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Abstract
Error propagation analysis is a consolidated practice to gain insights into error modes and
effects that pertain to the activation of faults in software systems. A variety of approaches,
such as architecture-based, source code instrumentation and variable tracing, have been pro-
posed so far to address software error propagation analysis. Although valuable, existing
approaches entail a substantial degree of system internals’ knowledge, visibility and code
manipulation that is not well-suited for real-life production environments. This paper pro-
poses an empirical analysis of error propagation. We specifically address the challenges in
using fault data and error events in the logs, which are a convenient byproduct of the sys-
tem’s execution. The approach puts forth the construction of error reporting graphs. We
apply the approach to 2,042 failure data points from two real-world critical systems from the
Air Traffic Control domain by a top industry provider. The approach contributes to develop
a deep understanding on error modes and propagation paths, which can be leveraged by
practitioners to make informed decisions on the placement of error detection mechanisms.

Keywords Error analysis · Error propagation · Critical systems · Monitoring

1 Introduction

Error propagation analysis is a consolidated practice to gain insights into the depend-
ability of software systems. It allows to infer error modes, intermediate paths and effects
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that pertain to the activation of faults.1 Analysis of propagation allows assessing the error
behavior of a system, inferring error-prone components, and establishing where-what type
of errors are likely to cause system-wide failures (Avizienis et al. 2004). This is of utmost
importance to support practitioners in making informed decisions for designing and plac-
ing error detection mechanisms (EDMs) and error recovery mechanisms (ERMs) (Arora
and Kulkarni 1998). To this aim, many existing approaches rely on quite convoluted data
sources that entail a substantial degree of system internals’ knowledge and source code visi-
bility. For example, Jhumka and Leeke (2011), Abdelmoez et al. (2004), Popic et al. (2005),
Cortellessa and Grassi (2007), and Voas (1997) require operation details, such as states and
failure rates, for each system component, Hiller et al. (2004), Hiller et al. (2002a), Leeke
and Jhumka (2010), and Michael and Jones (1997) leverage data obtained by instrumenting
variables, while Tucek et al. (2007) uses dynamic binary instrumentation.

The application of these approaches is far from being seamless when the systems under
analysis allow a limited degree of intervention and/or provide a limited view of system inter-
nals. This is a common scenario in legacy and OTS-based systems, critical software systems
and production environments. Moreover, we observe that above-mentioned literature on
error propagation –although valuable– falls short when it comes to adopt log files, which
are used to collect error events by built-in detection mechanisms, such as event logging and
assertion checking.

Log files –or simply logs– are a byproduct of the system execution and contain text
messages on regular and error events encountered by a system under real workloads (Li et al.
2018; Kabinna et al. 2018). Current systems ubiquitously emit log files. Analysis of logs
is well-consolidated for troubleshooting field failures (Kalyanakrishnam et al. 1999; Tian
et al. 2004; Chuah et al. 2015; Russo et al. 2015); when needed, analysis is accompanied by
a debugging phase that typically leads to the identification and fix of the fault that caused the
failure. Examples of works leveraging log files are Yuan et al. (2010) and Lyu et al. (1996).
The approach in Yuan et al. (2010) uses logs to assess control- and data-flow; however,
it requires static code analysis and is not originally conceived for error propagation. In
Lyu et al. (1996) debug data are leveraged to build error propagation graphs; however, the
approach neglects error messages generated by the system under analysis, which prevents
to obtain runtime information about the propagation of errors through system components.

This paper proposes an empirical analysis of error propagation. Analysis is based on logs,
which are naturally emitted by a system.We do not address resource consumptionmetrics, such
as CPU, memory and network usage, which are out the scope of this work. We face the research
challenge of obtaining insights into error modes and their propagation by means of logs.

We analyze faults and error events in the logs related to 2,042 failures of two real-world
mission critical software systems: a middleware for data distribution and a standalone
application for the management of flights and runaway control both used in the Air Traffic
Control (ATC) domain by a top leading industry provider in electronic and information solu-
tions for critical systems.2 We put forth an analysis approach based on the construction of
error reporting graphs. The paper addresses the formalization of error modes from data
and proposes a set of novel metrics, such the error propagation reportability (EPR), which

1In this study, we follow the notion that a software fault is a development fault originated during the coding
phase. Faults can be activated by the computation process or environmental conditions and cause errors. An
error is the part of the total state of the system that may lead to its subsequent service failure. A failure occurs
when the delivered service deviates from correct service (Avizienis et al. 2004).
2The evaluation version of these systems, testing applications and workloads are provided by the industry
partner within the MINIMINDS Project (n. B21C12000710005).
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are computed from the graphs to quantify the error behavior of the system under assessment.
We rely on a representation of the input data that allows decoupling our approach from the
data sources, which makes many steps of the approach potentially automated.

The approach contributed to develop a deep understanding on error modes, propagation
paths and capabilities of the error reporting mechanisms, which provided actionable insights to
the industry provider for improving error detection. The key findings of our empirical study are:

– With respect to the error modes –and their granularity– adopted in this study, differ-
ent fault types lead to a small subset of error modes, which mainly concern type and
value of variables. For example, data type errors and unexpected value errors are the
most reported for event logging and assertion checking, respectively; this finding is
consistent with the previous literature, such as (Leeke and Jhumka 2010).

– Early error propagation steps are mostly silent. We observe that a software component
affected by a fault might report no error notifications. For example, in our setup, the
logs emitted by the component containing an algorithm fault report an error only in the
33.87% and 19.20% of cases, in the two target systems.

– Although missed by the component originating the fault, errors might still be reported
by other components along the propagation path. For example, logs of the database
component –belonging to the ATCmiddleware– report 23 out 69missing function faults
undetected by the originating faulty component elsewhere. A similar finding is noted for
assertion checking and logs generated from the arrival manager stand-alone application.

– Latest error propagation steps determine the type of failure that will be encountered by
the system. Our study reveals a strong relation between the last components reporting
errors and the type of failure observed. This provides insights on the errors that should
be handled to avoid failures.

– The analysis of graphs guides the improvement of the error detection mechanism of a
complex software system, and allows to quantify the extent of the improvement itself.
By analyzing the graphs, practitioners can identify the components where to place more
EDMs; experiments on the ATC middleware after the placement of new EDMs high-
light an improvement, in terms of the error propagation reportability for algorithmic
faults, from 33.87% up to 94.50%.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 presents the systems under assessment and the datasets. Section 4 describes the
proposed approach and the metrics. Section 5 discusses the error modes inferred from
data, while Section 6 presents the insights achieved from error reporting graphs. Threats to
validity are discussed in Section 7, while Section 8 concludes the paper.

2 RelatedWork

We position our research with respect to existing work on software error propagation analysis,
distinguishing them in architecture- and metrics-based approaches, and code instrumentation.

2.1 Architecture- andMetrics-Based Approaches

Several approaches that address software error propagation require a substantial degree
of knowledge on system internals, such as architectural dependencies between system
components and evaluation of software metrics; moreover, some of the approaches are
accompanied with static analysis of the source code.
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The approach presented in Jhumka and Leeke (2011) leverages module coupling to iden-
tify potential data-value error detector locations at module-level. Coupling is evaluated using
information about modules, e.g., input and output data/control parameters, data/control
global variables, number of called/calling modules. The approach is used in an open-source
flight simulator. Authors in Abdelmoez et al. (2004) propose a static analytical approach
that leverages architecture specifications to estimate the probability of error propagation
in a software architecture. The approach is based on a metric, named error propagation
probability. Evaluation requires architectural-level data, such as states of components and
messages they can exchange. A similar approach is adopted in Filieri et al. (2010) to
component-based systems. Authors propose a methodology, based on a probabilistic model,
to analyze the reliability of the system starting from failure modes and failure probabil-
ities of its components. The approach requires detailed architectural information on how
the components are assembled, in terms of input/output ports and their connections. The
model includes the formalization of probabilistic error propagation among components’
ports.

In Popic et al. (2005) an existing Bayesian methodology is extended for reliability
prediction of component-based software systems for error propagation. The methodology
leverages the error propagation probability metric and it requires the knowledge of fail-
ure rates of components, under the assumption of failure independency; each component
is assumed to exhibit the same failure rate. Similarly, the work in Cortellessa and Grassi
(2007) leverages the error propagation probability and requires detailed information on each
component, such as, unconditional and conditional (e.g., subject to a given correct input)
failure probability and operational profile. The method has been shown to be beneficial for
the placement of error detection and recovery mechanisms.

The impact of inter-modular data error propagation is assessed in Jhumka et al. (2001).
The work characterizes data error propagation and derives a set of metrics that quantify
inter-modular interactions. Results indicate that the metrics allow to identify candidate mod-
ules to be equipped with detection/recovery mechanisms. In Khoshgoftaar et al. (1999) it is
presented an approach to identify software modules that do not propagate data errors. The
work demonstrates –through experimentation on the Nethack adventure game– that static
software metrics are good predictors for the identification of such modules, avoiding the
evaluation of their error propagation probability.

