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Abstract
Traditional just-in-time defect prediction approaches have been using changed lines of
software to predict defective-changes in software development. However, they disregard
information around the changed lines. Our main hypothesis is that such information has
an impact on the likelihood that the change is defective. To take advantage of this infor-
mation in defect prediction, we consider n-lines (n = 1, 2, . . . ) that precede and follow
the changed lines (which we call context lines), and propose metrics that measure them,
which we call “Context Metrics.” Specifically, these context metrics are defined as the num-
ber of words/keywords in the context lines. In a large-scale empirical study using six open
source software projects, we compare the performance of using our context metrics, tradi-
tional code churn metrics (e.g., the number of modified subsystems), our extended context
metrics which measure not only context lines but also changed lines, and combination met-
rics that use two extended context metrics at a prediction model for defect prediction. The
results show that context metrics that consider the context lines of added-lines achieve the
best median value in all cases in terms of a statistical test. Moreover, using few number of
context lines is suitable for context metric that considers words, and using more number of
context lines is suitable for context metric that considers keywords. Finally, the combina-
tion metrics of two extended context metrics significantly outperform all studied metrics in
all studied projects w. r. t. the area under the receiver operation characteristic curve (AUC)
and Matthews correlation coefficient (MCC).

Keywords Just-in-time defect prediction · Defect prediction · Source code changes ·
Context lines · Changed lines · Indentation metrics · Code churn metrics

1 Introduction

Software developers have limited resources to verify and test their source code. If developers
can identify defective components (e.g., files or commits) they would be able to focus their
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effort on these components. Defect prediction supports this activity, and prior work has
reported that defect prediction can reduce development cost for developers (Tassey 2002).

There exists plenty of work aimed at predicting defective components (Basili et al. 1996;
Kim et al. 2007; Moser et al. 2008; Hassan 2009; D’Ambros et al. 2010). In particular, sev-
eral prior research work has focused on predicting defective changes called change-level
defect prediction—also called just-in-time defect prediction (Kamei et al. 2013; Kim et al.
2008; Fukushima et al. 2014; Mockus and Votta 2000). Just-in-time defect prediction has
the advantage that it can determine if a commit is likely to be defective when the commit is
being performed (Hata et al. 2012) and providing faster feedback than other defect predic-
tion methods (Kamei et al. 2013). Previous research has used metrics based on measuring
the code changes (e.g., churn–changed lines) in just-in-time defect prediction (Kamei et al.
2013; Kim et al. 2008; Mockus and Votta 2000).

To the best of our knowledge, no studies have considered using the information in the
lines that surround the changed lines of a commit, which we call context lines. Our main
hypothesis is that information in the context lines has an impact on the likelihood that the
change is defective.

In this paper, we evaluate the use this information in just-in-time defect prediction. The
dictionary defines context as “the parts of something written or spoken that immediately
precede and follow a word or passage and clarify its meaning” (Stevenson and Lindberg
2010). In this paper, we define the context lines of a chunk of changed lines as the n-lines
(n = 1, 2, . . . ) that precede the chunk and the n-lines that follow the chunk.

This paper proposes several context metrics. The different metrics vary around three dif-
ferent axis: a) how many context lines around each change to use (the size of the context,
n), b) whether to use all context lines, or only those of added or removed lines (the type of
the change), and c) counting the number of words or counting the number of keywords (as
defined by the programming language) in the context. We consider these axes as the param-
eters of context metrics. We refer to a context metric which uses a set of the parameters
as a variant of context metrics. We empirically study the best-performing variant in terms
of defect prediction performance. We also compare the context metrics that are the best-
performing variants with traditional code churn metrics (change metrics (Kamei et al. 2013;
Kim et al. 2008; Mockus and Votta 2000) and indentation metrics (Hindle et al. 2008)),
extended context metrics and combination metrics that use two extended context metrics.
Indentation metrics use the total number of white spaces in front of changed lines, and the
total number of pairs of braces that surrounded changed lines; we handle indentation met-
rics as code churn metrics, since they are computed on changed lines. In order to improve
the predicting power of the context metrics in defect prediction, we also define extended
context metrics. Extended context metrics count the number of words/keywords in both, the
context lines and the changed lines. Hence, extended context metrics are hybrids of the con-
text metrics and traditional code churn metrics. In addition, we use combination metrics that
use two extended context metrics that count (1) number of words and (2) number of a cer-
tain keyword (e.g., “goto”) at a prediction model in order to improve the predicting power
of the extended context metrics in defect prediction.

Using six large open source software projects (from different domains) we empirically
evaluate the defect prediction power of context metrics and compare them against traditional
change metrics. This comparison is done using logistic regression models and random forest
models.

Specifically, we address the following three research questions:

RQ1: What is the impact of the different variants of context metrics on defect prediction?
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RQ2: Do context lines improve the performance of defect prediction?
RQ3: What is the impact of combination metrics of context metrics on defect prediction?

The main findings of our paper are as follows:

– The best performing context metrics are the ones that measure the context of added-
lines only.

– The prediction power of context metrics varies when different sizes of the context
(number of lines around the change) are used. The optimal size of the context for the
metric that uses number of words is smaller than the optimal size for the metric that
uses keywords.

– The number of “goto” statements in context lines and changed lines is a good indicator
of defective commits.

– Our proposed combination metrics of extended context metrics significantly outper-
form all the metrics that are used in this paper, and achieve the best-performing metrics
in all of the studied projects in terms of 2 of the 3 evaluation measures used (area under
the receiver operation characteristic curve, and Matthews correlation coefficient).

This paper is organized as follows: Section 2 shows motivation example. Section 3 intro-
duces related work. Section 4 explains our proposed context metrics. Section 5 presents
our case study design. Section 6 describes research questions and methodology. Section 7
presents the results of our case study. Section 8 discusses the results. Section 9 describes the
threats to the validity of our findings. Section 10 presents the conclusion.

2 Motivating Example

Let us start from a simple example to illustrate the use of context lines to measure the
complexity of changes. Figure 1 shows an example of two changed functions. The context
lines are lines that precede or follow the changed lines. In this example, the underlined text
represents the context lines and the bold lines are the changed lines. The function shown in
Fig. 1a has simple context lines: there is one assignment before the changed line and one
empty line after the changed line. The changed in Fig. 1b has more complex context lines:
the “if” and “else” statements. If we use only the changed lines as an input to compute
the complexity of the changes these two changes have the same complexity. In contrast, if
we use the context lines as a measure of complexity, these two functions have a different
complexity.

int calculate(double value1, double value2)
        ...

 +     sum = value1*value2 + cons;

        ...

(a) Simple context lines.

int calculate(double value1, double value2)
        ...

 +            sum = value1*value2 + cons;

        ...

(b) Complex context lines.

Fig. 1 An example of two changed functions each of which has one changed line (in this case, an added line,
in bold). We call the lines that precede or follow the changed lines context lines (in italic with an underline).
Other lines except the context lines are same in both functions
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To the best of our knowledge, there exists no research work that studies the context
lines in defect prediction. In this paper, we introduce two types of new metrics that use the
context lines: context metrics and extended context metrics, and evaluate their performance
in defect prediction.

There are complexity metrics, such as Halstead’s complexity metrics (Halstead 1977)
and McCabe’s Cyclomatic complexity metrics (McCabe 1976), that can capture the com-
plexity of the function being changed and take into consideration the context; however, (1)
to compute these metrics we need all the lines of the functions, (2) these metrics are limited
because they require a parser, and (3) complexity metrics are not optimized for code churn.
In contrast, context metrics provide several advantages; first, they are easy to compute (they
only require the “diff” and—in the case of number of keywords—a list of keywords of the
programming language as input) and they measure only the complexity that surrounds the
change instead of the entire function.

3 RelatedWork

3.1 Source Code Churn

Many researchers have studied source code churn for software defect, reliability and quality
(Nagappan and Ball 2005; Munson and Elbaum 1998; Khoshgoftaar et al. 1996; Ohlsson
et al. 1999; Graves et al. 2000; Karunanithi 1993; Khoshgoftaar and Szabo 1994; Ostrand
et al. 2004; Kamei et al. 2013; Kim et al. 2008; Mockus and Votta 2000). Source code
churn measures changes and extensions of source code in a period of time (Oram and Wil-
son 2010). Munson and Elbaum (1998) reported that, as a system is developed (evolved),
complexity of the system is also changed.

They proposed a methodology to produce an indicator of defects based on this tendency.
Nagappan and Ball (2005) predicted defect density between different releases of Windows
Server 2003. Comparing traditional code churn metrics with relative code churn metrics,
which relate proportion of code churn such as size of its component, they found the relative
code churn metrics are strong metrics for the defect density.

Prior studies proposed more complex code churn metrics (Hassan 2009; Hindle et al.
2008). Hassan (2009) proposed code churn metrics based on the code change process. He
applied Shannon entropy (from information theory) to the code change process in order to
formulate his metrics.

Hindle et al. (2008) proposed indentation metrics that measure the indentations of added-
lines and fixed-lines of changes. They studied the correlations between the indentation
metrics and traditional complexity metrics (McCabe’s Cyclomatic complexity (McCabe
1976) and Halstead’s complexity (Halstead 1977)). They showed that the indentation met-
rics are mildly or strongly correlated with the traditional complexity metrics and the
indentation is potentially its own complexity metric (Hindle et al. 2008). Because indenta-
tion metrics use the information in changed or added lines, we refer to indentation metrics
as a type of code churn metric. This paper is the first study to investigate the effectiveness
of indentation metrics for defect prediction.

In this paper, we compare the prediction power of 6 types of metrics in defect prediction.
These metrics are: 1) context metrics, 2) traditional code churn metrics (Kamei et al. 2013;
Kim et al. 2008; Mockus and Votta 2000), 3) each of traditional code churn metrics, 4) code
churn metrics based on indentation metrics (Hindle et al. 2008), 5) extended context metrics
(which are combinations between context metrics and a traditional code churn metric) and
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6) combination metrics of extended context metrics (which are two extended context metrics
that are (1) number of words and (2) number of a certain keyword at a prediction model).

3.2 Text-Based/Just-In-Time Defect Prediction

Many researchers have tackled the problem of defect prediction (Mizuno and Kikuno 2007;
Kim et al. 2008, 2011; Kamei et al. 2013; Aversano et al. 2007; Jiang et al. 2013; Yang et al.
2015; Wang et al. 2016; Zimmermann et al. 2007; Li et al. 2017; Bettenburg et al. 2012;
Śliwerski et al. 2005). In addition, several researchers have proposed metrics to predict
defective components (Basili et al. 1996; Kim et al. 2007; Moser et al. 2008; Hassan 2009;
D’Ambros et al. 2010). Mizuno and Kikuno (2007) applied spam filter to defect prediction
problem. Śliwerski et al. (2005) proposed a method that automatically identifies changes
that lead to defects in the future.

Textual information has also being used for defect prediction (Mizuno and Kikuno 2007;
Kim et al. 2008; Aversano et al. 2007; Wang et al. 2016; Li et al. 2017). Kim et al. (2008)
used not only metadata and complexity metrics but also text information to build a pre-
diction model and predicted defects. They used change-log messages, source code and file
names as input to their predictors.

Wang et al. (2016) used the programs’ Abstract Syntax Trees (ASTs) as a representation
of source code. They applied a deep learning technique to ASTs in order to learn semantic
features from token vectors.

Several researchers have worked on just-in-time defect prediction (Kamei et al. 2013;
Kim et al. 2007, 2008, 2011; Fukushima et al. 2014; Mockus and Votta 2000; Aversano
et al. 2007; Jiang et al. 2013; Yang et al. 2015; Hassan 2009). Just-in-time defect prediction
aims at identifying defective code changes, such as commits, instead of identifying defec-
tive files or packages as in traditional file/package-level defect prediction. For example,
Kamei et al. (2013) focused on predicting the risk of commits. They used change metrics to
predict defective commits at the time of committing commits. Yang et al. (2015) applied a
deep learning technique as a prediction model to change metrics and conducted just-in-time
defect prediction. Just-in-time defect prediction has the following three benefits that address
the challenges on file/package-level defect prediction (Kamei et al. 2013): (1) prediction tar-
gets are fine-grained, (2) relevant-developers can be identified, and (3) the prediction-period
is faster. In this paper, we use context metrics for just-in-time defect prediction.

