
https://doi.org/10.1007/s10664-019-09728-3

Whom are you going to call? determinants
of @-mentions in Github discussions

David Kavaler1 ·Premkumar Devanbu1 ·Vladimir Filkov1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Open Source Software (OSS) project success relies on crowd contributions. When an issue
arises in pull-request based systems, @-mentions are used to call on people to task; pre-
vious studies have shown that @-mentions in discussions are associated with faster issue
resolution. In most projects there may be many developers who could technically handle a
variety of tasks. But OSS supports dynamic teams distributed across a wide variety of social
and geographic backgrounds, as well as levels of involvement. It is, then, important to know
whom to call on, i.e., who can be relied or trusted with important task-related duties, and
why. In this paper, we sought to understand which observable socio-technical attributes of
developers can be used to build good models of them being future @-mentioned in GitHub
issues and pull request discussions. We built overall and project-specific predictive models
of future @-mentions, in order to capture the determinants of @-mentions in each of two
hundred GitHub projects, and to understand if and how those determinants differ between
projects. We found that visibility, expertise, and productivity are associated with an increase
in @-mentions, while responsiveness is not, in the presence of a number of control vari-
ables. Also, we find that though project-specific differences exist, the overall model can be
used for cross-project prediction, indicating its GitHub-wide utility.

Keywords Github · @-mention · Mention · Tagging · Social tagging · Issue

1 Introduction

In modern, social-coding (Dabbish et al. 2012) projects based on sites like GitHub and Bit-
Bucket, that favor the pull-request model, the emergence and growth of a particular type of

Communicated by: Filippo Lanubile

� David Kavaler
dmkavaler@ucdavis.edu

Premkumar Devanbu
ptdevanbu@ucdavis.edu

Vladimir Filkov
vfilkov@ucdavis.edu

1 University of California, Davis, Davis, CA, USA

Empirical Software Engineering (2019) 24:3904–3932

Published online: 7 June 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09728-3&domain=pdf
http://orcid.org/0000-0003-1269-2932
mailto: dmkavaler@ucdavis.edu
mailto: ptdevanbu@ucdavis.edu
mailto: vfilkov@ucdavis.edu


socio-technical link, @-mentions, can be observed in task-oriented technical discussions.
For example, in the rails project on GitHub (issue 31804), one of the head developers calls
on another, explicitly stating trust of their expertise, saying: “@kamipo can you take a look
since you are our MySQL expert?” On GitHub, the @-mention in issue discussions is a type
of directed social link; the @-mentioner “calls” the @-mentionee via a directed communi-
cation that is sent to the @-mentionee through GitHub’s interface. Thus, one can consider
the network of @-mentions, specifically calls, as a sort of directed social network, with a
task-oriented purpose. These mentions are heavily used in social coding; in our data, a sam-
ple of the most followed and starred projects on GitHub, 52.46% of issues and 22.02% of
pull requests contain at least one @-mention, with an average of 1.46 and 1.37 @-mentions
per issue or pull request (respectively). On average, developers who are called (while not yet
actively participating in the thread) respond 19% of the time; the number rises to 42.94%
when excluding those who never respond.1 @-mention ubiquity reflects the central role
they play in task-oriented social interactions on GitHub. Since much of a developers behav-
ior in OSS projects is recorded, if a person has the expertise and/or are reliable in many
different tasks, they will be visible to others. The decision to @-mention someone will be
based on visible attributes of that developer, including reliability, productivity, etc. Identi-
fying a reliable and knowledgeable person to ask for help or action is key to addressing
issues in a timely manner and keeping a project vibrant and alive. In fact, Yu et al. found
that having @-mentions in a discussion decreases the time to resolve an issue (Yu et al.
2016); Zhang et al. found that more difficult issues (e.g., longer length of discussion) have
more @-mentions (Zhang et al. 2017). Given these important outcomes, it would be benefi-
cial to know what (observable) socio-technical attributes of developers contribute to being
@-mentioned.

As @-mentions have an inherent social element, a global model describing the deter-
minants of @-mention calls would suggest that project-specific social idiosyncrasies are
less important than social elements common across GitHub. A global GitHub model for
@-mentions may be seen as constructive, since shared social norms across the ecosystem
can increase social mobility (Sato and Arita 2004); on GitHub, this may make the accultur-
ation process easier for those who move between projects. In addition, the findings of Burke
et al. (2009) suggest that those who perceive themselves as socially central contribute more
as a result - this may extend to code contributions on GitHub. The findings of Kavaler et al.
(2017) suggest global and project-specific social phenomena (apropos language use) exist
on GitHub; is this the case for @-mentions? Or does one phenomenon dominate?

