories as code maintenance
changes.

To support the above maintenance activities, many software engineering support tools
such as defect prediction (Fenton and Neil 1999), Application Programming Interface (API)
misuse detection (Amman et al. 2016, 2018), or program repair (Gazzola et al. 2019) were
developed with the goal of automatically detecting, recommending, or applying code main-
tenance changes. To build or evaluate such tools, data sets of real code maintenance changes
are needed. The most common type of available data sets are bug-fix data sets that are typi-
cally used for corrective maintenance, especially bug fixes (e.g., Just et al. 2014; Dallmeier
and Zimmermann 2007b; Cifuentes et al. 2009; Amann et al. 2016).

While less common, there are also data sets that record code improvement changes
related to perfective maintenance, such as using faster or more secure API calls (Radu and
Nadi 2019).

All the above code-maintenance change data sets (code maintenance data sets for short)
usually contain pairs of faulty/incorrect/low-quality code and the corresponding fixed/im-
proved code, and are typically constructed from linking commits from version-control
systems to reports in issue-tracking systems (Śliwerski et al. 2005). The commonly used
linking approach relies on searching for commit messages that have specific keywords (e.g.,
fix, crash, hang, slow) and/or explicit links to issue IDs in issue-tracking systems (Kim et al.
2006; Nguyen et al. 2012). While many widely used maintenance data sets have been con-
structed with this approach, relying on this linkage has several limitations: not all problems
are documented in issue-tracking systems (Bachmann et al. 2010), not all developers are
systematic about their linkage (Bird et al. 2009; Bissyandé et al. 2013), and even worse,
not every issue labeled as a bug is actually a bug (Herzig et al. 2013). Additionally, since
the amount of code in a version control system is typically large and grouping separate
code changes in a single commit (a.k.a tangled changes (Herzig and Zeller 2013)) is com-
mon (Herzig et al. 2016), more advanced techniques that precisely identify the changes
related to the maintenance activity of interest are required (Just et al. 2014).

Finally, finding good explanations (i.e., a “a reason or justification given for an action
or belief” based on the Oxford English dictionary) to attach to the identified maintenance
activity, be it a bug fix or an improvement, such that they can be used in detection or recom-
mender systems is difficult. On one hand, commit messages are often short, meaningless,

68 Page 2 of 35

Empir Software Eng (2021) 26: 68

or non-descriptive (Maalej and Happel 2010; Dyer et al. 2013) and on the other hand, issue
reports are often long with too many discussions (Rastkar et al. 2010). Thus, the question
is: are there complementary or additional sources of information that can be used to curate
additional code maintenance data sets? In this work, we investigate if Stack Overflow may
be such a source.

Stack Overflow has become an essential resource for software developers. It contains a
wealth of information such as code solutions, best practices, and documentation of com-
mon pitfalls in response to the asked questions. Given its crowd-sourced nature and high
visibility as the go-to-place for information, Stack Overflow has the added advantage of
community engagement where different developers point out various issues with the posted
code snippets in the form of comments. Comments may, for example, include pointing out
faster APIs, missing version information, or simply wrong answers. For example, Answer1

50383046 has a comment to include the rsplit method as it is more efficient, a comment
on Answer2 19694159 mentions the version differences of the answer between PHP pre
5.3 and after 5.3, and Answer3 24261462 has comments mentioning that the answer and
even subsequent edit are incorrect. The answerer, or other community members, then have
a chance to edit the answer. Stack Overflow records such changes in the answer edit history,
including the code snippets contained in these answers. Thus, if we can link comments to
code-snippet edits, we can provide a new data source for building code maintenance data
sets, which in turn can be used for the applications mentioned above, such as program repair
or code improvement recommendations.

Extracting comment-edit pairs from Stack Overflow can potentially address some of the
problems discussed above: Stack Overflow code snippets are typically short and targeted,
which overcomes the issue of tangled changes and removing unrelated code. Additionally,
comments that result in an edit likely have the description of the issue that was addressed,
which means that these comments can provide meaningful explanations that can accompany
any code-change recommender tools.

For example, Answer4 52517618 contains code that converts a byte array
to a string as follows String s = new String(bytes, ‘‘UTF-8’’);.
This code snippet then gets updated to String s = new String (bytes,
StandardCharsets.UTF 8);. If a code improvement/recommendation tool suggests
this change to a developer, the developer may be unsure as to why this change is necessary
and may end up ignoring the suggestion. If, however, the following comment “On Java
7 you can also use new String(bytes, StandardCharsets.UTF 8); which
avoids having to catch the UnsupportedEncodingException” is provided to the
developer along with this change, they will understand the reasoning behind the suggestion
and make an informative decision on accepting the suggestion. In short, a tool that detects
the former (pre-edit) piece of code could suggest the latter (post-edit) piece of code and
accompany that suggestion with the related comment to explain why the suggestion was
made.

To explore the feasibility of using Stack Overflow as a source for code maintenance data,
we first need to design a technique that maps comments to their corresponding edits. In
other words, we need to extract comment-edit pairs, i.e., a comment and the resulting edit
that addressed this comment.

1http://stackoverflow.com/questions/50383046
2http://stackoverflow.com/questions/19694159
3http://stackoverflow.com/questions/24261462
4http://stackoverflow.com/questions/52517618

Page 3 of 35 68

http://stackoverflow.com/questions/50383046
http://stackoverflow.com/questions/19694159
http://stackoverflow.com/questions/24261462
http://stackoverflow.com/questions/52517618

Empir Software Eng (2021) 26: 68

To do so, we leverage the SOTorrent (Baltes et al. 2018) data set and adapt and improve
a previous matching approach we designed to identify ignored comments (Soni and Nadi
2019). At a high level, our automated approach matches a comment to an edit if the comment
occurred before the edit, the comment mentions a code term that gets added to or removed
from a code snippet in the edit, and the commenter and editor are different users. To support
our investigation of using these comment-edit pairs for creating code maintenance data sets,
this paper then answers the following research questions:

RQ1 What is the precision of an automated technique for extracting comment-edit pairs
from Stack Overflow? There is currently no way on Stack Overflow to relate a
comment to an edit, so the first step of this research is to establish an automated
technique for doing this pairing, and to evaluate its precision.

RQ2 How tangled are the changes in Stack Overflow comment-edit pairs? To investigate
if the identified comment-edit pairs do indeed overcome the challenge of tangled
changes, we investigate how often do the changes in mined pairs address issues other
than that pointed out in the related comment.

RQ3 What type of changes occur in Stack Overflow comment-edit pairs? To understand
what potential types of data sets and related software engineering applications can
these comment-edit pairs be used for, we need to understand the types of changes
that occur in them (e.g., syntax error fixes vs. catering the solution to the original
poster’s question).

RQ4 What is the potential usefulness of the extracted comment-edit pairs for curating
code maintenance data sets? Not all the mined comment-edit pairs are necessarily
useful for code maintenance data sets. Thus, it is important to understand how many
of the comment-edit pairs are useful for the intended applications. We consider a
comment-edit pair as useful for code recommender systems5 if (1) the edit address-
ing the comment happens to an existing code snippet in the answer such that there is
code to be matched in a target system and (2) if the comment describes this change
in a way that is understandable in isolation of the posted Stack Overflow question.
We also investigate how tangled these useful pairs are, and which categories they
fall under. To further demonstrate usefulness, we also submit 15 pull requests based
on our mined pairs to 15 different open-source repositories.

To answer the above research questions, we run our automated matching technique on
five popular Stack Overflow tags (Java, JavaScript, Android, PHP, and Python). We then
manually analyze a statistically representative sample of 1,910 detected comment-edit pairs
to confirm true matches. We record the type of suggestion and change(s) being made,
the presence of tangled changes in the edit, and the usefulness of the pair for the 1,482
confirmed pairs we find.

Our results show that the precision of our automated approach is 74%-80% across the
five tags and that only 11% of the 1,482 confirmed pairs are tangled, while 27% are useful.
To categorize the confirmed pairs, we use a coding guideline from previous work (Zhang
et al. 2019a) that analyzed the types of comments on Stack Overflow but did not looking
at corresponding edits. We find that 34%, 16%, and 13% of the confirmed pairs are of
types Error, Request, and Correction respectively, collectively consisting over 50% of the
confirmed pairs. However, when looking specifically at useful pairs, we find that types

5Note that we use the term code recommender system as a general umbrella for any support tool that suggests
fixes, code changes, or related code snippets.

68 Page 4 of 35

Empir Software Eng (2021) 26: 68

Correction, Obsolete, Flaw, and Extension are the most useful. This is promising for future
maintenance applications as these types of comments are relatively more general and the
corresponding edits will be applicable in a general setting. Additionally, 10 out of the 15
pull requests we submitted based on our collected data have already been accepted. These
repos include popular and influential projects, such as Apache Beam6 and NLTK,7 which
demonstrates the potential impact of our comment-edit pairs.

To the best of our knowledge, this is the first work that maps Stack Overflow comments
to edits and studies the potential of using these comment-edit pairs for constructing code
maintenance data sets that also provide explanations for the provided changes. The summary
of our contributions in this paper are as follows.

– We implement an automated approach for matching comments to edits. We apply the
approach to Stack Overflow posts covering five popular tags (Java, JavaScript, Android,
Python, and Php) and extract a total of 248,399 comment-edit pairs.

– We manually analyze 799 comments from 100 answers (20 from each of the five tags)
to create a ground truth of 194 comment-edit pairs, and use it to evaluate our matching
approach and compare it to a naive baseline.

– We manually analyze a statistically representative random sample of 1,910 comment-
edit pairs and confirm true matches for 1,482 pairs. We record the category the comment
belongs to, the presence of tangled changes, as well its usefulness for code maintenance
data sets.

– Based on the above collected data, we answer four research questions to determine
if comment-edit pairs can be used in future maintenance-related software engineer-
ing applications. We also discuss challenges and opportunities for future work in this
direction.

– For additional external validation, we use the confirmed comment-edit pairs to submit
15 pull requests to different open-source GitHub repositories. To date, 10 of these pull
requests have been accepted.

All our code and data are publicly shared on our artifact page (Online artifact page).

2 RelatedWork

We discuss two categories of related work. The first is existing code maintenance data sets
and the second is previous work that leverages data from Stack Overflow.

2.1 Existing codemaintenance data sets

Over the last two decades, there has been a tremendous effort and movement towards curat-
ing useful data sets that can assist in maintenance tasks (Menzies et al. 2012), especially
those related to corrective maintenance. We discuss a subset of the most relevant ones here.

iBugs (Dallmeier and Zimmermann 2007b) was early work that uses the technique of
identifying bug-fixing commits through keywords in commit messages. It collected pairs of
before (buggy) and after versions (fixed) of the code along with the associated test suite.

6https://beam.apache.org/
7https://www.nltk.org/

Page 5 of 35 68

https://beam.apache.org/
https://www.nltk.org/

Empir Software Eng (2021) 26: 68

Defects4J (Just et al. 2014) is a well-known data set of Java bugs that was built by min-
ing version-control systems containing commit messages that explicitly reference a bug ID
in the issue tracking system, or if a bug issue references a commit in the version-control
system. The data set contains two versions of the code, one before and one after the fix.

Different from iBugs, Defects4J does some filtering of the test suite to keep only tests
that fail on the buggy version and pass on the fixed version. To overcome the problem of
tangled changes (Herzig and Zeller 2013), the authors manually reviewed the source code
diffs of the before and after versions of the code and, if necessary, removed any irrelevant
changes.

Dit et al. (2013) again mined change history, linking commits to issue IDs to curate a
data set that can be useful for software maintenance tasks. Their goal was for this data set to
be useful for various maintenance tasks such as feature location, impact analysis, developer
recommendations, and traceability recovery; however, they did not provide a categorization
of the entries in their data set, so we are not aware of the exact maintenance tasks sup-
ported and their distribution. Additionally, while both our work and theirs target software
maintenance, our extracted data is focused on codemaintenance activities, rather than more
general tasks such as developer recommendation.

Ohira et al. (2015) manually categorized issue reports to identify high-impact bugs.
While they considered issues labeled as both BUG and IMPROVEMENT, they mentioned
that most of the improvements are actually considered as bugs. None the less, we assume
that their data set may also be applicable to perfective maintenance activities, and not only
corrective maintenance.

The recent BugHunter data set (Ferenc et al. 2020) again relied on issue trackers and
commit history. Different from other data sets, it tried to reduce the code changes in the
before/after versions of the code in order to identify the minimal set of affected code
elements.