There are several widely known pitfalls that should be avoided in defect prediction (Tan
et al. 2015; Tantithamthavorn and Hassan 2018). For example, Tan et al. (2015) reported
that cross validation technique is frequently used to evaluate prediction models (Kim et al.
2008, 2011; Bettenburg et al. 2012; Jiang et al. 2013; Kamei et al. 2013). However, this tech-
nique risks to mix past and future commits; an unrealistic scenario that artificially improves
results. In our study, we take into consideration their recommendations to avoid these poten-
tial pitfalls. This technique called online change classification is a validation technique
without the risks. We describe the details in Section 5.4.

4 Context Metrics

In this section, we describe the implementation of the proposed context metrics. As
described in the previous sections, context information might be useful for defect predic-
tion since it provides a new perspective of changes. In addition, it is easy to obtain context
information (e.g., using the diff command in the version control system). For example, for
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the changed function in Fig. 1b, we consider only the lines in italic with an underline for
context information.

Any modifications to a file can be described in terms of a unified diff. A unified diff
is a sequence of hunks; each hunk is composed of one or more sequences of contiguously
changed lines. Each of these sequences is composed of ‘+’ lines (lines added to the file) or
‘-’ lines (lines removed from the file). For the sake of simplicity, we refer to these sequences
of changed lines as chunks. We consider two types of chunks: ‘+’ chunks (which contain at
least one ‘+’ line), ‘-’ chunks (which contain at least one ‘-’ line). Finally, we will refer to
any chunks (including both ‘+’ and ‘-’ chunks) as ‘all’ chunks. Figure 2 shows an example
of two unified diffs (a part of output by git show).

The unified diff shown in Fig. 2 is a sequence of two hunks that are divided by the lines
prefixed with @@, <2>. Each hunk has a chunk <3> and <4>, respectively. The above
chunk, < 3 >, is of type ‘+’ and ‘all’. The below chunk, < 4 >, is of type ‘-’, and ‘all’.

Fig. 2 An example of unified diffs of a commit with context size equal to three produced by git show
(< 1>) in Bitcoin project; due to the space limitation, we remove the metadata of this commit (the commit
comment and the author information). This commit consists of two source code file diffs. The above diff has
two hunks (divided by the lines prefixed with @@, < 2>). Each of both hunks consists of only one chunk
(sequence of changed lines). The first chunk is of type ‘+’ and ‘all’. The second one is of type ‘-’, and ‘all’.
The below diff has a hunk. This hunk consists of two chunks. Each of both chunks is of type ‘+’ and ‘all’.
The context lines of each chunk are the above and below the corresponding chunk (above and below of <3>

and <4>). The filename is prefixed with ‘+++ b/’
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Table 1 Types of contexts. The context of chunk type t of a unified diff d(f, n) is the concatenation of the
full filename of f and the contexts of the chunk type t in the diff d(f, n)

Types of contexts Definition

context(d(f, n),all) context of all chunks in diff d(f, n)

context(d(f, n), +) context of all chunks in diff d(f, n) that contain at least one ‘+’ line

context(d(f, n), -) context of all chunks in diff d(f, n) that contain at least one ‘-’ line

The below unified diff has a hunk. This hunk includes two chunks that are type ‘+’ and
‘all’.1

Each chunk is surrounded by its context lines (the lines above and below the chunk that
indicate where the chunk is to be applied—prefixed with ‘ ’ in the hunk). We refer to these
context lines as the context of the chunk. We also consider as a part of the context the full
filename of the file being changed. This is because we consider that the directories where
the file is located can contribute to the complexity of the context; i.e., more directories in the
filename indicate a more complex context than no-directories. We evaluated the use or the
filename/directories in the context metrics for their prediction power and found that when
used, the performance of the context metrics improved.

For explaining context metrics, we define the following terminology:

– c: a commit.
– n: a context size that is themaximum number of lines that can precede or follow a chunkwe

consider. (This is also a parameter of the diff command in the version control system.)
– d(f, n): a unified diff of a changed file f with context size n.
– D(c, n): a set of d(f, n) for all the changed files in commit c.

For a given unified diff d(f, n), we define the three types of contexts, based on the three
chunk types, with the following notation (refer to Table 1):

– context(d(f, n), t): the concatenation of the full filename of f and the context of all
chunks of chunk type t in diff d(f, n).

For a unified diff d(f, n), we define the following two notations:

1. ncw(d(f, n), t): the number of words in context(d(f, n), t).
2. nckw(d(f, n), t): the number of programming language keywords (Table 2 shows all

studied keywords)2 in context(d(f, n), t).

Given a commit c, a context size (the number of context lines) n, and the chunk type t , we
define the following two kinds of context metrics:

NCW (c, n, t) =
∑

d(f,n)∈D(c,n)

ncw(d(f, n), t),

NCKW (c, n, t) =
∑

d(f,n)∈D(c,n)

nckw(d(f, n), t).

1Note that a chunk is able to be of type ‘+’, ‘-’ and ‘all’ at once. In this case, a chunk includes at least two
lines that consist of at least one ‘+’ and ‘-’ line.
2The keywords refer to reserved words (statements) in C++ that are shown by Microsoft Visual Studio
(Microsoft 2016). Because the reserved words of C++ and Java are almost the same, we use the keywords
for the projects in Java. We separate the reserved words that include underscores. For instance, we convert
“ if exists” into “if” and “exists”.

Empirical Software Engineering (2020) 25:890–939896



Table 2 Studied programming
language keywords break case catch continue default

do else except for goto

finally if exists not leave

return switch throw try while

The defined context metrics are described in Table 3. To compute the context metrics of a
commit m(c, n, t) —where m is either NCW or NCKW , c is a commit id, n is the number
of context lines, and t is the chunk type—we use the following algorithm:

1. Compute the diffs D(c, n) of the source code files3 of commit c with the given number
of lines of context, n, using the following command: git show --unified=n c

2. For each diff d(f, n) of a source code file, compute ncw(d(f, n), t) or
nckw(d(f, n), t):

(a) Remove all chunks that are not of chunk type t , including their contexts.
(b) Remove comments.
(c) Create a string st with the concatenation of

– the full filename of the diff d(f, n), and
– the contexts around the identified chunks.

(d) Use lscp4 (Thomas WS 2015) to convert st into a sequence of words. For ncw,
count the number of words in this sequence; for nckw, count the number of
programming language keywords in st .

3. Finally, the context metric NCW /NCKW of the commit is calculated as the sum of
values of ncw/nckw for all diffs of the source code files in the commit.

Figure 3 depicts an example showing how the context metrics are computed from a uni-
fied diff. The left square corresponds to the first step in our algorithm. (1) and (2) are
corresponding to the second step; we have removed unrelated code in (1), and convert the
string into a sequence of words by lscp in (2). (3) is corresponding to the step three; we
compute the context metrics.

The Intuition Behind Counting Words or Keywords: Our definition of context metrics
involves counting words or keywords in the context of a change. We consider that a context
with more words is likely to be more complex than a context that has less words. Hence,
we consider that counting the number of words in the context of a change is a proxy of the
complexity of such change.

The main intuition behind using the number of keywords is that the number of keywords
in the context might indicate how deeply nested change is. Therefore, a change with a larger
number of keywords is likely to more complex that a change that has fewer (or no) keywords
around it.

Finally, counting number of words/keywords is easy to compute in practice.

3Here, a source file is a file with the name ending in java, c, h, cpp, hpp, cxx, or hxx, since we analyze both
C++ and Java.
4https://github.com/doofuslarge/lscp. lscp separates complex identifiers into its component words —e.g.,
converts GetBoolArg into Get, Bool, Arg).
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Table 3 Different context metrics

Metrics Description

NCW(c, n, t) Sum of the number of words in the contexts of all
chunks of chunk type t .

NCKW(c, n, t) Sum of the number of programming language key-
words in the contexts of all chunks of chunk type
t .

“Keywords” refers to the keywords defined in the programming language of the source code. c denotes a
commit id, n denotes the context size (size of the context of the diff), and t is either of ‘all’, ‘+’ or ‘-’

5 Case Study Design

In this section, we discuss our selection criteria for the studied indentation metrics, data,
validation technique, preprocessing, projects, resampling approach, evaluation measures,
and prediction models.

5.1 IndentationMetrics

We compare context metrics with indentation metrics. We study two indentations metrics:
Added Spaces (AS), defined by Hindle et al. (2008); AS is the sum of the number of white
spaces on all the ‘+’ lines in a commit.

We additionally define a new indentation metric Added Braces (AB). We consider the
number of braces as a logical indentation because the number of braces in C++ and Java
expresses how embedded one block of code is inside others.

Fig. 3 Example showing how NCW and NCKW are computed from a unified diff. The unified diff corre-
sponds to the change from Fig. 2; due to the space limitation, we remove several hunks, the commit comment,
the author information, and the commit hash from the unified diff, and use “–unified=1” option. The number
of context lines n is 1. The chunk type t is ‘+’. The commit hash c is ‘commit hash.’ The changed file f is
‘src/qt/rpcconsole.cpp.’ The left square corresponds to the first step in our algorithm. (1) and (2) are corre-
sponding to the second step; we remove unrelated code in (1), and convert the string into a sequence of words
by lscp in (2). (3) is corresponding to the step three; we compute the context metrics
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We first count the number of left-braces Bleft and right-braces Bright from the head of
a function to each ‘+’ line, respectively. Second, we compute the difference Bdiff between
Bleft and Bright on each ‘+’ line. Finally, we sum Bdiff for all ‘+’ lines in a commit.

The Intuition of Using the Indentation Metrics as Way to Predict Defects: The indenta-
tion metrics have been used as a proxy to measure complexity of source code (Hindle et al.
2008).

However, they have not been used in defect prediction. The rationale behind their use in
defect prediction is that modifications in more indented code are likely to be more complex
that modifications that happen in less indented code because the person doing the changes
not only has to be concerned with what the code does, but also with the code that surrounds
it. The code with the larger indentation is likely to be inside more control blocks–e.g.,
while, for, and if statements–than the code with the less indentation; we hypothesize that
more control blocks might create more brittle code. Hence, all things equal, we expect that
changes to code that has more indentation might result in more defects that changes to code
that has less indentation.

5.2 Preparing Data Using CommitGuru

The availability and openness of experimental data is a real challenge to evaluate defect
prediction approaches. Therefore, we use data provided by Commit Guru, which Rosen et al.
(2015) provide publicly. Commit Guru is a web application, which identifies and predicts
defective commits for Git repositories and calculates the change metrics (Table 4) that are
often used for just-in-time defect prediction (Kamei et al. 2013).

Table 4 Change metrics

Dim. Name Definition

Diffusion NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across each file

Size LA Lines of code added

LD Lines of code deleted

LT Lines of code in a file before the change

Purpose FIX Whether or not the change is a defect fix

History NDEV The number of developers that changed the modified files

AGE The average time interval between the last and the current change

NUC The number of unique changes to the modified files

Experience EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem
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In this paper, we use Commit Guru to calculate the change metrics (Kamei et al. 2013).
We use the change metrics in RQ2 to compare with the context metrics in order to study
what is the impact of the context metrics on defect prediction. Then, we use the change
metrics, and their subsets (each of the change metrics) as studied metrics.

We refer to each metric in the change metrics as a subset of the change metrics. When
using a subset of the change metrics, we pick up a metric from the change metrics, and use
that metric for defect prediction. This is because each of the change metrics is also a churn
metric. However, several metrics do not strongly relate to code churn. For example, Purpose
metric (i.e., FIX, described in Table 4) is not affected by code churn. Hence, we remove
three types of metrics from all the change metrics when considering their subsets that are
Purpose metric (i.e., FIX), History metrics (i.e., NDEV, AGE, and NUC), and Experience
metrics (i.e., EXP, REXP and SEXP). Hence we use each of NS, ND, NF, Entropy, LA,
LD, and LT as a subset of the change metrics. We apply z-score to each of the subsets to
normalized to a mean of 0 and a variance of 1.

When using the change metrics, to avoid using several strongly correlated metrics in the
prediction, we apply the following preprocessing proposed and described in Kamei et al.
(2013):

– Exclude ND and REXP since they are strongly correlated with NF and EXP.
– LA and LD are divided by LT to normalize LA and LD.
– LT and NUC are divided by NF to normalize LT and NUC.

Finally, we apply z-score (Zhang et al. 2016) to the changed metrics to normalized to a
mean of 0 and a variance of 1.

