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Abstract
We automate the process of assigning issue reports to development teams by using data
mining approaches and share our experience gained by deploying the resulting system,
called IssueTAG, at Softtech. Being a subsidiary of the largest private bank in Turkey, Soft-
tech on average receives 350 issue reports daily from the field, which need to be handled
with utmost importance and urgency. IssueTAG has been making all the issue assignments
at Softtech since its deployment on Jan 12, 2018. Deploying IssueTAG presented us not
only with an unprecedented opportunity to observe the practical effects of automated issue
assignment, but also with an opportunity to carry out user studies, both of which (to the best
of our knowledge) have not been done before in this context. We first empirically determine
the data mining approach to be used in IssueTAG. We then deploy IssueTAG and make
a number of valuable observations. First, it is not just about deploying a system for auto-
mated issue assignment, but also about designing/changing the assignment process around
the system. Second, the accuracy of the assignments does not have to be higher than that
of manual assignments in order for the system to be useful. Third, deploying such a sys-
tem requires the development of additional functionalities, such as creating human-readable
explanations for the assignments and detecting deteriorations in assignment accuracies, for
both of which we have developed and empirically evaluated different approaches. Last but
not least, stakeholders do not necessarily resist change and gradual transition helps build
confidence.
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1 Introduction

When a software system produces an unexpected result or when an additional feature is
requested from the system, a report is submitted to the vendor. These reports, which are
often referred to as issue reports, bug reports, or problem reports, include all the information
necessary for the vendor to resolve the reported issues. Once a report is received, the vendor
carries out a number of tasks until the issue is resolved, including determining the validity
of the reported issue and figuring out whether the same/similar issues have been reported in
the past (Antoniol et al. 2008; Bettenburg et al. 2008a; Bettenburg et al. 2008b; Jalbert and
Weimer 2008; Lamkanfi et al. 2010; Menzies and Marcus 2008; Pandey et al. 2017; Wang
et al. 2008).

An integral part of this process is to assign the issue reports to the development teams
or to the individual developers, who are responsible for resolving the reported issues. In the
remainder of the paper, we refer to this task as issue report assignment (or issue assignment,
in short).

Issue assignment is important because incorrect assignments can increase the turnaround
time for resolutions. This is because incorrectly-assigned issue reports would typically
bounce back and forth between the development teams and/or individual developers until
the correct assignee is located, i.e., issue tossing. And, issue tossing can cause a great deal
of wasted time (Bhattacharya et al. 2012; Jeong et al. 2009).

In this work, we automate the process of issue assignment by using data mining
approaches and share our experience gained by deploying the resulting system, called
IssueTAG, at Softtech.1 Softtech is the largest software company of Turkey owned by domes-
tic capital. Being an ISO-9001-certified subsidiary of the largest private bank in Turkey,
called IsBank,2 Softtech receives an average of 350 issue reports every day from the field.
IssueTAG has been making all the issue assignments since its deployment on Jan 12, 2018.

Automated issue assignment is indeed not a new idea (Murphy and Cubranic 2004; Anvik
et al. 2006; Wang et al. 2008; Bhattacharya et al. 2012; Jonsson et al. 2016; Dedı́k and
Rossi 2016). Most of the existing works, however, report the results obtained on open source
projects, such as Eclipse, Mozilla, and Firefox (Murphy and Cubranic 2004; Anvik et al.
2006; Wang et al. 2008; Bhattacharya et al. 2012). Our work differs from these works in
that we present an industrial case where we use the issue reports filed for commercial,
closed-source software systems.

We, furthermore, assign issue reports to development teams, rather than to individual
developers. The former is more practical and realistic in industrial setups, because the latter
does not take into account 1) the current workloads owned by the individual developers,
2) the changes in the team structures, such as the developers leaving or joining the teams,
and 3) the current status of developers, such as the developers who are currently on leave
of absence. Therefore, especially in the presence of close-knit development teams, which
is the case with Softtech, assigning issue reports to the development teams help the teams
make more educated decisions.

Moreover, rather than carrying out the issue assignments in the context of a single prod-
uct, where the incoming issues are assigned to individual software engineers, we do the
assignments at the level of an entire company (Softtech), which has 489 software prod-
ucts comprised of around 100 millions of lines of code (as of Feb 3, 2019). That is, we

1https://softtech.com.tr
2https://www.isbank.com.tr
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assign issue reports filed for any product owned by Softtech to the development teams
responsible for resolving the reported issues. This is challenging because the collection of
software products maintained by Softtech heavily interact with each other in a business-
critical environment by sharing many resources, such as databases, file systems, and GUI
screens. Therefore, the boundaries of these products from the perspective of issue reporting
and management are not clear at all.

There are only few recent studies reporting the results obtained on closed-source, com-
mercial software projects (Jonsson et al. 2016; Dedı́k and Rossi 2016; Lin et al. 2009;
Helming et al. 2010). These studies, however, carry out the assignments in a retrospective
and offline manner by simply treating the actual issue databases as historical data. We have,
on the other hand, deployed IssueTAG. This presented us not only with an unprecedented
opportunity to observe the practical effects of automated issue assignment, but also with an
opportunity to carry out user studies, which (to the best of our knowledge) have not been
done before in this context.

First, we observed that it is not just about deploying a data mining-based system for auto-
mated issue assignment, but also about designing/changing the assignment process around
the system to get the most out of it. We, in particular, made simple, yet effective changes in
the manual issue assignment process employed at IsBank and Softtech (Section 4).

Second, the accuracy of the assignments does not have to be higher than that of man-
ual assignments in order for the system to be useful. This is further validated by the
user studies we carried out on actual stakeholders on the field (Section 7). In a nut-
shell, although the daily assignment accuracy of IssueTAG was slightly lower than that of
manual assignments (0.831 vs. 0.864), it reduced the manual effort required for the assign-
ments by about 5 person-months per year and improved the turnaround time for resolving
the reported issues by about 20% (Section 4.2.3). Furthermore, about 79% of the stake-
holders participated in our user study “agreed” or “strongly agreed” that the system was
useful (Section 7).

Third, we observed that deploying a data mining-based approach for automated issue
assignments, requires the development of additional functionalities, which are not neces-
sarily foreseen before the deployment. We have, in particular, developed two additional
functionalities, both of which, to the best of our knowledge, have not been evaluated before
in the context of issue assignment. One functionality we needed was to create human-
readable, non-technical explanations for the assignments made by the system. This was
indeed a need we came to realize when we received several phone calls from the stakehold-
ers shortly after the deployment of IssueTAG, demanding explanations as to why certain
issue reports (especially, the incorrectly assigned ones) were assigned to them. Note that
this is not a trivial task at all, especially when the underlying data mining models are not
human readable. To this end, we have generated model-agnostic explanations (Ribeiro et al.
2016) and carried out a user study to evaluate the quality of these explanations (Section 5).
Another functionality we needed was to monitor the assignment accuracy of the system and
detect deteriorations in an online manner, so that corrective actions, such as recalibrating the
models, can be taken in time. To this end, we have developed a change point detection-based
approach (Section 6).

Last but not least, we observed that stakeholders do not necessarily resist change. In
particular, we did not receive any objection at all to the deployment of IssueTAG. We
believe that this was because all the stakeholders believed that they would benefit from the
new system and none of them felt threatened by it (Section 8). We, furthermore, observed
that gradual transition helped stakeholders build confidence in IssueTAG, which, in turn,
facilitated the acceptance of the system (Section 8).
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More specifically, the research questions we address in this work are:

– RQ1: How does automated issue assignment compare to manual issue assignment in
practice?

– RQ2: Can the issue assignments made by the underlying data mining model be
explained in a non-technical manner?

– RQ3: Can the deteriorations in the assignment accuracies be automatically detected in
an online manner?

– RQ4: Is IssueTAG perceived as useful by the end-users?

IssueTAG has made a total of 134,622 automated assignments since its deployment
on 12.01.2018 (as of 30.06.2019). RQ1 aims to evaluate pros and cons of automated
issue assignments on the field by using the data we collected as well as the observa-
tions we made during this period of time. RQ2 aims to evaluate whether the assign-
ments made by IssueTAG can be explained to non-technical stakeholders in an auto-
mated manner – a need which we came to realize after the deployment of IssueTAG.
RQ3 evaluates whether the deteriorations in assignment accuracies can automatically be
detected – a mechanism not only increases the confidence of the stakeholders in the
system, but also helps determine when the underlying classification model needs main-
tenance. Finally, RQ4 evaluates the usefulness of IssueTAG from the perspective of
end-users.

The remainder of the paper is organized as follows: Section 2 describes the issue
assignment process employed at IsBank and Softtech before the deployment of IssueTAG;
Section 3 presents IssueTAG with the studies we carried out to fine-tune the system’s per-
formance; Section 4 deploys IssueTAG and evaluates its effectiveness in practice (RQ1);
Section 5 presents an approach for automatically generating explanations for the assign-
ments and evaluates it by conducting a user study (RQ2); Section 6 describes and evaluates
a change point detection-based approach for detecting deteriorations in assignment accu-
racies (RQ3); Section 7 carries out a user study on the end-users of IssueTAG to evaluate
whether the deployed system is perceived as useful (RQ4); Section 8 presents lessons learnt;
Section 9 discusses threats to validity; Section 10 presents related work; and Section 11
concludes with potential avenues for future work.

2 Case Description

IsBank is the largest private bank in Turkey with 7.5 million digital customers, 25 thousand
employees, 6566 ATMs (Automated Teller Machines), and 1314 domestic and 22 foreign
branches, providing a large variety of banking and financial services.

Softtech is the largest software company of Turkey owned by domestic capital. It
provides customer-oriented, business-critical solutions to IsBank by using universally-
recognized lean techniques and agile processes with a diverse set of programming lan-
guages, platforms, and technologies. Some of the technologies used by Softtech include
COBOL, Java, C#, C++, mainframe platforms, mobile/wearable platforms, security- and
privacy-related technologies, natural language processing technologies, speech technolo-
gies, image/video processing technologies, and artificial intelligence technologies.

When the wide range of software systems maintained by Softtech couple with the large
user base owned by IsBank, who depend on these systems to carry out their day-to-day busi-
nesses, Softtech receives an average of 350 issue reports from the field every day (around
90 thousand reports per year). The reported issues range from bank clerks having software
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failures to bank customers facing software-related problems in any of the bank channels,
including online, mobile, and ATM.

Most of the reported issues concern business-critical software systems. Therefore, both
Softtech and IsBank need to handle these issues with utmost importance and urgency. To
this end, two dedicated teams of 80 full-time employees in total, namely IT Help Desk (IT-
HD) and Application Support Team (AST), are employed, the sole purpose of which is to
manage the reported issues.

2.1 IT Help Desk

The IT-HD team is employed at IsBank and it consists of 50 full-time, (mostly) non-
technical clerks, who are internally referred to as Level 1 employees, indicating the level of
technical competency they have. When a bank employee or a bank customer faces an IT-
related issue, they call IT-HD on the phone. The IT-HD clerk listens to the issue, collects the
details as needed, records them, and resolves the reported issue right away if it is an issue
that can be resolved by an IT-HD clerk, such as the ones documented in basic troubleshoot-
ing guides. If not, the clerk is responsible for dispatching the issue to the proper entity/unit
in the company. In the case of a software-related issue, the clerk files an issue report to
Softtech.

2.2 Issue Reports

An issue report, among other information, such as the date and time of creation, has two
parts: a one-line summary and a description, both of which are written in Turkish. The
former captures the essence of the issue, whereas the latter describes the issue, including
the expected and observed behavior of the system, and provides information to reproduce
the reported issue (Bettenburg et al. 2008a). Note that the aforementioned issue reports
do not have any field conveying categorical information, such as product, component, and
version information. The reason is that the collection of software products maintained by
Softtech are heavily interacting with each other in a business-critical environment, sharing
many resources, such as databases, file systems, and GUI screens. Therefore, the boundaries
of these products/components from the perspective of issue reporting and management are
not clear at all. For example, a single GUI screen can have multiple tabs, each of which
is maintained by a different development team. A single tab can, in turn, have a number
of widgets, each of which is under the responsibility of a different team. Almost all of the
GUI screens interact with the core banking system, which is maintained by a different set
of development teams. The core can be accessed via different banking channels, such as
online, mobile, ATM, and SMS (Short Message Service), each of which has a dedicated
set of development teams. Last but not least, financial transactions are typically carried out
by using multiple GUI screens, widgets, and channels, crossing the boundaries of multiple
development teams.