The approach proposed in Voas (1997) studies information flows between components
of a system. The approach is based on the corruption of the information flowing through
components and the observation of its impact during execution, in order to isolate the com-
ponents that cannot tolerate failures of the other ones. SherLog (Yuan et al. 2010) is a
diagnosis tool that analyzes the source code and event logs it generates at runtime during
the occurrence of failures, to automatically provide control-flow and data-flow information.

An approach to evaluate error propagation from debug data is presented in Lyu et al.
(1996). The approach allows building error propagation graphs from the reports generated
by analysts after the occurrence of failures. The graphs provide information about the fault
causing the failure, the type of the first error, the error propagation mode and how the error
has been detected.

Our work aims to overcome the drawbacks that threaten the application of architecture-
and metrics-based approaches in real-life production environments. For example, with
respect to Jhumka and Leeke (2011), Abdelmoez et al. (2004), Popic et al. (2005), Cortel-
lessa and Grassi (2007), Voas (1997), and Filieri et al. (2010) our proposal does not
require detailed information on software components (such as, input and output data/control
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parameters, undesirable states, failure rates), which are difficult to retrieve especially when
the system is based on OTS and legacy components. The work in Zheng and Lyu (2010)
questions the use of such component-level models for reliability prediction, especially
when applied on web services, due to the lack of detailed system information and network
unpredictability. Similarly to our work, they propose to collect real data about the failures
affecting the system, even if for a different purpose (reliability prediction). But, differently
from us, they rely on a users-based collaborative framework to collect past failure data from
past experiences with the web services to be composed. With respect to Jhumka and Leeke
(2011), Jhumka et al. (2001), and Khoshgoftaar et al. (1999) our approach is not limited to
data errors and it does not require to monitor the output of each component (Voas 1997).
In addition, with respect to Yuan et al. (2010), our approach does not require static analysis
of the source code, which can be either expensive in a large system or inapplicable when
the code is not available. Finally, with respect to Lyu et al. (1996) our proposal leverages
error messages naturally emitted from the target system to perform error propagation anal-
ysis, which allows obtaining valuable information about the propagation of errors through
the system components.

2.2 Code Instrumentation Approaches

Code instrumentation approaches capitalize on monitoring code (either at source code or
binary level) to generate error traces upon fault activation (Lattner and Adve 2004; Cinque
et al. 2013).

EPIC (Hiller et al. 2004) is a framework based on variable instrumentation to trace the
value of variables in order to estimate an error permeability metric (which evaluates the
ability of a module to contain errors) and to place EDMs. PROPANE (Hiller et al. 2002a)
analyzes the propagation of data errors in single-process C software systems, and identifies
error paths and propagation frequency. PROPANE is based on a fault injection approach to
induce data errors in the system and variable instrumentation to detect errors. In Cinque
et al. (2013) is proposed a set of logging rules for the placement of log statements in the
source code, in order to generate error traces upon the activation of software faults.

The work (Johansson and Suri 2005) proposes an approach for the analysis of errors in
Windows CE .Net device drivers, to study how errors propagate to applications. Data errors
are induced by means of fault injection at interface level, while propagation is analyzed by
instrumenting the code with assertions. A set of metrics is proposed to evaluate if the target
driver needs a wrapper to handle the errors.

The work (Leeke and Jhumka 2010) introduces the importance metric to measure the
impact a given variable has on the dependability of a software system. The evaluation of
the metric requires to instrument the variables in order to understand when a variable is cor-
rupted. The approach provides insights on the design and positioning of error detection and
recovery mechanisms. An open-source flight simulator has been used to assess the proposal.
In Tucek et al. (2007) authors propose a system, called Triage, that automatically performs
onsite software failure diagnosis. The system makes use of both kernel-level components
and multiple re-executions of the target software to support failure diagnosis; during each
re-execution, detailed data are collected via dynamic binary instrumentation to conduct the
analysis of occurred failure and its causes.

An approach for error propagation analysis using invariants is presented in Chan et al.
(2017). The approach, named IPA (Invariant Propagation Analysis), automatically derives
invariants for multithreaded programs by instrumenting the source code at function entry
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and exit points. The approach has been evaluated with different fault types across six pro-
grams through fault injection experiments. An error propagation study for MPI applications
is presented in Calhoun et al. (2017). The paper investigates how Silent Data Corruption
due to soft errors propagates through HPC applications. An LLVM-based tool is developed to
instrument MPI applications in order to inject faults and track error propagation at instruction
and application variable level. The tool has been applied to three HPC applications.

Differently from these studies, we propose to capitalize on the data already produced
by the system, such as log files produced by event logging and/or assertions already avail-
able in the source code. The idea is also to receive feedback on how these error reporting
techniques work and if/how they should be improved for better error propagation analy-
sis. On the opposite, the use of code instrumentation approaches is not straightforward in
production environments, for systems adopting OTS, or when there is limited knowledge
on system internals. For example, the approaches (Hiller et al. 2004; 2002a; Leeke and
Jhumka 2010; Calhoun et al. 2017; Chan et al. 2017) require instrumenting variables or
function entry/exit points, which might be expensive in a complex software system encom-
passing several components and even not applicable if the source code is not available.
In addition, the approach in Hiller et al. (2004) requires measuring the error permeabil-
ity for each input of each module, leading to a low scalability of the approach; while the
tool (Hiller et al. 2002a) addresses only single process software. The system proposed
in Tucek et al. (2007) uses kernel-level components and dynamic binary instrumentation,
which is not allowed in critical production environments (e.g., mission critical systems)
with stringent constraints imposed by certification standards and the use of obsolete ker-
nel versions. Finally, the approaches (Hiller et al. 2004; 2002a; Johansson and Suri
2005) only address data errors, while those presented in Johansson and Suri (2005) and
Calhoun et al. (2017) are conceived only for OS device drivers and MPI applications,
respectively.

3 Systems and Datasets

Datasets available in this study consist of faults and error events that pertain to total 2,042
distinct failures of two systems. We analyze a middleware and a standalone application –
named arrival manager– both used by the industry provider in the critical domain of the
Air Traffic Control (ATC). In the following we present systems, testing applications and
error detection mechanisms beforehand; then, we describe how faults and error events are
arranged into tabular failure data instances for propagation analysis.

(a) Middleware (MW). (b) Arrival Manager (AM).

Fig. 1 Overview of the systems
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3.1 Description of the Systems

Middleware (MW) The middleware assessed in this study is an OMG-compliant data
distribution service (DDS) layer among heterogeneous ATC applications. It provides a
message-oriented application programming interface (API), which is based on the publish-
subscribe paradigm and topics. Figure 1a shows a typical deployment of the middleware by
the industry provider, where a flight data processor (FDP) and a controller working position
(CWP), i.e., two ATC applications, generate the messages exchanged through the middle-
ware. The source code of the middleware consists of 796,353 lines of C code, organized
into 8 components,3 depicted in Fig. 1a:

– abstraction: level between middleware / operating system;
– api: API provided to applications;
– database: bridges data to a DB and vice versa;
– ddsi2: provides QoS-driven real-time networking based on multiple reliable multicast

channels;
– durability: implements fault-tolerant storage for both state data and persistent settings;
– kernel: the core of the middleware;
– spliced: it is responsible for creating and initializing the database used to manage the

middleware data;
– user: intermediate level between api and kernel components.

FDP and CWP are testing applications provided by the industry partner and serve as
load generators to exercise the middleware. FDP and CWP implement a workload, i.e., the
library of inputs that a generator submits to the target system (Hsueh et al. 1997), consisting
of messages that are published under certain topics. Messages and topics reflect the nominal
usage profile of the middleware by ATC operators. The leftmost column of Table 1 shows
the top 10 invoked functions of the middleware over a sample of 15,409 invocations of 118
distinct functions. It is worth noting that the usage profile exercises the principal entities of
the OMG DDS model,4 such as Data Reader/Writer, Publisher/Subscriber and Topic.

