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Abstract
Self-healing is becoming an essential feature of Cyber-Physical Systems (CPSs). CPSs
with this feature are named Self-Healing CPSs (SH-CPSs). SH-CPSs detect and recover
from errors caused by hardware or software faults at runtime and handle uncertainties
arising from their interactions with environments. Therefore, it is critical to test if SH-
CPSs can still behave as expected under uncertainties. By testing an SH-CPS in various
conditions and learning from testing results, reinforcement learning algorithms can
gradually optimize their testing policies and apply the policies to detect failures, i.e.,
cases that the SH-CPS fails to behave as expected. However, there is insufficient evidence
to know which reinforcement learning algorithms perform the best in terms of testing SH-
CPSs behaviors including their self-healing behaviors under uncertainties. To this end, we
conducted an empirical study to evaluate the performance of 14 combinations of rein-
forcement learning algorithms, with two value function learning based methods for
operation invocations and seven policy optimization based algorithms for introducing
uncertainties. Experimental results reveal that the 14 combinations of the algorithms
achieved similar coverage of system states and transitions, and the combination of Q-
learning and Uncertainty Policy Optimization (UPO) detected the most failures among
the 14 combinations. On average, the Q-Learning and UPO combination managed to
discover two times more failures than the others. Meanwhile, the combination took 52%
less time to find a failure. Regarding scalability, the time and space costs of the value
function learning based methods grow, as the number of states and transitions of the
system under test increases. In contrast, increasing the system’s complexity has little
impact on policy optimization based algorithms.
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1 Introduction

As an essential feature of Cyber-Physical Systems (CPSs), self-healing enables a CPS to
autonomously detect and recover from errors caused by software or hardware faults at runtime.
We refer to this kind of CPSs as Self-Healing CPSs (SH-CPSs). Besides recovery, SH-CPSs
have to address various uncertainties, which mean uncertain values that may affect behaviors
of an SH-CPS during execution, including measurement errors from sensors and actuation
deviations from actuators. In reality, uncertainties are uncontrollable and exact values of errors
are unknown for a given interaction between an SH-CPS and its environment. To assess the
reliability of SH-CPSs, we would like to test if an SH-CPS can still behave as expected under
uncertainties, with the range of each uncertainty given. As SH-CPSs have two kinds of
behaviors (i.e., functional behaviors for fulfilling business requirements and self-healing
behaviors for handling faults (Ma et al. 2019a)) both affected by uncertainties, we aim to test
both kinds of behaviors of SH-CPSs under uncertainties.

To solve the testing problem, previously, we proposed a fragility-oriented approach (Ma
et al. 2019b). In this approach, we evaluate how likely the system will fail in a given state,
defined as fragility, and use the fragility as a heuristic to find the optimal testing policies for
detecting failures, i.e., unexpected behaviors. Here, we need to find two policies. The first
policy is used to decide how to exercise the SH-CPS by invoking its testing interfaces.
Meanwhile, another policy is used to determine the value of each uncertainty that affects a
measurement or actuation when an SH-CPS uses a sensor or actuator to monitor or change its
environment. The value is then passed to simulators of sensors or actuators to replicate the
uncertainty’s effect. In our previous work (Ma et al. 2019b), reinforcement learning has
demonstrated its effectiveness in learning these two policies. Compared with random testing
and a coverage-oriented testing approach, the fragility-oriented approach with reinforcement
learning discovered significantly more failures. However, as several reinforcement learning
algorithms are available (Arulkumaran et al. 2017), there is no sufficient evidence showing
which reinforcement learning algorithms are the best to be used for testing SH-CPS under
uncertainties.

To this end, we conducted this empirical study, in which the performance of 14 combina-
tions of various reinforcement learning algorithms was evaluated together with the fragility-
oriented approach for testing six SH-CPSs. As aforementioned, to detect failures, the algo-
rithms need to learn the optimal policy for invoking testing interfaces (task 1) and learn the
best strategy to choose uncertainty values (task 2). As these two tasks are different, we applied
two sets of algorithms to perform them. Specifically, we applied two value function learning
based algorithms, Action-Reward-State-Action (SARSA) (Sutton and Barto 1998) and Q-
learning (Sutton and Barto 1998), for finding the policy of invoking testing interfaces, and
seven policy optimization based algorithms, Asynchronous Advantage Actor-Critic (A3C)
(Mnih et al. 2016), Actor-Critic method with Experience Replay (ACER) (Wang et al. 2016),
Proximal Policy Optimization (PPO) (Schulman et al. 2017), Trust Region Policy Optimiza-
tion (TRPO) (Schulman et al. 2015), Actor-Critic method using Kronecker-factored Trust
Region (ACKTR) (Wu et al. 2017), Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al. 2015), and Uncertainty Policy Optimization (UPO) (Ma et al. 2019b), for learning the
policy of selecting values for uncertainties.

Results of our empirical study reveal that Q-learning + UPO was the optimal combination
that discovered the most failures in the six SH-CPSs under uncertainties. On average, the
combination found two times more failures and took 52% less time to find a failure than the
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others. Regarding the scalability of the applied algorithms, as the numbers of states and
transitions of the systems under test increased, the time and space costs of the value function
learning based algorithms (SARSA and Q-learning) grew as well, as they had to save values of
each state and transition and choose the optimal action based on the values. In contrast, the
policy optimization based algorithms were rarely affected by varying complexities of the
systems, as they used artificial neural networks to select actions and estimate the values of
states and transitions.

The remainder of this paper is organized as follows. Section 2 provides background
information, followed by the experiment design in Section 3. Section 4 and Section 5 present
the experiment execution and results, with a discussion about the results and alternative
approaches given in Section 6. Section 7 analyzes threats to validity. After a discussion about
related work in Section 8, Section 9 concludes the paper.

2 Background

This section briefly introduces the test model used to capture components, expected behaviors,
and uncertainties of the SH-CPS under test in Section 2.1. Section 2.2 explains how to test the
SH-CPS against a test model. The problem is formulated in Section 2.3, and Section 2.4 shows
the reinforcement learning algorithms that can be used to solve the testing problem. In this
section, key concepts related to testing and reinforcement learning are italicized.

2.1 Uncertainty-Wise Executable Test Model

To test SH-CPSs under uncertainty, in our previous work (Ma et al. 2019a), we have proposed
the Executable Model-Based Testing approach (EMBT). In this approach, an executable test
model is used to capture components, uncertainties, and expected behaviors of an SH-CPS
under test. This section will use an example of an autonomous Copter system to introduce the
test model, a simplified which is given in Fig. 1.

An executable test model consists of a collection of UML1 class diagrams and state
machines. The class diagrams capture components of the SH-CPS under test as UML classes.
The components’ state variables that are accessible via testing interfaces are specified as
properties of the classes and the testing interfaces for controlling or monitoring the components
are defined as operations. For example, the Copter has a NavigationUnit and a GPS, and they
are specified as UML classes (Fig. 1a). The properties of the NavigationUnit capture its state
variables, like “velocity” and “height”, that can be queried by the testing interface status().
Besides status(), the NavigationUnit provides several interfaces used to control the flight,
including throttle(), pitch(), arm(), and land(). They are all specified as operations of the
NavigationUnit. When an SH-CPS uses sensors and actuators to monitor and change its
environment, the measurement and actuation performed by the sensors and actuators are
affected by uncertainties. Such uncertainties are specified as stereotyped2 properties, with their
ranges specified as stereotype attributes. For instance, the measurement error of “velocity”

1 UML: Unified Modeling Language (https://www.omg.org/spec/UML/)
2 Stereotype: it is an extension mechanism provided by UML. We defined a set of stereotypes, also called UML
profiles, to extend UML class diagram and state machine to specify components, uncertainties, and expected
behaviors of the SH-CPS under test.
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measured by GPS is an uncertainty. It is specified as a property of the GPS class, “vError”, and
its range is specified by the stereotype attributes: “min” and “max”. Note that as the probability
distributions of the uncertainty may not be known, our testing approach does not test SH-CPSs
with uncertainties sampled from distributions. Instead, it applies effective algorithms to find
the values of uncertainties that can prohibit a system from behaving normally. Therefore, only
the valid range of each uncertainty is defined in the test model.

Expected behaviors of each component are specified as UML state machines. A state in a
state machine is defined together with a state invariant, which is an OCL3 constraint of state
variables. By evaluating the invariant, with the variables’ values accessed from the system
under test, we can check if the invariant is satisfied when a component is supposed to be in a
given state. For example, Fig. 1b presents two expected behaviors of the NavigationUnit. The
first behavior specifies how the NavigationUnit controls a flight in response to invocations of
its operations. For example, the Copter starts to take off when throttle() is invoked with its
parameter “t” above 1500. Normally, the NavigationUnit employs the GPS to monitor the
flight. When the GPS loses its signal and fails to measure the Copter’s position and velocity, a
self-healing behavior (i.e., an adaptive control algorithm) will detect the incorrect measure-
ment, identify the cause (i.e., GPS fault) and switch to other sensors4 until the GPS outage is
over. During this period, the self-healing behavior controls the Copter’s movement properly to
avoid it crashing on the ground. The second state machine in Fig. 1b specifies this self-healing
behavior. The state invariant of “Fallback” requires that the Copter should be above the
ground, i.e., “height > 0”, when the behavior takes effect.

Because the self-healing behavior is internal, it is controlled by the NavigationUnit, instead
of external instructions. Consequently, it needs a fault injection operation (e.g.,

3 OCL: Object Constraint Language. https://www.omg.org/spec/OCL/
4 Other sensors include barometer, accelerometer and gyroscope. Limited by the space, they are not shown in
Fig. 1.

Fig. 1 Simplified Test Model of a Copter System. (a) System Components, (b) Functional and Self-healing
behaviors of Navigation Unit, (c) Functional behavior of GPS
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stopGPSSignal() defined in the GPS class) to trigger such behavior. We also use UML state
machines to specify when a fault can be injected and how it will affect the state of a
corresponding component, with the stereotypes of «Fault» and «Error» provided by our
modeling framework (Ma et al. 2019b). For instance, Fig. 1c presents the behavior of GPS.
Initially, GPS is in the “Normal” state. Then, stopGPSSignal() can be invoked, and it will
trigger GPS switching to the “Signal Lost” state, in which the GPS will stop measuring
position and velocity to mimic the fault of losing signal from GPS. After 10 s, GPS will switch
back to the “Normal” state and start measuring again. The state machine tells us that this is a
transient fault. In contrast, a permanent fault will keep a component in an error state. Based on
the UML state machines, an algorithm can inject the fault in various conditions and learn when
a fault should be injected to reveal an unexpected behavior.

In summary, a test model captures 1) components, 2) properties, operations, and expected
behaviors of each component, and 3) uncertainties that affect the behaviors and ranges of the
uncertainties, for an SH-CPS. We aim to test if the SH-CPS behaves consistently with the test
model under uncertainties. Note that the purpose of this testing is to detect failures of SH-CPSs
under uncertainties. A failure should be differentiated from a fault that is to be healed by self-
healing behaviors. The failure that is to be observed by testing is an unexpected behavior,
representing a case where an SH-CPS fails to behave consistently with its test model. In
contrast, the fault that is to be handled by self-healing behaviors should have been identified at
design time, and self-healing behaviors have been implemented to detect errors, identify the
faults causing the errors, and apply proper adaptations to recover from the errors. For example,
the self-healing behavior of the NavigationUnit is designed to detect incorrect GPS measure-
ment (error), caused by the GPS signal loss (fault). If the system fails to detect the error during
testing, a failure (unexpected behavior) can be observed.

2.2 Uncertainty-Wise Executable Model-Based Testing

To efficiently test SH-CPSs, we proposed an executable model-based testing approach. In this
approach, an SH-CPS is tested against a test model, by executing the system and the model
together, sending them the same testing stimuli (e.g., operation invocations) and comparing
their consequent states. To realize the approach, we have developed a testing framework. In
this subsection, we briefly introduce the theoretical foundations of the executable model-based
testing approach in Section 2.2.1 and then present the testing framework in Section 2.2.2.
More details about the theoretical foundations and implementation can be found in our
previous work (Ma et al. 2019a).

2.2.1 Theoretical Foundations

There are three theoretical foundations underlying this executable model-based testing
approach.

First, the standard of Semantics of a Foundational Subset for Executable UML Models
(fUML) (OMG 2016), Precise Semantics of UML State Machines (PSSM) (OMG 2017), and
our extensions (Ma et al. 2019a) provide precise execution semantics of UML model elements
that are used to specify a test model. The semantics enables the test model to be executed in a
deterministic manner.

Second, the Object Constraint Language (OCL) (OMG 2006) standard gives us a standard
way to specify constraints that an SH-CPS has to satisfy during execution. As explained in the
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previous section, each state in a test model is defined together with a state invariant, i.e., a
constraint on the values of state variables in OCL. By evaluating the invariant with actual
values of the state variables obtained from the system under test, we can rigorously check if the
system behaves as expected in a given state.

Third, the Functional Mockup Interface (FMI) standard has defined a way to co-execute
hybrid models. Based on the standard, we have devised a co-execution algorithm and
implemented a testing framework (Ma et al. 2019a) to enable a test model to be executed
together with an SH-CPS, even though the test model and components of the SH-CPS are
implemented with diverse modeling paradigms.

These three theoretical foundations enable us to co-execute the test model and SH-CPS in a
deterministic manner, and also allow us to rigorously check if the system behave consistently
with the model.