2.3 Application Support Team (AST)

The AST team is employed at Softtech and it consists of 30 full-time, Level 2 employees.
That is, in terms of technical competency, the AST employees are somewhere between
Level 1 IT-HD clerks and Level 3 software engineers. AST employees are embedded in
development teams, which are consisted of software engineers. The same AST member can
work with multiple development teams and a development team can have multiple AST
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Fig. 1 Issue report assignment process before the deployment of IssueTAG

members. The sole responsibility of an AST member embedded in a development team is
to manage the collection of issue reports assigned to the team. When a new issue report is
assigned to a development team, the AST member embedded in the team is typically the
first one to examine the report. If the AST member can resolve the reported issue, he/she
first resolves it and then closes the report on behalf of the team. Otherwise, the AST member
notifies the development team about the newly reported issue by, for example, assigning
it to a software engineer in the team or by creating a task for the team and linking it to
the issue report. Note that AST members, although they are not considered to be software
engineers, can still resolve some of the reported issues as not all of these issues may require
changes in the code base. Some issues, for example, are resolved by running pre-existing
scripts, which can automatically diagnose and fix the problems or by manually updating
certain records in the database. Therefore, the ultimate goal of the AST members is to
reduce the workload of software engineers by resolving the issues that do not require code
changes.

2.4 Manual Issue Assignment Process

Before the deployment of IssueTAG, IT-HD clerks, after creating an issue report, was
assigning it to a development team. To this end, they were maintaining a knowledge base,
which was simply comprised of spreadsheets mapping certain keywords with development
teams. In the presence of an incorrect assignment, although the AST member(s) or the soft-
ware engineers in the respective development team could reassign the issue to a different
team, the incorrectly assigned reports were often returned back to IT-HD for reassign-
ment. Figure 1 summarizes the assignment process. The issue reports are managed by using
Maximo3 at IsBank and by using Jira4 at Softtech.

3https://www.ibm.com/products/maximo
4https://www.atlassian.com/software/jira
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2.5 Issues with theManual Assignment Process

There were a number of issues with the aforementioned process. First, the learning curve
for the IT-HD clerks (especially for the new hires) for excelling in team assignments was
generally steep. This was due to the large number of issue reports received on a daily basis
(an average of about 350 issue reports) as well as the relatively large number of products
and development teams present (more than 450 products and between 47 and 57 teams at
any given point in time). Second, although IT-HD clerks were using a knowledge base to
help with the assignments, it was maintained in an ad hoc manner, which was error prone,
cumbersome, and time consuming. Last but not least, incorrect assignments were not only
causing frictions between the IT-HD clerks and the AST members, but also increasing the
turnaround time for resolutions due to issue tossing.

3 IssueTAG

IsBank and Softtech wanted to improve their current practices. To this end, we have
developed IssueTAG, which automates the issue assignments.

Note that our goal in this work is neither to propose yet another approach for automated
issue assignment nor to evaluate all of the existing approaches to determine the best possible
approach. It is rather to identify an existing approach that can produce similar or better
assignment accuracies with the manual assignment process employed at IsBank/Softtech
and that can be developed and deployed with as little risk as possible. After all, most of the
issue reports IssueTAG will process, concern business-critical software systems. Therefore,
neither IsBank nor Softtech was willing to take too much risk.

In this section, we, therefore, briefly describe the studies we carried out to determine
the approach to be employed by IssueTAG. For detailed discussions as well as in-depth
analyses, the interested reader can refer to Appendices A and B. Note that these aforemen-
tioned studies use the historical issue reports maintained by Softtech in an offline manner
to fine-tune the online performance of IssueTAG.

At a very high level, we had to make two design decisions: which data mining approach
to use for automated issue assignments (Section 3.1) and what the time locality of the
training data should be (i.e., how much back in time we should go) to train the models
(Section 3.2).

3.1 Issue Assignment Approach

To develop the issue assignment approach to be used by IssueTAG, we surveyed the liter-
ature and determined a number of candidate approaches for the task at hand (Murphy and
Cubranic 2004; Anvik et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011; Jon-
sson et al. 2016). We then empirically evaluated these approaches on the issue database,
which has been maintained by Softtech.

In particular, we cast the problem of issue assignment to a classification problem. To
this end, the natural language descriptions in an issue report is analyzed to determine the
development team, to which the report should be assigned.

Given an issue report, we first combine the “description” and “summary” parts of the
report, tokenize the combined text into terms, and remove the non-letter characters as well
as the stop words. We then represent an issue report as a multi-dimensional vector using
the well-known tf-idf method (Manning et al. 2010) (Appendix A). Finally, the problem of
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assignment is cast to a classification problem where the development team, to which the
issue report should be assigned, becomes the class to be predicted.

To determine the classifier to be used in IssueTAG, we picked a number of classi-
fiers, each of which had been shown to be effective for automated issue assignment.
These classifiers were, namely, multinomial naive bayesian (Manning et al. 2010), deci-
sion tree (Breiman 2017), k-nearest neighbor (Manning et al. 2010), logistic regression
(Bishop 2006), random forest (Breiman 2001), and linear support vector classifiers (SVCs)
(Joachims 1998). We also combined these classifiers in different ways by using stacked
generalization – an ensemble technique to combine multiple individual classifiers (Wolpert
1992). All told, we obtained a total of 11 different classifiers. We then evaluated the
performance of these classifiers by using historical issue reports (Appendix A).

Based on both the effectiveness (i.e., assignment accuracy) and efficiency (i.e., training
time) of the aforementioned classifiers, we have decided to employ a linear support vec-
tor classifier (linear SVC) in IssueTAG, which, in the experiments, provided an F-measure
of 0.80 (a precision of 0.80 and a recall of 0.80) with a training time of about 3.5 min-
utes. For detailed discussions as well as in-depth analyses, the interested reader can refer to
Appendix A.

3.2 Time Locality of Training Data

After determining the classifier to be used, the next question we had was to determine the
time locality of the issue reports (i.e., how much back in time we should go) (Jonsson et al.
2016) required for preparing the training data every time the classification model needs to
be trained.

Note that IssueTAG is an online system, which is expected to have a long lifespan.
Therefore, the classification model it uses for making the assignments should be trained
(i.e., maintained) as needed since the underlying issue database evolves. Once a decision is
made to train the classification model (an issue we address in Section 6), the time locality
of the training data to be used plays an important role to retain/improve the efficiency and
effectiveness of IssueTAG.

To this end, we used the sliding window and cumulative window approaches introduced
in Jonsson et al. (2016). In particular, we took a long period of time (in our case, 13 months);
divided it into calendar months; used the issue reports submitted during different windows
of consecutive months as training sets to train linear SVC models; evaluated the perfor-
mance of these models in predicting the assignments for the issue reports submitted in the
subsequent months; and finally picked the best time window (Appendix B).

Based on the results of these studies, to train a classification model at a given point
in time, we decided to use all the issue reports that have been submitted in the last 12
months as the training data. Clearly, among all the issue reports of interest, we filter out
the ones that have not yet been closed (as their team assignments have not yet been final-
ized). For detailed discussions as well as in-depth analyses, the interested reader can refer
to Appendix B.

3.3 Deployment Configuration

We have, therefore, decided to employ linear SVC models in IssueTAG, which are trained
by using the issue reports submitted in the last 12-month time frame.

Due to security reasons, we are able to publish (in full, or in partial) neither the issue
reports used in these studies nor the source code of IssueTAG. However, some scripts, which
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are similar to the ones we used in order to carry out the experiments in Appendices A and
B as well as some code excerpts demonstrating the basic functionalities used in Sections 5
and 6, can be found at https://github.com/ethemutku/IssueTag.

4 Automated Issue Assignments in Practice (RQ1)

In this section, we investigate our first research question (RQ1): “How does automated
issue assignment compare to manual issue assignment in practice?” Note that the results
of this study will help evaluate the pros and cons of automated issue assignments on
the field.

4.1 Approach

To deploy IssueTAG at IsBank and Softtech, we carried out a number of meetings with
the IT-HD, AST, and software development teams. In these meetings, the problems with
the manual issue assignment process were discussed and IssueTAG was presented. We,
furthermore, demonstrated the effect of automating the assignment process by using the
results of a number of preliminary studies conducted on historical data.

One commonly accepted observation, which was made numerous times in these meet-
ings, was that automating the issue assignment process would also require to modify
the other parts of the process around the deployed system to improve the efficiency and
effectiveness of the entire process to the extent possible.

One refinement suggestion came from us (Process Improvement Team at Softtech). In
our preliminary studies, we observed that wrong assignments made by IssueTAG were often
caused due to the difficulty of distinguishing related, but different development teams from
each other, such as the teams working on related products or working on different compo-
nents of the same product. That is, when an issue report was assigned to a wrong team, the
assignee and the correct team (i.e., the one, to which the report should have been assigned)
were often related to each other, e.g., they were aware of each other’s works. Consequently,
we suggested that in the presence of an incorrect assignment, rather than returning the issue
report to IT-HD for reassignment (Section 2), letting the assignee (e.g., the AST member
embedded in the incorrectly assigned team) do the reassignment, could profoundly speed
up the process.

Another refinement suggestion came from the IT-HD management. They simply sug-
gested to prevent IT-HD clerks from modifying the issue assignments made by IssueTAG.
On one hand, this was a natural consequence of the design decision discussed above.
When the reassignments are made by the current assignee, IT-HD clerks will not neces-
sarily be aware of these modifications, thus may not learn from them to improve their
assignment accuracies. On another hand, we observed that IT-HD was actually look-
ing forward to deferring the responsibility of issue assignments. One reason was that,
especially for the new IT-HD clerks, the learning curve for excelling in assignments
was generally steep. This was due to the large number of issue reports received on a
daily basis and the relatively large number of development teams present (Section 4.2.3).
In fact, IT-HD was maintaining a knowledge base (comprised mostly of spreadsheets)
to help the clerks with the assignments. However, it was cumbersome and costly for
them to keep this knowledge base up to date. Nevertheless, incorrect assignments were
often causing friction between the IT-HD clerks and AST members as well as the
development teams.
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4.2 Evaluation

We deployed IssueTAG on Jan 12, 2018. The system has been fully operational since then,
making automated assignments for all the issue reports submitted. Figure 2 presents the
overall system architecture. Furthermore, Table 1 reports some summary statistics regarding
the operations of the deployed system.

4.2.1 Deployment Setup

Based on the results of our empirical studies in Section 3.1, IssueTAG was configured to
use linear SVC to train the classification models. And, based on the results obtained in
Section 3.2, the models have been trained by using the issue reports submitted in the last
12-month time frame. Furthermore, as all the process improvement suggestions discussed
in Section 4.1 were accepted by all the stakeholders involved, we configured IssueTAG such
that once an issue report was created by an IT-HD clerk for the first time, the report was
automatically assigned to a development team by the deployed system. The IT-HD clerk
did not have any means of interfering with the assignment process and/or modifying the
assignment.

Table 1 Summary statistics regarding the operations of IssueTAG, starting from its deployment on Jan 12,
2018 till June 30, 2019

Item Value

Total number of issue reports assigned 134,622

Average number of issue reports per day 380

Total number of distinct teams 62

Average time it takes to train the model (with one year of data) 3m 42s

Average response time of the system 746 msec

Size of the trained model (trained with one year of data) 588 MB
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The system is deployed on a Dual-Core Intel(R) Xeon(R) E5-2695 v4 2.10 GHz machine
with 32 GB of RAM running Windows Server 2012 R2 as the operating system.

4.2.2 Evaluation Framework

To evaluate the quality of the assignments over a period of time, we compute the assignment
accuracy on a daily basis, which we refer to as daily assignment accuracy. More specifically,
the daily assignment accuracy achieved on a day d, is the ratio of the assignments that are
correctly made for the issue reports opened on the day d. Note that we compute the daily
accuracies based on the dates, on which the issue reports are opened, rather than they are
closed. This is because the automated assignments are made as soon as the issue reports are
created (i.e., opened) by using the underlying classification model, which was available at
the time of the creation.