While following similar methods of relying on commit messages and manually reviewing
the changes, Radu and Nadi (2019) specifically focused on non-functional bugs that are
related to aspects such security, performance, memory management, etc.

BugSwarm (Tomassi et al. 2019) is a recent effort that attempts to remove some of
the manual effort involved in curating bug-fix data sets. While it also relies on version-
control history, it leverages the continuous integration (CI) service in the target repositories
to identify bug-fixing commits through their CI build status. Additionally, BugSwarm
containerizes the before and after versions of the code and build scripts to ensure fully
reproducible problems.

Summary To summarize, most existing code maintenance data sets seem to focus on cor-
rective maintenance tasks, specifically bug fixes. Additionally, most of these data sets are
constructed by mining version-control history or issue-tracking systems. As mentioned in
the introduction, this construction technique has been criticized because of missing prob-
lems in issue-tracking sytems (Bachmann et al. 2010), lack of systematic linking between
commits and bug reports (Bird et al. 2009; Bissyandé et al. 2013), misclassification in issue-
tracking systems (Herzig et al. 2013), and tangled changes not related to the fix (Herzig and
Zeller 2013; Herzig et al. 2016). Our work is an attempt to find another data source for code
maintenance data sets other than version-control or issue-tracking systems. Additionally,
since we do not limit ourselves to keywords such as “fix” or links to bug issues, using Stack
Overflow may potentially provide changes related to additional code maintenance activi-
ties. In general, our goal is not to replace or compete with current data sets, but instead to
explore the potential of using Stack Overflow for curating additional relevant data sets.

68 Page 6 of 35

Empir Software Eng (2021) 26: 68

2.2 Stack Overflow Studies

Data from Stack Overflow has been used extensively in previous work with varying pur-
poses. While some papers focus specifically on studying various characteristics of Stack
Overflow and how information evolves on it (Zhang et al. 2019b; Zhang et al. 2019c; Barua
et al. 2014), others use information from Stack Overflow for specific purposes such as aug-
menting documentation, code search, or improving code analysis tools (Rahman et al. 2019;
Treude and Robillard 2016; Subramanian et al. 2014a; Ponzanelli et al. 2014; Lin et al.
2019; Liu and Zhong 2018). Given the nature of our work, which establishes a relationship
between comments and code edits on Stack Overflow and investigates the nature of these
pairs, in this section, we focus only on related work that studied/used comments or edits on
Stack Overflow (SO).

RelatedWork we Rely on Our previous MSR challenge paper (Soni and Nadi 2019) quan-
tified how often comments cause answer updates, and how often comments are ignored even
when they should have resulted in an answer update. We used three heuristics for match-
ing comments to edits and categorizing them: (1) code checks where a comment caused an
update if a code element in the comment is added or removed in the edit, (2) keyword phrase
checks that suggest that the comment is explicitly asking for an edit but no edit occurred,
and (3) question checks where a comment explicitly asks a question about the posted code.
Our results showed that code checks resulted in the most matches between comments and
edits and that most of the wrongly labeled pairs occurred when we tried to deduce that a
comment should warrant an update and was ignored, or that a comment does not warrant
an update. Based on these findings, in this paper, we only use the code check heuristic and
focus on finding comment-edit pairs where an update actually occurred. This current paper
differs from our previous work in terms of goals: we do not try to automatically categorize
all comments and do not look for ignored comments. Our goal is to find comments that
actually caused an edit, and to study the comment-edit pairs in terms of their suitability for
creating code maintenance data sets. Additionally, we improve the matching algorithm and
evaluate it against a manually constructed ground truth. We also manually validate a sta-
tistically representative sample of the pairs our tooling detects, measure the precision, and
publicly share a validated data set containing the confirmed pairs.

Another recent work we rely on is that by Zhang et al. (2019a). In that work, the authors
analyzed comments on Stack Overflow. They investigated the information discussed in com-
ments and performed open coding to categorize the analyzed comments. They defined seven
broad categories and 17 sub-categories of comments. They did not, however, attempt to
match comments to edits or analyze the code changes in edits. Given that the comments we
find in comment-edit pairs are a subset of all comments on Stack Overflow, we use the cat-
egories they create as our coding guideline for categorizing comments in our pairs. In other
words, given Zhang et al.’s categories, we perform closed-coding (i.e., when codes/labels are
predetermined) to categorize our comment-edit pairs. Some of the categories of comments
they found, such as pointing out errors or weaknesses in answers or providing alternative
solutions, give us assurance that finding the edits corresponding to these comments can
potentially be useful for code maintenance data sets.

SO for Error Fixing Wong et al. (2019) studied edits to Python code snippets on Stack
Overflow in order to produce a syntax error data set. Their goal was to make a free, open, and
public data set that would be representative of the kinds of syntax errors general developers

Page 7 of 35 68

Empir Software Eng (2021) 26: 68

would have. At a high level, they parse the before and after versions of the most recent edit
in an answer.

If the prior version included a parse error and the most recent did not, then they store the
two versions as a syntax error and fix respectively. Our work differs as we focus on linking
comments and edits to attach a reason for an edit. We also do not focus solely on syntax
errors and find changes related to more code maintenance activities, including various types
of fixes and code improvements.

Thiselton and Treude (2019) used Stack Overflow answers in order to provide better
compiler error messages for active development. Their work takes a Python compiler error
message and constructs a Stack Overflow query. They take the first question on the first page
that is returned by the query that contains at least one answer. They then take the accepted
answer (or highest voted answer if there is no accepted answer) and modify the compiler
error to incorporate a summary of the answer they found. They do not use comments or edits
on a Stack Overflow answer at all. However, their work highlights that novel applications
using information from Stack Overflow can be useful in helping developers during active
development.

Gao et al. proposed an automated bug-fixing approach that relies on mining information
from Stack Overflow (Gao et al. 2015), but they rely neither on answer edits or comments.
Instead, they find answers that contain two code snippets and rely on heuristics to identify
the buggy and correct version (e.g., Instead of code snippet X, use code snippet
Y). Alternatively, they try to match the buggy code snippet in the question to a modified,
and presumably correct, code snippet in the answer. After matching these two versions, they
use GumTree (Falleri et al. 2014) to generate edit scripts for automated bug fixing. While
our sources of data are different, we foresee that future work can apply their automated edit
script generation technique to the pre/post pairs we extract.

Collaboration Characteristics on SO Adaji and Vassileva (2016) also studied edits and
comments on Stack Overflow. Unlike our work that analyzes the contents of comments and
edits to link them together, their work used comments and edits to study collaboration char-
acteristics on Stack Overflow with the goal of finding the types of users that contribute
to high quality answers. Specifically, they investigated whether the number of comments
on an answer or the reputation of the editor are correlated with the answer quality. Their
results showed that most of the edits made were by users with no badges and that most high
quality answers had more comments rather than less. Based on these findings, we study all
comments and edits, regardless of the reputation of the user or the score of the answer.

Wang et al. (2018) studied Stack Overflow badges that are related to revisions of answers.
They found that most revisions were made in spikes (i.e., many revisions made on the same
day) rather than spread out over different days. These spikes coincided with the days Stack
Overflow were awarding badges to members, and the corresponding revisions during these
spikes were mostly simple revisions (i.e., typo correction and formatting). They also noted
that most of the revisions made on these days needed to be rolled back due to the revision
being incorrect or undesired. They concluded that the current system of using badges was
insufficient in enforcing answer quality and that there needed to be a change in how Stack
Overflow encourages revisions without lowering the quality of answers. Our work focuses
on the contents of the revisions and relating them to comments, as opposed to motivation
schemes for performing the edits.

Answer Quality Dalip et al. (2013) created a learning to rank approach with the goal of
automatically estimating the feedback a user would give regarding the quality of an answer.

68 Page 8 of 35

Empir Software Eng (2021) 26: 68

To do so, they extracted features related to both comments and edits. All their features are
quantitative (e.g., number of edits, number of comments, or number of users who com-
mented on answer), and they did not analyze the content of the comments or map comments
to edits.

Diamantopoulos et al. (2019) analyzed answer edits to determine what makes an optimal
answer. With that information, they discuss future Stack Overflow tools that could suggest
edits on an answer to improve its quality. While our work can help with similar future goals,
the methodology and the focus of both studies differ substantially. Diamantopoulos et al.
(2019) used a neural network to study the edits made on Java answers and applied clustering
to extract related edits. They then used the “commit” message associated with an edit8 to
come up with representative descriptions for each cluster; however, as they also point out,
having a message associated with the edit is rare. Since comments on an answer are much
more common and are also more descriptive, we believe that studying answer comments to
understand the types of edits that occur may provide more explanations and intuitions for
answer edits, which would make any follow up recommender system more useful to users.
Additionally, we pair comments with the corresponding edits while they do not.

Ragkhitwetsagul et al. (2019) studied the quality of Stack Overflow answers and found
that many answers were outdated, buggy, incorrect, etc. They also raise the issue that many
answers also violate licensing as most answers are copy-pasted from users’ own work.
While general Stack Overflow answer quality is a concern, our work looks specifically at the
answers for which such problems have already been pointed out in the form of comments,
and based on which, the answer has been updated to fix the problem.

Zhang et al. (2019b) studied obsolete answers on Stack Overflow by analyzing answer
comments. They found that most obsolete answers were already obsolete when they were
first posted, and that most reactions to an obsolete answer happened an average of 118
days after the obsoleteness was even observed. They also found that most answers are not
updated when observed to be obsolete and that there are certain languages that are more
prone to obsolete answers than others, particularly the languages that are related to mobile
application development. While they focused specifically on answers that were deemed
obsolete, our study considers all forms of improvements and code edits, including errors in
the code, non-functional improvements, and extensions.

Clarification Comments Rao and III (2018) used a neural network to learn different kinds
of clarification questions that were asked in the question comments to improve the ques-
tion, e.g., What version of X are you using? While they do perform some matching of the
comments posted on a question to the question edits, they focus only on explicit question
statements found in comments (i.e., a sentence that ends with a question mark). They also
did not compare the content of the comment to that of the edit, and assume that the first
edit after a question is posted in a comment is the response to that question. Along similar
lines, Jin and Servant (2019) studied how edits to a question affect the answers the question
receives.

They focused on the edits made to a question before and after it received an accepted
answer and how these edits affect the quality of received answers. In contrast to both efforts,
we try to match code terms in a comment and an edit, and we focus on answer edits rather
than question edits.

8note that they refer to this message as comment in their paper, but it is not a comment on the answer, but
rather the message the editor provides with their edit

Page 9 of 35 68

Empir Software Eng (2021) 26: 68

Summary Apart from various technical/methodological differences noted above, the most
important differences to prior work on Stack Overflow data are (1) the motivation of our
work for constructing data sets that have before/after code versions with associated expla-
nations, (2) we analyze the contents of both comments and edits in order to match them,
(3) we extract pairs of comments and their corresponding edits, (4) we consider all types
of changes and do not pre-limit ourselves to one type of edit, and (5) we study various
characteristics, such as tangledness and usefulness, of these comment-edit pairs.

3 Mapping Comments to Edits

In this section, we describe our method for matching comments to edits. Our goal is to
extract comment-edit pairs (ci, ej), where comment ci caused edit ej to occur.

As our main data source, we use the SOTorrent data set (Baltes et al. 2018) which cap-
tures the edit history of all Stack Overflow posts (we use version 2019-09-23). In SOTorrent,
a Stack Overflow post is split into text and code blocks, based on the html formatting used
in the post. Text blocks mark any text in the post, including inline code, while code blocks
mark explicit code blocks formatted using the <code> html tag or the markdown back-tick
symbol. An edit to a given post is thus any change to one or more of its text or code blocks.
Given the goal of our work, we focus on edits to code blocks in Stack Overflow answers. We
analyze all answer edits from five popular tags on Stack Overflow: Java, JavaScript, PHP,
Python, and Android. We choose these tags because, at the time of writing, they had the
highest number of answers on Stack Overflow. The five tags contain a total of 11,119,517
answers, 12,130,068 comments, and 4,322,506 edits.