The goal of this paper is to understand both the elements contributing to @-mentions in
GitHub projects and the extent to which those elements are shared between projects across
GitHub. @-mentioning is a complex, multidimensional phenomenon. Developers that are
often @-mentioned can have outsized roles and responsibilities in the project network,
and be able to handle any task. Thus, a frequently @-mentioned person could well be a
strong, highly visible contributor, who might be a trustworthy collaborator on an active task.
Whereas visibility can be operationalized more directly, based on a person’s aggregate pres-
ence in all aspects of the social coding process, both reliability and trust are more complex:
we describe the theoretical background for these in the next section. Starting from those the-
ories, and from data on @-mentions and comprehensive developer and project metrics from
200 GitHub projects, we seek a predictive, quantitative model of future @-mentions of a
developer, using past observations of the developer’s visibility, expertise, productivity, and

1E.g., developers of upstream libraries rarely respond in the downstream project.

Empirical Software Engineering (2019) 24:3904–3932 3905



responsiveness in their projects. From our quantitative models, together with case studies
aimed towards triangulating the model results,

– We find that we can mine a reliable @-mention signal from GitHub data, in ways
consistent with current theories in sociology, psychology, and management.

– We see a net positive effect of visibility on @-mentions. We see that less expertise
(via, e.g., commits that need fixing, likely buggy commits) associates with lower @-
mentions when one has already been @-mentioned, and higher @-mentions if one has
not already been @-mentioned; perhaps explained by the idea that any contributions,
even defective ones, associates with an initial @-mention, consequently adjusted. We
see positive effects for productivity, and none for responsiveness.

– We find that cross-project model fits are generally good, suggesting a common model
of @-mentions across GitHub. Similarities among the models are greater for enhanced
@-mentions after the first @-mention, than for the initial one.

– We see indications of project-specific @-mentioning behavior, however, the high
performance of cross-project prediction suggests the differences may matter little,
especially for predicting @-mentions.

We present the theory and research questions in Section 2, research questions in
Section 3, data and methods in Section 4, results and discussion in Section 5, practical
implications for practitioners in Section 6, threats to validity in Section 7, and conclusions
in Section 8.

2 Theory and RelatedWork

To understand the notion of @-mentions in OSS projects, we build a theory drawing from
diverse sources. First, we discuss @-mentions and their use on GitHub, supported by prior
work. Then, we introduce theory behind GitHub @-mentioning drawn from work regarding
reliability and trust in the fields of sociology, psychology, and management. We then discuss
the importance of social exchange and interaction (and thus, the importance of @-mentions)
on OSS project success. Finally, we compare our work to that in the field of expertise
recommendation.

2.1 @-Mentions on GitHub

GitHub projects have issue trackers with a rich feature set, including ticket labeling, mile-
stone tracking, and code tagging. In GitHub projects, individuals can open up an issue thread
where others can comment and discuss a specific issue. In these discussions, developers
can tag others using @-mentions; the mentioned developer receives a notification that they
are being referenced in a discussion. When one decides to @-mention another developer,
there is generally a specific reason, e.g., to reply to a single person in a discussion involv-
ing many others; or, to call the attention of someone who isn’t currently in the discussion.
The latter aspect is what we wish to capture; calling upon another person is an implicit (and
on GitHub, often explicit) statement of belief that the receiver could help address the task
at hand. To validate the importance of modeling call @-mentions on GitHub, we perform a
case study (Section 5.1) and also look to prior literature (below) for the reasons behind the
use of @-mention.

Tsay et al. performed interviews with several developers of popular projects on GitHub,
specifically related to the discussion and evaluation of contributions (Tsay et al. 2014). They

Empirical Software Engineering (2019) 24:3904–39323906



found that both general submitters and core members use @-mentions to alert core devel-
opers to evaluate a given contribution or start the code review process. They further found
that core members often @-mentioned other core members specifically citing that the @-
mentionee is more qualified to answer a particular question or review a given contribution.
In nearly all cases, the @-mention seems to be used to draw the attention of a developer who
may contribute to the task at hand. Kalliamvakou et al. surveyed and interviewed develop-
ers, mostly commercial, that use GitHub for development (Kalliamvakou et al. 2015). Of all
interviewees, 54% stated that their first line of communication is through the @-mention.2

In addition, they state that teams often use the @-mention to draw members’ attention to a
problem.3