2.2.2 Implementation (TM-Executor)

To realize the executable model-based testing, we have developed a testing framework, TM-
Executor. Figure 2 presents an overview of the framework. As shown in the figure, a test
model is executed by an Execution Engine, together with the SH-CPS under test. To drive the
execution under uncertainties, a Test Driver has to invoke operations on the system and the
model to control their behaviors. Meanwhile, an Uncertainty Introducer needs to introduce
uncertainties in the environment to replicate the effects of measurement errors and actuation
deviations via simulators of sensors and actuators. The two parallel processes determine how
an SH-CPS is tested under uncertainties.

For operation invocations, the Test Driver takes the current active state and its outgoing
transitions as input and outputs an operation invocation that is to be performed by the
Execution Engine to make the SH-CPS and test model switch to a consequent state. The
operation invocation is defined as follows:

Definition 1. An operation invocation is a combination of an operation and its input
parameter values that are used to call the operation and trigger a transition defined in a
test model. For instance, when the active states of the NavigationUnit and GPS are (“Idle”,

Fig. 2 Overview of the TM-Executor Testing Framework
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“Checking GPS”, “Normal”) as shown in Fig. 1, the Test Driver needs to choose either to
invoke pitch() to let the NavigationUnit switch to state “Forward” or “Backward”, or to call
stopGPSSignal() to inject a GPS fault. When an operation is selected, and an operation
invocation is generated by the Test Driver, the Execution Engine will perform the invocation
to trigger an outgoing transition in the test model. Meanwhile, the Execution Engine invokes
the testing interface represented by the operation with the same input parameter values, to
make the system enter the target state of the outgoing transition as well. To check if the
consequent states of the SH-CPS and test model are the same, the Execution Engine obtains
state variables’ values from the SH-CPS via testing interfaces, and passes the values to a
Constraint Checker5 to evaluate the invariant of the target state. If the invariant is not satisfied,
it means that the SH-CPS failed to behave consistently with the test model, and thus a failure is
revealed. Otherwise, the Test Driver will keep on generating operation invocations to drive the
execution until a terminal state is reached.

On the other hand, the Uncertainty Introducer needs to select an uncertainty value for each
uncertainty and each measurement or actuation that the uncertainty may take effect. The
definition of uncertainty value is given below:

Definition 2. An uncertainty value is an exact value of a measurement error or actuation
deviation.

The uncertainty value is used to modify measurements performed by the sensors and actions
performed by actuators to simulate the effect of uncertainties. For example, an uncertainty
value is chosen for the measurement error of GPS, “vError” (shown in Fig. 1a), for each
velocity measured by the GPS. By adding the measurement error (“vError”) to the true value
of the velocity, derived from a simulation model, we can replicate the effect of the uncertainty,
and test if the system will violate any invariants with the selected measurement errors.

With the help of TM-Executor, we can execute an SH-CPS together with its test model, and
check if they are behaving consistently under uncertainties, given the ranges of uncertainties.
The remaining problem is how to efficiently explore various sequences of operation invoca-
tions and uncertainty values to find the ones that can reveal a failure. In the next section, we
will see how reinforcement learning can be used to solve this problem.

2.3 Problem Formulation

As explained in the previous section, testing an SH-CPS under uncertainties involves two
parallel processes: 1) invoking operations on the system to explore its behaviors and 2)
introducing uncertainties in the environment to simulate the effects of measurement errors
and actuation deviations. The two processes are independent from each other, since in the real-
world the uncertainties keep changing, independent of operation invocations performed on the
system.

To find a sequence of operation invocations, Si, and a sequence of uncertainty values, Su,
that can work together to make an SH-CPS violate an invariant, we can either find them
concurrently or find them sequentially, i.e., find a sequence of operation invocations first and
then find uncertainty values that make the SH-CPS violate an invariant during handling the

5 DresdenOCL (https://github.com/dresden-ocl/standalone) is used in TM-Executor to evaluate OCL constraints.
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operation invocations. In case they are to be found concurrently, Si and Su are to be found from
O ∗U candidate solutions, where O is the number of all possible sequences of operation
invocations and U is the number of all possible sequences of uncertainty values. Alternatively,
if we find them sequentially and Si is found as the nth best solution, with uncertainty values
only uniformly sampled from their ranges, then Su can be found with the top n best sequences
of operation invocations. Consequently, Si and Su only need to be found from O + n ∗U
candidate solutions. Under the assumption that Si can still lead to a high chance of detecting a
failure when uncertainty values are uniformly sampled, the “n” will be small, and thus O + n ∗
U will be much less than O ∗U. Therefore, we chose to solve the testing problem by
sequentially resolving two tasks:

Task 1 Given a test model, find the optimal sequence of operation invocations to
maximize the chance of detecting failures, with uncertainties uniformly sampled from
their ranges
Task 2 Given a test model and a sequence of operation invocations, find the sequence of
uncertainty values that makes the SH-CPS under test violate an invariant during handling
the operation invocations

Using the terms from reinforcement learning, the two tasks can be rephrased as finding the
optimal policy of choosing actions (i.e., operation invocations or uncertainty values) for an
agent (i.e., Test Driver or Uncertainty Introducer) to maximize a long-term reward (i.e.,
fragility that indicates the chance to detect a failure). Formally, the fragility is defined as
follows.

Definition 3. Fragility is defined as a distance that indicates how likely a state invariant is
to be violated:

F stð Þ ¼ 1−dis :ot;Vð Þ ð1Þ
where ot is a state invariant, i.e., a constraint on the values of a set of state variables in OCL
(Section 2.1), V is the values of state variables, dis(¬ot, V) is a distance function that returns a
value between 0 and 1 indicating how close the constraint ¬ot is to be satisfied by V. The
distance functions for all types of OCL constraints can be found in (Ali et al. 2013).

Take the Copter shown in Fig. 1 as an example. Assume the Copter is in the “Fallback”
state. Its state invariant is “height > 0”, where height is a state variable, representing the
distance between the Copter and ground. This invariant requires that height must be larger than
zero to avoid crashing on the ground (i.e., “height = 0”means crashing). If height equals to 10,
the fragility of the Copter equals to:1−dis : height > 0ð Þ½ � ¼ 1− 10

10þ1 ¼ 0:09, according to the

distance function given in (Ali et al. 2013). If the height is reduced to 1, then the fragility will
be increased to 0.5, indicating the Copter is closer to crash on the ground. When height is
reduced to zero, and the invariant is violated, the fragility is increased to one, its maximum
value.

In the context of testing, the purpose of the agents is to discover failures, and thus they are
interested in finding actions that can lead to a violation of an invariant, i.e., making fragility
equal to 1, rather than increasing the sum of fragilities. For instance, one sequence of actions
makes an SH-CPS go through three states: s1, s2, and s3, with their fragilities being 0.0, 0.0,
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and 0.9, respectively. Another sequence leads to states s
0
1, s

0
2, s

0
3, s

0
4, and s

0
5 with their fragilities

being 0.1, 0.2, 0.1, 0.3, and 0.3, respectively. Though the later sequence of actions obtains a
higher sum of fragilities, it is less likely to detect a failure than the first sequence. Therefore,
we adapt the objective of reinforcement learning from maximizing cumulative rewards to
maximizing a future reward, i.e., increasing the maximum fragility that can be reached in the
future, as defined below:

where π denotes a policy used to choose actions, which can be either operation invocations or
uncertainty values; means the expected value when π is used to select actions; γ is a
discount factor, between 0 and 1. It determines the importance of future fragilities. If γ equals
to 1, the fragility that can be reached in the future is considered equally important as the recent
ones. On the contrary, if γ is 0, the algorithms will consider only the next fragility after taking a
selected action. Based on the adapted objective, we also need to update two value functions
that are broadly used by reinforcement learning algorithms, as discussed below.

Definition 4. State value function represents the highest discounted fragility that can be
reached, starting from a given state s∗ and thereafter following policy π:

where denotes the expected value, γ is the discount factor, F(st + k) represents the
fragility, and π is the policy of selecting actions. at + k~π means choosing action, at + k, by
following the policy π.

Definition 5. Action value function, also called Q function, specifies the Q value — the
highest discounted fragility that can be obtained, when taking action a∗ in state s∗ and
then following policy π:

Based on the adapted objective, we can apply reinforcement learning algorithms to address the
two tasks sequentially. For Task 1, an algorithm takes the current active state and its outgoing
transitions as inputs. As a state only has finite outgoing transitions, the input space of the
algorithm is finite and discrete. The output of the algorithm is one of the outgoing transitions.
A test data generator, EsOCL (Ali et al. 2013), is used to generate an operation invocation
(including an operation and valid inputs of the operation) to activate the trigger specified on the
transition. Consequently, the algorithm only needs to choose one of the outgoing transitions as
output, and thus its output space is also discrete. After a number of episodes,6 the sequence of
operation invocations that leads to the highest fragility is chosen to be the optimal one. It is
used in Task 2 to find the uncertainty values that can reveal a system failure. For the algorithms

6 An episode is to execute an SH-CPS from an initial state to a final state once.

(2)

(4)

(3)

(2021) 26:Empir Software Eng 54 Page 9 of 54 54



used to address Task 2, their inputs are the ranges of uncertainty values and the state of the
SH-CPS under test, reified as state variables’ values of the system, like the velocity and
position of the Copter. The output of the algorithm is an uncertainty value for each uncertainty.
As the state variables’ values and uncertainty values are continuous, both input and output
spaces of the algorithm are continuous. As the two tasks have different characteristics, they
pose different requirements for reinforcement learning algorithms. The following section
presents the state-of-the-art algorithms for solving the tasks (Table 1).

2.4 Reinforcement learning algorithms

In general, reinforcement learning algorithms can be classified into value function learning
based approaches and policy optimization based approaches (Arulkumaran et al. 2017). Based
on these two categories and more detailed subcategories proposed in literature reviews (Duan
et al. 2016; Arulkumaran et al. 2017; Kiumarsi et al. 2017) we selected a benchmark
reinforcement learning algorithm for each subcategory, summarized in Tables 2 and 1. More
details are given in the following subsections.

2.4.1 Value function learning methods

The essence of value function based reinforcement learning algorithms is temporal difference
learning, that is, to reduce the difference between the Q value estimated at time step t and theQ
value estimated for the next time step t + 1. The difference is also called temporal difference
error. When the error is reduced to zero for all state-action pairs, the Q function is learned. By
selecting the action with the highest Q value, we can obtain the optimal policy.

Table 1 Policy Optimization Based Reinforcement Learning Algorithms*

Algorithm Policy
Evaluation

Gradient Used to Update Policy Method to Reuse Samples

A3C Aπ(st,at) ∇θ logπθ(at|st) ∙Aπ(st,at) N/A
ACKTR ∇K−FAC

θ logπθ at jstð Þ � Aπ st ; atð Þ
DDPG Qπ(st,at) ∇θ logπθ(at|st) ∙Qπ(st,at)
TRPO ∇con

θ logπθ atð jstÞ � Qπ stð ; atÞ,
subject to DKL(πold|πθ)<δ

Important sampling

PPO Aπ(st,at) ∇θlogπθ atð jstÞ � Aclip
π stð ; atÞ Clipped important sampling

ACER min{c,wt}∙∇θlogπθ(at|st)∙[QRet(st,at)−Vπ(st)]+Corrbias,
subject to DKL(πavg|πθ)<δ

Truncated important
sampling with bias
correction

UPO N/A ∇con
θ logπθ atð jstÞ � Qbest stð ; atÞ N/A

* Policy optimization based algorithms maintain a policy network (an artificial neural network) to select actions.
To make the policy network converge to the optimal policy, the algorithms 1) collect samples of (state, action,
reward) by following the policy network, 2) optionally use the samples to evaluate the current policy, and 3)
optimize the policy network based on the samples or evaluation. Aπ(st, at) is the advantage function; πθ(at| st) is a
policy controlled by parameters θ; ∇θ is the gradient with respect to the parameters of the policy; ∇K−FAC

θ is an
approximated natural gradient by K-FACC; ∇con

θ is another approximated natural gradient by conjugate
gradient algorithm; DKL(πold|πθ) is KL divergence between πold and πθ; A

clip
π is clipped advantage function;

wt is importance weight; QRet (st, at) is a Q function estimated by Retrace; Corrbias is a bias correction term used
by ACER; Qbest(st, at) represents the Q values of the optimal actions that have been found so far
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State-Action-Reward-State-Action (SARSA) (Sutton and Barto 1998) SARSA uses the
following equation to learn Qπ for policy π.

Qπ st; atð Þ ¼ Qπ st; atð Þ þ α � Errπ; t ð5Þ
whereQπ is estimatedQ function for π; α is a learning rate, which controls the step size of each
update; Errπ, t is the temporal difference error. Based on the adapted objective of reinforce-
ment learning (Section 2.3), Errπ, t is calculated by max[F(st), γ ∙Qπ(st + 1, at + 1)] −Qπ(st, at).
When a sample of (state, action, reward) is obtained, SARSA takes Eq. (5) to update Qπ(st, at).
To collect the sample, SARSA applies the ε-greedy policy to select actions. That is, with a
probability of ε, the policy randomly selects from all possible actions, and with a probability of
1- ε, it selects the action with the highest Q value. In theory, SARSA can converge to the Q
function of the optimal policy, as long as all state-action pairs are visited an infinite number of
times, and the ε-greedy converges in the limit to the greedy policy, i.e., reducing ε to zero
(Singh et al. 2000).

