
https://doi.org/10.1007/s10664-020-09800-3

The virtual lands of Oz: testing an agribot in simulation

Clément Robert1 ·Thierry Sotiropoulos1 ·Hélène Waeselynck1 · Jérémie Guiochet1 ·
Simon Vernhes2

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Testing autonomous robots typically requires expensive test campaigns in the field. To alle-
viate them, a promising approach is to perform intensive tests in virtual environments.
This paper presents an industrial case study on the feasibility and effectiveness of such an
approach. The subject system is Oz, an agriculture robot for autonomous weeding. Its soft-
ware was tested with weeding missions in virtual crop fields, using a 3D simulator based on
Gazebo. The case study faced several challenges: the randomized generation of complex 3D
environments, the automated checking of the robot behavior (test oracle), and the imperfect
fidelity of simulation with respect to real-world behavior. We describe the test approach we
developed, and compare the results with the ones of the industrial field tests. Despite the
low-fidelity physics of the robot, the virtual tests revealed most software issues found in the
field, including a major one that caused the majority of failures; they also revealed a new
issue missed in the field. On the downside, the simulation could introduce spurious failures
that would not occur in the real world.

Keywords Testing · Software in the loop (SIL) simulation · World generation ·
Autonomous robot · Agriculture robot · Industrial case study

Communicated by: Hadi Hemmati

� Hélène Waeselynck
Helene.Waeselynck@laas.fr

Clément Robert
clement.robert@laas.fr

Thierry Sotiropoulos
thierry.sotiropoulos@gmail.com

Jérémie Guiochet
jeremie.guiochet@laas.fr

Simon Vernhes
simon@naio-technologies.com

1 LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
2 Naı̈o Technology, Toulouse, France

Empirical Software Engineering (2020) 25:2025–2054

Published online : 25 February 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09800-3&domain=pdf
mailto: Helene.Waeselynck@laas.fr
mailto: clement.robert@laas.fr
mailto: thierry.sotiropoulos@gmail.com
mailto: jeremie.guiochet@laas.fr
mailto: simon@naio-technologies.com

1 Introduction

Autonomous robotic systems have decisional capabilities allowing them to accomplish com-
plex missions without human intervention. Self-driving cars and unmanned aerial vehicles
are emblematic examples of systems behaving with a high degree of autonomy. More gener-
ally, there is a huge potential for autonomous robots in many different application domains
like space exploration, manufacturing, personal assistance, rescue operation or agriculture,
to name a few. The robot studied in this paper, Oz, comes from the agriculture domain and
is deployed in vegetable crops for autonomous weed control. It is representative of the many
innovations currently introduced by the agricultural high-tech industry. Tractica (a market
intelligence firm in US) forecasts that the agricultural robot market will increase exponen-
tially from $3 billion in 2015 to $16 billion in 2020 and then $73 billion in 2024 (Tractica
2016).

The rise of autonomous robots in many domains creates new challenges for their valida-
tion. In particular, the mission-level validation typically involves test campaigns in the field,
which are costly and may also be risky in case of misbehavior. Dangerous tests must be
avoided as much as possible, or stopped before the robot causes any harm to itself, people
or property. In the case of agricultural robots, additional constraints come from the seasonal
characteristics of the missions, which further limit the situations that can be practically
tested at a given time of year. For example, a crop field in January does not resemble the
same field in May in terms of weed and crop growth.

Given these issues, a pragmatic approach is to consider simulation-based testing. The
robot is immersed in a virtual world, and can be tested in a more flexible, safer and less
costly way than in the real world. Such potential benefits motivated Naı̈o Technologies –
the French small tech company developing Oz and other agricultural robots – to introduce
mission-level simulation in their validation process. They implemented a software-in-the-
loop (SIL) simulation, where the real software is tested but the hardware and physical
components of the robot are simulated. Interestingly, their initial experience was disappoint-
ing. The engineers faced simulation performance issues, imposing a simplification of the
simulated physics and a limitation of the complexity of the virtual environments. As a result,
when the study reported in this paper started, Naı̈o made limited use of simulation-based
testing. They ran few virtual test cases (most often just one) as a smoke test prior to field
testing. The aim was to ensure that the software can successfully execute a mission before
proceeding with field testing. Naı̈o did not consider more intensive virtual testing beyond
those few cases. There was a perception that realistic test conditions were essential for a
proper validation of the robotic software, and that the simulation was too far from reality.

Joint work between Naı̈o and LAAS researchers questioned this perception. We experi-
mentally studied the revealing power of more intensive testing of Oz in simulation. Oz was
tested in a wide variety of virtual crop environments, which was made possible by using a
randomized test generation procedure. The results were then compared to the ones of the
industrial field tests. The main outcome of the study is that simulation-based testing can be
effective even if it imperfectly reproduces real-world conditions:

– The virtual tests could find several software issues that surfaced during the field tests,
including the issue that caused the majority of failures;

– They also revealed a new issue not exposed by the industrial field tests;
– On the downside, the simulation introduced spurious failures that would not occur in

the real world.

Empirical Software Engineering (2020) 25:2025–20542026

A side outcome of the study concerns the key challenges and lessons learnt in the design
of the virtual tests. One of the challenges was to capture the key characteristics of crop fields
and weeding missions in a test generation model. Another one was the definition of the
test oracle procedure, in order to detect misbehavior. Both of these challenges necessitated
several interactions between Naı̈o and LAAS. The exercise illustrated the real difficul-
ties associated with specifying the environment and expected behavior of an autonomous
system. The paper reports on our experience and extracts some recommendations.

The structure of the paper is as follows. Section 2 discusses related work. Section 3 intro-
duces the case study: the Oz robot and its simulation platform, the experimental approach
for studying tests in simulation. Test design is detailed in Sections 4 and 5, respectively
addressing the randomized generation of virtual crop fields and the automated checking
of test traces. Section 6 presents the misbehavior patterns revealed by the random tests
in simulation. Section 7 performs the comparison with software issues found by the field
tests. Section 8 provides an overview of the experimental outcomes and discusses threats to
validity. Finally, Section 9 concludes.

2 RelatedWork

In this section, we focus on the mission-level validation of autonomous systems in simulated
environments. We discuss three challenges: the fidelity of the simulation, the generation and
selection of test cases, and the specification of the test oracle.

2.1 Fidelity of the Simulation

The situation regarding the availability of realistic simulation platforms for autonomous
systems is contrasted.

On the one hand, systems like self-driving cars or Advanced Driving Assistance Systems
(ADAS) benefit from the critical mass of the automotive sector. Dedicated simulation plat-
forms with a high level of fidelity have been developed (e.g. see Virtual Test Drive (2018),
PreScan Simulation platform for ADAS (2018) or Okdal Sydac (2018)). They provide vehi-
cle dynamics models, realistic sensor models and facilities to create complex virtual driving
environments. The environments include static elements such as the road infrastructure but
also dynamic elements like pedestrians, other vehicles and global traffic. Camera-based sys-
tems are used to detect lanes, obstacles or traffic signs and require an accurate representation
of the real world.

On the other hand, there are no such dedicated simulators for the many existing robotic
applications, due to the diversity of robots, architectures and environments. The system
providers have to develop their own environment and system models, integrated into generic
simulation platforms. For example, Gazebo (Koenig and Howard 2004), MORSE (Echever-
ria et al. 2011) or even Unreal (Unreal Game Engine 2018) (originally developed for video
games), are more and more used for building software-in-the-loop simulators. Those simu-
lators may not be as sophisticated as the ones benefiting from a dedicated technology (like
in the automotive domain). The achievable fidelity is typically limited by the amount of
development effort that can be put on the simulation and by the computational resources
available for running the tests.

Fortunately, some studies concur that a low-fidelity simulation can still be relevant for
testing purposes. Arnold and Alexander (2013) tested a simple robot controller, consisting
in a path-following algorithm with collision avoidance. A basic simulation in 2D obstructed

Empirical Software Engineering (2020) 25:2025–2054 2027

environments sufficed to reveal several issues. Our previous work (Sotiropoulos et al. 2017)
performed an in-depth analysis of faults in the navigation software of Mana, a rough-terrain
experimental robot. Out of the 33 bugs extracted from the code commits, only one requires
a high fidelity to be replicated in simulation (the bug is related to mechanical vibration that
was not simulated). Timperley et al. (2018) came to a similar conclusion for bugs in the
open-source ArduPilot system: the majority of them surface under simple conditions that
can be easily reproduced in software-based simulation.

In this paper, the simulator was developed by Naı̈o Technologies based on the Gazebo
generic platform. It can be considered as a low-fidelity simulator regarding the physics of
the robot. Still, it is more elaborated than the simulators used by many of the robot testing
work discussed in the next subsection. Naı̈o wanted sufficient degree of detail to study the
full integration of the perception, decision and motion-control functions.

2.2 Generation and Selection of Test Cases

We identified two broad categories of test approaches for autonomous systems: approaches
that reproduce real-world tests in simulation, and model-based generative approaches that
create new synthetic tests.

The first category is mostly studied in the automotive domain. Car constructors have
collected large volumes of data from real drives, and can leverage them to test ADAS and
autonomous driving functions in simulation. But the reproduction of real test cases is not
straightforward: it requires advanced post-processing of the recorded data. For example,
(Bach et al. 2017) reconstruct the geometry of a road section based on the steering wheel
angles and visual lane recognition, while others use the DGPS position data to retrieve
the road model from a digital map database (Nentwig and Stamminger 2010; Lamprecht
and Ganslmeier 2010). Image processing techniques are used to identify relevant objects
(other cars, pedestrians) and reconstruct their trajectory relative to the ego-vehicle (Nentwig
and Stamminger 2010). Since the recorded data set may yield a large amount of redundant
test cases, some authors extract a small subset that covers abstract situations of interest or
classes of parameter values (Bach et al. 2017). Other authors have worked on increasing
the diversity of the reconstructed cases, by mutating them to produce variants (Zofka et al.
2015). For example, a spatial translation is applied to the original trajectory of a car.