To evaluate the reduction in the amount of manual effort required for the issue assign-
ments, we measure the person-months saved by automating the process. To this end, a
survey we conducted on the IT-HD clerks revealed that, given an issue report, it takes about
30 seconds on average for an IT-HD clerk to assign the report to a development team,
which is mostly spent for reasoning about the issue report and (if needed) performing a
keyword-based search in the knowledge base. Note that this effort includes neither the effort
needed to maintain the knowledge base nor the needs of the IT-HD clerks to make reli-
able assignments, such as breaks, education, and sickness leave salary. Therefore, the actual
amortized manual effort is expected to be higher than 30 seconds. IssueTAG, on the other
hand, requires no human intervention to make an assignment once an issue report has been
created.

To evaluate the effect of the deployed system as well as the improvements made in the
issue assignment process, we compute and compare the solution times as well as the number
of issue tosses before and after the deployment of IssueTAG. We define the solution time
for an issue report as the time passed between the report is opened and it is closed. The
shorter the solution times, the better the proposed approach is. We define the number of
issue tosses (Jeong et al. 2009) for an issue report as the number of distinct teams, to which
the report is assigned after the first assignment until it is closed. The lower the number of
issue tosses, the better the proposed approach is. Furthermore, as the characteristics of the
reported issues, thus the solution times as well as the number of tosses, can change over
time, we, in the evaluations, compute and compare these metrics for the issue reports that
were opened within two months before and after the deployment of IssueTAG.

4.2.3 Data and Analysis

Figure 3 presents the daily assignment accuracies achieved between December 2016 and
June 2019. The time point 0 in this figure represents the date, on which the manual issue

Fig. 3 Daily assignment accuracies achieved between December 2016 and June 2019, and change points
(vertical dashed lines) where a shift in daily accuracies was automatically detected
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assignment process as it is described in Section 2, was started. Furthermore, the vertical
dashed lines in the figure represent the points in time where a shift in daily accuracies
was automatically detected by the change point detection approach we had developed
(Section 6). IssueTAG was, indeed, deployed exactly at the 273rd time point where the third
vertical dashed line resides. That is, all the accuracies before this dashed line were obtained
by manual assignments, whereas those after were obtained by automatic assignments. The
other vertical dashed lines will be discussed below in this section.

We first observed that after IssueTAG was deployed, the daily assignment accuracies
dropped slightly (Fig. 3). More specifically, the average daily accuracies before
and after the deployment were 0.864 (min = 0.691, max = 0.947, stddev = 0.040)
and 0.831 (min = 0.752, max = 0.912, stddev = 0.027), respectively.

We, however, observed that the accuracy of an automated issue assignment system
does not have to be higher than that of manual assignments in order for the system to be
useful. First, we observed that IssueTAG reduced the manual effort required for the assign-
ments. In particular, given that it takes an average of 30 seconds for an IT-HD clerk to
assign an issue report to a development team and an average of 8,000 issue reports are
received on a monthly basis, IssueTAG has been saving 5 person-months yearly, on aver-
age (8,000 issue reports * 30 seconds = 240,000 seconds per month = 5 person-months
per year).

Second, we observed that the deployed system together with the process improvements
we implemented, profoundly reduced the turnaround time for closing the issue reports. More
specifically, the average solution times before and after the deployment were 3.26 days
and 2.61 days, respectively. We, furthermore, observed that IssueTAG slightly reduced the
average number of issue tosses for a total of 5122 reassigned issue reports (13% of all the
issue reports) from 1.50 to 1.49. Figure 4 presents the box-whisker plot of the numbers
of tosses before and after the deployment of IssueTAG. Note that the changes we made
in the bug assignment process around IssueTAG, in particular, making the AST members
responsible for the reassignments, rather than sending the issue reports back to the IT-HD

0.00

0.50

1.00

1.50

2.00

2.50

Before IssueTAG A�er IssueTAG

sessoT eussI  fo reb
mu

N

Number of Issue Tosses Before and A�er IssueTAG

Fig. 4 Box-whisker plot of the numbers of issue tosses before and after the deployment of IssueTAG. For
each box, the bottom and the top bars indicate the first and third quartiles, respectively, whereas the middle
bar and the diamond shape represent the median and the mean numbers of issue tosses, respectively
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clerks for reassignment, was instrumental both in reducing the number of tosses and in
having this slight reduction reflected as profound improvements in solution times.

Third, we observed that it can take quite a while for a human stakeholder to excel in
the issue assignment task, which is, indeed, a problem, especially in the presence of high
employee turn over rates. For example, the first vertical dashed line in Fig. 3, represents
the date on which an integral part of the core banking system was migrated from main-
frames to state-of-the-art hardware and software platforms. As a result of this migration, the
structure and the responsibilities of the related development teams changed significantly.
In particular, the responsibilities of one development team working on mainframes were
migrated to 3 development teams working on state-of-the-art platforms, which consisted of
completely different software engineers. Evidently, the assignment accuracies were affected
by this change; the daily accuracies dropped at the first vertical dashed line (i.e., 55th time
point) and stayed low until the second vertical dashed line (i.e., the 130th time point). More
specifically, the average daily accuracies obtained from the manual assignments before
the first dashed line, in between the first and second dashed lines, and after the second
dashed line until IssueTAG was deployed at the third dashed line were, 0.889 (min = 0.825,
max = 0.929, stddev = 0.024), 0.819 (min = 0.691, max = 0.900, stddev = 0.039), and
0.879 (min = 0.822, max = 0.947, stddev = 0.024), respectively. That is, it took the IT-
HD clerks about 2.5 months to adapt to the new development teams. Therefore, this time
frame can be considered to be a lower bound on the amount of time a new hire would require
to learn to make accurate assignments. It is a lower bound in the sense that only 19% of the
issue reports were affected by the changes in the team structure during the aforementioned
period of time. Furthermore, the IT-HD clerks already had a great deal of experience; for a
new hire, everything will be new.

Note further that the 0th time point in Fig. 3 represents the date, on which Jira was
started to be used for storing and managing the issue reports. That is, IT-HD clerks
had been making manual assignments before this date, but had different means of man-
aging the reports, which explains the high daily assignment accuracies even at the 0th

time point in the figure. As we didn’t have any access to the issue databases main-
tained before the 0th time point, we used only the issue reports managed by Jira in
this research.

Regarding the investment cost of IssueTAG, the effort required for developing the sys-
tem, including coding, quality assurance, and carrying out the experiments to fine-tune the
performance of the system (Appendices A and B), was 4 person months. On top of this, one
person-month effort was required to integrate IssueTAG with Jira and Maximo (Section 2).
The former was required both to automatically extract/preprocess the issue reports required
for training the classification models (which takes about an hour, on average, for a year of
issue reports) and to make the team assignments visible to the stakeholders. And, the latter
was required to feed the issue reports filled out by IT-HD clerks to IssueTAG for assign-
ment. The server, on which IssueTAG is deployed (Section 4.2.1), costs about 300 USD per
month (standard cost of a general-purpose server defined by Softtech). For the maintenance,
which has been so far carried out by restarting the IssueTAG server in the presence of rare
errors, was about 4 person days per year.

Last but not least, based on an in-depth analysis of mis-classified reports, we observed
that issue reports with attachments tended to be assigned with lower accuracy, compared
to the ones without any attachments. More specifically, 65.49% of the issue reports had
attachments, such as spreadsheets containing additional information and the snapshots of the
screens, on which the failures were observed. We observed that the assignment accuracies
for the issue reports with and without attachments were 80.98% and 88.06%, respectively.
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We believe that this was because the reports with attachments conveyed less information in
their one-line-summaries and descriptions as much of the information was already included
in the attachments. We, indeed, observed that while the reports with attachments had an
average of 29 words, those without any attachments had 41 words. Therefore, using the
attachments for issue assignment could further improve the accuracy of IssueTAG, which
we leave as a future work.

5 Explaining Team Assignments (RQ2)

One interesting observation we made after IssueTAG had been deployed was that, occa-
sionally, especially for incorrect assignments, the stakeholders demanded some expla-
nations as to why and how certain issue reports had been assigned to their teams.
This was an issue we didn’t expect to face before deploying the system. As a mat-
ter of fact, based on the informal discussions we had with the stakeholders, we
quickly realized that explaining the assignments could further improve the trust in
IssueTAG.

In this section, we address our second research question (RQ2): “Can the issue assign-
ments made by the underlying data mining model be explained in a non-technical manner?”
To this end, we develop and empirically evaluate (by conducting a survey on actual stake-
holders) an approach for automatically generating explanations for the issue assignments
made by the underlying classification model.

Note that since the classification models we use, namely the linear SVC models, are not
human-readable, providing such explanations is a non-trivial task. To the best of our knowl-
edge, there is, indeed, no work in the literature of automated issue assignment, addressing
this problem.

One requirement we have is that the explanations should easily be interpreted and under-
stood even by non-technical stakeholders as the recipients of these explanations are not
necessarily technical stakeholders. Another requirement is that they should be given in terms
of the natural language descriptions present in the issue reports, so that stakeholders can
relate to them.

With all these in mind, we conjecture that providing a list of most influential (positive
or negative) words for an issue assignment together with their relative impact scores as an
explanation for the assignment, could help stakeholders understand the rationale behind the
assignments.

Interestingly enough, we observe that such explanations could also be used in an inter-
active manner to enable the stakeholder creating the issue report to provide feedback to the
classification model. Although such human-in-the-loop assignments are out of the scope of
the this paper, we, nevertheless, added additional questions to our survey to evaluate the
plausibility of the idea.

5.1 Approach

We use LIME (Local Interpretable Model-Agnostic Explanations) to automatically pro-
duce explanations for the issue assignments made by IssueTAG. LIME is a model-agnostic
algorithm for explaining the predictions of a classification or regression model (Ribeiro
et al. 2016). In this work, we, (to the best of our knowledge) for the first time, use LIME
in the context of automated issue assignment and evaluate it by carrying out a survey on
actual stakeholders on the field. Next, we briefly describe the LIME algorithm without any
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intention to provide all the mathematics behind it. The interested reader can refer to Ribeiro
et al. (2016) for further details.

LIME, in our context, aims to identify a human-interpretable, locally faithful model,
which provides qualitative understanding between the terms used in issue reports and the
development teams, to which they are assigned. In a nutshell, given an issue report, the
assignment made for this report, and the underlying classification model, LIME first rep-
resents the report as a bag of words and samples instances around the report by drawing
subsets of the words in the bag uniformly at random. Then, the samples are weighted by
their proximities to the original issue report and fed to the classification model to label
them. Next, all the samples together with their associated labels are used to learn a linear
model comprised of K terms (in our case, K = 6), which distinguishes the labels. Finally,
the linear model learnt is reported as an explanation for the assignment.

The explanation generated for an assignment is, indeed, a set of K terms selected from
the original issue report together with their relative weights. The reported terms indicate the
influential terms that either contribute to the assignment or are evidence against it. Figure 6a
presents an example explanation created for an assignment made by IssueTAG on the field.
The vertical axis reports the most influential terms selected, whereas the horizontal axis
denotes their relative weights. The terms with positive weights depict the terms that con-
tribute to the assignment, where as those with negative weights depict the ones that are
evidence against it. That is, in a sense, the former set of terms vote for the assignment,
whereas the latter ones vote against it in an attempt to change the assignment.

5.2 Evaluation

To evaluate the proposed approach, we conducted a survey on the AST members. We chose
this group of stakeholders as the recipients of the survey because, being embedded in the
development teams, they were the direct end-users of the issue assignments made by Issue-
TAG. That is, they, as the first recipients of the issue reports, were the ones to validate
whether the assignments were correct or not and to reassign them as needed. The IT-HD
clerks, on the other hand, could not participate in the survey because they were not con-
sidered to be the end-users of the deployed system in the sense that they neither made use
of the assignments automatically made by the deployed system nor had a control over the
assignments.

5.2.1 Experimental Setup

Participation in the study was optional. The AST members were asked whether they would
voluntarily participate in the study (as well as the one in Section 7) via emails. About half
of the AST members (more specifically, 14 out of 30) agreed to participate.

We could not simply ask the participants to evaluate each and every explanation created
for the issue assignments, which were of interest to them. The reason was that there was a
large number of issue reports submitted on a daily basis (Section 4.2) and that checking out
the explanations was optional, i.e., the AST members were not required to have a look at the
explanations. Therefore, forcing them to evaluate the explanations as the issue assignments
were made, could have adversely affected their performance.

