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Abstract
Software engineering is a socio-technical endeavor, and while many of our contributions
focus on technical aspects, human stakeholders such as software developers are directly
affected by and can benefit from our research and tool innovations. In this paper, we ques-
tion how much of our research addresses human and social issues, and explore how much
we study human and social aspects in our research designs. To answer these questions,
we developed a socio-technical research framework to capture the main beneficiary of a
research study (the who), the main type of research contribution produced (the what), and
the research strategies used in the study (how we methodologically approach delivering
relevant results given the who and what of our studies). We used this Who-What-How frame-
work to analyze 151 papers from two well-cited publishing venues—the main technical
track at the International Conference on Software Engineering, and the Empirical Software
Engineering Journal by Springer—to assess how much this published research explicitly
considers human aspects. We find that although a majority of these papers claim the con-
tained research should benefit human stakeholders, most focus predominantly on technical
contributions. Although our analysis is scoped to two venues, our results suggest a need for
more diversification and triangulation of research strategies. In particular, there is a need
for strategies that aim at a deeper understanding of human and social aspects of software
development practice to balance the design and evaluation of technical innovations. We rec-
ommend that the framework should be used in the design of future studies in order to steer
software engineering research towards explicitly including human and social concerns in
their designs, and to improve the relevance of our research for human stakeholders.
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1 Introduction

Nowadays we recognize software engineering as a socio-technical endeavor (Whitworth
2009), and social aspects are becoming an increasingly critical part of the software engineer-
ing practice and research landscape (Feldt et al. 2008). What is more, while we may expect
that many of our contributions are purely technical, somewhere, at some time, a software
developer may be affected by our work. It is crucial to account for the social aspects of soft-
ware engineering in our research, and we know that to capture them, we need appropriate
driving research questions and methods as well as a focus on relevant stakeholders (Seaman
1999). In this paper, we ask if and how we are making these provisions in our empirical
studies.

The focus of our investigation is how software engineering research approaches the inclu-
sion and study of social aspects in software development. This led us to articulate questions
about who our research intends to benefit, what are our research contributions, and how
methodologically we approach delivering relevant results given the who and what of our
studies.

We analyzed papers from two well-cited publishing venues to assess how much empirical
software engineering research may explicitly consider or study social aspects. We consid-
ered a cohort of papers (from 2017) published in the main technical track at the International
Conference on Software Engineering (ICSE) and in the Empirical Software Engineering
journal by Springer (EMSE). For these papers, we aimed to answer the following questions:

– RQ1: Who are the beneficiaries (technical systems, human stakeholders, researchers)
of the research contributions? Note that for papers that do not consider human stake-
holders in their research goals, we would not expect the paper to directly study or
address human and social aspects.

– RQ2: What is the main type of research contribution (descriptive or solution) pro-
vided? Descriptive papers add new or refute existing knowledge about a software
engineering problem or context. Solution papers present the design and/or evaluation
of a new intervention (i.e., a process or tool).

– RQ3: Which research strategies are used? Some research strategies innately involve
human subjects to collect or generate data, while others may rely on collecting
previously archived, tool generated or simulated data.

– RQ4: How do the reported research strategies map to the beneficiary and types of
contributions in these papers?

To answer our four research questions, we developed a socio-technical research frame-
work to capture the main beneficiary of the research, the main type of research contribution,
and the research strategies used. We refer to this framework as the Who-What-How frame-
work. We find that the majority of the 151 papers published in both venues in 2017 (ICSE
and the EMSE journal) present research that the authors claim should benefit human stake-
holders at some point in time, but most of these do not use research strategies that directly
involve human participants. However, some claimed that benefits to human stakeholders
(such as performance) can be inferred from system data alone. In terms of the types of con-
tributions, we find that the majority of papers published at ICSE 2017 presented solutions
(mostly technical) to address a software engineering problem, while the majority of papers
published in the EMSE journal in 2017 are descriptive contributions that present insights
about software engineering problems or how technical solutions are used. We conclude by
calling for more diversification and triangulation of research strategies so that we may gain
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a deeper understanding of human and social aspects of software development practice to
balance the current focus on the design and evaluation of technical innovations.

The remainder of our paper is structured as follows. We discuss related work that has
both informed and motivated this research in Section 2. In Section 3, we introduce the Who-
What-How framework we designed for categorizing the beneficiaries, research contribution
and research strategies in the papers we studied. In Section 4, we present the methodology
we followed to answer our research questions. In Section 5, we present the results from the
four research questions we posed. We then interpret these results in Section 6, discussing
possible explanations and the implications of our findings. We describe the limitations of
our research in Section 7. Finally, we conclude the paper by identifying areas for future
work and list important takeaways in Section 8. Traceability artifacts from our analysis and
a replication package are at https://doi.org/10.5281/zenodo.3813878.

2 Background

The importance of social aspects in software engineering was recognized long ago (Wein-
berg 1985; Brooks 1995; Shneiderman 1980; DeMarco and Lister 1987). Typically there
is at least one track on social aspects in the main research conferences as well as spe-
cial purpose workshops on the topic, such as the CHASE series.1 The papers presented at
CHASE tend to address broad socio-technical topics, but the workshop focuses on early
results. The Empirical Software Engineering and Measurement (ESEM) conference and the
Empirical Software Engineering (EMSE) journal also attract papers that consider social
aspects as their focus is on empirical methods, many of which directly involve human
participants. Some special journal issues have also addressed human aspects in software
engineering using qualitative methods (Dittrich et al. 2007; Dybå et al. 2011). Still, the
debate about whether we study social aspects enough is ongoing and some researchers claim
that coverage of these aspects is lacking (Lenberg et al. 2014).

Beyond the discussion of how much we study social aspects as part of software engineer-
ing research is the discussion of how we approach them methodologically. Researchers have
focused on discussing specific methods (e.g., focus groups (Kontio et al. 2008), personal
opinion surveys (Kitchenham and Pfleeger 2008), or data collection techniques for field
studies (Singer et al. 2008)) and providing guidelines on how to use them, or explaining the
benefits and drawbacks of methods to assist in research design choices (Easterbrook et al.
2008). Seaman (1999, 2008) highlighted that a study focusing on social aspects asks differ-
ent questions from one focusing on technical aspects and needs to use appropriate methods
that capture firsthand the behaviors and information that might not be noticed otherwise.
She discussed ways to incorporate qualitative methods into empirical studies in software
engineering.

Social aspects can be approached methodologically by inferring behaviour from analyz-
ing trace data of developers’ past activities (e.g., code commits, code review comments,
posted questions and answers on developer forums, etc.). But the analysis of trace data
alone is fraught with threats to validity as it shows an incomplete picture of human
behaviour, intent and social interactions in software engineering (Aranda and Venolia 2009;

1Cooperative and Human Aspects of Software Engineering, co-located with ICSE since 2008 http://www.
chaseresearch.org/
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Kalliamvakou et al. 2014). Furthermore, trace data alone cannot be used to predict how
a new solution may perturb an existing process in industry settings (Lanza et al. 2016),
although relying on trace data can bring early insights about the feasibility of a solution
design. To appropriately capture and account for social aspects in software engineering
research, we need to use dedicated methods that directly involve human participants in our
empirical studies.

Method choice in empirical software engineering studies has been an item of reflec-
tion, especially around methods that are borrowed from other domains. Zelkowitz (2007)
reported that researchers were using terms such as “case study” to refer to different levels of
abstraction, making it hard to understand the communicated research. However, as we are
starting to recognize the misuse of certain methods, the research community is coming up
with guidelines on how to use them correctly. Stol, Ralph, and Fitzgerald produced guide-
lines for grounded theory in the context of software engineering (Stol et al. 2016) as they
found a lack of rigor in many papers reporting the use of grounded theory. Runeson and Høst
adapted case study research guidelines to the software engineering domain (Runeson and
Höst 2008), also in part to address the misuse of the term “case study” in empirical software
engineering studies. Sharp et al. (2016) advocate using ethnography in software engineer-
ing studies as a way to capture rich insights about what developers and other stakeholders
do in practice, why they follow certain processes, or how they use certain tools.

