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Abstract
The users or deployment engineers of a software system can adapt such a system to a wide
range of deployment and usage scenarios by changing the value of configuration options,
for example by disabling unnecessary features, tweaking performance-related parameters
or specifying GUI preferences. However, the literature agrees that the flexibility of such
options comes at a price: misconfigured options can lead a software system to crash in the
production environment, while even in the absence of such configuration errors, a large
number of configuration options makes a software system more complicated to deploy
and use. In earlier work, we also found that developers who intend to make their applica-
tion configurable face 22 challenges that impact their configuration engineering activities,
ranging from technical to management-related or even inherent to the domain of configu-
ration engineering. In this paper, we use a prototyping approach to derive and empirically
evaluate requirements for tool support able to deal with 13 (primarily technical) configura-
tion engineering challenges. In particular, via a set of interviews with domain experts, we
identify four requirements by soliciting feedback on an incrementally evolving prototype.
The resulting “Config2Code” prototype, which implements the four requirements, is then
empirically evaluated via a user study involving 55 participants that comprises 10 typical
configuration engineering tasks, ranging from the creation, comprehension, refactoring, and
reviewing of configuration options to the quality assurance of options and debugging of
configuration failures. A configuration framework satisfying the four requirements enables
developers to perform more accurately and more swiftly in 70% and 60% (respectively)
of the configuration engineering tasks than a state-of-the-practice framework not satisfying
the requirements. Furthermore, such a framework allows to reduce the time taken for these
tasks by up to 94.62%, being slower for only one task.
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1 Introduction

Successful software applications need to be adapted to different usage scenarios. To achieve
this, applications rely on “configuration options whose value can still be changed by the
end user, without having to re-deploy” (Sayagh et al. 2018). Hence, users can customize the
behaviour of an application depending on their own preferences (e.g., GUI preferences or
account information), enable or disable the features that are important to them, or tune the
performance of the software application without any modification or recompilation of the
source code. As such, each decision that depends on the user’s usage scenarios should be
postponed until the execution of the system, resulting in potentially hundreds (e.g., Apache
Hadoop) or even thousands (e.g., Mozilla Firefox) of options in a given application.

Concretely, when a developer introduces a new feature or wants to make an existing
behaviour configurable, she first needs to create a new configuration option with a suc-
cinct name (e.g., enable-undo) and adequate type (e.g., boolean), specify any other
constraints for the option (e.g., enable-undo implies enable-redo), select a storage
medium for the option (e.g., configuration file), and specify a default value for the option
in that medium (e.g., enable-undo=true) (Sayagh et al. 2018). Before releasing the
feature to the user, the developer still needs to test the application with the option’s pos-
sible values (e.g., “true” and “false” for a boolean option), update the user documentation
to include the new option and its metadata, and possibly update the developers’ internal
wiki about the expected lifetime of the option (e.g., permanent feature vs. temporary feature
toggle (Rahman et al. 2016)).

Although these activities are a part of the established process of run-time configura-
tion engineering followed by practitioners, many of these activities lack tool support and/or
research initiatives, as identified in our prior work through 14 interviews, a survey with 229
respondents, and a systematic literature review (Sayagh et al. 2018). Specifically, while con-
figuration activities like debugging of configuration errors (Yin et al. 2011; Xu and Zhou
2015; Xu et al. 2015), choice of default values (Zhang and Ernst 2014; Khan et al. 2017)
and configuration-aware testing (Jin et al. 2014; Sarma et al. 2007; Behrang et al. 2015)
have been studied in depth, the other activities are not. For example, while the list of acces-
sible configuration options at all times needs to remain synchronized with the options that
are actually used in the source code (Nadi et al. 2014), we found that developers often
do not clean up unused options because they are afraid of accidentally removing essen-
tial functionality (Sayagh et al. 2018). Similar to source code, documentation of options
often is outdated, while the impact of an option on the code is hard to understand manu-
ally, since developers not always use consistent naming conventions or even configuration
access APIs.

During our prior interviews (Sayagh et al. 2018), the interviewed developers, architects
and managers also provided several requirements for run-time configuration framework
support that (in their eyes) could resolve some of the challenges that they were facing. Since
these requirements initially were high-level, incomplete or vague, we decided to use a rapid
prototyping process (Sommerville 2010) aimed at fleshing out the core requirements of an
effective framework for run-time software configuration. Basically, at the end of each inter-
view, we would show the prototype available at that point in time, obtain feedback, then
iterate over the design to produce a new prototype for the next interview. Apart from helping
to derive core tool requirements, the resulting prototype also allowed us to empirically com-
pare the impact of these requirements to a state-of-the-practice configuration framework.
This empirical evaluation was done through a user study on 10 configuration engineering
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tasks derived from the configuration engineering process discussed above, featuring 55
participants from both industry and academia, and spread across two continents.

Our main contributions in this work can be listed as follows:

– Identification of 4 major requirements for a run-time configuration engineering
framework aimed at improving a software system’s configuration in terms of its
comprehensibility, correctness, and maintainability.

– Large user study with 55 participants (industry/academia) and empirical analysis of the
impact of the 4 requirements on 10 typical configuration tasks.

– A prototype implementation of a configuration framework (“Config2Code”) that
implements the 4 requirements (https://bitbucket.org/m-sayagh/config2code/).

2 Background and RelatedWork

2.1 Software Configuration

Software configuration allows postponing a decision in a software system until the required
information is available, typically at deployment- or run-time (Sommerville 2010). These
decisions can be made explicit in the user requirements (Rabiser and Dhungana 2007),
emerge during development to anticipate use cases of advanced users, be related to testing
(enabling/disabling features on the fly), or pop up during the evolution of the code base. For
example, agile developers often focus on getting the logic right for a specific use case with-
out being disturbed about generalization (“You Ain’t Gonna Need It” principle). Later on,
during refactoring, the functionality can be generalized by “externalizing” hard coded num-
bers and string literals into variables (“configuration options”) whose value is loaded from
some kind of configuration storage medium, typically a file, database or the application’s
program arguments. Options can range from host names to tuning parameters, debugging
options and feature toggles (Humble and Farley 2010).

Figure 1 shows a concrete example of the configuration system of the JabRef open
source project. It consists of an XML configuration file (storage medium) that has more
than 150 configuration options, including the ‘‘autoComplete’’ configuration option
highlighted in Fig. 1. That option can be switched on or off by end-users to enable or dis-
able the auto complete feature. JabRef’s JabRefPreferences class is a so-called provider
class responsible for loading these configuration options in the attribute prefs. This class
then provides configuration values to configuration “consumer” classes of JabRef such
as BasePanel and EntryEditorPrefsTab. As shown in Fig. 1, JabRef uses the
configuration framework Preferences. While many frameworks dedicated to configura-
tion exist, we have found in our prior work on the usage of configuration frameworks on
Github projects that 46% of our studied projects still roll their own configuration class
(Sayagh et al. 2017b).

Different types of configuration options exist, yet this paper focuses on “run-time” con-
figuration options. Run-time configuration options are “configuration options whose value
can still be changed by the end user, without having to re-deploy” (Sayagh et al. 2018),
for example by overriding the options’ default value via the command line or by changing
the value in a configuration file. Such options require an application to actively check their
value upon start-up or at specific times during execution.

In contrast, other types of configuration options exist that limit configurability to ear-
lier stages in the lifetime of an application, such as its compilation or deployment. Such
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Fig. 1 Code example from the configuration system of the JabRef open source project (http://www.jabref.
org/). The provider class JabRefPreferences reads user choices from the Config.xml config-
uration file into the attribute prefs (using the Preferences framework), while the BasePanel and
EntryEditorPrefsTab consumer classes access this attribute to use the corresponding configuration
option

configuration decisions cannot be revoked or overridden afterwards by the end user. For
example, compile-time configuration options usually select the code snippets (via condi-
tional compilation) or entire files (via build scripts) that will be considered by the compiler.
Similarly, deploying a compiled software application requires configuring the execution
environment (Bass et al. 2015) of the application, i.e., physical or virtual machines (contain-
ers) with the right operating system, database, web server and 3rd party libraries. For this
kind of configuration, organizations typically use domain-specific languages (DSLs) such
as Puppet, Chef or Ansible, typically referred to as “infrastructure-as-code” (IaC) (Humble
and Farley 2010).