2.2 @-Mentions and Personal Reliability

The ability to rely on others socio-technically is critical for cohesive workgroups. From a
social perspective, Saavedra et al. argue that reliable interactions among group members
are important for success, especially when tasks are interdependent (Saavedra et al. 1993).
According to social learning theory, frequent interactions among group members increases
the likelihood that some in the group will be raised to “role model” status (Bandura 1973;
Bandura and Walters 1977). The importance of role models in social learning has been
widely discussed (Bandura and Walters 1977; Burke et al. 2009; Dourish and Chalmers
1994). On GitHub, researchers have found that these role models (“rockstars”) are important
influencers, allowing developers to learn from “rockstar” code contributions in order to
improve their own work (Dabbish et al. 2012; Lee et al. 2013). In other words, developers
rely on others within and outside their immediate working group in order to solve problems.
In addition, peer code review (relying on team members other than the authors for manual
inspection of source code) is recognized as a valuable tool in software projects (Ackerman
et al. 1984). Thus, we argue that identifying these reliable developers, by means of the @-
mention, is important for project success. We theorize that reliability will manifest itself on
GitHub through responsiveness, measuring: if you are called, how often do you answer?

2.3 @-Mentions and Trust

Trust has a long-recognized complex (McKnight et al. 2002; Gallivan 2001) social com-
ponent and well understood benefits to social and economical well-being (Inglehan 1999;
Newton 2001), in both physical and virtual teams (Jarvenpaa et al. 1998). While individuals
do have a personal notion of when to trust someone, in social settings those notions inherit
from the communal sense of trust (Newton 2001; Jarvenpaa et al. 1998; Inglehan 1999).
In socio-technical groups like software projects, contributors must be trusted as technically
competent, and also as useful to the project. Gaining contributor status is a key indicator of
trust, which has been extensively studied (Bird et al. 2007; Steinmacher et al. 2015; Casal-
nuovo et al. 2015; Gharehyazie et al. 2013; Ducheneaut 2005). In pull-request oriented

2Developers were asked about communication methods, not explicitly the @-mention.
3Described in Section 4.2, a reply @-mention is directed towards someone already in the discussion; a
call @-mention is directed towards someone not yet in the discussion. In our data, there is indeed a very
high correlation between reply @-mentions and discussion length (0.812); however, there is a relatively low
correlation between call @-mentions and discussion length (0.283). As our focus is on call @-mentions,
correlation between reply @-mentions and discussion length is not a threat.

Empirical Software Engineering (2019) 24:3904–3932 3907



models, with decentralized repositories, anyone can make changes in a fork, and then sub-
mit the changes as a pull-request. Here, social processes such as code-review take a central
role in deciding the fate of code contributions. Opinions from trusted people during the rel-
evant discussions would be in great demand, and thus, the social demand on a person is an
indication of the trust placed upon them by the community. Since the pull-request model is
more or less normative in GitHub projects, it is reasonable to posit that many projects in the
GitHub community ecosystem may share the same determinants @-mention extension, i.e.,
the reasons behind @-mention extension may be a global phenomenon.

We acknowledge that an @-mention does not necessarily arise purely to trust in the
taggee; however, some form of trust likely plays a role. Thus, understanding theories of trust
is important to understanding @-mentions on GitHub.

Oft-mentioned and widely discussed, the meaning and role of trust has been exam-
ined across many disciplines, including sociology, psychology, and philosophy (Zucker
1986; Brockner 1996; Kramer and Tyler 1996; Brenkert 1998; Husted 1998). Gallivan
provides a succinct set of definitions for trust types as provided by prior work on orga-
nizational trust (Gallivan 2001); relevant types for GitHub are: 1) Knowledge-based trust:
trust based upon a prior history of transactions between two parties; 2) Characteristic-
based trust: trust that is assumed, based on certain attributes of the other party; and
3) Swift trust: a “fragile” form of trust that emerges quickly in virtual workgroups and
teams.

For our work, the idea of swift trust is important as it is theoretically defined for
virtual teams, as on GitHub. Jones and Bowie (1998) state: “the efficiency of [virtual
teams] depends on features - speed and flexibility - that require high levels of mutual
trust and cooperation”; other researchers share and expand on this notion (O’Leary et al.
2002; Handy 1995). Though swift trust may initially appear most applicable, much of
the founding work was done prior to the proliferation of socio-technical systems such as
GitHub. More recently, Robert et al. redefine swift trust for modern systems as a com-
bination of classical swift trust, knowledge-based trust, and parts of characteristic-based
trust (Robert et al. 2009). We agree with this blended definition - a sweeping categoriza-
tion of GitHub as having a swift trust system is likely incomplete; multiple trust regimes
probably apply. We capture knowledge-based trust through our measures of visibility,
i.e., functions of @-mention network degree. Characteristic-based trust is also likely; task
characteristics can be easily seen on GitHub, as captured by measures of expertise and
productivity.