3.1 Ground truth creation

As a first step, we create a ground truth that can help us evaluate and refine any automated
matching technique we develop. To select the answers that we will include in our ground
truth, we use stratified sampling to select 20 answers from each tag. Our stratification strat-
egy selects two answers in each of the following categories: high (above 1000) score, low
(below zero) score, recent creation date (after Jan 01, 2018), and old creation date (before
Jan 01, 2009). Our intuition behind this stratified sampling is to ensure the diversity of
answers we examine. Since answer score is a commonly used metric for answer quality,
we want to select answers with extreme scores. Similarly, we want to select answers from
the beginning of Stack Overflow (2008) and recent answers from Stack Overflow (2018) to
ensure that we see answers with diverse history. This resulted in eight selected answers. We
then consider two factors to sample additional answers: (1) the number of comments and
(2) the number of edits; these two factors may have direct impact on an automated matching
technique so we again want to ensure diversity in our selection. For each of these factors,
we consider two levels: (a) large (more than 10) and (b) small (less than 10). We sample two
answers from each of the four combinations of these factors and levels (i.e., two answers
with more than 10 comments and more than 10 edits, two answers with more than 10 com-
ments and less than 10 edits, etc). This results in eight more answers. The intention of using
10 as the threshold for a “ and “small” is because we find that the majority of answers have
less than 10 edits and less than 10 comments. For the goal of diversifying the sample, we
also select answers that have more than 10 edits and/or comments. Finally, we select four
additional random answers with at least one edit and one comment to create our 20 answers

68 Page 10 of 35

Empir Software Eng (2021) 26: 68

Table 1 Ground truth statistics

Tag Answers Edits Comments Median comments Median edits Comment-edit pairs

Java 20 95 148 5.5 2.0 38

JavaScript 20 105 158 6.0 3.0 33

Android 20 101 202 8.5 3.0 40

Python 20 103 136 5.5 3.0 38

Php 20 117 155 6.0 3.0 45

Total 100 521 799 – – 194

for each tag. In total, our ground truth contains 100 answers with a total of 521 edits and
799 comments.

The two authors then independently evaluated all 100 answers. For each comment on
an answer, they separately analyze the edits for each answer to determine if the comment
caused an edit using the following criteria:

1. The edit occurred after the comment.
2. The topic of the comment is related to the update in the edit.

We use only the above criteria to mark a comment as having caused an edit; it did not
matter if the edit affected a text block or a code block or if the comment contained any
code. This was intentional to avoid any bias towards our heuristics of using code terms
for matching comments to edits, which we describe later in Section 3.2. For example, in
Answer9 281433, we manually match the comment “But he is not calculating a simple
mean. Remember there were only three votes given in his example.” to Edit10 3 that removed
the SQL query that implemented a simple mean, even though there are no explicit code
terms used in the comment.

The two authors then discussed and resolved any disagreements. For any labelling/-
coding exercise throughout this paper, we resolved disagreements as follows: together, the
two authors discuss each disagreement and justify their label for the comment-edit pair in
question. The authors continue discussing the pair until an agreement is reached.

Creating this ground truth set took around 26 hours, as both authors need to analyze all
comments and edits for each selected answer. Overall, our Cohen’s Kappa score (McHugh
2012) for matching comment-edit pairs is 0.71.

Table 1 shows the descriptive statistics per tag in our ground truth. In total, we analyzed
100 answers with 799 comments and 521 edits to construct a ground truth of 194 comment-
edit pairs.

3.2 Automatically matching comments and edits

AlgorithmOverview Given our motivation that mined comment-edit pairs can be later used
for creating code maintenance data sets for use in various recommender systems, we only
consider edits to code snippets. Based on that, the high-level idea of the algorithm is that if
a comment mentions a code term that then gets removed or added in a later code edit, we
can reasonably assume that the comment caused that edit. Following the analysis of the 100

9http://stackoverflow.com/questions/281433
10https://stackoverflow.com/revisions/281433/3

Page 11 of 35 68

http://stackoverflow.com/questions/281433
https://stackoverflow.com/revisions/281433/3

Empir Software Eng (2021) 26: 68

Listing 1 Algorithm for matching comments to edits

ground truth answers, we also add the criterion that the comment-edit pairs are considered
only if the users are different. This is because during the manual analysis, we noticed that
when the users are the same, it was difficult to be certain that their own comment caused
the edit. It could be the case the user was originally intending on making an edit and first
commented an explanation. Thus, for the sake of precision, we add this criterion to our
automated analysis.

Data Preparation As a first step, we create two tables that are necessary to store the post-
processed SOTorrent data that is relevant for our analysis. The first table we construct is
adapted from the EditHistory table based on a blog post from Baltes (2018), one of
the authors of the SOTorrent data set. This table keeps track of questions, answers, com-
ments, and edits to both the questions and answers. This table also provides the creation
date for each of these events and allows us to order the edits and comments in chronolog-
ical order. We include the parent post ID in this table to allow us to find all the answers,
edits, and comments related to a specific question. The second table we create is called
EditHistory Code, which is built from the EditHistory table and is similar except
that instead of containing all changes in the edits, it contains only answers with code blocks
and the corresponding edited text from only code edits. We obtain the actual code edits from
the PostBlockVersion table provided in the SOTorrent data set (Baltes et al. 2018).
The EditHistory Code table we construct contains all the initial body of an answer, its
subsequent edits, and comments to the answer in chronological order, while removing all
unecessary data such as the title version history and textual answers and edits. Our program
needs only the EditHistory Code table to analyze whether comments cause edits to
answers.

Algorithm Details Listing 1 shows the algorithm we use to match comments to edits.
We use the example in Fig. 1 as a running example to explain the algorithm. For each
answer in the data set (Line 2), the program iterates through all the comments in chrono-
logical order (Line 3). It then extracts all code terms found in a comment, storing them in
comment code terms (Line 4). Figure 1 shows the extracted comment code terms on
the left side of the figure. To extract code terms, we first look for explicit markdown or html
tags (i.e., <code>). However, not all users strictly follow the formatting guidelines, and
comments on Stack Overflow are diverse in the ways they contain code. For example, some

68 Page 12 of 35

Empir Software Eng (2021) 26: 68

comments paste code from the answer that did not work for them, while others post com-
ments on the exception that occurred for them. Some users use the markdown code symbol
while others do not and instead paste the code as plaintext. To simplify the task of extract-
ing code terms, we use regular expression patterns that identify code terms and do not rely
solely on markers or formatting guidelines. Our regular expressions therefore catch code
terms by, for example, matching camel case or snake case identifiers, or matching method
calls.

We start with the list of regular expressions used by Treude and Robillard (2016). We
modify some of the expressions based on testing on the ground truth set and also remove
unnecessary or problematic expressions. Since the original set of expressions was developed
mainly for Java, we also add additional regular expressions catered to the other languages
in our data set.

To illustrate our use of regular expressions, we use the following two examples of Stack
Overflow comments that contain different formats/styles of code terms: (1) “The question
doesn’t mention the user entering *EXIT*. Also, System.exit(0) will terminate the whole
JVM, which means that all processing done by the code till that statement will be lost.” on
Answer11 52347606 and (2) “Sorry, I’m coming to this late, but shouldn’t `vars(a)` do this?
For me it’s preferable to invoking the ` dict ` directly.” on Answer12 62680. Notice that
the first example comment does not have code formatted with any explicit code formatting
tags, while the second one does. Our corresponding regular expressions that identified the
code terms in these two comments, in respective order, are [a-zA-Z0-9. ()’#$\”]+\(.*\)+,
which matches method calls with dot accesses, and [ˆ]* , which matches everything
between two underscores on either side. The full list of regular expressions we use can be
found in our artifact page (Online artifact page).

The algorithm then iterates over all edits for this answer, in chronological order, to try
to match them to the current comment (Line 6). When the program finds an edit that was
made after the comment (Line 7), it extracts the code terms found in the current edit (which
has the snapshot of the code after the change) and the previous edit (which has the snapshot
of the code before the change), using the same code identification technique used for com-
ments (Lines 8-9). The program then takes the symmetric difference between these two lists
of code terms to determine any added or removed code terms (Line 10). In Fig. 1, the sym-
metric difference of the edits is displayed on the right side of the figure. The common code
terms between between the current edit and the previous edit are shown in the same color.
The symmetric difference contains all the remaining terms, which appear only in one of
the edits. Finally, our algorithm compares the code terms found in the comment to the code
terms found in the symmetric difference between the two edits (Line 11). Since the code
term used in the comment may not be exactly the same as that used in the code due to typos
or placeholder text in the code snippet, we calculate the Levenshtein distance (Levenshtein
1966), using the fuzzywuzzy library in Python (ChairNerd 2011), between the code terms
in the comments and those in symmetric difference to determine a match. We consider two
code terms as a match if their similarity ratio is above 90%.

We choose the 90% threshold based on examining the results of varying thresholds.
According to Fig. 2, we can see that at an 80% threshold results in the highest precision.
However, what is not conveyed through this graph are the number of terms that are caught
by the program at the various thresholds. With the original goal of having comments as

11http://stackoverflow.com/questions/52347606
12http://stackoverflow.com/questions/62680

Page 13 of 35 68

http://stackoverflow.com/questions/52347606
http://stackoverflow.com/questions/62680

Empir Software Eng (2021) 26: 68

Fig. 1 Example from the SO answer 8949391 showing the matching process between comments and edits,
based on code terms. The comment shown is matched to edit e5. Example has been reproduced and edited
for better visualization. Note that we record a list of code terms, which takes into account how many times a
code term appears. In this example, yourClientObject appears twice in the e5 code terms

explanations for edits, we want to as accurately as possible select the code terms in the
comment that get edited in the answer. Since precision reflects the percentage of matched
comment-edit pairs and not which code terms get matched, the precision between the dif-
ferent thresholds does not change significantly. In other words, matching one code term
is the same as matching five code terms; in both cases, the comment and edit will be
matched. When we manually analyzed the matched code terms made by the program at
the 80% and 90% thresholds, we found that using the 90% threshold removes some code
terms that are caught at the 80% threshold but do not contribute to the edit. For example,
in Answer13 34459380, the comment that causes Edit14 3 is: “So in this example is theAr-
ray also the key in the local storage. so for me if I had the key as keyword and the array as
myArray would it then be, localStorage.setItem(‘keyword’, JSON.stringify(myArray)); ?”
The matched edit contains the addition of example functions. One change adds “function
setArrayInLocalStorage(key, array) { localStorage.setItem(key, JSON.stringify(array));}”.

13http://stackoverflow.com/questions/34459380
14https://stackoverflow.com/revisions/34459380/3

68 Page 14 of 35

http://stackoverflow.com/questions/34459380
https://stackoverflow.com/revisions/34459380/3

Empir Software Eng (2021) 26: 68

Fig. 2 Comparison of similarity threshold used to identify matching code terms

In this example, our program at an 80% threshold matches the following terms between
the comment and the edit “[‘setItem’, ‘localStorage’, “localStorage.setItem(’keyword’,
JSON.stringify(myArray))”, “setItem(’keyword’, JSON.stringify(myArray))”, ‘theArray’]”,
while at the 90% threshold, it returns “[‘localStorage’, ‘setItem’, ‘theArray’].” From this
example, with the original goal in mind, it is preferable to have the returned matches of
the 90% threshold rather than the 80% threshold as it provides a more accurate depiction
of which code terms in the comment truly attributed to the changes in the edit. While the
difference in precision and recall is insignificant between the 80% and 90% thresholds,
the previous preference of accuracy of the related code terms explains why we chose the
90% threshold. More details on the difference between the thresholds can be found on our
artifact (Online artifact page) page.

If the program finds a match between a code term in the comment and a code term in the
edit, it labels the comment as having resulted in the edit, and adds this comment-edit pair to
the set of matched pairs (Lines 12-14). In Fig. 1, the matched code terms (yourClient
and yourClientObject) are shown at the bottom of the figure. Since there are matched
code terms between the comment and the edit, in this example, we would say that the given
comment is matched with e5. Note that the break on Line 14 indicates that a comment is
matched to the first edit it is related to.

3.3 Comparison with ground truth

Before running our automated matching strategy on all the data we have for all tags, we want
to evaluate its effectiveness and fix any issues. Thus, we run the above matching algorithm
on the manually created ground truth set of 100 answers from Section 3.1 and calculate
recall and precision. Recall is the percentage of comment-edit pairs the program could detect
from the manually confirmed pairs in the ground truth, while precision is the percentage of
comment-edit pairs identified by the program that are correct. Additionally, to understand if

Page 15 of 35 68

Empir Software Eng (2021) 26: 68

Table 2 Matching evaluation on ground truth data set

Tag Existing Pairs Our Matching Program Proximity Based Baseline

Detected Recall Precision Detected Recall Precision

Java 38 20 47% 85% 81 64% 28%

JavaScript 33 14 30% 71% 65 70% 35%

Android 40 25 36% 56% 96 69% 28%

Python 38 13 23% 69% 59 53% 34%

Php 45 16 24% 69% 63 51% 37%

Overall 194 88 32% 70% 364 60% 32%

the code matching algorithm we use brings in any value, we compare our results to those of
a simple baseline. This baseline simply matches a comment to the chronologically nearest
edit that comes after it, regardless of the content of the comment or edit. We show the results
in Table 2. As shown, the recall of our matching technique is low (ranging from 24% - 47%
and 32% overall), but the precision is relatively good (ranging from 56% - 85% and 70%
overall. To understand when our matching fails, we manually analyze the false positives and
false negatives.