In the second category, the generative approaches do not require the availability of real
data sets and offer flexibility to ensure test diversity. However, they require the definition
of a generation model, which can be very challenging. Think of a test case as a virtual
world in which the autonomous system is asked to perform a mission: the set of relevant
worlds and missions is infinite and difficult to characterize. In practice, the model is derived
from domain-specific knowledge. For example, a world model for an ADAS is expected
to include intersecting road segments, stationary and mobile obstacles on the road, weather
conditions, etc. Several modeling approaches have been proposed to provide a structured
view of the world elements and their relations: ontologies (Geyer et al. 2014; Ulbrich et al.
2015; Klueck et al. 2018), UML structure diagrams (Micskei et al. 2012; Sotiropoulos et al.
2016; Andrews et al. 2016), or XML-based decompositions of the domain (Zendel et al.
2013). The dynamic aspects are often included as parameters of the structural elements,
e.g., a mobile object has attributes to parametrize its trajectory. However, for some authors,
a behavioral model explicitly supplements the structural one: UML Sequence Diagrams
for Micskei et al. (2012), Petri nets for Andrews et al. (2016). Model-based test criteria
classically consist in covering (combinations of) classes of parameter values, and possibly
sequences of events in a behavioral model.

Empirical Software Engineering (2020) 25:2025–20542028

Rather than using model coverage criteria, some authors apply search-based testing to
find fail scenarios. For example, the aim is to find the collision scenarios that may be
generated from the model. The used techniques range from a simple random search over
the parameter space (Arnold and Alexander 2013) to advanced techniques combining an
evolutionary search with learning algorithms (Ben Abdessalem et al. 2016, 2018). Several
challenges are faced when applying techniques beyond a random search. First, the simula-
tion time of a test case may be long (e.g., it takes minutes), which severely constrains the
number of iterations allowed for the search. To alleviate the problem, Ben Abdessalem et al.
(2016) use neural networks to predict the fitness values without running the actual simula-
tions. Only the test cases with sufficiently high predicted values are executed, the other ones
are skipped. A second challenge is the non-deterministic behavior of autonomous systems.
It may be due to the non-determinism of the decision algorithms, or simply to the execu-
tion non-determinism that is common in highly concurrent robotic software. To the best of
our knowledge, Nguyen et al. (2009) were the only ones to account for non-determinism
in their evolutionary testing of an autonomous agent. The fitness value was calculated from
5 repeated runs of the test case, which was empirically found to ensure the stability of the
evaluation. Note how the need for repeated executions exacerbates the problem of the long
simulation time. Finally, a third challenge is the effective degree of control provided by
the high-level generation parameters defined in a model. There may be a considerable gap
between the abstract world model and the concrete elements fed into the simulator. Such
is the case if, as proposed by Arnold and Alexander (2013), the generation of the con-
crete worlds uses procedural content generation (PCG) techniques developed in the domain
of video games (see, e.g., the survey by Togelius et al. (2011)). For example, Arnold and
Alexander (2013) demonstrated the generation of 2D maps by means of a Perlin noise pro-
cess and some filter effects. The model parameters were the size of the map, the obstruction
rate and the settings for the filters. These are very high-level parameters compared to the
concrete map contents. Similarly, our work on the Mana robot retained the principle of PCG
and generated 3D maps using facilities from the Blender game environment (Sotiropou-
los et al. 2016). The parameters of the model (smoothness of the terrain, obstruction rate)
were found to provide a coarse control of the difficulty of navigating in the concrete
maps.

In this paper, we adopt a generative approach. The world model is specified in an UML
structure diagram, augmented with an attribute grammar for the description of semantic
constraints. The parameter space is explored by a random search, using PCG techniques
to produce concrete worlds from the generated parameter values. We leave more advanced
search techniques for future work, given the difficulties in terms of simulation time, non-
deterministic behavior, and degree of control of the search.

2.3 Specification of the Test Oracle

For autonomous systems, the oracle problem is specifically difficult due to the decisional
aspects. They make the specification of expected behavior quite challenging. For example,
consider an autonomous driving system. As noted by Tian et al. (2018), creating detailed
specifications for such a system would essentially involve recreating the logic of a human
driver. To circumvent the problem, a practical approach is to check for a limited set of prop-
erties, like metamorphic properties (involving related test executions) or invariant properties
(that should hold for any test execution).

In metamorphic testing (Chen 2015), the properties relate a test case and some follow-
up cases. The approach has been used by Zhang et al. (2018) to test driving models based

Empirical Software Engineering (2020) 25:2025–2054 2029

on Deep Neural Networks. The follow-up cases consist in modifying the weather condi-
tions and checking whether the driving behavior remains as in the original test. Similarity is
assessed within some tolerance in the steering angle variation. In the same vein, Tian et al.
(2018) check that the steering angle does not change significantly when certain transforma-
tions are applied to the input images. For testing a drone AI controller, Lindvall et al. (2017)
consider follow-up cases like rotations and translations of the world geometry. For exam-
ple, if the world is rotated 180 degrees, so that the drone is flying South instead of North,
the behavior should still be similar. Note that metamorphic testing may be impractical if
the system behavior is highly non-deterministic. In Sotiropoulos et al. (2016), we tested the
navigation of Mana, an academic all-terrain robot, and observed completely different trajec-
tories in repeated runs of exactly the same test case. Then, finding metamorphic properties
appears to be problematic.

Regarding invariant properties, the test oracle typically checks that some critical fail-
ures never occur. For example, collisions are critical when testing drones (Zou et al. 2014),
autonomous cars (Ben Abdessalem et al. 2018) and various types of mobile robots (Nguyen
et al. 2009; Arnold and Alexander 2013). When specifying the oracle, the retained set of
properties should not be too narrow. There may be a wide variety of misbehaviors other than
collisions, as shown by the history of navigation bugs affecting Mana (Sotiropoulos et al.
2017). From the analysis of these bugs, we identified at least five aspects that would be
worth considering in the oracle: (i) requirements attached to mission phases, (ii) threshold-
based invariants related to robot movement, (iii) absence of critical events (like collisions),
(iv) requirements attached to error reports, and (v) good perception requirements.

Rather than reporting a Pass/Fail verdict, the oracle may report a degree of satisfaction
or violation of the checked requirements. Such a grading approach has been formalized by
recent work on cyber-physical systems (Menghi et al. 2019), for properties expressed in a
fragment of the Signal First Order logic. For example, if an output signal should remain
below a threshold, a slight overshooting is graded as less severe than a large one. Gener-
ally speaking, a quantitative oracle may be convenient to flag the most critical tests to the
attention of engineers (Arnold and Alexander 2013; Hallerbach et al. 2018).

In this paper, the test oracle for Oz delivers a Pass/fail verdict based on invariant proper-
ties. The retained set of properties refers to the five aspects identified by our previous work
on navigation bugs.

Fig. 1 Oz in operation. Left: front view; right: back view with tools

Empirical Software Engineering (2020) 25:2025–20542030

Fig. 2 Oz in simulation. Left: virtual crop field using Gazebo. Right: expected mission

3 Case study and Experimental Approach

3.1 The Oz Robot and its Simulator

Oz is an autonomous weeding robot for fields of vegetables. Figure 1 shows Oz in opera-
tion. Its small size (75 cm × 45 cm × 55 cm) allows it to navigate between the crop rows
composing a field. The weeding is performed mechanically, using specific tools attached to
the rear of the robot and pulled by it. When there are several rows to weed, the robot must
make a U-turn at the end of a row to go to the next. It also has to decide whether the weeding
is done in one or two passes, depending on the distance between rows. This is illustrated by
the mission in Fig. 2: the interspace between the first two rows can be weeded in one pass,
but the next interspace is a bit wider and needs two passes.

Oz perceives its environment using a laser sensor (LiDAR 2D) at the front, as well as two
cameras. In the version under study, line tracking along rows of vegetables relies on the lidar
only. The cameras are used during U-turns. Red-colored stakes delimitate the extremities
of each row. They are placed at about 50 cm of the first and last vegetable in the row. The
robot identifies them and uses their visual perception for its U-turn maneuvers. The cameras
also allow the use of stereo visual odometry techniques to detect possible skidding of the
robot during U-turns. Finally, contact sensors (bumpers) detect collisions and trigger an
emergency stop. These safety devices prevent human injury, given the low velocity of Oz
(0.4 m.s−1), its moderate weight (120 kg with tools) and the fact that the weeding tools are
not dangerous by themselves. Still, the operation of the robot is not without risk. Consider an
ill-controlled trajectory: crop plants could be damaged, or the robot could reach a dangerous
area outside of the crop field (e.g., a road).

Naı̈o technologies has developed SIL simulation for testing the navigation of Oz. Figure 3
gives an overview of the corresponding test architecture. The platform is based on Gazebo,
a simulator widely used in robotics research. The software under test, OzCore, receives
simulated sensor data and produces actuator commands, the effects of which are simulated
to update sensor data. OzCore is written in C and C++, for a total of about 151 KLOC. This
code includes some Oz functions that are not handled by the platform. The effect of the
weeding tools is not simulated, hence the corresponding output commands are ignored. As
shown in Fig. 3, the simulator only receives the wheel speed commands controlling the robot
motion. Also, in the real world, the farmer parametrizes the mission via a user interface. In
the simulation platform, the mission parameters directly come from a .json file.