In this paper, we analyze published research in software engineering to investigate how
social aspects are accounted for and studied. However, there have been previous efforts to
reflect on and reexamine software engineering research to better understand where the com-
munity places value. For example, Shaw (2003) analyzed the content of both the accepted
and rejected papers of ICSE 2002, as well as observed program committee conversations
about which papers to accept. She found low submission and acceptance rates of papers
that investigated “categorization” or “exploration” research questions, and low acceptance
of papers where the research results presented were “qualitative or descriptive models”. A
2016 replication of Shaw’s methodology (Theisen et al. 2017) drew similar conclusions
and identified that a new category of papers, mining software repositories, was becoming
common. While the earlier efforts focused on categorizing research and empirical studies
in software engineering, the work we report in this paper focuses specifically on how stud-
ies approach social aspects and discusses the trade-offs and implications for the software
engineering community’s collective knowledge on the choices made in the studies we exam-
ined. In the next section of this paper, we present a framework specifically designed for this
purpose.

3 A Socio-Technical Research Framework: TheWho, What,
How of Software Engineering Research

To answer our research questions and guide our analysis of how empirical software engi-
neering research papers may address human and social aspects in software engineering,
we developed a socio-technical research framework to capture the main beneficiary of the
research (the who), the main type of research contribution in each paper (the what), and
the research strategies used (the how). The shape of our framework and the questions it
poses emerged from several early iterations we followed when we tried to compare how
papers address social and human aspects in software engineering research. Accordingly, our
Who-What-How framework has three main parts, as shown in Fig. 1 and described below.
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Fig. 1 Our research strategy framework for categorizing the who (beneficiary), what (type of contribution),
and how (research strategy) of empirical software engineering research. For the circumplex of empirical
research strategies, we label each quadrant with the type of strategy (Lab, Field, Respondent, and Data),
showing the main representative strategies in each quadrant (e.g., Experiment, Field Studies in the Field
quadrant). Research quality criteria (Control, Realism, Precision, and Generalizability) are shown on the out-
side of the circumplex, positioned closer to the research strategies that have the highest potential to increase
those criteria. For example, respondent and data strategies have potential for higher generalizability
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3.1 Who is the Research Beneficiary?

The first part of the framework (see top of Fig. 1) considers who are the main beneficiaries
of the research contributions claimed in a paper. All research papers intend for someone, or
something, to be a primary recipient of the improvement or insight proposed by the research
contribution, assuming that contribution is valid and practically relevant. We consider the
following possibilities for the beneficiary in our framework:

– Human stakeholders2, which may include software developers, architects, analysts,
managers, end users and the social organizations they form;

– Technical systems, which may include tools, frameworks and platforms being used to
support development3; and

– Researchers, which may include software engineering academics or industry research
and internal tools teams.

A paper’s research contribution may be aimed at multiple beneficiaries. For example, a
paper may provide insights for researchers to consider in their future research studies, while
at the same time make recommendations for practitioners to consider. Likewise, a paper
may provide insights that improve a technical system, such as improving the accuracy of a
bug detection tool, but at the same time provide cognitive support to the developer who will
use the tool. Alternatively, some papers may be clearly aimed at a single beneficiary. For
example, we intend for the contributions of this paper to benefit researchers.

3.2 What is the Main Research Contribution Type?

The second part of the framework (see middle of Fig. 1) captures what research contribution
a paper claims. To characterize the type of research contribution, we turn to a design sci-
ence lens developed in previous work (Engström et al. 2019). Design science is a paradigm
for conducting and communicating applied research, such as software engineering. Similar
to other design sciences, much software engineering research aims to understand the nature
of problems and real-world design contexts, that is descriptive knowledge, and/or pro-
duce prescriptive knowledge to guide the design or improvement of solutions that address
engineering problems. Although some papers can have both a descriptive and a solution
(prescriptive) contribution, we categorize papers according to a single main contribution, as
emphasized by the authors of the paper.

3.3 How is the Research Conducted?

The last part of the framework (see bottom of Fig. 1) helps us articulate how the research was
conducted by capturing the research strategies used. This part of the framework is derived
in part from Runkel and McGrath’s model of research strategies (Runkel and McGrath
1972; McGrath 1995). We describe the original Runkel and McGrath research strategy
model and how we adapted it in the appendix of our paper (Appendix A). A recent paper

2We shorten this to “Humans” in the rest of the paper.
3We recognize that most technical systems are studied or improved with the final goal to benefit a human
stakeholder. However, we found in many papers that these human stakeholders are not discussed and that the
research is aimed at understanding or improving the technical system.
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by Stol and Fitzgerald (Stol and Fitzgerald 2018) also uses the Runkel and McGrath cir-
cumplex to provide consistent terminology for research strategies, which we also discuss in
Appendix A.

The how part of our framework first distinguishes empirical from non-empirical research.
Non-empirical research papers are not based directly on data (human or system gener-
ated) (Guéhéneuc and Khomh 2019). Some non-empirical papers present literature reviews
or meta-analyses of previous studies or empirically collected data, or they may describe
research that uses formal methods, provides proofs or generates theories from existing the-
ories. As we show later, the vast majority of papers published at ICSE and in the EMSE
journal report or collect empirical data (some in addition to meta and/or formal theory
research). This is not surprising as the EMSE journal in particular is aimed at empirical
software engineering research.

There are four empirical strategy quadrants that we show embedded in a circumplex
in Fig. 1. In addition to labeling each quadrant with the type of strategy (Lab, Field,
Respondent, and Data), we also show two representative strategies for each quadrant (e.g.,
Experiment and Field Studies in the Field quadrant). It is important to not confuse research
strategy with research method. A research method is a technique used to collect data. For
example, interviews may be used as a method for collecting information from field actors
as part of a field study, or as a method for collecting data as part of a sample survey (East-
erbrook et al. 2008). In contrast, a research strategy is a broader term (Stol and Fitzgerald
2015) that may involve the use of one or more methods for collecting data. It indicates
how data is generated, whether directly or indirectly from participants or produced by the
researcher, and suggests the setting used for the study.

Three of the empirical strategy quadrants (lab, field and respondent strategies) directly
involve human participants (represented by a person icon in the framework). While strate-
gies that fall in these three quadrants all involve human participants, they vary significantly
in terms of the study setting. Field studies occur in the context of work. For example,
at a software company, or in a classroom when studying the educational aspects of soft-
ware engineering. Lab studies are conducted in a contrived context, often in a university or
research center, and respondent studies are conducted in settings of convenience, such as a
workplace, home, classroom or conference.

The fourth empirical research strategy quadrant, which we refer to as data, captures
studies that are conducted in silico4 and do not directly involve human participants, although
they may use previously generated human or system data that is behavioral.

Every empirical research strategy has strengths and weaknesses to consider in terms of
research quality criteria (Runkel and McGrath 1972), and every study design decision
leads to trade-offs in terms of the potential to increase or decrease quality criteria. We
consider four quality criteria:

– Generalizability of the evidence over the population of human or system actors
studied;

– Realism of the context where the evidence was collected and needs to apply;
– Control of extraneous human behaviour variables that may impact the evidence being

collected; and
– Precision of the system data that is collected as evidence.

4By in silico, we mean performed on a computer or via computer simulation.
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The four criteria are shown on the outside of our empirical strategy circumplex in Fig. 1,
and they are positioned in proximity to the quadrants whose strategies have the potential to
increase those criteria (but doing so is not a given, as we describe below). Since all strategies
have inherent strengths and weaknesses, it may be important to triangulate across research
strategies to mitigate the weaknesses of using a single strategy (Runkel and McGrath 1972)
in one’s research.

Next, we describe research strategies that belong to the four different empirical quadrants
in more detail. We discuss how the strategies show potential for higher or lower realization
of the research quality criteria listed above.

3.3.1 Field Strategies

Field strategies involve researchers entering a natural software development setting to
study the socio-technical system in action. This includes the technical systems used to
support engineering activities, the system or project under development, and the human
stakeholders, such as developers, engineers and managers.

A field study is where the researcher observes study subjects (e.g., through an ethnog-
raphy) without any explicit interventions in place. With a field study, realism is high but
control over human activities is low, and generalizability is low as only a limited number of
companies are typically considered. For example, a researcher may observe how agile prac-
tices are adopted in a startup company, leading to descriptive insights about the practice in
a realistic but specific setting.