One of the main reasons for the low recall (i.e., false negatives) is that there are comments
in the ground truth that caused an edit but did not contain any code suggestions. Our program
is only able to pair comments and edits that share a code pattern; as such it is not able to find
these comment-edit pairs. An example of this is Answer15 44765572. Here, both authors
agreed that the comment on Jun 26 ’17 at 18:13: “I think it would be a lot cleaner to have
the constructor accept the three parameters, instead of always creating it with the defaults
and then overwriting them.” caused Edit16 9, that adds the parameters to the constructor
instead of overwriting the default values. This comment does not use explicit code terms to
detail inefficiencies or problems but rather explains how the code can be improved. Other
comments that cause edits without having explicit code could be questions clarifying the
logic of the answer, or comments mentioning the answer does not fully answer the original
question, etc. All of these comments would cause edits but would not have any code for the
program to match the comment and edit together.

While our program, by construction, is not able to capture such pairs and it might have
been more “fair” to evaluate our program only on the comment-edit pairs it could potentially
capture (i.e., those with code), we chose to conduct a strict evaluation to understand the
worst case performance of the algorithm in terms of howmany pairs it could potentially cap-
ture. However, for further investigation into recall, we also check what our program would
have done only on pairs it could potentially match. While annotating the ground truth set of
799 comments, the two authors agreed on 194 comments that caused an answer edit (See
Table 1). Out of these 194 comments, 135 comments had code terms that the program could
potentially match. This means that 59 (30%) of the pairs can not, by construction, be found
by the program as there is no code for it to match. If we evaluate the matching algorithm
on only the 135 comments that it could potentially match, we find that we still maintain a
69% overall precision, but now achieve a 46% overall recall instead of 32%. This confirms

15http://stackoverflow.com/questions/44765572
16https://stackoverflow.com/revisions/44765572/9

68 Page 16 of 35

http://stackoverflow.com/questions/44765572
https://stackoverflow.com/revisions/44765572/9

Empir Software Eng (2021) 26: 68

our intuition that many of the false negatives are due to the comments not having any code
to match. Other reasons for the remaining false negatives include potentially missed regular
expressions for detecting code terms, matching the wrong edit if it contains the right code
term and happens earlier than the ground truth edit, or that the answer edit itself is an added
textual explanation rather than an edit to a code snippet.

On the other hand, the majority of false positives occur, because of coincidental matches
between a comment and an edit, i.e., the program finds a code suggestion both in a com-
ment and an edit, but the edit was not caused by that comment. An example for this
is Answer17 6872517. Our program detects that comment “thanks , as i see on find-
ViewById(R.id.mainframe) , i need to add a id ? and a layout file ?” caused Edit18 2.
However, this edit simply properly formats the whole code snippet without addressing this
comment in any way. The program catches this edit and matches the code in the com-
ment (findViewById(R.id.mainframe)) to the code in the edit and assumes a
relationship when there is none.

While in an ideal world, an automated technique would have both high recall and preci-
sion, in practice, there is often a tradeoff between both metrics. For the purposes of using the
extracted pairs to build data sets, we believe it is more important to have high precision than
high recall. Given the vast amount of data available on Stack Overflow, extracting even a
tiny fraction of available comment-edit pairs will provide a large amount of data. However,
if this data contains a large number of false positives, then its users will lose their trust in
the data. Thus, it is important for the matching technique to have high precision, even if this
is at the cost of missing out on other potential pairs. We, do, however, discuss opportunities
for improving recall in Section 8. When compared to the proximity based baseline, our pro-
gram achieves a much higher overall precision (70% vs. 32%), which gives us confidence
in using our matching algorithm to answer our five research questions.

4 RQ1: Precision of Comment-edit Pairs

We now discuss RQ1, which focuses on the precision of our automated mapping strategy.
While the ground truth evaluation gave us confidence to proceed, our ground truth is still
limited in size. Thus, for RQ1, we run our matching program on the data from all five tags.
We first describe our evaluation methods and then report the results.

Methods We first run our matching program on the data from all five tags we focus on.
Table 3 shows the descriptive statistics for this data, as well as the number of comment-edit
pairs detected by our tool.

Calculating precision requires manually analyzing the detected pairs. Since it is not feasi-
ble to manually validate close to 250,000 pairs, we take a statistically representative sample
for each tag. For a confidence level of 95% with a 5% confidence interval, we need a sam-
ple size of 382 pairs for each tag. Therefore, we randomly select 382 pairs from each tag
for our manual validation, resulting in a total of 1,910 comment-edit pairs to be validated.

The two authors of the paper then separately analyze all 1,910 comment-edit pairs, with
the goal of confirming whether the identified comment is related to the corresponding edit
in the pair. Determining if a comment-edit pair is correct and gathering additional data about

17https://stackoverflow.com/questions/6872517
18https://stackoverflow.com/revisions/6872517/2

Page 17 of 35 68

https://stackoverflow.com/questions/6872517
https://stackoverflow.com/revisions/6872517/2

Empir Software Eng (2021) 26: 68

Table 3 Number of answers, edits, and comments in each of the five Stack Overflow tags, as well as the
number of comment-edit pairs we detect for each tag

Language Answers Edits Comments Detected comment-

edit pairs

Java 2,586,447 895,737 2,321,296 51,358

JavaScript 2,924,662 1,281,433 3,571,622 65,373

Android 1,722,580 490,565 1,668,634 34,596

Python 1,785,914 903,159 2,060,513 44,551

Php 2,099,914 751,612 2,508,003 52,521

its usefulness, category, and tangled changes takes on average 1.5 minutes. Thus, the two
authors spent close to 95 hours to manually analyze the 1,910 pairs. An additional 8hrs
(approximately 1.5 hours per tag) were taken to resolve conflicts since conflict resolution
involved more discussion.

After the resolutions, each comment-edit pair was labelled with either zero (comment
is not related to the edit) or one (comment is related to the edit). We use Cohen’s Kappa
score (Viera et al. 2005) to calculate the inter-rater agreement rate.

Results Table 4 shows the precision of our matching strategy, as well as Cohen’s Kappa,
for each analyzed Stack Overflow tag. The last row of the table shows the overall aggregate
results over all analyzed data.

As shown, our Kappa score ranged 0.67-0.86 across the five tags. Out of the 1,910 pairs
we analyze, we confirm 1,482 pairs. The precision per tag ranges from 74-80%. When con-
sidering all 1,910 pairs, the overall precision of our algorithm is 78%. We also note that the
precision across the five tags is fairly similar, which suggests that our matching heuristics
are not biased toward a particular programming language or lexicographical pattern.

RQ 1: Across the five tags, the precision of our automated comment-edit mapping
algorithm is 78%.

5 RQ2: Tangled Changes

Recall that the term tangled change refers to grouping separate code changes in a single
commit or edit (Herzig and Zeller 2013). In the introduction, we speculated that one of

Table 4 Precision of detected comment-edit pairs across the full data set

Tag Pairs analyzed Pairs confirmed Cohen’s kappa Precision

Java 382 305 0.67 80%

JavaScript 382 307 0.77 80%

Android 382 284 0.86 74%

Python 382 292 0.75 76%

Php 382 294 0.77 77%

Total 1,910 1,482 0.77 78%

68 Page 18 of 35

Empir Software Eng (2021) 26: 68

the attractive qualities of using Stack Overflow edits is that changes on Stack Overflow are
likely to be less tangled than those found in commits in version-control systems. In this
research question, we investigate if this is true in practice.

Methods For each of the 1,482 confirmed comment-edit pairs found in RQ1, we also
record whether the edit contains tangled changes or not. The two authors again indepen-
dently labeled tangled changes and discussed disagreements.

In the context of comment-edit pairs, tangled changes occur if the edited answer
contains additional changes that are not related to the matched comment. An exam-
ple of a tangled change would be an edit that addresses multiple comments at a time.
For example, in Answer19 5616616, the original questioner puts the following comment
“Can I add a variable to the id like < id = $count .f rDocV iewer > and then it
would access #$count .f rDocV iewer? ...”. The answerer posts a comment in response
to this explaining how they can use the suggested variable. The questioner then posts
another comment on a different part of the code “Should there be an else statement
after if (f r! = old element){f r .style.display =“block” old element .style.display =
“hide”; old element = f r; } ? Why does there have to be “echo” in ′HideFrame(echo

$count)′ ? At this point, the answerer edits the code snippet20 to fix both the redundant
echo and the if statement in question. However, they also address the initial comment to
show how to correctly use the count variable. Pairing either of these comments with the
edit is an example of a comment-edit pair with a tangled change since the edit addresses
changes beyond those related to the matched comment. Tangled changes also occur when
the answerer does not look at their answer for a period of time while other users view the
answer and make comments on what, if any, changes they recommend. The answerer then
returns and decides to create one edit to address all the comments received. Similarly, a
tangled edit includes addressing a single comment but also making cosmetic changes, such
as variable renames in the code snippet or text reformulation in the answer. For example,
Edit21 6 of Answer22 5169321 addresses multiple issues that were brought up in the com-
ments such as answering clarification questions, or that the answer still does not solve the
question, while at the same time formatting the answer for visual clarity.

Results Table 5 shows the number of tangled pairs, both per tag and overall. As shown,
only 11% of the total confirmed pairs are tangled. These results coincide with our intuition
that since Stack Overflow snippets and answers are typically short, their edits would mostly
focus on one issue at a time. From our general observations, the main reason for tangled
changes are when the answerer includes additional refactorings to make the answer more
concise or readable while addressing the feedback in the comment.

RQ2: Our results confirm our intuition that the code changes in stack overflow comment-
edit pairs are rarely tangled. specifically, only 11% of the 1,482 confirmed comment-edit
pairs we analyzed contain tangled changes.

19https://stackoverflow.com/questions/5616616
20https://stackoverflow.com/revisions/5616616/5
21https://stackoverflow.com/revisions/5169321/6
22https://stackoverflow.com/questions/5169321

Page 19 of 35 68

https://stackoverflow.com/questions/5616616
https://stackoverflow.com/revisions/5616616/5
https://stackoverflow.com/revisions/5169321/6
https://stackoverflow.com/questions/5169321

Empir Software Eng (2021) 26: 68

Table 5 Number of useful pairs and tangled edits in the confirmed comment-edit pairs

Tag Confirmed Pairs Tangled Useful

Kappa Score Count (%) Kappa Score Count (%)

Java 305 0.79 41 (13%) 0.79 67 (22%)

JavaScript 307 0.65 41 (13%) 0.70 91 (30%)

Android 284 0.59 23 (8%) 0.81 71 (25%)

Python 292 0.61 29 (10%) 0.78 107 (37%)

Php 294 0.64 27 (9%) 0.62 60 (20%)

Overall 1,482 0.67 161 (11%) 0.74 396 (27%)

6 RQ3: Types of Changes in Comment-Edit Pairs

In RQ3, we look at the types of changes that occur in comment-edit pairs. Understanding
the types of changes helps determine what code maintenance changes, if any, the extracted
comment-edit pairs can be useful in. For example, let us assume that we find that the major-
ity of comment-edit pairs are simply questions where a commenter asks for a clarification
and the editor adds a comment in the code snippet or changes a variable name for clarity.
In this case, such pairs are very specific to the context of the question and cannot be used
in recommender systems. On the other hand, if we find that most of the comments point
out errors that the edits fix, then this data is specific to corrective maintenance/bug-fix data
sets, as opposed to perfective maintenance for example. Thus, by understanding the nature
of the comments, and accordingly the corresponding edits, we gain a deeper understanding
of the potential applications and implications of the extracted pairs.