For each participant, we randomly picked 10 issue assignments, which were handled by
the participant in the last week before the study. While doing so, we made sure that the
ratio of correctly and incorrectly assigned issue reports roughly resembled the average daily
assignment accuracy. When there were less than 10 issue assignments for a participant, we
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selected all of the available ones. All told, we picked a total of 130 issue assignments (10
for each participant, except for two, for whom we could have only 5 assignments each). Out
of all the selected assignments, 13 (10%) were incorrect.

We then created a questionnaire for each participant by using the issue assignments
selected for the participant. For each assignment in the questionnaire, we included 1) the
issue report, 2) the assignment made by IssueTAG, 3) the explanation automatically created
by the proposed approach, using the 6 most influential terms involved in the assignment,
and 4) four questions (Table 2).

The first two questions, namely Q1 and Q2, were directly concerned with our main
research question in this study; whether or not the automatically generated explanations
could help stakeholders understand the rationale behind the assignments. Q1 was a “yes” or
“no” question, whereas Q2 was a Likert scale question with answer options: VT - very trust-
worthy, T - trustworthy, NS - not sure, U - untrustworthy, VU - very untrustworthy. The last
two questions, namely Q3 and Q4, on the other hand, aimed to evaluate the plausibility of
using the explanations to get feedback from the stakeholders in an attempt to further improve
the assignment accuracies. These questions were open-ended questions, which were condi-
tional on Q2; the participants were asked to answer these questions only when the response
to Q2 was either “untrustworthy” or “very untrustworthy.”

Before taking the questionnaire, participants were instructed about how the study would
be conducted and how the explanations as well the questions in the questionnaire should be
interpreted. The questionnaires were then sent via emails to the participants. All the expla-
nations in the questionnaires were created by using the LIME Python tool (Ribeiro et al.
2016) with K = 6. The decision of using the 6 most influential terms, was based on the
maximum number of terms that we thought a stakeholder could efficiently and effectively
reason about. Therefore, the explanations were shown exactly as in Fig. 6. Figure 5 pro-

vides a screen shot of the questionnaire sent as an email. In this figure, A corresponds
to the issue report, which was blacked out (together with other sensitive information) for

security reasons. B and C depict the assignment made by IssueTAG and the explanation

created for it, respectively. Furthermore, D – G represent the questions Q1-Q4 in Table 2,
respectively.

Table 2 Survey questions related to selected issue reports and their explanations

No Question Type

Q1 Is the explanation helpful in under-
standing the assignment?

Yes/No

Q2 Given the issue report, the assign-
ment, and the explanation for the
assignment,

how would you rate the trustworthi-
ness of the assignment?

Likert scale

Q3 Which terms in the explanation you
think are not contributing to the
assignment?

Open ended

Q4 What are the, additional terms that
you would like to see in the expla-
nation

before you can trust the assign-
ment?

Open ended
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Fig. 5 A screen shot of the questionnaire sent as an email

The participants filled out the questionnaires at their spare time. They were allowed to
work on the issue reports in any order they wanted. During the study, there was no inter-
action between the participants and the researchers. The responses were also collected via
emails.

5.2.2 Evaluation Framework

For Q1 and Q2, we use the frequencies of responses to quantitatively analyze the results.
For Q3 and Q4 (when answered), we manually investigate how the feedbacks can be used
to further improve the accuracies.

5.2.3 Data and Analysis

Regarding Q1, we observed that participants found 95% (123 out of 130) of the explana-
tions, each of which was created for a distinct issue assignment, helpful in understanding
the rationale behind the assignments.

Regarding Q2, based on the explanations created for the correct assignments, the partic-
ipants found 93% of the assignments (109 out of 117) “trustworthy” or “very trustworthy”
(Table 3). And, for the remaining 7% of the assignments (8 out of 117), they were “not sure”

Table 3 Responses obtained from Q2 (for the correct and incorrect assignments): “Given the issue report,
the assignment, and the explanation for the assignment, how would you rate the trustworthiness of the
assignment?” (VU - very untrustworthy, U - untrustworthy, NS - not sure, T - trustworthy, VT - very
trustworthy

% of

Q2 Total VU U NS T VT T or VT median mode

Correct assignments 117 0 0 8 32 77 93% VT VT

Incorrect assignments 13 0 1 2 2 8 77% VT VT
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whether the explanations helped them decide if the assignments were reliable or not. None
of the assignments was found “untrustworthy” or “very untrustworthy.”

Interestingly enough, based on the explanations created for the incorrect assignments, we
observed that the participants found 77% of the assignments (10 out of 13) “trustworthy”
or “very trustworthy.” This suggests that given the same issue reports, these participants
would have made the same or similar mistakes in assigning the reports. We believe that
this was because of some missing information in these issue reports, which was required
for accurate assignments (Table 3). Furthermore, the participants were “not sure” about the
trustworthiness of the 15% of the assignments (2 out of 13).

Regarding Q3 and Q4, among all the responses given to Q2, only one was scored neg-
atively. That is, based on the explanations created for the assignments, only one of the
assignments was found “untrustworthy.” And, this assignment was, indeed, an incorrect
assignment made by IssueTAG.

The explanation created for the aforementioned assignment is given in Fig. 6a. Given
this explanation, the participant argued in her response that the term “telegram,” which is
a domain specific term used when creating a credit account, was an important term for
the issue report at question. Therefore, it should have positively, rather than negatively,
affected the assignment. As a matter of fact, this argument was also well-aligned with the
automatically generated explanation given in Fig. 6a. “Telegram,” being a term with a large
negative impact, voted against the assignment in an attempt to change it. It was, however,
not strong enough to modify the outcome.

Interestingly enough, Fig. 6b presents the explanation created for the second likely
assignment made by the underlying classification model, which turned out to be the
correct assignment. Note that in this assignment, the term “telegram” had the largest
positive impact on selecting the correct team, which was also suggested by the stake-
holder. Therefore, had the participant presented with the explanations created for the
top two most likely assignments, she could have selected the second assignment, thus
increased the assignment accuracy. Note that the aforementioned type of approaches
are beyond the scope of this work. However, as the results of this study are promis-
ing, we, as a future work, plan to develop “human-in-the-loop” approaches, which
leverage the automatically created explanations to further improve the assignment
accuracies.

6 Monitoring Deterioration (RQ3)

In this study, we address our third research question (RQ3): “Can the deteriorations in the
assignment accuracies be automatically detected in an online manner?” This was, indeed,
another issue we faced after the deployment of IssueTAG. It is important because such a
mechanism not only increases the confidence of the stakeholders in the system, but also
helps determine when the underlying classification model needs to be recalibrated by, for
example, retraining the model (Sections 3.1-3.2).

6.1 Approach

One observation we make is that every issue report at Softtech is closed by the development
team, who has fixed the reported issue. Therefore, in the presence of an incorrect assignment
made by IssueTAG, the report is reassigned and the history of the reassignments is stored
in the issue tracking system. Consequently, at any point in time, the assignment accuracy
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b
Fig. 6 The explanations created for the assignment marked as “untrustworthy” by a participant: a the expla-
nation created for the original assignment, which was incorrect and b the explanation created for the second
likely assignment, which was correct

of IssueTAG can automatically be computed using the history of the issue reports that have
been closed. Therefore, deteriorations in the accuracy can be analyzed in an online manner.

To this end, we use an online change point detection approach, called Pruned Exact
Linear Time (PELT) (Killick et al. 2012). In a nutshell, PELT is a statistical analy-
sis technique to identify when the underlying model of a signal changes (Truong et al.
2018b). In our context, we feed PELT with a sequence of daily assignment accuracies
(Section 6.2) as the signal. The output is a set of points in time (if any) where mean
shifts. PELT, being an approach based on dynamic programming, detects both the number
of change points and their locations with a linear computational cost under certain condi-
tions (Killick et al. 2012). Further information can be found in Killick et al. (2012) and
Truong et al. (2018b).
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PELT has been used for change point detection in many application domains, includ-
ing DNA sequence data, financial time series, and oceanographic data (Hocking et al.
2013; Lavielle and Ere 2007; Killick et al. 2012). In this work, we, on the other
hand, use it (to the best of our knowledge) for the first time in the context of auto-
mated issue assignment to detect the deteriorations in the assignments made by a data
mining model.

6.2 Evaluation

We applied the PELT approach to the daily assignment accuracies collected from the
field. PELT detected three change points, each of which was depicted by a vertical
dashed line in Fig. 3. It turned out that these change points, indeed, coincided with some
important events that affected the assignment accuracies, validating the results obtained
from the proposed approach. The first dashed line represents the date, on which signifi-
cant changes in the team responsibilities occurred due to migrating certain functionalities
from mainframes to state-of-the-art platforms. The time gap between the first and sec-
ond dashed lines (i.e., about 2.5 months) represent the amount of time it took for the
IT-HD clerks to adapt to these changes. And, the third dashed line represents the date on
which IssueTAG was deployed. Further discussion on these change points can be found in
Section 4.2.3.

We observed that PELT did not detect any other change point after IssueTAG was
deployed. We believe that this was because the underlying classification model had been
regularly retrained at every month as a part of Softtech’s policy by using the issue reports
submitted in the last 12 months before the calibration (Section 3.2).

To further evaluate the proposed approach, we, therefore, carried out additional experi-
ments where we systematically varied the nature of the deteriorations and evaluated whether
the proposed approach detected them or not. Note that controlling the nature of the deterio-
rations in this study allows us to reliably evaluate the results. This is because when the true
nature of a deterioration, such as the exact point in time at which the deterioration occurred,
is not known (typically the case with the data collected from the field), the analysis may
suffer from the lack of ground truth. Note further that even if the underlying classification
model is regularly trained, monitoring for deteriorations is still relevant as the assignment
accuracies can still deteriorate in between the calibrations.

6.2.1 Experimental Setup

In each experimental setup, we used an ordered sequence of 200 daily assignment accu-
racies. The first 100 of these accuracies came from a normal distribution representing the
accuracies expected from IssueTAG, whereas the remaining 100 accuracies came from a
distribution (or a number of distributions) representing a deterioration. That is, the change
point in each experiment was the 100th time point as the deterioration was introduced after
this point in time.

For each experimental setup, we then mimicked the real-life operations of IssueTAG.
More specifically, given a sequence of 200 daily assignment accuracies, we fed them to
the proposed approach one daily accuracy after another in the order they appeared in the
sequence. After every daily accuracy, a decision was made whether a deterioration had
occurred, and if so, when. We finally determined how long it took for the proposed approach
to detect the deterioration. For each experimental setup, we repeated the experiments 1000
times.
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As an implementation of the PELT approach, we used the ruptures Python tool
(Truong et al. 2018a). As the penalty level, i.e., the only parameter to calibrate in PELT, we
used the empirically determined value of 0.05. The penalty level is a mechanism used for
guarding against overfitting, determining to which extent a shift in the accuracies should be
considered as a change point. The larger the penalty level, the fewer (and more significant)
change points are detected.

To model the daily accuracies expected from the system, we used a normal distribution
with mean of 0.85 and standard deviation of 0.025 (i.e., μ = 0.85 and σ = 0.025), mim-
icking the daily accuracies of the deployed system observed on the field (Section 4.2.3). To
model the deteriorations, we experimented with two types of changes: sudden deteriora-
tions and gradual deteriorations. In either case, we used 5-, 10-, 15-, and 20-point drops in
daily accuracies, such that the mean accuracy (i.e., the mean of the distribution, from which
the accuracies were drawn) eventually became 0.80, 0.75, 0.70, and 0.65, respectively.

For the sudden deteriorations, we abruptly dropped the mean accuracy from 0.85 to the
requested level (i.e., 0.80, 0.75, 0.70, or 0.65, depending on the choice) right after the change
point at the 100th time point and kept it intact until and including the 200th time point (i.e.,
until the end of the experiment). Figure 7 presents an example sequence of daily assignment
accuracies showing a sudden 10-point deterioration.