A field experiment occurs in a natural development setting but one where the researcher
controls certain aspects of the setting and may aim to compare the impacts of different solu-
tions or environment conditions. A field experiment may be more obtrusive than a field
study and thus will lower realism, but it has the potential for higher control over human par-
ticipants’ activities. For example, a field experiment may involve the comparison of a novel
automatic testing tool to an existing tool in the developers’ realistic and natural development
setting. A study that only considers data traces from the field (e.g., from a data mining study
or use of machine learning in an experiment) is categorized as a data study (see below) as
these studies do not involve the direct involvement or observation of human participants in
their natural environment.

3.3.2 Lab Strategies

Lab strategies typically involve testing hypotheses in highly controlled situations or con-
trived environments with human participants and technical systems as actors. Control
of human actor activities may be achieved but at the expense of realism (the setting is
contrived), and it may be more difficult to achieve generalizable results.

A lab experiment is one lab strategy where the experimenter controls the environment
and interventions or tools used. For example, a researcher may investigate the effects of
a new debugging tool in comparison to the status quo debugger on programming task
efficiency using graduate students as participants in a lab setting.

In comparison, an experimental simulation may try to increase realism by setting up an
environment that mimics a real environment in industry. For example, a researcher may
investigate different modalities for project management meetings in an environment that is
similar to a collaborative meeting room in a company. Doing so increases realism but at the
expense of control over variables that may come into play in a simulated environment where
human actors may have more freedom to act naturally. Of note is that many lab strategy
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studies tend to use students in software engineering research. As part of our analysis, we
also noted which of these studies involved practitioners and mention this result when we
discuss the implications of our findings.

3.3.3 Respondent Strategies

Respondent strategies are often used in software engineering research to gather insights
from practitioners and other stakeholders. The ability to collect data from many participants
using respondent strategies has the potential for higher generalizability (if a broad and large
sample is recruited), but at the expense of lower realism as factors that may influence each
individual participant’s responses cannot be observed or anticipated.

A sample survey is a respondent strategy which may, for example, involve an online ques-
tionnaire or a set of interviews to gather opinions from human participants. For example, a
questionnaire or interviews may be used to learn how developers perceive code quality, or
to learn how continuous integration tools are used by developers and which challenges they
encounter using these tools.

A judgment study, another respondent strategy, asks human participants to give their
expert opinion on the effectiveness of a new tool or process. Typically participants try out
a new tool or process in a setting of convenience. For example, a researcher may wish to
ask developers for their opinion about a new debugging tool by asking them to use it briefly
in place of their regular tool and to provide an opinion. Judgment studies are distinguished
from laboratory and field strategies by the use of an environment of convenience and by the
lower control in how the tool is used.

3.3.4 Data Strategies

Data strategies refer to empirical studies that rely primarily on archival, generated or simu-
lated data. The data used may have been collected from a naturally running socio-technical
system, or it may be partially generated in an experiment. This type of research strat-
egy is frequently used in software engineering research due to the technical components
in software engineering, as well as the widespread availability of extensive trace data and
operational data from modern software development tools.

Data strategy papers may use a wide range of specific methods, including experiments,
to evaluate and compare software tools (e.g., such as a defect prediction tool) with histori-
cal data sources. Data strategy papers may also refer to data mining studies used to gather
descriptive insights about a socio-technical system. They are sometimes used to infer human
behaviours from human-generated, behavioral trace and operational data (e.g., source code,
commit comments, bugs). However, as other researchers have reported, this data is inad-
equate for understanding previous human behaviour (Aranda and Venolia 2009) and can
be misleading in terms of predicting future developer behaviours (Lanza et al. 2016). Data
strategy papers have lower control over human behavioral variables but have the potential
for higher precision of system data. They may have potential for higher realism (if the data
was collected from field sites) and higher generalizability (if the project data is from many
projects).

In the next two sections of the paper, we describe how we used the Who-What-How
research framework to answer our research questions. Later, we discuss how the framework
may be used to reflect on and guide software engineering research.
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4 Methodology

To answer our research questions (see Section 1), we read and analyzed ICSE Technical
Track and EMSE journal papers from 2017.

We selected the ICSE venue for our analysis because it is considered the flagship con-
ference in software engineering, and because one would expect it represents the broad areas
of software engineering research. We considered EMSE as it is one of the top two journals
in software engineering and focuses on empirical studies. We selected these venues because
they both cover a broad set of topics—we selected EMSE in particular because of its focus
on empirical software engineering research. We do not aim for broad coverage of all SE
venues, but rather two exemplar flagship venues that can illustrate our framework.

ICSE 2017 had 68 papers in the technical track, and EMSE published 83 papers in 2017
(including special issues but excluding editorials). This resulted in a dataset of 151 papers.

As we read the papers, we answered the questions posed using the framework described
above in Section 3 and recorded our answers in a shared online spreadsheet (available in our
replication package at https://doi.org/10.5281/zenodo.3813878). This process was highly
iterative and our framework (and coding categories) emerged from earlier rounds. In partic-
ular, the need to consider “precision” as a quality criterion in our framework emerged when
we realized that many of the papers published in software engineering rely on datasets pro-
cured from technical components that offer precise measurement. When the framework had
stabilized to its current form, each paper was read and coded by at least two (but often three
or more) members of our research team. Any differences in our responses to the frame-
work questions (e.g., should this paper be described as benefiting researchers, systems, or
humans) were discussed to decide what the most appropriate answer should be. We did this
by reading the paper again, and for some, recruiting an additional member of our research
team to read and discuss the paper. Initial disagreements were easy to resolve as additional
information was often contained in an unexpected section of a paper (e.g., a small judg-
ment study may have been done but not discussed until later in the paper). The process was
laborious as sometimes research strategies or beneficiaries were mentioned in unexpected
places. We always relied on the paper author’s own words to justify our choices. For exam-
ple, a paper had to explicitly refer to a human beneficiary (“developers” or “programmers”,
for instance) for us to justify coding it as such. Our selected answers, with quotes or com-
ments to justify coding that was more subjective or saw some disagreement, can be found
in our artifact package (see https://doi.org/10.5281/zenodo.3813878).

RQ1 is to identify who is the main beneficiary of the research. To answer RQ1 we con-
sidered both the framing of the research questions and the introductions of the papers. In
some cases, it was difficult to answer this question and we had to refer to the discussion
and/or conclusion of the papers to identify who or what was the claimed or intended benefi-
ciary of the research. In the case where we identified that a human stakeholder was a stated
beneficiary, we copied a quote from the paper into our analysis spreadsheet. We deemed
something as involving human beneficiaries (as ‘human’ or ‘both’) if the paper contained
a statement referring to human stakeholders. To find this mention, we read each paper,
augmenting our reading with keyword searches for ‘developer’, ‘human’, ‘user’, ‘tester’,
‘engineer’, ‘coder’, and ‘programmer’.

Mention of humans in the paper did not always include an in-depth discussion of how a
human might benefit from the tool or process. Some papers only tangentially mentioned that
humans might benefit from their approach. For example, Lin et al.’s (Lin et al. 2017) ICSE
2017 data strategy paper, “Feedback-Based Debugging”, which we coded as ‘both’ (i.e.,
benefits human and system stakeholders), mentions that their “approach allows developers
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to provide feedback on execution steps to localize the fault”. By comparison, a paper we
coded as referring to a ‘system’ as the only stakeholder noted that “LibD can better handle
multi-package third-party libraries in the presence of name-based obfuscation” (Li et al.
2017).

To answer RQ2 and to identify what the main research contribution is, we read the
abstract, introduction, results/findings, discussion and conclusions of each paper. Again,
categorizing a paper as a solution or descriptive paper was not always straightforward, but
we relied on how the authors framed their results to decide which was the main contribution.
When a descriptive paper concluded with a proposed solution that was not evaluated, we
coded it as a descriptive paper—in fact, the solution was often provided as a way to justify
the impact of the descriptive results reported. Many solution papers had a (usually) small
descriptive contribution, thus coding as both descriptive and solution would not allow us to
discriminate the contributions in the papers we analyzed. For example, a paper that provides
a theory of how continuous integration improves software quality or describes challenges
with using continuous integration tools would be categorized as descriptive, whereas a paper
that proposes and/or evaluates a new continuous integration tool would be categorized as a
solution paper.