Q-learning (Sutton and Barto 1998) Instead of learning the Q function of a given policy as
SARSA does, Q-learning tries to learn the Q function of the optimal policy directly, indepen-
dent of the policy being followed:

Q* st; atð Þ ¼ Q* st; atð Þ þ α � Err*; t ð6Þ
where Q∗(st, at) represents the estimated Q function of the optimal policy, and Err∗, t is the
temporal difference error for Q∗, calculated by max[F(st), γ ∙Q∗(st + 1, at + 1)] −Q∗(st, at). In this
case, the policy, π, used by Q-learning only determines which state-action pair is to be visited,
while the state-action pair and observed reward are used to update Q∗, rather than Qπ. As all
pairs of state-action continue to be visited, Q-learning will gradually learn the Q function and
find the corresponding optimal policy (Sutton and Barto 1998).

2.4.2 Policy optimization methods

In contrast to value function based methods, policy-based reinforcement learning algo-
rithms maintain a policy network (an Artificial Neural Network (ANN)) to select actions.
The policy network takes the state of the environment as input and outputs an action that
is to be performed on the environment. By following the policy network, the policy-based
algorithms collect samples of (state, action, reward), optionally take the samples to
evaluate the policy determined by the policy network, and then optimize the policy
network based on the samples or evaluation. The main differences among the policy-
based algorithms lay in the method of policy evaluation, optimization, and whether/how
samples can be reused for the evaluation.

Table 2 Value Function Learning Based Reinforcement Learning Algorithms*

Algorithm Exploration Policy Value Function Learning

SARSA ε-greedy Qπ(st,at)=Qπ(st,at)+α ∙Errπ, t
Q-learning Q∗(st,at)=Q∗(st,at)+α ∙Err∗, t
* Value function learning based reinforcement learning algorithms apply an exploration policy, e.g., ε-greedy, to
select actions based on their Q values. They try to learn Q values and select actions with the highest Q values,
thus they do not need to learn an explicit policy for selecting actions. Qπ(st, at) is estimated Q function for policy
π; Q∗(st, at) is estimated Q function for the optimal policy; α is a learning rate; Err is temporal difference error
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Asynchronous Advantage Actor-Critic (A3C) (Mnih et al. 2016) In A3C, multiple
threats are run in parallel to collect samples of (state, action, reward) by following a threat
dependent policy network. The samples are used to train a critic (another ANN) that estimates
an advantage function for evaluating the policy. The advantage function, Aπ(st, at), equals to
Qπ(st, at) − Vπ(st). It reveals how good an action at is to be taken in a given state st, compared
with the average value of all candidate actions in state st. Each threat updates its policy network
by the gradient of the “goodness” of actions with respect to the parameters of its policy, i.e.,
∇θ log πθ(at| st) ∙ Aπ(st, at). From time to time, the local policy networks are synced with a global
one, so that the threats can work together to learn the optimal policy.

Actor-Critic method using Kronecker-factored Trust Region (ACKTR) (Wu et al.
2017) Compared with the gradient taken by A3C, a natural gradient can give a better direction
for improvement. However, computing natural gradient is extremely expensive. To reduce the
computational complexity, ACKTR proposes to use Kronecker-Factored Approximated Cur-
vature (K-FAC) (Martens and Grosse 2015) to obtain an approximate natural gradient and
take the approximate gradient to optimize the policy network and critic.

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. 2015) From another
perspective, DDPG uses Q function instead of the advantage function to evaluate the goodness
of actions. It calculates the gradient of Q function with respect to the policy’s parameters,
∇atQ st; atð Þ � ∇θπθ atjstð Þ, and uses the gradient to update the policy network to make the
network select actions with the highest Q value.

Trust Region Policy Optimization (TRPO) (Schulman et al. 2015) A shortcoming of
aforementioned algorithms is that they need to recollect samples of (state, action, reward) to
evaluate the policy network after each update. To improve the sample efficiency, importance
sampling can be used as an off-policy estimator to estimate the advantage function or Q
function of a given policy, using samples collected under other policies:

bAπθ st; atð Þ ¼ πθ atjstð Þ
πθold atjstð Þ Aπθold

st; atð Þ ð7Þ

bQπθ st; atð Þ ¼ πθ atjstð Þ
πθold atjstð ÞQπθold

st; atð Þ ð8Þ

where πθ at jstð Þ
πθold at jstð Þ is called importance weight. However, if πθ(at| st) deviates too much from

πθold atjstð Þ, importance sampling will have high variance. Imagine that, if πθold atjstð Þ is zero
for a pair of (st, at) and πθ(at| st) is greater than zero, the importance weight will become
infinite. Therefore, to use importance sampling, it is necessary to bound the difference between
the two policies. To do so, TRPO adds a KL divergence (Pollard 2000) constraint to each
policy update, and it transforms the reinforcement learning problem into a constrained
optimization problem:

where ρθold is the state distribution determined by policy πθold ; Qθold is the Q function of policy
πθold ; DKL θold jθð Þ is average KL divergence between two policies; and δ controls the maximum
step size for one policy update. The KL divergence constraint defines a trust region for a policy

(9)
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update. When the constraint is met, TRPO can guarantee a monotonic improvement for the
policy network. To efficiently solve the constrained optimization problem, TRPO applies the
Conjugate Gradient Algorithm (Pascanu and Bengio 2013) to approximately calculate natural
gradient and follows the direction of the gradient to find the solution of the optimization
problem.

Proximal Policy Optimization (PPO) (Schulman et al. 2017) As TRPO is relatively
complicated, PPO was proposed to use a clip function as an alternative to the KL divergence
constraint. The clip function is:

clip wt; 1−ε; 1þ εð Þ ¼
1þ ε; if 1þ ε≤wt

wt; if 1−ε≤wt < 1þ ε
1−ε; if wt < 1−ε

8<
: ð10Þ

where wt is the importance weight,
πθ at jstð Þ
πθold at jstð Þ. PPO uses the clip function to bound the value of

importance weight and takes the gradient, ∇θlogπθ atjstð Þ � Aclip
π st; atð Þ ¼ ∇θlogπθ atjstð Þ�

clip wt; 1−ε; 1þ εð Þ � Aπθold
st; atð Þ, to update the policy network. However, the clip function

will introduce a bias to the estimation of the advantage function, which could lead to a
suboptimal policy learned by the algorithm.

Actor-Critic method with Experience Replay (ACER) (Wang et al. 2016) To improve
sample efficiency and stabilize the estimation of the value function, ACER was proposed with
three techniques. First, it uses Retrace (Munos et al. 2016) to estimate the Q function of the
current policy, using samples collected under past policies. As proven in (Munos et al. 2016),
Retrace has low variance, and it can converge to the Q function of a given policy, using
samples collected from any policies.

Second, ACER truncates importance weights and adds a bias correction term to reduce the
bias caused by the truncation. Particularly, it takes the following gradient to update its policy
network:

where wt is the importance weight; c is a threshold used to truncate the importance weight;
QRet(st, at) is a Q function estimated by Retrace; Vπθold

stð Þ and Qπθold
are state value function

and Q function estimated by a critic, using samples collected under past policies;
wt að Þ−c
wt að Þ

h i
þ
equals to wt að Þ−c

wt að Þ when wt(a) is greater than c, and it is zero otherwise. Intuitively, if
the importance weight is less than the threshold, it means that the policy πθ does not deviate
much from πθold , and Retrace can give a relatively accurate estimation. Consequently,
QRet(st, at) is taken to calculate the gradient used for a policy update. In contrast,
when wt > c, as πθ and πθold are too different, the importance weight becomes too large
and the Retrace estimation is unreliable to be used alone. Therefore, the importance
weight is truncated, and the Q value estimated by the critic, i.e., Qπθold

st; atð Þ, is used
to compensate for the truncation.

Third, to further stabilize the learning process, ACER adds a KL divergence constraint.
Different from TRPO that limits the KL divergence between updated and current policies,
ACER maintains an average policy, representing all past policies and constrains an updated
policy not deviating too much from the average.

(11)

(2021) 26:Empir Software Eng 54 Page 13 of 54 54



Uncertainty Policy Optimization (UPO) (Ma et al. 2019b) Different from the
aforementioned methods, which apply a critic to evaluate their policy, UPO directly
searches the space of all possible policies to find the optimal one. In UPO, the policy
is decomposed into a probability distribution and a policy network that outputs
statistics of the distribution. For example, if we choose to use the normal distribution,
the outputs of the policy network will be mean and variance of the distribution.
Therefore, given a distribution, the policy network determines the policy used to
select actions. In the beginning, UPO starts with a randomly initialized policy
network, and it keeps on selecting actions by following the policy determined by
the network. When UPO observes a sequence of actions leading to a higher fragility,
it calculates the conjugate gradient (Pascanu and Bengio 2013) of the policy network,
multiplied with Q value, i.e., ∇con

θ logπθ atjstð Þ � Qbest st; atð Þ, where ∇con
θ logπθ atjstð Þ is

the conjugate gradient and Qbest(st, at) is the Q value of a pair of state and action that
has been observed by performing the sequence of actions. Afterward, UPO takes the
gradient to update parameters of the policy network, so as to increase the selection
probability of this sequence of actions. UPO continues the search process until
reaching the maximum iterations.

3 Experiment Planning

Following the guidelines of conducting and reporting empirical studies (Wohlin et al.
2012) (Jedlitschka et al. 2008) (Kitchenham et al. 2002), we designed and conducted
the experiment. Section 3.1 presents our research goals. Sections 3.2 to 3.4 describe
the rationale of choosing candidate algorithms, subject systems, and testing tasks
performed by the algorithms. Hypotheses and related variables are described in
Section 3.5, and Section 3.6 explains the applied statistical tests.

3.1 Goals

The objective of the empirical study is to find the best reinforcement learning
algorithms for testing SH-CPSs under uncertainty. More specifically, we would like
to identify the optimal algorithm for choosing operation invocations and the optimal
algorithm for selecting uncertainty values, such that the two algorithms can work
together to discover the most failures, and preferably take the least amount of time.
Meanwhile, we would also like to investigate the scalability of the algorithms to
assess the feasibility of applying them to test complex SH-CPSs. Consequently, we
defined two goals for the empirical study.

Goal 1. In the context of uncertainty-wise executable model-based testing, analyze the
effectiveness and efficiency of the reinforcement learning algorithms to determine the
optimal algorithms of invoking operations and introducing uncertainties, for discovering
failures of SH-CPSs under uncertainty.
Goal 2. In the context of uncertainty-wise executable model-based testing, analyze the
scalability of the reinforcement learning algorithms to examine their abilities to be applied
for testing complex SH-CPSs.
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3.2 Algorithms under Investigation

As explained in Section 2.3, testing SH-CPSs under uncertainty is comprised of two tasks:
selecting a sequence of operation invocations and choosing a sequence of uncertainty values.
Because the two tasks have different requirements, which cannot be satisfied by all the
algorithms introduced in Section 2.4, we chose different sets of reinforcement learning
algorithms to address these two tasks.

For operation invocations, an algorithm has to select one of outgoing transitions of the
current active state, specified in a test model. As the set of outgoing transitions varies from
state to state, the algorithm has to choose a transition from an unfixed set of options. However,
for the reinforcement learning algorithms using Artificial Neural Networks (ANN), the set of
candidates has to be fixed, as an ANN has to have fixed numbers of inputs and outputs. Hence,
we only applied the remaining two algorithms (i.e., Q-learning and SARSA) to solve the first
task.

For the task of choosing uncertainty values, an algorithm has to select a value for each
uncertainty, whenever an SH-CPS interacts with its environment via sensors or actuators.
Assume an SH-CPS is affected by k uncertainties, each uncertainty has n possible values, and
the CPS interacts with its environment m times. In total, nk ×m combinations of uncertainty
values need to be selected. As value function learning based algorithms (Section 2.4.1) have to
learn the Q value for each combination and find the combination with the highest Q value, it is
too computationally expensive for them to handle such a huge number of combinations. In
contrast, policy optimization based algorithms (Section 2.4.2) explicitly maintain a policy
network to select actions, instead of choosing actions based on their Q values, and thus they
can efficiently select an action from a huge set of options. Therefore, we applied the policy
optimization methods (i.e., A3C, ACER, PPO, TRPO, ACKTR, DDPG, and UPO) for the
second task.

In summary, two reinforcement learning algorithms were used for selecting operation
invocations, and seven algorithms were applied to choose uncertainty values. In total, there
are 14 combinations of the algorithms, also called 14 testing approaches (denoted as APP) in
the following. We implemented SARSA, Q-learning, and UPO by ourselves, and the other
algorithms were taken from OpenAI Baselines.7

3.3 Subject Systems

To evaluate the performance of the algorithms, we employed six SH-CPSs from different
domains, with diverse complexities, for the empirical evaluation. Three of them are real-world
systems, and the others are from the literature. Section 3.3.1 introduces their functionalities,
self-healing behaviors, and associated uncertainties. Section 3.3.2 explains how test models
were specified for the six SH-CPSs.