2.2 RelatedWork

As discussed above, there is a tight relation between run-time configuration and the popu-
lar concept of Infrastructure-as-Code (IaC) (Humble and Farley 2010). Both infrastructure
and software development teams build and manage infrastructure using automated “Infras-
tructure as Code” (IaC) tools (Morris 2016). The infrastructure team is responsible for,
amongst others, automatically building the environment in which an application should be
deployed (Humble and Farley 2010). In contrast, the development team traditionally has
been responsible for developing highly-configurable software applications (Sommerville
2010). The research and practices related to both teams, while evolving separately for a long
time, currently are converging under the influence of DevOps (Bass et al. 2015). This is an
evolution of agile development that focuses on bringing developers and operators together
in order to synchronize development and production (Lwakatare et al. 2016).
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This synergy between code and infrastructure has led to massive adoption of IaC by mod-
ern software organizations, in the form of declarative specifications in a domain-specific
language like Puppet (2013) and Ansible (2018). These specifications effectively are a form
of source code, whose “compilation” in this case generates the desired environment (e.g.,
virtual machine). Researchers have indeed identified several source code phenomena in IaC
code. For example, Jiang et al. (2015) studied the co-evolution of Puppet and Chef con-
figuration files with source code, tests, and builds, and found a tight coupling of IaC file
changes with test files. Sharma et al. (2016) empirically studied a catalog of 13 implemen-
tation and 11 design configuration smells. The design configuration smells were shown to
have 9% higher average co-occurrence among themselves than the implementation config-
uration smells, suggesting that the developers should pay more attention to the former. In
contrast to the work on IaC, we focus on the synergy between the run-time configuration
options of a software system and its code base.

Another line of related work primarily focuses on dealing with run-time configu-
ration options and their related problems. We provide a systematic literature survey
elsewhere (Sayagh et al. 2018), and instead focus here on the most closely related work.
Zhang et al. (2014) addressed the concern of finding the right option to be changed in order
to obtain an application’s desired behavior. They introduced a technique based on dynamic
profiling and static analysis, supported by a tool called ConfSuggester to help debug con-
figuration errors. Related to this, Huang et al. proposed ConfValley (Huang et al. 2015), a
declarative language to express and check configuration specifications. Li et al. presented
a tool called ConfTest (Li et al. 2017) to prevent misconfiguration, and evaluated it against
injected misconfigurations. Dong et al. proposed an approach called ORPLocator (Dong
et al. 2016) to support detection of inconsistencies between source code and documentation
via static analysis. For each configuration option, they identify the source code locations
reading it, then compare the results against the option names listed in the documentation.
Similarly, Jin et al. presented PrefFinder (Jin et al. 2014), an NLP framework that navigates
scarce, distributed documentation to find inconsistencies.

Our study is fundamentally different from the above work on software configuration.
Instead of focusing specifically on debugging of configuration errors or finding the best
default value of an option, we identify and empirically validate 4 core requirements of
configuration engineering able to address a wide range of configuration challenges by
easing their management in order to improve software configuration quality in terms of
comprehensibility, maintainability, and correctness.

A final line of related work on software configuration focuses on product line engi-
neering (Apel et al. 2013; van der Linden et al. 2007; Pohl et al. 2005). A product line
is a set of practices and architectures that allow to build a line of related software prod-
ucts (“variants”) around a common platform. Developers can extend the platform with
features between which certain constraints can exist (e.g., feature A requires feature B).
Variants can then be produced by enabling subsets of the features, while respecting their
constraints. A large body of research exists on product lines, so here we focus on product
line research related to the configuration of the features going into variants. For exam-
ple, Hubaux et al. (2012) found that Linux and eCos users, two large operating system
product lines, face a lack of documentation on how to configure these software systems.
Nadi et al. (2015) proposed an approach that identifies the feature constraints of C-based
product lines, such as Linux, from the source code. Medeiros et al. (2016) compared ten
sampling algorithms to identify which configurations to test in a product line software
system.
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Our study on run-time configuration options is complementary to existing research on
product line engineering. For example, in order to build variants, product line features can
be represented as configuration options, between which some constraints can be defined,
that need to be configured. This is similar as to how run-time configuration options can be
used to configure the features a user wants to enable during execution. However, run-time
configuration options do not necessarily map one-to-one to features, but can customize any
aspect of the behaviour of a software system, for example to tweak its execution perfor-
mance, specify file paths and other locations of resources, or even to customize the GUI of
the system. In that sense, our work differs from the domain of product line engineering.

3 Challenges of Run-time Software Configuration Engineering

While run-time configuration has been an ongoing concern in software development for
decades (Sommerville 2010), practitioners still suffer from a wide range of challenges
involved with it. In particular, in order to provide and maintain a typical configuration sys-
tem as shown in Fig. 1, an organization needs to implement a configuration engineering
process, i.e., a “discipline that encompasses activities involved in the creation, integration,

Table 1 Overview of challenges related to configuration activities (Sayagh et al. 2018), which are either
(M)anagement-related, (I)nherent or (T)echnical. The framework requirements identified in this paper focus
on the challenges in bold

activity challenge

ad hoc planning of options (M)

1. creation adding options increases complexity (I)

of options choosing widely applicable default value (I)

unclear configuration ownership (M)

2. managing mixing media increases complexity (T)

storage media choice of media impacts performance (T)

3. managing choice of option type (T)

option type configuration variants across environments (T)

4. configuration coupling between ProviderClass and ConsumerClass (T)

access in code adoption of dedicated frameworks (M)

5. comprehen- unknown impact of option (change) (T)

sion of options lack of option comprehension tools (T)

meaningless option names (T)

6. maintenance option removal is risky (T)

of options traceability between options and code (T)

7. resolving debugging config. failures is hard (T)

configuration lack of configuration debugging tools (T)

failures no strategy for avoiding config. regression (M)

8. knowledge lack of option documentation (M)

sharing no internal communication about options (M)

9. quality code review ignores configuration (I)

assurance lack of automatic config. validation (T)
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and maintenance of run-time configuration options in a software application” (Sayagh et al.
2018). For example, when a certain functionality should become configurable, one needs
to add a new configuration option, pick a good name for it, then access the option’s value
within the code to decide when the configurable code should be enabled, or to tweak the
code’s behaviour in some other way.

In earlier work (Sayagh et al. 2018), we performed interviews with 14 experts, a large
survey with 229 software engineers and a systematic literature review to recover and under-
stand the typical configuration engineering process followed in practice, as well as to
identify challenges and potential solutions. We distilled 9 major configuration activities and
22 related challenges, as summarized in Table 1. For each challenge, the table also indicates
whether it is related to (M)anagement choices, (T)echnical difficulties, or (I)nherent diffi-
culties of software configuration. A framework most likely would only be able to deal with
the latter two kinds of challenges.

3.1 The (M)anagement-related Challenges

The (M)anagement-related challenges involve the need for explicit planning of options
within the development process (e.g., based on requirements), clear assignment for each
option of an “owner” responsible for coordinating code changes, explicit evaluation and
adoption of the right framework (library) for managing and accessing configuration options,
a strategy to avoid regressions of configuration failures (e.g., by forcing developers to doc-
ument incorrect option values in a wiki), enforcing guidelines for documenting options for
end users and clear communication amongst developers regarding the goal and impact of
options. Most of these challenges require process-level changes and follow-up, while some,
such as the lack of option documentation (Xu et al. 2013), could also benefit from better
technical support.

3.2 The (T)echnical Challenges

The (T)echnical challenges refer to implementation-related challenges, although they
require more than just the selection and adoption of a dedicated configuration framework
(which in itself is a challenge as well (Sayagh et al. 2017b)). For example, substantial tech-
nical support is needed to determine the impact of an option on different parts of the code
base (Behrang et al. 2015), to choose meaningful option names (enabling easy understand-
ing) and to automatically validate constraints on the value of configuration options (Jin et al.
2014).

3.3 The (I)nherent Challenges

In contrast, the challenges (I)nherent to software configuration cannot be avoided through
better organization or tooling; one can only try to reduce their impact. For example, any
added option increases the list of options to read and understand (Zhang and Ernst 2014),
possibly discouraging or at least puzzling potential users (Xu et al. 2015). Similarly, the
default value of an option has to be chosen in such a way to enable plug-and-play func-
tionality for most of the end users, which is surprisingly hard to achieve. The unclear link
between configuration options and the source code impacted by it (Rabkin and Katz 2011),
as well as the focus of code review on changed source code lines only, even make code
review of configuration-related changes a challenge.
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3.4 The Challenges Considered by this Paper

Instead of focusing on one particular challenge, this paper identifies and empirically
evaluates four basic requirements obtained throughout our earlier interviews and question-
naire (Sayagh et al. 2018) that have the potential of resolving the technical and inherent
challenges as shown in bold in Table 1. We consider these challenges in particular since they
can be addressed by an automatic approach or a framework, while the other challenges can
only be addressed by management decisions (left for future work). In particular, we address
the following challenges (we refer to our prior work (Sayagh et al. 2018) for more details
about each of these challenges):

Mixing Storage Media Increases Complexity A large number of storage media makes the
configuration of a software system as well as the maintenance of a software configura-
tion option challenging. We found in our prior work that due to the weak communication
between developers and because each developer has her own preferences for storing con-
figuration options, developers can end up with a large number of different storage media
to store configuration options (e.g., mixture of XML, INI and JSON files), possibly spread
across different folders. Therefore, finding the right medium and option to change becomes
more challenging.

Choice of Option Type 10 respondents to our survey faced slow-down problems due to the
incorrect data format they choose for their configuration option, while other respondents
faced problems related to how to express the type of a configuration option (e.g., an option
that has other sub-options).