5.3 Time Sensitive Change Classification

Because we could use future commits to predict past commits, using 10-fold cross valida-
tion has a risk to make the artificially good results such as high precision and recall while
studying just-in-time defect prediction (Tan et al. 2015). In addition, while using 10-fold
cross validation, we label the commits in training data as defective or not using all the
commits information. However, this procedure also risks to use future information for pre-
diction. To address these two issues and validate our experiments, we use time sensitive
change classification (Tan et al. 2015).

Time sensitive change classification uses only past commits to label past commits and
build prediction models for future commits. Figure 4 shows an example of the time sensitive

Fig. 4 An example of the time sensitive change classification. The cross in gray indicates the information of
fixing a commit is not used in the training interval
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change classification that uses the training interval between t−Tr and t as training data and
the test interval between t and t + Te as test data. In this example, we use the commits in
the training data to label its commits and build prediction models for predicting commits in
the test data.

However, Tan et al. (2015) reported three challenges. First, because defective com-
mits are typically detected and fixed in 100–300 days (Kim and Whitehead 2006), many
undetected defective commits in the training interval would be labeled clean. Second, this
validation is sensitive to the interval. For example, if the training interval is before the
release day, features in the test interval would be different with the training interval. Third,
if we take a long time gap between the training interval and the test interval, features such as
developers and programming styles might have changed between the training interval and
the test interval. To address these three challenges, Tan et al. (2015) recommended to use
online change classification.

5.4 Online Change Classification

Online change classification is a validation technique. We describe the online change classi-
fication, and how this validation technique addresses these three challenges. To address the
first challenge, a gap is used between the training interval and the test interval (Fig. 5). The
gap is used only during the labeling of the commits in the training interval. This additional
interval allows more time to detect defective commits in the training interval and make
labeling result more precise. Typically, the gap is the average or medium time between a
defect inducing commit and a defect fixing commit; in our experiments, we use median time
for each project from our pre-experiment (Table 5).

To address the second and third challenges, the time sensitive change classification is
executed multiple times while updating the training interval, test interval and gap. The
multiple execution minimizes the bias from a certain test interval. The training interval, test
interval and gap slide into the future by a certain interval (Fig. 5). This certain interval is
called unit. A unit is 30 days (one month) in our experiments. The test interval is 30 days as

Training interval

Gap

Test interval (Unit) (30)

Start gap

End gap
(Gap + 365)

Project
History

NewOld

Analysis
period

Margin

(analysis period/2) - gap

First iteration

Start date End date

Second iteration

Slide the training interval, test
interval and gap into the future

A unit (test interval)

History

Fig. 5 An overview of the online change classification. We show two iterations as an example. The part of
the rectangle in black is the training data (training interval) labeled using the commits in the training interval
and gap (in dark gray). The part of the rectangle in light gray is the test data (test interval) labeled using all
of the commits in the project history including the end gap. Details of the terms in this figure are described
in Section 5.4
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Table 5 Parameter values of the online change classification for each project (days)

Project Start gap End gap Gap Unit (test Training Iteration

interval) interval step size

Hadoop 925 526 151 30 510 17

Camel 743 416 40 30 1,110 37

Gerrit 375 523 137 30 900 30

Osmand 1,011 413 17 30 420 14

Bitcoin 789 459 77 30 600 20

Gimp 2,004 687 281 30 2,100 70

well. Note that the unit and the test interval are parameters, hence; different parameter values
might have the impact to the result of our experiments. We studied this point in Section 9.
The result shows that these parameters have little impact for the results of our experiments.

We also use start gap and end gap (Tan et al. 2015) that are intervals that we do not
use as training interval and test interval. The beginning of a software project history may
be inconsistent and unstable. The end of a software project history would be labeled clean
because defective commits would not be detected. Hence, the start gap and end gap would
support building better prediction models and improving the quality of the analysis.

Table 5 shows the actual parameters for each project. We manually look at the number
of commits and decide on the start date at a point after the number of committed commits
increases and decreases moderately (reach a peak). The start gap is the interval between the
first commit date and the start date. The reason why we use this process is that after the
number of committed commits increases and decreases moderately, the project would have
been released and would be in a stable state.

To decide the end gap, we need to compute the analysis period , iteration step size

and training interval. In the following, analysis period is the maximum studied days.
We define the analysis period , iteration step size and the training interval as follows:

analysis period = (CommDatelatest − start date) − margin,

iteration step size = (analysis period/2 − gap)/unit,

T r = iteration step size · unit,

where (and hereafter)

– CommDatelatest is the latest commit date,
– margin is a margin to remove defective commits that may not be detected yet, and
– T r is the training interval.

We first compute the interval between the start date and the date that is margin days
before the latest commit date. This process removes the defective commits that are not
detected. We use 365 as the margin to compute the end gap. Hence, the end gap is always
365 and over. Because we use unit as a test interval as well, iteration step size shows that the
rest of iterations that we can slide the training interval, test interval and gap into the future
as avoiding to use the commits that are committed in the latest margin days. In addition,
we use gap to compute iteration step size. This additional gap avoids the commits that are
in the latest margin days plus the gap days and ensure that we consider enough commits to
label the commits in the test interval. The training interval is decided by iteration step size
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and unit. Finally, we define the end date and the end gap as follows:

end date = start date + (Tr + gap + (iteration step size · unit)),
end gap = CommDatelatest − end date.

For labeling commits either defective or clean, we follow the labeling process used by
Commit Guru:

1. Collect commits cfix whose messages contain specific keywords (as described by Rosen
et al. (2015)), such as “bug” or “fix”. Identify the modified lines l in the commits cfix.

2. Find out previous commits cbad on which the lines l were added or modified previously
to the corresponding change in cfix. Label each commit cbad as defective.

We conduct this procedure using the training interval and the gap for labeling training data,
and using all of the commits for labeling test data.

5.5 Preprocessing by z-score

z-score is a popular normalization approach in defect prediction (Zhang et al. 2016). z-score
normalizes the input data to mean 0 and variance 1.

The equation of z-score is:

Xz−score = Xorg − μ

σ
(1)

where μ is the mean of the values of a feature for commits. σ is the variance of the values
of a feature for commits. Xorg is a vector of all values (all commits) of a feature. Xz−score

is a vector of all values (all commits) of a normalized feature.

5.6 Studied Projects

For our experiments, we use six open source projects: Hadoop, Camel, Gerrit, Osmand,
Bitcoin and Gimp. Table 6 shows details of the projects. The studied projects include soft-
ware for various fields, such as a server or an application, and are written in two popular
programming languages (C++ and Java). We calculate the context metrics and the indenta-
tion metrics for each commit of these projects. For more precise analysis, we study all the
commits that have changed at least one line in the source code.

Table 6 Details of the studied
projects. Defective rate refer to
the commits labeled using all
commits

Project Language Total number of commits Defective rate

Hadoop Java 13,920 24.8 %

Camel Java 24,740 23.2 %

Gerrit Java 18,794 20.1 %

Osmand Java 31,366 14.0 %

Bitcoin C++ 11,093 14.4 %

Gimp C++ 37,149 22.5 %
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5.7 Resampling Approach

While learning the defect prediction model, the learning performance is affected by imbal-
anced data (Tan et al. 2015). In our case, Table 6 shows that “clean” commits outnumber
“defective” commits. Hence, if we use this data directly as training data, the learning per-
formance could decrease. General resampling approaches remedy this problem, as shown
by prior studies (Kamei et al. 2013; Yang et al. 2015; Tan et al. 2015).

For our experiment, we use random under-sampling. Random under-sampling reduces
the majority class at random to make the size of the majority class equal to the size of the
minority class. Because we must evaluate our approach on real data, we apply resampling
only to training data, not to test data.

5.8 EvaluationMeasures

To measure the impact of the context metrics for defect prediction, we use three evaluation
measures: the area under the receiver operation characteristic curve (AUC), the Matthews
correlation coefficient (MCC), and Brier score (Brier).5 Precision and Recall are frequently
used in defect prediction as evaluation measures. However, several researchers warned that
these measures show biased results (Bowes et al. 2012; Tantithamthavorn and Hassan 2018;
Chicco 2017).

AUC and Brier score are threshold-independent measures. Tantithamthavorn and Hassan
(2018) suggested to use threshold-independent measures to address pitfalls in defect pre-
diction research. Although MCC is a threshold-dependent measure, MCC is not affected by
the skewness of defect data (Zhang et al. 2016; Boughorbel et al. 2017) and we want to bet-
ter understand the predicting power of the metrics (Kamei et al. 2016). Therefore, we also
use MCC in this paper. The threshold of MCC is 0.5.

We use the Scott-Knott ESD test (Tantithamthavorn et al. 2017) (using 95% significance
level) to compare the context metrics and the traditional code churn metrics. The Scott-Knott
test is a hierarchical clustering algorithm that ranks the distributions of values. In particular,
metrics with distributions that are not statistically significantly different are placed in the
same rank. The Scott-Knott ESD test is an extension of the Scott-Knott test, which not only
ranks based on significance, but also on Cohen’s d effect size (Cohen 1988). The Scott-
Knot ESD test places distributions which are not significantly different, or have a negligible
effect size, in the same rank. We use the ScottKnottESD R package6 that was provided
by Tantithamthavorn et al. (2016). We also apply the Scott-Knott ESD test to the ranks that
are computed by the Scott-Knott ESD test.

The reason why we apply the Scott-Knott ESD test twice is to avoid the variances of the
values of the evaluation measures across the studied projects. If there exist the variances
across the studied projects, it would be difficult to compare the studied metrics over all the
studied projects instead of each studied project. This idea was proposed by Ghotra et al.
(2015). They applied Scott-Knott test twice to ensure that they recognized techniques that
performwell across the studied projects. They showed the following example: if a prediction
model has an AUC of 0.9 on project A, and 0.5 on project B, we would get worse result
while using Scott-Knott test once for all projects. However, if an AUC of 0.5 is the best AUC

5Note that while higher values of AUC and MCC are better than lower values, lower values of Brier score
are better than higher values. This is because Brier score is the sum of the mean squared differences between
predicted probabilities and actual binary labels.
6https://github.com/klainfo/ScottKnottESD
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value in the project B, and 0.9 is also the best value in the project A, then this classification
technique should be the best-performing technique. The first Scott-Knott test computes the
rank within a project. And the second Scott-Knott test computes the rank across the projects
without the variance of the values of the evaluation measures due to using the rank. We use
the Scott-Knott ESD test instead of the Scott-Knott test in order to consider the effect size.
We call this procedure as double Scott-Knott ESD test.

The results of the Scott-Knott ESD test and the double Scott-Knott ESD test are a rank
(number) for each metric. The smallest rank, 1, indicates the best rank. The largest rank
indicates the worst rank. A rank can contains multiple metrics at once. We interpret metrics
which have many smallest/smaller ranks as the best metrics since it indicates that the metrics
significantly outperform many others. Hence, for the Scott-Knott ESD test, we used the top-
3 ranks to evaluate the metrics across the studied projects. We report metrics which have the
most top-3 ranks across the studied projects as the best metrics in the Scott-Knott ESD test.

For the double Scott-Knott ESD test, we used boxplots to show the ranks of the studied
metrics for each evaluation measure. Each boxplot contains six ranks by the Scott-Knott
ESD test for all the studied projects. The double Scott-Knott ESD test classifies these
boxplots by the Scott-Knott ESD test. This analysis avoids the variances of the actual per-
formance differences across the studied projects due to using the rank. Our interpretation
is that metrics which have the smallest rank as the best metrics since it indicates that the
metrics significantly outperform many others.

5.9 PredictionModels

We use two defect prediction models, logistic regression model (LR) (McDonald 2014)
and random forest model (RF) (Ho 1995). We give a brief overview of the idea behind the
prediction models:

– Logistic Regression (LR) (McDonald 2014): LR is a frequently used defect prediction
model. They build a linear model which has all metrics as explanation variables, these
coefficients, and a bias. LR feeds the output of this linear model to a sigmoid func-
tion (Han and Moraga 1995). The output of the sigmoid function corresponds to the
probability.

– Random Forest (RF) (Ho 1995): RF is an ensemble learning model. RF builds various
decision trees (Quinlan 1993) based on subsets of metrics. Finally, RF merges all the
results of the decision trees, and provides the probability of defect.

Prior work (Tantithamthavorn et al. 2016; Hall et al. 2012) showed that the param-
eter optimization of the prediction models crucially affects the prediction performance.
For example, Tantithamthavorn et al. (2016) showed that a simple automated parameter
optimization can dramatically improve the AUC performance of defect prediction models
(the best case is about 40 percentage points of AUC). Hence, considering the parameter
optimization is also an important aspect in our experiment.