Arrival Manager (AM) This a standalone ATC application, which is intended to assist
human operators in optimizing the runway capacity and regulating the flow of aircrafts
entering a given airspace. AM is fundamentally different from the middleware described
above and is maintained by a different development team. AM continuously computes an
optimal list of flight arrivals based on different parameters, such as the landing rate and
spacing requirements. The application consists of 40,396 lines of C++ code. A high-level
view of AM is given in Fig. 1b, which is characterized by 6 components:

– AG (Arrival Generator): computes the arrival list and timing of flights based on the
landing rate, spacing and other parameters;

– ASD (Aircraft Situational Display): manages the position and flight data, e.g., location,
altitude, airspeed, of aircrafts;

– Database: it is responsible for the interaction with a DB;

3Consistently with the software engineering terminology, we mean by component a software unit encom-
passing a cohesive subset of functionality provided by a given system; a subcomponent is a subset of
functionality within the component (Lau and Wang 2007).
4https://www.dds-foundation.org/what-is-dds-3/
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Table 1 Top 10 invoked functions by system

Middleware (MW) Arrival Manager (AM)

(%) function (%) function

7.85 v groupUpdatePurgeList 19.16 assign

7.08 v topicMessageNew 9.77 OnTimer

6.94 v dataReaderEntryWrite 9.64 OnTimerStateEventTransition

6.94 v messageQos isReaderCompatible 6.78 MBXReceivePacket

5.96 v checkMaxSamplesWarningLevel 5.45 SeqItem

5.43 v objectNew 5.32 freeLists

5.04 v messageQos getTransportPriority 4.82 EndWork

5.04 instanceTakeSamples 4.82 StartWork

3.74 v messageQos getLifespanPeriod 4.82 GetNodeRole

3.47 v dataReaderInstanceWrite 4.82 GetApplicationStatus

– Eligibility: at any time provides the list of flights within the eligibility horizon (i.e.,
close enough to be handled by the AMG component);

– ASF (Aircraft Surveillance Function): determines the position of aircrafts;
– SPV (Supervisor): supervises OS processes that underlie the execution of the AM.

Again, the system is provided by the industry partner alongwith a testing application called
flight orders (FO in Fig. 1b). The workload implemented by FO is a sequence of requests
that consist insert and delete flights, which emulate aircrafts entering/leaving an airspace.
Requests reflect the nominal usage profile of the AM in production. The rightmost column
of Table 1 shows top 10 invoked functions of AM over a sample of 18,520 invocations of
202 distinct functions. All the components in Fig. 1b are represented within the functions.

3.2 Error Detection

The systems assessed in this study natively implement event logging (EL) mechanisms to
detect errors. EL consists of dedicated instructions that are inserted by developers during
the coding phase with the aim of reporting error events at runtime upon certain conditions.
Figure 2 (lines 4-7) shows a snippet of EL. The code produces an error event whenever the
variable newQos equals to NULL, which was judged to be an error symptom by developers
at coding time. The source code of both MW and AM contains a large number of logging
points to catch potential error conditions. Regarding MW, we also consider error detection
by means of assertion checking5 (AC). Figure 2 (lines 16-18) shows a snippet of AC code
from MW, where it is checked value and type of some parameters passed to the function
v writerNew.

Runtime events produced by EL and AC are typically stored into files –also known as logs–
for post-mortem analysis. Logs are a byproduct of the system’s execution. In the systems
assessed in this study, events produced by both EL and AC are written in the logs along with
some context fields, such as name of file and function, which contain the logging/assertion

5An assertion checks invariant properties holding in correct executions; an alert is generated if an invariant
is violated at runtime (Rosenblum 1995).
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Fig. 2 Snippets of event logging (lines 4-5) and assertion checking (lines 14-16) code

instructions that generated the event. The following lines show concrete examples of error
events found in the logs of the middleware, i.e., EL (lines 1-4) and AC (lines 5-6).

It is worth noting that lines 1-2 are produced by the instruction in Fig. 2 (line 5) at run-
time; all the lines are accompanied by names of files (e.g., v topic.c, u service.c)
and functions (e.g., v topicNew and u serviceFree).

3.3 Datasets

Data used in this study were collected with a campaign of experiments performed in a
controlled monitoring setup (Cinque et al. 2016). Given a system under test –either MW
or AM– each experiment consisted in (i) injecting a software fault into the system, (ii)
exercising the system by means of the testing applications described in Section 3.1, (iii)
observing/classifying the consequent failure, and (iv) storing the errors reported in the logs
by either EL or AC. Noteworthy, a fault injection experiment does not necessarily cause a
failure; moreover, a failure might go unreported, i.e., logs contain no error events at all by
either EL or AC.

Fault types used in the experiments follow the ODC classification proposed in
Chillarege et al. (1992) and subsequent refinement by Duraes and Madeira (2006), which
are widely-accepted by the software engineering community. Table 2 summarizes the types
pertinent to our study and mapping to corresponding ODC class.

Failure types denote the nature of the deviation with respect to the correct service
expected by the system under test. Types are based on the well-established taxonomy in
Avizienis et al. (2004):

– CRASH: abrupt termination of the system;
– SILENT: the system is up, but no output/functionality is provided within an expected

timeout;
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Table 2 Fault types used in the experiments (ALG-algorithm, ASG-assignment, CHK-checking, INT-
interface)

Type ODC

MFC missing function call ALG

MVIV missing variable initialization using a value ASG

MVAV missing variable assignment using a value ASG

MVAE missing variable assignment with an expression ASG

MIA missing If construct around statements CHK

MIFS missing If construct plus statements ALG

MIEB missing If construct plus statements ALG

plus Else before statement

MLC missing AND/OR clause in expression CHK

used as branch condition

MLPA missing small and localized part of the algorithm ALG

WVAV wrong value assigned to variable ASG

WPFV wrong variable used in parameter INT

of function call

WAEP wrong arithmetic expression in INT

parameter of a function call

– ERRATIC: bad output, exceptions, and other malfunctions that do not cause CRASH or
SILENT.

In this study we consider the failures that are reported by either EL or AC with at least
one error event in the logs. Table 3 shows the total number of failures that meet this criteria
after the fault injection campaigns. For each system we provide the breakdown of the total
failures by fault type and detection technique. For example, the value 69 in the cell (MFC,
EL-MW) indicates that 69 failures caused by an MFC fault injected in the middleware
(MW), are reported by at least one error event generated by EL. Overall, failures are grouped
into three datasets, which are denoted by EL-MW, AC-MW and EL-AM hereinafter. The
bottom row of Table 3 shows the cardinality of the datasets. For example, EL-MW is the
set of failures of MW that are reported by EL. Noteworthy, 346 failures of the MW are
reported by both EL and AC and –in turn– counted twice in EL-MW and AC-MW; as such,
the datasets account for total 2,042 distinct failures.

3.4 Notion of Failure Data Instance

For each failure in the datasets, the corresponding fault and error events are arranged in a
more convenient table format for the purposes of this study. The table will be referred as
failure data instance hereinafter. In this study, tables are crated by means of bash scripts,
which normalize faults and error events available across various files and formats produced
after the controlled injection campaigns. Table 4 shows the general format of a failure data
instance, which is populated with real data from the middleware system. The table consists
of two sections. The former, i.e.,Debug data (D), includes location/type of the fault leading
to the failure, and consequent failure type; the latter, i.e., error events (E), are the lines in
the logs by either EL or AC generated upon the occurrence of the failure. We regard the
former section of the table as “debug data” because it is intended to contain the outcome
of a typical debugging process. While in this study it is populated with faults, locations
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Table 3 Total number of failure data instances by fault type and reporting mechanism (EL, AC)

MW AM

ODC fault type EL-MW AC-MW EL-AM

ALG MFC 69 160 9

MIEB 26 29 0

MIFS 12 44 0

MLPA 262 684 57

ALG total 369 917 66

ASG MVAE 175 364 1

MVAV 8 14 0

MVIV 0 3 0

WVAV 12 16 0

ASG total 195 397 1

CHK MIA 15 27 1

MLC 2 2 0

CHK total 17 29 1

INT WAEP 11 36 0

WPFV 122 227 0

INT total 133 263 1

total 714 1,606 68

and failures obtained by means of controlled injections, debug data can be typically found
within bug trackers in response to field failures, as discussed later on in this section.

As it can be noted from Table 4, the failure data instance is characterized by component/
subcomponent of fault and error events. In the context of the systems in hand, components
are listed in Section 3.1. We establish the set of components by analyzing the software doc-
umentation and direct discussion with the industry partner. For each component the industry

Table 4 Example of failure data instance from the EL-MW dataset

Debug data (D)

Component (C) Subcomponent (SC) Fault type (f) Failure type (F)

kernel v networkReaderNew WPFV SILENT

Error events (E)

ID Component (C) Subcomponent (SC) Text Message (M)

E[0] kernel v networkReaderNew NetworkReader not created

inconsistent qos

E[1] kernel v readerQosNew ReaderQos not created

inconsistent qos

E[2] ddsi2 main Creation of NetworkReader failed

E[3] user u networkReaderNew Create kernel entity failed.

For NetworkReader <networkReader>
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partner shared the list of corresponding source code files. As such, we could correctly map
faults and error events to the originating component based on the knowledge of the source
file. Example of components are kernel and ddsi2 in Table 4; functions belonging to each
component, such as v networkReaderNew, v readerQosNew are regarded here as subcom-
ponents. In Table 4, a wrong variable used in parameter of function call (WPFV fault type -
f ), located in the v networkReaderNew subcomponent (SC) of the kernel component (C),
causes a silent failure (failure type - F ). Error events are reported by four functions, i.e.,
v networkReaderNew, v readerQosNew, main and u networkReaderNew –belonging to the
kernel, ddsi2 and user component, respectively– as shown by the bottom rows of Table 4.