For the gradual deteriorations, on the other hand, the changes were obtained by linearly
dropping the mean accuracy starting from right after the change point at the 100th time
point until and including the 200th time point, such that the mean accuracy at end of the
experiment became 0.80, 0.75, 0.70, or 0.65, depending on the choice. For example, if the
requested level of accuracy was 0.80, then starting from the mean accuracy of 0.85, the
mean accuracy would be dropped by 0.05-point each day (5-point drop/100 days) until it
would become 0.80 at the 200th time point. Figure 8 presents an example sequence of daily
assignment accuracies showing a gradual 10-point deterioration starting from the 100th time
point.

6.2.2 Evaluation Framework

To evaluate the proposed approach, we first determine whether the deteriorations are
detected or not. If so, we measure detection time as the number of days passed after the
change point (i.e., after the 100th time point) until the deterioration is detected. The smaller
the detection time, the better the proposed approach is.

Fig. 7 An example sequence of daily assignment accuracies showing a sudden 10-point deterioration at the
100th time point
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Fig. 8 An example sequence of daily assignment accuracies showing a gradual 10-point deterioration starting
from the 100th time point

6.2.3 Data and Analysis

Table 4 presents the data we obtained on the sudden deteriorations used in the study. We
first observed that the proposed approach detected all the deteriorations. We then observed
that as the deterioration amount increased, the detection time tended to decrease, i.e., the
proposed approach tended to detect the deteriorations faster. On average, the deteriorations
were detected in 1.33, 1.60, 1.84, 2.67 days after there was a 20-, 15-, 10-, and 5-point
sudden drop in the mean assignment accuracies, respectively.

Table 5 presents the data we obtained on the gradual deteriorations. As was the case with
the sudden deteriorations, the proposed approach detected all the deteriorations and as the
deterioration amount (thus, the deterioration rate) increased, the detection time tended to
decrease. Compared to the sudden deteriorations, however, the detection times for gradual
deteriorations increased, which is to be expected. To better evaluate the quality of the detec-
tions, we, therefore, analyzed the mean accuracies that were present when the deteriorations
were detected. We observed that throughout all the experiments, the proposed approach
detected the deteriorations before the mean accuracy dropped more than 5-points (the last
column in Table 5).

To further evaluate the proposed approach, we carried out an additional experiment by
using the historical issue reports automatically processed by IssueTAG. In particular, we
aimed to answer the following question: Had the underlying classification model not been
retrained at every month as a part of Softtech’s policy (see Section 6.2 for more information),
would the proposed approach have detected any deteriorations?

To carry out the study, we took the classification model, which was trained on the first
day IssueTAG was deployed (on Jan 12, 2018) and used it as it was (without retraining

Table 4 Results obtained on
sudden deteriorations. The
experiments were repeated 1000
times

Detection time

Deterioration min avg max stddev

5-point 1 2.67 6 1.13

10-point 1 1.84 3 0.38

15-point 1 1.60 2 0.49

20-point 1 1.33 2 0.47
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Table 5 Results obtained on gradual deteriorations. The experiments were repeated 1000 times

Detection time Minimum mean accuracy

Deterioration min avg max stddev at the Point of Detection

5-point 1 31.03 55 13.64 0.81

10-point 1 20.14 35 8.41 0.81

15-point 1 15.70 26 6.49 0.80

20-point 1 13.36 21 4.95 0.80

the model monthly) for the subsequent issue reports until the proposed approach detected
a deterioration. Once a deterioration is detected, we retrained the classification model as
usual, i.e., by using the issue reports submitted in the last 12 months before the point of
detection (Section 3.2). We repeated this process until June 30, 2019, which is the date of
the last issue report we used in this paper.

We observed that the proposed approach would have detected two deteriorations.
Figure 9 presents the data. The vertical dashed lines represent the points in time where a
shift in daily accuracies occurred and the solid lines represent the points in time where these
shifts were detected.

The first warning was issued on July 23, 2018 (D1) regarding a shift on April 27,
2018 (S1). And, the second warning was issued on Jan 28, 2019 (D2) regarding a shift
on December 12, 2018 (S2). As was the case with our gradual deteriorations (Table 5),
although the detection times may seem to be high, the deteriorations were detected before
the mean accuracy dropped more than 5-points. The average daily accuracies before and
after S1 (i.e., between S-S1 and S1-D1) were 0.83 and 0.79, respectively. Similarly, the
average daily accuracies before and after S2 (i.e., between D1-S2 and S2-D2) were 0.83 and
0.78, respectively.

We, furthermore, observed that retraining the classification model after a shift has been
detected helped improve the daily accuracies. For example, while the average daily accuracy
between S1-D1 was 0.79, that between D1-S2 (i.e., after the model was retained and until
the subsequent shift in accuracies) was 0.83. Similarly, while the average daily accuracy
between S2-D2 was 0.78, that between D2-E was 0.80.

7 User Evaluations (RQ4)

In this section, we investigate our fourth research question (RQ4): “Is IssueTAG perceived
as useful by the end-users?”

Fig. 9 Had the underlying classification model not been retrained at every month, would the proposed
approach have detected any deteriorations? S is the time point, at which IssueTAG was deployed
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7.1 Approach

IssueTAG is a nonintrusive system. Except for the parts where explanations for the assign-
ments were requested, which was empirically evaluated by conducting user studies in
Section 5, IssueTAG requires neither the IT-HD clerks nor the AST members to interact
with the system or to perform additional tasks. That is, once an issue report was filed by
an IT-HD clerk using Maximo, IssueTAG first assigns it to a team and then updates the
Jira database to reflect the assignment. Indeed, IssueTAG, except for the aforementioned
task above, does not have any interfaces designed for interacting with the end-users. We
were, therefore, able to evaluate the perceived usefulness of IssueTAG only by conducting
a survey composed of simple questions.

We created the survey by following a survey template frequently used at Softtech. It
had a total of 8 questions from two categories: requirement satisfaction and product qual-
ity. The former category aims to evaluate the extent to which the deployed system meets
its requirements, whereas the latter category aims to evaluate the quality of the final prod-
uct. All questions, except for the last one, were Likert scale questions each with answer
options: N-no opinion, SD-strongly disagree, D-disagree, A-agree, and SA-strongly agree.
The last question was an open-ended question. Furthermore, for the Likert scale ques-
tions, we asked the participants to elaborate on their responses, if they had “disagreed” or
“strongly disagreed.” Table 6 presents the questions we used in the survey.

7.2 Evaluation

The AST members were identified as the target population for the survey. This was because
the AST members, being embedded in the development teams, were the direct end-users of
IssueTAG (see Section 5.2 for more information).

7.2.1 Experimental Setup

We, therefore, carried out the study with the same participants we had in Section 5, after
having their consensus to voluntarily participate, which were accepted by all of them.

7.2.2 Evaluation Framework

For the Likert scale questions, we use the frequencies of responses obtained to quantita-
tively analyze the results. For the open-ended question, we present the answers we received
(Table 9) and qualitatively discuss them.

7.2.3 Data and Analysis

The results of the survey strongly suggest that IssueTAG meets its business needs with high
quality. Regarding the questions in the category of “requirements satisfaction,” we observed
that the majority of the participants thought IssueTAG was useful and reliable (Table 7).
More specifically, all of the participants “strongly agreed” or “agreed” to Q1, indicating
that they knew the business requirements that IssueTAG was supposed to meet. And, 93%
(13 out of 14) of the participants for Q2 and 79% (11 out of 14) of the participants for Q3,
responded “agree” or higher.

Only 1 participant for Q2 and 2 participants for Q3 “disagreed.” The comments that they
provided as to why they disagreed are given in Table 8. Evidently, part of the reason was
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Table 7 Responses obtained from the survey: N-no opinion, SD-strongly disagree, D-disagree, A-agree,
SA-strongly agree

number of responses % of

Requirements satisfaction N SD D A SA A or SA median mode

Q1 0 0 0 4 10 100% SA SA

Q2 0 0 1 9 4 93% A A

Q3 1 0 2 0 11 79% SA SA

Product quality N SD D A SA A or SA median mode

Q4 0 0 0 9 5 100% A A

Q5 2 0 1 10 1 79% A A

Q6 1 0 0 10 3 93% A A

Q7 0 0 0 8 6 100% A A

that these participants were unrealistically expecting to have perfect assignments (with no
incorrect assignments) from the deployed system.

Regarding the other quality aspects of the system, 100% (14 out of 14) of the partici-
pants for Q4, 79% (11 out of 14) for Q5, 93% (13 out of 14) for Q6, and 100% (14 out of
14) for Q7 responded “agree” or higher (Table 7). Only 1 participant disagreed with Q5, the
comment of whose can be found in Table 8. We, furthermore, observed that all the partici-
pants would recommend the system to other companies; all responded “agree” or higher to
Q7 (Table 7).

Last but not least, the responses given to the open-ended question Q8 can be found in
Table 9. All of these comments can be considered as generally positive. A couple of them
actually make some suggestions for future improvements. For example, the last comment
basically suggests that the system should provide an explanation as to why a given issue
report is assigned to the selected development team. As a matter of fact, this request turned
out to be a common one, for which we have developed an automated approach (Section 5.1).

8 Lessons Learnt

Stakeholders do not necessarily resist change. To deploy IssueTAG, we carried out a
number of meetings with the IT-HD, AST, and software development teams. One thing we
repeatedly observed in these meetings was that all the stakeholders were willing to auto-
mate the process of issue assignments as much as possible. This was true even if they had
some rightful concerns, such as what if the proposed approach adversely affects the issue-
resolution process – a major concern for a company developing business-critical software
systems.

We, indeed, had no objection at all. The AST members and the development teams
were looking forward to reducing the turnaround time for issue resolutions; the incorrectly
assigned issue reports were bouncing back and forth between the IT-HD clerks and the AST
members, causing a great deal of wasted time. The IT-HD clerks were looking forward to
1) avoiding the costly and cumbersome process of maintaining a knowledge base about the
development teams and their responsibilities and 2) deferring the responsibility of making
assignments as much as possible since incorrect assignments were often causing friction
with the AST members and the development teams.
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Another reason behind the absence of any resistance was that none of the stakeholders
felt threatened by the new system. The IT-HD clerks were still needed as they were the ones
communicating with both the bank customers and employees to collect the issues. The AST
members were still needed as they were the ones helping the development teams manage
the issue reports. The development teams were still needed as they were the ones developing
the software products.

Gradual transition helps stakeholders build confidence, facilitating the acceptance
of the system. To address the rightful concerns of the stakeholders regarding the accu-
racy of the proposed system, we followed a gradual transition strategy. First, we simply
added a single button to the screen, which the IT-HD clerks used to create the issue reports.
We initially did not modify the assignment process at all in the sense that the use of this
button was optional. If the IT-HD clerk chose to arm the button after creating an issue
report, it would simply display the assignment made by IssueTAG. The clerk could then
accept the assignment as it was or modify it. We observed that 3 months after the deploy-
ment of this button, enough confidence was built among the stakeholders to fully deploy
the system.

It is not just about automating the issue assignments, but also about changing
the process around it. One observation we made numerous times during the meetings
with the stakeholders was that automating the issue assignments also requires to mod-
ify the other parts of the assignment process to improve the efficiency and effectiveness
of the entire process to the extent possible. This was because most of the steps in the
assignment process were dependent on the fact that issue assignments were made by the
IT-HD clerks. Changing this, therefore, necessitated other changes. In particular, we pre-
vented the IT-HD clerks from modifying the issue assignments made by IssueTAG and
the incorrectly assigned issue reports from being returned back to the IT-HD clerks for a
reassignment. All of these changes were based on the discussions we had with the stake-
holders as well as the analysis of the results we obtained from a number of feasibility studies
(Section 4).

The accuracy of the deployed system does not have to be higher than that
of manual assignments in order for the system to be useful. Although the assign-
ment accuracy of IssueTAG was slightly lower than that of manual assignments, it
reduced the manual effort required for the assignments and improved the turnaround time
for closing the issue reports. All of these helped improve the usability of IssueTAG,
which was also evident from the survey we conducted on the stakeholders on the field
(Section 7).