3.3.1 System Description

ArduCopter (AC)8 is a full-featured, open-source control system for multicopters, helicopters,
and other motor vehicles. It can cater to a range of flight requirements, from First Person View

7 https://github.com/openai/baselines
8 http://ardupilot.org/copter/
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racing, to aerial photography and autonomous cruising. It is equipped with five self-healing
behaviors. Two of them are rule-based policies used to detect the disconnection between a
copter and its radio controller or ground control station, and guide the copter to return and land.
Another self-healing behavior is a quantitative model-based method (Venkatasubramanian
et al. 2003) for detecting measurement errors caused by a transient GPS fault. When such an
error is detected, the behavior will identify the fault and adapt the copter to use other sensors.
The other two self-healing behaviors are two control algorithms that are used in the event of
high vibration, e.g., strong wind, to stabilize the flight, and used to avoid collision with an
intruding aerial vehicle. In total, AC uses four sensors (one GPS, one accelerometer, one
gyroscope, and one barometer) and one actuator (a motor) to monitor and control the flight.
Table 3 shows the eight types of uncertainty related to these sensors and the actuator. The
ranges of the uncertainties are specified in their product specification. Each type of uncertainty
affects measurement errors or actuation deviations in three dimensions, i.e., longitude, latitude,
and altitude of the copter. Therefore, there are three instances for each uncertainty type. In
total, there are 24 uncertainty instances, affecting the flight.

ArduPlane (AP)9 is an autonomous control system for fixed-wing aircraft, and it is
instrumented with two self-healing behaviors. One is a rule-based policy for handling
network disruption between an aircraft and its ground controller. When the response time
from the controller is over a threshold, the aircraft is considered as disconnected with the
controller, and then the behavior will control the aircraft to fly back and land on the launching
place. The other self-healing behavior is a control algorithm used to avoid collision with a
nearby aerial vehicle. AP uses four sensors and one actuator, the same with ArduCopter, to
locate and manipulate an aircraft. Thus, its behaviors are also affected by 24 uncertainty
instances.

ArduRover (AR)10 is an open-source autopilot system for ground vehicles. It has two self-
healing behaviors. One is a control algorithm for avoiding collisions. The other is a rule-based
policy that helps a vehicle to drive back when it is disconnected with its radio controller.
Totally, ArduRover employs three sensors (one accelerometer, one GPS, and one rangefinder)
and one actuator (a motor) to control a vehicle. Since a ground vehicle runs on the ground,
ArduRover only monitors and controls two dimensions of the vehicle, i.e., longitude and
latitude. Thus, there are two instances for each type of uncertainty of the sensors and actuator.
In total, ArduRover is affected by 14 uncertainty instances.

Adaptive Production Cell (APC) (Güdemann et al. 2006) is an autonomous manufacturing
unit, which is comprised of three robots and three carts that deliver workpieces among the
robots. A workpiece is to be processed in three steps, referred as three tasks for the robots.
Every robot is equipped with three tools for accomplishing the three tasks. As it takes time for
a robot to switch its tools, the three robots are configured to work together, and each of them
only performs one of the tasks. APS is equipped with one self-healing behavior: a rule-based
policy that reassigns tasks among robots to maintain the normal function of the production cell,
in case one or multiple tools of a robot break. Due to inaccurate positions, delivered by the
carts, and measured by the robots’ sensors, APC is affected by 18 uncertainty instances: 3 carts
× 3 instances of Position Deviation + 3 robots × 3 instances of Position Accuracy.

RailCab (RC) (Priesterjahn et al. 2013) is an autonomous railway system, whose function is
to make rail vehicles drive in convoy to reduce energy consumptions. Driving in convoy

9 http://ardupilot.org/plane/
10 http://ardupilot.org/rover/
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requires the vehicles to maintain a small distance between each other, and thus it is crucial to
keep a correct speed and direction of all vehicles in convoy. RC employs two speed sensors
and eight eddy current sensors to measure the speed and steering direction of a vehicle. The
self-healing behavior of RC is a quantitative model-based algorithm, used to detects errors
caused by malfunction of the speed sensors used by a vehicle. In case the errors are detected,
the behavior will identify the fault and adapt the vehicle to use GPS rather than speed sensors
to measure its speed. As shown in Table 3, the movement is affected by 18 uncertainty
instances, arising from the 11 sensors and one actuator.

Mobile Robot (MB) (Steinbauer et al. 2005) (Brandstotter et al. 2007) is an autonomous
robot control system for directing a robot to play soccer. In normal operation mode, MB
controls three omnidirectional wheels to move the robot. Three self-healing behaviors are
implemented in MB. Two of the behaviors are control algorithms that are used to detect the
incorrect movement caused by the fault that a wheel becomes stuck or a wheel rotates freely,
and make the robot still follow a desired trajectory in case the fault happens. The remaining
self-healing behavior is a rule-based policy used to detect and restart malfunctioning software
services. As there are strong dependencies among the services, the self-healing behavior has to
find a correct order to stop and start involved services. In the system, a robot is equipped with a
laser scanner to locate a soccer, a sonar range finder to measure the distance to the soccer, and
a motor for movement. In total, eight uncertainty instances are impacting the behaviors of a
robot, with two instances of Direction Accuracy from the scanner, two instances of Distance
Accuracy from the range finder, and four uncertainty instances from the motor.

Testing these self-healing behaviors is challenging, as it is needed to decide when and
which fault is to be introduced to test the self-healing behavior. As a fault may occur at any
time during execution, the set of all possible test cases is huge. It could be infeasible to cover
all cases. To effectively find cases in which a self-healing behavior will fail, we have proposed
the executable model-based testing in our previous work (Ma et al. 2019a). In this approach,
we test an SH-CPS against a test model, by executing them together, sending them the same
testing stimuli, and comparing their consequent states. In this way, no test cases need to be
generated before test execution. Additionally, by learning from the results of performed
stimuli, reinforcement learning algorithms can be applied to learn the best policies of choosing
stimulus to more effectively detect unexpected behaviors.

3.3.2 Test Models

By applying MoSH (a modeling framework for testing SH-CPS under uncertainty) (Ma et al.
2019a), the first author of this paper built the test models11 for the selected six SH-CPSs. For
each system, we first captured its main components (e.g., sensors, actuators, and controllers) as
UML classes, and then specified the components’ state variables and testing interfaces as
properties and operations. For each component, we further specified its expected behaviors as
state machines. Based on the requirement of each system (summarized in Table 4), we defined
state invariants for all the states in the state machines.

Note that the state of an SH-CPS comprises the states of its components, and the behaviors
of all components form the SH-CPS behavior. With a flattening algorithm (Ma et al. 2019b),
the components’ behaviors can be combined into a single state machine, representing the

11 The test models are available at http://zen-tools.com/journal/TSHCPS_RL.html
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behavior of the SH-CPS. Table 5 presents descriptive statistics of the combined state machine
for the six SH-CPSs.

As explained in Section 2, the specified test models are executable, and they are executed
together with the SH-CPSs for testing. The last two columns of Table 5 show the average time
taken to execute a test model alone and the time taken to execute an SH-CPS (software part)
with simulators of sensors, actuators, and environment, for one episode. As the software of the
system and the simulation models used by the simulators are complex, executing an SH-CPS is
computationally expensive. Consequently, compared with executing a test model, it is much
slower to execute an SH-CPS.

3.4 Tasks

To assess the failure detection abilities and scalabilities of the reinforcement learning algo-
rithms, we apply them to test the six SH-CPSs, check the effectiveness and efficiency of the
algorithms, and calculate their time and space cost. An algorithm’s performance depends on its

Table 4 Requirements of the Subject Systems Used for Deriving State Invariants

Subject System Requirement Exemplary Invariant

ArduCopter (AC) To avoid crash and collision, the distance
between a copter/plan/rover and another
object (e.g., intruding aircraft or obstacle)
should always be greater than zero.

dis>0
where dis represents the distance between a

vehicle and an obstacle
ArduPlane (AP)
ArduRover (AR)

Adaptive
Production Cell
(APC)

Keep the normal function of the production
cell, and ensure that the produced
workpiece is valid.

Validity=1
where validity is a state variable used to

measure if a produced workpiece is
valid

RailCab (RC) To avoid collisions, the distance between two
adjacent vehicles must be greater than the
braking distance.

dis>v12−v22/2a
Where dis is the distance between two

adjacent vehicles; v1 and v2 are their
velocities; a is acceleration

Mobile Robot
(MR)

Ensure a robot follow a desired trajectory, i.e.,
ensure the distance between a robot’s
desired position and actual position is
within d centimeters. d is the size of the
robot.

|Pactual−Ptarget|dis<d
where Pactual and Ptarget are actual and

expected positions of a robot

Table 5 Descriptive Statistics of Behaviors of the Subject Systems

Category Subject System # States # Transitions # Uncertainties Average
Model
Execution
Time (second)

Average
System
Execution
Time (min)

Real-world
Systems

ArduCopter (AC) 432 1396 24 12 8
ArduPlane (AP) 96 270 24 3 6
ArduRover (AR) 140 650 12 8 10

Systems from
literature

Adaptive Production
Cell (APC)

1016 8512 18 15 3

RailCab (RC) 2160 13,310 18 18 5
Mobile Robot (MR) 1080 4656 8 15 3
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capability of learning, while it also relies on the number of episodes (i.e., testing runs) that an
algorithm can take to detect failures, as well as the range of each uncertainty.

On the one hand, the number of episodes determines the number of opportunities that an
algorithm can take to try different operation invocations or uncertainty values. The more
episodes an algorithm can take, the more samples of fragility the algorithm can obtain to learn
the optimal policy, and thus the higher the probability it can detect a failure. Ideally, we should
not limit the number of episodes an algorithm can take to find failures. However, testing an
SH-CPS is computationally costly and time-consuming, as many simulators are involved in
simulating its sensors, actuators, and environment. With eight CPU cores and 16 GB of
memory, it takes a few minutes to perform one episode. Limited by current available
computational resources, we evaluated the performance of the algorithms for 1000, 2000,
3000, 4000, and 5000 episodes.

On the other hand, the range of each uncertainty will affect its impact on an SH-CPS. For
instance, if the range of anmeasurement error is extremely small, it will have little impact on the
measurement. In contrast, if the measurement error is sufficiently large, it may lead to an
incorrect measurement, which may increase the risk of abnormal behavior. The ranges pre-
sented in Table 3 were defined based on the product specifications of the sensors and actuators,
whereas the actual ranges of measurement errors and actuation deviations could differ from the
specifications. To account for the effect of the ranges, we chose to test each SH-CPS with
10 sets of ranges, which includes the set of ranges shown in Table 3 as the standard ranges, and
nine sets of ranges derived by increasing or reducing the standard ranges by 10, 20, 30, 40, and
50%. We use 10 scales, i.e., 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%,
to represents these 10 sets of ranges. The scale of 100% represents the standard range, 60%
denotes the ranges reduced by 40%, and 150% means the ranges increased by 50%.

In summary, we applied 14 combinations of reinforcement learning algorithms to test six
SH-CPSs with 10 uncertainty scales and five numbers of episodes ranging from 1000 to 5000.
In total, there are 300 testing tasks (6 SH-CPSs × 10 uncertainty scales × 5 numbers of
episodes). Due to the probabilistic policies used by the reinforcement learning algorithms,
even for the same testing task, an algorithm may generate different results. To account for this
randomness, each of the 300 testing tasks was performed 10 times by each combination of
reinforcement learning algorithms.

3.5 Hypotheses and Variables

For Goal 1, we aim to evaluate the effectiveness and efficiency of reinforcement learning algorithms
in the context of testing. For effectiveness, as the purpose of testing is to find failures in the system
under test, we chose to use the Number of Detected Failures (NDF) as themetric. In addition, as it is
preferable to cover more behaviors of the system under test, we selected State Coverage (SCov) and
Transition Coverage (TCov) as two additional metrics for assessing the effectiveness. Regarding
efficiency, it is related to effectiveness and cost. As time cost is the main concern for testing, we
chose to use the average amount of time spent to detect a failure as the metric.

Based on the selected metrics, we formulate two kinds of null hypotheses:

1. Null hypothesis: given a maximum number of episodes (ENUM) and an uncertainty scale
(SCALE), there is no significant difference in effectiveness (measured by State Coverage
(SCov), Transition Coverage (TCov), and the Number of Detected Failures (NDF))
among the combinations of reinforcement learning algorithms.

(2021) 26:Empir Software Eng 5252 Page 20 of 54



H0: ∀APPi, APPj ∈ APP _ SET, ∀ SCALEs ∈ SCALE _ SET, ∀ ENUMe ∈ ENUM _ SET:

Effect APPi; SCALEs;ENUMeð Þ ¼ Effect APP j; SCALEs;ENUMe
� �

Alternative hypothesis,

H1: ∃APPi, APPj ∈ APP _ SET, ∃ SCALEs ∈ SCALE _ SET, ∃ ENUMe ∈ ENUM _ SET:

Effect APPi; SCALEs;ENUMeð Þ≠Effect APP j; SCALEs;ENUMe
� �

APPi: one of the 14 testing approaches
APP_SET: the set of the 14 testing approaches, {APPQ_A3C, APPQ_TRPO, APPQ_UPO,
APPQ_PPO, APPQ_DDPG, APPS_ACKTR, APPS_DDPG, APPS_A3C, APPS_ACER, APPS_PPO,
APPS_TRPO, APPS_UPO, APPQ_ACKTR, APPQ_ACER}

12

SCALE_SET: the set of uncertainty scales, {60%, 70%, 80%, 90%, 100%, 110%, 120%,
130%, 140%, 150%}
ENUM_SET: the set of numbers of episodes, {1000, 2000, 3000, 4000, 5000}
Effect represents an effectiveness metric, which could be SCov, TCov, or NDF
SCov is the percentage of states that are covered by a number of episodes. It is calculated

by: SCov APPi; SCALEs;ENUMeð Þ ¼ ⋃ENUMe
k¼1 Sk;APPi ;SCALEsj j

Sallj j , where Sk;APPi;SCALEs represents

the set of states, visited by APPi in the kth episode, under uncertainty scale SCALEs; Sall
represents the set of all states in a test model.
TCov is the percentage of covered transitions. Similar with SCov, TCov is calculated by

TCov APPi; SCALEs;ENUMeð Þ ¼ ⋃ENUMe
k¼1 Tk;APPi ;SCALEsj j

Tallj j , where Tk;APPi;SCALEs is the set of

transitions, visited by APPi in the kth episode, under uncertainty scale SCALEs; Tall
represents the set of all transitions.