To answer RQ3 and to identity how the research was conducted in terms of the research
strategy used, we focused on the methodology sections of the papers. Again, we used our
framework to help distinguish different kinds of strategies. For each paper, we noted if one
or more strategies were used. Sometimes an additional strategy was mentioned as a small
additional step in the reported research in the discussion or background sections of the
paper, so we also read the entire paper to be sure we captured all the strategies reported.
Although not one of our main research questions, we also coded which papers directly
involved industry practitioners in their studies. We discuss this finding in the discussion
section of this paper.

To answer RQ4 and to identify how the reported research strategies map to the benefi-
ciary and type of research contribution, we mapped our responses in our spreadsheet and
visualized the results. For this question, we expected to see that papers with a human benefi-
ciary may be more likely to also use research strategies that directly involve and control for
human behaviours. In terms of how research contributions map to beneficiary and research
strategy, we were curious to see if there were some patterns in this regard as we did not have
an initial expectation about this mapping.

For the purposes of replication and traceability, we provide our methodological tools, the
anonymized raw data, and analysis documents and spreadsheet at https://doi.org/10.5281/
zenodo.3813878.

5 Findings

We present the findings from applying the Who-What-How framework to ICSE confer-
ence and EMSE journal papers published in 2017. We interpret and discuss the possible
implications of these findings later, in Section 6.

5.1 RQ1: Who are the Intended Beneficiaries of the Published Research?

Figure 2 shows an upset plot (Lex et al. 2014) of the intended beneficiaries. We were liberal
in coding the possible beneficiaries. For a paper to be coded as Human, we checked if an
author noted their paper described a tool that could solve a human problem (e.g., improve
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Fig. 2 Intended beneficiaries of the research contributions. This upset plot (Lex et al. 2014) captures how
our beneficiaries overlap. The bottom filled/unfilled circles represent set membership, i.e., a filled circle
indicates papers we coded with that beneficiary. Proceeding vertically up the diagram, the intersection size
represents the overall number of papers with those memberships. For example, papers with Human&System
beneficiary were 58/151 of the papers in the data we coded. The Venue plot shows what proportion of those
papers were found at EMSE, or at ICSE. For the Human&System papers, over half were published at ICSE.
On the other hand, we see EMSE in 2017 published more papers with only Researchers, while ICSE 2017
published more papers with System as the only beneficiary

developer productivity) or benefit human or organizational stakeholders. For example, in
the 2017 EMSE journal paper, “A robust multi-objective approach to balance severity and
importance of refactoring opportunities” (Mkaouer et al. 2016), the primary contribution is
a System (Note: all emphasis is ours):

“The results provide evidence to support the claim that our proposal enables the gen-
eration of robust refactoring solutions without a high loss of quality using a variety
of real-world scenarios.”

However, we also identified a claim for human benefits in this paper:

“The importance and severity of code fragments can be different after new com-
mits introduced by developers. [...] the definition of severity and importance is very
subjective and depends on the developers’ perception.”

Likewise, if a paper that predominantly studied human behaviours mentioned their find-
ings may improve a tool, we coded the paper as also benefiting a system component. We
had a flexible interpretation of ‘tool’. For example, in the ICSE 2017 paper, “How Good is
a Security Policy against Real Breaches? A HIPAA Case Study” (Kafali et al. 2017), the
tool in question is “a formal representation of security policies and breaches [and] a seman-
tic similarity metric for the pairwise comparison of norms”, but the beneficiaries include
human stakeholders:

“Our research goal is to help analysts measure the gaps between security policies and
reported breaches by developing a systematic process based on semantic reasoning.”
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One could conclude that all papers benefit researchers in some way. However, we coded
papers as benefiting Researchers when a main focus of a paper contribution was clearly
aimed at researchers (e.g., in the case of a benchmark for future research use). We found
that EMSE reports more systematic literature reviews, papers that lead to artifacts, and
benchmarks aimed at researchers than ICSE does.

Since our coding permitted one or more of our three beneficiary types (Human, Sys-
tem, Researcher), we can clearly see multiple beneficiaries in the upset plot—for All,
Human&System, Human&Researcher, and System&Researcher. We found that the majority
of papers from both venues claim human stakeholders as a possible beneficiary. Specifically,
77%/76% of the EMSE/ICSE papers (respectively) claim their research may benefit human
stakeholders—many also claim technical systems and/or researchers as beneficiaries—
but we find that more of the EMSE papers (27%) claim humans as the sole beneficiary
compared to 15% of ICSE papers.

5.2 RQ2: What Type of Research Contributions are Provided?

Table 1 illustrates how many Descriptive vs Solution papers we captured using the frame-
work. Note that many of the papers we coded as solution papers also had a descriptive
contribution, either in terms of problem understanding or solution evaluation. For example,
“Code Defenders: Crowdsourcing Effective Tests and Subtle Mutants with a Mutation Test-
ing Game” from ICSE 2017 (Rojas et al. 2017) describes problems with generating effective
mutation tests. We coded this as Solution since the main contribution is a code defender
multiplayer game for crowdsourcing test cases. However, in the process of conducting the
empirical study, the paper describes many of the problems with the approach.

If the solution contribution was minor (e.g., a recommendation for a new tool follow-
ing a mostly descriptive paper), we coded the paper as a Descriptive paper. For example,
we coded “An initial analysis of software engineers’ attitudes towards organizational
change” (Lenberg et al. 2016) from the 2017 EMSE journal as a Descriptive study using
a respondent strategy based on a survey to describe attitudes. One outcome of the paper,
however, is

“[a] proposed model [that] prescribes practical directions for software engineering
organizations to adopt in improving employees’ responses to change”.

Across both venues, 43% of papers were Descriptive, and 57% presented Solutions (see
Table 1). More ICSE papers were identified as Solution papers, and most solutions were
technical in nature. ICSE and EMSE published 81%/37% Solution papers and 19%/63%
Descriptive papers, respectively. This large difference in contribution type mirrors results
by Shaw et al.’s analysis of ICSE 2002 papers (Shaw 2003) and the replication of her study
in 2016 (Theisen et al. 2017) that found lower submission and acceptance of papers with
results that were seen as “qualitative and descriptive models”.

Table 1 Counts and proportions of research contributions per venue

Purpose All ICSE EMSE

Count Proportion Count Proportion Count Proportion

Descriptive 65 0.43 13 0.19 52 0.63

Solution 86 0.57 55 0.81 31 0.37
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5.3 RQ3: Which Research Strategies are Used?

Figure 3 shows the framework quadrants for research strategies. We report totals for EMSE
and ICSE separated by a vertical pipe character. For example, we identified 23 EMSE and
14 ICSE papers using respondent strategies (shown on the figure as 23|14). Since some
papers report two strategies, the totals add up to more than the 151 papers we analyzed.
Section 6.4 expands on how some papers use triangulation of research strategies.

Among the 151 papers we examined, we found a higher use of Data strategies (59 EMSE
| 58 ICSE) compared to any of the other research strategies (see Fig. 3).

We expand on how we classified papers with specific examples. We provide the com-
plete classification in our replication package available at https://doi.org/10.5281/zenodo.
3813878. A short sample is provided in Appendix B.

For Data strategies, an example is from Christakis et al.’s ICSE 2017 paper, “A General
Framework for Dynamic Stub Injection” (Christakis et al. 2017). This paper describes their
novel stub injection tool and subsequent evaluation by running it on a series of industry
applications which they used to instrument system calls and monitor faults. Since this paper
generates data on system faults based on their tool, we classified this as a Data strategy.

A second example of a paper we coded as Data strategy is Joblin et al.’s ICSE 2017
paper, “Classifying Developers into Core and Peripheral: An Empirical Study on Count and
Network Metrics” (Joblin et al. 2017), which analyzes commit data from GitHub projects
to study aspects of human behavior and uses prediction algorithms to classify developers as
core or peripheral in open source GitHub projects. This descriptive study relies on GitHub
trace data.

There were significantly fewer instances of the other empirical research strategies: Field
(5 EMSE | 5 ICSE), Lab (13 EMSE | 7 ICSE), and Respondent (23 EMSE | 14 ICSE). We
discuss the possible implications of this imbalance of research strategy use in Section 6, but
first we give examples of each of the non-data quadrants shown in Fig. 3. We also report the
number of papers we identified for each strategy (totals and EMSE|ICSE).