For LR, we consider a parameter: C.

– C: C is a parameter which indicates the regularization strength. For example, if we
have many metrics but not much data, LR would optimize its parameter for the training
data excessively. Hence, LR provides worse performance for the test data. To address
this challenge, the regularization strength C is used when optimizing the parameter. We
study the C of 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, and 100 when using the change
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metrics and COMB. For the other metrics, we do not use the C since the number of
metrics is 1 at a prediction model.

In addition, we need to consider the correlation between the studied metrics. If the stud-
ied metrics are correlated, LR would get multicollinearity problem (Farrar and Glauber
1967). When using the change metrics, we need to consider the correlation. To avoid the
correlated metrics, prior work (Kamei et al. 2013) proposed a preprocessing. We follow the
same preprocessing of prior work (Kamei et al. 2013) that was described in Section 5.2.
COMB has two metrics. However, they are not correlated (see Table 21). Hence, we do not
need to deal with the correlation in COMB.

For RF, we keep using the normalized change metrics for LR. In addition, we consider
two parameters: mtry and number of trees that are specific parameters in RF.

– mtry: mtry is a parameter which indicates the number of metrics randomly selected
for each node in a tree. For example, if we set mtry=2, RF selects 2 metrics from the
studied metrics to generate a node in a tree for splitting the studied commits. We study
the mtry of 1, 2, 5, 10, and 12 when using the normalized change metrics, 1 and 2 when
using COMB, and 1 when using other metrics since the number of normalized change
metrics is 12, the number of metrics in COMB is 2, and the number of other metrics is
1 at a prediction model.

– number of trees: Number of trees is a parameter which indicates the number of trees
which RF generates. RF merges all the outputs of the trees for computing the final
result. We study the number of trees of 2, 5, 10, 50, 100, 500, 1,000.

We optimize these parameters for each iteration. We split the training data to 80% of the
training data and 20% of validation data. We use the training data to train the model based
on a parameter setting, and evaluate that parameter setting on the validation data. We use
the best parameter setting on the test data.

6 Research Questions andMethodology

6.1 Research Questions

Our proposed context metrics have three parameters: commit c, context size n and chunk
type t . Hence, we first study which configurations of these parameters are the best for
predicting defective commits. Because c is a parameter that cannot be optimized, we study
n and t to design the best context metrics. To do this, we formulate the following research
question: (RQ1) What is the impact of the different variants of context metrics on defect
prediction?

RQ1 does not confirm what is the impact of the context metrics for defect prediction
compared to the traditional code churn metrics. Hence, we also study the prediction per-
formance of the context metrics compared to the traditional code churn metrics that are the
change metrics, their subsets and the indentation metrics in order to confirm whether the
context metrics are effective or not. We additionally study the performance of extended con-
text metrics, which are combinations between the context metrics and the traditional code
churn metrics for defect prediction in order to improve the predicting power of the context
metrics. The extended context metrics count (1) number of words and (2) number of key-
words in the context lines and the changed lines. To do this, we formulate the following
research question: (RQ2) Do context lines improve the performance of defect prediction?
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RQ2 compares the prediction performance across the context metrics, the extended con-
text metrics, and the traditional code churn metrics. However, we do not study combination
metrics between the context metrics; we use a context metric alone on a prediction model in
RQ1 and RQ2. Hence, in this RQ, we study the impact of combination metrics that use two
extended context metrics that count (1) number of words and (2) number of a certain key-
word (e.g., “goto”) at a prediction model. To do this, we formulate the following research
question: (RQ3) What is the impact of combination metrics of context metrics on defect
prediction?

6.2 Methodology

We explain our experimental methodology.

6.2.1 RQ1. What is the Impact of the Different Variants of Context Metrics on Defect
Prediction?

We conduct two experiments in order to study the impact of chunk types and context sizes
for just-in-time defect prediction. We first study the impact of chunk types. Second, we
study the impact of context size based on a fixed chunk type. In each experiment, we build
the studied defect prediction models and predict defective commits in the studied project
histories.

We consider two supervised learning models as defect prediction models that are LR and
RF. Prior research showed inconsistent results that prediction models provide significant
difference (Ghotra et al. 2015) and no significant difference (Lessmann et al. 2008; Shep-
perd et al. 2014; Menzies et al. 2010). The main point in this paper is to evaluate the impact
of the context metrics for defect prediction, not the impact of the prediction models. Hence,
we use only two models and do not consider the difference between the prediction models.

We split the set of commits into training data and test data using the online change classi-
fication (Tan et al. 2015). 10-fold cross validation is a frequently used validation technique
in defect prediction, however; cross validation has risks such as making artificially good
results due to mixing past and future commits. The online change classification addresses
the challenges of the cross validation and improves the quality of the analysis in just-in-time
defect prediction (Tan et al. 2015). We described details in Section 5.4.

We compute the context metrics for each chunk type for each commit. We apply prepro-
cessing to the context metrics in the training and test data. We use z-score; the mean and
the variance of z-score are decided from the training data. We use the context metric as an
input of the studied models. The models are trained using training data, and compute pre-
diction results using test data. When training the model, we optimize the parameters of the
prediction models. We described details in Section 5.9.

Finally, we evaluate the results using three evaluation measures: AUC, MCC, and Brier
score. Each measure has multiple values that come from the number of the iteration step
sizes of the online change classification. We show the number of iteration step sizes in
Table 5. For example, it is 17 that is the number of iteration step size of the Hadoop project.
Hence, we get 17 values for each of three evaluation measures. For each measure, we sum-
marize the multiple values with its median value. We conduct the above procedure for each
studied project. Therefore, each context metric has 12 median values in the online change
classification (for six projects times two prediction models).

We conduct this procedure for each chunk type. Then, we compare the context metrics
of the different chunk types w. r. t. the three evaluation measures. We apply the Scott-Knott
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ESD test (Tantithamthavorn et al. 2017) to the context metrics for each evaluation measure
for each project. Each context metric has two values (results by LR and RF models) for
each project. Then, we evaluate statistically significant differences and effect sizes between
the context metrics for each evaluation measure for each project. The result is shown as a
rank. For example, if a certain context metric A has the best value on a certain evaluation
measure, this context metric A achieves the rank 1. If another context metric B has no
significant difference to the context metric A that achieves the rank 1, this context metric B
also achieves the rank 1. If another context metric C has significant difference to the context
metric A and B, this context metric C achieves rank 2.

Although we would get the rank from the first Scott-Knott ESD execution, the rank is
computed for each project. Hence, we would get different ranks for each project on a context
metric. To avoid the variances of the ranks across the studied projects, we additionally apply
the Scott-Knott ESD test to the ranks instead of the actual values of the evaluation measures,
the double Scott-Knott ESD test. Each context metric has six ranks (results by all the stud-
ied projects) for each evaluation measure. The additional Scott-Knott ESD test compares
the studied context metrics in terms of the rank. Then, we evaluate statistically significant
differences and effect sizes between the context metrics for each evaluation measure.

We conduct the same procedures on different context sizes instead of different chunk
types before we apply the Scott-Knott ESD test. In this comparison, we then compare the
values of evaluation measures for each iteration step between different context sizes. We
count the iteration steps for each context size that provide the best prediction performance
value. We make histograms of the number of iteration steps that provide the best prediction
performance for each context size for each evaluation measure and context metric. From
these histograms, we conclude the impact of different context sizes for the performance
of defect prediction. For example, let us suppose we conducted an experiment with that
iteration steps are 100, context sizes are 1, 2, and 3; the context size 1 has 50 iteration steps
where the context size 1 has the best performance, the context size 2 has 20 iteration steps
where the context size 2 has the best performance, and the context size 3 has 30 iteration
steps where the context size 3 has the best performance. In this example, we would get
histograms in which the context size 1 has 40, 2 has 20, and 3 has 30; hence, we would
conclude that the context size 1 is the best.

From the results, we investigate the impact of the context metrics variants (different
chunk types and context sizes). The goal of this RQ1 is to find the best context metrics
variant for just-in-time defect prediction. The best context metrics variant is considered as
the context metrics in RQ2.

6.2.2 RQ2. Do Context Lines Improve the Performance of Defect Prediction?

To answer this RQ, we compare the best variant of the context metrics NCW and NCKW
(as determined in RQ1) with the change metrics and their subsets (both described in Section
5.2), the indentation metrics (described in Section 5.1) and the extended context metrics.
We build the defect prediction models to evaluate the metrics. The prediction procedure is
similar to the procedure for RQ1; however, the preprocessing has differences (the details
are described later in this section).

In order to improve the performance of defect prediction, we define two new metrics
based on NCW and NCKW that measure both the context and the changed lines called
extended context metrics. These metrics are NCCW (number of words in the context and
the changed lines) and NCCKW (number of keywords in the context and the changed lines)
in Table 7. NCCW and NCCKW use only added-lines as the changed lines. This is because
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Table 7 The extended context metrics

Metrics Description

NCCW(c, n, t) Extend NCW(c, n, t) using not only context lines but also changed lines.

NCCKW(c, n, t) Extend NCKW(c, n, t) using not only context lines but also changed lines.

it is known that a change metric, “added-lines”, is one of the best indicator of change risk
(Shihab 2012; Shihab et al. 2012). These metrics will show the results of the combination
between the context metrics and the traditional code churn metrics. From the results of RQ1,
we choose the appropriate chunk type from ‘+’, ‘-’ and ‘all’, and the context size from one
to ten for NCCW and NCCKW.

We apply the preprocessing to the change metrics and their subsets that was described
in Section 5.9. For the context metrics, we apply z-score to normalize to a mean of 0 and a
variance of 1 since the subsets of the change metrics are also normalized by z-score.

6.2.3 RQ3. What is the Impact of Combination Metrics of Context Metrics on Defect
Prediction?

To answer this RQ, we use our new combination metrics that use both NCCW and NCCKW.
This is because, according to the results of RQ2, NCCW and NCCKW have better pre-
diction performance than NCW and NCKW alone. NCCW and NCCKW are strongly
correlated with each other (see Section 8.3). Hence, we need to remove the correlation in
order to address the multicollinearity problem (Farrar and Glauber 1967) for using them on
a prediction model.

We, hence, modify NCCKW into counting only each specific keyword instead of count-
ing all keywords (Table 2, # of keywords: 20). Hence, we get 20 variants of NCCKW. For
example, a variant of NCCKW measures the number of “goto” statements (in both the con-
text and the changed lines). We call each of these metrics as a modified NCCKW. There are
20 modified NCCKW. This modification removes the strong correlation between NCCW
and NCCKW. NCCW and each modified NCCKW are rarely correlated.

We use NCCW and each of the modified NCCKW on a prediction model as two expla-
nation variables, and study the performance of each of the modified NCCKW. From this
result, we conclude the best combination metrics for NCCW and a modified NCCKW.

We call the combination metrics as COMB. We compare COMB with the other metrics
following the same procedures of the procedure for RQ2.

7 Case Study Results

7.1 RQ1. What is the Impact of the Different Variants of Context Metrics on Defect
Prediction?

For the Context Metrics, the Best Chunk Type is ‘+’ Table 8 shows the ranks of the Scott-
Knott ESD test results for each evaluation measure for each context metric variant. Each
cell shows the rank of a context metric variant in an evaluation measure and a project. Note
that we compared variants with different chunk types with the same context size (n = 3,
the default context size of the diff command git show). The rank is computed across
context metric variants for each project and evaluation measure. For example, the gray cells
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Table 8 The ranks of the Scott-Knott ESD test results for each context metric variant and studied project on
three evaluation measures

sknarfosrebmuNstcejorPknuhCscirteMnoitaulavE

Measures Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

1 1 1 1 1 2 5 1 0 6

NCW 2 5 4 4 2 4 0 2 0 2

AUC all 1 2 2 2 1 2 2 4 0 6

1 2 2 3 1 1 3 2 1 6

NCKW 2 4 5 5 2 3 0 2 1 3

all 1 3 3 3 1 1 3 0 3 6

2 1 2 1 3 1 3 2 1 6

NCW 3 4 4 4 4 2 0 1 1 2

MCC all 2 1 2 2 3 1 2 3 1 6

1 2 2 3 1 1 3 2 1 6

NCKW 2 3 3 4 3 1 1 1 3 5

all 2 2 1 2 2 1 2 4 0 6

3 3 1 1 2 2 2 2 2 6

NCW 3 3 2 1 2 2 1 3 2 6

Brier all 3 4 1 1 2 2 2 2 1 5

1 2 1 3 2 1 3 2 1 6

NCKW 2 1 2 2 1 2 2 4 0 6

all 2 2 1 2 1 1 3 3 0 6

Please see text for a full explanation. The actual values of each evaluation measure by RF and LR models are
shown in Appendix (Tables 15, 16 and 17)

in Table 8 are a set where the Scott-Knott ESD test is conducted. We summarize the number
of projects that are the top three ranks for each context metric variant (row) in columns of
#R1, #R2, and #R3. Hence, the sum of numbers between #R1 to #R3 in a row is 6 or less.
The column of Sum is the sum of #R1, #R2, and #R3. Due to space limitation, we shorten
the project names in the table: Bitcoin is B., Camel is C., Gerrit is Ge., Gimp is Gi., Hadoop
is H., and Osmand is O.