Methods As mentioned in Section 2, Zhang et al. (2019a) previously categorized the types
of comments that exist on Stack Overflow. Through open-coding, they derived seven high-
level comment types (e.g., improvement, inquiry, praise) and 17 subtypes (e.g., support,
flaw, reference). Thus, for consistency, we opt for not re-inventing the wheel by performing
open coding and developing new categories ourselves; instead, we reuse their fine-grained
subtypes to label our data. Given that their types cover all comments on Stack Overflow,
the pairs we extract naturally fall under a subset of these types. This also means that some
of the types they have do not make sense in our context. For example, a comment praising
or supporting the answer will not likely end up causing an edit. In Table 6, we show the
subset of nine subtypes (referred to as category) that are applicable to our context. For
clarity, we also add an example of a real comment from a comment-edit pair that matches
this category, as well as any additional assumptions we made about the category in our
coding guidelines which may have not have been clear in the original publication. Given
these categories, we perform closed coding where the two authors independently label each
confirmed comment-edit pair and then discuss disagreements.

Results Our inter-rater agreement for the closed coding task, measured using Cohen’s
Kappa, ranges from 0.82 - 0.95 and is 0.88 overall. Table 7 shows the number of comment-
edit pairs in each category, per tag. For now, we focus on the All column which shows the
categories across all confirmed pairs in each tag (and overall in the last column). From
the overall numbers (which are also consistent with the individual tag numbers), the most

68 Page 20 of 35

Empir Software Eng (2021) 26: 68

Table 6 Categories used from Zhang et al. (2019a) to label confirmed comment-edit pairs. Note that the
listed Stack Overflow IDs are linkable to the answer the comment was addressed to

Category Description Example comment

Correction Provides code correction to 10994146: This gives an undefined variable

the answer error. To fix it, change ‘var dump($thing);

‘ to ‘var dump(\$thing);‘
Extension Extends the answer to other cases 514517: One more thing: if you want the range

by making the code more generic, to be inclusive, do >>>for code in range(ord

catching corner cases, etc. (‘a’), ord(‘z’)+1): print unichr(code)

Flaw Points out flaws or limitations. Com- 2061144: Don’t use query.getSingleResult()

ments that make small changes but do as an exception could be thrown if there is

not change the logic also fall here. e.g., not exactly one row returned - see http://java.

replacing a for loop with a for Each sun.com/javaee/5/docs/api/javax/persistence/

loop Query.html#getSingleResult()

Error Points out errors in the code. i.e., 39037928: I tried but it gives error ‘java.lang.

incorrect logic resulting in an error IllegalStateException: You need to use a Theme.

or exception AppCompat theme’ on setContentView(R.layout.

activity home screen);

Obsolete Points out obsolete APIs, libraries etc. 24964658: While this answer works and seems

correct, it was written in 2014 and is now outdated.

From Angular 1.4 there is a built in way to do it

by using $httpParamSerializer. Check the answers

below for an explanation and an example.

Disagree Disagrees with the answer by clarifying 40813524: But I really need to set the variable at

the needed requirements. i.e., the answer componentDidMount() because it’s an object that

does not actually answer the question depends on DOM elements

Question Asks clarification question about the 15976303: So then knownWordsArrayList = new

answer ArrayList<String>(h); leaves me with all the

new words?

Request Requests information that is outside the 40611808: path image is a string value.How to

initial question. e.g., follow up ques- set that string value to setBackgroundResourse()

tions or asking for an example

Solution Provides alternative solutions to the 55069962: You could even do something like

answer ‘td:is([data-test=“specific-location”], [data-

test=“specific-location1”]) span‘ to get

something a little more compact.

frequent type of comment-edit pairs is the Error category, followed by Request, and Cor-
rection. This is good news since the pairs of type Error and Correction could potentially
be used for automated bug-fix recommendations or other applications related to corrective
maintenance. We further examine the usefulness of these pairs in RQ4.

It is interesting to see that pairs of type Question (143 total pairs) are also frequent. As
shown in the example in Table 6, a comment of category Question asks clarifications about
the already posted solution, such as asking what a specific statement is doing, or why is there
a need to call a specified method call. The edit usually improves the code snippet to answer

Page 21 of 35 68

Empir Software Eng (2021) 26: 68

Ta
bl
e
7

N
um

be
r
of

to
ta
la
nd

us
ef
ul

pa
ir
s
pe
r
ca
te
go
ry

C
at
eg
or
y

Ja
va

Ja
va
Sc
ri
pt

A
nd
ro
id

Py
th
on

Ph
p

O
ve
ra
ll

A
ll

U
se
fu
l

A
ll

U
se
fu
l

A
ll

U
se
fu
l

A
ll

U
se
fu
l

A
ll

U
se
fu
l

A
ll

U
se
fu
l

E
rr
or

98
22

(2
2%

)
91

21
(2
3%

)
12
6

42
(3
3%

)
88

35
(4
0%

)
10
8

17
(1
6%

)
51
1

13
7
(2
7%

)

R
eq
ue
st

60
1
(2
%
)

53
1
(2
%
)

44
1
(2
%
)

34
0
(0
%
)

45
0
(0
%
)

23
6

3
(1
%
)

C
or
re
ct
io
n

23
9
(3
9%

)
47

34
(7
2%

)
26

17
(6
5%

)
52

43
(8
3%

)
51

30
(5
8%

)
19
9

13
3
(6
7%

)

D
is
ag
re
e

39
2
(5
%
)

31
1
(3
%
)

35
0
(0
%
)

42
0
(0
%
)

37
0
(0
%
)

18
4

3
(2
%
)

Q
ue
st
io
n

35
4
(1
1%

)
35

5
(1
4%

)
28

3
(1
1%

)
21

3
(1
4%

)
24

1
(4
%
)

14
3

16
(1
1%

)

Fl
aw

22
12

(5
5%

)
21

11
(5
2%

)
5

3
(6
0%

)
20

13
(6
5%

)
11

8
(7
3%

)
79

47
(5
9%

)

So
lu
tio

n
22

13
(5
9%

)
11

8
(7
3%

)
8

2
(2
5%

)
22

8
(3
6%

)
8

3
(3
8%

)
71

34
(4
8%

)

E
xt
en
si
on

3
3
(1
00
%
)

13
10

(7
7%

)
2

2
(1
00
%
)

9
2
(2
2%

)
2

0
(0
%
)

29
17

(5
9%

)

O
bs
ol
et
e

1
1
(1
00
%
)

2
0
(0
%
)

2
1
(5
0%

)
3

3
(1
00
%
)

1
1
(1
00
%
)

9
6
(6
7%

)

O
th
er

2
0
(0
%
)

3
0
(0
%
)

8
0
(0
%
)

1
0
(0
%
)

7
0
(0
%
)

21
0
(0
%
)

To
ta
l

30
5

67
(2
2%

)
30
7

91
(3
0%

)
28
4

71
(2
5%

)
29
2

10
7
(3
7%

)
29
4

60
(2
0%

)
1,
48
2

39
6
(2
7%

)

68 Page 22 of 35

Empir Software Eng (2021) 26: 68

that question and/or provides additional textual explanation. This is interesting, because
it conveys that users on Stack Overflow want more information regarding the answer in
order to have a deeper understanding of how the answer addresses the question. While
these comments are not useful by the definitions we use in this paper, since they are not
self explanatory, their relatively high edit response rate suggest that they result in a quality
enhancement of the answer and associated code snippet, in order to make the code more
self-explanatory or properly documented.

The number of pairs of type Extension and Obsolete are low. This is consistent with
Zhang et al. (2019a) findings where they find that only 0.8% of the comments they analyze
are of type extension and 1.0% are of type obsolete. However, it is interesting to note that
these types of pairs are related to perfective maintenance, which opens the door for new
types of code recommender systems.

RQ3: The most common categories for the extracted comment-edit pairs are Error,
followed by Request, and Correction.

7 RQ3: Usefulness of Comment-edit Pairs

So far, we have shown that the precision of the extracted pairs is high (i.e., the comment
is really related to the edit), the majority of the edits are not tangled, and that the types of
comments and changes are promising for various software engineering applications related
to code maintenance activities. However, it is still not clear if these pairs are actually useful
in the end. This is what we investigate in this last research question.

Methods As part of our labeling, we also record the usefulness of the 1,482 confirmed
pairs. As mentioned in the introduction, we consider a pair as useful if (1) the edit happens
to an existing code snippet in the answer and (2) if the comment describes this change in a
way that is understandable outside of the posted Stack Overflow question. The first criterion
stems from how code maintenance data sets are typically used. For example, the before
version of a bug-fix can be matched to existing code in a repository and the after version
is then recommended or automatically applied. Thus, the first criterion ensures that there
is a before version of a code snippet such that it can potentially be compared to existing
code. The second criterion focuses on the comment and ties to our motivation of providing
an explanation along with the recommended change. Instead of just notifying a developer
of a potential change to their code, it would be more useful to tell them why this change is
needed. This means that the comment must be understandable on its own without relying
on the original thread context. Again, the two authors independently label the usefulness of
the 1,482 confirmed pairs and discuss any disagreements.

Finally, to provide external validation for the pairs we mark as useful, we select a total of
15 comment-edit pairs and submit corresponding pull requests. For the selection of these 15
pairs, our goal was to include pairs from each analyzed SO tag and each pair category. At
the same time, we look for pairs that are simple enough for us to manually implement and
create a pull request. For example, some pairs identified detailed fixes that would require
in depth refactoring and design deliberations by the target repository maintainers. As such,
we selected simple comment-edit pairs, as we want to use these pull requests for additional
external validation and confidence, rather than a comprehensive proof of usability. Table 8

Page 23 of 35 68

Empir Software Eng (2021) 26: 68

Table 8 Categories and tags of the 15 comment-edit pairs used to make pull requests

Category Tag Total

Java JavaScript Android Python Php

Solution 2 1 0 0 1 4

Question 0 1 0 0 0 1

Extension 0 1 0 0 0 1

Flaw 1 1 0 1 2 5

Correction 0 0 2 1 0 3

Obsolete 0 0 0 1 0 1

Total 3 4 2 3 3 15

provides descriptive statistics of these 15 comment-edit pairs. We wrote a script23 that uses
the GitHub search API to find repositories that match the following criteria:

1. The repository’s main programming language matches that of the tag
2. The repository was active in the last 90 days (i.e., a pushed commit)
3. The repository has at least five stars
4. The repository has at least one closed pull request

These criteria help find active repositories with a higher likelihood of having our pull
requests reviewed. After finding these potential repositories, the script then searches each
file in these repositories to find exact code matches of the “before” version of the target
comment-edit pair. We manually check any identified files to make sure that we can propose
a change that is similar to the edit of the comment-edit pair. After finding a promising file,
we make a pull request that performs a similar change to that in the edit with the description
of the pull request being the exact comment, if possible, or a slightly paraphrased version
in order to make it more grammatically correct or understandable in a pull request con-
text. For example, on Answer24 52517618, we paraphrased the comment “On Java 7 you
can also use new String(bytes, StandardCharsets.UTF 8); which avoids having to catch
the UnsupportedEncodingException” that caused Edit 25 4 on the answer, to “Using new
String(bytes, StandardCharsets.UTF 8) avoids the possibility of throwing an Unsupporte-
dEncodingException.” on the description of the pull request made to Apache Beam.26. We
show the details of all the pull requests, including their categories, in Table 9. Our artifact
page (Online artifact page) also contains the details and links of all our submitted pull
requests.

Results Table 5 shows the descriptive statistics of our useful labeling. Our Cohen’s kappa
ranged from 0.62 - 0.81 across the tags, and is 0.74 across all pairs. Out of the 1,482 con-
firmed pairs, we find only 396 (27%) useful ones. We identify two main reasons for this low
percentage. The first is that in many cases, the edit adds a new code snippet. For example,
a comment points out an alternative way of accomplishing the task or an alternative API to

23https://github.com/ualberta-smr/QueryGitHub
24https://stackoverflow.com/questions/52517618
25https://stackoverflow.com/revisions/52517618/4
26https://github.com/apache/beam/pull/11017

68 Page 24 of 35

https://github.com/ualberta-smr/QueryGitHub
https://stackoverflow.com/questions/52517618
https://stackoverflow.com/revisions/52517618/4
https://github.com/apache/beam/pull/11017

Empir Software Eng (2021) 26: 68

use. Instead of updating the existing snippet, the edit adds an extra code snippet stating that
this is another option to use. In this case, there is no “before” version of this code snippet

Table 9 Details of submitted pull requests (PR)

)skroF,sratS(opeRtnemmoCdIrewsnAknilRPyrogetaC

Java

Solution 11017 52517618 On Java 7 you can also use
‘new String(bytes, Standard-
Charsets.UTF 8);‘ which avoids
having to catch the ‘Unsupporte-
dEncodingException‘

Apache Beam (4.2k, 2.7k)

Flaw 11941 32749983 You should (probably, almost)
always use a ‘StringBuilder‘ to
accumulate strings in a loop, to
avoid the performance cost of
repeatedly constructing strings.