The simulator uses three inputs to instantiate a virtual crop field: one image .jpg encod-
ing the 3D terrain and two .sdf files for the other elements. Figure 2 is representative of

Empirical Software Engineering (2020) 25:2025–2054 2031

Mission description World description

Gazebo simulatorOzCore

.json .jpg .sdf .sdf

Perception

Speed command

Fig. 3 Simulation architecture

the complexity of the inputs that can realistically be managed given the simulator’s perfor-
mance. The virtual field has three rows of vegetables, low weed density between them, and
the length of the rows is small compared to the one in real world fields. Despite the limited
scale of the field, this test case manages to exercise many important aspects of a mission,
like crop row perception in the presence of weeds, line tracking, end of row detection, two
U-turns with different interspace configurations, and one-pass/two-passes decision. Indeed,
this specific case is the one that is the most often used as a smoke test before field testing.

Performance issues not only limit the complexity of the test cases, they also force us
to compromise on the simulated physics. Initially, Naı̈o implemented an accurate model of
the interaction between the wheels and the ground. It was deemed important to reproduce
the effect of mud, stones, ground sliding, etc. However, the accurate model proved too
demanding in terms of computing resources. To give an idea, a PC with 2 Quad core Intel
Xeon E5-2623 v3s CPU at 3.5GHz, and 64GB of RAM is not sufficient to run the test case
in Fig. 2 (which has a flat terrain and none of the above-mentioned stressful elements).
An alternative and much-simplified model of the wheels is thus provided for the tests: the
wheels are abstracted as mere cylinders and the physics ignores friction at the ground. Our
study of simulation-based testing uses this low-fidelity version of the platform.

3.2 Experimental Approach

Our research question concerns the revealing power of simulation-based testing compared
to testing in real-world conditions:

RQ: What are the benefits and drawbacks of simulation-based testing with respect to:

– Real issues found by the field tests,
– Real issues not found by the field tests,
– Spurious issues coming as simulation artifacts?

In order to answer this question, we developed an automated approach for testing Oz
with a large sample of virtual test cases, and then compared the results with the industrial
field tests. LAAS researchers made the virtual test development, with support from Naı̈o
Technologies for the initial test design and the final comparison. The Ozcore version under

Empirical Software Engineering (2020) 25:2025–20542032

test was an R&D version that became ready for field testing during the study. Its potential
faults were unknown and could not bias the test design. Moreover, LAAS researchers were
kept uninformed of the results of field testing until the final comparison.

The study involved three phases, to be described in greater details in the next sections:

– Define the test generation model (Section 4) and oracle procedure (Section 5). The
generation model should ideally capture all possible crop fields and weeding missions
in these fields that may be worth testing. Such a model did not exist at the beginning
of the study and had to be specified. Likewise, there was no formalized definition of
expected behavior for Oz: the properties to check had to be crafted with the help of
Naı̈o experts.

– Run the virtual test experiments and analyze the fail cases, in parallel with the test cam-
paigns by Naı̈o (Section 6). A key driver was to prepare the final comparison with field
testing. The concrete fail cases were categorized into high-level misbehavior patterns,
likely to indicate different software issues. This was done by manual inspection of the
detailed test traces, with the help of data visualization facilities. Note that the analysis
remained black box: the LAAS researchers did not access the source code.

– Compare the results of the simulation runs with the field tests results (Section 7). A key
driver was to determine whether the software issues identified by the test experiments
at LAAS matched the set of issues found by Naı̈o. In cases they did not, it had to be
determined what was missed, what was new and whether the potentially new issues
were real or spurious.

All outcomes of the study are finally gathered in Section 8 to answer the research
question. We additionally draw some lessons regarding the development of automated
simulation-based testing of Oz.

4 Test Design: World andMission Generation

The simulator must be fed with the description of a crop field and a weeding mission.
The corresponding input artifacts are low-level, providing any necessary details about the
virtual environment in a format understood by the simulator. In such cases, it is convenient
to approach the generation problem at a higher level of abstraction. It yields a two-step
process that generates abstract test case descriptors from a world model and then produces
the concrete artifacts. The world model, upon which the generation process is based, was a
key part of the test design. It took several meetings between LAAS and Naı̈o to discuss its
contents.

After a brief overview of the two-step generation process, this section focuses on how
we designed the world model. Some implementation aspects are also presented.

4.1 A Two-Step Generation Process

To manage the low-level test artifacts, we propose to implement techniques derived from
the Procedural Content Generation of worlds (see Section 2.2 and Togelius et al. (2011)).
The basic idea of PCG is to use a set of high level parameters (called the genotype) to
control the production of concrete world content (phenotype). The process is usually based
on randomized procedures, and thus may produce different phenotypes from a given value
of the genotype.

Empirical Software Engineering (2020) 25:2025–2054 2033

Figure 4 shows the use of PCG in a two-step generation approach, where the parameters
in the genotype come from a world model. To illustrate the process, let us take the exam-
ple of the generation of an uneven terrain. The world model has a terrain element with a
high-level parameter characterizing its roughness. The first step is to randomly select the
roughness value as part of the genotype. Then, the second step generates a concrete terrain
artifact, namely an image encoding the 3D relief (e.g., the image in the rightmost part of
Fig. 4). A noise function may produce the content of this image, the noise level being tuned
at the desired roughness value.

The two-step approach allows keeping the world model at a high level of abstraction.
The modeling can concentrate on identifying the major elements of the world and their
macroscopic characteristics (e.g., a terrain element and its roughness degree), without being
overwhelmed by the complexity of microscopic details (e.g., the precise shape of the terrain
at every point) or the idiosyncrasies of the simulation platform (e.g., the image format to
produce).

4.2 World Model Definition

The modeling first created a structured view of the candidate world elements and their
high-level parameters, with the support of UML diagrams. The visual presentation with
diagrams was useful to discuss the world model with experts in the system, who could
suggest extensions or simplifications. Then, the formalization of the genotypes was finalized
by switching to a grammar-based representation. In this representation, the genotypes are
strings that encode the parameters of each world element to generate. The use of an attribute
grammar formalism was found convenient to specify these genotype strings, accounting for
both structural concerns (how the complete genotype aggregates the parameters of the world
elements) and semantic ones (the domains of the parameters, the dependency constraints
between them).

Applied to the Oz case study, this modeling approach started by the elicitation of
structural relations, such as:

• A Field is composed of :

– Crop rows composed of

∗ Crops which could be of type Cabbage or Leek
∗ Red Stake at the beginning and end of rows

– Weed areas which contain the wild grass to eliminate.

Fig. 4 Two-step generation process. The dice symbol indicates randomized procedures at both steps: (1)
generation of values to instantiate the world model parameters, (2) generation of a concrete world content
from the parameter values

Empirical Software Engineering (2020) 25:2025–20542034

Fig. 5 UML class diagram of the World model

The complete structure is captured by the UML class diagram in Fig. 5. The model
aggregates world elements (classes) related to the crop field, the 3D terrain and the weeding
mission. The decomposition was refined until the level of detail was deemed sufficient.
Each element has attributes representing generation parameters. The first version of the
model had more than 30 parameters, but several simplifications were suggested by Naı̈o.
For example, the initial model had parameters to allow for misplaced or missing red stakes.
It was judged as too stressful for Oz and this possibility was removed. The final model
has 15 parameters, including 14 class attributes plus the choice of the crop plant type. The
diagrammatic representation facilitated the discussion with the engineers, being easy to
understand and modify.

Figure 6 illustrates some of the retained parameters. The space between two rows
(inner track width) and the density of vegetables in each row pertain to the crop field,
while the other parameters characterize the mission. For example, first track outer
indicates whether the robot starts at the external side of the field. Parameter
final track outer indicates whether the robot is allowed to weed the other external
side reached at the end of the mission (the farmer can forbid this when entering the mission).

The set of parameters defines the genotype. To explicitly model this concept, each class
has a descriptor attribute that reifies its genotype as a string. It encodes the values of
all parameters from this class and the contained classes. Hence, the root world descriptor
exposes the complete genotype of a test case.

The parameters in the genotype are not independent from each other. If the crop field
has N rows, we must consider N-1 row spacing values. If it has a single row then
first track outer must be true. The rows must have nearly the same length, and
should all contain the same type of vegetable (these were simplifications suggested by

Empirical Software Engineering (2020) 25:2025–2054 2035

Fig. 6 Schematic view of a subset of parameters

Naı̈o). In a string-oriented view of genotypes, such constraints may be formalized by an
attribute grammar. A genotype is then valid if it is a word of the grammar.

Figure 7 shows an extract of the grammar. The syntactic rules (in black) encode the
structure of the class diagram into the strings. For example, a world descriptor has a
substring to describe its field element. Attributes are associated with elements, like val

associated with ¡nb rows¿. Assignments (in blue) and conditions (in red) specify their
value, adding semantic information to the syntax. The used language includes all clas-
sical operators (Boolean, relational, arithmetic) plus some utility functions like str2val()
converting a numerical string into its value. In Fig. 7, the shown extract focuses on
how we specify the constraint relating the number of rows (<nb rows>.val) and the one
of row spacing values (<inner track width seq>.size). Constraints on multiple attributes
are introduced in the first common ancestor in the decomposition hierarchy, hence this
constraint appears as a condition attached to <field>. Its truth value is determined by
the assignments performed in the child elements. Note how the value assigned to the
size attribute of <inner track width seq> is defined recursively, depending on how many
<inner track width> elements are produced.