Fig. 3 Counts of the research strategies used in the EMSE/ICSE 2017 papers, respectively. Note: Some
papers reported more than one strategy
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5.3.1 Field Strategies

We identified 8 papers (4|4) that conducted field studies (total of both venues). Heikkilä
et al. (2017) conducted a large field study at Ericsson examining requirements flows for a
paper in the 2017 EMSE journal. Since the interviews were done with Ericsson developers
in their natural work environment, realism was potentially high for this field study:

“We present an in-depth study of an Ericsson telecommunications node develop-
ment organization .... Data was collected by 43 interviews, which were analyzed
qualitatively.”

Field experiments were relatively uncommon (2 in total, 1|1). In their ICSE 2017 paper,
Jiang et al. (2017) report a data study followed by a field experiment when studying test
alarms. They integrated their tool into the system of their industry partner and observed the
results of practitioners using the tool. This significantly increased the realism of the study.

5.3.2 Lab Strategies

For laboratory experiments, we identified 16 papers in total (11|5). An example is Charp-
entier et al.’s 2017 EMSE journal paper, “Raters’ reliability in clone benchmarks construc-
tion” (Charpentier et al. 2017). The study used a combination of experts and students in a lab
setting to rate software clone candidates, which were then used to evaluate clone detection
tools. While there was a portion of the strategy in which respondents—their subjects—were
asked to evaluate the clones, this is not a respondent strategy but rather a particular method
used in the lab experiment. The experimenters controlled the conditions under which clones
were evaluated in order to evaluate the independent variable of rater experience.

Experimental simulations occurred 4 times (2|2). In their ICSE 2017 paper, “Do Devel-
opers Read Compiler Error Messages?” (Barik et al. 2017), Barik et al. conducted an
eye-tracking study of students at their institution. Participants were asked to use error mes-
sages to debug software programs, and eye-tracking hardware was used to understand how
participants solved the problem. This was not a controlled experiment, and the errors in the
code were synthetic, not drawn from the participants’ own experiences. We therefore coded
this as an experimental simulation (a Lab quadrant strategy) since the main objective was to
simulate, to some extent, the realism of actual debugging.

5.3.3 Respondent Strategies

Online questionnaires (surveys) and interviews were common ways to implement a sample
survey strategy in our sample. Sample surveys occurred 21 times (16 EMSE | 5 ICSE).

The NAPIRE survey series, published in the 2017 EMSE journal and authored by
Fernández et al. (2017), is a good example of using a series of online questionnaires to
understand the problems practitioners have with requirements engineering. The surveys are
broadly distributed to maximize generalizability from respondents.

Hoda and Noble’s ICSE 2017 paper, “Becoming Agile: A Grounded Theory of Agile
Transitions in Practice” (Hoda and Noble 2017), used interviews to gather responses from
various developers about their experiences transitioning to Agile development methods in
their work. Because these researchers gathered responses from a wide variety of developers
working in different settings, this increased the generalizability of their findings to other
development contexts beyond those represented in the studies. Had they instead focused on a
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single company in detail, we would have coded this as a field study rather than a respondent
strategy (sample survey).

The other type of respondent strategy is the judgment study, which occurred 16 times
(7|9). This strategy can be seen in Bezemer et al.’s 2017 EMSE journal study, “An empirical
study of unspecified dependencies in make-based build systems” (Bezemer et al. 2017). In
this paper, the authors began with a data strategy and then asked for professional feedback
on the results:

“We contacted a GLIB developer to validate the patches that we submitted.”

Similar studies might post results as pull requests (for bug fixes, for example) and monitor
acceptance rates. Many of the judgment studies we saw involved few participants so these
studies did not realize the high potential for generalizability that could have been achieved
with a respondent strategy.

5.3.4 Non-empirical Strategies

For the non-empirical strategies, 13 papers (2|11) contained an aspect of formal meth-
ods or developed a formal theory, such as Faitelson and Tyszberowicz’s ICSE 2017 paper,
“UML Diagram Refinement (Focusing on Class- and Use Case Diagrams)” (Faitelson and
Tyszberowicz 2017). A total of 7 non-empirical strategy papers (6|1) were meta papers, i.e.,
aimed at other researchers (such as systematic literature reviews or discussion of research
methods). For example, “Robust Statistical Methods for Empirical Software Engineering”
by Kitchenham et al. in the 2017 EMSE journal (Kitchenham et al. 2016) aims to:

“explain the new results in the area of robust analysis methods and to provide a large-
scale work example of the new methods.”

5.4 RQ4: How do the Reported Research Strategies Map to the Beneficiary
and Types of Contributions in the 2017 EMSE and ICSE Papers?

To illustrate the mappings from research strategy to research contribution type and bene-
ficiary, we created the alluvial flow diagrams shown in Fig. 4. These diagrams outline the
mappings between research beneficiary (RQ1), research quadrant (RQ3), and research pur-
pose (RQ2) for the two venues. We show only the human and system beneficiary categories
on the left side, omitting the few papers that focus on researchers only as beneficiary (to
improve the clarity of our diagram).

The alluvial diagrams show that both venues report a high use of data strategies (the
how) despite some key differences in beneficiaries (who) and contribution types (what).
That said, there is more use of non-data strategies (that is, strategies that directly involve
human participants) in the EMSE papers (47% of EMSE empirical papers, compared to 36%
of the ICSE empirical papers). This may be because more EMSE papers aimed at human
stakeholders as the sole claimed beneficiary.

For ICSE papers, the majority of non-data strategy studies map to descriptive research
contributions, and the majority of data strategy studies map to solution contributions. For
the EMSE papers, by contrast, we see that many of the data studies map to descriptive
contributions (EMSE has fewer solution papers), but we note that many of these descriptive
contributions aimed at humans as the beneficiary. We discuss the possible implications of
not involving human actors in studies that are aimed at human beneficiaries later in the
paper (see Section 6.2).
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Fig. 4 These two alluvial diagrams capture flows from human and system beneficiary (Who), to empirical
research strategy quadrant (How), to purpose (What). The size of the lobes in each strata (column) reflects
proportion of classified papers (for example, there were few papers classified as benefiting researchers, in the
left-most column). The width of the alluvia (flow lines) likewise captures proportion and is colored by the
chosen research strategy captured in the legend. For the EMSE papers (top, Fig. 4a), we see an emphasis on
human beneficiaries but more use of data strategies producing more descriptive contributions. For the ICSE
papers (bottom, Fig. 4b) we see a more even emphasis on human and system beneficiaries but more use of
data strategies over other strategies, leading to more solution oriented contributions

6 Interpreting Our Findings

This section presents our interpretation of the findings, with key insights highlighted in
bold. First, we discuss why we see an emphasis on data strategies in software engineering
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research (for both venues), and how data strategies may be limited for understanding and
experimenting with the human and social aspects in software engineering. Then, we discuss
how research strategies are not triangulated as much as we may expect in papers presented in
these venues, and how more triangulation of research strategies could bring more attention
to human and social aspects in software engineering research and practice.

6.1 A Penchant for Data Strategies

We found that the majority of the ICSE conference and EMSE journal papers we analyzed
relied on data strategies (71% and 85%, respectively), and over half of the total papers relied
solely on data strategies in their choice of method. There are several reasons that may help
explain why data strategies are commonly used in software engineering research.

Data strategies are well-suited to understanding and evaluating technical aspects
for papers that focus on technical systems as the beneficiary. Many authors in the set of
papers we analyzed aimed to improve a technical system or component as one of their main
research beneficiaries. We found that most of the ICSE papers we analyzed are solution
papers, and data strategies are used in many solution papers to show the feasibility and scal-
ability of technical solutions. And for descriptive papers—which the majority of the EMSE
papers we analyzed can be considered—much can be learned from data about technical sys-
tems, and valuable knowledge of human and social aspects can also be gleaned from data
alone.

In recent years, there is increased availability of data from software repositories and
diverse data sources concerning software projects. These data sources encompass a rich
resource concerning both technical and human aspects for conducting empirical software
engineering research. We have access to open or proprietary source code when research
collaborations are in place; development data, such as issues, bugs, test results, and com-
mits; crowdsourced community knowledge repositories, such as Stack Overflow and Hacker
News; and operational and telemetry data from the field, such as feature usage, A/B test-
ing results, logging data, and user feedback (Hassan 2008). Note that the analysis of ICSE
papers from 2016 by Theisen et al. (2017) also showed an increase in mining software
repository papers (one type of data strategy paper) over Shaw’s earlier study on ICSE 2002
papers (Shaw 2003).