Deploying a data mining-based automated issue assignment system requires the
development of additional functionalities. When the issue assignments are automati-
cally made by using a data mining model, stakeholders may demand some explanations
as to why certain issue reports (especially the incorrectly assigned ones) have been
assigned to their teams. Note that since the data mining models used for predicting
the assignments are not necessarily readable and interpretable by human beings (as
was the case in this work), generating such explanations can be a non-trivial task. To
this end, we have developed a LIME-based (Ribeiro et al. 2016) approach for auto-
matically generating explanations that can easily be interpreted even by non-technical
stakeholders. Furthermore, the accuracy of the assignments needs to be monitored and
deteriorations need to be detected in an online manner, so that corrective actions, such
as recalibrating the underlying model, can be taken in time. To this end, we have
developed a change point detection-based approach using PELT (Killick et al. 2012)
(Section 6).
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9 Threats to Validity

9.1 Construct Validity

To circumvent the construct threats, we used the well-known accuracy metric (Manning
et al. 2010) throughout the paper to evaluate the quality of the issue assignments. We
have also complemented the accuracy results with other well-known metrics, namely pre-
cision, recall, and F-measure, as we see fit (Appendix A). We mainly focused on the
accuracies because 1) it was the choice of a recent related work in the literature (Jonsson
et al. 2016) and 2) the assignment accuracies and F-measures (computed by giving equal
importance to both precision and recall) we obtained in the experiments were comparable
(Table 10).

To measure the amount of effort saved by automating the issue assignments (Section 4),
we used the person-month metric, which is also a well-known metric to quantify effort in
software engineering projects (Pressman 2005).

To measure the effect of the proposed approach on the issue-resolution process, we com-
pared the average times required to close the issue reports and number of issue tosses before
and after the deployment of IssueTAG (Section 4). To this end, we used the dates and times,
and historical data recorded by the issue report management tool (namely, Jira). Further-
more, since the characteristics of the reported issues, thus the times it takes to resolve them,
can change over time, we used the issue reports submitted within two months before and
after the deployment of the system for this purpose.

To further evaluate the usefulness of the deployed system, we carried out a survey on the
actual users of the system (Sections 5–7). The survey had both Likert scale and open-ended
questions and about half of the actual users of the deployed system voluntarily participated
in the survey.

Table 10 Accuracy (A) and weighted precision (P), recall (R), and F-measure (F) values obtained from
different classification models as well as the training times of these models. Bold entries indicate the best
values obtained

using training set with using

10-fold cross validation test set

classifier training

A time P R F A

Baseline 0.10 - 0.01 0.12 0.03 0.12

Multinomial NB 0.47 (+/- 0.01) 31 s 0.70 0.52 0.50 0.52

Decision Tree 0.66 (+/- 0.02) 50 m 11 s 0.64 0.63 0.63 0.63

K-Neighbours 0.73 (+/- 0.02) 1 m 4 s 0.71 0.72 0.71 0.72

Logistic Regression 0.74 (+/- 0.01) 18 m 37 s 0.76 0.74 0.74 0.74

Random Forest 0.66 (+/- 0.02) 51 m 43 s 0.64 0.65 0.63 0.65

Linear SVC 0.82 (+/- 0.01) 3 m 32 s 0.80 0.80 0.80 0.80

Linear SVC-Calibrated 0.81 (+/- 0.01) 7 m 50 s 0.80 0.79 0.79 0.79

BEST-5 0.67 (+/- 0.02) 2 h 20 m 38 s 0.65 0.64 0.64 0.64

SELECTED-5 0.80 (+/- 0.01) 1 h 49 m 11 s 0.79 0.78 0.78 0.78

BEST-3 0.81 (+/- 0.01) 56 m 7 s 0.80 0.79 0.79 0.79

SELECTED-3 0.81 (+/- 0.01) 32 m 57 s 0.80 0.79 0.79 0.79
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Throughout the paper, we used the actual database of issue reports maintained by
Softtech. Furthermore, all the survey results were obtained from the actual users on the
field. We followed the same approach to evaluate our PELT-based technique to detect
deteriorations in assignment accuracies, which, indeed, successfully detected three dete-
riorations each with a different cause (Sections 4–6). To further evaluate the proposed
approach, we also carried out controlled experiments, each of which was repeated 1000
times. We did this because in the data collected from the field, it was not always possi-
ble to determine whether there really were some deteriorations or not, and if so, what the
nature of these deteriorations were. Therefore, the controlled experiments helped us fur-
ther evaluate the proposed approach, as in these experiments, we knew both the nature
of the deteriorations (e.g., sudden or gradual) and the exact point in time where they
occurred.

9.2 Internal Validity

To circumvent the internal threats that may be caused by implementation errors, we
used well-known and frequently used tools. In particular, we used the Python scikit-learn
(Pedregosa et al. 2011) tool for preprocessing the issue reports and extracting the features;
the scikit-learn (Pedregosa et al. 2011) and mlxtend (Raschka 2018) tools for training the
classification models; the lime (Ribeiro et al. 2016) tool for creating the LIME-based expla-
nations for the assignments; and the ruptures (Truong et al. 2018a) tool for PELT-based
change point detection.

In Appendix A, we performed the same preprocessing steps and extracted the
same set of features for all the classification algorithms used in the study. How-
ever, the performances of these classifiers might have been dependent on the pre-
processing steps used and the features extracted. On the other hand, we used well-
known preprocessing steps, such as tokenization and removal of non-letter characters
as well as stop words and extracted frequently used features, such as the bag-of-words
model.

A related concern is that we used the default configurations of the aforementioned
classifiers, except for the k-nearest neighbor and the stacked generalization classifiers.
For the former, we used cosine similarity and empirically tuned k. For the latter,
we used logistic regression as the level-1 algorithm together with the probabilities
emitted by the level-0 classifiers. On the other hand, the performance of these clas-
sifiers might have been dependent on the underlying configurations. Note, however,
that optimizing the configurations for these classifiers could have only generated better
accuracies.

In the evaluations, as the correct team for a given issue report (i.e., as the ground
truth), we used the team who actually closed the report. Some reports, however,
might have needed to be processed by multiple teams before the reported issues
could be fixed. Since in these situations, typically the last team in the chain closed
the report, even if the initial assignment of the report was considered to be cor-
rect, it was counted as incorrect when computing the assignment accuracies. Note,
however, that counting such assignments as correct could have only increased the
accuracies.

When computing the amount of manual effort required for issue assignments, we did not
take the amount of effort required for maintaining the knowledge base used by the IT-HD
clerks into account. Therefore, the actual savings in person-months can be larger than the
ones reported.
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9.3 External Validity

One external threat is that IssueTAG was deployed at Softtech/IsBank only. Softtech, how-
ever, being a subsidiary of IsBank – the largest private bank in Turkey – is the largest
software company of Turkey owned by domestic capital, maintaining around 100 millions
of lines of code with 1.200 employees. Consequently, it shares many characteristics of large
software development houses, especially the ones producing custom, business-critical soft-
ware systems, such as having a large, continuously evolving code base maintained by dozens
of development teams with hundreds of issue reports filed daily, each of which needs to be
addressed with utmost importance and urgency.

Another possible threat is that issue reports at IsBank (thus, the ones used in this work)
are created by the IT-HD clerks (Section 2). Although, this team is a non-technical team,
they are specialized in creating issue reports by listening to the bank customers and employ-
ees. Therefore, the quality of the issue reports used in this study may differ from the ones
directly created by, for example, the end-users of a system. However, many companies,
especially the ones that produce business-critical software systems and that need to deal
with a large number of issue reports, employ similar call centers. Furthermore, all the issue
reports used in this work were written in Turkish. However, we used simple text processing
steps, such as tokenization and removal of non-letter characters and stop words. Therefore,
the proposed approach can also be used with issue reports written in other languages.

9.4 Conclusion Validity

All the issue reports we used in the experiments were the real issue reports collected from
the field. After the deployment of IssueTAG, once an issue report was created by an IT-
HD clerk, the assignment was automatically made by the system. There was no means that
the deployed system could be bypassed or that the assignments made by the system could
be changed by an IT-HD clerk. Note that the AST members could then reassign the issue
reports if needed, in which case the initial assignments made by the system were considered
as incorrect. The number of issue reports closed was an important performance metric for
the AST members as well as for the development teams at Softtech. Consequently, as a part
of the company’s policy, the issue reports were required to be closed by the development
teams, who actually resolved the reported issues. The stakeholders payed utmost attention
to this matter. Therefore, the assignment accuracies reported in this work, reflect the actual
accuracies obtained by IssueTAG on the field.

To further evaluate the deployed system, we carried out two surveys (Sections 5-7).
Although 14 participants were involved in these surveys, they constituted about half (14 out
of 30) of the AST members, who are the direct end-users of IssueTAG.

10 RelatedWork

Several works in the literature studied the issue assignment problem. These works use a
variety of approaches to make the assignments, including Naive Bayes classifiers (Murphy
and Cubranic 2004; Anvik et al. 2006), Bayesian Networks (Jeong et al. 2009), Support
Vector Machines (Anvik et al. 2006; Jonsson et al. 2016), and information retrieval-based
approaches (Chen et al. 2011; Kagdi et al. 2012; Nagwani and Verma 2012; Shokripour
et al. 2012; Canfora and Cerulo 2006; Linares-Vásquez et al. 2012; Xie et al. 2012;
Xia et al. 2013), Expectation Maximization (Anvik 2007), Nearest Neighbor classifiers
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(Anvik and Murphy 2011), Decision Trees (Ahsan et al. 2009), Random Forests (Ahsan
et al. 2009), REPTrees (Ahsan et al. 2009), Radial Basis Function Networks (Ahsan
et al. 2009), Neural Networks (Helming et al. 2010) and Ensemble-based classification
(Jonsson et al. 2016).

These works, except for Lin et al. (2009), Helming et al. (2010), Jonsson et al.
(2016), and Dedı́k and Rossi (2016), evaluated the proposed approaches by using the
issue databases of open source projects. We, on the other hand, used the issue reports
filed for commercial, closed-source projects. Although the remaining works (Lin et al.
2009; Helming et al. 2010; Jonsson et al. 2016; Dedı́k and Rossi 2016), report on the
results obtained on closed-source, commercial software projects, they do so by carrying
out a retrospective analysis in an offline manner. We, on the other hand, deployed the
proposed approach and shared both the results we obtained and the lessons we learnt
regarding the practical effects of automated issue assignment on the field. Furthermore,
to the best of our knowledge, our work is the first work carrying out user studies in this
context.

Among the related works carried out in industrial contexts, Lin et al. (2009) conduct a
case study on a proprietary software project, called SoftPM – a tool for software process
management, by using 2576 issue reports written in Chinese. The aforementioned work is
comprised of two studies. In one study, they use the textual information included in the one-
line summaries and descriptions of the issue reports with SVM models. In the other study,
they use non-textual information, such as the priorities and the submitters of the reports,
with decision tree models. They conclude that, when the amount of manual effort required
for adding additional pieces of information to the issue reports is considered, using the tex-
tual information already present in these reports is more practical. Indeed, by using textual
information, they achieve an accuracy of 0.63, which is close to that of the human triagers
for the subject system under study. As the aforementioned work assigns issue reports to indi-
vidual developers, it (as a future work) proposes to use information about the availability
of the individual assignees to make more educated assignments. Note that this is not appli-
cable in our case as we assign issue reports to development teams, rather than individual
developers.