2.4 @-Mentions and Social Exchange

On GitHub, the @-mention is a type of directed social link; the @-mentioner causes a
notification to be sent to the @-mentionee through GitHub’s interface, a form of social
communication. Thus, the network of @-mentions is a sort of social network, with a task-
oriented purpose. Much work has been done in variety of fields on identifying reasons
behind social tagging and mentioning behavior, including on GitHub (Yu et al. 2014).

In the fields of psychology and sociology, many researchers have explored the phe-
nomenon of social tagging on Facebook (Qiu et al. 2013; Burke et al. 2010; Oeldorf-Hirsch
and Sundar 2015). In general, this research has shown that social tagging provides a sense of
community and increases one’s social capital. These findings are of importance to GitHub
as they elucidate the importance of community social interaction, which are known to be
important to OSS success (Gharehyazie et al. 2015; Gharehyazie et al. 2013). Of spe-
cific interest, Burke et al. found that those who receive feedback on their Facebook posts

Empirical Software Engineering (2019) 24:3904–39323908



share more (Burke et al. 2009). It is reasonable to believe that this extends to task-oriented
networks, such as GitHub; those who feel as though their contributions are important,
socially or technically, are likely to contribute more.

McDonald et al. interviewed multiple GitHub developers and found that they rarely
use product-related measures (e.g., release quality, bug fixes) to describe project success;
rather, they use measures such as number of (new) contributors, pull requests, etc. McDon-
ald and Goggins (2013). As stated above, social exchange is important to both one’s
own well-being and OSS success. As social measures have been shown to be important
for OSS product success (Hossain and Zhu 2009), and given that developers generally
use non-product measures to describe project success, fostering the use of @-mentions
and thus the exchange and gain of social capital would be beneficial for both metrics
of success. We capture social aspects in visibility - functions of @-mention network
measures.

2.5 @-Mentions and Discourse/Dialogue

Discourse and dialogue have seen a resurgence of research interest with the advent of
NLP computational methods. Stolcke et al. (2000) have most prominently defined discrete
conversational speech categories into which @-mentions fit well, perhaps because they
themselves are social link extensions. Stolcke’s et al. (2000) work and the other afore-
mentioned prior work (Tsay et al. 2014; Kalliamvakou et al. 2015), helped us distill the
following four categories of speech that use @-mentions (one of these is a slightly modified
category as compared to Stolcke’s work, marked by �):

1. Request (R): An explicit request towards the called person to perform some action.
2. Request-Suggest (R-S): An implicit request towards the called person to perform some

action.
3. Inform (I): An indication that the issue or post is relevant to the called person.
4. �Credit Attribution (CA): An @-mention designed to attribute credit to the called

person. This is similar to “Thank” by Stolcke et al. (2000), but explicitly directed at an
individual.

We use these categories in a case study examining reasons behind call @-mentions in
Section 5.1.

2.6 Expertise Recommendation

As our interest is in @-mentions, often used to call upon those with expertise relating to
the task at hand, we compare our work with that in the field of expertise recommendation.
Murphy and Cubranic (2004) used text classification on data from the Eclipse bug tracking
system in order to identify developers relevant for a given bug; Matter et al. performed a
similar study (Matter et al. 2009). Likewise, Mockus and Herbsleb developed and deployed
a tool to identify expert developers (Mockus and Herbsleb 2002) working on proprietary
software. More directly relevant to our work, Ibrahim et al. developed a tool to identify
which developers should contribute to a given discussion on mailing lists for three open
source projects (Ibrahim et al. 2010). Though our work is similar in spirit to that in the
field of expertise recommendation, our focus is specifically on the calling signal itself (@-
mention). This goal is unique from expertise identification and recommendation as our goal

Empirical Software Engineering (2019) 24:3904–3932 3909



is to identify reasons behind the signal extension itself, rather than identifying the best
receiver of said signal.

3 Research Questions

@-mentions signal a desire for a developer’s involvement in a task-oriented discussion.
GitHub is a rich source of mine-able, potentially relevant, developer characteristics.