Data analysis is a core skill that many computer scientists and software engineering
researchers possess as they are more likely to come from scientific, engineering and math-
ematical backgrounds, with expertise in statistics, data mining, natural language processing
and AI. In addition, the emergence of new and powerful machine learning and AI techniques
that scale to software engineering projects and is taught as part of software engineering
curricula also may help explain why data strategies are used so frequently in our field.

Data strategy studies have the potential to achieve high generalizability, particularly
when multiple projects are studied. The analysis of data from repositories hosted on sites
such as GitHub may be more generalizable to a broader set of projects. Similarly, using data
from real-world projects has the potential to increase realism, particularly in terms of the
technical systems studied.

Data strategies also lend themselves naturally to replication, a desirable aspect to
improve scientific rigor. We are starting to see more data strategy papers in software engi-
neering that are accompanied (either as a requirement or optionally) by replication packages
that include the software artifact data, algorithms, scripts, and other tools used in the studies.
These packages are recognized by the community as having high potential for replication.
Some evidence further suggests that replication packages and open science leads to more

Empirical Software Engineering (2020) 25:4097–41294114



citations (Colavizza et al. 2019), which might also motivate this strategy choice. Other
strategies (such as lab, field, and respondent) can also provide replication packages, but
exact replications are more difficult when human participants are involved as their behaviour
can be impacted by more nuanced variables, and their behaviour is not as predictable as
technical components in studied socio-technical systems.

As our answer to RQ4 shows, many data papers aim at humans as a beneficiary, and
while some triangulate using another strategy that involves human participants, many do
not directly study humans at all. We discuss the implications of this below, but first discuss
why an over reliance on data strategies may be a problem.

6.2 The Downside of Using Data Strategies for Studying Human Aspects

Our analysis found that many papers in both venues we inspected claim their research would
benefit humans in some way, but did not directly involve them in their studies: 43% and
54% for EMSE and ICSE (respectively) claim they benefit humans but did not directly study
them, instead relying on data traces.

In some cases, this may be justified. For example, a study that evaluates a new technique
to improve the build time of a project may not benefit from human feedback as the faster
compilation probably implies a better developer experience.

But many proposed solutions may need to be evaluated in a human stakeholder’s context.
For example, a solution paper that proposes a recommender system of possible defects may
need to be evaluated with human actors to see how the tool perturbs the context in which it
is used (Lanza et al. 2016), and to control for other variables that may be important when
human actors are involved (e.g., the technique may lead to information overload or other
types of complacency). Moreover, solution evaluations that rely on historical data alone
assume that future developers will use the new intervention in exactly the way the previous
intervention was used, but this is not likely the case (Lanza et al. 2016).

For descriptive research that aims to capture human and social aspects, data alone may
also not tell the whole story and any conclusions drawn should be corroborated with other
methods (such as interviews, surveys, or observations). For example, Aranda and Venolia
showed in their paper (Aranda and Venolia 2009) that many important aspects of software
bugs cannot be discerned from data alone. Similarly, two papers that look at Git and GitHub
as rich data sources (“Promises and Perils” of Mining Git (Bird et al. 2009) and GitHub
(Kalliamvakou et al. 2014)) highlight the many potential pitfalls when using these data
sources alone.

6.3 Why are Human-oriented Research Strategies Less Common in Software
Engineering Research?

We saw relatively few respondent, laboratory and field strategies in the ICSE and EMSE
papers we analyzed (see Fig. 3). Furthermore, many of these were presented as a secondary
strategy to a data strategy and were of limited scope: some were informally conducted or
reported5). Although these strategies show the potential for advantages in terms of gener-
alizability, realism, and control of human behaviour variables, these strategies are seldom
used, either as a main or secondary strategy, even for research that claims to benefit human

5For example, one EMSE paper we read reported a user study but did not indicate how many participants
were involved, nor who the participants were.
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Table 2 This table shows the number/proportion of papers that involve practitioners in reported empirical
studies for the two venues and for both combined (all)

Practitioners? All ICSE EMSE

Count Proportion Count Proportion Count Proportion

True 41 0.27 17 0.25 24 0.29

False 110 0.73 51 0.75 59 0.71

stakeholders. We do not know if the reason for this lack of use may be due to fewer
submissions of such papers, or if they are less likely to be accepted.

One possible reason for the apparent low use of these strategies across the paper venues
we analyzed may be a lack of expertise by software engineering researchers that publish in
those venues. Strategies that study human behaviours require expertise that is not typically
taught in a software engineering or computer science educational program (when compared
to sociology and other social sciences).

A possible reason for the very few lab and field studies may be due to limited access
to developer participants and sites. Field studies can be obtrusive and practitioner time is
expensive. We found that only 27% of the papers (29% and 25% of the EMSE and ICSE
papers, respectively) reported involving practitioners in their empirical studies and these
counts include several studies where just one or two practitioners were used in a small
judgment study (see Table 2).

Another possible cause for the low appearance of laboratory and field studies may be
because of their potential lack of generalizability. Reviewers can easily attack poor gener-
alizability as a reason to quickly reject a paper, which may deter researchers who have tried
to use such strategies (Williams 2019).

Field and lab strategies also often rely on the use of qualitative methods and should
be evaluated using quite different criteria than those used to evaluate quantitative research.
Reviewers that expect to see threats to validity, such as external, internal, and construct,
may find qualitative criteria, such as credibility and transferability, as unacceptable and
unfamiliar due to a different epistemological stance (Felderer and Travassos 2019).

Respondent strategies were used more often than lab and field strategies in the papers
we analyzed, but not as often as we had anticipated. Respondent strategies are often seen as
easier to implement for many researchers as they are done in settings of convenience. But
conducting surveys and analyzing survey data bring other challenges: designing surveys
normally takes several iterations, and recruiting survey respondents that are a good sample
of the studied population is challenging. Furthermore, conducting open-ended surveys is
time consuming.6

Finally, running studies with human subjects requires the additional step (in many aca-
demic institutions) of acquiring approval from an ethics review board (Singer and Vinson
2002), and the use of human subjects inevitably introduces other complications (sometimes
people do not show up or have unique abilities that impact the study). This step is gener-
ally not needed for data strategies, although ethical concerns about the use of some data
resources have been raised in the research community.

6http://www.gousios.gr/blog/Scaling-qualitative-research.html
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6.4 Using Triangulation to Balance Benefits for Human and Technical Aspects
in Empirical Software Engineering Research

Denzin (1973) describes several different types of triangulation in research: investigator
triangulation, data triangulation and methodological triangulation. Methodological triangu-
lation refers to using different strategies and/or methods, while data triangulation refers to
when the same research method may be used but different sources of data are used. Inves-
tigator triangulation refers to the use of different investigators in running studies to reduce
investigator bias. Triangulation of research strategy (what Denzin refers to as methodolog-
ical triangulation) is how researchers can improve the balance of desirable research quality
criteria (Runkel and McGrath 1972). Our framework’s circumplex (Fig. 1) highlights how
each strategy has strengths and weaknesses when it comes to improving generalizabil-
ity, enhanced control over variables that may be influenced by human actors, improved
study realism, and more precision over data measurements. The choice of research strat-
egy, and more specifically which methods form part of that strategy, indirectly influences
who benefits from the research: practitioner stakeholders, technical components/systems or
researchers.

The potential impact of the choices made by the authors of the papers we analyzed on
four research quality criteria is summarized in Fig. 3. Most notably, few papers report on
research strategies that attempt to control variables that come into play when human actors
may be involved (e.g., very few report on lab and field experiments). Papers that do not
control for human variables are limited in how they may claim their research is relevant
to or benefits human actors. Realism is also potentially low in the cases where a realistic
evaluation should involve human participants when the research claims to benefit them. In
contrast, the use of data strategies may help improve generalizability when datasets from
multiple cases are considered, and such papers potentially achieve higher precision over
data measurements from the technical systems studied.

In our study of the EMSE journal and ICSE conference papers from 2017, only 37
papers (24%/25% of the EMSE/ICSE papers respectively) reported studies from more than
one research strategy quadrant. Figure 5 shows which strategies were triangulated with one
another. For the data strategy papers, the vast majority did not triangulate their findings
with other strategy quadrants, but when triangulation did occur, data strategies were mostly
triangulated with a respondent strategy (surveys or interviews).