Regarding AUC, using only the ‘+’ chunk on NCW yields the best results and statistically
outperforms the other metrics except the Osmand project, i.e., the rank is one in 5 of 6
projects. Regarding MCC, we find that the rank is one in 3 of 6 projects, and the rank is one,
two or three in all projects when using ‘+’ chunk on NCW or NCKW. Regarding Brier score,
using the ‘+’ or ‘all’ chunk on NCKW yields the best results and statistically outperforms
the other metrics for 3 of 6 studied projects.

Figure 6 shows the results of the double Scott-Knott ESD test on the results for each
context metric in all projects; each boxplot contains six ranks of the first Scott-Knott ESD
test execution for the studied projects on a chunk type. The x-axis indicates a chunk type;
Plus, Minus, and All correspond to ‘+’, ‘-’, and ‘all’; the y-axis indicates the rank for each
studied project in the first Scott-Knott ESD test execution. We use two gray colors (dark
gray and light gray) and two lines (solid line and dashed line) indicate a rank according to the
double Scott-Knott ESD test. The different rank indicates a statistical significant difference
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(a) NCW AUC
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(b) NCKW AUC
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(c) NCW MCC
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(d) NCKW MCC
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(e) NCW Brier
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(f) NCKW Brier

Fig. 6 The results of the double Scott-Knott test on the results for each context metric in all projects. Please
see text for a full explanation

with small effect size or over. We observe that ‘+’ achieves the best median rank for all the
evaluation measures and the context metrics.

With one exception, ’+’ consistently performed better than other types of chuck types.
This exception is shown in Fig. 6f shows that ‘all’ chunk statistically outperforms ‘+’ chunk
on NCKW on Brier score; however, the median, and 25 and 75 percentiles are same. Hence,
we choose ‘+’ chunk as the best chunk type for our context metrics.

A Context Size of 1 Provides Better Prediction Performance for NCW, While a Context
Size of 10 Provides Better Prediction Performance for NCKW Figure 7 shows the numbers
of iteration steps that provide the best prediction performance on different context sizes. The
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(a) NCW AUC (b) NCKW AUC

(c) NCWMCC (d) NCKWMCC

(e) NCW Brier (f) NCKW Brier

Fig. 7 The numbers of iteration steps that provide the best prediction performance for each context size. We
use all iteration steps of all studied projects on two prediction models (LR and RF). The sum of all iteration
steps is 188 (17 + 37 + 30 + 14 + 20 + 70 from Table 5). Hence, the sum of all values is 376 (188 iteration
steps * 2 models). For example, the sum of the y-axis values in Fig. 7a between 1 to 10 is 376

left column of Fig. 7 (Fig. 7a, c and e) shows the results for NCW with chunk type ‘+’. The
right column of Fig. 7 (Fig. 7b, d and f) shows the results for NCKW with chunk type ‘+’.

We can observe opposite results between the NCW and NCKW. On the NCW, the context
size of 1 has the highest histogram. This result indicates that the context size of 1 provides
the best prediction performance in all the iteration steps comparing to other context sizes.
However, on the NCKW, the context size of 10 has the highest histogram on AUC and Brier
score. The context size of 1 inMCC is slightly higher than the other context sizes. This result
implies that the threshold, 0.5, is not suitable for NCKW. Figure 8 shows the numbers of
studied commits with predicted probabilities that were computed by the prediction models
in Hadoop project when the context size is 10. The numbers of commits in Fig. 8b are
gathered more closely around 0.5 and many defective commits (orange) are lower than 0.5
(by LR), however, the numbers of commits in Fig. 8a are not gathered around 0.5 (by RF).
Because the threshold 0.5 provides many defective commits that are identified as clean in
Fig. 8b, this distribution affects the results on MCC when using NCKW. Hence, the results
are best when the context size is 10 in AUC and Brier score, however; the result is not best
when the context size is 10 in MCC. We can observe the same tendency on different studied
projects.
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(a) NCKW RF Hadoop (context size=10) (b) NCKW LR Hadoop (context size=10)

Fig. 8 The numbers of studied commits in Hadoop project when the context size is 10. The x-axis refers to
the predicted probabilities using NCKW that were computed by either RF (left) or LR (right) models

From these results, as the appropriate context size, we use 1 for NCW, and 10 for NCKW.
Hereafter, we refer to NCW(c, 1,+) and NCKW(c, 10,+) as NCW and NCKW, respec-
tively. In addition, we refer to NCCW(c, 1,+) and NCCKW(c, 10,+) as NCCW and
NCCKW, respectively.

7.2 RQ2. Do Context Lines Improve the Performance of Defect Prediction?

The Extended Context Metric NCCW, the Indentation Metrics, and Lines Added (LA)
Provide Many Top Three Rank Performance on Just-in-Time Defect Prediction Table 9
shows the ranks according to the Scott-Knott ESD test results of the three evaluation mea-
sures for each studied metric. Each cell includes the rank. The rank is computed across the
studied metrics for each project. For example, the gray cells in Table 9 (a) is a set where the
Scott-Knott ESD test is computed. The actual values of the three evaluation measures that
are used in the Scott-Knott ESD test are shown in Appendix as Table 18, 19 and 20. We
summarize the number of projects that are the top three ranks for each studied metric (row)
in columns #R1 to #R3, and the column Sum is the sum of #R1, #R2, and #R3. The maxi-
mum value of Sum is six that is the number of the studied projects. Note that “Changes” in
the table (also in other tables and figures of this paper) indicates the change metrics.

NCCW (NCCW(c, 1,+)) provides the top three rank prediction performance in all
projects on AUC and MCC, and 5 of 6 projects on Brier score. NCCW does not provide the
top one rank prediction performance on Brier score. However, this is not to be a challenge
for just-in-time defect prediction. Brier score is the sum of the mean squared differences
between predicted probabilities, i.e., the outputs computed by RF and LRmodels, and actual
binary labels, i.e., clean or defect in the studied commits. From this point, this result implies
that the probabilities that were computed by NCCW might be close to 0 or 1 (clean or
defect) than other studied metrics. The probabilities that are closer to 0 or 1 indicate that the
probabilities clearly indicate either clean or defect even if predicted results are incorrect.
However, the results on AUC and MCC are good. Hence, even if incorrect results are far
from correct results, NCCW still has strong predicting power because of its MCC results
and NCCW might provide better performance at other thresholds on average because of
its AUC results. This result indicates that the extended context metric NCCW has strong
predicting power for just-in-time defect prediction in the studied churn metrics.

Added spaces (AS), added braces (AB) and lines of code added (LA) also provide many
top three rank prediction performance on AUC and MCC. For AS and AB, all projects on
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Table 9 The ranks of the Scott-Knott ESD test results for studied metrics

sknarfosrebmuNstcejorPscirteMcirteM

.O.H.iG.eG.C.BsepyT #R1 #R2 #R3 Sum

(a) AUC

Context NCW(c,1,+) 6 8 5 4 4 2 0 1 0 1

NCKW(c,10,+) 7 8 7 4 3 2 0 1 1 2

NCCW(c,1,+) 1 3 3 1 2 2 2 2 2 6

NCCKW(c,10,+) 4 7 4 2 1 1 2 1 0 3

Indentation AS 1 1 1 2 2 2 3 3 0 6

AB 3 2 2 3 2 2 0 4 2 6

Traditional Changes 5 3 6 7 1 4 1 0 1 2

NS 12 10 10 9 7 7 0 0 0 0

ND 10 5 8 8 3 5 0 0 1 1

NF 8 4 5 6 2 3 0 1 1 2

Entropy 9 6 6 6 5 3 0 0 1 1

LA 2 1 3 1 1 2 3 2 1 6

LD 11 9 9 5 5 6 0 0 0 0

LT 13 11 11 10 6 8 0 0 0 0

(b) MCC

Context NCW(c,1,+) 5 7 5 5 4 1 1 0 0 1

NCKW(c,10,+) 4 7 6 3 4 2 0 1 1 2

NCCW(c,1,+) 3 1 2 2 3 2 1 3 2 6

NCCKW(c,10,+) 3 5 3 1 2 1 2 1 2 5

Indentation AS 1 2 1 4 3 3 2 1 2 5

AB 2 3 2 2 4 3 0 3 2 5

Traditional Changes 5 5 5 8 1 7 1 0 0 1

NS 10 8 8 10 7 8 0 0 0 0

ND 8 4 5 9 4 4 0 0 0 0

NF 6 2 4 4 2 3 0 2 1 3

Entropy 7 6 5 7 5 5 0 0 0 0

LA 3 1 3 1 3 2 2 1 3 6

LD 8 8 7 6 5 6 0 0 0 0

LT 9 9 9 11 6 9 0 0 0 0

(l) Brier Score

Context NCW(c,1,+) 5 5 5 9 2 3 0 1 1 2

NCKW(c,10,+) 5 4 5 8 2 2 0 2 0 2

NCCW(c,1,+) 3 3 3 6 3 2 0 1 4 5

NCCKW(c,10,+) 3 3 4 6 2 2 0 2 2 4

Indentation AS 2 2 2 9 3 2 0 4 1 5

AB 3 2 3 11 3 2 0 2 3 5

Traditional Changes 1 1 1 1 1 1 6 0 0 6

NS 7 4 7 2 4 2 0 2 0 2

ND 7 4 6 5 3 4 0 0 1 1

NF 8 5 6 7 2 4 0 1 0 1

Entropy 6 3 5 3 3 4 0 0 3 3

LA 4 2 4 4 3 2 0 2 1 3

LD 8 5 6 10 3 4 0 0 1 1

LT 9 6 8 12 4 5 0 0 0 0

#R1 (#R2, or #R3) is the sum of the numbers of cases where the rank is one (two, or three); Sum #R1
#R2 #R3. The actual values that were computed by RF and LR are shown in Appendix

Empirical Software Engineering (2020) 25:890–939914



AUC and 5 of 6 projects on MCC, for LA, all projects on AUC and MCC. This result also
shows that the indentation metrics and a churn metric LA have strong predicting power. All
of the metrics do not provide the top one rank prediction performance on Brier score as
well. From the same reason of the results of the extended context metrics, we conclude that
AS, AB and LA have strong predicting power.

The change metrics that use all of the churn metrics provide that all projects are in the
top three ranks on Brier score, while rarely providing the top three rank performance on
AUC and MCC. This result implies that the probabilities that were computed by the change
metrics might be close to 0.5 or the correct label than probabilities given by the other studied
metrics. The probabilities that are close to 0.5 indicate that the probabilities are close to
the correct label in incorrect results. Figure 9 shows the number of studied commits with
predicted probabilities that were computed by the prediction models in the Camel project
using NCCW and the change metrics. We can observe that when using the RF model, the
probabilities that were computed by the change metrics are close to 0.5 than the NCCW.