The failure data instance provides a representation that aims to decouple our analy-
sis approach from the data that can be encountered in practice. For example, in our study
faults follow the ODC types and failures are based on Avizienis et al. (2004). However, the
analysis approach does not depend on the naming scheme of faults-failures. Similarly, the
definitions of component and subcomponent can be adapted to different systems. Moreover,
as it will be clarified in Section 4, our analysis approach can be used –although at coarser
grain– even if failure data instances miss some features, such as, fault-failure type or the
distinction between component/subcomponent.

While our empirical analysis relies on failures collected in a controlled setup, we would
like to point out that debug data can be inferred from bug reports and patches –usually avail-
able in bug trackers– created in response to field failures. Let us discuss a real-life motivating
example of bug report from the Tomcat6 server. The report clearly states the faulty compo-
nent and function, i.e., Catalina and WsRemoteEndpointImplBase, respectively; moreover,
it is accompanied by the error events observed in the field. By looking at the description pro-
vided by the user, which states “the browser waits for a response forever” it can be assumed
that a SILENT failure occurred. Finally, the analysis of the patch released –consisting of
several additions and fixes of the code– makes it possible to state that the fault was a MLPA.

4 Proposed Approach

Our analysis approach infers a representation, namely, error reporting graph, of the errors
leading from faults in a given component to failures. The representation is based on directed
graphs. Graphs have been already used in the context of error propagation analysis, e.g.,
Lyu et al. (1996), Jhumka et al. (2001), and Hiller et al. (2004), because they can be easily
understood by practitioners.

Let FDI denote a set of failure data instances where the originating component of the
fault is the same. We use an iterative approach. For each instance in FDI we obtain one
reporting path, beforehand; the reporting path is merged with the error reporting graph.
Steps of the analysis are summarized by Algorithm 1, which highlights input-output of each
step. We discuss the steps in the following by means of the illustrative example of failure
data instance shown in Table 4.

4.1 Construction of the Reporting Table

A failure data instance is processed in order to generate a data structure called report-
ing table as per Algorithm 1 (line 3). The reporting table enriches each error event that
accompanies the failure data instance with two attributes: (i) reporting stage and (ii)

6https://bz.apache.org/bugzilla/show bug.cgi?id=54711#attach 30061
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error mode. An example of reporting table is given in Table 5. Let us describe the attributes
in the following.

4.1.1 Reporting Stage

The reporting stage indicates the spatial closeness of the error event with respect to the
location of the fault. We use an object-like notation to obtain component (C) and subcompo-
nent (SC) of faults and error events. Let us denote by D the debug data section of the failure
data instance: as such, D.C is the component of the fault, e.g., kernel in Table 4. Similarly,
let us denote error events by E[i], with 0≤i≤(N-1); for example, E[0].C in Table 4 returns
kernel, while E[1].SC is v readerQosNew. For a given error event E[i], the reporting stage
is obtained automatically and assumes one of the following values, which are adapted from
Lyu et al. (1996):

– immediate (I): the subcomponent that reports the error is also the location of the fault,
i.e., (D.C==E[i].C) && (D.SC==E[i].SC);

– quick (Q): the subcomponent that reports the error is not the location of the fault,
although it belongs to the same component, i.e., (D.C==E[i].C) && (D.SC!=E[i].SC);

– last (L): the subcomponent that reports the error is not the location of the fault and
belongs to a different component, i.e., (D.C!=E[i].C) && (D.SC!=E[i].SC).

In case failure data do not come in the granularity of component-subcomponent, our
approach is applied without distinguishing between immediate and quick stages. The
third column of Table 5 shows the reporting stage of the events in Table 4 according
to the rules mentioned above. For example, E[1] is assigned “quick” because E[1].SC is
v readerQosNew and D.SC is v networkReaderNew, and thus different; however, E[1].C
and D.C are both kernel.

Table 5 Reporting table corresponding to the events shown in Table 4

Comp. Reporting stage Error mode ID

E[0] kernel Immediate (I) quality of service e2

E[1] kernel Quick (Q) quality of service e2

E[2] ddsi2 Last (L) unexpected result e3

E[3] user Last (L) kernel entities e9
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4.1.2 Error Mode

The error mode is a short description of the mode of the error. The mode is established
manually only at the first occurrence of an error event; automatically, for future occurrences
of the same event. The process is illustrated by Fig. 3.

Manual Inspection We scrutinize the event in order to gain insights into the cause of the
error. Analysis is supplemented with the software documentation, on-line forum searches,
and source code inspection. In the context of our data, E[0] in Table 4 is a “quality of
service” error, while E[2] denotes an “unexpected result” error, which represent examples
of error modes. Assigning a mode to events –in order to create a dictionary/taxonomy– is a
well-known practice of log analysis. It is a cognitive process and requires a trade-off. For
example, if a mode is too generic, its resolution might be small for subsequent analysis.
As such, we took a balanced approach by avoiding both overgeneralization and excessive
fragmentation.

Once the event is scrutinized, we i) extract the template of the event, where the variable
parts of the event are replaced with a generic wildcard, ii) formalize a regular expression to
match future occurrences of the same template, and iii) assign it to an error mode ei. For
example, the template of the text message in E[0] is * not created inconsistent
qos where the token “NetworkReader” is replaced with *.

Error Model Base It contains the results of the manual inspections, i.e., templates and error
modes, as shown in Fig. 3. Extracting templates from text logs is a common step in field data
studies (Makanju et al. 2012). It should be noted that, in spite of the potentially large number
of events, the number of unique templates is significantly lower, and thus addressable by
human experts. In our study, out of total 63,546 error events reported by event logging we
identified 258 unique templates. Templates are grouped by error mode because different
templates might account for the same error mode. Table 6 shows some of the templates
for the mode memory error, which have been extracted by means of event logging in the
middleware system; all the templates in Table 6 are related to memory allocation and de-
allocation issues.

Automatic Analysis An error event is checked against the templates (and regular expres-
sions) of the error model base, beforehand. If the check is fruitful, the event is automatically

Fig. 3 Assignment of modes to error events
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Table 6 Examples of templates assigned to the memory error mode – event logging, middleware system

ID error mode

e1 memory error

Illegal size * specified

Failed to allocate *

Unable to allocate *

* not created out of memory

Destroy of the shared memory failed

marked with its corresponding error mode; if not, manual inspection takes places as dis-
cussed above and the base is updated with a new template/error mode. For example, E[1] in
Table 4 –reporting an inconsistent qos– would be resolved automatically because the same
mode is encountered in E[0].

Table 5 shows the reporting table corresponding to the failure data instance in Table 4.
The rightmost columns denote the error modes.

4.2 Construction of the Reporting Path

The reporting table is automatically transformed in a reporting path, which is the second
step of the approach as in Algorithm 1 (line 4). For any input failure data instance and corre-
sponding reporting table, the reporting path can assume one out of the seven configurations
shown in Fig. 4, according to the following rules:

Fig. 4 Configurations of a reporting path
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– R1: fault type (f ) and failure type (F ) are the first and last node of the path,
respectively, as for all configurations in Fig. 4.

– R2: immediate (I ), quick (Q) and last (L) nodes are drawn if there is at least an error
event in the table with Immediate, Quick and Last as reporting stage, respectively.

– R3: if I exists, f is connected to I , as in configurations (a), (d), (f) and (g).
– R4: if Q exists, it is the destination node of an arc starting from either i) f , if I does not

exist in the table, as in configurations (b) and (e) or ii) I , otherwise, as in configurations
(d) and (g).

– R5: if L exists, it is the destination node of an arc starting from i) f , if both I and Q

do not exist in the table, as in configuration (c); ii) I , if I exists and Q does not, as in
configuration (f); iii) Q, otherwise, as in configurations (e) and (g). R5 places L as far
as possible from f because if either I or Q exist, it means that there exists at least one
error event closer to f .

– R6: F is the destination node of an arc from i) I , if I exists and both Q and L do not,
as in configuration (a); ii) Q, if Q exists and L does not, as in configurations (b) and
(d); iii) L, otherwise, as in (c), (e), (f) and (g).

– R7: if L does not exist –as in configurations (a), (b) and (d)– a self-loop is drawn on
the node that is directly connected to the failure type node (F ). A self loop indicates
that errors are reported only by the component affected by the fault.

Noteworthy, no combination in Fig. 4 encompasses arcs from the fault type node (f ) to
the failure type node (F ) because failure data instances contain at least one error event; in
consequence, there will always exist one node among I , Q and L, by construction. Let us
provide a concrete example with the data in Tables 4 and 5, which lead to the reporting path
in Fig. 5.

Nodes Fault (WPFV) and failure (SILENT) type are the first and last node of the path (R1).
Since all stages occur in Table 5, immediate (I-KERNEL), quick (Q-KERNEL) and last
(L-DDSI2-USER) nodes are drawn (R2). The names of I, Q and L nodes are obtained by
concatenating I-, Q- and L- with the name of the component; if more than one component is
labelled as Last, their names –without repetitions– are concatenated with L-, e.g., L-DDSI2-
USER in Fig. 5. Reporting stages are annotated with tables that contain error modes, as in
Fig. 5.