Conceptually, the grammar-based specification of descriptors makes the genotype a first-
class citizen of the model. The implementation of the test generator kept the same line: it
creates and manipulates world element descriptors, as described next.

Fig. 7 Extract of the grammar of genotypes

Empirical Software Engineering (2020) 25:2025–20542036

4.3 Implementation of a Test Generator

As presented in Fig. 4, the test generation has two steps, each involving randomness: (1)
the production of a valid genotype, (2) the production of a phenotype from this genotype.
They have been implemented by a custom generator, developed in Python in an object-
oriented style. The structure of the Python program is the same as the one of the world model
in Fig. 5, with the addition of methods to each class. The distribution of the code across
the hierarchy of world elements, each offering a unified interface, is intended to facilitate
the co-evolution of the world model and its generator. Indeed, there were several prelimi-
nary versions to demonstrate the generation functions. It was possible to accommodate the
addition or removal of parameters, with limited impact on the overall code.

A world element has the following interface to manage its genotype:

– random create(): randomly generates a descriptor, that is to say randomly picks a
valid configuration for the parameters of the class and its child classes. If this method is
called in the world class (the root of the structure), it recursively calls the same method
of every child class to randomly construct the complete world genotype. The structure
is instantiated such that each parameter has the value encoded by the descriptor.

– create from descriptor(desc): also instantiates the structure, but offers
more control on the values of parameters. The descriptor given in input can carry two
types of elements: terminals (to force a value) and operators (to select a generation
method). Operators can be seen as wildcards that replace a valid substring in a descrip-
tor. Operator r is simply a random generation by random create(). For instance,
desc=“0.0-r-r” at the root level (¡terrain¿-¡field¿-¡mission¿) means that we want to
create any valid genotype with a flat terrain (the terrain roughness is forced to 0.0, the
mission and crop field parameters are random). Other operators m and M have also
been implemented. They respectively select the minimum and maximum value of a
numerical parameter, e.g., we want any field with the maximum number of rows. The
combination of terminals and operators offers high flexibility to explore regions of the
parameter space.

– check descriptor(desc): parses a given descriptor and checks if it is valid.
It analyzes both the syntactic and semantic constraints specified in the grammar.
For example, the method in field checks that the number of ¡inner track width¿
substrings is consistent with the number of rows.

The test experiments presented in this paper only used random create(). But the
management of genotypes is designed to allow for future work beyond a random search.
The generator provides a basic service for a more controlled exploration of the parameter
space, via the create from descriptor() facility and the list of operators that can
be extended.

Once a valid genotype has been produced, the method for generating a phenotype (a
concrete test case) is the following:

– export(): the method attached to the root world class generates several files in the
right format for the simulation: a json file for the mission, and sdf and jpeg files for
the 3D world for Gazebo (see Fig. 3). The same method attached to child classes gen-
erates the concrete contents to put in the files. For example, the export of Height map
uses Perlin noise to generate a matrix of pixels, where the grey level of a pixel encodes
the z coordinate of the corresponding point in the map. Crop plants and red stakes are
picked in a library of predefined geometric objects (meshes). Crop row generates con-
crete (x, y) coordinates of the plants, based on their density, some noisy alignment, and

Empirical Software Engineering (2020) 25:2025–2054 2037

a disappearance probability (the vegetable did not grow, leaving a gap in the row). The
mission parameters are used to determine the initial position of the robot relative to the
field.

Note that the phenotype is strongly dependent on the simulator. In this respect, Gazebo
may be less convenient than video game environments. For example, the simulator used in
previous work on Mana was based on Blender, and could benefit from a rich API for the cre-
ation and manipulation of 3D scenes. The built-in possibilities were more limited in Gazebo.

5 Test Design: Oracle Procedure

For field tests like for the smoke tests performed at Naı̈o, verdicts are determined by testers
who visually check the robot behavior. Such a manual solution is no longer tractable when
exercising the navigation software with a large number of randomly-generated cases: we
need an automated oracle. However, the specification of the oracle faced the difficulty that
there was no specific list of requirements to check against. We first introduce the approach
we used to overcome this difficulty, before presenting the specific oracle designed for Oz.

5.1 Guidelines for Specifying the Oracle Checks

We consider the specification of a property-based oracle (see Section 2.3). The oracle is
based on a set of properties that the test traces should satisfy, any violation being reported
as a failure. When there is no clear definition of failure, as in the case of Oz, the properties
have to be specified from scratch. In order to guide the specification process, we may take
inspiration from the fault history of Mana (Sotiropoulos et al. 2017). Our previous work
analyzed the effects of Mana navigation bugs, and identified five broad categories of detec-
tors to catch them. They correspond to diverse aspects of the behavior of an autonomous
robot that may be worth consideration. These broad classes of requirements include:

1. Requirements attached to mission phases. The focus is on how to perform a mission.
A mission typically consists of a series of phases, with some expectations on what the
robot should or should not do at each phase.

2. Thresholds related to robot movement. Here, the aim is to detect abnormal values of
kinematic or kinetic variables.

3. Critical events, like collisions.
4. Requirements attached to error reports. A robot has capabilities to monitor its

operation and report errors. Requirements can be attached to the handling of these
errors.

5. Perception requirements, focusing on unacceptable mismatches between the ground
truth and its perception by the robot.

We used them to structure the discussion of candidate properties to check.

5.2 The Oracle for Oz

Accordingly, Table 1 shows the list of properties proposed for Oz. A mission is viewed as a
sequence of weeding and U-turn phases. Wrong mission execution (e.g., the robot weeds a
wrong row) yields a Fail verdict. But full mission completion is not required: the robot may
decide to abandon the mission at any time. It then reports an error and must safely stops (P8).

Empirical Software Engineering (2020) 25:2025–20542038

Table 1 Oracle checks for Oz

Mission Phases P1 U-turn in 5-7 maneuvers

P2 Robot maintains reference distance to the vegetables

P3 Sequence of weeded rows is correct

Movement thresholds P4 V elocity < Vmax

Critical events P5 No collision with vegetables or red stakes

P6 Robot does not go outside of the crop field

Perception P7 Self-localization with a certain precision

Error reports P8 Stopping distance < dmax after reporting an error

The most critical failures are causing damage to the environment (P5) and escaping from
the crop field (P6). For two of the other properties (P2, P7), there was a discussion whether
they pertain to performance or correctness. In particular, maintaining a reference distance to
the vegetables corresponds to an ideal weeding trajectory, but Naı̈o does not consider it as a
strong requirement as long as there is no collision. Likewise, self-localization is not strongly
required, since the robot is guided by its perception of the lines of vegetables and of the red
stakes. Misperception of the lines and stakes would be more relevant for consideration, but
it was judged too heavy to add the missing instrumentation and analysis facilities into the
test platform.

Following the discussion, it was decided to implement the eight checks of Table 1, but
to exclude P2 and P7 from the elaboration of the test verdict. These two checks could be
useful for future experiments.

Table 2 displays the timestamped data collected by the test platform and made available
for the implementation of the checks. Part of the data is logged at the robot interface: it
includes the outputs (commands to actuators, error and success reports) plus some internal
data made observable by the logging facilities of Ozcore (perceived position and yaw).
Another part is logged by the simulator to trace the actual – rather than perceived – position
and 3D orientation of the robot. Based on the available data, the implementation of P4 and
P7 was straightforward. The other checks required more effort because they have to analyze
the raw data in relation with the environment of the robot and the prescribed mission. For
example, the raw position of the robot may be inside an area to weed, or inside an end-of-
row U-turn area, or outside the perimeter of the field. The areas of interest are automatically
pre-calculated for each concrete test case provided as an input. The check for P3 consists
in verifying that the actual positions of the robot traverse the areas to weed in the right
order. The P1 check focuses on the U-turn areas, and counts the number of changes of
direction of the robot. The P2 check calculates distance to a relevant line of vegetables.
Collisions (P5) are detected in relation with the position of the objects of the environment.

Table 2 Timestamped data
logged during the tests Robot logs Simulator logs

Perceived position x, y Position x, y, z

Perceived yaw Quaternion X, Y, Z, W

Mission success report

Error report

Wheel commands

Empirical Software Engineering (2020) 25:2025–2054 2039

Table 3 Proportion of test cases
with n Fail verdicts over the five
repeated runs

#Test cases (total: 80) #Fails (over 5 runs)

32 0

5 1

4 2

2 3

12 4

25 5

For simplification purposes, all checks abstract the robot by the movement of its center
point.

Preliminary runs to debug the checks revealed many transient violations of property
P4. Looking further into the matter, we could determine that this was an artifact of the
low-fidelity simulation. Indeed, the simulation ignores the engine braking force and over-
estimates velocity on downward slopes arising from terrain irregularities. We decided to
deactivate the P4 check to get rid of the spurious violations. The results presented in the
next section are thus for test verdicts based on P1, P3, P5, P6 and P8.

6 Test Results in Simulation

This section presents the results of the simulation-based tests: first a quantitative overview
and then a detailed analysis of the fail cases.

6.1 Overview of the Results

The generated set of tests consists of 80 different virtual crop fields along with their
corresponding weeding mission. We perform 5 runs in each case to account for the non-
determinism of test executions. On average, a run takes about 3.5 minutes. Hence, the 400
runs of the test campaign take about 24 hours.