When using the LR model, the probabilities that were computed by the NCCW is close
to 0.5 than the change metrics. However, the mean squared differences (Brier score) of the
results of the change metrics are smaller than NCCW in the half of the projects (Table 20
in Appendix). To show this result in a simpler manner, we define a difference between the
probabilities and the actual labels in LR model. In the following, Diff is the difference on a

(a) NCCW RF (b) NCCW LR

(c) Changes RF (d) Changes LR

Fig. 9 The number of studied commits in Camel project. The x-axis refers to the probabilities using each
metric on either RF (left column) or LR (right column) models
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Table 10 The values of our proposed difference of the LR model. The gray cells refer to the smallest
difference values by the metrics within each project

Metric Metrics Projects

dnamsOpoodaHpmiGtirreGlemaCnioctiBsepyT

NCW(c,1,+) 747 2,981 1,883 3,568 1,403 1,188

Context NCKW(c,10,+) 744 2,989 1,907 3,577 1,426 1,199

NCCW(c,1,+) 700 2,859 1,819 3,437 1,373 1,197

NCCKW(c,10,+) 700 2,913 1,856 3,529 1,402 1,202

Indentation AS 706 2,882 1,843 3,514 1,410 1,204

AB 758 2,885 1,849 3,688 1,403 1,204

Changes 675 2,509 1,749 2,898 1,212 1,203

NS 836 3,001 1,972 3,281 1,534 1,233

ND 818 2,921 1,937 3,411 1,431 1,222

Traditional NF 790 2,935 1,955 3,590 1,458 1,219

Entropy 782 2,815 1,847 3,395 1,388 1,194

LA 825 2,905 1,908 3,589 1,492 1,212

LD 830 3,032 2,022 3,673 1,526 1,220

LT 834 3,031 2,060 3,780 1,294 1,238

metric in a project, C is a set of all of the studied commits c, abs is a function that computes
absolute value, pc is the predicted probabilities of a commit c and labelc is the actual label
of a commit c where defective commits are 1 and clean commits are 0. Based on these
parameters, we define the Diff as follows:

Diff =
∑

C

abs(pc − labelc).

This is a simple variant of the Brier score.
Table 10 shows the values of the difference of the LR model. The gray cells indicate the

smallest values of the difference between the metrics in a project. We can observe that the
change metrics achieve gray cells in the majority (5 of 6) of projects. This result implies that
although probabilities that were computed by the NCCW are close to 0.5 than the change
metrics, the difference of the results of the change metrics is smaller than NCCW. Hence,
the probabilities are close to the correct label than NCCW. This is the reason why the change
metrics provide that all projects are in the top three rank on Brier score.

The Indentation Metric, AS, is the Best-Performing Metric on AUC and MCC According
to the Double Scott-Knott ESD Test Figure 10 shows the results of the double Scott-Knott
ESD test on the results for each studied metric in all projects; each boxplot contains six ranks
of the first Scott-Knott ESD test execution for the studied projects on a studied metric. We
use two gray colors (dark and light gray) and two lines (solid and dashed lines) to represent
the ranks according to the double Scott-Knott ESD test; the adjacent boxplots with the same
gray color and line indicate the same rank. Otherwise, the rank is changed at that point.
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(c) Brier score

Fig. 10 The double Scott-Knott ESD test results for each studied metric in all projects. Please see text for a
full explanation

The different rank indicates a statistical significant difference with small effect size or over
according to the double Scott-Knott ESD test. We observe that AS is the best-performing
metric on both AUC andMCC. The change metrics are the best-performing metrics on Brier
score, and AS is the second best-performing metric. This result provides that AS is a top
rank metric across the studied projects on AUC and MCC, and the change metrics are the
top rank metrics across the studied projects on Brier score.

The Extended Context Metric, NCCW, and the Churn Metric, LA, are Also Better Metrics
According to the Double Scott-Knott ESD Test LA provides the second-rank performance
in AUC and Brier score, and the first rank performance in MCC as well. The extended
context metric NCCW provides the third rank performance in AUC, the second rank per-
formance in Brier score, and the first rank performance in MCC as well. This result
provides that NCCW and LA are also better metrics across the studied projects on AUC and
MCC.

In this RQ, we study the metrics in terms of the prediction performance. However, we
ignore other aspects such as detected defective commits. We closely look at the detected
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defective commits, pair-wise relation across the studied metrics, and the basic predicting
power of the studied metrics in Section 8 (discussion).

7.3 RQ3. What is the Impact of CombinationMetrics of Context Metrics on Defect
Prediction?

“goto” Statement is the Best Keyword for the Modified NCCKW Figure 11 shows the
results of the double Scott-Knott ESD test on the results for each modified NCCKW in all
projects. Each boxplot contains six ranks of the first Scott-Knott ESD test execution within
a studied project for all projects using a studied keyword as the modified NCCKW. The x-
axis indicates a keyword which is used on the modified NCCKW; the y-axis indicates the
rank for each studied project in the first Scott-Knott ESD test execution. We use two gray
colors (dark and light gray) and two lines (solid and dashed lines) to represent the ranks
according to the double Scott-Knott ESD test; the adjacent boxplots with the same gray
color and line indicate the same rank. Otherwise, the rank is changed at that point. The dif-
ferent rank indicates a statistical significant difference with small effect size or over. The
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(b) MCC
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(c) Brier score

Fig. 11 The results of the double Scott-Knott ESD test on the results for each modified NCCKW in all
projects. Please see text for a full explanation
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first Scott-Knott ESD test is applied to the values of the evaluation measures that were com-
puted by the results of the studied prediction models that use NCCW and a certain modified
NCCKW which uses a certain keyword (e.g., “goto”) as the explanation variables.

We observe that the number of “goto” statement in the context and changed lines achieves
the top-1 or 2 rank in AUC and MCC. In addition, the median rank value is the best in AUC
and MCC. The number of “goto” statement achieves the worst rank in Brier score. From the
same reason of RQ2 results in Brier score, we conclude that themodifiedNCCKWwhich counts
the number of “goto” statements is the strongest metric on the combination with NCCW.
In addition, the modified NCCKW is not strongly correlated with NCCW (see Table 21).
Hereafter, we refer to this variant (using the number of “goto” statement) of the modified
NCCKW as gotoNCCKW. We use NCCW and gotoNCCKW for a prediction model in order
to improve the prediction performance. We refer to the combination metrics as COMB.

COMB Provides the Top-One Rank Prediction Performance for all the Studied Projects
in AUC and MCC Table 11 shows the ranks according to the Scott-Knott ESD test results
of the three evaluation measures for each studied metric. We observe that COMB provides
the top-one rank prediction performance for all the studied projects in AUC and MCC. In
addition, except AS in MCC, there exists no other studied metrics that achieve the top-
one rank prediction performance. This result indicates that COMB are the best prediction
metrics in all the studied metrics. COMB achieves at least the top-three rank prediction
performance for all studied projects in Brier score.

COMB Statistically Outperforms the Other Studied Metrics Figure 12 shows the results
of the double Scott-Knott ESD test on the results for each studied metric in all projects;
each boxplot contains six ranks of the first Scott-Knott ESD test execution for the studied
projects on a studied metric. The x-axis indicates a metric; the y-axis indicates the rank for
each studied project in the first Scott-Knott ESD test execution. We use two gray colors
(dark and light gray) and two lines (solid and dashed lines) to represent the ranks according
to the double Scott-Knott ESD test; the adjacent boxplots with the same gray color and
line indicate the same rank. Otherwise, the rank is changed at that point. The different rank
indicates a statistical significant difference with small effect size or over.

We observe that COMB are the best-performing metrics on both AUC and MCC. This
result provides that COMB are the top rank metrics across the studied projects on AUC
and MCC. Even on Brier score, COMB are the second rank metrics. The best-performing
metrics on Brier score is still the change metrics.

8 Discussion

8.1 Are the Commits Identified by the Context Metrics Different than the Ones
Identified by the Traditional ChurnMetrics?

The Proposed Context Metrics COMB Identify Some Defective Commits that Other
Churn Metrics Cannot; these Commits Tend to have Large Context Lines We define
unique defective commits as the commits that are only identified by our proposed metrics
(and not by other metrics). The existence of these defective commits contributes to defect
prediction since they cannot be identified using traditional churn metrics. Hence, we study
the commits identified as defective by COMB.
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Table 11 The ranks of the Scott-Knott ESD test results for studied metrics

Metric Metrics Projects Numbers of ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

(a) AUC

Context NCW(c,1,+) 7 9 6 5 5 3 0 0 1 1

NCKW(c,10,+) 8 9 8 5 4 3 0 0 1 1

NCCW(c,1,+) 2 4 4 2 3 3 0 2 2 4

NCCKW(c,10,+) 5 8 5 3 2 2 0 2 1 3

COMB 1 1 1 1 1 1 6 0 0 6

Indentation AS 2 2 2 3 3 3 0 3 3 6

AB 4 3 3 4 3 3 0 0 4 4

Traditional Changes 6 4 7 8 2 5 0 1 0 1

NS 13 11 11 10 8 8 0 0 0 0

ND 11 6 9 9 4 6 0 0 0 0

NF 9 5 6 7 3 4 0 0 1 1

Entropy 10 7 7 7 6 4 0 0 0 0

LA 3 2 4 2 2 3 0 3 2 5

LD 12 10 10 6 6 7 0 0 0 0

LT 14 12 12 11 7 9 0 0 0 0

(b) MCC

Context NCW(c,1,+) 5 8 7 6 5 2 0 1 0 1

NCKW(c,10,+) 4 8 8 4 5 3 0 0 1 1

NCCW(c,1,+) 3 2 3 3 4 3 0 1 4 5

NCCKW(c,10,+) 3 6 5 2 3 2 0 2 2 4

COMB 1 1 1 1 1 1 6 0 0 6

Indentation AS 1 3 2 5 4 4 1 1 1 3

AB 2 4 4 3 5 4 0 1 1 2

Traditional Changes 5 6 7 9 2 8 0 1 0 1

NS 10 9 8 11 8 9 0 0 0 0

ND 8 5 7 10 5 5 0 0 0 0

NF 6 3 6 5 3 4 0 0 2 2

Entropy 7 7 7 8 6 6 0 0 0 0

LA 3 2 5 2 4 3 0 2 2 4

LD 8 9 8 7 6 7 0 0 0 0

LT 9 10 9 12 7 10 0 0 0 0

(c) Brier score

Context NCW(c,1,+) 6 5 6 9 4 4 0 0 0 0

NCKW(c,10,+) 6 4 6 8 3 3 0 0 2 2

NCCW(c,1,+) 4 3 4 6 5 3 0 0 2 2

NCCKW(c,10,+) 4 3 5 6 3 3 0 0 3 3

COMB 3 3 2 2 2 1 1 3 2 6

Indentation AS 2 2 3 9 5 3 0 2 2 4

AB 4 2 4 11 5 3 0 1 1 2
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Table 11 (continued)

Metric Metrics Projects Numbers of ranks

Types B. C. Ge. Gi. H. O. #R1 #R2 #R3 Sum

Traditional Changes 1 1 1 1 1 2 5 1 0 6

NS 8 4 8 2 6 3 0 1 1 2

ND 8 4 7 5 5 5 0 0 0 0

NF 9 5 7 7 4 5 0 0 0 0

Entropy 7 3 6 3 5 5 0 0 2 2

LA 5 2 4 4 5 3 0 1 1 2

LD 9 5 7 10 5 5 0 0 0 0

LT 10 6 9 12 6 6 0 0 0 0

#R1 (#R2, or #R3) is the sum of the numbers of cases where the rank is one (two, or three); Sum = #R1 +
#R2 + #R3. The actual values that were computed by RF and LR are shown in Appendix

5

10

C
O
M

B
A
S

L
A

N
C
C
W A

B

N
C
C
K
W

C
h
a
n
g
e
s

N
F

N
C
W

N
C
K
W

E
n
tr
o
p
y
N
D

L
D

N
S LT

T
h

e
 f

ir
s
t 

S
c
o

tt
−

K
n

o
tt

 E
S

D
 t

e
s
t 

ra
n

k

(a) AUC

2.5

5.0

7.5

10.0

12.5

C
O
M

B

N
C
C
W A

S
L
A

N
C
C
K
W A

B
N
F

N
C
K
W

N
C
W

C
h
a
n
g
e
s
N
D

E
n
tr
o
p
y
L
D

N
S LT

T
h

e
 f

ir
s
t 

S
c
o

tt
−

K
n

o
tt

 E
S

D
 t

e
s
t 

ra
n

k

(b) MCC

2.5

5.0

7.5

10.0

12.5

C
h
a
n
g
e
s

C
O
M

B
L
A

N
C
C
K
W A

S

N
C
C
W A

B

E
n
tr
o
p
y

N
C
K
WN

S

N
C
W

N
D

N
F

L
D LT

T
h

e
 f

ir
s
t 

S
c
o

tt
−

K
n

o
tt

 E
S

D
 t

e
s
t 

ra
n

k

(c) Brier score

Fig. 12 The results of the double Scott-Knott ESD test on the results for each studied metric in all projects.
Please see text for a full explanation
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(a) RF (b) LR

Fig. 13 The values of the context metric NCW for the commits identified as defective in Hadoop project. The
boxplots show the cases where COMB identified the commits differently with the context metric NCCW, the
change metrics, LA and the indentation metrics on RF and LR models. For instance, COMB-AB refers to
the cases where commits are identified as defective by COMB but are identified as clean by AB. The x-axis
shows the metrics that are compared; the y-axis shows the value of NCW

Figure 13 shows the values of the context metric NCW for the commits identified as
defective in Hadoop project.