The theory above allowed us to identify relevant dimensions along which to model the
phenomenon of @-mentions. We describe them shortly here, and operationalize them in the
Methods section. Visibility measures the ability of others to know of a developer; if a devel-
oper is to be @-mentioned, people must know the network in order to know who they are
capable of reaching. Expertise can be defined through task-related measures, e.g., number
of likely buggy commits, which might influence how much a developer is @-mentioned.
Productivity is defined by number of commits; prolific committers could be viewed as the
“top brass” of a project, and commits are easy to see in GitHub. Finally, we are interested
in responsiveness; if a mentionee is called to lend their talent, it is not farfetched that those
who respond to the call are more likely to be @-mentioned in the future.

We explicitly model future @-mentions, i.e., @-mentions as measured 6 months beyond
the “observation period”, described further in Section 4.6. Having an effective model that
explicitly predicts future behavior has higher utility to potential future applications than an
aggregate regression model over the whole history.

RQ 1: Can we describe/predict future @-mentions in terms of developer visibility,
expertise, productivity, and responsiveness?

Our second question relates to the utility of our model. If one wishes to use our model
on their own projects, it would be helpful to be able to use the model pre-trained on some
data, e.g., trained entirely on a separate project and applied to one’s own.

RQ 2: Can models trained entirely on one project be reliably used to predict @-
mentions on another project?

Our third question is more theoretical in nature. Specifically, we wish to describe the
differences between projects in terms of our determinants of @-mentions and identify
some potential reasons behind these differences. As GitHub is composed of subcommu-
nities which may have some idiosyncrasies, we believe that these differences may be
reflected in our describers of @-mentions.

RQ 3: Is there evidence of project-specific @-mention culture? Or are the determi-
nants of @-mentions a GitHub-wide phenomenon?

4 Data andMethodology

All data was collected by querying GitHub’s public API using the Python package
PyGithub,4 with the exception of issue fixing data, which was gathered by cloning individ-
ual repositories. Commits are found through the official GitHub API, including commits

4https://github.com/PyGithub/PyGithub

Empirical Software Engineering (2019) 24:3904–39323910

https://github.com/PyGithub/PyGithub


within and without pull-requests. Developers for a given commit are identified automati-
cally by inspecting the commit’s specified author within git, and querying GitHub for an
existing user with the same name. If no GitHub user is found, the commit is not attributed
to any user in our data. Data was gathered during the month of July 2017.

4.1 Filtering and Cleaning

For our data set, we looked at the top 900 most starred and followed projects, each of which
likely to contain enough issues and commits for us to model robustly. The number of stars
and followers are proxies for project popularity. We noted that among the 900 projects there
was a significant difference in popularity among the 1st and the 900th project. Some of the
measures we used are expensive to calculate, so we had to limit our calculations to a smaller
sample. We chose as our sample a random subset of 200 of those 900 projects. The choice
of a random sample, as opposed to, say, the very top 200, was made to ensure we captured a
diverse mixture of projects in terms of popularity, and, thus, have a more widely applicable
results from the modeling.

Due to our described project selection method, it is possible that non-software projects
are within our final sample. However, our research questions are not software specific; our
findings are meant to reflect the whole of GitHub - primarily software, but also projects
focused on other goals (e.g., books and link collections).

We ran multiple parallel crawlers on these 200 projects to gather commits, issues, pull
requests, and associated metadata. Due to some internal issues with the PyGithub package,5

some projects failed to return complete data. We created a verification system (completely
external to PyGithub) to determine which projects were incomplete, and removed them
from consideration. Finally, we only consider developers with at least one commit to their
given project in order to avoid a proliferation of zeros in our covariates, as many developers
participate in issue discussions but never contribute. This was done in order to focus on
those who may become @-mentioned in the future; without any commits, we argue it is
unlikely to be @-mentioned in the future. To support this claim, we note that in our data, the
average number of future @-mentions for those with zero commits is 0.382 with a standard
deviation of 1.98 commits; in contrast, the average number of future @-mentions for those
with more than zero commits is 1.98 with a standard deviation of 10.62.

As we wish to explicitly model future @-mentions, we introduce a time split in our data.
For each project, we define a time frame under which we “observe” the project and its
participants, and model our response as calculated beyond our observation time frame - the
“response” period. We decided to set our response period as 6 months, i.e., 6 months prior
and up to the end of our data. We also tested periods of 3 and 12 months; 3 months had
little difference to 6 months, and 12 months left us with too little data to model. We then
filtered out each individual who had a project participation shorter than 3 months. This is
because with 2 months of data, there exists only one line which can be fit: the line with
the first month as the start point, and second month as the end point. With 3 (or more) data
points, there exists more between- and within-subject variance to be captured by the model,
further reducing the worry of overfitting, as there are multiple lines which may fit ≥ 3
data points. Thus, we explicitly model future @-mentions, as our response period is disjoint
from our observation period. In total, this yielded 154 unique projects comprised of 17,171
project-developer pairs to test our hypotheses.