Coupling Between ProviderClass and ConsumerClass Accessing and reading the value of
options from different source code locations makes understanding, maintaining, and debug-
ging configuration options challenging (Sayagh et al. 2018). We found in our prior work that
40% of surveyed developers read and use configuration options in different classes without
defining a clear API dedicated to the configuration options.

Unknown Impact ofOption (change) Because developers can read and use a configuration
option from different locations of the source code (previous challenge), knowing the impact
of changing a configuration option is not trivial, as developers cannot know in advance the
impact of that change. In fact, we found in our prior work (Sayagh et al. 2018) that only
31% of surveyed developers know the impact of all configuration options.

Lack of Option Comprehension Tools Understanding the goal of configuration options
is challenging due to the low quality of configuration options documentation. That was
confirmed by one surveyed developer’s experience: “The one [who] created that option has
quit the team and that option [is] invoked in too many places of the code and hard to guess
what it does” (Sayagh et al. 2018).

Meaningless Option Names We also found in our prior work that configuration options
generally do not have meaningful names and do not respect a naming convention. We have
found that only 54% of surveyed developers follow a predefined naming convention for
configuration options.
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Option Removal is Risky As developers do not know the impact of a configuration change,
we found that refactoring options and even cleaning dead or unused options is risky. In fact,
dead options are left in the configuration files as confirmed by an interviewed expert: “...
we don’t clean the configuration files, because we don’t know when and where the system
can crash. Dead options are kept in the configuration files forever” (Sayagh et al. 2018).

Traceability Between Options and Code Surprisingly, we found that developers do not
keep track of configuration option changes in a version control repository. This is because
many developers do not consider run-time configuration files to be code, but instead
consider them as external artefacts. This leads to losing the traceability of configuration
options.

Debugging Configuration Failures is Hard Debugging configuration errors is not straight-
forward, particularly when a misconfigured software system has a large number of options.
Therefore, we found in our prior work (Sayagh et al. 2018) that developers use the same
mechanisms to debug configuration errors as any other kind of bug.

Lack of Configuration Debugging Tools As discussed before, developers (ab)use ordi-
nary debugging approaches to also debug configuration errors. They do not tend to use the
existing techniques in the literature for debugging configuration errors.

Lack of Option Documentation Documentation of options includes adding comments to
configuration files and creating a clear documentation in a Wiki or web-page. We found that
this is mostly ignored by developers.

Code Review Ignores Configuration As stated earlier, developers do not consider run-time
configuration to be code and, hence, we found that 36% of surveyed developers do not
review configuration files.

Lack of Automatic Validation Many of the interviewed and surveyed developers do not
validate the correctness of user configuration choices in the source code. Therefore, users
can assign incorrect or unexpected values to configuration options that might lead to incor-
rect behaviour. Ideally, developers should verify at application load-time the correctness of
its configuration values.

4 Core Requirements for Run-time Configuration Frameworks

This section discusses the prototyping approach used to identify the core requirements for
run-time configuration framework support, followed by a detailed discussion of each of the
four identified requirements.

4.1 Identification of Requirements

The major trigger for this work occurred during one of our initial interviews about the run-
time configuration engineering process (Sayagh et al. 2018), when one of the industrial
interviewees exclaimed that “Run-time configuration is code too”. While this princi-
ple sounds very similar to Infrastructure-as-Code (IaC) (Humble and Farley 2010) (see
Section 2.2), the interviewee actually meant something different: conceptually, run-time
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configuration options and metadata like types, constraints and default values are tightly cou-
pled with the source code and its development process, while in practice they are physically
separated, without explicit links. If, somehow, configuration options and their metadata
could become part of the source code, and automatically co-evolve with it, developers could
leverage traditional tools for testing, refactoring and debugging source code to perform
maintenance, comprehension tasks and quality assurance of configuration options.

Since the extent of this principle and its impact on run-time configuration engineering
activities still was rather vague to derive concrete requirements for, we decided to adopt a
rapid prototyping process (Sommerville 2010). Such a process typically is used when the
requirements of a software product are unclear. The end goal of such a process is not the
prototype itself, but rather a specific list of requirements that can then be used to implement
a real product (e.g., using an iterative process). Similarly, our aim was to obtain a list of
core requirements for run-time configuration frameworks able to resolve a wide range of
configuration challenges (see Table 1). In addition, the prototype would serve as vehicle
for a user study that empirically evaluates the impact of the requirements on the ability to
perform the typical configuration engineering activities.

Our rapid prototyping process basically consisted of the following activities:

1. extract new ideas proposed by an interviewee from the interview transcript
2. derive requirements from these ideas
3. compare and integrate these requirements with those already prototyped
4. adapt the prototype’s existing features and add new ones according to the new list of

requirements
5. test and stabilize the prototype on example code snippets
6. at the end of the next interview, solicit new ideas for tool support from the interviewee
7. once all ideas have been noted down, demo the current prototype to the interviewee
8. obtain and record feedback about the prototype and its relation to the interviewee’s own

ideas
9. iterate back to step 1

The choice of this process instead of, for example, a design science methodology (Sedl-
mair et al. 2012) or another requirements soliciting methodology was largely motivated by
the limited availability of interviewees during our study. We basically only had one shot
with them, hence repeated one-on-one feedback during prolonged periods was impossible.
For that reason, we opted for longitudinal feedback across 12 interviews and interviewees
(we started the initial prototype after the second interview). Given that we aimed to find the
major requirements for tool support, by definition those requirements should be shared by
the majority of these 12 interviewees.

The first two authors conducted the face-to-face interviews with 12 senior developers
and team leads, who belong to 11 different companies located in four countries and who are
working in large organizations (dozens to a few hundreds of developers). Table 2 shows the
experience and role of these interviewees. We interviewed senior developers and team lead-
ers since they had more experience in software development and dealing with configuration
issues than junior developers, and they likely met more problems in their respective con-
text. Each semi-structured interview lasted more than 60 minutes and was divided into three
parts. In the first part, we asked questions related to the key practices for managing config-
uration options and the roles responsible for adding, editing, and maintaining configuration
options. In the second part, we asked open-ended questions about typical configuration
issues, and the life cycle of options from development to deployment into the production
environment. In the third part, we applied the rapid prototyping process discussed above.
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Table 2 Interviewed subjects’ experience and role (Sayagh et al. 2018)

Subject Experience (#years) Role

P1 28 Developer and Manager

P2 27 Researcher

P3 21 Developer

P4 15 Manager

P5 14 Developer and Industrial Researcher

P6 14 Infrastructure Architect

P7 13 Manager

P8 12 Developer and Architect

P9 10 Developer and Architect

P10 10 Developer

P11 8 Integrator

P12 7 Developer

Once the final prototype was obtained, we extracted the list of features of the final pro-
totype, then used open coding to group related features into more abstract requirements.
Open coding (Wagner and Fernández 2015) allowed us to achieve this by tagging features
with codes, then to abstract up from the codes by grouping related codes into higher-level
categories. We repeated the process until the codes and categories were saturated. The
resulting categories then correspond to core requirements for configuration frameworks.
Apart from a number of utility and convenience features/requirements, we ended up with 4
core requirements that we think cover the 13 challenges, as shown in Table 3.

Table 3 Mapping the requirements R1 (Options-as-Code), R2 (Encapsulation of Configuration Access), R3
(Generation of Configuration Media) and R4 (Automatic Configuration Validation) to the bold challenges
of Table 1 and the 7 tasks evaluated in our user study: Task 1 (creation of configuration options), Task
2 (refactoring - changing a default value), Task 3 (refactoring - removing configuration options), Task 4
(comprehension of options), Task 5 (fixing a configuration error), Task 6 (configuration quality), and Task 7
(configuration review)

Challenge Task R1 R2 R3 R4

mixing configuration media increases complexity +

choice of option type 1 +

coupling between Provider- and ConsumerClass 1,3 +

unknown impact of option (change) 3 + +

lack of option comprehension tools 4 + + + +

meaningless option names 6 +

option removal is risky 3 + + +

traceability between options and code 1,2,3 + +

debugging configuration failures is hard 5 +

lack of configuration debugging tools 5 +

lack of option documentation 1 + +

code review ignores configuration 7 + +

lack of automatic configuration validation 6 +
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4.2 The Four Requirements

This subsection discusses the 4 requirements, while the next section presents the imple-
mentation details of the resulting prototype from which the requirements were extracted
(Fig. 2).

R1. Options-as-Code

The first requirement states that a configuration framework should physically inte-
grate the definition of a configuration option and its related metadata (e.g., type,
default value, description and constraints) into the source code, for example into the
ProviderClass in Fig. 1. This requirement not only allows developers to remain inside the
source code to create a new configuration option, but by adopting a specific syntax or idiom
to specify options it is straightforward for frameworks or manual search queries to identify
all options of an application or to serve as starting point for refactoring (Cassoli 2016).