We can observe that COMB identifies the commits that have higher NCW values as
defective compared to the other metrics. For example, the median NCW value of COMB-
Changes is higher than the median NCW value of Changes-COMB (Fig. 13a and b). The
results for the other projects show the same tendency except NCCW; NCCW has higher
NCW values in 4 of 6 projects since NCCW is also a context metric.

Because we use NCW values to show unique defective commits, this result may seem
obvious. However, even if we use LA value to show unique defective commits, the median
LA value of COMB-LA is higher than the median LA value of LA-COMB in several
projects. Figure 14 shows the values of LA for the commits identified as defective by LR
model in Bitcoin project and Hadoop project. In Bitcoin project, the median LA value of
COMB-LA is higher than the median LA value of LA-COMB, while LA-COMB has higher

(a) Bitcoin (b) Hadoop

Fig. 14 The values of LA for the commits identified as defective in Bitcoin project and Hadoop project. The
boxplots show the cases where COMB identified the commits differently with the context metric NCCW, the
change metrics, LA and the indentation metrics on LR model. The y-axis shows the value of LA
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median LA value in Hadoop project. This result implies that the result in Fig. 13a and b
indicates that COMB can uniquely identify some defective commits.

The Proposed Context Metrics NCW and NCKW, and the Extended Context Metrics
NCCW and NCCKW Can Uniquely Identify Defective Commits; and these Commits Tend
to Have Larger Context Lines than Other ChurnMetrics on the LRModel We observe the
same tendency for the other context metrics on LR model, but not RF model. This result
may be from the difference between RF and LR models. To study the difference between
the prediction models lies beyond the scope of this paper. In addition, there exist commits
that the traditional code churn metrics can identify that the context metrics cannot. Future
studies are necessary to investigate these points.

8.2 HowMuch Do the IndentationMetrics Improve the Defect Prediction
Performance?

Indentation Metrics AS and AB Have the Potential to Defect Prediction Performance
Our study is the first applying the indentation metrics to the defect prediction problem.
From our results, the indentation metrics are one of the best metrics on defect prediction
perfomances, and significantly outperform other studied metrics without COMB. Hence, we
observe that the indentation metrics have the potential of predicting power for just-in-time
defect prediction.

8.3 How Redundant are the Context Metrics Compared to the Traditional Metrics?

8.3.1 Motivation

To our knowledge, prior work in defect prediction disregards information around the
changed lines, context lines. Hence, we propose the context metrics, and study the impact
of them in the defect prediction performance. However, we did not study the redundancy of
our context metrics compared to the traditional metrics.

We present an in-depth analysis to understand the relation between our context metrics
and the traditional metrics. This result produces insights of why our context metrics are
not inducing redundancy, and why the context metrics can uniquely identify defective com-
mits compared to the traditional metrics. Finally, we show the basic predicting power using
information gain (Romanski and Kotthoff 2018).

8.3.2 Approach

We first study five context metrics (i.e., NCW, NCKW, NCCW, NCCKW, and gotoNC-
CKW7) two indentation metrics and 14 traditional change metrics based on a correlation
analysis (Zwillinger and Kokoska 1999) and the principal component analysis (PCA)
(D’Ambros et al. 2010) to identify correlated metrics and find metrics that are important
to represent the variance of the original metrics. Second, we compute information gain
(Romanski and Kotthoff 2018) for all the studied metrics in order to clarify the basic
predicting power of the studied metrics.

7COMB are two context metrics NCCW and gotoNCCKW. Hence, we study NCCW and gotoNCCKW
instead of COMB.
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We first conduct a correlation analysis on the metrics. When we use strongly cor-
related metrics as explanation variables for a prediction model, we get the problem of
multicollinearity (Farrar and Glauber 1967). In addition, these metrics are redundant. We
use Spearman rank correlation (Zwillinger and Kokoska 1999) to measure the correlation
between the metrics. Spearman rank correlation is a non-parametric correlation. We apply
Spearman rank correlation to all commits on each studied project. We compute the average
values of the correlation coefficients between the projects.

Second, we conduct the PCA in order to identify metrics which represent the highest
variance of all the studied metrics. The PCA result shows which metrics can represent the
variance of all the studied metrics. The PCA reduces the number of input metrics and makes
new metrics. Then, the PCA shows the coefficient8 for every new metric to convert the input
metrics into the new metric. We use the coefficient of the most important new metric called
the first principal component9 to identify which metrics represent the highest variance.10

We apply the PCA to all commits on each studied project. We suppose that metrics which
represent the highest variance are important metrics in the studied metrics.

Finally, we compute information gain (Romanski and Kotthoff 2018) in order to clarify
the basic predicting power of the studied metrics. In our case, information gain measures the
basic predicting power of each of the metrics. For example, if an original metric perfectly
separates defective commits and clean commits, the value of information gain would be
maximum. However, if an original metric separates all the commits to 50% defective com-
mits and 50% clean commits, the value of information gain would be minimum because this
prediction is the same as random classification. The formula of information gain (Romanski
and Kotthoff 2018) is as follows:

InfoGain(metric) = H(Defect) + H(metric) − H(Defect,metric),

where metric is a certain studied metric, InfoGain(·) is the information gain of · (metric),
H(·) is Shannon entropy (Shannon 1948) of · where the base of the logarithm is 2,H(·, ·′) is
Shannon entropy of · after classifying by ·′, Defect is the set of all commits with prediction
results (defective or clean).

We compute the ratio of the information gain between NCCW, and the indentation met-
rics and the churn metrics. Since NCCW is our proposed metric, we use NCCW as a base.
The formulation is as follows:

Ratio = InfoGain(NCCW)/InfoGain(·),
If the ratio is over 1.0 when using a certain original metric, NCCW has high potential to
classify the commits in defect prediction rather than the certain metric.

8.3.3 Results

The Context Metrics NCCW and NCCKW, the Indentation Metrics AI and AS, and the
Change Metric LA are Strongly Correlated Table 12 shows the Spearman rank correla-
tion between all the studied metrics (including the context, the indentation and the change
metrics) in all studied projects; each cell in the table shows the average correlation in the

8Here, the coefficient means the left-singular vector. We conduct the PCA using singular vector decomposi-
tion.
9The first principal component means the input metrics set that can very retain the original metrics variance.
10Metrics which represent higher variance of the studied metrics have higher coefficient in the first principal
component.
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Table 12 Spearman rank correlation between the context metrics, the indentation metrics, and the change
metrics in the studied projects
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NCW 1.00 0.75 0.80 0.72 0.06a 0.59 0.64 0.08 0.24 0.50 0.65 0.61 0.64 0.60 0.01a

NCKW 1.00 0.65 0.88 0.06a 0.58 0.61 0.06a 0.20 0.39 0.51 0.47 0.54 0.53 0.10

NCCW 1.00 0.81 0.08a 0.84 0.90 0.14 0.27 0.54 0.70 0.62 0.91 0.60 0.07a

NCCKW 1.00 0.08a 0.76 0.79 0.11 0.24 0.46 0.60 0.54 0.75 0.55 0.03a

GNCCKW 1.00 0.06a 0.07a 0.01a 0.04a 0.05a 0.07a 0.06a 0.08a 0.06a 0.03a

AI 1.00 0.92 0.10 0.22 0.42 0.52 0.44 0.82 0.48 0.02a

AS 1.00 0.12 0.22 0.43 0.56 0.47 0.87 0.52 0.02a

FIX 1.00 0.05 0.10a 0.14 0.12 0.16 0.09 0.05a

NS 1.00 0.60 0.46 0.44 0.33 0.24 0.06a

ND 1.00 0.81 0.77 0.58 0.45 0.04

NF 1.00 0.96 0.71 0.58 0.09

Entropy 1.00 0.62 0.52 0.08

LA 1.00 0.58 0.08

LD 1.00 0.00a

LT 1.00

GNCCKW indicates gotoNCCKW. We average correlations in the studied projects. Each cell shows the
average correlation. “a” refers to that at least one non statistical significant correlation in the studied projects.
Due to the space limitation, we omit the History and Experience of the change metrics in this paper. These
metrics are not strongly correlated (0.7 and over) with the other metrics (except for the correlation between
EXP and SEXP)

studied projects (the median is very similar). A gray cell refers to the case of the strong cor-
relation whose coefficient is 0.7 and over. We observe that the correlations between NCCW,
NCCKW, AI, AS, and LA are strong (over 0.7). This is because the context metrics and the
indentation metrics include changed lines information.

The ContextMetrics NCW andNCKW, However, areModerately Correlated to the Inden-
tation Metrics and the Change Metric LA NCCW and NCCKW are extended metrics of
NCW and NCKW. NCW and NCKW are moderately correlated to AI, AS, and LA (less than
0.7). Hence, although the context information have a similar concept with the indentation
metrics and changed lines, the context information is not redundant.

The Context Metrics NCCW and NCCKW are the Metrics that Represent the Highest
Variance of all the Original Metrics Table 13 shows the coefficient of the first principal
component for each project in the PCA. A gray cell refers to the case with the absolute
coefficient 0.3 and over. We observe that NCCW and NCCKW have over 0.3 absolute coef-
ficient in all the studied projects. If the first principal component has a certain metric which
has high coefficient in all the projects, this metric is likely to represent the highest variance
of all studied metrics in all the projects. NCCW and NCCKW include the context informa-
tion and have the strong correlation to the indentation metrics and LA due to using changed
line information. Hence, NCCW and NCCKW can add the context information while having
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Table 13 The coefficient of the first principal component for each project in the PCA. GNCCKW indicates
gotoNCCKW. Please see text for a full explanation

Hadoop Camel Gerrit Osmand CMake Bitcoin Gimp

NCW 0.300 0.264 0.312 0.237 0.206 0.297 0.189

NCKW 0.295 0.259 0.289 0.228 0.201 0.294 0.180

NCCW 0.341 0.345 0.347 0.411 0.370 0.366 0.379

NCCKW 0.376 0.346 0.330 0.410 0.374 0.376 0.394

GNCCKW 0.040 0.002 0.009 0.199 0.313 0.039 0.212

AI 0.282 0.294 0.266 0.369 0.357 0.299 0.263

AS 0.285 0.294 0.266 0.381 0.359 0.309 0.363

FIX 0.055 0.052 0.024 0.028 0.024 0.025 0.014

NS 0.135 0.170 0.232 0.075 0.100 0.192 0.167

ND 0.342 0.277 0.318 0.129 0.179 0.249 0.291

NF 0.299 0.334 0.301 0.175 0.282 0.330 0.268

Entropy 0.289 0.277 0.272 0.117 0.153 0.279 0.194

LA 0.210 0.292 0.136 0.378 0.317 0.206 0.359

LD 0.174 0.175 0.215 0.094 0.162 0.078 0.109

LT 0.114 0.021 0.031 0.098 0.025 0.053 0.016

NDEV 0.009 0.005 0.006 0.014 0.025 0.006 0.095

AGE 0.018 0.003 0.007 0.034 0.037 0.004 0.005

NUC 0.024 0.194 0.250 0.052 0.099 0.161 0.045

EXP 0.042 0.008 0.011 0.033 0.003 0.019 0.068

REXP 0.002 0.010 0.016 0.009 0.003 0.014 0.006

SEXP 0.039 0.027 0.002 0.022 0.021 0.019 0.085

the information of the indentation metrics and LA. Hence, NCCW and NCCKW represent
the highest variance.

In summary, the context metrics NCW and NCKW are not redundant metrics, and add the
context information to the defect prediction model. While NCCW and NCCKW have strong
correlations to the indentation metrics and LA, NCCW and NCCKW also add information
from the context of the change.