Although triangulation of research strategy was low within the papers we analyzed and
across the venues we studied, we found that data triangulation was quite common in our
study sample. Data triangulation occurred when a paper author replicated results with addi-
tional cases (datasets) using data-driven strategies. While the use of data triangulation may
improve generalizability, it does not improve realism or control over human variables. These
latter two criteria are particularly important to improve for research that is explicitly aimed
at human beneficiaries.

In terms of diversifying strategies, there are other benefits and drawbacks to be con-
sidered (in addition to realism, control over human variable, generalizability and data
precision). Field strategies often lead to immediate actionable descriptive insights and
understanding of why things work the way they do, as well as to innovative solution ideas
from watching how experienced and creative developers deal with or work around a prob-
lem in the real world. Likewise, non-adoption of a particular solution in the field can lead
to innovative solutions. On the other hand, data strategies may be easier to replicate, while
both respondent and data strategies may more easily scale to larger and broader populations,
potentially increasing generalizability.
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We could not determine whether authors triangulated their work outside of the papers
we considered, and we recognize that the responsibility for triangulation does not need to
be on the level of individual papers. Given that EMSE is a journal and many papers extend
conference papers, we expected to see more triangulation in EMSE papers, however, we
did not see this in our analysis (see Fig. 5). For ICSE papers, we see that data strategies
are frequently used for solution papers but more diverse strategies are used for descriptive
papers. For EMSE, we see that even descriptive papers rely more on data strategies alone.
Of course, the EMSE authors of descriptive papers may have relied on data strategies that
use human-generated trace data to study human and social aspects, but in doing so, may
have missed other context variables that limit the results.

Finally, the choice of research strategy only offers the potential to achieve a given cri-
terion. Many studies do not maximize this potential: they may use students instead of
professional developers (reducing realism, see Table 2), have low statistical power (reducing
generalizability), convenience sample from unrepresentative populations (reducing control),
or make questionable analysis choices (reducing precision). Each method must still be
judged on its merits and according to best practices.

In sum, multiple research strategies should be used to support triangulation, not just to
triangulate specific findings, but to further add to insights concerning software engineer-
ing problem contexts, possible solutions for those problems, and the evaluation of those

Fig. 5 Triangulation of research strategies reported in our set of EMSE/ICSE papers, respectively. Numbers
placed on the edges indicate the number of papers that triangulate using that pair of strategies. The red
(thicker) edges indicate triangulation of data strategies with non-data strategies. The numbers in the white
strategy boxes indicate number of strategies that were not triangulated with other strategies
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solutions (Engström et al. 2019). Doing so will allow our research to be more relevant and
transferable to broader problem contexts, leading to richer theories about why proposed
solutions work or do not work as expected in certain human and social aspects.

7 Limitations

We identify the limitations associated with this research and the measures we took to mit-
igate these issues through our research design. We use the Roller and Lavrakas (Roller
and Lavrakas 2015) “Total Quality Framework” (TQF) for qualitative research, consisting
of the subdomains “Credibility” (of the data collection), “Analyzability” (of data analy-
sis), “Transparency” (of the reporting), and “Usefulness” (of the results). The TQF, being
specifically derived from experiences in qualitative research, is more relevant to this paper
than the typical “internal/external/construct” frame that is often applied in statistical stud-
ies. It closely parallels the discussions of high-quality qualitative research in Miles et al.
(2013), Kirk and Miller (1986), and Onwuegbuzie and Leech (2007), among others (a more
complete discussion can be found in Lenberg et al. (2017)).

7.1 Credibility

Credibility is an assessment of the completeness and accuracy of the data gathering part
of the study.

The scope of our study was limited to full research papers from the EMSE journal and
ICSE conference in 2017. Different years, different venues, and different tracks may have
produced a different distribution of research beneficiary, research contribution, and research
strategy use. However, we show our analysis as an example of the Who-What-How frame-
work applied to two venues and do not claim this to be exhaustive. We know from an earlier
iteration of a similar study that considered the preceding two years at ICSE (2015 and 2016),
as well as ICSE 2017, that the trends were extremely similar (Williams 2019). Journals and
conferences are different venues, and in software engineering they are seen to serve differ-
ent purposes so some differences were expected. However, EMSE and ICSE serve similar
communities. For example, 26 of the 201 members of the 2020 ICSE Technical Program
Committees and EMSE Editorial Board are in common so some similarities were antic-
ipated and observed. However, the Who-What-How framework did help illuminate some
similarities and differences between the ICSE and EMSE venues.

As mentioned earlier, there are also other venues that clearly focus on human aspects,
including the CHASE workshop that has been co-located with ICSE since 2008, as well as
other venues such as VL/HCC7 and CSCW.8 Thus we recognize our findings are particular
to the ICSE technical track and EMSE journal, but we feel it is important to share as these
venues are recognized as being inclusive in terms of topics and methods, but are also seen
by many as two of the premier publishing venues in software engineering.

7.2 Analyzability

Analyzability is an assessment of the accuracy of the paper’s analysis and interpretations.

7Visual Languages and Human-Centric Computing, http://conferences.computer.org/VLHCC/
8ACM Conference on Computer Supported Cooperative Work https://cscw.acm.org
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The authors come from a predominantly human-centered software research background
and so this may have influenced our interpretation of papers outside our area of expertise
(e.g., for areas such as automated testing). Our analysis tasks relied on human judgment in
terms of classification of the beneficiary, contribution, and research strategy in the papers
we analyzed.

To consider who the beneficiary was, we relied on the paper text to discern if the research
contribution of the paper aimed to benefit human stakeholders (e.g., developers, managers,
end users), researchers (e.g., tool designers), or technical systems (e.g., a build system or
recommender). If the study intended for other beneficiaries, or had other beneficiaries as
some eventual outcome of a wider research program, our analysis would not be able to
identify this. Many papers alluded to multiple beneficiaries. In the case where this was
somewhat subjective on our part, we included a quote from the paper in our spreadsheet—
in particular, we included quotes when we identified the research was aimed at a human
stakeholder beneficiary.

We assigned each paper a single contribution type for the research study (i.e., either
descriptive or solution). However, we recognize this is a coarse description of a single
paper’s epistemological goals. For example, some studies might do exploration leading to
descriptive insights and then design or propose a tool. We relied mostly on the authors’ own
descriptions in their papers to help us decide if descriptive or solution was the best cate-
gorization for research contribution. A richer categorization could leverage design science
terminology more fully, such as in Engström et al. (2019), but such a detailed categorization
was beyond the scope of our research.

For coding research strategy, we relied on the strategy quadrants we identified in the
how part of the framework we developed in Section 3. This aspect of our framework was
developed with a focus on studying human aspects. In an earlier study reported by Williams
(one of this paper’s authors), she considered the research strategy across ICSE technical
track papers from 2015-2017 and asked authors to classify their own papers according to
the research strategy used (Williams 2019). She found that her categorization very closely
aligned with the authors’ views and any discrepancies were easily resolved (for example,
an author may have been confused by the terminology we used or forgot that they used
an additional strategy in their work). Although this was an earlier version of the research
strategy (How) part of our framework, this earlier finding increases our confidence that
our assignment of research strategy would match the authors’ views at least for the ICSE
2017 papers. We note, however, that different frameworks for categorizing research strategy
would lead to different categorizations (e.g., see a related framework by Stol and Fitzgerald
(2018)).

To mitigate researcher bias for all of the coding we did, two of us independently coded
the papers. We revisited any codes we disagreed on, and reread the papers together to arrive
at an agreement. For some papers, we recruited additional readers to join our discussions.
We recognize that some of our codes may still be open to interpretation, and thus we make
our spreadsheet available for others to peruse and to validate our analysis. Our spreadsheet
contains many quotes from the papers we analyzed to help others understand our coding
decisions.

7.3 Transparency

Transparency refers to the way in which we have presented our results. We rely mainly on
the replication package to ensure transparency. Our coding spreadsheet has additional infor-
mation on any of the papers where we disagreed or where we felt our coding may have been
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subjective. We capture this in comments associated with each paper in the spreadsheet. We
can also rely, to some extent, on the familiarity readers likely have with the domain. Since
we write about software research, we did not see a need to provide detailed descriptions of
the domain.