In contrast, traditional configuration frameworks like the Preferences framework used in
Fig. 1 do not respect this requirement, since they treat configuration option names as string
constant attributes, variables, or even string literals. On the one hand, this allows to dynami-
cally construct option names through string concatenation. For example, the consumer class
in Fig. 4 accesses the options “markedEntryBackground0” to “markedEntryBackground5”
by concatenating “markedEntryBackground” and the variable “i”. On the other hand, find-
ing such a pattern of configuration options in the source code is not straightforward using
regular textual search tools, basically complicating the traceability between option names
and code, as well as other regular coding and maintenance activities.

Figure 3 illustrates requirement R1 on a Java application, using the syntax of our Con-
fig2Code prototype, for the “autoComplete” configuration option presented in Fig. 1. The
type of the option is determined by the type of the attribute (boolean), while the annotation
@Config specifies a namespace for the option, a default value, constraint and the desired
type of storage medium (support).

Apart from reducing the need for context switches and improving traceability, this first
requirement also brings other benefits to configuration frameworks. For example, ownership

Fig. 2 The relation between the four principles
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Fig. 3 Illustration of requirement R1 (Options-as-Code) using the syntax of Config2Code, and the encap-
sulation of that option using the accessor isAutoComplete to respect requirement R2 (Encapsulation of
Configuration Access)

of an option is now determined through code ownership of the source code file it is defined
in. Furthermore, determining the impact of an option is now possible by reusing code anal-
yses and tools originally designed to determine the impact of a variable. Those analyses and
tools now allow to determine the (configuration) variables impacting the code location of a
configuration failure (Qu et al. 2011) or to safely remove a configuration option from the
code without causing undesirable code paths to become active (Rahman et al. 2016). Finally,
given that the definition of configuration options is now part of the code, any changes to
such a definition will be captured in the version control system as regular code commits.
Since these are the commits considered by code review, run-time configuration changes
become an integral part of the review process instead of a special case (Sayagh et al. 2018).

R2. Encapsulation of Configuration Access

The second requirement focuses on the manner in which the values of options defined
according to requirement R1 can be accessed by the rest of the code, in particular the
ConsumerClasses in Fig. 1. Based on common software engineering sense (Sommerville
2010), this requirement states that a configuration framework should provide a well-
encapsulated API for accessing configuration values, reducing coupling and duplication
within the application. As shown in Fig. 3, one needs to encapsulate the configuration option
by making it private, and access it only via public accessors.

Requirement R1 makes the definition of a configuration option explicit in the source
code, which allows the encapsulation of a configuration access (Requirement R2), as shown
in Fig. 2. For example, the autoComplete configuration option is explicitly defined in the
source code via the annotated attribute autoComplete in the ProviderClass JabRefPrefer-
ences, which allows the encapsulation of that attribute using the accessor isAutoComplete.
Note that it does not suffice to just adopt a third-party configuration framework like jConfig
or Preferences, since scattered usage of such a framework’s API throughout an application’s
code base leads to strong coupling and complicates later migration to another framework, as
shown in the way the 5 “markedEntryBackground” options are accessed in Fig. 4. In fact,
these traditional frameworks do not enforce such encapsulation of options since options
might be accessed by passing option names as literal strings throughout the whole source
code.
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Fig. 4 Example of a dynamic configuration access

Apart from reducing coupling between configuration and the application, encapsulated
access results in uniform API usage throughout the application, again making it easier to
determine the impact of a given option and whether an option can be safely removed. While
requirement R1 has made the definition of configuration options explicit in code changes,
the usage of these options across the code base now also is made explicit through a cohesive
API, further encouraging systematic code review of configuration option-related changes.

R3. Generation of Configuration Media

While requirement R1 brought the definition of configuration options into the code and
requirement R2 distributes the value of these options in a disciplined way, requirement R3
closes the loop by stating that a configuration framework should automatically generate
the necessary configuration storage medium for the end user based on the source code.
Requirement R1 eases the analysis of the source code to identify configuration options,
which allows the automatic generation of a configuration storage medium (as shown in
Fig. 2). This medium, for example an XML file in Fig. 1, a Java properties file or a .json
file, or even a relational database, presents the current set of configuration options and their
metadata (including a default value) to the end user. It is the location where the end user can
change an option’s value and it also is the data source from which the application reads the
(possibly updated) option values.

Requirement R3 basically ensures that the configuration storage medium always is syn-
chronized with the options that are currently used (defined) in the code by the developers,
both in terms of option name, type, documentation and constraints. This automatic gener-
ation also allows end users (or DevOps engineers) to easily compare the previous version
of the medium (containing the user’s custom option values) to the new version in order to
detect new options, removed options, changed constraints or option types, etc. In contrast,
traditional configuration frameworks such as Preferences do not implement such a require-
ment and developers need to manually synchronize the source code and configuration option
storage medium, which is risky and error-prone, as discussed in Section 3.

This requirement also allows the type of storage medium to be easily changed, and dif-
ferent types of media could be mixed for different subsets of the options. For example, one
could use a configuration file for some options, while using command line arguments or
a database for others. Furthermore, the requirement also achieves complete and automated
traceability between options and code, and helps to address the challenge of missing option
documentation, especially when combined with requirement R4.

R4. Automatic Configuration Validation

Requirement R4 states that a configuration framework should automatically validate
the definition of options as well as the values assigned to them:

– Managers or technical leads can specify directives for configuration options that
should be respected by developers, for example a specific naming convention. That
can improve, as an example, the readability and comprehensibility of the generated
configuration medium (R3), as shown in Fig. 2.
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– Each option should only accept values of a certain type, for example an IP address (4
numbers from 0 to 255) vs. a hostname (textual string).

– In addition to option types, an option should respect a range of values or constraints.
For example, a memory size limit might not be higher than 1,024 MB.

Note that such validations are not feasible without an explicit definition of configuration
options within the source code (Requirement R1: Options-as-Code), as shown in Fig. 2.

This validation should be performed automatically, either during a build of a new version
of the source code (developers) or during program start-up (end users). If a violation of a
constraint is detected, the system should either halt or fall back to option values that are
known to be good. Automatic constraint validation improves comprehension, and enforces
naming conventions and the presence of documentation. In contrast, traditional frameworks
such as Preferences do not respect Requirement R4, forcing developers to perform such
validations manually or by writing additional scripts.

As an example, Fig. 5 shows a static checkstyle rule for option names specified by the
team lead of the example in Fig. 3. The rule encodes that the name of an option is mandatory
and should consist of 3 to 12 letters (upper- or lowercase), and it specifies an error message
(not just a warning) in case of a violation. Furthermore, during compilation the type of
the option will be enforced (since it corresponds to the type of a class attribute). At run-
time, when the value assigned to an option is read from the storage medium, the constraint
specified in the annotation shown in Fig. 3 will be checked.

5 Config2Code Prototype

This section discusses the main components of the final prototype obtained at the end of
the interviews, since it has been used subsequently to empirically evaluate the impact on
configuration engineering activities of the 4 identified requirements. This prototype, which
we named Config2Code, is a configuration framework implemented as a Java builder plugin
that can be integrated into Eclipse or even into the Maven build tool.

5.1 Syntax

As shown in Fig. 3, a developer specifies the metadata of a configuration option via the
annotation @Config. For each option, one needs to specify a name, a namespace the option
name belongs to, a comment to describe the option’s goal to users, a default value, a con-
straint that the option should respect, and where the option is stored (e.g., in a configuration
file, command-line arguments, or system configuration option). This meta-data respectively

Fig. 5 Illustration of requirement R4 (Automatic Configuration Validation), showing checkstyle rules
encoding programming conventions for configuration options, for the example in Fig. 3
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Fig. 6 Automatically generated INI file

is defined via the @Config attributes name, namespace, comment, defaultValue,
constraint and support.

To ensure a good encapsulation of configuration option access inside the code (require-
ment R2), one needs to define the option’s attribute as private and provide a public
getter.

5.2 Configuration Generator

This component automatically generates configuration storage media (typically textual con-
figuration files) from the @Config annotations. Basically, this component reads all the
information in the software annotations, then transforms those to a configuration file in a
straightforward manner. For example, if an INI configuration file format is requested, Con-
fig2Code generates the .ini file shown in Fig. 6. If, instead, a developer opts for an XML
format, the configuration file shown in Fig. 7 will be generated. Other types of configuration
files like JSON can be easily supported.

5.3 Builder

The generation of configuration files is automatically performed during the build of the
source code. In fact, “Config2Code” can be plugged into Eclipse and Maven software
builders. Config2Code has a number of configuration options by itself, which basically
allow to enable or disable features like the generation of configuration files and the use of
injection (next section), and to override the configuration file format used.

5.4 Injection

To assign values to the class attributes that represent configuration options, Config2Code
uses the principle of injection, based on aspect oriented programming principles. During the

Fig. 7 Automatically generated XML file
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build of a software application, we modify its Java bytecode to call a synthetically generated
injection method before executing the constructor of Provider classes. This injection method
takes as arguments the class and attribute to instrument and the configuration option value to
inject (as extracted from the generated configuration storage medium). As such, all option
attributes will contain the right value by the first time their getter is called.