NDF is calculated by:NDF APPi; SCALEs;ENUMeð Þ ¼ ∑ENUMe
k¼1 FDk;APPi;SCALEs , where

FDi;APPi;SCALEs denotes whether a failure is detected by APPi in the kth episode, under
uncertainty scale SCALEs. FDi;APPi;SCALEs equals 1 if a failure is detected, otherwise, 0.

2. Null hypothesis: given an ENUM and a SCALE, there is no significant difference in
efficiency (measured by an efficiency measure EFF), among the combinations of rein-
forcement learning algorithms.

H0: ∀APPi, APPj ∈ APP _ SET, ∀ SCALEs ∈ SCALE _ SET, ∀ ENUMe ∈ ENUM _ SET:

EFF APPi; SCALEs;ENUMeð Þ ¼ EFF APPj; SCALEs;ENUMe
� �

Alternative hypothesis,

H1: ∃APPi, APPj ∈ APP _ SET, ∃ SCALEs ∈ SCALE _ SET, ∃ ENUMe ∈ ENUM _ SET:

EFF APPi; SCALEs;ENUMeð Þ≠EFF APP j; SCALEs;ENUMe
� �

12 Q represents Q-learning and S represents SARSA.
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EFF is calculated by: EFF APPi; SCALEs;ENUMeð Þ ¼ ∑ENUMe
k¼1 TCostk;APPi ;SCALEs

NDF APPi;SCALEs;ENUMeð Þ, where

∑ENUMe
k¼1 TCostk;APPi;SCALEs is the total amount of time taken by APPi for the number of

episodes of ENUMe.

For Goal 2, we evaluated the time and space costs of each combination of reinforcement
learning algorithms. For each testing task, we measured the following two variables:

& Time Cost (TCost): TCost APPi; SCALEs;ENUMeð Þ ¼ ∑ENUMe
k¼1 TCostk;APPi ;SCALEs

ENUMe

& Space Cost (SCost): SCost APPi; SCALEs;ENUMeð Þ ¼ max1≤ k ≤ENUMeSCostk;APPi;SCALEs ,
where SCostk;APPi;SCALEs denotes the memory usage of APPi for the kth episode, under
uncertainty scale SCALEs.

In summary, the empirical study involves three independent variables and six dependent
variables. Table 6 summarizes their values and mapping to the goals.

3.6 Statistical Tests

Table 7 summarizes the statistical tests and related variables used to evaluate the
effectiveness, efficiency, time cost, and space cost of the 14 combinations of rein-
forcement learning algorithms. We first tested the normality of the samples of
dependent variables (SCov, TCov, NDF, and EFF), using the Shapiro-Wilk test
(Royston 1995) with a significance level of 0.05. Test results showed that the samples
are not normally distributed. Therefore, we chose to use non-parametric statistics, the
Kruskal-Wallis test (Kruskal and Wallis 1952) and the Dunn’s test (Dunn 1964) in
conjunction with the Benjamini-Hochberg correction (Benjamini and Hochberg 1995),
to check statistical significances, and applied the Vargha and Delaney statistics
(Vargha and Delaney 2000) to measure effect sizes.

For the samples of dependent variables, we first applied the Kruskal-Wallis test to
check whether there are significant differences in these variables among the 14
combinations of algorithms. If the Kruskal-Wallis test indicates there are significant
differences (i.e., a p value is less than 0.05), we further performed the Dunn’s test in
conjunction with the Benjamini-Hochberg correction to evaluate the significance of
the difference of each pair of data groups.

For each data groups pair, we also applied the Vargha and Delaney statistics bA12 to measure
the effect size, which reveals the probability that an approach A has higher SCov, TCov, NDF,

or EFF than the other approach B. If bA12 equals to 0.5, then the two approaches perform

equally well. If bA12 is greater than 0.5, then A has a higher chance to perform better, and vice
versa.

4 Experiment Execution

We introduce the hyperparameter settings of the reinforcement learning algorithms in
Section 4.1 and the experiments’ execution process in Section 4.2.
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4.1 Hyperparameter Tuning

Although reinforcement learning algorithms have demonstrated great learning abilities in
multiple fields (Mnih et al. 2015; Lillicrap et al. 2015; Kober et al. 2013), the success of a
particular learning algorithm depends upon the joint tuning of the model structure and
optimization procedure (Jaderberg et al. 2017). Both of them are controlled by several
hyperparameters, such as a neural network’s structure, learning rate, loss function, and the
number of episodes. The hyperparameters impact the whole learning process, and must be
tuned to fully unlock an algorithm’s potential. However, hyperparameter tuning is computa-
tionally expensive and time-consuming. In the context of software testing, testers may not have
a sufficient time budget to tune an algorithm for every system under test. It will be helpful to
have a hyperparameter setting that can achieve relatively good performance for a wide range of
systems.

Reinforcement learning researchers have recommended several default hyperparameter
settings (Henderson et al. 2018). However, these settings were tuned for playing computer
games, which are different from the testing problem. Due to the high computational cost of
hyperparameter tuning and limited computational resources we have, we could not afford to
use all systems with all variables’ settings to tune the hyperparameter. Among the six selected
SH-CPSs, AP is the simplest, with the least number of states and transitions, while RC is the
most complex one, and AC is a moderate one. We chose to use these three systems with
diverse complexities to do the tuning, to make the selected systems more representative. For
the value of the uncertainty scale and the number of episodes, we chose a moderate setting for
tuning, i.e., the uncertainty scale of 100% and the number of 3000, so as to avoid achieving a
hyperparameter setting performing well only in extreme cases.

We applied the Population-Based Training (PBT) method (Jaderberg et al. 2017) for tuning.
Compared with sequential optimization or parallel grid/random search, PBT can focus on the
hyperparameter space that has a higher chance of producing good results, and thus more
efficiently find a better hyperparameter setting. For each reinforcement learning algorithm
used in the experiment (Section 3.2), PBT was allowed to take maximally 1000 iterations to
find the optimal hyperparameter setting. During the search, the three systems (AC, AP, and
RC) were used to evaluate the performance of a setting, with the uncertainty scale of 100% and
the number of episodes of 3000. The setting that leads to the highest fragility was regarded as
the optimal solution. Table 8 presents the optimal hyperparameter setting we found for each
algorithm.

4.2 Execution Process

As explained in Section 3, we applied 14 combinations of reinforcement learning algorithms to
test six SH-CPSs with 10 uncertainty scales and five settings of episodes numbers. The
experiment was conducted on Abel, a cluster at the University of Oslo.13 Each testing job
was run on eight nodes with 32 GB RAM. The whole empirical study took more than six
months’ worth of execution time.

We measured the state coverage (SCov), transition coverage (TCov), number of detected
failures (NDF), time cost (TCost), and space cost (SCost) for each approach and each testing
task. The approaches’ efficiencies (EFFs) were further calculated, using NDF and TCost. At

13 http://www.uio.no/english/services/it/research/hpc/abel/
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last, we applied statistical tests to assess the differences of the measurements among the 14
approaches.

5 Experiment Results

This section shows the results of the empirical study. Sections 5.1 and 5.2 present the
effectiveness and efficiency of the 14 combinations of reinforcement learning algorithms,
and Section 5.3 analyses their time and space costs.

5.1 Effectiveness

For most of the testing tasks, the 14 testing approaches managed to cover all the states and
transitions of the SH-CPS under test, i.e., the state coverage (SCov) and transition coverage
(TCov) equal to 100%. The exceptions are the tasks for testing RC, APC, and MR. For testing
APC and MR with 1000 episodes, only 74.2% and 69.4% transitions were covered, on
average. When the number of episodes increased to above 2000, all of the approaches
managed to cover all transitions. For testing RC, none of the 14 approaches achieved 100%
transition coverage, and only a few approaches got 100% state coverage in very few cases, as
RC has huge sets of states and transitions (Table 5). As an example, Fig. 3 presents the box
plots of the state and transition coverages of the approaches for testing RC. The p-values of the

Table 7 Overview of Statistical Tests with Goals

Goal Description Dependent Variable Statistical Test

1 G1.1. For each pair of approaches, compare
their SCov, TCov, and NDFs

SCov, TCov, NDF The Kruskal-Wallis test
The Dunn’s test
The Vargha and Delaney statisticsG1.2. For each pair of approaches, compare

their EFFs
EFF

2 T2.1. Evaluate TCost for each approach TCost N/A
T2.2. Evaluate SCost for each approach SCost

Table 6 Independent and Dependent Variables

Variable Type Variable Name Value Mapping to Goals

Independent Variable APP APPQ_A3C, APPQ_TRPO, APPQ_UPO, APPQ_PPO,
APPQ_DDPG, APPS_ACKTR, APPS_DDPG,
APPS_A3C,
APPS_ACER, APPS_PPO, APPS_TRPO, APPS_UPO,
APPQ_ACKTR, APPQ_ACER

Goal 1, Goal 2

SCALE 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%,
140%, 150%

ENUM 1000, 2000, 3000, 4000, 5000
Dependent Variable SCov Real Number Goal 1

TCov Real Number
NDF Integer Number
EFF Real Number
TCost Real Number Goal 2
SCost Real Number
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Kruskal-Wallis test in terms of the state and transition coverages for all the testing tasks are
greater than 0.1, thereby indicating no significant difference among the 14 approaches
regarding the coverages.

Next, we assess the actual failure detection ability of the approaches. There are 41 failures
detected in the six SH-CPSs, with seven failures detected in AC, eight failures detected in AR,
eight failures detected in AP, five failures detected in APC, eight failures detected in RC, and
five failures detected in MR. These 41 failures correspond to 41 states in which their invariants
were violated when the six systems were being tested with simulated sensors and actuators.
Examples of these failures include a collision between a copter and an intruding vehicle, a
crash of a plane on the ground, and a collision between a rover and an obstacle. Table 9
presents the average number of detected failures (NDF) for the 14 testing approaches, under 10
uncertainty scales and five numbers of episodes.

As shown in the table, APPQ _UPO managed to detect the most failures. On average, it
detected 3.4 failures in a testing task. APPS _UPO performed slightly worse, with 3.3 failures
detected averagely. In contrast, the other 12 approaches only detected 1.7 failures, on average,
and only detected three failures or less in most of the testing tasks.

We first conducted the Kruskal-Wallis test to determine whether there are significant
differences in the NDFs among the 14 approaches. The p value of the Kruskal-Wallis test is
less than 10−13, and thus significant differences do exist. Afterward, we applied the Dunn’s test
together with the Benjamini-Hochberg correction to check the significance of the difference in
NDFs between each pair of approaches. The effect size of the difference was also evaluated,

using the Vargha and Delaney statistics bA12. Since APPQ _UPO detected the most failures, we
focused on checking if this superiority is statistically significant.

For each of the other 13 testing approaches, denoted as APPc, we checked the p value of the
Dunn’s test, corresponding to the pair of APPQ _UPO and APPc. If the p value is over 0.05, the
two testing approaches are considered to be performing equally well. Otherwise, we further

examined the Vargha and Delaney statistics bA12, using the NDFs of the two approaches. If bA12

is above 0.5 for the pair of APPQ _UPO and APPc, it means APPQ _UPO has a higher chance to
detect more failures, and thus APPQ _UPO is considered to be superior to APPc. Otherwise,
APPQ _UPO is considered to be worse.

In over 239 (out of 300) testing jobs, APPQ _UPO significantly outperformed the other 12
testing approaches, except APPS _UPO. APPQ _UPO and APPS _UPO performed equally in 279
jobs; APPS _UPO beat APPQ _UPO in 2 jobs and APPQ _UPO was superior in the other 19 jobs.
Table 10 in Appendix 1 presents detailed results. When the maximum number of episodes
(ENUM) is 1000, all testing approaches performed almost the same, while, as ENUM
increases, APPQ _UPO and APPS _UPO exceeded the others. When the uncertainty scale
(SCALE) is above 120%, APPQ _UPO detected more failures than APPS _UPO did in nine jobs,
and they performed almost on the same level in other cases.