Due to non-determinism, we observed a high variability in the test verdicts. Table 3 gives
the proportion of test cases yielding from n = 0 to 5 Fail verdicts over the five repeated
runs. A test case has an inconsistent outcome when at least one (but not all) of its repeated
runs fails, i.e., n ∈ {1, 2, 3, 4}. About 29% of the test cases (23 out of 80) have such an
inconsistent verdict from one run to the other. In what follows, we thus provide the test
results in terms of failing runs rather than in terms of failing test cases.

As shown in Table 4, a Fail verdict occurs in as much as 48% of the runs (192/400).
All properties but P1 (U-turn in 5-7 maneuvers) are violated by some runs. Table 5 provide
the number of failing runs per property. Since a run may violate several properties, the
counts sum up to a number greater than 192. Figure 8 illustrates a run with multiple failures.
Its view uses a test data visualization facility we developed. The robot (shown as a black
rectangle) starts at the external side of the field, along a line of leeks represented by green

Table 4 Test verdicts for the 400
runs Fail Pass

192 208

Empirical Software Engineering (2020) 25:2025–20542040

Table 5 Failure type counts
P1 P3 P5 P6 P8

0 70 142 57 14

circles. While performing the U-turn at the end of the line, the robot crosses the specified
limits of the field (indicated by a dotted line) and later collides with the red stake and three
leeks. This run counts for both P6 (outside of the crop field) and P2 (collision). Overall,
collision is the most frequent failure type, observed in 35.5% of the test runs.

Smoke tests at Naı̈o missed these failures: the software was found ready for field testing.
In contrast, the randomly generated cases obtain a high failure rate of the software. They
explore diverse missions in terms of rows to weed, uneven terrain, noise in the alignment of
the plants, etc.

6.2 Qualitative Analysis of the Failure Cases

In order to prepare the comparison with the industrial field tests, LAAS researchers went
through the 192 identified failing runs. For each property violation, information was
extracted to characterize the context and propose a grouping into similar violation subcases.
The obtained subcases are listed in Fig. 9.

From these subcases, it is obvious that the U-turn is the most prevalent context of fail-
ure. This is quite understandable as the U-turns are the most difficult parts of a mission,
compared to line tracking. As much as 75% of the failing runs involve at least one property
violation in relation with the U-turn. It suggests a major issue in the management of the
corresponding maneuvers, which would be the main explanation for the overall high failure
rate we obtain. During the U-turn, the robot may bump into a red stake (P5 2). Also, the
maneuvers often leave the robot in a final position and orientation that are inadequate for
entering the next row. As a result, the robot enters the wrong row (P3 1, P3 2, P3 3) and/or
collides with the stake and crop plants upon entrance (P5 1). The run previously shown in
Fig. 8 illustrates this type of misbehavior. When the U-turn takes place at the extremity of
the field, the inadequate orientation occasionally yields an escape trajectory outside of the
crop field (P6 1). An exemplary run is shown in Fig. 10a In such runs, the robot always
raises an error and stops, but after having crossed the specified field limits. The limits are at
1.5 meters after the red stakes and extremal rows on each side.

Fig. 8 Visualization of a run with multiple failure types. The robot (black rectangle) has the trajectory indi-
cated by the solid line. The crop plants appear as green circles, and the red stake as a red cross. The perimeter
of the crop field is materialized by a dotted line. In this run, two end points of the U-turn maneuvers are
outside of the authorized perimeter, and the trajectory collides with the red stake and some crop plants

Empirical Software Engineering (2020) 25:2025–2054 2041

Fig. 9 Property violation subcases

Again in relation with the U-turn, a different subcase of P6 violation (P6 2) is illustrated
by Fig. 10b. The U-turn may be successful (it may align the robot to the right row) but takes
more space than allowed. The end point of a maneuver slightly exceeds the limits of the
field, yielding a temporary out-of-field position. Each time, the oracle check reports one or
two centimeters over the limit. But the measurement is for the central point of the robot,
hence the overshooting is actually in the tens of centimeters.

The remaining property violations are not directly related to the U-turn. An example is
stopping too late after issuing an error (P8 1, P8 2, P8 3). There are three possible errors
raised during testing, all of which would necessitate a human intervention in real-world
operation. They consist in recoverable errors, allowing the operator to resume the mission
after the stop, and fatal errors requiring a reboot of the robot. The blind course recoverable
error is raised when the robot has traveled about 3 meters without perceiving the line of crop
plants it is supposed to follow. The steersman error is raised when the robot considers its
yaw angle as suspicious in line tracking mode: the current path direction differs too much
from the one in the past 10 meters (the angle is greater than 15 degrees). The fatal Invalid

Fig. 10 Out-of-field failures in relation with the U-turn

Empirical Software Engineering (2020) 25:2025–20542042

Fig. 11 The robot leaves its row while weeding

markers spacing error is raised when the robot detects a missing or misplaced red stake. In
the generated test cases, the stakes are always at the right location. The fatal error is raised
when the robot weeds a wrong row at the extremity of the field and does not see the expected
number of stakes at the end of this row. As can be seen from the subcases P8 1, P8 2, P8 3
in Fig. 9, the late stop is not tied to a specific error type: it occurs for the three errors.
Moreover, the failure is not systematic: in the complete set of runs, there are also many
correct stops after each type of error (respectively 46, 3 and 26 correct stops). It suggests a
timing/concurrency issue, which nondeterministically affects the generic handling of errors.

Finally, collisions and out-of-field failures may happen outside the context of U-turns. As
regards collisions (P5 3, P5 4), the robot gets too close to the line of crop plants it follows
in a weeding phase. In two of the failing runs, the robot even traverses the line, yielding the
two P3 4 violations we observed. One of these runs is shown in Fig. 11. Interestingly, robot
raises a blind course error around the time of the collision. Such is also the case in about
25% of the mid-row collisions. This suggests that part of these collisions could be due to a
row perception loss while weeding. In the run of Fig. 11, a P8 1 violation adds up so that the
robot pursues its blind course in the neighboring row instead of immediately stopping. As
regards out-of-field failures, subcase P6 3 at the end of a row also suggests a misperception
problem. The two failing runs (see Fig. 12) respectively raise a blind course and steersman
error more than 1.5 meters after the red stakes have been passed. It indicates that the robot
has not correctly perceived the end-of-row situation: it is still trying to perform line tracking
long after it exited the row.

In summary, the qualitative analysis of the failing runs gives the following hypothesized
issues:

– A major U-turn issue, affecting the ability to safely perform a mission when there is
more than one row to weed.

– A concurrency/timing issue delaying the stop of the robot in cases of errors.
– A line tracking issue, possibly in relation with a row perception loss.
– An end-of-row detection issue occurring in rare cases.

7 Industrial Feedback

The final phase involved joint meetings and a week visit of the first author to Naı̈o. It
gave him the opportunity to meet key persons in charge of the testing or the development
of Ozcore, to consult the notes reporting from the field tests, and to discuss the various
examples of test fails in detail, with the help of a replay tool developed by Naı̈o for diagnosis
purposes.

In parallel to the simulation-based tests, the field tests also found issues in the Ozcore
software. The reports of five test sessions were shared for the study. Each session requires

Empirical Software Engineering (2020) 25:2025–2054 2043

Fig. 12 Two runs for which the robot does not perceive the exit of the row

some time to load the robot into the van, travel to the experimental site, unload the robot,
initialize the experiments and do the same in reverse for way back. The effective test time
is typically one or two hours for a half-day session. Table 6 lists the navigation failures
observed during these tests, from the notes taken by the test operators. The test control
and oracle procedures are manual. For example, the operator enters a weeding mission via
the user interface. At some point, she visually determines that a row entrance trajectory is
inadequate and stops the robot before a collision occurs.

The comparison with the simulation-based tests started about four months after the fifth
test session. Naı̈o had thus hindsight on the diagnosis of software issues and their resolution.
This was useful to determine whether the failures observed in simulation revealed the same
issues or different ones.

Due to the large number of fails in simulation, it was not possible to have a joint review
of each of them. Rather, the comparison relied on the preparatory analysis performed at
LAAS with a deeper examination of a few exemplary test runs.

Table 6 Navigation failures observed during the field tests

Failure description # occurrences

F1 - Bad row entrance trajectory after the U-turn 11

F2 - Bad row exit trajectory before the U-turn 2

F3 - The robot skips a row after the U-turn 2

F4 - The robot loses direction during line tracking 2

F5 - Deviated trajectory when there is a large gap in the line 2

F6 - The robot unexpectedly stops upon red stake detection 2

F7 - Large detour at the beginning of a row, leaving an unweeded area 1

F8 - The robot stops out of the field limits at the end of the mission 1

Empirical Software Engineering (2020) 25:2025–20542044

The final comparison results are given in Table 7. They include real, spurious and
undiagnosed issues. We discuss each of them in turn.

Issue I1 Like the simulation-based tests, the field tests revealed a major U-turn issue
causing the majority of failures. There is a good match between the failures observed by
each type of test: the robot enters the wrong row (F3 vs. P3 1, P3 2, P3 3), or has an inad-
equate positioning and angle to enter its row (F1 vs. P5 1, P6 1). From Naı̈o’s analysis, the
U-turn issue also causes bad row exit trajectories (F2). Indeed, when the robot perceives the
red stakes, it starts preparing the U-turn and the trajectory for approach may collide with
the end of the line. It is thus plausible that part of the end-of-line collisions observed in sim-
ulation (P5 3) are also due to the U-turn and not only to perception problems. This could
however not be specifically demonstrated. The whole U-turn issue was considered as crit-
ical by Naı̈o and a lot of effort has been spent to solve it. Being unable to spot a specific
fault, they re-developed the functionality from scratch.