To modify the bytecode, we used the popular Javassist framework (http://www.javassist.
org/). Since it is more lightweight than sophisticated injection frameworks like AspectJ or
Guice, it makes integration into the build system of a software application more straightfor-
ward. In addition, AspectJ builders ignore annotation processors, and hence cannot be used
for Config2Code.

5.5 Constraint Checker

This component checks the correctness of option values specified by users in the configura-
tion storage medium by validating the constraints of the option when the application starts
up. In the current version of Config2Code, each constraint is a single regular expression that
developers define and is textually checked on the option values. While this works to some
extent even for numeric data, dedicated constraint checkers and languages like Z3 would
improve usability.

5.6 Checkstyle

In order to check whether the configuration options themselves (i.e., not their values) follow
the naming and other conventions established by a project, Config2Code uses checkstyle
rules specified in an XML file as shown in Fig. 5. The resulting warnings and errors can then
be displayed visually by the builder component inside the Eclipse IDE, as shown in Fig. 8.

6 Design of User Study

Apart from identifying the four major requirements for configuration frameworks, this
paper aims to empirically evaluate the degree to which they support developers in per-
forming typical configuration engineering tasks. To this end, we carried out a controlled

Fig. 8 Example of a checkstyle warning. The name of the configuration option “s” does not respect the
naming convention is specified in the checkstyle file. A developer can configure checkstyle to either give a
simple warning or abort the build upon violation of a rule, as shown in Fig. 3

Empirical Software Engineering (2020) 25:1259–1293 1275

http://www.javassist.org/
http://www.javassist.org/


experiment (Wohlin et al. 2000), following the 5-step methodology of Meng et al. (2016).
The design of this study is inspired by that of Wettel et al. (2011).

6.1 Research Questions

Our controlled experiment compares a configuration engineering framework implementing
the 4 requirements to a baseline state-of-the-practice framework in order to address the
following two research questions across a wide range of typical configuration engineering
tasks:

– RQ1: Do the requirements increase the correctness of configuration engineering tasks?
– RQ2: Do the requirements reduce the time needed to complete configuration tasks?

We analyze the results of these questions both quantitatively and qualitatively, and also
consider the impact of participant experience (confounding factor). The remainder of this
section presents the study object, then discusses the design of the experimental tasks,
followed by the choice and composition of subject groups, and finally our experimental
protocol.

6.2 Study Object

As study object, we looked for an open-source GUI application with a non-trivial number
of configuration options that is not implementing the 4 requirements for configuration engi-
neering. We focused on a GUI application such that configuration changes would easily be
visible to study participants. Furthermore, the source code of the application should be large
enough to be challenging, but should be structured well enough so as not to overly divert
the participants’ attention from the configuration.

Eventually, we selected JabRef (http://www.jabref.org/), which is an open source tool
dedicated to managing BibTeX references. Two of the authors are familiar with this software
project from a previous study. JabRef 4.0 consists of 171,233 lines of code, 1,421 classes
and 177 options. Hence, considering the size of the application, the number of configuration
options is substantial. By default, JabRef uses the Preferences configuration framework,
which is a popular (Sayagh et al. 2017b), basic framework that comes bundled with the
Java SDK since Java 4. It reads configuration options from a configuration file, and allows
developers to access different types of configuration options (String, int, double, etc.)
via an API. These methods take as argument a configuration name and a default value that
is returned in case the accessed option is not declared in the configuration file.

The Preferences framework as used by JabRef was not implementing the 4 requirements:

1. Options are defined in textual configuration files, not inside the source code.
2. JabRef is strongly coupled to Preferences, as it calls the Preferences APIs (getInt,

getString, ...) throughout the code with the name of the requested option as String
argument (sometimes as literal, sometimes within a variable).

3. The textual configuration files are maintained and updated manually as the code
evolves.

4. No validation is performed of options nor of their values.

In order to use JabRef for our study, we made two important changes. First, we removed
JabRef’s custom configuration GUI from the code base in order to allow subjects to focus
only on the source code and the external (Preferences) configuration file. That JabRef GUI
is simply an additional GUI that helps users to configure JabRef, but it is not related to a
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specific configuration framework. In other words, the custom configuration GUI is simply
reading option values from the configuration file and writing back the user’s changes to
the same configuration file. Keeping the GUI would require participants to synchronize its
source code with the changes of each configuration modification task, which would only
add unnecessary complexity and possibly exceed a reasonable duration of the experiment.
Second, we prepared a Config2Code version of JabRef by removing entirely the use of
Preferences and replacing it with Config2Code annotations. As a result, all 177 Preference
options were replaced by Config2Code options across the Consumer and Provider classes.

6.3 Task Design

The design of our experimental Tasks was driven by the 9 major activities of the run-time
configuration engineering process (Sayagh et al. 2018), and their 13 challenges that we
conceptually had mapped to the 4 requirements in Section 4.1. While our initial goal was
to formulate one study task per challenge, some challenges are related and we also wanted
to keep the time for finishing all tasks below a reasonable duration of about 1h30. This is
why we ended up with 7 tasks spread across 7 configuration engineering activities, basically
skipping 2 activities. Since we split 3 tasks into two sub-tasks, we ended up with a total
number of 10 tasks related to 7 configuration engineering activities.

The first skipped activity consists of managing the configuration storage medium, such as
migrating from one configuration storage medium like XML to another one like a relational
database. We skipped this task as migrating the usage of all options to a new storage medium
is rather time-consuming to consider in a single user-study. We also skipped the activity
of managing (i.e., changing) option types, because it involves the same framework require-
ments as the other two maintenance related tasks (T2 and T3). Table 4 provides descriptions
of the 10 resulting tasks, while Table 3 maps them to the 13 considered challenges.
The handouts we gave to participants are available online (https://www.dropbox.com/s/
8nfpnzhny46t9gc/ex config2code.pdf?dl=0, https://www.dropbox.com/s/y88dneqqhsttkku/
ex preferences.pdf?dl=0).

6.4 Participants

We initially designed our experiment to consider four categories of subjects, across two
dimensions: {Industry, Academic} and {Novice, Expert} (Table 5). Novice industrial partic-
ipants are subjects working in industry with less than 3 year of experience, while industry
experts have more than 3 years of experience. Novice academic participants are undergrad
engineering students, whereas expert academic participants are students pursuing a master
or Ph.D.

However, one of the main barriers for controlled experiments of software engineering
tools is participant recruitment (Buse et al. 2011), especially due to software professionals
being busy (Ko et al. 2015). To complement the 2 industry participants that we contacted
based on personal contacts, we also contacted 5 remote freelance developers on Free-
lancer.com. We controlled for several well-known issues involving remote participants (Ko
et al. 2015). First, since developers tend to inflate their level of experience, we interviewed
all candidates via chat and asked them to perform a warm-up task to measure and evalu-
ate all skills requested from the developers. Only participants who correctly completed the
warm-up participated in the experiment. Second, to deal with developers who may tem-
porarily suspend a task or would not follow the instructions correctly, we required all online
participants to record a video screencast during their working session. Third, high payments
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Table 4 The 10 tasks administered in the user study

Task Description

T1. Creation of con-
figuration options

Participants should create two new configuration options (one
boolean (T1.1) and one integer (T1.2) option) based on
requirements about the name of these options, their comments,
default values, constraints for user choices, and the code area
that should be modified to use the new created options.

T2. Refactoring - Chang-
ing a default value

Participants should change the default value of a configura-
tion option. While this requires Config2Code users to change
only an attribute of the@Config annotation, Preferences users
need to change the code in two different places for this
(the configuration file and a map data structure with default
values).

T3. Refactoring - Remov-
ing configuration options

Participants need to remove 5 similar options and replace
them by one unique option. Config2Code participants need
to remove the “@Config” annotation, and change the corre-
sponding class attributes’ accessors to instead use the proposed
option. Preferences participants need to remove the option
from the configuration file, then search the code to find where
each option is used to replace it by the proposed option. This
task is not trivial, as some of the option accesses use Java
reflection.

T4. Comprehension of options Participants had to identify the range of possible values of
two configuration options. The first option (T4.1) is a JabRef
specific configuration option related to the auto-completion
of textual fields in the GUI, whose allowed values are speci-
fied inside the JabRef code base. The second option (T4.2) is
related to the possible font styles that can be used. The latter
option’s values can be found online, yet not all of those are
actually used by JabRef. Participants were asked to only report
the used ones.

T5. Fixing a configuration
error

Participants need to identify which option is responsible for a
configuration error (incorrect value), then to fix the error by
preventing future errors of this option. This fix requires adding
a “@Config” constraint for Config2Code or adding an if-check
for Preferences.

T6. Configuration quality The goal of this task is to check which options do not respect
a predefined naming convention (T6.1) and to propose 5
examples of these options (T6.2)

T7. Configuration review This task requires participants to review a patch of a newly
created option, whose definition contains two problems: the
option did not have any constraint attached (despite the com-
mit message clearly mentioning the constraint), and the default
value did not respect the constraint of the commit message.

could attract participants that are excessively motivated by money, which may lead to unre-
alistic behaviour (Ko et al. 2015). To mitigate this, we paid Freelancer.com’s median flat
sum of CAD$35 per experiment (in line with Ko et al.’s US$30 (2015)) after the work was
completed and we were 100% satisfied by its quality.