5.2 Efficiency

We evaluate the efficiency of the reinforcement learning algorithms, to find the combination of
algorithms that takes the shortest time to detect failures. Figure 4 shows the time taken by the
algorithms to execute an SH-CPS from its initial state to a final state once. Particularly, the
time cost includes the time taken to select operations and uncertainty values, generate test
input, invoke corresponding testing interfaces, execute the system, evaluate the fragility of the
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consequent states, and use the fragility to update the Q function and uncertainty policy. On
average, the testing approaches took less than 150 s to complete one episode. The differences
among the average execution times of the different testing approaches are small, within 10 s.
However, for different SH-CPSs, SCALEs, and ENUMs, the execution time varies a lot,
ranging from 53 s to 480 s. Compared with the approaches using SARSA, the approaches
with Q-learning took less time to perform one episode.

As the time taken to execute the system depends on the system’s implementation, rather
than the performance of the algorithms, Fig. 5 presents the time cost, excluding the time spent
for executing the system. On average, the algorithms took about 12 s in one episode.
Consistent with the trend revealed by Figs. 4 and 5 also shows that SARSA related approaches
took a longer time to perform an episode. In general, APPQ _ A3C incurred the least time cost,
though the differences are within 5 s.

Based on the time costs and the number of detected failures (NDF), shown in Section 5.1,
we calculated the efficiency measure (EFF), shown in Fig. 6. Unsurprisingly, APPQ _UPO took
the least amount of time to detect a failure, since all testing approaches took a similar amount
of time and APPQ _UPO detected the most failures within this time. Averagely, APPQ _UPO took

Table 8 Overview of Hyperparameter Settings

Algorithm Hyperparameter Value Algorithm Hyperparameter Value

Q-learning Learning Rate 0.1 SARSA Learning Rate 0.1
Discount Rate 0.98 Discount Rate 0.98
ε-greedy 0.2 ε-greedy 0.2

A3C Discount Rate 0.99 ACER Discount Rate 0.99
#Hidden Layers 3 #Hidden Layers 2
#Hidden Neurons 32 #Hidden Neurons 96
Activation Function ReLU Activation Function ReLU
Optimizer RMSProp Optimizer RMSProp
Learning Rate 0.1 Learning Rate 0.001
Batch Size 1000 Batch Size 500
#Epochs 1 #Epochs 1

PPO Discount Rate 0.9 TRPO Discount Rate 0.9
#Hidden Layers 3 #Hidden Layers 3
#Hidden Neurons 32 #Hidden Neurons 96
Activation Function Tanh Activation Function Tanh
Optimizer Adam Optimizer Adam
Learning Rate 0.001 Learning Rate 0.001
Clip 0.3 Max KL 0.05
Batch Size 500 Batch Size 2000
#Epochs 10 #Epochs 50

ACKTR Discount Rate 0.9 DDPG Discount Rate 0.9
#Hidden Layers 2 #Hidden Layers 3
#Hidden Neurons 32 #Hidden Neurons 32
Activation Function Tanh Activation Function ReLU
Optimizer Kfac Optimizer Adam
Learning Rate 0.01 Learning Rate 0.0001
Max KL 0.01 Batch Size 1000
Batch Size 2500 #Epochs 50
#Epochs 1

UPO Discount Rate 0.99
Activation Function Tanh
#Hidden Layers 3
#Hidden Neurons 96
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64.5 h to detect a failure, which is less than half of the average time taken by APPQ _ A3C (the
least efficient approach) for failure detection. On average, APPQ _UPO took 52% less time than
the other approaches to detect a failure.

To evaluate the significance of the differences, we conducted the Kruskal-Wallis test. The p
value of the test is less than 10−10, and thus there are significant differences in the EFFs among
different testing approaches. We further applied the Dunn’s test together with the Benjamini-
Hochberg correction to examine if EFFs of APPQ _UPO are significantly smaller than EFFs of

the other approaches. The Vargha and Delaney statistics bA12 was used to assess the effect size.
Compared with APPS _UPO, APPQ _UPO took significantly less time for failure detection in 98
jobs, more time in one job, and performed equally well in 201 jobs. For the other testing
approaches, APPQ _UPO was significantly more efficient in over 238 jobs. Table 11 in
Appendix 2 presents more details.

5.3 Scalability

We first assess the tendencies of time and space costs of the 14 testing approaches for learning
the policy of choosing operation invocations, i.e., learning how to trigger the outgoing
transitions of each state defined in a test model to maximize the fragility of the SH-CPS under
test. Figure 7 shows the average time cost of each testing approach per episode, and Fig. 8
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Table 9 Average Numbers of Detected Failures (NDF) by the 14 testing Approaches

SCALE ENUM #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14

60% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.7 1.8 3.6 1.6 1.7 1.7 1.7 1.7 1.7 1.5 1.7 3.5 1.7 1.7
4000 1.9 2.0 4.8 2.0 1.9 2.0 2.0 2.1 2.1 2.1 2.0 4.7 1.9 2.0
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.9 5.9 2.8 2.8

70% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.7 1.6 3.4 1.6 1.7 1.7 1.7 1.7 1.6 1.5 1.6 3.5 1.7 1.8
4000 1.9 2.0 4.9 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.1 4.6 2.0 2.0
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 5.8 2.8 2.8

80% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.8 1.8 3.6 1.8 1.7 1.5 1.7 1.7 1.7 1.7 1.6 3.4 1.7 1.6
4000 2.0 2.0 4.8 2.0 2.0 2.1 2.0 2.1 2.0 2.0 2.0 4.6 2.0 2.0
5000 2.8 2.8 5.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 6.0 2.8 2.8

90% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0
3000 1.7 1.7 3.6 1.7 1.7 1.7 1.7 1.6 1.6 1.6 1.6 3.3 1.7 1.6
4000 2.0 2.0 4.7 2.1 2.0 2.0 1.9 2.0 2.0 2.0 1.9 4.7 2.0 2.0
5000 2.8 2.8 6.0 2.8 2.8 2.8 2.9 2.9 2.8 2.9 2.8 5.9 2.8 2.8

100% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.2 1.0 1.0
3000 1.6 1.6 3.4 1.7 1.8 1.7 1.6 1.6 1.5 1.7 1.8 3.3 1.7 1.7
4000 1.9 2.0 4.7 2.0 1.9 2.1 2.1 2.0 2.0 2.1 2.0 4.4 1.9 1.9
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.8

110% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.3 1.0 1.0
3000 1.8 1.7 3.5 1.7 1.7 1.5 1.6 1.5 1.6 1.7 1.6 3.3 1.7 1.6
4000 1.9 2.0 4.6 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 4.4 2.0 1.9
5000 2.8 2.8 5.6 2.8 2.8 2.8 2.9 2.8 2.8 2.8 2.8 5.5 2.8 2.7

120% 1000 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0
3000 1.6 1.7 3.4 1.6 1.7 1.7 1.6 1.6 1.7 1.5 1.6 3.2 1.6 1.6
4000 2.0 2.1 4.6 2.1 2.0 1.9 2.0 1.9 2.0 2.0 2.1 4.3 2.0 1.9
5000 2.7 2.8 5.6 2.8 2.8 2.8 2.9 2.7 2.7 2.8 2.8 5.4 2.8 2.6

130% 1000 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 0.9 1.0 1.0
2000 1.0 1.0 2.3 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0
3000 1.6 1.6 3.5 1.7 1.6 1.5 1.7 1.7 1.7 1.7 1.6 3.1 1.6 1.7
4000 1.9 2.0 4.5 2.0 2.0 1.8 2.0 2.0 2.0 2.0 2.1 4.2 2.0 1.9
5000 2.6 2.8 5.7 2.8 2.8 2.7 2.9 2.7 2.7 2.8 2.9 5.2 2.7 2.6

140% 1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 1.9 1.0 1.0
3000 1.5 1.7 3.5 1.7 1.7 1.6 1.7 1.6 1.6 1.6 1.6 3.1 1.7 1.5
4000 1.9 2.0 4.6 1.9 2.0 1.9 2.1 1.9 2.0 2.0 2.0 4.2 1.8 1.9
5000 2.6 2.8 5.7 2.7 2.8 2.6 2.9 2.7 2.6 2.7 2.9 5.1 2.7 2.6

150% 1000 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2000 1.0 1.0 2.2 1.0 1.0 1.0 1.0 1.1 1.1 1.0 1.0 2.0 1.0 1.0
3000 1.6 1.6 3.4 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.7 3.1 1.7 1.6
4000 1.9 2.0 4.7 1.9 2.0 1.9 2.0 1.9 1.9 2.0 2.0 4.1 1.9 1.9
5000 2.6 2.8 5.6 2.7 2.8 2.6 2.8 2.6 2.6 2.7 2.9 5.2 2.6 2.6

Average 1.7 1.7 3.4 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 3.3 1.7 1.7

*#1: APPQ_A3C, #2: APPQ_TRPO, #3: APPQ_UPO, #4: APPQ_PPO, #5: APPQ_DDPG, #6: APPS_ACKTR, #7: APPS_DDPG,
#8: APPS_A3C, #9: APPS_ACER, #10: APPS_PPO, #11: APPS_TRPO, #12: APPS_UPO, #13: APPQ_ACKTR, #14:
APPQ_ACER
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presents their average space costs. In the figures, the systems are shown in the increasing order
of numbers of states and transitions, i.e., AP has the least states and transitions, and RC has the
most. As shown in the figures, all costs exhibit the same tendency: the more states and
transitions an SH-CPS has, the more time and space a testing approach took to learn the
optimal policy of invoking operations for failure detection. For the simplest subject system,
AP, which contains 96 states and 270 transitions, the 14 testing approaches took about 10 s to
perform one episode, and used 5 GB memory space on average. In contrast, for the most
complex system, RC, with 2160 states and 13,310 transitions, the testing approaches’ time and
space costs raised to about 70 s and 15 GB respectively.

For the second task, the algorithms need to learn the policy of choosing uncertainty values
that can impede the SH-CPSs and lead to failures. Figures 9 and 10 present tendencies of their
time and space costs as the number of involved uncertainties increase, where the systems are
shown in the increasing order of the number of uncertainties. As one can see from the figures,
the time and space costs remained at the same level for the six SH-CPSs with varying numbers
of uncertainties. Because the policy based algorithms employ Artificial Neural Network
(ANN) to select actions, they do not need to store the Q values of all actions for each state.
Consequently, their time and space costs are fixed as long as the architectures of the ANNs are
not changed. In Appendix 3, Table 12 presents the detailed time and space cost of each testing
approach for each SH-CPS.

6 Discussion

This section discusses the experiment results about effectiveness in Section 6.1, efficiency in
Section 6.2, scalability in Section 6.3 and alternative approaches in Section 6.4.

6.1 Effectiveness

Based on the results of the effectiveness, we can conclude that the combination of Q-learning
andUPO is the most effective approach that detected the most failures in the six SH-CPSs, even
though the 14 testing approaches achieved similar state and transition coverages. As shown in
Fig. 11, when ENUM equals 1000, the 14 combinations of the algorithms performed at the same
level. When the algorithms only had 1000 episodes to find failures, they could not collect
sufficient experience from the executions, and just detected one failure on average. As the
ENUM increased, the algorithms had more chances to explore the states of the system under
test, with diverse operation invocations and uncertainty values. Consequently, the algorithms
had more data to optimize their policies, and applied them to detect more failures. However, the
increasing tendencies of NDF are different for the 14 testing approaches. The approaches with
UPO tend to detect more failures than the approaches using A3C, ACER, ACKTR, DDPG,
PPO, and TROP. Because the algorithms, like A3C andACER, have to learn a value function to
evaluate their policies and then update the policies based on the value function, many episodes
were needed to obtain data for learning the value function, whenever the policy is updated. In
contrast, UPO explores the space of policy directly using a probabilistic policy, which keeps
UPO on trying different sequences of uncertainty values. Whenever it finds an uncertainty
sequence that leads to a higher return, it updates its policy to increase the probability of selecting
such a sequence. Therefore, UPO eliminates the cost of learning value functions, and potentially
covers more promising sequences of uncertainty values for failure detection.

(2021) 26:Empir Software Eng 54 Page 29 of 54 54



Compared with ENUM, SCALE has less effect on the NDF. As shown in Fig. 12, the
average NDFs of the different testing approaches decrease slightly, as SCALE increases. A
higher SCALE leads to larger uncertainty values, which may cause a greater impact on system
behaviors and make them more likely to fail. However, a large SCALE also broadens the space
of uncertainty values, which makes it more difficult to find the optimal sequence of uncertainty
values. Due to these two reasons, SCALE is only slightly affected by the NDF. It should also
note that the ranges of uncertainty values have great impact on the performance of the testing
approaches. Sufficient knowledge is required to specify the ranges correctly prior to applying
the testing approaches.

Fig. 4 Total Time Cost for One Episode
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6.2 Efficiency

Based on the results of the efficiency (Section 5.2), we know that the combination of Q-
learning and UPO took the least amount of time to detect a failure. As shown in Fig. 5, on
average, the algorithms took about 12 s to perform one episode. The difference in the average
time costs among different algorithms is within 5 s. For operation invocations, both SARSA
and Q-learning aim to learn the optimal Q function, based on which the algorithms find the
optimal policy. While the Q function is being updated, SARSA has to follow its current policy
(Eq. (4)), whereas Q-learning only needs to find the maximum Q value of consequent states
(Eq. (5)). Therefore, the computational complexity of Q-learning is less than SARSA’s. For
introducing uncertainty, all of the policy optimization algorithms calculate a standard gradient
or natural gradient, and apply gradient descent methods to optimize their policies. Conse-
quently, their computational complexities are similar and mainly determined by the architec-
ture of ANNs, used as the policy and value function in these algorithms. Since, in this
experiment, the ANNs used by the algorithms have almost the same number of layers and
the same number of neurons in each layer (Table 8), the algorithms had very similar time costs.