Vaadin Framework (1.6k, 733)

Solution 5945 5553947 Possibly compare ‘”true”.equals
CaseIgnore(person array[7])‘
is case it could be ‘null‘, of
use ‘Boolean.parseBoolean
(person array[7])‘

Openhab1-addons (3.5k, 1.8k)

JavaScript

Question 500 3180655 The jQuery doc for ‘jQuery.data()‘
(http://api.jquery.com/jQuery.data/)
says this is a ”low-level method”
and that you should use ‘.data()‘
instead. Do you know what that
means and why?

Jeesite (7.5k, 5.9k)

Solution 18314 29842091 Why not using
preg replace directly?
(http://php.net/preg replace)

PrestaShop (5.1k, 3.8k)

Extension 27175 16578216 Don’t forget to include sup-
port for browsers that use ‘.con-
tentDocument‘ instead of ‘.con-
tentWindow.document‘

AMP (13.8k, 3.6k)

Flaw 617 41481803 ‘object.hasOwnProperty()‘ is
almost never needed in current JS
code. A ‘key in object‘ test suffices
just as well

KairosDB (1.6k, 329)

Android

Correction 8464 26933338 If you have the
WRITE EXTERNAL STORAGE
permission you don’t need
READ EXTERNAL STORAGE,
but yes, he does need
WRITE EXTERNAL STORAGE

NativeScript (19k, 1.4k)

Correction 1354 33366449 ‘TextUtils.isEmpty()‘ is better
than using a normal ‘equals()‘
since it will also perform a ‘null‘
check. This will prevent any
error in the future and is a good
practice.

Tinker (15.3k, 3.1k)

Page 25 of 35 68

Empir Software Eng (2021) 26: 68

Table 9 (continued)

)skroF,sratS(opeRtnemmoCdIrewsnAknilRPyrogetaC

Python

Obsolete 15 12509737 ‘ getslice ‘ is [deprecated
since 2.0]([link]) in favour of
‘ getitem ‘ with a ‘slice()‘
argument.

Learn Python3 Spider (4.6k, 1.4k)

Correction 2515 35560225 It is not necessary to call keys() in
the argument to choice. Iterating
over a dict will give you the keys.
‘a = random.choice(A)‘ is suffi-
cient (and I think nicer-looking).

nltk (9.4k, 2.4k)

Flaw 525 40372658 Some suggestions. Load ‘ker-
nel32‘ only once as a module
global. In ‘set‘, replace ‘attrib
ˆ4294967295‘ with ‘ attrib‘. In
‘get‘, replace ‘not not (attrs &
what)‘ with ‘bool(attrs & what)‘.

Anki (7.1k, 1.1k)

Php

Flaw 40 10341595 +1 would do the same. but
‘$word[0]‘ would make it even
more concise..

ShopXO (1.3k, 490)

Solution 3063 33191679 Side Node: IMHO using
‘PREG SET ORDER‘
(rather than the default
‘PREG PATTERN ORDER‘)
delivers an easier to process
result, cause you simple can
‘foreach’‘ the result Array
and use single dimensional
Access (‘[1], [2], [3]‘) to Access
the match Groups. Also with
named matchgroups having
‘match[”link”]‘ iseasiertoreadthan
‘matches[”link”] [1]‘ etc.

Fork CMS (1.1k, 282)

Flaw 2425 5013708 you should check for
‘$ SERVER[’HTTPS’]‘ to be set
before accessing it.

Web-frameworks (4.5k, 399)

For each PR, we show the answer and comment it is based on, the category this comment-edit pair belongs
to, the repo the PR was submitted to, as well as the actual PR link. Green rows indicate accepted/merged
PRs, red rows indicate rejected PRs, and non-highlighted rows are PRs with no response. Comments shown
in bold are those that required paraphrasing. The PR link, Answer Id, and Repo columns have links to their
respective web page

and thus, it will not satisfy our first criterion. The second common reason was that the com-
ment is too specific to the commenter’s context. For example, in Answer27 4605982, this
comment caused an edit: “layout height=“fill parent” in combination with layout below
on ListView and layout alignParentBottom on LinearLayout is correct and should work.”
However, the comment is too specific to what the original poster is asking for. Not every

27https://stackoverflow.com/questions/4605982

68 Page 26 of 35

https://stackoverflow.com/questions/4605982

Empir Software Eng (2021) 26: 68

developer will necessarily want to have that same layout. Thus, we mark that pair as not
useful since it does not make sense outside of the question context.

To better understand the characteristics of the useful pairs, we look deeper into the cat-
egory information in Table 7. The second column under every tag shows the number and
percentage of the confirmed pairs in the corresponding category that are marked as useful.
The results show that while pairs of type Error are the most frequent, only 27% of them are
useful. This is mostly due to the error being specific to the context of the post; for example,
reporting that the desired behaviour/functionality is not working correctly.

On the other hand, the Correction category shows both a high frequency and a high
percentage of usefulness (67%). While pairs of type Solution,Obsolete, Extension and Flaw
were not frequent, their usefulness was high at 48 - 67%. Their high usefulness suggest that
if these pairs are presented to a developer, it is likely the recommendation will be taken.

Not surprisingly, the usefulness of pairs of type Request, Disagree, and Question is quite
low (1 - 11%). Given that the nature of these types of pairs is inherently specific to the
post context, it is not surprising that they would not be useful in wider applications. These
results suggest that to increase the potential usefulness of comment-edit pairs, we may
need to devise additional techniques that can specifically identify comment-edit pairs in the
promising categories. We discuss this further in Section 8.

Table 9 shows that out of the 15 pull requests made to unique open source repositories
on GitHub, 10 requests have been accepted and merged into their respective repository, two
requests are still awaiting responses, and three requests were rejected. Of the 10 requests that
were accepted, five of the comments taken from Stack Overflow needed to be paraphrased.
As the table shows, we were able to merge contributions into popular repositories with
thousands of stars and forks, such as Apache Beam28 and NLTK29.

The categories of the accepted PRs were diverse including Flaw, Solution, Correction,
and Extension. Pairs of type Solution and Extension tend to fall under the category of pre-
ventative maintenance and these pull requests may serve as an indication of how developers
view preventative maintenance code improvements. Of the four pull requests that were of
type Solution, two of the pull requests were accepted and the other two were rejected.
One of these requests was rejected because a developer replied that the repository was no
longer maintained, while the other request was rejected because they thought that the the
alternate solution brought no significant difference to the code. The pull request related
to Extension was accepted. The pair categories Correction and Flaw belong to corrective
maintenance and have a total of seven out of eight pull requests accepted. This indicates
that the pairs retrieved from Stack Overflow have the same value as traditional bug-fix data
sets in terms of corrective maintenance. Although our PRs are clearly not a representative
sample, they provide some intuition regarding the potential usefulness and applications of
our comment-edit pairs.

We note that the pull request of type Question does not have an obvious relationship to
maintenance and is possibly information that is unique to Stack Overflow (repository code
is not typically updated because of an asked question). Unfortunately the pull request has
not been responded to yet and is neither accepted or rejected.

Finally, as a note in terms of tangledness of the identified 396 useful pairs, only 39 (10%)
of these were tangled. This is aligned with the overall low tangledness of edits on Stack
Overflow.

28https://beam.apache.org/
29https://www.nltk.org/

Page 27 of 35 68

https://beam.apache.org/
https://www.nltk.org/

Empir Software Eng (2021) 26: 68

RQ4: Out of 1,482 confirmed comment-edit pairs across the five tags, 396 (27%) were
potentially useful. The usefulness of comment-edit pairs varies by category and devising
automated techniques to find pairs in promising categories may increase the chances of
finding useful pairs. Additionally, to date, 10 out of the 15 pull requests we submitted to
further demonstrate usefulness were accepted.

8 Discussion

In this paper, we built tooling to identify comment-edit pairs on Stack Overflow. Our goal
was to investigate if these comment-edit pairs could potentially be used as an additional
source of data for code maintenance activities. One advantage of using Stack Overflow
comments is that they may provide a concise explanation for the observed change in the
edit. However, the results from RQ4 show that while we do find useful pairs, the percentage
of these pairs is low at 27%. We conclude that while Stack Overflow comment-edit pairs
look promising, further improvements to our automated extraction techniques are needed
to identify a larger number of useful comment-edit pairs for automated applications. Since
our work is the first to investigate this research direction, our tooling and empirical results
provide valuable insights for better leveraging Stack Overflow knowledge to build new data
sets. Moving forward, the goal would be to find more pairs that are useful in automated
applications related to code maintenance activities. In this section, we discuss our findings
and the opportunities and challenges for further extending this line of work.

8.1 Applications

Software engineering applications Recent work (Wong et al. 2019) already leverages
answer edits for creating data sets of code errors and corrections, but focuses only on syn-
tax errors that are found through compiling various versions of a snippet, and thus does not
try to associate reasons for the changes. As our results in RQ3 show, there are many cate-
gories of changes that occur in the comment-edit pairs we analyzed, ranging from bug fixes
to code style and generalizability improvements in the flaw and extensibility categories.

Our results in Table 7 show that the Error and Correction categories are amongst cat-
egories with the highest number of pairs. Both of these categories fall under corrective
maintenance. Automated techniques for bug detection, bug localization, and program repair
provide important corrective maintenance support for developers. Bug-fix data sets are often
used to build (Liu et al. 2013) or evaluate (Dallmeier and Zimmermann 2007a) these tech-
niques. Thus, the Error and Correction comment-edit pairs can be used to add more data to
these data sets.

Table 7 also shows that there are several pairs in the Flaw,Obsolete, Solution, and Exten-
sion categories, which fall under corrective or preventative maintenance respectively. In
total, from the 1,482 confirmed pairs, there are 188 (∼ 13%) pairs across these four cate-
gories. Interestingly, despite not being a high absolute number, these four categories were
amongst the highest percentage of Useful pairs (59%, 48%, 59%, and 67% respectively).
This opens the door for automated applications that recommend improvements to the code,
rather than only bug fixes.

Regardless of the specific type of application and code maintenance activity, the fact that
a Stack Overflow edit in our data set is accompanied by a corresponding comment means

68 Page 28 of 35

Empir Software Eng (2021) 26: 68

that an explanation can be provided to the developer about why a specific code snippet is
problematic or why an alternative method of solving something is recommended.

For example, in Answer30 26933338 from Android, the initial provided answer includes
a snippet of the manifest file that includes both WRITE EXTERNAL STORAGE and
READ EXTERNAL STORAGE. The snippet is then edited to remove the latter permission. If
such a removal is suggested to a developer, it will likely not make sense without a concrete
reason. The mined comment that is associated with the edit to this answer is “If you have the
WRITE EXTERNAL STORAGE permission you don’t need READ EXTERNAL STORAGE
[..]”. When suggesting a fix to this piece of code, providing this comment can help the
developer understand why the fix or suggestion is being made. We used this comment to
make one of the accepted pull requests to NativeScript in Table 9. Finally, our results show
that the mined comment-edit pairs rarely have multiple unrelated changes (i.e., tangled
changes). Thus, our work opens the door for more focused code maintenance data sets,
which may potentially work better for generating automated fix scripts (Gao et al. 2015).

Linked Stack Overflow Edit History Recently, Stack Overflow introduced a new feature
that shows a history symbol beside each question and answer. Clicking on this history
symbol shows the activity history of the post. Relating the comments on the post to the edits
in the history could be useful to help users understand why an edit was made. Thus, our
matching algorithm can also be applied in that context as future work.

8.2 Challenges and Opportunities

In the above, we discussed the potential applications of using the mined comment-edit pairs.
However, these do not come without challenges since the nature of Stack Overflow data is
different than what we traditionally see in version-control systems. In order to leverage this
data source, the ultimate goal is to (automatically) differentiate useful and unuseful pairs.
Such differentiation is difficult for multiple reasons. We discuss these reasons and potential
solutions and/or future work opportunities we perceive.