All of the academic participants were volunteers, which we invited to participate in
exchange for a bonus in their courses and a certificate acknowledging their participation.
The students were recruited at one North American and one North African university during
the Summer of 2017 and Winter of 2018. None of them had prior experience with Prefer-
ences or Config2Code. In addition, we also had 7 student and one expert participants who
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Table 5 Decomposition of the user study subjects

Industrial Academia All Total

Novice Expert Novice Expert Novice Expert

C2C. 4 3 17 5 21 8 29

Pref. 3 3 16 4 19 7 26

Total 7 6 33 9 40 15 55

participated in pilot runs of the study in order to refine the questions and study protocol.
They are not included in Table 5, nor in the results section.

While our study design targeted the impact of both the {Industry,Academic} and
{Novice,Expert} factors, we eventually dropped the former. First of all, we had an unbalance
between industry and academic participants, with a ratio of 13 to 42. While this problem
was not unsurmountable, we noticed that many students, even novices, had prior experience
developing software. In some cases, students had more experience than (novice) freelancers.
In one case, an academic expert (PhD student) had only 1.5 years of Java experience com-
pared to an academic novice with 5 years of Java experience, while 3 industrial experts
have 4 years of experience which is still less than the academic novice with 5 years of Java
experience. Therefore, to not derive wrong conclusions, we elided the {Industry, Academic}
factor and only consider {Novice, Expert} in our discussion. This is why we eventually only
consider the number of years of Java experience as a metric for experience (i.e., not grad
vs. undergrad), i.e., a participant with 3 or more years of Java experience is considered as
an expert, whereas participants with less than 3 years are novices. This decomposition is
shown in the “All” column of Table 5.

6.5 Experimental Protocol

Participants were randomly assigned to either the experimental group (using Config2Code)
or the control group (using Preferences). We used stratified sampling based on the {Expert,
Novice} factor, resulting in the composition of Table 5.

The experiment was performed using two types of virtual machines (VMs): (1) VMs
hosted on Google Cloud for non-local participants (mainly for the freelancers), and (2) a
similar environment on VirtualBox installed on our lab machines for local subjects. Each
VM was set up with Eclipse and either Config2Code or Preferences. To analyze the sub-
jects’ results, the screens of the VMs were recorded via the Cattura Google plugin or by
configuring VirtualBox to capture the VM screen.

Before performing the 10 tasks, both the experimental and control groups received an
introduction about configuration options in general, the specific framework they were going
to use, and the three steps of the experiment (warm-up, experiment, and exit survey). We
did not divulge our intent to compare Preferences and Config2Code. The participants then
started with a warm-up exercise on a toy project that taught them how to use the framework
they were assigned to. The results of this exercise were just used to filter out participants
that were unfit for the study (not included in the numbers of Table 5).

Once finished with the warm-up exercise, the participants would enable screen recording
of the VM and start the 10 tasks. We warned them that it might typically take 1h30 to finish
all tasks, yet they were free to stop at any time. All sessions of experiments were supervised
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by one of the authors to enable clarification questions, if needed. 6 of the 10 tasks required a
written answer in a separate response file saved in the desktop of each virtual machine. Once
finished (or when quitting), the screen recording would be stopped, and the participants
had to fill out an exit survey to express their impression about the experiment in general,
and about the advantages and challenges they faced during the experiment related to the
framework they used.

Finally, in order to address the research questions, we marked the modified source code
and the answers in the response files of the 10 tasks to determine correctness. We defined a
check-list to mark each task. For example, for T1.1 and T1.2, participants should (1) define
the new options, (2) comment them, (3) define their constraints, and (4) use them within
the source code. If all 4 elements would be there, they received the full mark (100%), while
they would lose 25% for every incorrect element, resulting in a mark of 0 if they would miss
all 4 elements.

In order to determine the time needed to perform the individual tasks, we scrolled through
each participant’s video to record the moments on which they switched to the next task. A
task starts when a subject finishes reading its requirements and finishes when she completed
the code or answered the exercise on the response file. The challenges we encountered were
the length of the videos (up to 4 hours) as well as the fact that some participants answered
some questions in more than one shot. They would start a given exercise and come back
to finish it later on or even at the end of the experiment. In those cases, we summed up all
periods during which they (visibly) were working on a question. Note that the rating process
was made by two of the four authors.

7 Quantitative Results

This section discusses the results of our empirical evaluation of the impact of the 4
configuration framework requirements on the ability of developers to perform typical con-
figuration engineering tasks. The next section then analyzes those results qualitatively for
each individual task.

RQ1: Do the requirements increase the correctness of configuration engineering tasks?

Motivation The 4 requirements discussed in Section 4 are conjectured to enable developers
to perform configuration engineering tasks more correctly compared to not following them.
Therefore, we define our null hypothesis as:

H0: There is no significant difference in task correctness between Config2Code and
Preferences participants.

In the qualitative analysis, we link this global hypothesis back to the individual
requirements.

Approach Based on the textual answers to each task and the modified source code of each
participant (Sayagh and Adams 2018), we assigned, for each task, a mark to the participant.
Since subjects were free to leave at any point or skip any question, we ignore the tasks that
they did not perform (instead of giving a zero score for those). For this reason, we analyze
the marks of each individual task rather than calculating a global score, then we count the
number of tasks for which we saw an improvement, deterioration or no visible difference
when using Config2Code as opposed to Preferences. Similar to Wettel et al. (2011), sta-
tistically significant differences in the number of improvements, deteriorations and cases
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without change were determined using the (non-parametric) Mann-Whitney-Wilcoxon test,
with a confidence level of α = 0.05.

In a second step, we evaluated the impact of participants’ experience on the results
(i.e., experts vs novices). For this, we compared the results of Config2Code experts
against Config2Code novices on the one hand, and Preferences experts against Prefer-
ences novices on the other hand. This comparison again is at task-level and based on
Mann-Whitney-Wilcoxon tests with α = 0.05.

Results: Config2Code outperforms Preferences in 7 (T1.1, T1.2, T2, T3, T4.1, T4.2, and
T6.1) out of 10 tasks. Table 6 indeed shows how we can reject the null hypothesis (p <

0.05) for 7 out of the 10 tasks, while we were unable to do so for the other tasks. As shown
by the median scores, there was no task for which the Preferences subjects performed more
correctly than Config2Code subjects. Config2Code increased median correctness with up
to 300% compared to the corresponding Preferences scores for task T4.2 (comprehension
of an option related to font styles), in which Preferences participants ended up searching
possible option values online, instead of just using the artifacts they had in hand (source
code and configuration file). At the other extreme, for T7 (configuration review), more than
half of Preferences were unable to perform the task correctly, leading to a median score of
0, compared to 1 for Config2Code.

As highlighted in Table 6, we found that, overall, the results are not impacted by the
experience level of participants (p ≥ 0.05), except in the case of T1.2 (creation of an inte-
ger option) and T4.2 (comprehension of an option related to font styles) for Preferences.
The difference between T1.2 (creation of an integer option) compared to T1.1 (creation
of a boolean option) is the need to check the correctness of the new option via a regular
expression constraint. This was not easy for novice developers, since they lost time trying
to identify where they should check the constraint within the relatively large code base, and
how to implement a regular expression constraint in Java. Many Preferences novice partic-
ipants had to check online how to use regular expressions. Similarly, T4.2 (comprehension
of an option related to font styles) was not easy for novice developers, who typically did not
have any concrete strategy to find all possible values of a configuration option, except for
searching online. Config2Code on the other hand seemed to level out differences between
novices and experts for those tasks.

RQ2: Do the requirements reduce the time needed to complete configuration tasks?

Motivation The goal of this research question is to evaluate if configuration frame-
works implementing the 4 requirements help developers perform configuration tasks faster.
Therefore, we define our null hypothesis as:

H0: There is no significant difference in time required between Config2Code and
Preferences participants.

Approach For each task, we measured the time required by each participant, filtering out
participants who did not successfully complete a given task. We defined “successful” com-
pletion as obtaining at least half of the marks for that task, i.e., a score ≥ 0.5. Note that
this also led to filtering out participants who forgot to start or prematurely ended screencast
recording, since no timing information was available for them. Finally, we also analyzed the
impact of subjects’ experience on the required time to solve a task.

We observed in the videos that most of the participants solved tasks T1.1 (creation of a
boolean option) and T1.2 (creation of an integer option) in parallel. They typically added
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Table 7 Impact of the 4 requirements on each task: T1 (Creation of configuration options), T2 (Refactoring
- Changing a default value), T3 (Refactoring - Removing configuration options), T4 (Comprehension of
options), T5 (Fixing a configuration error), T6 (Configuration quality), and T7 (Configuration review)

T1 T2 T3 T4 T5 T6 T7

R1. Options-as-Code + + +

R2. Encapsulation of Configuration Access +

R3. Generation of Configuration Media + + + +

R4. Automatic Configuration Validation + +

both configuration options either in the configuration file for Preferences or as two anno-
tations for Config2Code, then changed the source code to use both configuration options.
Therefore, we report a single time measurement for both.