5PyGithub did not handle properly some Null responses from GitHub’s API.

Empirical Software Engineering (2019) 24:3904–3932 3911



Fig. 1 The network creation process. Shown is a discussion thread and the resulting reply and call networks.
Note this can be a multigraph (not shown)

4.2 Issues and @-Mentions

For each project on GitHub, individuals can open up an issue thread where others can com-
ment and discuss a specific issue.6 We constructed a social network for each project using
@-mentions in their issue comment threads; Fig. 1 depicts this process. Similar to Zhang
et al. (2015), i.e., every edge (u, v) is developer u @-mentioning v somewhere in their post.
This yields a directed multigraph; there can be multiple edges (u, v) depending on how
many times u @-mentions v. We distinguish between two edge types: reply and call. A reply
edge is defined by u @-mentioning v when v has already posted in the given thread. A call
edge is defined by u @-mentioning v when v has not yet posted in the given thread. Thus,
a call edge is representative of the phenomena we wish to measure, described in Section 2;
u calls upon v as u wishes for v’s input for the discussion at hand.

4.3 Focus

As a measure of visibility, we wished to capture phenomena more nuanced than merely raw
indegree and outdegree7, as raw degree counts do not take into consideration the larger,

6Note that pull requests are a subset of issues.
7Though we do use outdegree in our model as well.

Empirical Software Engineering (2019) 24:3904–39323912



neighborhood view. Standard global measures used in social network analysis are often too
expensive to calculate for our large @-mention networks.8 Thus, we require a measure that
takes into account a more global view that is relatively inexpensive to calculate. Here, we
introduce the idea of social focus in the @-mention network.

Theoretically, we believe that when given many choices on who should be contacted
(@-mention), individuals must make a decision, based on their knowledge of the potential
receiver’s characteristics (e.g., ability to help in a task) and who is more readily visible.
In social networks, knowledge of others is propagated through existing links. Thus, if an
individual is highly focused-on, it is likely that they will become more so in the future.
This means that the more focused-on a developer is, the more visible they likely are. In
addition, those who have lower social focus on others, i.e., they distribute their out-links
widely among many others, are also more likely to be visible to others.

To represent focus, we adapt a metric described by Posnett et al. (2013). This metric is
based on work by theoretical ecologists, who have long used Shannon’s entropy to mea-
sure diversity - and its dual, specialization - within a species (Good 1953), and can be
derived from Kullback-Leibler divergence. For discrete probability distributions P and Q,
Kullback-Leibler divergence (KL) is defined as:

DKL(P |Q) =
∑

i

Pi ln
Pi

Qi

Bluthgen et al. define a species diversity measure, δ,9 using DKL (Blüthgen et al. 2006).
This measure is calculated naturally in a bipartite graph formulation, where each species
in the graph has its own diversity value δi . Posnett et al. use this metric, normalized by
the theoretical maximum and minimum (i.e., so δi ranges from 0 to 1), to measure “devel-
oper attention focus” (DAF ) (Posnett et al. 2013). When δi (a row-wise measure) is high,
developer i is more focused in commits to a fewer number of modules. Analogously, when
δj (a column-wise measure) is high, module j receives more focused attention from fewer
developers. They call these quantities “developer attention focus” (DAF i) and “module
attention focus” (MAF j ).10

In this work, we take these definitions and expand them to the social network of @-
mentions. Recall that we distinguish between two types of @-mentions: reply and call. We
can likewise represent our social network as a bipartite graph, where the rows and columns
of the adjacency matrix both refer to developers, and each cell suv is the count of directed
@-mentions from developer u to developer v for a given @-mention type. Thus, we anal-
ogously define ρu as the focus developer u gives in their reply @-mentions, and ρv as
the focus developer v receives from others’ reply @-mentions. Similarly, we define κu as
developer u’s focus in their call @-mentions, and κv as the focus developer v receives from
others’ call @-mentions.