Non-code Comments Our extraction technique favors precision over recall. Given the
amount of answers, edits, and comments on Stack Overflow, we wanted to ensure that we
reduce false positives as much as possible. To do so, we relied on the simple heuristic of
focusing on comments that contain code, which allows more precise matching of comments
and edits. This came at the cost of a low recall, as shown in Section 3.3. Based on our
manual investigations on our ground truth data, we find that non-code comments, which are
comments that contain no code but contain textual descriptions that prompt the answer edit,
are one of the main reasons for our low recall (of which an example is also described in
Section 3.3). When considering only comments that contain code, we see that the overall
recall of the program rises to 46%, from the original 32%. One path that could incorpo-
rate these non-code comments may be the addition of natural language processing (NLP)
techniques that are able to match terminology in the comment and the edit and pair them
together. For example, one could generate a textual change summary (Cortés-Coy et al.
2014) to describe the edit and then match that summary to the comment, while taking into
account potential vocabulary mismatch (Ganguly et al. 2015). This could potentially enable
pairing the explanation in the comment with the changes introduced in the edit even though
the comment does not include a code term.

30https://stackoverflow.com/questions/26933338

Page 29 of 35 68

https://stackoverflow.com/questions/26933338

Empir Software Eng (2021) 26: 68

Conversations One challenge we came across during our manual validation is that there is
often a conversation occurring in the comments section. Thus, while many of the comments
we have analyzed are stand-alone (recall our second criterion for usefulness), many com-
ments would be difficult to understand without the context of the rest of the conversation.
Such comments would not be useful as explanations provided to users. The challenge here
is to automatically differentiate these two types of comments while extracting comment-edit
pairs. While this is a difficult problem, some ideas from the NLP domain may be potentially
useful. For example, some work looks at automatically inferring context in a sentence (Chan
and Franklin 2003). Such techniques can be used to check if the current comment refers
to something from the previous comment. Another simpler technique is to not report com-
ments that were posted within a specific time window (e.g., 30 seconds) from the previous
comment. This is based on our observation that often, a user posts a single big comment
split across multiple consecutive ones due to space limitation.

Filler Text Another challenge related to the mined comments is that some comments are
useful and provide a good explanation of the edit, but they contain “filler” text. This includes
tagging another participant in the conversation (e.g., a comment from Answer31

53216022: “@Lothar For case-insensitive comparison, use compar-
ing(Contact::getLastName, String.CASE INSENSITIVE
ORDER). For language-sensitive comparison, use e.g. comparing(Contact::
getLastName, Collator.getInstance(Locale.US))”) or thanking someone for their help (e.g.,
a comment from Answer32 44470955, “@binariedM thank but i cant make it work. The
console says: “Uncaught ReferenceError: Invalid left-hand side in assignment” in the
line of “this = x.concat...””). In our pull requests, we manually paraphrased comments
as needed. However, ideally, such filler text could be somehow automatically removed.
Techniques for doing so can be investigated as future work.

Added Code Many of the comment-edit pairs we found have helpful suggestions and edits,
but unfortunately, the edit is made as an added code snippet. This happens especially in the
context of the Solution category where the answerer typically adds the suggested alternative
solution as another code snippet. An example of this is found in Answer33 20051167, which
adds the alternative solution provided by the comment: “If you use substring, then use it
till the end: “0123456789 ”.indexOf(check) != -1 No need for matches :)”. These pairs are
valuable but the main challenge is that there is no “before” version, which is why we mark
them as not useful.

Answers may also contain multiple code snippets, for example, to separate steps to be
taken or to separate code that should go into multiple files or classes. In these cases, it is
not clear which code snippet is being addressed by the added code snippet. However, added
code snippets are typically accompanied by descriptive text, and utilizing these descriptions
may provide opportunity to solve this issue (e.g., looking for keywords like “an alternative
is”). Accounting for added code may be another opportunity to improve recall of existing
comment-edit pairs.

Incomplete Code Many code snippets on Stack Overflow do not include import statements
that are necessary to make them compilable or to help in resolving types. Resolving types

31https://stackoverflow.com/questions/53216022
32https://stackoverflow.com/questions/44470955
33https://stackoverflow.com/questions/20051167

68 Page 30 of 35

https://stackoverflow.com/questions/53216022
https://stackoverflow.com/questions/44470955
https://stackoverflow.com/questions/20051167

Empir Software Eng (2021) 26: 68

is necessary for many recommender systems to make use of the comment-edit pairs. This
problem has been discussed before in other contexts and there is existing work that tries
to infer types for Stack Overflow snippets (e.g., Subramanian et al. 2014b; Saifullah et
al. 2019). That said, one advantage of relying on version-control history, instead of Stack
Overflow, is the ability to find tests or containers to reproduce the problem (Tomassi et al.
2019; Dallmeier and Zimmermann 2007b; Just et al. 2014). While specific to Python, there
have been recent efforts that attempt to “dockerize” a given piece of code found on Stack
Overflow or in a GitHub gist (Horton and Parnin 2019). It would be interesting to see if such
efforts can be generalized to allow producing reproducible problems using our extracted
comment-edit pairs.

Pair Categories We manually categorized our mined pairs. Our results show that some cat-
egories have more potential for usefulness than others. Thus, a future opportunity could
be automatically categorizing pairs and only reporting pairs that fall in the promising cat-
egories. Since we share all our data, we foresee future research on designing machine
learning classifiers that can automatically assign a category based on specific features of the
comment and edit. While determining these features is not something we explicitly worked
on in the context of this work, potential features we foresee from our observations include
the size of the edit, the presence of certain keywords (e.g., does not work, error, exception
etc), and how many regions/blocks (i.e., text vs. code) have been changed in the edit.

9 Threats to Validity

As expected with any empirical study, there are several limitations and threats to the validity
of our results. We discuss them below.

Construct Validity Since we relied on manual validation to confirm the identified
comment-edit pairs, there is a risk that the comments and edits in the pairs we analyze are
not actually related. We mitigate this by defining what a positive label means and by having
two authors review the pairs and discuss disagreements. We also erred on the side of preci-
sion and confirmed matches only when we were sure. We share our exact labeling on our
artifact page to facilitate replication and further analysis.

Whether something is useful or not is mostly subjective. In addition to defining an
explicit coding guide and having the two authors independently decide on usefulness and
discuss disagreements, we also use external validation of usefulness by submitting pull
requests to open-source systems based on our data.

Internal Validity The regular expressions we used to identify code terms are taken from
Treude and Robillard (2016). We modified this list to account for the other languages we
analyze and based on experimenting with our ground truth. However, we cannot claim that
the set of regex patterns are complete. While our precision was high, additional regular
expressions may potentially catch more comment-edit pairs and improve recall.

External Validity A potential threat to the generalizability of our results is that we manually
analyze only 1,910 pairs. Even though the sample of 1,910 pairs is statistically representa-
tive of all detected pairs, the decision to limit the number of pairs to manually analyze was
based solely on the amount of labour involved. The total manual labour involved with the
current data is already around 129 hours (103 hours for the 1,910 comment-edit pairs and

Page 31 of 35 68

Empir Software Eng (2021) 26: 68

26 hours to create the ground truth data set), or the equivalent of 16 working days. Although
the authors spent time resolving conflicts and reviewing the analysis, there will always be
an element of human bias.

We also analyze only five Stack Overflow tags. While these are popular tags on Stack
Overflow and span four different programming languages, our results may not necessarily
generalize beyond that.

Another limitation relates to the pull requests made on open source GitHub repositories.
We make a small number of pull requests (15) which do not establish comprehensive usabil-
ity of these pairs. However, the goal of these pull requests was not to be comprehensive
but to provide some external validation and confidence in the application of the extracted
pairs. Although these pull requests provide this confidence, there is inherent bias due to the
methods we use to select pairs and find the potential repositories. Since we used exact code
matching in order to find potential repositories instead of a more thorough and precise code
parsing approach, we were limited to searching for simple and easily fixable code patterns.
Thus, we do not know how pull requests for more complicated changes might be received
by developers.

10 Conclusion

In this paper, we study comment-edit pairs extracted from Stack Overflow answers. We
implement a technique for identifying comments that resulted in edits to code blocks in
the answers. We run this technique on five popular Stack Overflow tags and share 248,399
resulting comment-edit pairs on our artifact page (Online artifact page). We then manually
validate a statistically representative sample of 1,910 randomly selected comment-edit pairs
and confirm 1,482 of them. We then categorize these 1,482 pairs and also determine their
usefulness and whether the edits are tangled.

We find that the edits are rarely tangled (only 11%) and that 27% of the confirmed pairs
are useful. Our results show that categories such as Correction, Extension, and Flaw are
particularly useful. Since we share our data set, future work may explore automatically
classifying comment-edit pairs such that only those from promising categories are reported.

We conclude that Stack Overflow is a promising additional source of information for
mining code maintenance data sets that can be used in various types of code recommenders
and software engineering applications. However, further work needs to be done to increase
the number of extracted useful pairs. We presented the current open challenges, such as
accounting for non-code comments and added code, as well as some ideas on how future
work may address these problems. We also showed that the type of comments and edits
we already find have been useful for getting pull requests merged in popular open-source
repositories. All our data and code are available online (Online artifact page). We hope that
this data along with the discussion we provide about future extensions and opportunities
encourages further research in this area.

Acknowledgments This research was undertaken thanks to funding from the Canada Research Chair pro-
gram and from the Natural Sciences and Engineering Research Council. We would also like to thank
Sebastian Baltes and Christoph Treude for their feedback regarding the ideas in this work.

68 Page 32 of 35

Empir Software Eng (2021) 26: 68

References

Adaji I, Vassileva J (2016) Modelling user collaboration in social networks using edits and comments. In:
Proceedings of the 2016 conference on user modeling adaptation and personalization, ser. UMAP ’16.
ACM, New York, pp 111–114. [Online]. Available: https://doi.org/10.1145/2930238.2930289

Amann S, Nadi S, Nguyen HA, Nguyen TN, Mezini M (2016) MUBench: A benchmark for API-misuse
detectors. In: 2016 IEEE/ACM 13th working conference on mining software repositories. IEEE, pp 464–
467

Amann S, Nguyen HA, Nadi S, Nguyen TN, Mezini M (2018) A systematic evaluation of static API-misuse
detectors. IEEE Trans Softw Eng

Bachmann A, Bird C, Rahman F, Devanbu P, Bernstein A (2010) The missing links: Bugs and bug-fix
commits. In: Proceedings of the Eighteenth ACM SIGSOFT international symposium on foundations of
software engineering, ser. FSE ’10. ACM, New York, pp 97–106. [Online]. Available: https://doi.org/10.
1145/1882291.1882308

Baltes S (2018) Edit and comment history of Stack Overflow threads. [Online]. Available: https://
empirical-software.engineering/blog/sotorrent-edithistory

Baltes S, Treude C, Diehl S (2018) SOTorrent: Studying the origin, evolution, and usage of Stack Overflow
code snippets. arXiv:1809.02814. [Online]. Available: http://arxiv.org/abs/1809.02814

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? An analysis of topics and
trends in Stack Overflow. Empir Softw Eng 19(3):619–654. [Online]. Available: https://doi.org/10.1007/
s10664-012-9231-y

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?: Bias
in bug-fix datasets. In: Proceedings of the 7th joint meeting of the european software engineering con-
ference and the ACM SIGSOFT symposium on the foundations of software engineering, ser. ESEC/FSE
’09. ACM, New York, pp 121–130. [Online]. Available: https://doi.org/10.1145/1595696.1595716

Bissyandé TF, Thung F, Wang S, Lo D, Jiang L, Ré veillère L (2013) Empirical evaluation of bug linking.
In: 2013 17th European conference on software maintenance and reengineering, pp 89–98

ChairNerd (2011) Fuzzywuzzy: Fuzzy string matching in Python. [Online]. Available: https://chairnerd.
seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-python/

Chan SWK, Franklin J (2003) Dynamic context generation for natural language understanding: A multi-
faceted knowledge approach. IEEE Trans Sys Man Cybern Part A Syst Hum 33(1):23–41

Cifuentes C, Hoermann C, Keynes N, Li L, Long S, Mealy E, Mounteney M, Scholz B (2009) BegBunch:
Benchmarking for C bug detection tools. In: Proceedings of the 2nd international workshop on defects
in large software systems: held in conjunction with the ACM SIGSOFT international symposium on
software testing and analysis, pp 16–20

Cortés-Coy LF, Linares-Vásquez M, Aponte J, Poshyvanyk D (2014) On automatically generating commit
messages via summarization of source code changes. In: 14th IEEE international working conference on
source code analysis and manipulation, pp 275–284