Results: Config2Code outperforms Preferences on 6 tasks (T1.1, T1.2, T2, T4.1, T4.2 and
T6.1), does not improve 3 tasks (T5, T6.2 and T7), while Preferences outperforms Con-
fig2Code in one task (T3). As shown in Table 6, Config2Code helps to save up to 94.62%
of development time (T4.2. comprehension of an option related to font styles) compared to
Preferences, while only for one task Preferences developers performed 90% faster thanCon-
fig2Code. It is important to note that for this task (T3. refactoring - removing configuration
options) the results for Config2Code in RQ1 were significantly better than for Preferences
(median of 1 vs. 0.5). Most of the latter participants removed the options but did not update
the reflective call to these options or did not remove the option from the configuration file.

For the other tasks, the results for RQ1 and RQ2 match each other. For example, Con-
fig2Code developers can immediately understand a configuration option, with a reduction
of 79.67% and 94.62% of time (T4.1 and T4.2). Config2Code developers are also able to
add an option in a median of 1,559.5 seconds (25.99 minutes) with Config2Code instead of
2,831 seconds (47.18 minutes) for Preferences developers. Finally, the RQ2 results are not
impacted at all by the experience of developers.

8 Qualitative Results

This section qualitatively discusses RQ1 and RQ2 for each task. Table 7 summarizes the
impact of each requirement on our user study tasks. We observe that all requirements have
a positive impact on at least one task.

T1: Creation of Configuration Options As shown in Table 8, 73.07% of Preferences par-
ticipants did not add configuration constraints that check the correctness of the value of an

Table 8 Percentage of participants forgetting to add constraints, comments, usage sites and default values
during the creation of configuration options (T1)

%Constraint %Comment %Usage %Default

Config2Code 3.44 3.44 27.58 0

Preferences 73.07 53.84 26.92 7.69
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option, compared to only 3.44% of Config2Code subjects. In addition, 53.84% of Prefer-
ences subjects forgot to comment their configuration options. Because JabRef defines a map
data structure of default option values within its source code, the Preferences participants
had to define the default values not only in the configuration file, but also in that defaults
map. This is why 7.69% of Preferences participants forgot to define default values in both
places.

Therefore, requirement R1 (i.e., putting all option-related information inside the source
code in one location) has had a positive impact on the correctness of adding a configuration
option as well as on the time required (see Table 3). On the other hand, using a configuration
option requires writing additional code in each ConsumerClass for both Config2Code as
well as Preferences participants, which is why similar percentages of participants (30% and
33%, respectively) forgot usage sites of the new configuration options.

From the videos, we observed that both groups of developers liberally used copy-paste
of existing option definitions. While Config2Code participants could just copy and modify
annotations in one source code area (that they first had to find), the Preferences subjects
had to perform many more steps across different code areas. We observed that they initially
created the options in the configuration file, added the new option names as two global
constants, then added the default values to the right map, in order to then use the options
in the right files. Given the complexity of all these steps, we noticed substantial trial-and-
error for this group. One Preferences participant confirmed: P35: “Seems to have a lot
of needless steps between getting a config value and using it”, while one Config2Code
participant found: P33: “It’s easy to add a config variable and assign it in the config.ini
file”.

The difference in percentage of developers adding constraints, together with the large
number of erroneous options added by the Preferences group, show how requirement R4
helps developers to ensure correctness of new options. One Config2Code participant con-
firmed in the exit survey that P33: “It’s also easy to give extra constraints on the different
fields of config variables once you have a working example”, against a Preferences partic-
ipant who highlighted the P9: “Need to add more validation on the configuration data as
user[s] can give any value”. Finally, requirement R3 helped participants by automatically
regenerating configuration files after each modification.

T2: Changing Default Value Changing the default value with Config2Code requires only
changing the attribute “defaultValue” within the ProviderClass for Config2Code subjects,
while it requires changing the default map within the source code and the configuration file
for the Preferences subjects. Forgetting to change the default value in both places is error-
prone, since JabRef seemingly would be using a different value than the one specified in the
configuration file (i.e., the one listed in the map data structure).

Due to the context switches between the configuration file and the source code, 90%
(19/21) of Preferences developers modified just the configuration file or just the defaults
map, while this task was straightforward for 76% (20/26) of Config2Code participants, as
they have to make changes only in a single place inside the code (requirement R1) and
because Config2Code automatically updates the configuration file after a source code mod-
ification (requirement R3), which was indeed a feature that participants like and makes
P15: “The framework [...] quite practical as it automatically updates the configuration file
whenever the source code is modified via annotations”.

T3: Removing Configuration Options Participants had to replace 5 configuration options
(O1...5) by another one (O6). An additional complexity (for both groups) was the fact that
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these options were accessed by reflection. The difference in correctness (and to some degree
time) between both groups for this task was due to requirement R2. While Preferences
accesses the configuration options from the ConsumerClass without any encapsulation,
Config2Code uses the ProviderClass accessors, either directly or via a reflective call from a
ConsumerClass.

Therefore, due to the lack of such encapsulation, Preferences users faced the problem
of having to search the code for all usage sites (Consumer classes) of these 5 options, as
well as to remove them from both the configuration file, the default value map, and their
names from the global constants. In contrast, Config2Code developers just had to mod-
ify the ProviderClass accessors to use O6 internally, and physically remove the annotation
@Config to avoid synchronizing the source code with the configuration file. One Prefer-
ences participant said: P37: “some code refactoring tasks [require him] to analyze the code
deeply”.

That said, we did observe in the videos that some Config2Code participants initially
removed the “@Config” annotation, and the (previously configurable) class attributes and
its accessors. However, this yielded exceptions due to the hidden reflective call. These Con-
fig2Code participants first tried to fix that unexpected bug, before realizing the simpler
solution (modifying the ProviderClass accessors instead of removing). That explains the
substantial slowdown compared to the Preferences group.

Similar to T2, Preferences users had to remove the 5 configuration options from the
source code as well as the configuration file, while requirement R3 helped Config2Code
participants to avoid switching between different contexts (source code and configuration
file), as they just have to remove @Config from the source code and requirement R3
suggests to automatically update the configuration file.

T4: Comprehension of Configuration Options As shown in Table 6, there is a significant
difference in correctness between Config2Code subjects (who were able to find exactly the
possible values within the @Config constraint, i.e., requirement R1), and the Preferences
subjects, who had to search where that option is used within the source code or even to use
online documentation. This especially was clear for T4.2. While some participants found
some values online, their responses were inaccurate, as many of these values are simply
not used by JabRef. This would only be clear by exploring the source code, which is time-
consuming. Due to the automatic synchronization of option information (requirement R3),
Config2Code participants always found the up-to-date set of option values, not only from
the attributes of @Config annotation but also in the configuration file.

T5: Fixing a Configuration Error This task did not show any visible differences in either
correctness or time. The videos showed how participants would usually start out by guess-
ing a likely incorrect candidate option (in terms of its value) related to the bug symptoms
that they faced. In this case, because the bug was related to the auto-complete functionality,
most of the subjects started by searching configuration options that have the keyword “auto-
complete” in their names, then manually inspected these options’ corresponding values.
Requirement R1, which is the only requirement addressing the challenges “debugging con-
figuration failures is hard” and “lack of configuration debugging tools” in Table 3, clearly
does not suffice in this context.

A special characteristic of the configuration error addressed in T5 is that it was a func-
tional error without any exception or error message, only showing a graphical effect. In
future work, we plan to investigate configuration errors with an explicit error message as
well as performance-related configuration errors, both of which would allow source code
inspection techniques to be used.
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T6: Configuration Quality This task showed a significant speed-up and correctness for
Config2Code (T6.1), but did not show any difference for both correctness and time of
T6.2. Our qualitative analysis of the videos showed that some Preferences subjects man-
ually inspected each configuration option, whereas other participants copy and paste the
whole configuration file in online regular expression checkers to solve this task. This is
time-consuming compared to Config2Code, where developers could declare the regular
expression within a checkstyle rule (cf. Fig. 5; requirement R4). Indeed, one Preferences
participant found that P20:“The main problem is that there is no IDE validation of the keys
used in the project (e.g., length, or naming conventions)” in the Preferences framework. We
also observed that only in one Preferences case, a developer wrote a script to identify the
number of options that do not respect the proposed naming convention.

Due to the large number of configuration options that do not respect the configuration
naming convention proposed in this task, it was not difficult (in terms of correctness and
time) for both groups to identify a set of examples in T6.2, explaining the status quo for
correctness and time.