Arcs Figure 5 contains four arcs: (i) from the fault type to immediate node – R3; (ii) from
the immediate to the quick node – R4; (iii) from the quick to last node – R5; (iv) from the

Fig. 5 Reporting path from Tables 4 and 5
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last to the failure type node – R6. Noteworthy, the path reaches the last reporting stage;
therefore, no self-loops are drawn on the immediate and quick nodes – R7.

4.3 Graph Update

The graph update step updates the current error reporting graph with an individual report-
ing path as per Algorithm 1 (line 5). Update consists of the graph union operation (Bondy
et al. 1976). Let P=(VP ,EP ) be the path to be inserted in the graph G=(VG,EG), where V

and E are set nodes and arcs. The union of P with G is P ∪ G = (VP ∪ VG,EP ∪ EG).
In consequence, the resulting graph encompasses nodes and arcs of both P and G with no
repetitions.

Figure 6 shows a general error reporting graph. The graph indicates both multiplicity (M)
and Error Propagation Probability (EPP) of each node/arc. M is the number of reporting
paths that contain that node/arc; EPPs are discussed in Section 4.4. For better readability,
the graph encompasses one FAILURE node, while the failure types are shown on the arcs
connected to the FAILURE node (failures breakdown in Fig. 6).

Overall, the graph provides insights into the spatial closeness of the errors with respect
to faults and reporting stages (immediate, quick, last). It helps to understand how individual
faults (e.g., of type X or Y) impact the system up to system-wide failures. Moreover, the
graph allows inferring those cases where errors are reported only in the last stage, hence
suggesting actionable improvements in terms of new EDMs; arcs to the FAILURE node (and
associated error modes) provide indications for error handling.

4.4 Metrics Computation

We propose a set of metrics to accompany a graph: i) Error Propagation Probabilities, and
ii) Error Propagation Reportability.

Error Propagation Probabilities (EPPs). EPP are computed for nodes and arcs. The EPP
of a node is the ratio between the multiplicity of the node and the number of failure data
instances used to obtain the graph; the EPP of an arc is computed as the ratio between the
multiplicity of the arc and the multiplicity of its originating node. The interpretation of EPP
–based on the specific node/arc– is given in Table 7.

Fig. 6 Example of error reporting graph
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Table 7 Meaning of error propagation probabilities

Node probability

Node type Meaning

f the probability that an activated

fault is of type f

I, Q, L the probability that an error reporting component

is the component the node refers to

Arc probability

Src node type Dest node type Meaning

f I, Q, L the probability that an error caused by

an activated fault of type f is reported by

the component the destination node refers to

I, Q, L I, Q, L the probability that an occurred error

is reported by both source

and destination components

I, Q, L F the probability that an occurred error,

reported by the component,

lead to a failure of type F

I, Q self-loop the probability that an occurred error,

reported by the component,

is not further reported

Error Propagation Reportability (EPR). As mentioned above, the error reporting graph
pertains to propagation of faults originated by a given component C. ERP quantifies the
ability of the component at catching error propagation. Let i) REC (Reported Errors by the
Component) be the sum of the multiplicity of the arcs from a fault type to either I or Q

nodes (i.e., the cases where the component C reports at least an error event), and ii) RE be
the sum of the multiplicities of the fault type nodes in the graph. The EPR for the component
C is:

EPRC = REC

RE
· 100

where EPR is in [0, 100]%. The closer EPR to 100% the higher the ability of C at catching
error propagation. A low value of EPR indicates the need for improving error reporting
mechanisms implemented by C.

5 Error Model

We analyze the error model obtained by applying our analysis approach to the three datasets
of failures.
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5.1 Event Logging - Middleware Dataset (EL-MW)

EL-MW consists of 714 failures as shown in Table 3. The error model is shown by Table 8,
where a short ID is assigned to each mode and used hereinafter to refer that mode; an error
event for each mode is shown for the sake of clarity.

We observe that event logging encompasses many errors concerning the high-level busi-
ness logic and configuration of the application, such as e2-EL-MW, i.e., “Quality of Service
error”, e7-EL-MW, i.e., “Topic error”, and e12-EL-MW, i.e., “Configuration error”. More-
over, a relevant number of errors pertain to interactions with OS facilities (e.g., mutex and
thread), such as e8-EL-MW and e11-EL-MW.

We closely look at the data to gain insights into the most-likely error modes and their
potential relationships with the fault types.

Tables 9 and 10 show the absolute number (Abs) and percentage (%) of reported errors
by fault type and error mode. For example, the value 2 in the column e1-EL-MW, (MFC,
Abs) cell of Table 9, indicates that 2 failures of theMFC fault type caused at least one error
belonging to e1-EL-MW; this is the 2.90% –(MFC, %) cell– of the total 69 failure data
instances where the MFC type led to a detection by EL (MFC, EL-MW cell of Table 3).

Tables 9 and 10 also show the data aggregated by ODC class (“total” rows highlighted
by the grey color). Figure 7 shows the percentages of the ODC classes in Tables 9 and 10

Table 8 Error model of event logging - middleware (EL-MW)

ID error mode example of error event

e1-EL-MW Memory error Failed to allocate cache.

e2-EL-MW Quality of Service error Writer not created inconsistent qos.

e3-EL-MW Unexpected result error Operation returned 0x0 but expected

0x428fa30.

e4-EL-MW Data type error Operation failed, couldn’t resolve type

"kernelModule v builtin".

e5-EL-MW Main daemon error Could not claim the DDSdaemon!

e6-EL-MW Consistency error Illegal contained object (Receiver <7199>).

e7-EL-MW Topic error Failed to produce built-in

ParticipantInfo topic.

e8-EL-MW Mutex error Operation failed mutex 0xc8025af8,

result = Invalid argument.

e9-EL-MW Kernel entities error Create kernel entity failed.

e10-EL-MW Timeout/liveliness error A fatal error was detected when trying to

register the DDSdaemon liveliness hbCheck

lease to the liveliness lease manager

of the kernel. The result code was 5.

e11-EL-MW Threads progress error Thread main failed to make progress.

e12-EL-MW Configuration error Could not initialise configuration.

e13-EL-MW Other error Maximum number of network queues (42)

exceeded, queue not created.

Expression=0xbe1a680 is not a valid

select statement.
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Table 9 EL-MW: absolute number (Abs) and percentage of reported errors (%) by fault and error mode -
from e1-EL-MW to e7-EL-MW

error mode

fault e1-EL-MW e2-EL-MW e3-EL-MW e4-EL-MW e5-EL-MW e6-EL-MW e7-EL-MW

Abs % Ab % Abs % Abs % Abs % Abs % Abs %

MFC 2 2.90 1 1.45 1 1.45 10 14.49 27 39.13 1 1.45 2 2.90

MIEB 16 61.54 1 3.85 3 11.54 2 7.69 3 11.54 0 0.00 1 3.85

MIFS 1 8.33 1 8.33 2 16.67 5 41.67 1 8.33 0 0.00 0 0.00

MLPA 28 10.69 18 6.87 30 11.45 83 31.68 51 19.47 9 3.44 7 2.67

total ALG 47 12.74 21 5.69 36 9.76 100 27.10 82 22.22 10 2.71 10 2.71

MVAE 22 12.57 2 1.14 32 18.29 65 37.14 35 20.00 8 4.57 6 3.43

MVAV 1 12.50 5 62.50 3 37.50 2 25.00 0 0.00 3 37.50 0 0.00

MVIV 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

WVAV 1 8.33 6 50.00 4 33.33 1 8.33 1 8.33 3 25.00 0 0.00

total ASG 24 12.31 13 6.67 39 20.00 68 34.87 36 18.46 14 7.18 6 3.08

MIA 0 0.00 7 46.67 5 33.33 1 6.67 1 6.67 1 6.67 1 6.67

MLC 0 0.00 0 0.00 1 50.00 0 0.00 0 0.00 0 0.00 0 0.00

total CHK 0 0.00 7 41.18 6 35.29 1 5.88 1 5.88 1 5.88 1 5.88

WAEP 0 0.00 0 0.00 0 0.00 9 81.82 2 18.18 0 0.00 0 0.00

WPFV 2 1.64 12 9.84 41 33.61 46 37.70 12 9.84 12 9.84 15 12.30

total INT 2 1.50 12 9.02 41 30.83 55 41.35 14 10.53 12 9.02 15 11.28

by error mode. For example, the (ALG, e1-EL-MW) bar in Fig. 7 corresponds to 12.74%
of the cell (total ALG,e1-EL-MW %) in Table 9. It can be noted that the distribution of the
error modes is similar across the ODC classes. On average, e3-EL-MW, e4-EL-MW and
e5-EL-MW are the most likely modes regardless the fault. For example, the mode e4-EL-
MW –denoting the “data type” error– is observed in 27.10%, 34.87% and 41.35% of the
instances where the failure is caused by ALG, ASG, or INT faults, respectively.