Except for LT, NCCW has the Strongest Basic Predicting Power Regarding the Infor-
mation Gain Compared to Other Studied Metrics Figure 15 shows the ratio of the
information gain.We observe that all the median values are grater than 1.0 except LT. Hence,
almost all cases, the information gain of NCCW is better than the other studied metrics. LT
has better value of the information gain. However, the prediction performance such as AUC
is not good. In summary, except for LT, NCCW has the strongest basic predicting power in
the studied metrics.

8.4 Does the context size changes the complexity of change?

We argued that more words/keywords in a context, more complex a change is. Although
number of words/keywords are determined by the context size, we were concerned about
that the complexity is changed by the context size. In this discussion, we explain that
changing context size does not affect the complexity of change.
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Fig. 15 The ratio of the
information gain between NCCW
and other metrics. The x-axis
indicates the metrics that are used
to compute the ratio; the y-axis
indicates the ratio. The dashed
line indicates that the ratio is 1.0
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From our experiments, given a fixed size of context, the number of words/keywords in
such context is a good indicator of the complexity of the change (RQ1). This is because as
the context size increases, the number of context words/keywords also increases; however,
the distance of some words/keywords to the hunk will also increase, making them less
effective as an indicator of complexity. Hence, a balance is required: too small a context
might not have enough information to capture the context of the change, however a context
that is too large will dilute the important context information around a hunk.

8.5 How are the Actual AUC andMCC Values of the Context Metrics?

We study the ranks that were computed by the Scott-Knott ESD test across the studied met-
rics to determine which are the best prediction metrics to use in defect prediction. However,
practitioners would concern about the actual AUC and MCC values since practitioners need
accurate prediction model.

We show the actual AUC and MCC values in Appendix (Tables 18 and 19). From the
AUC result (Table 18), COMB provides at least 0.737. This value corresponds to the strong
effect size according to prior work (Rice and Harris 2005). From the MCC result (Table 19),
COMB provides at least 0.3 except RF in the Camel project. This value corresponds to the
moderate correlation. Hence, we conclude that COMB can be used in practice since they
have acceptable prediction performance in the actual values as well.

8.6 Practical Guides (Recommendations) for the Parameters of the Context Metrics

The context metrics have two tunable parameters: the context size, and the churn type. We
made our practical guides (recommendations) of optimizing the parameters of the context
metrics as applicable as possible to practitioners.

Recommendation 1: If Practitioners have Both, Training Data and Validation Data, We
Recommend to Optimize the Context Size and the Churn Type Following our Experi-
ments in RQ1 The most important parameters to determine are how many context lines to
use (we call this the context size) and what type of context lines to use (we call this the
churn type). In our study, we calculated the context size and the churn type that yield the
best results; we recommend that, if practitioners have training data and validation data, they
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optimize the context size and the churn type following our experiments in RQ1. Our experi-
ments in RQ3 show that COMB which are the combination metrics of the extended context
metrics that are number of words and number of “goto” keyword significantly outperform
the other studied metrics. Hence, if practitioners want to use our prediction model, we rec-
ommend to use COMB. Practitioners do not need to decide using either number of keywords
or words as a parameter of the context metrics. COMB includes both of them. The details
of how to use COMB can be found in Section 8.7.

Recommendation 2: If Practitioners do not have Enough Validation Data, We Recom-
mend to Use the Same Parameters thatwe Found PerformBest Our experiments in RQ1
show optimal values for the parameters for the projects we studied. The studied projects
cover multiple domains of software, and two popular programming languages, C++ and
Java. We believe this diversity of studied projects is likely to make these parameters useful
in general.

8.7 Practical Guides (Recommendation) for Practitioners Whowant to Use a Defect
PredictionModel

We proposed the context metrics. We present recommendations of using them for defect
prediction according to the experimental results.

Recommendation 1: Use the Indentation Metric AS Instead of the Traditional Size
Metrics in the Change Metrics Our experiments in RQ2 show that AS significantly out-
performs the other studied metrics including traditional size metrics (LA, LD and LT). In
addition, AS is strongly correlated with the traditional size metric LA which has the highest
performance in the change (code churn) metrics. Hence, using AS instead of the tradi-
tional size metrics allows practitioners to improve the performance of their defect prediction
models.

Recommendation 2: For the Case Where Practitioners Want to Improve the Predic-
tion Performance Using a Simple Prediction Model, Use the Context Metrics COMB on
the Logistic Regression Model Our experiments in RQ3 show that COMB are the best-
performing metrics in AUC and MCC. In addition, our discussion shows that: (1) a context
metric used in COMB, NCCW, is one of the metric that represents the highest variance
of all the original metrics, and (2) the basic defect predicting power of NCCW is strong.
For the interpretation of the prediction model, COMB contains only two metrics (NCCW
and gotoNCCKW), and therefore, we can easily interpret the prediction results. Finally,
the effect size of the actual prediction values in AUC is strong. Hence, for the case where
practitioners want to improve the prediction performance using a simple prediction model,
using COMB might allow practitioners to get good prediction performance with a simple
prediction model.

9 Threats to Validity

9.1 Construct Validity

We follow the labeling process in Commit Guru (Rosen et al. 2015) in order to label each
commit either defective or clean. SZZ algorithm is also a popular approach to identify
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defective commits (Śliwerski et al. 2005); however, it has no open source implementation
available. In contrast, Commit Guru is a publicly available open source project. Hence, we
follow the labeling process in Commit Guru for its repeatability and openness.

We use the online change classification (Tan et al. 2015) to validate the performance of
defect prediction. This validation technique addresses the challenges of the cross validation
technique. Hence, we believe this validation technique is acceptable.

The online change classification has parameters. In particular, the unit (test interval) is
the most important parameter. Below, we studied the impact of the unit for the performance
in defect prediction. If the unit has strong impact for the performance in defect prediction,
we would need to consider the parameter in our experiments.

Approach We build defect prediction models for NCCW, NCCKW, COMB, AS, LA, and
the change metrics. The prediction procedure is the almost same as RQ2. The only dif-
ference is that we change the unit value between 10 to 100 by 10. Finally, we report the
evaluation measures by (1) plotting a line plot for each project, prediction model, and stud-
ied metric, and (2) computing the median and 75 percentile IQR values of different unit
values in all projects, prediction models, and studied metrics.

Results Figure 16 shows the values of the evaluation measures for different unit values.
We observe that all evaluation measures are stable for different unit values. In addition, we
observe the same tendency for other projects, prediction models, and metrics.

Table 14 shows the median and 75 percentile (3Q) IQR values for different unit values
in all projects, prediction models, and studied metrics. We observe that even if we check
3Q values, they are less than 0.05 IQR value in all cases. Hence, the unit (test interval) has
little impact for the results. The training interval is decided by the unit. Hence, the training
interval also has little impact for the results.

9.2 External Validity

As the studied projects, we use six large open source software. These software are written
in the popular programming languages C++ and Java; and one of various types of soft-
ware, such as server and web application. These systems we study are open source but not
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Fig. 16 The values of the evaluation measures for each unit (test interval) using the NCCW metric on LR
model in the Camel project. Eva indicates evaluation measures. The x-axis indicates the unit value between
10 to 100; the y-axis indicates the values of the evaluation measures
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Table 14 The median and 75 percentile (3Q) IQR values of the performance for the context metrics, the
indentation metric and the change metrics

NCCW NCCKW COMB AS LA Changes

Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q Median 3Q

AUC 0.011 0.016 0.012 0.015 0.008 0.014 0.010 0.013 0.009 0.013 0.015 0.017

MCC 0.015 0.026 0.019 0.022 0.024 0.028 0.019 0.021 0.022 0.030 0.032 0.037

Brier 0.004 0.007 0.004 0.009 0.009 0.010 0.004 0.008 0.005 0.007 0.005 0.006

An IQR value is computed across all unit values for each prediction model for each project for each metric.
The median/3Q IQR values are computed for each metric. Hence, the median/3Q for all prediction models
and projects

commercial software. In the future, we need to study the context metrics, extended context
metrics, and combination context metrics on commercial projects for verifying our findings.

9.3 Internal Validity

We remove comments from the hunks. However, if all lines in a hunk are comments and use
“/**/”, we do not identify whether the hunks are comments.

We use three evaluation measures, AUC, MCC and Brier score, which are not affected
by skewed data (Zhang et al. 2016; Boughorbel et al. 2017) and address the pitfalls in defect
prediction (Tantithamthavorn et al. 2017). Hence, we believe these measures are acceptable.

10 Conclusion

In this paper, we propose context metrics based on the context lines, the extended context
metrics based on both the context lines and changed lines as code churn metrics, and COMB
based on the extended context metrics. We study the impact of considering the context lines
for defect prediction.

We compare the context metrics, the extended context metrics, and COMB with the
traditional code churn metrics in six open source software. The main findings of our paper
are as follows:

– The chunk type ‘+’ is the best parameter for context metrics for defect prediction. This
chunk type achieves the best median rank according to the three evaluation measures,
AUC, MCC and Brier score on the Scott-Knott ESD test.

– The small context size is suitable when considering the number of words, while the
large context size is suitable when considering the number of keywords in context lines
for defect prediction.

– “goto” statement in the context lines and the changed lines is the best keyword to detect
defective commits in the modified NCCKW.

– Our proposed combination metrics, COMB, significantly outperform all the metrics,
and achieve the best-performing metrics in all of the studied projects in terms of AUC
and MCC.
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(Grant Numbers: JP16K12415).
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Appendix

In this Appendix, we show the actual values of the three evaluation measures corresponding
to the results of the rank in RQ1, RQ2, and RQ3. In addition, we show the correlation across
the modified NCCKW.

Table 15 The median values of AUC for each context metric variant and studied project

Metrics Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.619/0.727 0.579/0.610 0.642/0.722 0.692/0.722 0.624/0.738 0.585/0.757

NCW − 0.580/0.663 0.548/0.561 0.594/0.655 0.619/0.672 0.636/0.690 0.567/0.695

all 0.631/0.707 0.577/0.598 0.624/0.707 0.647/0.715 0.638/0.737 0.587/0.749

+ 0.650/0.694 0.580/0.592 0.650/0.679 0.640/0.663 0.660/0.698 0.652/0.729

NCKW − 0.594/0.640 0.549/0.567 0.598/0.620 0.618/0.649 0.639/0.677 0.619/0.682

all 0.646/0.678 0.567/0.595 0.641/0.667 0.637/0.663 0.661/0.705 0.640/0.720

Each cell indicates the values of AUC by RF (left) and LR (right) models, respectively, when the context size
is three. The Scott-Knott ESD test is conducted for each project (column)

Table 16 The median values of MCC for each context metric variant and studied project

Metrics Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.130/0.269 0.090/0.178 0.170/0.316 0.203/0.268 0.156/0.361 0.118/0.415

NCW − 0.079/0.237 0.060/0.135 0.108/0.258 0.163/0.221 0.136/0.315 0.101/0.365

all 0.152/0.271 0.084/0.186 0.160/0.309 0.172/0.251 0.171/0.344 0.129/0.418

+ 0.228/0.238 0.106/0.135 0.216/0.268 0.191/0.211 0.260/0.311 0.238/0.346

NCKW − 0.178/0.232 0.093/0.135 0.168/0.234 0.185/0.199 0.201/0.297 0.227/0.309

all 0.199/0.213 0.118/0.128 0.233/0.270 0.190/0.233 0.261/0.296 0.239/0.343

Each cell indicates the values of MCC by RF (left) and LR (right) models, respectively, when the context
size is three. The Scott-Knott ESD test is conducted for each project (column)

Table 17 The median values of Brier score for each context metric variant and studied project

Metrics Chunk Projects

Types Bitcoin Camel Gerrit Gimp Hadoop Osmand

+ 0.313/0.214 0.310/0.238 0.289/0.221 0.237/0.230 0.293/0.216 0.340/0.238

NCW − 0.307/0.229 0.316/0.243 0.321/0.239 0.237/0.236 0.295/0.223 0.331/0.241

all 0.311/0.215 0.334/0.239 0.302/0.223 0.242/0.231 0.293/0.217 0.332/0.238

+ 0.265/0.218 0.271/0.241 0.290/0.228 0.262/0.233 0.276/0.231 0.305/0.241

NCKW − 0.270/0.227 0.261/0.244 0.329/0.236 0.247/0.237 0.266/0.233 0.332/0.243

all 0.286/0.218 0.274/0.241 0.289/0.228 0.252/0.234 0.265/0.230 0.319/0.242

Each cell indicates the values of Brier score by RF (left) and LR (right) models, respectively, when the
context size is three. The Scott-Knott ESD test is conducted for each project (column)
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