T7: Configuration Review Finally, we also did not observe any differences for the patch
reviewing task. We believe that this is due to the limited size of the patch that we studied,
making it an easier task for both groups. Furthermore, since the patch merely adds a new
configuration option, all the information regarding the option’s definition is included in
the patch. A patch that would impact code that depends on an option (a fact probably not
obvious from the commit’s diff alone) likely would not change other data of the option and
hence might be harder to review. Future work should analyze this task in more detail.

9 Learned Lessons

This paper identifies and evaluates four principles to improve the development of config-
urable software systems.

Developers Should Consider Options as Code (Requirement R1) We have found that
defining configuration options as code helps developers improve multiple configuration
engineering activities, including the creation of configuration options, refactoring config-
uration options, and the comprehension of options. This is because this principle allows
developers to define (for creation), change (for refactoring), or inspect (for comprehension)
a single location in the source code to define all the meta-data related to a configuration
option, without context (storage medium) switching. At the same time, this principle allows
to exploit existing source code development tools on configuration options, for example to
refactor or debug options.

The positive results for this principle confirm earlier results of, for example,
Infrastructure-as-Code, which suggests that the principle could be extended even further to
other software artifacts.

Developers Should Encapsulate the Access to Configuration Options in one Provider-
Class and Use Them via Explicit Accessors (Requirement R2) By encapsulating options
in a single ProviderClass, developers have to change only that single place during their
options refactoring. Our empirical study has shown how this avoids the refactoring chal-
lenges, particularly for removing or cleaning configuration options, typical (Sayagh et al.
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2018) to systems with scattered access to configuration options. This principle is an exten-
sion of the traditional object oriented encapsulation practices, which might be extended to
other software system artifacts.

Developers Should Automatically Synchronize the Configuration Storage Medium and
the Source Code of a Software System (Requirement R3) Requirement 3 helps develop-
ers to avoid inconsistent configuration option meta-data due to having to edit this data in
both the source code and configuration option storage medium. We found that Requirement
3 has a positive impact on the creation and refactoring activities, since Preferences subjects
missed to modify either the source code or configuration file. In addition, 53.84% of Prefer-
ences subjects missed commenting the newly added options during the creation of options
(T1).

While requirements R1 and R2 correspond to developer practices, R3 (and to some
extent R4) refers more to technical (automation) requirements. That said, the former two
requirements make implementing the latter two requirements easier. For example, since
developers do not need to maintain code and configuration information in separate files
(R1), generation of default configuration files from source code is more straightforward to
perform.

Developers Should Automatically Validate Users’ Configuration Choices (Requirement
R4) Automatically ensuring the correctness of configuration options helps developers pre-
vent failures due to unexpected values of a configuration option. While it is not that hard
to develop option value validation functions, 73.04% of the Preferences subjects forgot to
implement or call such a function.

Automatic configuration choice validation (Requirement R4) is related to the spec-
ification and enforcement of pre/post-conditions, but limited to the domain of config-
uration options. As suggested by R1, this requirement follows again from a similar
guideline/convention in programming.

A Development Team Should Automatically Enforce Naming and other Development
Conventions for Configuration Options (Requirement R4) Automatically verifying the
quality of configuration options (e.g., their names and their descriptions) helps developers
avoid substantial manual (and error-prone) effort. In our prior work (Sayagh et al. 2018),
we found that 23% of surveyed developers have a naming convention, yet developers do
not respect it. Interestingly, we observed that some Preferences developers wrote a script
or used an online regular expression checker to find which options do not respect a naming
convention, which is in other words an implementation of Requirement R4.

Whilewewere able toAddress 10out of the 13Challenges this Paper Focuses on, 3 Chal-
lenges Require Additional Configuration Framework Requirements We observe that
none of our four requirements addressed either the debugging of configuration failures or
the reviewing of configuration options. Further studies are required to better understand how
practitioners debug configuration failures and to propose additional configuration frame-
work requirements to help them debug such failures. Such requirements might be based on
existing configuration debugging approaches (Zhang and Ernst 2013; 2014; Sayagh et al.
2017a; Dong et al. 2015). Similarly, we think that additional effort is required to under-
stand how developers review configuration related patches and recommend configuration
framework requirements for them.
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10 Threats to Validity

Threats to internal validity concern alternative factors that could have influenced our find-
ings. One threat is the degree of competence of our subjects. To mitigate this threat, we
ensured that participants are comfortable with Java or at least had taken a Java course, in
addition to recording their Java experience. Second, we used randomization to fairly assign
participants to treatment groups. For each group, we presented the purpose of the study
and provided a warm-up exercise to be sure they have a good knowledge of the application
domain. Furthermore, participants from both controlled and experimental groups could ask
questions during the experiments. Third, the subjects may not have been correctly moti-
vated. This threat was mitigated by the fact that all participants participated on a voluntary
basis, receiving certain incentives (Section 6.4). Fourth, some subjects might have been
familiar with the popular Preferences framework compared to Config2Code subjects. To
mitigate this risk, we provided a warm-up exercise to make sure that the participants get
familiar with using both frameworks before performing their tasks. In addition, we evaluated
the impact of participants’ experience on our results.

Another threat to internal validity concerns the abandoning of some user participants
or the absence of their screencasts, which respectively led to imbalanced data in RQ1 and
RQ2. Although it would be better to have similar sample sizes between “Config2Code” and
“Preferences”, we were not able to control this as participants were allowed to abandon the
experience at any stage they want, given the duration of the tasks that in one case took up to
3.53 hours. To mitigate this risk, we first used a stratified sampling approach and later used
the Mann Whitney Wilcoxon test that is a good fit for imbalanced and small sample sizes.

Another internal threat to validity concerns the impact of confounding factors other than
the 4 requirements on our findings. To mitigate this risk, we conducted a qualitative analysis
of the video recordings and an exit survey with our subjects after finishing their tasks.

We also recognize a threat related to the design of the experimental tasks, which may
have been biased to the advantage of either of the two groups (Wohlin et al. 2000). To
alleviate this threat, we aligned the design of tasks with the configuration engineering tasks
and challenges identified in earlier work (Sayagh et al. 2018). Two of the authors were part
of a pilot study that assessed the perceived task difficulty and time pressure, then to validate
that we are measuring the right metrics.

Threats to external validity concern the generalization of our findings. One major threat
to external validity is the use of the generalizability of our results to other configuration
frameworks. We used the framework Preferences as it is the default framework used by
JabRef, it is one of the most popular frameworks (Sayagh et al. 2017b), and especially
because it does not implement our 4 requirements. However, the comparison against other
frameworks might lead to different results. Hence, future work needs to compare the 4
requirements against other frameworks.

Future work should consider other activities and tasks than those studied here, covering
configuration engineering activities and challenges not covered by the current study, and
analyzing more in detail tasks related to the configuration reviewing activity. Furthermore,
other object systems should be used, leveraging other standard configuration frameworks
than Preferences. Finally, other participants should be recruited, involving more industry
practitioners.

Threats to construct validity consider agreement between a theoretical concept and a
specific measuring procedure. One threat considers the experimenter effect: since we are
both the authors and experimenters, this may have influenced any subjective aspect of the
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experiment. Although we are aware that we cannot exclude all possible impacts of these
threats, we did try to mitigate them by designing a checklist and a model of the answers
with a grading scheme. Moreover, two of the authors performed the grading.

Furthermore, the rapid prototyping process used to derive the core requirements, as well
as the open coding process used to categorize the features within the final prototype, involve
human judgement. To mitigate this risk, at least two of the authors were involved in both
processes, furthermore we also observed that the new requirements to be added in the final
prototypes (evaluated in the final interviews) started to saturate.

Finally, future iterations of this study should provide an automated way for participants
to have the video started and stopped when starting or ending a task. This would avoid
having to filter out participants without timing information.

11 Conclusion

This paper derives 4 requirements for configuration engineering tool support and empir-
ically evaluates them via a user study with 55 participants and 10 tasks (spanning 7
configuration activities). Our findings show how the requirements can improve the cor-
rectness of 70% and the speed of 60% of the 10 tasks compared to a state-of-the-practice
framework that does not implement the 4 requirements. We did not find any statistically sig-
nificant differences for the other tasks, except for one in which “Config2Code” deteriorates
in terms of speed but improves in terms of correctness. Furthermore, even novice develop-
ers benefited from the four requirements, as the improvements we observed in our study are
independent of participant experience.

Through qualitative analysis of the study results (from the screencasts), we found that
considering configuration options as code (requirement R1) by defining option meta-
data inside the source code had a major positive impact on the participants’ ability to
perform configuration tasks swiftly and accurately. Coupled with automatic generation of
configuration media (requirement R3) and configuration validation (requirement R4),
and to some extent encapsulation of configuration option access within a clear Provider
API (requirement R2), developers are able to deal with major configuration engineering
challenges in their code base.

Finally, we suggest developers to consider their configuration as code as well as syn-
chronizing the evolution of the source code with the configuration file. Future work should
investigate on the evaluation of these principles on other artifacts that need to be synchro-
nized with the evolution of the source code, such as the documentation of a software system,
the build files, etc..
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