Dalip DH, Gonçalves MA, Cristo M, Calado P (2013) Exploiting user feedback to learn to rank answers in
Q&A forums: A case study with Stack Overflow. In: Proceedings of the 36th international ACM SIGIR
conference on research and development in information retrieval, ser. SIGIR ’13. ACM, New York.
[Online]. Available: https://doi.org/10.1145/2484028.2484072

Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceedings
of the Twenty-second IEEE/ACM international conference on automated software engineering, ser. ASE
’07. ACM, New York, pp 433–436. [Online]. Available: https://doi.org/10.1145/1321631.1321702

Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceedings
of the twenty-second IEEE/ACM international conference on Automated software engineering, pp 433–
436

Diamantopoulos T, Sifaki M-I, Symeonidis AL (2019) Towards mining answer edits to extract evolution
patterns in Stack Overflow. In: Proceedings of the 16th international conference on mining software
repositories, ser. MSR ’19. IEEE Press, Piscataway, pp 215–219. [Online]. Available: https://doi.org/10.
1109/MSR.2019.00043

Dit B, Holtzhauer A, Poshyvanyk D, Kagdi H (2013) A dataset from change history to support evaluation of
software maintenance tasks. In: 2013 10th working conference on mining software repositories. IEEE,
pp 131–134

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories. In: Proceedings of the 2013 international conference on software
engineering. IEEE Press, pp 422–431

Page 33 of 35 68

https://doi.org/10.1145/2930238.2930289
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882308
https://empirical-software.engineering/blog/sotorrent-edithistory
https://empirical-software.engineering/blog/sotorrent-edithistory
http://arxiv.org/abs/1809.02814
http://arxiv.org/abs/1809.02814
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1145/1595696.1595716
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-pyth on/
https://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-matching-in-pyth on/
https://doi.org/10.1145/2484028.2484072
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1109/MSR.2019.00043
https://doi.org/10.1109/MSR.2019.00043

Empir Software Eng (2021) 26: 68

Falleri J, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code
differencing. In: ACM/IEEE international conference on automated software engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014, pp 313–324. [Online]. Available: https://doi.org/10.1145/
2642937.2642982

Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng 25(5):675–
689

Ferenc R, Gyimesi P, Gyimesi G, Tóth Z, Gyimóthy T (2020) An automatically created novel bug dataset and
its validation in bug prediction. J Sys Softw 169:110691. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121220301436

Ganguly D, Roy D, Mitra M, Jones GJ (2015) Word embedding based generalized language model for
information retrieval. In: Proceedings of the 38th international ACM SIGIR conference on research and
development in information retrieval, pp 795–798

Gao Q, Zhang H, Wang J, Xiong Y, Zhang L, Mei H (2015) Fixing recurring crash bugs via analyzing Q&A
sites (t). In: 2015 30th IEEE/ACM international conference on automated software engineering. IEEE,
pp 307–318

Gazzola L, Micucci D, Mariani L (2019) Automatic software repair: a survey. IEEE Trans Softw Eng
45(1):34–67

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: How misclassification impacts bug prediction.
In: Proceedings of the 2013 international conference on software engineering, ser. ICSE ’13. IEEE Press,
Piscataway, pp 392–401. [Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486840

Herzig K, Zeller A (2013) The impact of tangled code changes. In: 2013 10th working conference on mining
software repositories. IEEE, pp 121–130

Herzig K, Just S, Zeller A (2016) The impact of tangled code changes on defect prediction models. Empir
Softw Eng 21(2):303–336. [Online]. Available: https://doi.org/10.1007/s10664-015-9376-6

Horton E, Parnin C (2019) Dockerizeme:, Automatic inference of environment dependencies for Python code
snippets. In: 41st IEEE/ACM international conference on software engineering, pp 328–338

Jin X, Servant F (2019) What edits are done on the highly answered questions in Stack Overflow?: An
empirical study. In: Proceedings of the 16th international conference on mining software repositories,
ser. MSR ’19. IEEE Press, Piscataway, pp 225–229. [Online]. Available: https://doi.org/10.1109/MSR.
2019.00045

Just R, Jalali D, Ernst MD (2014) Defects4J: A database of existing faults to enable controlled testing studies
for Java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
ser. ISSTA ’14. ACM, New York, pp 437–440. [Online]. Available: https://doi.org/10.1145/2610384.
2628055

Kim S, Zimmermann T, Pan K, Whitehead EJJr (2006) Automatic identification of bug-introducing changes.
In: 21st IEEE/ACM international conference on automated software engineering, pp 81–90

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys
Doklady 110(18):707–710. doklady Akademii Nauk SSSR, V163 No4, 845–848 (1965)

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M (2019) Pattern-based mining of opinions in Q&A web-
sites. In: Proceedings of the 41st international conference on software engineering, ser. ICSE ’19. IEEE
Press, Piscataway, pp 548–559. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00066

Liu C, Yang J, Tan L, Hafiz M (2013) r2fix: Automatically generating bug fixes from bug reports. In: 2013
IEEE Sixth international conference on software testing, verification and validation, pp 282–291

Liu X, Zhong H (2018) Mining stack overflow for program repair. In: 2018 IEEE 25th international
conference on software analysis evolution and reengineering, pp 118–129

Maalej W, Happel H-J (2010) Can development work describe itself? In: 2010 7th IEEE working conference
on mining software repositories. IEEE, pp 191–200

McHugh ML (2012) Interrater reliability:, The kappa statistic. Biochemia medica: Biochemia medica
22(3):276–282

Menzies T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B (2012) The promise repository of empirical
software engineering data

Nguyen AT, Nguyen TT, Nguyen HA, Nguyen TN (2012) Multi-layered approach for recovering links
between bug reports and fixes. In: Proceedings of the ACM SIGSOFT 20th international symposium
on the foundations of software engineering, ser. FSE ’12. ACM, New York, pp 63:1–63:11. [Online].
Available: https://doi.org/10.1145/2393596.2393671

Ohira M, Kashiwa Y, Yamatani Y, Yoshiyuki H, Maeda Y, Limsettho N, Fujino K, Hata H, Ihara A, Mat-
sumoto K (2015) A dataset of high impact bugs: Manually-classified issue reports. In: 2015 IEEE/ACM
12th working conference on mining software repositories. IEEE, pp 518–521

Online artifact page https://doi.org/10.5281/zenodo.4458586

68 Page 34 of 35

https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
http://www.sciencedirect.com/science/article/pii/S0164121220301436
http://www.sciencedirect.com/science/article/pii/S0164121220301436
http://dl.acm.org/citation.cfm?id=2486788.2486840
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1109/MSR.2019.00045
https://doi.org/10.1109/MSR.2019.00045
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1145/2393596.2393671
https://doi.org/10.5281/zenodo.4458586

Empir Software Eng (2021) 26: 68

Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M (2014) Mining Stack Overflow to turn the IDE
into a self-confident programming prompter. In: Proceedings of the 11th working conference on mining
software repositories, ser. MSR ’14. ACM, New York, pp 102–111. [Online]. Available: https://doi.org/
10.1145/2597073.2597077

Radu A, Nadi S (2019) A dataset of non-functional bugs. In: Proceedings of the 16th international conference
on mining software repositories, ser. MSR ’19. IEEE Press, Piscataway, pp 399–403. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00066

Ragkhitwetsagul C, Krinke J, Paixao M, Bianco G, Oliveto R (2019) Toxic code snippets on stack overflow.
IEEE Trans Softw Eng 47(3):560–581. https://doi.org/10.1109/TSE.2019.2900307

Rahman MM, Roy CK, Lo D (2019) Automatic query reformulation for code search using crowdsourced
knowledge. Empir Softw Eng 24(4):1869–1924

Rao S, III HD (2018) Learning to ask good questions: Ranking clarification questions using neural expected
value of perfect information. [Online]. Available: arXiv:1805.04655.

Rastkar S., Murphy GC, Murray G (2010) Summarizing software artifacts:, A case study of bug reports. In:
2010 ACM/IEEE 32nd international conference on software engineering, vol 1, pp 505–514

Saifullah CMK, Asaduzzaman M, Roy CK (2019) Learning from examples to find fully qualified names of
API elements in code snippets. In: 2019 34th IEEE/ACM international conference on automated software
engineering, pp 243–254

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: Proceedings of the 2005
international workshop on mining software repositories, ser. MSR ’05. ACM, New York, pp 1–5.
[Online]. Available: https://doi.org/10.1145/1082983.1083147

Soni A, Nadi S (2019) Analyzing comment-induced updates on stack overflow. In: Proceedings of the 16th
international conference on mining software repositories, ser. MSR ’19. IEEE Press, Piscataway, pp 220–
234. [Online]. Available: https://doi.org/10.1109/MSR.2019.00044

Subramanian S, Inozemtseva L, Holmes R (2014) Live API documentation. In: Proceedings of the 36th
international conference on software engineering, ser. ICSE ’14. ACM, NewYork, pp 643–652. [Online].
Available: https://doi.org/10.1145/2568225.2568313

Subramanian S, Inozemtseva L, Holmes R (2014) Live API documentation. In: Proceedings of the 36th
international conference on software engineering, pp 643–652

Swanson EB (1976) The dimensions of maintenance. In: Proceedings of the 2nd international conference on
Software engineering, pp 492–497

Thiselton E, Treude C (2019) Enhancing Python compiler error messages via Stack Overflow, [Online].
Available: arXiv:1906.11456

Tomassi DA, Dmeiri N, Wang Y, Bhowmick A, Liu Y-C, Devanbu PT, Vasilescu B, Rubio-González C
(2019) Bugswarm: Mining and continuously growing a dataset of reproducible failures and fixes. In:
2019 IEEE/ACM 41st international conference on software engineering. IEEE, pp 339–349

Treude C, Robillard MP (2016) Augmenting API documentation with insights from stack overflow. In: 2016
IEEE/ACM 38th international conference on software engineering, pp 392–403

Viera AJ, Garrett JM et al (2005) Understanding interobserver agreement: the kappa statistic. Fam med
37(5):360–363

Wang S, Chen T-HP, Hassan AE (2018) How do users revise answers on technical Q&A websites? A case
study on Stack Overflow. IEEE Trans Softw Eng PP:1–1

Wong AW, Salimi A, Chowdhury S, Hindle A (2019) Syntax and stack overflow: A methodology for extract-
ing a corpus of syntax errors and fixes. In: 2019 IEEE international conference on software maintenance
and evolution, pp 318–322

Zhang H, Wang S, Chen T, Hassan AE (2019a) Reading answers on Stack overflow: not enough!. IEEE
Trans Softw Eng 1–1

Zhang H, Wang S, Chen TP, Zou Y, Hassan AE (2019b) An empirical study of obsolete answers on stack
overflow. IEEE Trans Softw Eng 47(4):850–862. https://doi.org/10.1109/TSE.2019.2906315

Zhang T, Yang D, Lopes C, Kirnt M (2019c) Analyzing and supporting adaptation of online code examples.
In: Proceedings of the 41st international conference on software engineering, ser. ICSE ’19. IEEE Press,
Piscataway, pp 316–327. [Online]. Available: https://doi.org/10.1109/ICSE.2019.00046

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 35 of 35 68

https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1109/MSR.2019.00066
https://doi.org/10.1109/TSE.2019.2900307
http://arxiv.org/abs/1805.04655
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1109/MSR.2019.00044
https://doi.org/10.1145/2568225.2568313
http://arxiv.org/abs/1906.11456
https://doi.org/10.1109/TSE.2019.2906315
https://doi.org/10.1109/ICSE.2019.00046

	On using Stack Overflow comment-edit pairs to recommend code maintenance changes
	Abstract
	Introduction
	Related Work
	Existing code maintenance data sets
	Summary

	Stack Overflow Studies
	Related Work we Rely on
	SO for Error Fixing
	Collaboration Characteristics on SO
	Answer Quality
	Clarification Comments
	Summary

	Mapping Comments to Edits
	Ground truth creation
	Automatically matching comments and edits
	Algorithm Overview
	Data Preparation
	Algorithm Details

	Comparison with ground truth

	RQ1: Precision of Comment-edit Pairs
	Methods
	Results

	RQ2: Tangled Changes
	Methods
	Results

	RQ3: Types of Changes in Comment-Edit Pairs
	Methods
	Results

	RQ3: Usefulness of Comment-edit Pairs
	Methods
	Results

	Discussion
	Applications
	Software engineering applications
	Linked Stack Overflow Edit History

	Challenges and Opportunities
	Non-code Comments
	Conversations
	Filler Text
	Added Code
	Incomplete Code
	Pair Categories

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	References