5.2 Assertion Checking - Middleware Dataset (AC-MW)

A similar analysis is done for the AC-MW dataset, i.e., failures reported by assertions in the
middleware system. Table 11 shows the error model. It can be noted that, differently from
event logging, errors detected by assertion checking pertain to foundational correctness
properties –e.g., data type/size, not NULL variables– rather than the overall business logic.

Such as for event logging, we show the absolute number (Abs) and percentage (%) of
reported errors by fault type and error mode for the AC-MW dataset in Table 12. Figure 8
plots the percentages of each mode cumulated by ODC type. Again, we observe the pre-
dominance of certain error modes. In this case, the most likely modes are e2-AC-MW
and e4-AC-MW for all the ODC types. The top frequent mode -i.e., e2-AC-MW denoting
“Unexpected value” errors- occurs in 52.67%, 45.34%, 58.62% and 52.47% of the failures
caused by ALG, ASG, CHK and INT faults.
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Table 10 EL-MW: absolute number (Abs) and percentage of reported errors (%) by fault and error mode -
from e8-EL-MW to e13-EL-MW

error mode

fault e8-EL-MW e9-EL-MW e10-EL-MW e11-EL-MW e12-EL-MW e13-EL-MW

Abs % Abs % Abs % Abs % Abs % Abs %

MFC 13 18.84 26 37.68 0 0.00 11 15.94 1 1.45 0 0.00

MIEB 0 0.00 0 0.00 2 7.69 0 0.00 0 0.00 1 3.85

MIFS 0 0.00 1 8.33 1 8.33 0 0.00 1 8.33 2 16.67

MLPA 9 3.44 51 19.47 7 2.67 28 10.69 4 1.53 16 6.11

total ALG 22 5,69 78 21.14 10 2.71 39 10.57 6 1.63 19 5.15

MVAE 0 0.00 21 12.00 7 4.00 15 8.57 3 1.71 10 5.71

MVAV 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

MVIV 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

WVAV 0 0.00 1 8.33 0 0.00 2 16.67 0 0.00 1 8.33

total ASG 0 0.00 22 11.28 7 3.59 17 8.72 3 1.54 11 5.64

MIA 1 6.67 1 6.67 0 0.00 2 13.33 0 0.00 0 0.00

MLC 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 2 100.00

total CHK 1 5.88 1 5.88 0 0.00 2 11.76 0 0.00 2 11.76

WAEP 0 0.00 2 18.18 0 0.00 1 9.09 0 0.00 0 0.00

WPFV 1 0.82 22 18.03 3 2.46 0 0.00 1 0.82 26 21.31

total INT 1 0.75 24 18.05 3 2.26 1 0.75 1 0.75 26 19.55

5.3 Event Logging - Arrival Manager Dataset (EL-AM)

We discuss the error model obtained by analyzing EL-AM, i.e., the dataset of failures
reported by the event logging mechanism of the arrival manager system. Table 13 shows
the error model and an error event for each mode. Similar to EL-MW in Section 5.1, some

Fig. 7 EL-MW: percentage of reported errors by mode and ODC fault type
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Table 11 Error model of assertion checking - middleware (AC-MW)

ID error mode example of error event

e1-AC-MW Data type error ‘(w == c checkType(w,"v writer"))’ failed.

e2-AC-MW Unexpected value error ‘c refCount(found) == 4’ failed.

e3-AC-MW Forced assertion execution ‘(0)’ failed.

e4-AC-MW NULL value error ‘message != NULL’ failed.

e5-AC-MW Data size error ‘c aSize(msgKList) == c aSize(instKList)’

failed.

errors pertain to the high-level business logic of the application, such as e2-EL-AM, i.e.,
“Data format error”, and e3-EL-AM, i.e., “Query error”.

Table 14 shows the absolute number (Abs) and percentage (%) of reported errors by
fault type and error mode. For example, such as described for the other datasets, the value 1
in the column e2-EL-AM, (MFC, Abs) cell, indicates that 1 failures of the MFC fault type
caused at least one error belonging to e2-EL-AM; this is the 11.11% –(MFC, %) cell– of the
total 9 failure data instances where the MFC type led to a detection by EL (MFC, EL-AM
cell of Table 3).

Percentages of ODC class by error mode –highlighted in Table 14– are plotted in Fig. 9.
Such as for the previous datasets, we observe that two error modes are predominant, i.e.,
e2-EL-AM and e3-EL-AM; noteworthy, e2-EL-AM pertains to data-related errors.

Table 12 AC-MW: absolute number (Abs) and percentage of reported errors (%) by fault and error mode

error mode

fault e1-AC-MW e2-AC-MW e3-AC-MW e4-AC-MW e5-AC-MW

Abs % Abs % Abs % Abs % Abs %

MFC 4 2.50 107 66.88 9 5.63 36 22.50 4 2.50

MIEB 0 0.00 10 34.48 8 27.59 11 37.93 1 3.45

MIFS 2 4.55 30 68.18 0 0.00 11 25.00 1 2.27

MLPA 90 13.16 336 49.12 67 9.80 147 21.49 48 7.02

total ALG 96 10.47 483 52.67 84 9.16 205 22.36 54 5.89

MVAE 70 19.23 166 45.60 39 10.71 70 19.23 21 5.77

MVAV 0 0.00 4 28.57 1 7.14 7 50.00 2 14.29

MVIV 0 0.00 3 100.00 0 0.00 0 0.00 0 0.00

WVAV 0 0.00 7 43.75 1 6.25 6 37.50 2 12.50

total ASG 70 17.63 180 45.34 41 10.33 83 20.91 25 6.30

MIA 0 0.00 15 55.56 1 3.70 11 40.74 0 0.00

MLC 0 0.00 2 100.00 0 0.00 0 0.00 0 0.00

total CHK 0 0.00 17 58.62 1 3.45 11 37.93 0 0.00

WAEP 16 44.44 12 33.33 5 13.89 3 8.33 0 0.00

WPFV 35 15.42 126 55.51 14 6.17 51 22.47 5 2.20

total INT 51 19.39 138 52.47 19 7.22 54 20.53 5 1.90
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Fig. 8 AC-MW: percentage of reported errors by mode and ODC fault type

5.4 Final Remarks on the Error Models

With respect to the error modes adopted in this study, it can be reasonably stated that dif-
ferent fault types concentrate in a small subset of error modes. Interestingly, these modes
concern type and value of variables expected during execution. This finding is consistent
with the literature that highlights the importance of variables and data-error analysis in engi-
neering dependable software (Leeke and Jhumka 2010; Hiller et al. 2002b; Jhumka et al.
2001; Jhumka and Leeke 2011; Hiller et al. 2004; Johansson and Suri 2005; Pattabiraman
et al. 2011). Noteworthy, this finding is obtained here on the top of data from logs naturally
emitted by the target systems, rather than substantial instrumentation approaches, which
makes our approach potentially applicable to a wider class of systems.

6 Propagation Analysis

In this section we discuss error reporting graphs and computation of the metrics by means
of case studies encompassing different detection techniques (EL and AC) and different
systems (MW and AM).

We start with the analysis of EL on MW (Case Study 1 in Section 6.1), which addresses
the EL-MW dataset by building the reporting graph, computing the metrics, and inferring
the paths leading to failures, that are then useful to get insight about the errors that should
be handled to avoid failures.

Table 13 Error model of event logging - arrival manager (EL-AM)

ID error mode example of error event

e1-EL-AM Memory error Cannot remove dev shm SPVsharedmemory.

e2-EL-AM Data error Invalid ETO in points.

e3-EL-AM Query error SQL command not properly ended.

e4-EL-AM Other error Could not create pthread.

Undefined Status INITIAL STATUS Disconnected.

Empirical Software Engineering (2020) 25:2450–24842472



Table 14 EL-AM: absolute number (Abs) and percentage of reported errors (%) by fault and error mode

error mode

fault e1-EL-AM e2-EL-AM e3-EL-AM e4-EL-AM

Abs % Abs % Abs % Abs %

MFC 0 0.00 1 11.11 7 77.78 1 11.11

MIEB 0 0.00 0 0.00 0 0.00 0 0.00

MIFS 0 0.00 0 0.00 0 0.00 0 0.00

MLPA 2 3.51 14 24.56 38 66.67 4 7.02

total ALG 2 3.03 15 22.73 45 68.18 5 7.58

MVAE 0 0.00 1 100.00 0 0.00 0 0.00

MVAV 0 0.00 0 0.00 0 0.00 0 0.00

MVIV 0 0.00 0 0.00 0 0.00 0 0.00

WVAV 0 0.00 0 0.00 0 0.00 0 0.00

total ASG 0 0.00 1 100.00 0 0.00 0 0.00

MIA 0 0.00 0 0.00 1 100.00 0 0.00

MLC 0 0.00 0 0.00 0 0.00 0 0.00

total CHK 0 0.00 0 0.00 1 100.00 0 0.00

WAEP 0 0.00 0 0.00 0 0.00 0 0.00

WPFV 0 0.00 0 0.00 0 0.00 0 0.00

total INT 0 0.00 0 0.00 0 0.00 0 0.00

We try to generalize the findings obtained by replicating the analysis on the same system
but with a different detection technique (i.e, AC-MW dataset, Case Study 2 in Section 6.2)
and on a different system with the same technique (i.e., EL-AM dataset, Case Study 3 in
Section 6.3). Finally, Section 6.4, shows how the insights inferred from the graphs can bee
used to improve the detection mechanism; to this aim we use the EL-MW dataset and
borrow additional considerations for the other cases as well.