Recall that we can interpret these values equivalently as a measure of specialization or
inverse uniformity. For example, if ρu is large, developer u specializes their replies to a
select group of others; if ρu is small, developer u uniformly replies to all others. Likewise,
if κv is large, developer v is called by a select group of others; if κv is small, developer v

8E.g., standard algorithms require a full adjacency matrix to be in memory at once; memory will be exhausted
for networks of our size.
9This measure is originally called d by Bluthgen et al., but we will use δ here to reserve d to represent
developers.
10We do not use MAF , we use an analogous form for our social networks.

Empirical Software Engineering (2019) 24:3904–3932 3913



is called uniformly by all others. We believe this intuition is useful to answer our research
questions. Thus, we define normalized outward social specialization and inward social
specialization measures for both replies (ρ) and calls (κ):

OSSu,ρ = ρu − ρu,min

ρu,max − ρu,min

ISSv,ρ = ρv − ρv,min

ρv,max − ρv,min

where OSSu,κ and ISSv,κ are defined analogously.

4.4 Attributing Commits That Need Changing

To identify commits that had to be changed in order to close an issue (i.e., likely buggy
commits), we use the standard SZZ algorithm (Śliwerski et al. 2005), as expanded in Kim
et al. (2006), with a few changes to accommodate GitHub nuances. GitHub has a built-in
issue tracking system; developers close open issues by using a set of keywords11 in either
the body of their pull request or commit message. E.g., if a developer creates a fix which
addresses issue #123, they can submit a pull request containing the phrase “closes #123”;
when the corresponding fixing patch is merged into the repository, issue #123 is closed
automatically. To identify likely bug-fixing commits, we search for associated issue-closing
keywords in all pull requests and commits. We then “git blame” the respective fixing lines
to identify the last commit(s) that changed the fixing lines, i.e, the likely buggy lines. We
assume the latest change to the fixing lines were those that induced the issue, and refer to
those changes as likely buggy, or buggy for short.

We note that an issue is a rather broad definition of a bug, as an issue can be brought up
to, e.g., change the color of text in a system’s GUI; this may not be considered a bug by
some definitions. However, as GitHub has the aforementioned automatic closing system,
we believe that our identification of fixing commits (and therefore buggy commits) does
not contain many false positives. Prior work has relied on commit message keyword search,
which may introduce false positives due to project-level differences in commit message
standards, i.e., what a commit message is expected to convey. These standards can vary
widely (Bird et al. 2009).

4.5 Variables of Interest

We are interested in measuring and predicting @-mentions as a function of readily observ-
able developer attributes, namely visibility, expertise, productivity, and responsiveness. We
operationalize these attributes as follows:

We define visibility as the ability for developers to note a person’s existence; if developer
A is not aware of the existence of developer B, it is unlikely that A would @-mention
B. This is akin knowledge-based trust. Here, we use our social specialization measures
OSSρ , OSSκ , and ISSκ , along with total social outdegree (total number of @-mentions
for a developer in a given project) as measures of visibility. We believe these measures are
reasonable as they identify one’s existence within the social network.

We define expertise as a developer’s ability to complete project tasks in accordance with
team expectations, related to characteristic-based trust. To represent this, we use number of
issue-inducing commits made by a developer, focus measure DAF , and a factor identifying
whether or not the given developer is the top committer or project owner. A higher number

11https://help.github.com/articles/closing-issues-using-keywords/

Empirical Software Engineering (2019) 24:3904–39323914

https://help.github.com/articles/closing-issues-using-keywords/


of issues can indicate a lack of aptitude for programming according to the project’s goals.12

It has been shown that a higher DAF (i.e., higher module specialization) is associated
with fewer bugs in a developer’s code (Posnett et al. 2013). Thus, DAF can represent
developers’ expertise in code modules. The top committer or project owner factor indicates
a certain level of prestige and expertise; one would expect the top contributor or project
owner would likely be the most expert in matters concerning the project. Number of fixing
commits was also calculated, but was not used due to collinearity with that of bug commits.

We measure productivity as the raw commit (authoring) count. Measures of produc-
tivity abound– most have been shown (of those we computed, e.g., lines of code added or
deleted) to highly correlate with commit count, especially in models where confounds are
recognized. We choose commit count as it is the simplest.

We describe responsiveness as a measure to answer the question: when you are called,
do you show up? One would expect that those who are responsive, and thus display their
reliability, will be called upon again. This is precisely defined as the number of times a
developer is called and responds to that call; e.g., if a developer is called in 10 unique issues
and responds in 8 of those issues, their responsiveness value is 8.