7.4 Usefulness

We developed and presented a socio-technical research framework—the Who-What-
How framework—for reflecting on socio-technical contributions in software engineering
research. We believe our framework is ready to apply to other venues (e.g., other soft-
ware engineering journals, conferences, or tracks). To facilitate this further application,
we provide a number of documents on our supplementary website designed to help other
researchers follow our methodology. We welcome replication studies—especially triangu-
lation studies with new research strategies—on additional years of ICSE or EMSE and other
venues to explore the differences that may exist between venues and time periods in soft-
ware engineering research. Finally, although we do not demonstrate this in our paper, we
have found anecdotally from our students and colleagues that the framework is useful in
helping design and reflect on research.

8 Conclusions

Understanding the complexities of human behavior requires the use of diverse research
strategies—specifically the use of strategies focused on human and social aspects. Through
our analysis of 151 ICSE technical track papers and EMSE journal papers from 2017, we
found a skew towards data strategies in these publishing venues, even for papers that claimed
potential benefits for human stakeholders, in addition to their claimed improvements to
technical components. Relying on data strategies alone may mean we miss important aspects
of the complex, socio-technical context of software engineering problems and hinder our
evaluation of how tools may be used in real practice scenarios.

We might expect initial research on a socio-technical software engineering problem to
consider only technical aspects or rely only on limited behavioral trace data. But at a com-
munity level, we would expect to see more studies that expand on these initial works to
rigorously examine the human aspects. In the cohort of papers we analyzed, we found that
a minority of data strategy papers triangulated using additional strategies, many of which
were limited in scope, while the majority did not triangulate their research strategies at all.

Earlier efforts on analyzing research at particular publishing venues focused on cate-
gorizing research and empirical studies in software engineering (see Section 2), while the
work we report in this paper focuses specifically on how studies approach social aspects,
and discusses the trade-offs and implications for the software engineering community’s col-
lective knowledge on the choices made in the studies we examined. We encourage other
researchers to use the framework and apply it to reflect on other publishing venues, and
possibly compare with the EMSE journal and ICSE technical track venue analysis we report.

Although our original intention was to use this framework to reflect on human and social
aspects of existing software engineering papers, we hope that the Who-What-How frame-
work is also useful for framing or designing new or in-progress research studies, and to
reflect on the implications of one’s personal choice of strategies in terms of generalizability,
realism, precision over data and control of human aspects.
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Finally, we hope the Who-What-How framework will lead to some community-wide
discussions about the overall shape of the research we do, and how certain values and expec-
tations at the level of a particular publishing venue may impact the relevance of our research
for researchers and practitioners.
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Appendix A: The Circumplex of Runkel andMcGrath

Figure 6 shows a sketch of the research strategy circumplex designed by Runkel and
McGrath (1972) for categorizing behavioral research strategies. We adapted their model for
the How part of our research framework. Runkel and McGrath’s model of research strategies
was developed in the 1970s for categorizing human behavioral research, hence it provides a
good model for examining socio-technical factors in software engineering.

The McGrath model has been used by other software engineering researchers to reflect
on research strategy choice and its implications on research design (Easterbrook et al. 2008),
and most recently by Stol and Fitzgerald (2018) as a way to to provide consistent termi-

Fig. 6 Runkel and McGrath’s research strategy circumplex
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nology for research strategies (Stol and Fitzgerald 2018) 9 It is used in the field of Human
Computer Interaction (Baecker et al. 1995) and CSCW (Cruz et al. 2012) to guide research
design on human aspects.

Three of our quadrants (Respondent, Lab, Field) mirror three of the quadrants in Runkel
and McGrath’s book (although we refer to Experimental Strategies as Lab Strategies as we
find this less confusing). The fourth quadrant they suggest captures non-empirical research
methods: they refer to this quadrant as Theoretical Strategies. We consider two types of non-
empirical strategies in our framework: Meta (e.g., systematic literature review), and Formal
Theory. We show these non empirical strategies separately to the four quadrants of empirical
strategies in our framework. Our fourth quadrant includes Computer Simulations (which
we consider empirical), but it also includes other types of data strategies that rely solely on
previously collected data in addition to simulated data. We call this fourth quadrant in our
framework “Data Strategies”.

One of the core contributions of the Runkel and McGrath research strategy model is to
highlight the trade-offs inherent in choosing a research strategy and how each strategy has
strengths and weaknesses in terms of achieving higher levels of generalizability, realism
and control. Runkel and McGrath refer to these criteria as “quality criteria”, since achieving
higher levels of these criteria is desirable. Generalizability captures how generalizable the
findings may be to the population outside of the specific actors under study. Realism cap-
tures how closely the context under which evidence is gathered may match real life. Control
refers to the control over the measurement of variables that may be relevant when human
behaviors are studied. Field strategies typically exhibit low generalizability, but have higher
potential for higher realism. Lab studies have high control over human variables, but lower
realism. Respondent strategies show higher potential for generalizability, but lower realism
and control over human variables.

We added a fourth research quality criterion to our model, data precision. Data strate-
gies have higher potential for collecting precise measurements of system data over other
strategies. Data studies may be reported as ‘controlled’ by some authors when they really
mean precision over data collected, therefore, we reserve the term control in this paper for
control over variables in the data generation process (e.g., applying a treatment to one of
two groups and observing effects on a dependent variable). McGrath himself debated the
distinction between precision and control in his later work. We note that McGrath’s obser-
vations were based on work in sociology and less likely to involve large data studies, unlike
in software engineering. The Who-What-How framework (bottom of Fig. 1) denotes these
criteria in italics outside the quadrants. The closer a quadrant to the criterion, the more the
quadrant has the potential to maximize that criterion.

We recommend that the interested reader refer to Runkel and McGrath’s landmark book
(Runkel and McGrath 1972) for additional insights on methodology choice that we could
not include in our paper.

Appendix B: Sample Paper Classification

Table 3 shows a 15-paper sample classified using our Who-What-How framework. Full data
is available at https://doi.org/10.5281/zenodo.3813878.

9Stol and Fitzgerald interpret and extend this model quite differently to us as they are not concerned with
using their framework to discriminate which strategies directly involve human actors. Runkel and McGrath
developed their model to capture behavioral aspects and we maintain the behavioral aspect in our extension
of their model.
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Table 3 Examples of our paper classification and coding. FS: Field Study, D: Data Study, LE: Lab
Experiment, JS: Judgment Study, FT: Formal Theory, SS: Sample Study

Venue Paper title Authors Strategies Purpose Beneficiaries

ICSE The evolution of continuous
experimentation in software
product development

Fabijan et al. FS Descriptive Human

ICSE Learning Syntactic Program
Transformations from Examples

Rolim et al. D Solution Human System

ICSE Glacier: Transitive Class
Immutability for Java

Coblenz et al. D/LE Solution Human System

ICSE UML Diagram Refinement Faitelson FT Solution Human

ICSE Understanding the Impressions,
Motivations and Barriers of
One Time Code Contributors to
FLOSS Projects: A Survey

Lee et al. SS Descriptive Human

ICSE Fuzzy Fine-grained Code-history
Analysis

Servant et al. D/JS Solution Human System

ICSE On Cross-stack Configuration Errors Sayagh et al. D/D Solution All

ICSE Machine Learning-Based Detec-
tion of Open Source License
Exceptions

Vendome et al. D/JS Descriptive Human System

ICSE Feedback-Based Debugging Lin et al. D/LE Solution Human System

EMSE On the long-term use of visual
GUI testing in industrial practice
- a case study.

Alégroth et al. FS Descriptive Human

EMSE Evaluating code complexity trig-
gers, use of complexity measures
and the influence of code com-
plexity on maintenance time.

Antinyan et al. SS Descriptive Human

EMSE Reengineering legacy applica-
tions into software product lines -
a systematic mapping.

Assunçao et al. Meta Descriptive Researcher

EMSE User satisfaction and system suc-
cess - an empirical exploration
of user involvement in software
development.

Bano et al. FS/Meta Descriptive Human

EMSE Extracting and analyzing time-
series HCI data from screen-
captured task videos.

Bao et al. D/LE Solution System Researcher

EMSE The last line effect explained. Beller et al. D/SS Descriptive Human System
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