Fig. 9 EL-AM: percentage of reported errors by mode and ODC fault type
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Fig. 10 Error reporting graph for EL on MW - ALG faults

In the following we focus on the graphs obtained for the most recurring faults in our data,
i.e., ALG and ASG faults for MW and ALG faults for AM (as highlighted by Table 3), and
provide summary results for the other ODC classes.

6.1 Case Study 1: Analysis of EL-MW

The major error propagation paths inferred from event logging for failures caused by ALG
and ASG faults in the MW are shown in Figs. 10 and 11, respectively. By major we mean
paths involving I/Q/L nodes with at least a multiplicity of 10.

It can be noted that many errors are not reported by the immediate and quick
components (i.e., kernel in our data). For example, from Fig. 10 we can notice that (i)
6 (i.e., MFC→Q-KERNEL) out of 69 MFC faults, (ii) 4 (i.e., MIFS→I-KERNEL plus
MIFS→Q-KERNEL) out of 12 MIFS faults, and (iii) 91 (i.e., MLPA→I-KERNEL plus
MLPA→Q-KERNEL) out of 262 MLPA faults led to error events by the kernel component
(either immediate or quick); error propagation probabilities (EPPs) of immediate and quick
nodes are 0.13 and 0.22, respectively. Similarly considerations apply to Fig. 11, where the
immediate and quick components exhibited an EPP of 0.18 and 0.27, respectively. This

Fig. 11 Error reporting graph for EL on MW - ASG faults
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Table 15 Error Propagation Reportability (EPR) of EL on MW with respect to the ODC class

ODC class Reported errors Errors reported EPR (%)

by the faulty comp.

Event Logging (EL)

ALG 369 125 33.87

ASG 195 82 42.05

CHK 17 7 41.18

INT 133 70 52.63

reflects in a low error propagation reportability (EPR), which is 33.87% and 42.05% for
ALG and ASG, respectively, as shown in Table 15, where results for all ODC classes are
summarized.

Reporting graphs make it possible to infer that the latest error propagation steps deter-
mine the type of failure encountered by the system, which allows to provide indications
on the errors that should be handled in the system to avoid their propagation into failures.
For example, Figs. 10 and 11 show that in 65 (i.e., L-API-SPLICED-USER→ FAILURE in
Fig. 10) out of 66 data instances (EPP of 0.99) and in 16 (i.e., L-API-SPLICED-USER→
FAILURE in Fig. 11) out of 19 data instances (EPP of 0.84), respectively, where errors
propagated to the api, spliced and user components, a SILENT failure occurred in the sys-
tem; similarly, in 115 (i.e., L-DATABASE→ FAILURE in Fig. 10) out 115 cases (EPP of
1.00) and in 71 (i.e., L-DATABASE→ FAILURE in Fig. 11) out 71 cases (EPP of 1.00), for
Figs. 10 and 11 respectively, where an error reached the database, a CRASH occurred. We
also noted that ERRATIC failures occurred mainly when errors propagated to the non-faulty
sub-components of the kernel, i.e., the Q-KERNEL node of the graphs.

From these indications, we learn that api, spliced or user components are good candi-
dates to handle errors to mitigate SILENT failures; similarly, database might help to face
CRASH failures. More in detail, the analysis of the error events generated by EL in the api,
spliced and user components pointed out that most of reported errors belong to e5-EL-MW
(main daemon error in Table 8); therefore, to mitigate SILENT failures, these components
should check the availability of the main daemon of the middleware and, when needed,
attempt a reboot of the daemon. On the other hand, a closer look into the error events gener-
ated in the database component highlighted that reported errors belong to e4-EL-MW (data
type error in Table 8); therefore, requesting again the data or trying to continue the execu-
tion with default values, can be useful to avoid CRASH failures or go towards a graceful
stop.

6.2 Case Study 2: Analysis of AC-MW

In this section we repeat the analysis on the same system as in previous section, but focusing
on a different detection technique, namely assertion checking (AC).

Figures 12 and 13 show the major error propagation paths inferred by assertion
checking for failures caused by ALG and ASG faults, respectively, in the MW system.
From the graph in Fig. 12 we can observe that: (i) 335 (i.e., MLPA→I-KERNEL plus
MLPA→Q-KERNEL) out of 684 MLPA faults and (ii) 46 (i.e., MFC→I-KERNEL plus
MFC→Q-KERNEL) out of 160MFC faults led to an error event by the kernel component,
which reflects into EPP values of 0.13 and 0.34 for immediate and quick nodes, respectively.
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Fig. 12 Error reporting graph for AC on MW - ALG faults

On the other hand, Fig. 13 shows that 229 (i.e., MVAE→I-KERNEL plus MVAE→Q-
KERNEL) out of 364 of MVAE faults –the most recurrent fault type for the ASG class–
caused failures that are detected by the kernel component. This translates into EPP values
of 0.22 and 0.41 for the immediate and quick nodes, respectively.

Similarly for EL, many errors are not reported by immediate and quick components. In
other terms, early error propagation steps are mostly silent, regardless of the detection
technique.

Table 16 summarizes the results, in terms of EPR, for all ODC classes. The maximum
EPR is obtained for ASG faults, i.e., 62.97%, which means that more than half of the
errors have been reported by assertions located in the kernel component.

Overall –by comparing Tables 15 and 16– it can be stated that in the MW system asser-
tion checking provides better detection with respect to event logging; however, the EPRs in
both tables still highlight that none of the techniques has a strong ability at reporting error
propagation. In general, ASG and INT faults, which underlie variables-related problems,
have better chances to be detected with respect algorithmic faults (ALG).

Fig. 13 Error reporting graph for AC on MW - ASG faults
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Table 16 Error Propagation Reportability (EPR) of AC on MW with respect to the ODC class

ODC class Reported errors Errors reported EPR (%)

by the faulty comp.

Assertion Checking (AC)

ALG 917 434 47.32

ASG 397 250 62.97

CHK 29 16 55.17

INT 263 119 45.25

total 1,606 819 51.00

Reporting graphs achieved with AC can be useful to infer information on the paths lead-
ing to failures, as done with EL. In particular, both Figs. 12 and 13 show that in almost all
the cases where errors have propagated to either the database or ddsi2 component a CRASH
occurred in the system. The analysis of the error events generated by assertion checking
in both the components allowed understanding that most of the reported errors belong to
e2-AC-MW (unexpected value error) and e4-AC-MW (NULL value error) –according to
the error model in Table 11– for database and ddsi2, respectively; again, it could be useful
attempting to avoid further propagation of value errors, either unexpected or NULL.

6.3 Case Study 3: Analysis of EL-AM

In this section we repeat the analysis by focusing on the same detection technique of Case
Study 1, namely event logging, but on the AM system. Figure 14 depicts the reporting
graph. It can be noted that many errors are not reported by the immediate and quick
components (i.e., database in our data). Once again, we note that early error propagation
steps are mostly silent and missed by EL.

For example, Fig. 14 shows that (i) 3 (i.e., MFC→Q-DATABASE) out of 9 MFC faults,
and (ii) 10 (i.e., MLPA→Q-DATABASE) out of 57 MLPA faults led to error events by the
kernel component (either immediate or quick); the EPP of the quick node is 0.20. Notewor-
thy, there is no immediate node in the graph because no errors are reported by the faulty

Fig. 14 Error reporting graph for EL on AM - ALG faults
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Table 17 Error Propagation Reportability (EPR) of EL on AM with respect to the ALG ODC class

ODC class Reported errors Errors reported EPR (%)

by the faulty comp.

Event Logging (EL)

ALG 66 13 19.70

subcomponent in AM. This reflects in the low EPR, which is 19.70% for ALG, as reported
in Table 17.

From the graph we can note that in 37 (i.e., L-SPV→FAILURE) out of 42 data
instances (EPP of 0.88) where errors propagated to the spv component, a CRASH fail-
ure occurred in the system; similarly, in all the cases where an error reached either the
database component (i.e., Q-DATABASE→FAILURE) or the eligibility component (i.e.,
L-ELIGIBILITY→FAILURE), an ERRATIC failure occurred. These indications allow
identifying the components where to handle given types of errors, similarly to what observed
in the previous two case studies. For example, the spv might handle errors to mitigate
CRASH failures; similarly, both database and eligibility components might help to face
ERRATIC failures.