Helming et al. (2010) also use historical data to assign work items, such as issue reports
and tasks, to individual software developers. In a nutshell, they propose two approaches: a
model-based approach and a data mining-based approach. The former is a semi-automated
approach, which requires that work items are manually linked to functional requirements, so
that simple statistics about the software developers handling work items linked to particular
functional requirements can be used to make the assignments. For the latter, they evaluate
a number of classifiers using tf-idf scores obtained from the textual information present in
work items, which is similar to our work. The proposed approach is evaluated by using
three small-scale software projects: UNICASE (a system for unified software engineering
research tools), DOLLI (a system for facility management), and Kings Tale (a browser-
based computer game). In these studies, 1191, 411, and 256 work items (out of which 290,
203, and 97 of them were linked to functional requirements) were used together with a total
of 39, 26, and 6 individual developers, respectively. The model-based approach provided an
assignment accuracy of between 0.58 and 0.83, but required manual intervention. For the
data mining-based approach, they achieved the best performance with SVM, which provided
an accuracy of between 0.29 and 0.43. We believe that the accuracies were low due to the
limited number of work items used in these studies; they used a maximum of 1191 work
items, whereas we used a total of 47123 issue reports together with a total of 64 assignees
(i.e., development teams) in our studies.
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Perhaps the most similar work to ours is the one by Jonsson et al. (2016). Some of the
design decisions in this work, i.e., assigning issue reports to development teams, rather than
individual developers and determining the time locality of training data, are inspired from
the aforementioned work. They, too, operate in large scale industrial contexts; one in the
automation domain and another in the telecom domain. They, however, carry out the assign-
ments in a retrospective and offline manner by simply treating the actual issue databases
as historical data. We have, on the other hand, deployed IssueTAG. The maximum num-
ber of issue reports and assignees used in the experiments were 15113 and 67, respectively,
for the automation domain; and 10000 and 64 for the telecom domain. The best results
were achieved by using stacked generalization, which provided assignment accuracies of
between 0.50 and 0.89. In our experiments, stack generalization was, indeed, the runner up
from the perspective of assignment accuracies with linear SVC models performing slightly
better, but trained profoundly faster (see Appendix A for more information). The afore-
mentioned work also reports that using issue reports from “recent past,” compared to using
the ones from “distant past,” yield better assignment accuracies. The authors recommend
(without proposing any approach) to continuously monitor the automated issue assignment
systems. We have, on the other hand, developed and evaluated a change point detection-
based approach for detecting deteriorations. They also recommend (without proposing any
approach) that the issue assignments should be transparent and assessable. We have, on the
other hand, developed and evaluated an approach for generating model-agnostic explana-
tions in the form of a collection of most influential terms in assignments, which can be
interpreted even by non-technical stakeholders.

Dedı́k and Rossi (2016) share the results of their experiments where they compare
assignment accuracies obtained from a proprietary project in software technologies domain
and from an open source project, namely Mozilla Firefox. The classification models were
created by using the tf-idf scores obtained from the textual information present in the
issue reports. In the experiments, 2424 issue reports with 35 developers for the propri-
etary project and 1810 issue reports with 20 developers for the open source project, were
used. They report that using SVM models was flexible and at the same time quite effec-
tive in both cases. The best accuracy achieved was 0.53 for the proprietary project and
0.57 for the open source project. They demonstrate that the more the number of recom-
mendations they make for a given issue report, the higher the chance of a hit, which is to
be expected. IssueTAG, however, makes only one recommendation, which is a deliberate
decision we made to fully automate the assignment process (see Section 4 for more infor-
mation). The authors, furthermore, argue that online learning can be a relevant factor in an
industrial setting, which implies the necessity of continuously monitoring the automated
assignment system.

Some of the aforementioned works use natural language explanations present in issue
reports for assignments, such as one-line summary and description (Murphy and Cubranic
2004; Anvik et al. 2006; Canfora and Cerulo 2006; Ahsan et al. 2009; Baysal et al. 2009;
Jeong et al. 2009; Lin et al. 2009; Matter et al. 2009; Helming et al. 2010; Anvik and
Murphy 2011; Chen et al. 2011; Park et al. 2011; Bhattacharya et al. 2012; Linares-Vásquez
et al. 2012; Nagwani and Verma 2012; Alenezi et al. 2013; Jonsson et al. 2016; Bettenburg
et al. 2008a). Others also leverage categorical information, such as product, component, and
version (Ahsan et al. 2009; Lin et al. 2009; Park et al. 2011; Jonsson et al. 2016).

In this work, we used natural language descriptions present in the issue reports, more
specifically the one-line summaries and descriptions. We did not use any categorical infor-
mation, e.g., product, component, and version information, because such information was
not included in the issue reports; there were no fields in the issue reporting tool, requesting
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these types of categorical information. The reason was that with the collection of software
products maintained by Softtech, which heavily interact with each other in a business-
critical environment, sharing many resources, such as databases, file systems, and GUI
screens, the boundaries of the products from the perspective of issue reporting were not
clear at all. Further discussion on this can be found in Section 2.

Different sources of information have been also used for making the assignments. For
example, Tamrawi et al. (2011) model the technical expertise of individual developers and
use these models together with the information about the developers who recently made
changes in the code base. Wu et al. (2011) infer a social network model of the developers
using the comments they make on historical issue reports as well as the comments automati-
cally generated at the time of the source code commits, to help with the assignments. Baysal
et al. (2009) use developers’ preferences as an additional source of information, which are
expressed by the ratings the developers gave for the issues they resolved.

We, in this work, deliberately used a single source of information, i.e., the natural lan-
guage descriptions present in the issue reports, to simplify the design and implementation of
the proposed system to the extent possible. This was a design decision we made to increase
the reliability of the proposed system as the system needed to be deployed, making hun-
dreds of assignments per day in a business-critical environment. However, we are currently
in the process of figuring out what types of additional sources of information could be used
in an industrial setup to further improve the assignment accuracies.

There are also automated approaches for dealing with various other aspects of the issue
report management process. One type of approaches aim to identify duplicate issue reports,
which can help developers with 1) figuring out the number of actual issues reported; 2)
assigning priorities; and 3) debugging (Podgurski et al. 2003). Generally speaking the prob-
lem of duplicate identification is casted to a clustering problem where similar reports are
grouped together with the assumption that similar descriptions report the same (or similar)
issues (Podgurski et al. 2003; Bettenburg et al. 2008b; Wang et al. 2008; Jalbert and Weimer
2008).

Other types of approaches mainly focus on better utilizing the available resources for
resolving the reported issues. For example, some approaches aim to predict the severities of
the issues (Lamkanfi et al. 2010; Menzies and Marcus 2008; Antoniol et al. 2008; Pandey
et al. 2017), which, in this context, indicate the levels of impact the issues have on the
development and release process. Others aim to predict the effort required to resolve the
issues (Weiss et al. 2007; Giger et al. 2010; Zhang et al. 2013).

Note that the aforementioned problems, i.e., duplicate detection, severity identification,
and effort prediction are different than the issue assignment problem addressed in this work.
We, however, plan to conduct industrial-strength studies at IsBank and Softtech to evaluate
the efficiency and effectiveness of these approaches.

11 Conclusion and FutureWork

In this work, we have developed and deployed a system to automate the process of issue
assignments at Softtech/IsBank. To this end, we first cast the problem to a classification
problem and determined the classifier to be used in the deployed system by empirically
evaluating a number of existing classifiers. We then carried out further studies to determine
both the amount and time locality of the historical data required for training the underlying
classification models. We finally deployed the proposed system by configuring it based on
the results we obtained from these studies.
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We observed that 1) it is not just about deploying a data mining-based system
for automated issue assignment, but also about designing/changing the assignment pro-
cess around the system to get the most out of it; 2) the accuracy of the system does
not have to be higher than that of manual assignments in order for the system to
be useful, which was further validated by the user studies we carried out on actual
stakeholders on the field; 3) deploying such a system also requires the development
of additional functionalities, such as creating human-readable, non-technical explana-
tions for the assignments made and detecting deteriorations in assignment accuracies in
an online manner, for both of which we developed and empirically evaluated different
approaches; 4) stakeholders do not necessarily resist change; and 5) gradual transitions
can help stakeholders build confidence, which, in turn, facilitates the acceptance of the
system.

One avenue for future research is to use additional sources of information to further
improve the assignment accuracy, such as using the attachments in issue reports and hav-
ing “human-in-the-loop” approaches, where the stakeholders and the data mining models
interact with each other to improve the accuracy. Another avenue is to carry out industrial-
strength studies using the deployed system to evaluate the efficiency and effectiveness of the
other related approaches on the field, including duplicate detection, severity identification,
and effort prediction.

Appendix A: Evaluating Existing Issue Assignment Approaches

In this section, we discuss the details of the studies we have carried out to determine the
issue assignment approach to be used by IssueTAG.

A.1 Approach

We have evaluated a number of classification-based approaches, each of which had been
shown to be effective for automated issue assignment (Murphy and Cubranic 2004; Anvik
et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011; Jonsson et al. 2016), by
using the issue database maintained by Softtech since December 2016.

A.1.1 Representing Issue Reports

Given an issue report, we first combine the “description” and “summary” parts of the report
and tokenize the combined text into terms. We then remove the non-letter characters, such
as punctuation marks, as well as the stop words, such as “the” and “a,” which are extremely
common words of little value in classifying issue reports (Manning et al. 2010). We opt
not to apply stemming in this work as an earlier work suggests that stemming has a little
effect (if any at all) in issue assignments (Murphy and Cubranic 2004), which is also consis-
tent with the results of our initial studies where stemming slightly reduced the assignment
accuracies.

We then represent an issue report as an n-dimensional vector. Each element in this vector
corresponds to a term and the value of the element depicts the weight (i.e., “importance”)
of the term for the report. The weights are computed by using the well-known tf-idf method
(Manning et al. 2010).

The tf-idf method combines two scores: term frequency (tf ) and inverse document fre-
quency (idf ). For a given term t and an issue report r , the term frequency tf t,r is the number
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of times t appears in r . The more t appears in r , the larger tf t,r is. The inverse document
frequency of t (idft ), on the other hand, is:

idft = log(
N

dft

), (1)

where N is the total number of issue reports and dft is the number of issue reports, in which
t appears. The fewer the issue reports t appears in, the larger idft is.

Given tf t,r and idft , the tf-idf score of the term t for the issue report r is computed as
follows:

tf-idft,r = tft,r ∗ idft . (2)

Consequently, the more a term t appears in an issue report r and the less it appears in
other issue reports, the more important t becomes for r , i.e., the larger tf-idft,r is.

A.1.2 Issue Assignments

Once an issue report is represented as an ordered vector of tf-idf scores, the problem of
assignment is cast to a classification problem. In particular, the development team, to which
the issue report should be assigned, becomes the class to be predicted and the tf-idf scores
of the report become the attributes, on which the classification will be based on.

We train two types of classifiers: level-0 and level-1 classifiers. A level-0 classifier cor-
responds to a an individual classifier. A level-1 classifier, on the other hand, is obtained by
combining multiple level-0 classifiers using stacked generalization – an ensemble technique
to combine multiple individual classifiers (Wolpert 1992). All the classifiers we experiment
with in this study have been shown to be effective for automated issue assignment (Murphy
and Cubranic 2004; Anvik et al. 2006; Bhattacharya et al. 2012; Anvik and Murphy 2011;
Jonsson et al. 2016).

For the level-0 classifiers, we use multinomial naive bayesian (Manning et al. 2010),
decision tree (Breiman 2017), k-nearest neighbor (Manning et al. 2010), logistic regression
(Bishop 2006), random forest (Breiman 2001), and linear support vector classifiers (SVCs)
(Joachims 1998).

For the level-1 classifiers, we first train and evaluate our level-0 classifiers by using the
same training and test sets for each classifier. We then use the prediction results obtained
from these level-0 classifiers to train a level-1 classifier, which combines the probabilistic
predictions of the level-0 classifiers using linear logistic regression (Wolpert 1992).

Inspired from Jonsson et al. (2016), we, in particular, train two types of level-1 classi-
fiers: BEST and SELECTED. The BEST ensemble is comprised of k (in our case, k = {3, 5})
level-0 classifiers with the highest assignment accuracies. The SELECTED ensemble, on
the other hand, is comprised of a diversified set of k (in our case, k = {3, 5}) level-0 clas-
sifiers. More specifically, the SELECTED ensemble includes the level-0 classifiers, which
are selected regardless of their classification accuracies, so that errors of individual classi-
fiers can be averaged out by better spanning the learning space (Wolpert 1992). Note that the
BEST and SELECTED ensembles are not necessarily the same because the best perform-
ing level-0 classifiers may not be the most diversified set of classifiers. More information
on how these ensembles are created can be found in Appendix A.2.

Furthermore, for the baseline classifier, which we use to estimate the baseline classifi-
cation accuracy for our classifiers, we assign all issue reports to the team that have been
assigned with the highest number of issue reports. That is, our baseline classifier always
returns the class with the highest number of instances as the prediction.
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A.2 Evaluation

We have conducted a series of experiments to evaluate the assignment accuracies of the
level-0 and level-1 classifiers.