Issue I2. The exceeding space taken by the U-turn maneuvers in simulation (P6 2) was
not found by the field tests. The operator did not check the precise amplitude of the maneu-
vers, hence an overshooting could have happened but remained unnoticed. After analysis,
the issue was confirmed by Naı̈o. The planning of the maneuvers does not take a sufficient
margin to avoid exceeding the 1.5m limit in all cases. Requiring shorter maneuvers would
make the U-turn even more difficult. Rather, Naı̈o has revised the conditions of use of the
robot to provision more space for the U-turn.

Issue I3. Failures F4 and F5 reveal an issue in the handling of line perception losses.
In the case of F4, the loss was due to a sensing alea, while in the case of F5 there was
a real gap in the line (many consecutive plants did not grow). When the row is no longer
seen, the robot heuristically considers a likely direction based on its past behavior. The
aim is to keep the robot on track until it perceives the row again or it raises a blind course
error. But the heuristics may be wrong, sending the robot to the crop plants. This diagnosis
is consistent with LAAS’ observation of mid-row collisions associated with blind course
errors. To further confirm the issue in simulation, an exemplary run with a mid-row collision
but no blind course error was analysed, using a replay tool developed at Naı̈o. The chosen
run corresponds to an uneven terrain, which is challenging for the LIDAR-based perception:
the laser beams have erratic inclinations as the robot goes upwards and downwards. The
replay of the run confirmed a transient perception loss of the neighboring crop plants, upon

Table 7 Comparison of issues revealed by field tests and simulation-based ones: ‘✓’ = revealed, ‘–’ = not
revealed, ‘?’ = no conclusion for lack of diagnosis

Issues Field tests Simul. tests Real / Spurious

I1 - U-turn functionality ✓ ✓ Real

I2 - Space margin for U-turn – ✓ Real

I3 - Heuristics for transient perception losses ✓ ✓ Real

I4 - Processing of red stake images ✓ – Real

I5 - Alignment at the beginning of a row ✓ (✓) Real

(with P2’)

I6 - Skidding/odometry ✓ – Real

I7 - End-of-row detection ? ? ?

I8 - Simulated stop upon error – ✓ Spurious

I9 - Simulated velocity on downward slopes – ✓ Spurious

Empirical Software Engineering (2020) 25:2025–2054 2045

which the direction of the trajectory changes. The conclusion is that the heuristic issue is
found by the simulation-based tests. However, these tests only reproduced scenarios with
sensing aleas in uneven terrains, not ones with a large gap in a row. The generated rows
had gaps of 2 or 3 missing plants, which was not stressful enough. In contrast, the virtual
terrain irregularities were more stressful than in the real world, inducing many sensing aleas.
Naı̈o currently studies alternative heuristics to improve the tolerance of transient perception
losses, but none of them is integrated into the Oz platform yet. Regarding large gaps in a
row, farmers are advised to put substitute elements (e.g., stakes) to repair the line.

Issue I4. Failure F6 is caused by the processing of images for red stake detection. Arti-
facts in the images may induce the double vision of a single stake, which leads the robot
to raise a spurious invalid markers spacing error. Naı̈o has reworked the image processing
code to fix the issue. In simulation, the test oracle does not judge the relevance of errors: it
only checks the safe stop upon errors. LAAS researchers manually inspected all runs ending
upon an invalid markers spacing error to determine whether false positives occurred. But
such was not the case: in all these runs, the robot had entered a wrong row after a U-turn,
and correctly detected a wrong number of red stakes at the end of the row. We conclude that
the double vision is not reproduced in simulation. Indeed, the simulated images are too clear
and crisp compared to the real ones. The red stakes stand out perfectly against the unicolor
ground and the sky, while the real-world vision may suffer from misleading effects.

Issue I5. Failure F7 exposes a difficulty in the initial alignment of the weeding trajectory
with the crop row. The robot may take time to rejoin the correct alignment and the beginning
of a row is not adequately weeded. The oracle used in simulation does not detect this kind of
misbehavior. Remember that, in the initial design of the study, we disabled the P2 check on
the reference distance to the vegetables. In order to determine whether the issue was missed
by the oracle but in fact reproduced, LAAS researchers introduced a modified version of
P2. The detection threshold was changed to focus on large distances and the variation rate
was also monitored. With this check P2’, the initial alignment issue is indeed revealed in
simulation. Figure 13a is a virtual scenario close to the one observed in the field: the robot
initially deviates away from the line and takes time to change its course, leaving the first 2-3
meters unweeded. The virtual tests also found new misalignment scenarios. An interesting
one concerns two-passes weeding (Fig. 13b): the robot occasionally starts to weed the wrong
side during 3 meters before rejoining the correct side. There was also a case with oscillations
over the first 4 meters before the trajectory becomes stable. Note that the length of a row is
typically greater than 100 meters in real fields. Naı̈o considers the occasional misalignment
in the first few meters as a minor issue and did not investigate a fix.

Issue I6. Failure F8 corresponds to an out-of-field normal stop: the robot is not in error,
it stops at the end of its mission but more than 1.5 meters after the red stakes. From Naı̈o’s
analysis, the failure was due to excessive skidding and erroneous odometry. A fix has been
introduced to better handle skidding. In simulation, the interaction of the wheels with the
ground is not accurate with respect to skidding, slippage or sliding. In any case, the specific
failure F8 was not obtained.

Issue I7. In simulation, two out-of-field stops seemed to be due to a misperception of
the end of the row (P6 3 and Fig. 12). This was never observed during the five field test
sessions we analyzed. However, since that time, Naı̈o has observed rare cases where the
robot does not detect the end of a row. The issue being undiagnosed so far, it is not possible
to conclude on the agreement of the tests.

Issues I8 and I9. The last entries in Table 7 are issues causing spurious failures in simu-
lation only. The delayed stop upon an error (P8 violations) was never observed in the field.
After analysis, the failure is due to an issue in the simulation scripts, not in the software

Empirical Software Engineering (2020) 25:2025–20542046

Fig. 13 Alignment issue at the beginning of a row in simulation

under test. For the sake of completeness, Table 7 also mentions the spurious overspeed we
observed on downward slopes. It was an artifact of the low-fidelity physics and yielded the
disabling of P4 checks.

8 Overview of Outcomes and Threats to Validity

We are now able to answer the question explored by the study, and identify lessons learned.
The study could be affected by threats to validity, which we also discuss.

8.1 Answers to the Research Question

RQ: What are the benefits and drawbacks of simulation-based testing with respect to:

– Real issues found by the field tests,
– Real issues not found by the field tests,
– Spurious issues coming as simulation artifacts?

The study confirms that the fault revealing power of simulation-based testing is under-
exploited. It finds real issues that are currently caught by field testing. The major U-Turn
issue is a striking example. It was missed by the smoke tests and caused the majority of
failures during field testing. Still, the issue was not hard to reveal by the random tests, yield-
ing a high failure rate in simulation. The simulation also managed to reproduce improper
reactions to transient perception losses, and difficulties in the initial alignment to a row.

The issue requiring accurate reproduction of skidding seems hard to find with a simpli-
fied physics. The image processing issue was also missed in simulation, but it would be
possible to add disturbance effects to the simulated images (see e.g., related work by Zendel
et al. (2013, 2017)).

When revealing issues, the simulation-based tests provided diverse examples of mis-
behavior caused by them. This is useful since the issues found by the field tests are not

Empirical Software Engineering (2020) 25:2025–2054 2047

low-level bugs. They question the adequacy of the core algorithms and heuristics under-
lying the perception, decision and motion control abilities of the robot. There may be no
obvious fix or improvement. Then, it is helpful to quickly obtain an overview of the vari-
ous undesirable effects of the chosen algorithms. For example, the simulation gave U-turn
failures that were not observed during the five field test sessions, like coming back to a pre-
viously weeded row or having collisions with red stakes during the maneuvers. Similarly,
the difficulty in initial row alignment did not only surface as a large detour, but also as an
oscillation over the first meters or an initial alignment to the wrong side of the two-passes
route. In simulation, those diverse failures can be obtained at once, by running a bunch of
tests. In the field, the tests extend over a longer period of time, involving several sessions
on different days.

The simulation-based tests even uncovered an issue missed by the field tests: the insuffi-
cient space margin for the U-turn. This was not a necessary objective, as the tests were not
designed to explore corner cases difficult to reach in the field. They involved mere random
sampling over a permissible domain of use of the robot. It is impossible to say whether the
space margin violation did not occur at all in the field, or occurred but was not seen by the
test operator. In any case, it occurred in simulation and was detected by the oracle checks.

On the downside, the simulation can introduce spurious issues. In the study, they were
of two types. First, the low fidelity simulation induced a behavior that is impossible in the
real world, the transient overspeed on downward slopes. Second, the simulation code was
faulty, non-deterministically delaying the effective stop of the robot.

The need to develop the simulator must be added as a drawback. The Oz simulator is
rather complex in its own right. Developments on top of Gazebo are technically nontriv-
ial. Indeed, it is not surprising that the simulation code can have issues. Beyond the initial
development effort, maintenance also proved a concern due to the dependency on an exter-
nal and unstable technology. As an anecdote, just before the visit of the LAAS researcher to
Naı̈o, an update of Gazebo broke the simulator, which was no longer working with the new
version.