The analysis of the error events generated by EL in the spv component pointed out that
most of reported errors belong to e3-EL-AM (query error in Table 13); therefore, those
components should cope with managing exceptions related to the execution of queries.
On the other hand, a closer look into the error events generated in the eligibility compo-
nent highlighted that reported errors belong to e2-EL-AM (data format error in Table 13):
recovering from data format errors can useful to avoid ERRATIC failures in AM.

In summary, in all the datasets we were able to apply the proposed approach to build error
reporting graphs, regardless of the detection technique and of the target system. Graphs are
then a useful instrument to quantify reporting performance – in terms of the proposed EPR
and EPPs metrics – to spot reporting inefficiencies, to identify errors to be be handled with
the aim of avoiding failures, and to improve the reporting mechanism, as discussed in next
section.

6.4 Improvement of the DetectionMechanism

As observed for all the case studies, propagation graphs reveal that errors undetected by
the immediate/quick component, might still be reported by other components along
the propagation path, which allows understating how to improve the reporting mechanism.

With respect to the first case study, Figs. 10 and 11 show that many faults lead to fail-
ures reported only by late components, such as database, api, spliced and user, without
involving the kernel. For instance, in Fig. 10: (i) 23 (i.e., MFC→L-DATABASE) out of
69 MFC faults, (ii) 83 (i.e., MLPA→L-DATABASE) out of 262 MLPA faults, and (iii) 5
(i.e., MIFS→L-DATABASE) out of 12 MIFS faults (with EPP values of 0.33, 0.32 and
0.42, respectively) led to failures reported only by the database component; similarly, 26
(i.e., MFC→L-API-SPLICED-USER) out of 69 MFC faults (EPP of 0.38) and 40 (i.e.,
MLPA→L-API-SPLICED-USER) out of 262 MLPA faults (EPP of 0.15) caused failures
reported only by the api, spliced and user components. On the other hand, Fig. 11 shows
that 59 (i.e., MVAE→L-DATABASE) out of 156MVAE faults (with EPP value of 0.38) led
to failures reported only by the database component.
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Following this finding, we placed additional EDMs in the kernel component. To this
objective we use the rule-based logging approach (Cinque et al. 2013), which consists into
placing start-end events at the begin-end of functions. Rule-based logging aims to detect
errors preventing the completion of invoked functions and dirty function returns. The tech-
nique is applied to the source code of the files belonging to the kernel component, which
leads to place detectors into 118 functions.

We analyze the logs generated by MW –now equipped with additional EDMs– under
controlled injection experiments and obtain the graph in Fig. 15 for ALG faults. Differently
from the original graph in Fig. 10, we observe that:

– most of the errors are reported by the kernel component, either immediate (EPP of 0.67)
or quick (EPP of 0.50);

– all the errors reported by the L-API-SPLICED-USER node are reported also by
the kernel component, i.e., 66 (53 Q-KERNEL→L-API-SPLICED-USER plus 13 I-
KERNEL→L-API-SPLICED-USER) out 66 cases, with no arcs connecting faults with
the L-API-SPLICED-USER node;

– most of the errors reported by the database component, i.e., 86 (45 Q-KERNEL→L-
DATABASE plus 41 I-KERNEL→L-DATABASE) out of 115 cases, are now reported
also by the kernel, either immediate or quick.

Improvements reflects into the EPR, which increases from 33.87% (as reported in the ALG
row of Table 15) to 94.50%; hence the new placement allows to significantly improve
the reporting ability of the kernel component. Moreover, it is important to note that the
new EDMs also allow to report previously undetected errors. In fact, errors caused by
11 MIEB, 24 MIFS, 90 MFC and 725 MLPA faults, undetected by the original built-in EL,
are now reported by the kernel component, as it can be noted by comparing the multiplicity
of the fault type nodes in Figs. 10 and 15.

Similar insights are obtained for the other case studies. Starting from assertion checking,
Fig. 12 reveals that 250 (i.e., MLPA→L-DATABASE) out of 684 MLPA faults and 79 (i.e.,
MFC→L-DATABASE) out of 160MFC faults (with EPP of 0.37 and 0.49, respectively) led
to failures reported only by the database; similarly, 84 (i.e., MLPA→L-DDSI2) out of 684
MLPA faults and 33 (i.e., MFC→L-DDSI2) out of 160 MFC faults (with EPP of 0.12 and
0.20, respectively) caused failures reported only by the ddsi2 component. Moreover, Fig. 13
shows that 85 (i.e., MVAE→L-DATABASE) and 46 (i.e., MVAE→L-DDSI2) out of 364
MVAE faults (with EPP of 0.23 and 0.13, respectively) led to failures reported only by the

Fig. 15 Error reporting graph for EL on MW after improvement
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database and ddsi2 components, respectively. A closer look into the error events generated
by assertion checking of the database and ddsi2, points out that most of the reported errors
belong to the e2-AC-MW (unexpected value error) and e4-AC-MW (NULL value error)
types, respectively. As such, further EDMs can be placed in the kernel subcomponents to
reveal bad or NULL values exchanged with database or ddsi2.

Concerning the case of the AM, Fig. 14 shows that 5 (i.e., MFC→L-SPV) out of 9MFC
faults, and 37 (i.e., MLPA→L-SPV) out of 57 MLPA faults (with EPP values of 0.56 and
0.65, respectively) led to failures reported only by the SPV component; similarly, 10 (i.e.,
MLPA→L-ELIGIBILITY) out of 57 MLPA faults (EPP of 0.175) caused failures reported
only by the eligibility. These data suggest the placement of EDMs inside the database com-
ponent. Similarly, a closer look into the instances containing only errors generated by the
SPV component, highlights that most of the reported errors belong to e1-EL-AM (memory
error) and e3-EL-AM (query error), which further confirms the need for addressing the
database in improving error detection.

7 Threats to Validity

We discuss the validity of the study based on the most relevant aspects listed in Wohlin et al.
(2000).

Construct Validity The threat relates to the choice of the datasets for the evaluation. We
face it by collecting realistic failure data instances from two different real-world software
systems from an industrial partner. Failure data instances have been collected in our pre-
vious large-scale study on software systems monitoring (Cinque et al. 2016) by running
controlled experiments, which aimed to elicit error events under different fault and failure
conditions. The reference system has been exercised with testing applications provided by
the industry partner to exercise the system under realistic operation scenarios. Injected faults
are based on the well consolidated ODC scheme (Chillarege et al. 1992) and on fault types
accounting for around 80% of representative faults found in real-world software systems,
according to the estimates in Duraes and Madeira (2006).

Internal Validity might be threatened by the analysis of relationships between errors and
their granularity. As for any log analysis study, creating a taxonomy/dictionary of events is
a cognitive process and requires a trade-off. For example, if an error type is too generic,
the resolution might be too small for subsequent analysis. To mitigate the threat, we took
a balanced approach in order to avoid both overgeneralizing and excessive fragmentation,
also considering error modes typically found in other studies. In addition, we adopted a
mixture of diverse faults-failures and error reporting mechanisms. We used error events
produced by two error reporting mechanisms, i.e., event logging and assertion checking,
under different faults and failures conditions and from two different systems to show the
effectiveness of the approach for error propagation analysis through error data logged by
the system. Noteworthy, our approach analyzes errors raised by the activation of individual
faults, because –in case of coincidental activation of multiple faults– it would be hard to
discriminate which fault caused certain errors. The key findings of the study are consistent
across the mechanisms and target systems, providing a reasonable level of confidence on
the analysis.
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External and Conclusion Validity Regarding the possibility to apply the approach on other
systems, we provide a concrete examples with two unrelated systems developed by inde-
pendent teams. We are confident that the details provided should reasonably support the
replication and generalization of the steps composing the approach. The reported findings,
which are strongly supported by data, are useful to get an overall understanding on the
insights that can be obtained; however, they are not intended to establish a general approach
based on two systems. Results show how the proposal can be used to understand error
modes, propagation paths and capabilities of error reporting mechanisms and to infer useful
insights to improve them accordingly.

8 Conclusion

This paper proposed an empirical study on error propagation. The study leverages an
approach based on the concept of error reporting graphs and novel metrics, i.e., Error Prop-
agation Probabilities and Error Propagation Reportability. The approach has been used
with 2,042 failure data instances from two real-world systems from an industry partners,
encompassing logs and error events generated by two error reporting mechanisms.

The use of the approach provided a deep understanding on error modes, propagation
paths and capabilities of the error reporting mechanisms implemented by the systems in
hand. For example, the study highlighted that a component affected by a fault is likely to
report no error notifications, regardless of the error reporting mechanism. On the other hand,
the obtained results pointed out that errors missed by a faulty component might still be
reported along the propagation path; the analysis of those errors provided insights about the
improvement of error reporting mechanisms and the placement of new EDMs. Finally, the
study revealed that latest error propagation steps determine the type of failure encountered
by the system, which provided useful indications for making informed decisions on the
errors that should be handled to avoid system failures.
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