A.2.1 Experimental Setup

In these experiments, we used the issue reports submitted to Softtech between June 1, 2017
and November 30, 2017 as the training set and the issue reports submitted in the month
of December 2017 as the test set. We picked this time frame because it was a represen-
tative period of time in terms of the number of issue reports submitted, the number of
teams present, and the distribution of the reported issues to these teams. Furthermore, the
beginning of this time frame coincide with the time when the significant changes in the orga-
nization of the development teams was internalized by the stakeholders (i.e., second vertical
line in Fig. 3). As discussed in Section 4.2.3, the reorganization was caused by migrating an
integral part of the core banking system from mainframes to state-of-the-art hardware and
software platforms. More specifically, the training data started from June 1, 2017 and the
aforementioned event occurred on June 16, 2017.

For the aforementioned time frame, we had a total number of 51041 issue reports sub-
mitted to 65 different teams. Among all the issue reports of interest in this section as well
as in the remainder of the paper, we only used the ones that were marked as “closed,” indi-
cating that the reported issues had been validated and resolved. Furthermore, as the correct
assignment for an issue report, we used the development team that had closed the report.
The remainder of the issue reports were ignored as it was not yet certain whether these
reports were valid or whether the development teams, to which they were currently assigned,
were correct. After this filtering, a total of 47123 issue reports submitted to 64 different
development teams remained for analysis in this study.

To create the level-1 classifiers, we combined 3 or 5 individual classifiers, i.e., k = 3 or
k = 5. We used the latter setting as it was also the setting used in a recent work (Jonsson
et al. 2016). We used the former setting as it was the best setting we could empirically
determine for ensemble learning, i.e., the one that produced the best assignment accuracies.
In the remainder of the paper, these models are referred to as BEST-3, SELECTED-3, BEST-
5, and SELECTED-5.

The BEST-3 and BEST-5 models were obtained by combining Linear SVC-Calibrated,
Logistic Regression, and K-Neighbours; and Linear SVC-Calibrated, Logistic Regression,
K-Neighbours, Random Forest, and Decision Tree classifiers, respectively, as these were the
classifiers providing the best assignment accuracies. The SELECTED-3 and SELECTED-5
models, on the other hand, were created with the goal of increasing the diversity of the clas-
sification algorithms ensembled. In particular, the SELECTED-3 model was obtained by
combining Linear SVC-Calibrated, K-Neighbours, and Multinomial Naive Bayesian clas-
sifiers. And, the SELECTED-5 model was obtained by combining Linear SVC-Calibrated,
Logistic Regression, K-Neighbours, Random Forest, and Multinomial Naive Bayesian clas-
sifiers. Note further that to include SVCs in level-1 classifiers, we used calibrated linear
SVCs instead of linear SVCs as we needed to have class probabilities to ensemble individual
classifiers (Ting and Witten 1999), which are not supported by the latter.

The classifiers were trained and evaluated by using the scikit-learn (for level-0
classifiers) (Pedregosa et al. 2011) and mlxtend (for level-1 classifiers) (Raschka 2018)
packages. All of the classifiers (unless otherwise stated) were configured with the default
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settings and the experiments were carried out on a dual-core Intel(R) Xeon(R) E5-2695 v4
2.10 GHz machine with 32 GB of RAM running Windows Server 2012 R2 as the operating
system.

A.2.2 Evaluation Framework

To evaluate the quality of the assignments obtained from different classifiers, we used well-
known metrics, namely accuracy and weighted precision, recall, and F-measure (Manning
et al. 2010). Accuracy, which is also referred to as assignment accuracy in the remainder of
the paper, is computed as the ratio of correct issue assignments. Precision for a particular
development team (i.e., class) is the ratio of the issue reports that are correctly assigned
to the team to the total number of issue reports assigned to the team. Recall for a team
is the ratio of the issue reports that are correctly assigned to the team to the total number
of issue reports that should have been assigned to the team. F-measure is then computed
as the harmonic mean of precision and recall, giving equal importance to both metrics.
Note that each of these metrics takes on a value between 0 and 1 inclusive. The larger the
value, the better the assignments are. Furthermore, we report the results obtained by both
carrying out 10-fold cross validation on the training data and carrying out the analysis on the
test set.

To evaluate the cost of creating the classification models, we measured the time it took
to train the models. The smaller the training time, the better the approach is.

A.2.3 Data and Analysis

Table 10 summarizes the results we obtained. We first observed that all the classifiers we
trained performed better than the baseline classifier. While the baseline classifier provided
an accuracy of 0.10 on the training set and 0.12 on the test set, those of the worst-performing
classifier were 0.47 and 0.52, respectively.

We then observed that the SELECTED ensembles generally performed similar or bet-
ter than the BEST ensembles, supporting the conjecture that using diversified set of
classifiers in an ensemble can help improve the accuracies by better spanning the learn-
ing space.ß For example, while the accuracy of the BEST-5 ensemble was 0.67 on the
training set and 0.64 on the test set, those of the SELECTED-5 ensemble were 0.80
and 0.78, respectively. Furthermore, the ensembles created by using 3 level-0 classi-
fiers, rather than 5 level-0 classifiers, performed slightly better on our data set. For
example, while the accuracy of the SELECTED-5 ensemble was 0.80 on the training
set and 0.78 on the test set, those of the SELECTED-3 ensemble were 0.81 and 0.79,
respectively.

Last but not least, among all the classifiers, the one that provided the best assignment
accuracy (as well as the best F-measure) and did so at a fraction of the cost, was the lin-
ear SVC classifier (Table 10). While the linear SVC classifier provided an accuracy of 0.82
on the training data set and 0.80 on the test set with a training time of about three min-
utes, the runner-up classifiers, namely the SELECTED-3 and BEST-3 ensembles, provided
the accuracies of 0.81 and 0.79, respectively, with a training time of about half an hour
or more.

Based on both the assignment accuracies and the costs of training obtained from
various classifiers using our data set, we have decided to employ linear SVC in
IssueTAG.
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Appendix B: Time Locality and Amount of Training Data

In this section, we discuss the details of the studies we carried out to determine the time
locality of the issue reports required for preparing the training data every time the underlying
classification model needs to be trained.

B.1 Approach

To carry out the study, we use the sliding window and cumulative window approaches intro-
duced in Jonsson et al. (2016). More specifically, we conjecture that using issue reports
from “recent past” to train the prediction models, as opposed to using the ones from “dis-
tant past”, can provide better assignment accuracies since organizations, products, teams,
and issues may change overtime.

To evaluate this hypothesis, we take a long period of time T (in our case, 13 months)
and divide it into a consecutive list of calendar months T = [m1,m2, . . . ]. For every month
mi ∈ T , we train and evaluate a linear SVC model. To this end, we use all the issue reports
submitted in the month of mi as the test set and all the issue reports submitted in the month
of mj as the training set, where i − j = Δ, i.e., the sliding window approach in Jonsson
et al. (2016). Note that given mi and Δ, mj is the month, which is Δ months away from
mi going back in time. For every month mi ∈ T , we repeat this process for each possible
value of Δ (in our case, Δ ∈ {1, . . . , 12}). By fixing the test set and varying the training
sets, such that they come from different historical periods, we aim to measure the effect of
time locality of the training data on the assignment accuracies.

Figure 10 illustrates the sliding window approach using the period of time from Jan
1, 2017 to Jan 31, 2018. For example, for the month of Jan 2018, we train a total of 12
classification models, each of which was trained by using all the issue reports submitted
in a distinct month of 2017 (marked as Train1-1, Train1-2, . . . , Train1-12) and separately
test these models using all the issue reports submitted in the month of Jan, 2018 as the test
set (marked as Test1). We then repeat this process for every month in the time period of
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Fig. 10 Overview of the sliding window approach to study the effect of the time locality of training data on
assignment accuracies
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interest, except for Jan 2017 as it does not have any preceding months. That is, for Dec 2017
(marked as Test2), we train and evaluate 11 models (marked as Train2-1, Train2-2, . . . ), for
Nov 2017, we train and evaluate 10 models, etc.

To evaluate the effect of the amount of training data on the assignment accuracies, we
use a related approach, called the cumulative window approach (Jonsson et al. 2016). This
approach, as is the case with the sliding window approach, divides a period of interest
T in to a consecutive list of months T = [m1, m2, . . . ]. Then, for every possible pair of
mi ∈ T and Δ, we train and evaluate a classification model, where all the issue reports
submitted in the month of mi are used as the test set and all the issue reports submit-
ted in the preceding Δ months, i.e., {mj ∈ T | 1 ≤ i − j ≤ Δ}, are used as the
training set.

Figure 11 illustrates the approach. For example, for the month of Jan 2018, we train a
total of 12 classification models. The first model is created by using the previous month’s
data (marked as Train1-1), the second model is created by using the previous two months’
data (marked as Train1-2), and the last model is created by using the previous year’s data
(marked as Train1-12). The same process is repeated for every possible month in the period
of interest.

B.2 Evaluation

We conducted a series of experiments to evaluate the effect of the amount and time locality
of training data on assignment accuracies.

B.2.1 Experimental Setup

In these experiments, we used all the issue reports that were submitted during the period
from Jan 1, 2017 to Jan 31, 2018. The summary statistics for this data set can be found in
Table 11. All told, we have trained and evaluated a total of 144 linear SVC models for this
study. All the experiments were carried out on the same platform with the previous study
(Appendix A.2.1).
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Fig. 11 Overview of the cumulative window approach to study the effect of the amount of training data on
assignment accuracies
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Table 11 Number of issue reports submitted

# of issue reports # of teams

month submitted assigned

Jan 2017 6364 57

Feb 2017 5038 56

Mar 2017 7188 57

Apr 2017 6623 55

May 2017 6601 56

Jun 2017 6145 56

Jul 2017 6341 53

Aug 2017 6025 54

Sep 2017 5961 54

Oct 2017 6774 52

Nov 2017 7996 54

Dec 2017 7881 49

Jan 2018 7426 51

Total 86363 69

B.2.2 Evaluation Framework

We used the assignment accuracies (Appendix A.2.2) for evaluations.

B.2.3 Data and Analysis

Figures 12 and 13 represent the results we obtained from the sliding window and cumulative
window approach, respectively. In these figures, the vertical and horizontal axes depict the
assignment accuracies obtained and the Δ values used in the experiments, respectively. The
accuracies associated with a Δ value were obtained from the classification models, each of
which was created for a distinct month in the period of interest by using the same Δ value.
Furthermore, the polynomials in the figures are the second degree polynomials fitted to the
data.

Looking at Fig. 12, we first observed that using issue reports from recent past to train
classification models, rather than the ones from distant past, provided better assignment
accuracies; the accuracies tended to decrease as Δ increased. For example, while the average
assignment accuracy obtained when Δ = 1, i.e., when the issue reports submitted in the
immediate preceding months were used as the training sets, was 0.73, that obtained when
Δ = 12, i.e., when the issue reports submitted in Jan 2017 were used as the training set for
the issue reports submitted in Jan 2018, was 0.52.

Looking at Fig. 13, we then observed that as we went back in time to collect the training
data starting from the immediate preceding months (i.e., as Δ increased in the cumulative
window approach), the assignment accuracies tended to increase first and then stabilized
around a year of training data. For example, while the average accuracy obtained when
Δ = 1, i.e., when the issue reports submitted only in the immediate preceding months
were used as the training sets, was 0.73, that obtained when Δ = 12, i.e., when all the
issue reports submitted in the preceding 12 months were used as the training data set,
was 0.82.
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Fig. 12 Assignment accuracies obtained from the sliding window approach

Note that in this study, we were solely concerned with the assignment accuracy when
choosing the time locality of the training data. This was mainly due to the fact that training
the linear SVC models in our case was not costly at all; the differences between the training
times for various amounts of training data were practically negligible. More specially, the
minimum, average, and maximum training times we observed in all the experiments carried
out in this section, were 0.3, 3.4, and 10.8 minutes, respectively, where the minimum, aver-
age, and maximum numbers of issue reports used in these experiments were 11366, 37149,
and 86348, respectively. However, if training times are not negligible, then the cost of train-
ing may greatly vary depending on the amount of the training data used (e.g., the window
size chosen). In such cases, assignment accuracies and training times should be balanced
according to the requirements of the project when choosing the time locality of the training
data.

Fig. 13 Assignment accuracies obtained from the cumulative window approach
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Based on the results of these studies, to train a prediction model at a given point in time,
we decided to use all the issue reports that have been submitted in the last 12 months as the
training set. Clearly, among all the issue reports of interest, we filter out the ones that have
not yet been closed (Appendix A.2.1).
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