8.2 Lessons Learned

Based on our experience, some insights and recommendations can be derived for the
development of automated simulation-based testing.

1. Design test generator and oracle for evolvability. Specifying the virtual environments
and oracle checks is hard, and the test design will most probably have shortcomings.
It should be continuously improved as more experience is gained on the system or on
similar ones. For Oz, the feedback from the field tests provided insights on relevant
improvements. The P2 oracle check has been turned into P2’ based on the detection
condition of a misalignment problem. Note that P2’ takes inspiration from, but is more
general than, the specific problem detected in the field. The generation model needs
improvements as well, if one wants to consider large gaps in a row and visual hazards
affecting images. The current generation may also be a bit too stressful with respect to
the terrain irregularities, compared to real fields. To support continuous improvements,
the test generator and test oracle should be designed for evolvability from the outset.

2. Specify a well-structured world model. Test generation has to be based on a well-
structured world model, which facilitates the addition, removal or modification of
elements. In the study, we had an UML-based structure model. The implementation
kept the same structure with a uniform interface for each element. From the experience

Empirical Software Engineering (2020) 25:2025–20542048

with Oz, the modeling approach also has to accommodate constraints on the parameters
attached to world element. In the study, the structural model was supplemented by an
attribute grammar specifying the valid configurations of parameter values. Constraints
relating several parameters were introduced at the level of the closest ancestor element
in the structure. The modeling can be kept at a high level of abstraction by using world
content generation procedures to bridge the gap between the abstract test cases and the
concrete test inputs.

3. Clearly separate data logging (on-line) and analysis (off-line). The test oracle is
property-based. It is composed of a set of checks to detect misbehavior. If the oracle
specification starts from scratch, the five aspects of behavior we identified can serve as
a guide to explore candidate properties to check. In order to facilitate the evolution of
the oracle, we recommend an off-line analysis of the test traces. There should be a clear
separation between raw data recording, which is done during the simulation runs, and
the potentially complex data analysis to be done afterwards. In this way, checks can be
deactivated, revised or added without changing the simulation code. Also, alternative
versions of the oracle (e.g., with P2’ instead of P2) can be studied without having to
re-execute the tests. The raw data recording should be as complete as possible, beyond
the minimal dataset required by the current checks. It should ideally consider as much
data as possible to cover future needs. The instrumentations should be placed on both
the software under test and the simulator. The aim is to capture both the “subjec-
tive” point of view of the robot (e.g., its perceived positions, the commands it sends,
the errors it raises) and the objective situation of the simulation (e.g., real positions,
collision events). The complexity of some checks comes with the need for situation-
awareness, when the raw data must be analyzed in relation with the robot’s environment
and prescribed mission.

4. Manage simulator fidelity and complexity. The feedback on the simulation platform
used by the study is mixed. On the one hand, the Gazebo-based simulation has demon-
strated its effectiveness with respect to real issues, including a major one. It thus holds
out the prospect of alleviating the costly field tests. On the other hand, the development
and maintenance of the simulator proved heavy for a small company like Naı̈o. If many
issues do not require an accurate reproduction of real-world conditions, one may won-
der whether a lighter and easier-to-maintain simulation platform would not perhaps be
sufficient. Lighter simulation would also be faster, allowing for a higher number of tests
in shorter time.

8.3 Threats to Validity

The case study reported is this paper is exploratory, based on a qualitative analysis (the types
of failures, the issues causing them).

Construct validity concerns the correct identification of which issues are found by each
type of tests.

As regards issues found by the field tests, a risk comes from the fact that the software
version was not exactly the same from one test session to the other, due to patches in the
code. The comparison with the simulation-based tests is thus based on the hindsight that
Naı̈o has on the diagnosis of issues. For example, the first session reported failures that are
retrospectively assigned to the major U-turn issue and to the initial alignment issue. The
other issues surfaced later but it is judged that they were there from the beginning. Regarding
the major U-turn issue, the same failures persisted in all test sessions despite tentative fixes,
until the redevelopment was decided.

Empirical Software Engineering (2020) 25:2025–2054 2049

As regards the issues from the simulation-based tests, it was not possible to review all
the failing runs with Naı̈o. While there is a good confidence that part of the fails are caused
by the issues in Table 7, some other part could have unknown causes. If these were spu-
rious, it would decrease the benefit from the simulation-based tests. We cannot exclude
unknown issues, but took care that all failures cases are consistent with the effects of the
issues identified by the study, as far as they are understood.

The risk for having a different understanding of the issues was mitigated by the inter-
actions established during the study. The visit of the LAAS researcher at Naı̈o allowed
for in-depth discussions of the issues. It was followed by a peer debriefing with other
researchers. Then, there were several subsequent interactions with Naı̈o on pending or
unclear points. And finally the list of issues was jointly reviewed and re-discussed with
Naı̈o.

Measures for internal validity concerned the avoidance of bias in the design of the
simulation-based tests, in particular bias due to some prior knowledge of issues. At the time
of the design, issues I1 to I9 were unknown to LAAS and Naı̈o. LAAS researchers were
also unaware of the results of field tests when they analyzed the failing cases to extract a set
of hypothesized issues.

External validity concerns the generalization of outcomes beyond the case of Oz. The
context of the study is clearly a robotic software developed by a small company. The simu-
lation technologies used by Naı̈o are representative of the context: the Gazebo platform and
ROS middleware are widespread in robotics. The difficulties experienced during the study
(specification challenges, unstable simulation technology, spurious failures due to the sim-
plified physics or issues in the simulation code) are not specific to the Oz example. The
outcomes regarding test effectiveness may be more application-dependent. However, we
consider it useful to study effectiveness for a real-scale industrial example, which supple-
ments other empirical results on academic examples, e.g., Sotiropoulos et al. (2017) and
Timperley et al. (2018). Finally, the approaches adopted for generating tests and detecting
misbehavior are general, their principle can be reused outside the case study.

9 Conclusion

In the face of the rising complexity of autonomous systems development, testing becomes
one of the biggest challenges. This article addresses mission-level validation. We studied the
benefits and drawbacks of simulation-based tests compared to field tests, and also provided
some practical recommendations for the deployment of the simulation-based tests. The Oz
robot, developed by the French company Naı̈o, served as a real-scale example to support
investigation. The work was carried out both in the lab and in the company, with interactions
to design the case study and interpret the results.

The generation of the test cases (including 3D crop fields and weeding missions) was
based on a structural model in UML and an attribute grammar to express constraints. The
valid words of the grammar represent the valid configurations of model parameters (the
genotype), from which the concrete contents of test cases are produced (the phenotype). The
test oracle was designed using five general classes of properties and implemented to auto-
matically analyze test traces. The non-determinism of test results was anticipated, which
yielded several runs of the same test cases. The main outcome of the study was to show that
major software issues could be revealed in simulation rather than in the field; the randomly-
generated tests even discovered a new issue that was not identified during the field tests. On

Empirical Software Engineering (2020) 25:2025–20542050

the negative side, some spurious failures and simulation maintenance problems must be put
in the balance.

An open question is the degree of fidelity of the simulator. It is expected to have a high
impact on the cost-effectiveness of the tests. For instance, a high-fidelity may be required
to catch issues related to complex image processing or physical interaction. But computa-
tional time and resources may grow prohibitively (as experienced with the Oz simulator),
and complex simulation code may be buggy and difficult to maintain. Conversely, a lighter
simulator may leave much more issues uncaught before field testing (and induce spurious
failures), but at the same time requires less resources, accelerates simulation and is easier
to maintain. The question of the simulation fidelity has no simple answer, and it is interest-
ing to mention how the strategy of Naı̈o has evolved since the starting point of the study.
At that time, their effort was on making the simulation as realistic as possible given the
resource constraints. But eventually, they have decided to abandon the Gazebo-based sim-
ulator for a much lighter platform, developed in-house. The simulation-based tests are also
more systematic than at the time of the study, and now involve a set of diverse cases.

From an academic perspective, current work at LAAS elaborates on the generation of
test cases. It retains the principles of the custom generator used for Oz (well-structured
genotypes as first-class citizens, checking and manipulation of elements of the genotype,
generation mixing fixed and free elements) in order to develop a more generic and reusable
generation framework. There is also a plan to extend the framework to integrate more ele-
ments such as mobile obstacles or noise on sensors. The framework will be used to explore
test selection strategies, which were not addressed by the study (only based on random test-
ing). Continuing collaboration with Naı̈o will provide access to the lightweight simulator
for experimentation purposes. The faster simulation is expected to make the test selection
problem more amenable to advanced search-based techniques guided by fitness functions.

Acknowledgements This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 644400 (CPSE Labs project). The authors want to
acknowledge the help of colleagues at Naı̈o during the study: Gaëtan Séverac, Pascal Schmidt, Marc Jambert.