6.3 Scalability

The results in Section 5.3 reveal that the time and space costs of learning the policy of selecting
uncertainty values remain in the same order of magnitude for testing SH-CPSs with diverse
complexities. In contrast, the costs of learning the policy of invoking operations are rising as the
numbers of states and transitions of the system under test increase. Since the policy optimization
methods were used for uncertainties and they take advantage of ANNs to approximate their
policies and value functions, the computational costs of these algorithms are determined by the
architecture of the ANNs and the optimizer to improve the ANNs. Alternatively, value function
methods, i.e., Q-learning and SARSA used for operation invocations, have to store the Q value for
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each pair of state and transition explicitly. As the number of states and transitions increases, such
methods will take more space and time to store and process the Q values. This could be a potential
scalability issue that limits the maximum numbers of states and transitions of the SH-CPS under
test. One approach to resolve this issue is to use ANNs to approximate the Q value. However, as
explained in Section 3.2, for testing an SH-CPS, the candidate operation invocations are not fixed.
Theywill changewhen the system switch from one state to another. As the inputs of ANNs have to
be fixed, we have to train anANN for each operation to predict its Q value. Further study is needed
to determinewhether multiple ANNs could be trained together efficiently to find the optimal policy
for operation invocations.

6.4 Alternative Approaches

The objective of testing an SH-CPS under uncertainty is to find a sequence of operation
invocations and a sequence of uncertainty values that can work together to make an SH-CPS
fails to behave as expected. We formulate this testing problem as an optimization problem, that
is to find the optimal policies of choosing operation invocations and uncertainty values to
maximize the chance of detecting failures. Through a trial and error process, reinforcement
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learning can learn how to select testing stimuli to reach the highest fragility and reveal a
failure. Results from our previous work also demonstrated the effectiveness of RL in solving
this testing problem (Ma et al. 2019b).

As explained in Section 2.3, since the number of possible combinations of uncertainty
values is huge, we chose to decompose the testing problem into two tasks and addressed them
sequentially to find the optimal operation invocations and uncertainty values. Alternatively,
one can try to reduce possible combinations of uncertainty values by, for instance choosing the
minimum and maximum possible values of uncertainties or sample uncertainty values at a big
interval. By taking such measures, a single-step algorithm might be devised. However,
dedicated experiments are needed to compare our current approach with these alternatives.

In our empirical study, we applied seven policy-based reinforcement learning algorithms to
find optimal uncertainty values. However, we acknowledge that evolutionary algorithms could
also be applied together with reinforcement learning as demonstrated in (Khadka and Tumer
2018; Whiteson and Stone 2006). Due to limited resources, these algorithms were not included
in this empirical study. It will be valuable to evaluate the performance of these algorithms in
the future. Evolutionary algorithms can also be used alone to solve this testing problem.

Fig. 9 Average Time Cost for Selecting and Introducing Uncertainties

Fig. 10 Average Space Cost for Selecting and Introducing Uncertainties
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However, to test a system based on state machines, evolutionary algorithms have to find valid
transition paths first, which has already been proven as a challenging task (Derderian 2006;
Lehre and Yao 2014). A walkaround solution is to generate all valid transition paths first,
according to some coverage criteria, such as all transitions, and then apply evolutionary
algorithms to select a subset of paths as a test suite (Lefticaru and Ipate 2007). Nevertheless,
our previous experiment results demonstrate that covering all states and transitions is not
sufficient for detecting failures in the SH-CPSs problem (Ma et al. 2019b). Consequently, we
did not choose evolutionary algorithms to solve the testing problem.

A* is another popular algorithm that can be used to find the optimal path from a source to a
destination, i.e., a transition path leading to the highest fragility in the context of our testing
problem. However, to use the fragility as the heuristic of A* to find the optimal path, we have
to know the fragility for each state. However, it is difficult (if not infeasible) to collect the
fragilities for all states, since the number of possible states of an SH-CPS is huge. Moreover,
each fragility has to be obtained from executions, which are computationally expensive and
time-consuming. In contrast, reinforcement learning algorithms use an explore strategy (e.g.,
ε-greedy) to explore the space of all possible states. Guided by the estimated value function

Fig. 11 Average Number of Detected Failures with Different ENUMs

Fig. 12 Average Number of Detected Failures with Different SCALEs
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(state value function or Q function), reinforcement learning algorithms can gradually find the
path leading to the highest fragility.

Model checking is another approach that can be used to formally prove the correctness of a
system. However, as we take the SH-CPS under test as a black box, it is unknown how the
system’s state variables’ values are to be changed by an operation invocation or uncertainty
value. Therefore, we could not use model checking to prove the correctness of an SH-CPS.

Due to these reasons, we only focused on evaluating the performance of different rein-
forcement learning algorithms in this empirical study. Fourteen combinations of reinforcement
learning algorithms were applied to test six SH-CPSs, while more experiments are still needed
to further address the threats to validity, explained in the next section.

7 Threats to Validity

This section analyzes the threats to validity from four aspects.

7.1 Construct validity

To evaluate the failure detection ability of the 14 combinations of reinforcement learning
algorithms, we took the percentages of covered states (SCov) and transitions (TCov) and the
number of detected failures (NDF) as the metrics. In addition, we further defined efficiency
measure (EFF), time cost (TCost), and space cost (SCost), to investigate the efficiency and
scalability of the algorithms. The metrics are comparable across the 14 combinations of algo-
rithms, and they can directly reflect the effectiveness, efficiency, and cost of each combination.

One threat to construct validity is that the failures detected by the algorithms could be
caused by potential flaws in test models rather than system defects. To mitigate the threats,
first, we have defined four UML profiles to extend UML class diagrams and state machines
(Ma et al. 2019a). Stereotypes defined in the profiles enable us to precisely specify expected
functional behaviors, abnormal behaviors due to faults that occurred at runtime, self-healing
behaviors for handling faults, and uncertainties that will affect these behaviors. Meanwhile,
state invariants were used to define the valid ranges of state variables. The invariants enable us
to rigorously define what behaviors are expected for a given state.

In addition to the above-mentioned rigorousness of the modeling notations, the modeling
framework strictly enforces compliance with the UML standard and ensures syntactic correct-
ness for the model. Moreover, we applied the framework to execute the models together with
the SH-CPSs under test. As explained in Section 2.1, the framework could automatically
compare the SH-CPSs’ behaviors against the ones specified in the models. When a conflict
was detected, we further examined whether this conflict was due to incorrectly specified
models, including improper state invariants, wrong triggers or guards of transitions, and
mismatched operations and testing interfaces. Consequently, we not only tested the SH-
CPSs against the models, but also utilized the SH-CPSs to validate the models. In this way,
we boosted the quality of the models and increased the credibility of the testing results.

7.2 Internal Validity

As explained in Section 2.3, we chose to test SH-CPSs in a two-steps approach, as it
can reduce the search space an algorithm has to explore to find the optimal solution.
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Nevertheless, additional experiments are still needed to verify if the two-steps ap-
proach is the best choice. Based on this two-steps approach, we evaluated the
performance of 14 combinations of algorithms. The effectiveness and efficiency of a
combination of reinforcement learning algorithms depend on the complexity of the
system under test, the ranges of uncertainties that impact the system, the number of
episodes the algorithms can take to detect failures, and hyperparameter settings of the
algorithms.

In the experiment, we only compared the failure detection abilities of the algorithms for
testing six subject systems with ten scales of uncertainty range and five settings of the number
of episodes. The optimal combination of reinforcement learning algorithms found in this
experiment may not perform the best in other settings, and thus more experiment results are
needed to further confirm the conclusion.

Tuning the hyperparameters of the reinforcement learning algorithms is costly in terms of
the time and computational devices that are required to conduct this task. Consequently, it is
impractical and inefficient for testers to tune the hyperparameters every time before applying
the algorithms to test a system. In this work, we only tuned the hyperparameters of each
algorithm for three SH-CPSs with varying complexities. Although the tuned hyperparameters
might not be the optimal one for all cases, they form a baseline and can be used as a starting
point for future work.

7.3 Conclusion Validity

Due to the indeterminate policy used by the reinforcement learning algorithms to
explore different operation invocations or uncertainty values, the number of detected
failures and space/time costs are affected by randomness, threatening the conclusion
validity. To reduce the threat, we repeated each testing job 10 times and applied
statistical tests to evaluate the significance of the experiment result. We conducted the
Kruskal-Wallis test (Kruskal and Wallis 1952) and Dunn’s test (Dunn 1964) in
conjunction with the Benjamini-Hochberg correction (Benjamini and Hochberg 1995)
to check statistical significance, and Vargha and Delaney statistics (Vargha and
Delaney 2000) to measure effect size. Finally, we acknowledge that more repetitions
are needed to increase the trust on the results further.

7.4 External Validity

External validity concerns the generalization of the experiment results. In this experiment, we
only tested three real-world systems, and three systems from the literature. They have 96 to
2160 states, and 270 to 2432 transitions. Each system is affected by a number of uncertainties,
varying from 8 to 24. Although the results obtained from the six subject systems provide the
evidence to support the conclusion, results from more SH-CPSs are still desired to validate the
conclusion further.

8 Related Work

This section discusses related works on testing with reinforcement learning (Section 8.1) and
testing under uncertainty (Section 8.2).
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8.1 Testing with reinforcement learning

As a machine learning approach to solve sequential decision problems, reinforcement learning
algorithms have been applied by a few researchers to solve several testing problems, as
described below.

In a pioneering work, Veanes et al. devised an ad hoc reinforcement learning algorithm for
online testing (Veanes et al. 2006). With the aim of covering more system behaviors, the
algorithm keeps track of the number of times a transition has been triggered, and chooses a
transition that has been triggered with the least of times. In their experiments, the ad hoc
algorithm was compared with a random testing algorithm, and the proposed algorithms
managed to cover more states than the random one, with much less time. However, the ad
hoc algorithm does not consider the long-term reward, that is, the coverage of future transi-
tions. Thus, the policy learned by this algorithm may be suboptimal.

In another work, Groce et al. proposed a light-weight automated testing framework for
container-like classes (Groce et al. 2012). In their framework, SARSA (a value function
learning algorithm, see Section 2.4.1) was used to learn the policy of generating test cases,
i.e., sequences of method calls on container objects. In the evaluation, the SARSA based
approach was compared with random testing and a modeling checking approach for 15
container classes. Their evaluation results show that the new approach performed better in 7
out of the 15 classes. As no other reinforcement learning algorithms were evaluated in the
experiment, it is unknown whether other algorithms will perform better.

Mariani et al. and Reichstaller et al. applied Q-learning for GUI (Mariani et al. 2012) and
interoperability testing (Reichstaller et al. 2016). In the first work, Q-learning was used to
select the testing action that maximizes the changes of displayed GUI widgets, to cover
functions of a system under test. In their empirical evaluation, the Q-learning based approach
was compared with GUITAR, an open-source GUI testing tool, for four GUI applications. For
all of these applications, the Q-learning based approach achieved a higher code coverage, and
detected more faults than GUITAR. In the second work, Q-learning was applied to find
implementation faults that can lead to the most critical failures, so that the riskiest implemen-
tation faults can be tested. The proposed testing approach was only evaluated by applying it for
one case study, without comparing it with other methods.

Spieker et al. proposed a value function learning based reinforcement learning algorithm,
similar to Q-learning, for test case prioritization (Spieker et al. 2017). In the evaluation, the
reinforcement learning-based approach was compared with a random and two static test case
prioritization approaches. Evaluation results demonstrated that the reinforcement learning-
based approach could effectively learn to prioritize test cases that have a high chance to detect
faults, with performance comparable with the two static methods, within 60 iterations.

More recently, Reichstaller and Knapp proposed a model-based reinforcement learning
algorithm for testing self-adaptive systems (Reichstaller and Knapp 2018). Different from the
reinforcement learning algorithms evaluated in this empirical study, the model-based algorithm
tries to learn a Markov Decision Process (MDP) model of the system under test. An MDP
model is defined by 1) a set of states of the system, 2) a set actions that can be performed on
the system, 3) the transition probability that the system switches from one state to another
when an action is conducted, and 4) the reward of performing an action under a state. When
the MDP model is learned, it can be used to find the optimal policy of taking actions to
maximize cumulative rewards. In the evaluation, the model-based algorithm was compared
with Q-learning and a random method for testing a smart vacuum system. Testing results
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reveal that the model-based algorithm performed the best, and both model-based algorithm and
Q-learning outperformed the random method. However, sufficient domain knowledge is
needed to obtain the MDP model, and the current algorithm only supports learning the
transition probability for a low-dimensional state space. These limitations restrict the applica-
bility of the model-based reinforcement learning algorithm, and it needs further research to
enhance the generalizability and learning capability.

In summary, existing works mainly evaluated the performance of value function learning
based reinforcement learning algorithms for test case generation, prioritization, and risk-based
testing. Besides, the hyperparameter settings used in these works, and how the hyperparameter
settings were selected, were rarely mentioned in these papers. To find the optimal reinforcement
learning algorithms for testing SH-CPSs under uncertainty, we conducted this empirical study and
evaluated the performance of 14 combinations of reinforcement learning algorithms. By tuning
these algorithms and applying them to test six SH-CPSs, we found the optimal reinforcement
learning algorithms that detected the most failures in these systems, and with the least time cost.

8.2 Testing under Uncertainty

As uncertainty has been becoming prevalent in nowadays complex software systems, re-
searchers have proposed approaches to either mitigate the uncertainty or test a system with
uncertainties explicitly captured and introduced.

For uncertainty mitigation, Zhang et al. and Ji et al. both proposed to useModel-Based Testing
(MBT) to discover unknown system behaviors due to indeterminate environmental conditions
(Zhang et al. 2019) or uncertain networks (Ji et al. 2018). In another work (Camilli et al. 2020),
Camilli et al. also applied MBT to collect actual system responses at runtime, and then the
responses are fed to a Bayesian inference process that updates beliefs on uncertain parameters of
system behaviors, modeled as a Markov Decision Process (MDP). Based on the result of the
Bayesian inference process, values of the uncertain parameters are calibrated, and the calibrated
MBP model can be used to support future development. From another perspective, Walkinshaw
and Fraser proposed an uncertainty-driven Learning Based Testing (LBT) approach for unit
testing (Walkinshaw and Fraser 2017). In this approach, Walkinshaw and Fraser apply genetic
programming to learn multiple inference models of the program under test, based on previous
testing results. Then, an active learning technique (Query By Committee) is used to select a test
input, for which the inference models are the most uncertain about the outputs. The test input is
then used to test the program, and the actual output of the program is used to further update the
inference models, which are used to choose the next test input. Unlike these works that aim to
discover unknown system behaviors or mitigate uncertainty, our work aims to find failures in SH-
CPSs under a set of already identified uncertainties (measurement errors and actuation deviations),
with the range of each uncertainty given.

To enable testing under uncertainty, Menghi et al. proposed an approach to generate test
oracles for testing Simulink models with uncertain parameter values and white noises. In this
approach, functional requirements are specified as Restricted Signals First Order Logic (RFOL)
formulas and the formulas are transformed to Simulink blocks to calculate a quantitative measure,
representing the degree of satisfaction of the requirements. Alternatively, in our work, we use a
test model to capture the requirements of the system under test, and the constraints defined in the
test model serve as test oracles. Simulation is also a common approach used to test systems under
uncertainty. Ramirez et al. proposed to use simulators of sensors to test a goal model used by an
adaptive system, with the measurement of sensors affected by noises and failures (Ramirez et al.
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2011). Similarly, Minnerup and Knoll proposed to use simulators of actuators to test automated
vehicles against a set of actuator inaccuracies (Minnerup and Knoll 2016). In these twoworks, the
options of uncertainty are limited to either a few types, durations and severities of noises (Ramirez
et al. 2011) or several samples of actuator inaccuracies, sampled from their ranges (Minnerup and
Knoll 2016). On the contrary, our work aims to find a value within a valid range for each
uncertainty and for each measurement or actuation, the uncertainty may take effect. Since the
solution space of our testing problem is huge, we proposed to use reinforcement learning to
effectively find the sequence of uncertainty values that can reveal a failure.

In summary, our work aims to find sequences of operation invocations and uncertainty
values that make an SH-CPS failed to behave as expected, with the expected system behaviors
captured as a test model and the range of each uncertainty given. This testing problem is
different from the ones of the works mentioned above. We conducted this empirical study to
find the optimal reinforcement learning algorithms for solving this test problem.

9 Conclusion

This paper presents an empirical study of applying reinforcement learning algorithms to test
SH-CPSs under uncertainty, to find the optimal algorithms for failure detection. In this work,
we applied 14 combinations of reinforcement learning algorithms to test six SH-CPSs,
including two algorithms (State-Action-Reward-State-Action and Q-learning) for operation
invocations, and seven algorithms (Asynchronous Advantage Actor-Critic, Actor-Critic meth-
od using Kronecker-factored Trust Region, Deep Deterministic Policy Gradient, Trust Region
Policy Optimization, Proximal Policy Optimization, Actor-Critic method with Experience
Replay, and Uncertainty Policy Optimization) for introducing uncertainties. Testing results
reveal that the combination of Q-learning and Uncertainty Policy Optimization managed to
detect the most failures, and on average, they took the least amount of time to detect a failure.
Regarding the scalability of the algorithms, increasing the numbers of states and transitions of
the system under test will incur extra space and time costs for SARSA and Q-learning, which
were used for operation invocations. Whereas increasing the number of uncertainties has little
effect on the costs of the other algorithms, which were used for introducing uncertainties.

Table 10 presents the statistical test results for the Number of Detected Failures (NDF). As
APPQ _UPO detected the most failures, we focus on comparing APPQ _UPO with the other
approaches. For each of the other 13 testing approaches, denoted as APPc, we checked the p
value of the Dunn’s test, corresponding to the pair of APPQ _UPO and APPc. If the p value is over
0.05, the two testing approaches are considered to perform equally well, denoted as “=” in

Table 10. Otherwise, we further computed the Vargha and Delaney statistics bA12, using theNDFs

of the two approaches. If bA12 is above 0.5 for the pair of APPQ _UPO and APPc, it means APPQ _

UPO has a higher chance to detect more failures, and thusAPPQ _UPO is considered to be superior to
APPc, signified as “>”. Otherwise, APPQ _UPO is considered to be worse, signified as “<”.

Table 11 summarizes the evaluation results for efficiency. We focus on comparing APPQ _

UPO with the other approaches. If an approach APPc took significantly more (less) time than
APPQ _UPO to detect a failure, APPc is inferior (superior) to APPQ _UPO in terms of efficiency,
denoted as “>” (“<”) in Table 11.

Table 12 presents quantiles of time and space costs of each testing approach for the six SH-
CPSs.
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Appendix 3 Time and Space Costs of Reinforcement Learning Algorithms

Table 12 Time and Space Costs of Each Testing Approach for Six SUTs

APP SUT #States #Transitions #Unc. Time Cost (s) Space Cost (G)

1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

Q_A3C AC 432 432 24 15.6 25.3 39.0 5.7 6.8 7.6
AR 140 360 12 6.9 9.2 11.6 5.3 5.7 6.1
AP 96 270 24 6.1 7.9 10.6 4.6 5.0 5.9
APC 1000 1008 18 22.6 37.1 56.2 6.6 7.8 9.2
RC 2160 2432 18 52.6 65.4 87.0 13.2 15.3 17.0
MR 1080 1656 8 35.6 46.2 63.1 8.2 9.2 9.9

Q_TRPO AC 432 432 24 15.9 22.8 38.4 5.7 6.7 7.7
AR 140 360 12 6.6 8.8 11.6 5.3 5.7 6.1
AP 96 270 24 6.4 8.1 10.4 4.6 5.0 5.9
APC 1000 1008 18 22.8 36.5 60.8 6.5 8.0 9.2
RC 2160 2432 18 54.4 67.8 84.8 13.2 15.4 17.1
MR 1080 1656 8 35.4 45.2 62.4 8.0 9.3 10.0

Q_UPO AC 432 432 24 14.7 23.6 39.1 5.8 6.8 7.6
AR 140 360 12 6.7 9.0 11.4 5.3 5.6 6.1
AP 96 270 24 6.0 7.7 10.4 4.6 5.1 5.9
APC 1000 1008 18 22.4 37.8 61.5 6.6 7.8 9.1
RC 2160 2432 18 49.4 62.7 84.1 13.1 15.3 17.1
MR 1080 1656 8 34.1 43.4 60.6 8.2 9.2 10.0

Q_PPO AC 432 432 24 15.0 24.6 38.3 5.8 6.8 7.6
AR 140 360 12 7.1 9.4 12.1 5.2 5.6 6.1
AP 96 270 24 6.1 7.9 10.5 4.6 5.1 5.9
APC 1000 1008 18 21.5 35.5 61.3 6.6 7.9 9.2
RC 2160 2432 18 54.4 68.5 88.1 13.1 15.3 17.1
MR 1080 1656 8 35.4 45.4 60.6 8.1 9.2 9.9

Q_DDPG AC 432 432 24 15.3 22.4 37.7 5.8 6.8 7.6
AR 140 360 12 6.8 9.1 11.8 5.3 5.7 6.1
AP 96 270 24 6.2 7.8 10.8 4.6 5.0 5.9
APC 1000 1008 18 21.3 33.6 59.8 6.5 8.0 9.2
RC 2160 2432 18 52.8 67.2 85.6 13.2 15.3 17.0
MR 1080 1656 8 34.5 43.5 58.7 8.2 9.2 9.9

S_ACKTR AC 432 432 24 18.4 27.2 39.6 6.6 7.3 7.9
AR 140 360 12 6.8 9.0 11.7 5.3 5.9 6.4
AP 96 270 24 8.3 10.9 14.7 4.8 5.2 6.0
APC 1000 1008 18 37.5 62.9 94.8 8.0 9.2 10.3
RC 2160 2432 18 64.2 80.7 96.9 14.1 15.1 16.5
MR 1080 1656 8 41.8 53.9 66.6 9.4 10.0 10.8

S_DDPG AC 432 432 24 17.3 27.4 38.9 6.6 7.3 8.0
AR 140 360 12 6.5 8.7 11.1 5.3 5.9 6.4
AP 96 270 24 8.1 11.0 14.1 4.8 5.2 5.9
APC 1000 1008 18 35.5 63.6 98.2 8.0 9.3 10.5
RC 2160 2432 18 56.6 70.5 85.7 14.0 15.2 16.5
MR 1080 1656 8 39.4 50.9 64.1 9.3 10.0 10.8

S_A3C AC 432 432 24 19.5 28.2 39.2 6.6 7.3 7.9
AR 140 360 12 6.3 8.3 10.8 5.3 5.8 6.4
AP 96 270 24 8.0 10.4 13.9 4.8 5.2 5.9
APC 1000 1008 18 30.7 52.3 88.6 8.0 9.2 10.6
RC 2160 2432 18 57.4 69.9 85.5 13.9 15.1 16.5
MR 1080 1656 8 39.1 51.1 65.0 9.3 9.9 10.9

S_ACER AC 432 432 24 19.8 30.1 40.7 6.6 7.3 8.0
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Table 12 (continued)

APP SUT #States #Transitions #Unc. Time Cost (s) Space Cost (G)

1st Qu. Median 3rd Qu. 1st Qu. Median 3rd Qu.

AR 140 360 12 7.1 9.3 11.9 5.3 5.8 6.4
AP 96 270 24 8.7 11.6 14.9 4.8 5.3 6.0
APC 1000 1008 18 34.6 51.9 91.6 8.0 9.2 10.4
RC 2160 2432 18 64.9 79.0 96.9 14.0 15.2 16.4
MR 1080 1656 8 43.5 55.3 68.5 9.3 9.9 10.8

S_PPO AC 432 432 24 18.0 26.9 38.3 6.6 7.3 7.9
AR 140 360 12 6.3 8.6 11.1 5.3 5.8 6.4
AP 96 270 24 7.8 10.4 13.6 4.8 5.2 6.0
APC 1000 1008 18 34.5 57.7 91.8 8.0 9.3 10.4
RC 2160 2432 18 58.4 72.3 88.4 13.9 15.1 16.4
MR 1080 1656 8 39.3 50.7 64.4 9.3 10.0 10.8

S_TRPO AC 432 432 24 19.1 27.3 38.8 6.7 7.3 8.0
AR 140 360 12 6.3 8.5 10.9 5.3 5.8 6.4
AP 96 270 24 7.8 10.9 14.1 4.8 5.2 6.0
APC 1000 1008 18 31.0 54.8 95.9 8.0 9.3 10.5
RC 2160 2432 18 57.6 69.0 89.0 14.0 15.3 16.4
MR 1080 1656 8 40.2 51.0 65.4 9.3 9.9 10.8

Q_ACKTR AC 432 432 24 16.2 22.9 35.0 5.8 6.8 7.6
AR 140 360 12 7.0 9.1 11.6 5.3 5.7 6.1
AP 96 270 24 6.6 8.4 10.8 4.6 5.0 5.9
APC 1000 1008 18 23.8 39.6 67.7 6.6 7.9 9.3
RC 2160 2432 18 59.0 72.3 94.4 13.1 15.3 17.0
MR 1080 1656 8 36.5 45.1 63.5 8.2 9.3 9.9

S_UPO AC 432 432 24 18.0 26.8 39.2 6.7 7.3 7.9
AR 140 360 12 6.2 8.4 10.7 5.3 5.9 6.4
AP 96 270 24 8.1 10.8 13.7 4.8 5.2 6.0
APC 1000 1008 18 35.5 56.7 95.6 7.9 9.3 10.4
RC 2160 2432 18 52.8 66.7 81.3 14.0 15.1 16.5
MR 1080 1656 8 36.6 47.4 61.7 9.4 10.0 10.8

Q_ACER AC 432 432 24 16.1 25.0 39.1 5.8 6.8 7.7
AR 140 360 12 7.3 9.8 12.2 5.3 5.7 6.1
AP 96 270 24 6.5 8.7 11.2 4.6 5.0 5.9
APC 1000 1008 18 22.1 37.3 59.7 6.6 7.8 9.2
RC 2160 2432 18 58.6 72.4 96.0 13.3 15.2 17.3
MR 1080 1656 8 38.8 50.1 67.2 8.2 9.2 9.9

*#Unc: Number of uncertainty instances
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