References

Andrews AA, Abdelgawad M, Gario A (2016) World model for testing urban search and rescue (USAR)
robots using petri nets. In: Proceedings of the 4rd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD 2016), Rome, Italy, pp 663–670

Arnold J, Alexander R (2013) Testing autonomous robot control software using procedural content gen-
eration. In: Computer Safety, Reliability, and Security (SAFECOMP 2013), Toulouse, France, pp
33–44

Bach J, Langner J, Otten S, Sax E, Holzäpfel M (2017) Test scenario selection for system-level verification
and validation of geolocation-dependent automotive control systems. In: 2017 International conference
on engineering, technology and innovation (ICE/ITMC 2017), Madeira Island, Portugal, pp 203–210

Ben Abdessalem R, Nejati S, Briand LC, Stifter T (2016) Testing advanced driver assistance systems
using multi-objective search and neural networks. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, Singapore, Singapore, pp 63–74

Ben Abdessalem R, Nejati S, Briand LC, Stifter T (2018) Testing vision-based control systems using
learnable evolutionary algorithms. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE 2018), Gothenburg, Sweden, pp 1016–1026

Chen TY (2015) Metamorphic testing: a simple method for alleviating the test oracle problem. In: Pro-
ceedings of the 10th International Workshop on Automation of Software Test, Florence, Italy, pp
53–54

Empirical Software Engineering (2020) 25:2025–2054 2051

Echeverria G, Lassabe N, Degroote A, Lemaignan S (2011) Modular open robots simulation engine: Morse.
In: IEEE international conference on robotics and automation (ICRA 2011), Shanghai, China

Geyer S, Kienle M, Franz B, Winner H, Bengler K, Baltzer M, Flemisch F, Kauer M, Weißgerber T, Bruder
R, Hakuli S, Meier S (2014) Concept and development of a unified ontology for generating test and
use-case catalogues for assisted and automated vehicle guidance. IET Intelligent Transport Systems
8(3):183–189

Hallerbach S, Xia Y, Eberle U, Koester F (2018) Simulation-based identification of critical sce-
narios for cooperative and automated vehicles. Tech. rep., SAE International in United States.
https://doi.org/10.4271/2018-01-1066

Klueck F, Li Y, Nica M, Tao J, Wotawa F (2018) Using ontologies for test suites generation for auto-
mated and autonomous driving functions. In: 2018 IEEE international symposium on software reliability
engineering workshops (ISSREW 2018), Memphis, TN, USA, vol 00, pp 118–123

Koenig N, Howard A (2004) Design and use paradigms for gazebo, an open-source multi-robot simulator.
In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai,
Japan, vol 3, pp 2149–2154

Lamprecht A, Ganslmeier T (2010) Simulation process for vehicle applications depending on alternative driv-
ing routes between real-world locations. Advanced Microsystems for Automotive Applications 2010, pp
377–386

Lindvall M, Porter A, Magnusson G, Schulze C (2017) Metamorphic model-based testing of autonomous
systems. In: 2nd IEEE/ACM International Workshop on Metamorphic Testing (ICSE 2017), Buenos
Aires, Argentina, pp 35–41

Menghi C, Nejati S, Gaaloul K, Briand LC (2019) Generating automated and online test oracles for simulink
models with continuous and uncertain behaviors. In: 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn, Estonia,
pp 27–38

Micskei Z, Szatmári Z, Oláh J, Majzik I (2012) A concept for testing robustness and safety of the
context-aware behaviour of autonomous systems. In: Agent and Multi-Agent Systems. Technologies and
Applications, Dubrovnik, Croatia, pp 504–513

Nentwig M, Stamminger M (2010) A method for the reproduction of vehicle test drives for the simulation
based evaluation of image processing algorithms. In: 13th International IEEE Conference on Intelligent
Transportation Systems, Madeira Island, Portugal, pp 1307–1312

Nguyen CD, Perini A, Tonella P, Miles S, Harman M, Luck M (2009) Evolutionary testing of autonomous
software agents. In: Proceedings of The 8th international conference on autonomous agents and
multiagent systems (AAMAS 2009), Budapest, Hungary, vol 1, pp 521–528

Okdal Sydac (2018) https://www.oktalsydac.com/, Accessed 2019-09-19
PreScan Simulation platform for ADAS (2018) https://tass.plm.automation.siemens.com/prescan, Accessed

2019-09-19
Sotiropoulos T, Guiochet J, Ingrand F, Weaselynck H (2016) Virtual worlds for testing robot navigation: a

study on the difficulty level. In: IEEE 12th European on Dependable Computing Conference (EDCC
2016), Iasi, Romania, pp 153–160

Sotiropoulos T, Waeselynck H, Guiochet J, Ingrand F (2017) Can robot navigation bugs be found in simula-
tion? an exploratory study. In: 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS 2017), Prague, Czech Republic, pp 150–159

Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. In: Proceedings of the 40th International Conference on Software Engineering (ICSE 2018),
Gothenburg, Sweden, pp 303–314

Timperley CS, Afzal A, Katz DS, Hernandez JM, Goues CL (2018) Crashing simulated planes is cheap: Can
simulation detect robotics bugs early? In: 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST 2018), Västeras, Sweden, pp 331–342

Togelius J, Yannakakis GN, Stanley KO, Browne C (2011) Search-based procedural content generation: a
taxonomy and survey. IEEE Transactions on Computational Intelligence and AI in Games 3(3):172–186

Tractica (2016) Agricultural robots – executive summary. Research Report. https://www.tractica.com/
research/agricultural-robots/, Accessed 2019-09-19

Ulbrich S, Menzel T, Reschka A, Schuldt F, Maurer M (2015) Defining and substantiating the terms scene,
situation, and scenario for automated driving. In: 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, Gran Canaria, Spain, pp 982–988

Unreal Game Engine (2018) https://www.unrealengine.com/, Accessed 2019-09-19
Virtual Test Drive (2018) http://www.mscsoftware.com/product/virtual-test-drive, Accessed 2019-09-19
Zendel O, Herzner W, Murschitz M (2013) Vitro - model based vision testing for robustness. In: IEEE

International Symposium on Robotics (ISR 2013), Seoul, Korea, pp 1–6

Empirical Software Engineering (2020) 25:2025–20542052

https://doi.org/10.4271/2018-01-1066
https://www.oktalsydac.com/
https://tass.plm.automation.siemens.com/prescan
https://www.tractica.com/research/agricultural-robots/
https://www.tractica.com/research/agricultural-robots/
https://www.unrealengine.com/
http://www.mscsoftware.com/product/virtual-test-drive

Zendel O, Murschitz M, Humenberger M, Herzner W (2017) How good is my test data? introducing safety
analysis for computer vision. Int J Comput Vis 125(1):95–109

Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and
input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, Montpellier, France, pp 132–142

Zofka MR, Kuhnt F, Kohlhaas R, Rist C, Schamm T, Zöllner JM (2015) Data-driven simulation and
parametrization of traffic scenarios for the development of advanced driver assistance systems. In:
2015 18th International Conference on Information Fusion (Fusion 2015), Washington, DC, USA, pp
1422–1428

Zou X, Alexander R, McDermid J (2014) Safety validation of sense and avoid algorithms using simulation
and evolutionary search. In: Computer Safety, Reliability, and Security, (SAFECOMP 2014), Florence,
Italy, pp 33–48

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Clément Robert received an Engineer degree in automation and
industrial computing in 2017 at ENSEEIHT. He is currently doing his
PhD at LAAS-CNRS in the dependable computing and fault toler-
ance group. His subject is to evaluate the potential of simulation for
the testing of autonomous robot. This topic involves software testing,
dependability, autonomous robots and simulation.

Thierry Sotiropoulos received a master degree in Artificial Intelli-
gence and Robotics in 2014 at University of Toulouse III, France, and
a PhD in computer science in the dependable computing and fault tol-
erance group at LAAS-CNRS, France, in 2018. His doctorate subject
aims to ensure dependability of autonomous systems by testing the
software in simulation. He is currently working as a post-doctoral fel-
low at ICAM Toulouse to design and develop intelligent, connected
and social helping objects.

Empirical Software Engineering (2020) 25:2025–2054 2053

Hélène Waeselynck received the Engineer degree from the National
Institute of Applied Sciences of Toulouse, France, in 1989, and the
Ph.D. degree in computer science from the National Polytechnic
Institute of Toulouse, in 1993.

She is a Senior Research Scientist (Directrice de Recherche) with
the LAAS-CNRS, University of Toulouse, Toulouse. Her current
research interests include software testing and verification, with an
emphasis on dependable computing systems.

Jérémie Guiochet received the Ph.D. degree in model-based safety
analysis of service robotics from INSA Toulouse, Toulouse, France,
in 2003.

He is an Assistant Professor of computer science with the Univer-
sity of Toulouse III, Toulouse and with the Dependable Computing
and Fault Tolerance Group at LAAS-CNRS, France. His current
research interests include safety assessment, fault removal, and fault-
tolerance in safety-critical autonomous systems.

Simon Vernhes received an Engineer degree in 2011 from INSA
Toulouse, France. He received his PhD in Computer Science from
ISAE Toulouse and ONERA in 2014, where he worked on auto-
mated planning and scheduling. Since 2016, he is currently working
at Naı̈o Technologies as an R&D engineer on the guidance software
of weeding robots for vegetable farms and vineyards.

Empirical Software Engineering (2020) 25:2025–20542054

	The virtual lands of Oz: testing an agribot in simulation
	Abstract
	Introduction
	Related Work
	Fidelity of the Simulation
	Generation and Selection of Test Cases
	Specification of the Test Oracle

	Case study and Experimental Approach
	The Oz Robot and its Simulator
	Experimental Approach

	Test Design: World and Mission Generation
	A Two-Step Generation Process
	World Model Definition
	Implementation of a Test Generator

	Test Design: Oracle Procedure
	Guidelines for Specifying the Oracle Checks
	The Oracle for Oz

	Test Results in Simulation
	Overview of the Results
	Qualitative Analysis of the Failure Cases

	Industrial Feedback
	Overview of Outcomes and Threats to Validity
	Answers to the Research Question
	Lessons Learned
	Threats to Validity

	Conclusion
	References