4.5.1 Extra-Project Controls

As stated, our interest is to identify readily observable attributes of potential @-mentionees
(e.g., within-project social activity and commit activity), and functions thereof. This is in
contrast to things that may be hard to observe, such as activity outside the project at hand
(e.g., outside-project social activity, exact number of commits to other projects, etc.). How-
ever, such a control for outside experience is likely necessary as, e.g., a developer that is
experienced outside the project may already be known due to outside channels, and thus
have an inflated likelihood of being @-mentioned to begin with. We consider an outside-
project attribute, developer’s GitHub age (in days), in order to control for experience outside
the project which may lead to increased @-mentions when project contributions are rel-
atively low. As GitHub age is readily observable through the profile interface on GitHub
(e.g., by viewing the contribution heatmap), we believe this to be a reasonably observable
control. Another outside-project control we considered was number of public reposito-
ries contributed to by a developer, as this is readily observable; however, this was highly
correlated with age, and was thus dropped from the model.

4.6 Modeling Future @-Mentions

To answer our questions, we use count regression in a predictive model. This allows us
to inspect the relationship between our response (dependent variable) and our explana-
tory variables (predictors or covariates, e.g., responsiveness) under the effects of various
controls (e.g., project size).

There are many forms of count regression; most popular are so-called Poisson, quasi-
poisson, and negative binomial regression, all of which model a count response. In our
work, we are interested in @-mentions as measured by number of incoming @-mention
calls per person - a count. In addition, as our data contain many zeros, we need a method
that can accommodate; the methods listed above all have moderate to severe problems with

12We use issues fixed before closing as proxy for bugs; a higher value need not imply lack of aptitude, but it
indicates a change in expected coding behavior and expertise.

Empirical Software Engineering (2019) 24:3904–3932 3915



modeling zeros. Zero inflated negative binomial regression and hurdle regression are two
methods specifically designed to address this challenge by explicitly modeling the existence
of excess zeros (Cameron and Trivedi 2013). It is common to fit both types of models,
along with a negative binomial regression, and compare model fits to decide which structure
is most appropriate. Standard analysis of model fit for these methods uses both Akaike’s
Information Criterion (AIC) and Vuong’s test of non-nested model fit to determine which
model works best (Vuong 1989).

We employ log transformations to stabilize coefficient estimation and improve model fit,
when appropriate (Cohen et al. 2013). We remove non-control variables that introduce mul-
ticollinearity measured by variance inflation factor (VIF) > 4 (e.g., we do not use ISSρ

due to high VIF), as multicollinearity reduces inferential ability; this is below the generally
recommended maximum of 5 to 10 (Cohen et al. 2013). Keeping control variables with high
VIF is acceptable, as collinearity affects standard error estimates; as control variables are
not interpreted, we do not much care if their standard error estimates are off (Allison 2012).
We model on the person-project level, i.e., each observation is a person within a project. We
performed multiple hypothesis testing (p-value) correction by the Benjamini and Hochberg
method (Benjamini and Hochberg 1995). A squared age term is present in the zero model to
account for a quadratic shape in the residuals, along with its lower order term as is standard
in regression (Faraway 2014).

As noted in Section 3, we explicitly model future @-mentions; our response variable is
the value 6 months after our “observed” (i.e., covariate) data. As such, we build a predictive
model, not a fully regressive model - i.e., one that is built on the entirety of available data.
We note the difference is minor, but worth reiterating.

5 Results and Discussion

5.1 Case Study: Project-Level Reasons for Call @-Mentions

We are interested in empirically measuring the reasons behind the @-mention. To make sure
our theoretical underpinnings are reasonable, we performed a random manual inspection of
100 call @-mentions from our data set, to qualitatively identify the primary reason behind
the call. A sample of size 100 grants far above the recommended statistical power of 0.8 at an
error rate of 5% for 5 pairwise comparisons (for our 5 qualitative groups, discussed below)
based on 1-way ANOVA with 2-sided quality; thus, our results are considered statistically
sound (Chow et al. 2017). Though call @-mention use might be more common in some
projects than others, our sample of 100 call @-mentions were selected at random across all
projects, and thus our results should not be biased.

This study was performed initially by one author, with qualitative codes defined by prior
work (Stolcke et al. 2000) (discussed in Section 2.5) and in collaboration with another
researcher (not credited as an author of this work). We first identified a set of general codes
from the mentioned prior work, and consolidated these into the final set of 5 presented.
The goal of this case study was to validate theoretical reasoning discussed in Section 2,
specifically to identify whether or not our definition of a call @-mention is viable, as well as
guiding decisions regarding variables for our models. Thus, although our observed counts
within each category are statistically robust as defined by recommended procedure, this
study was performed primarily as a motivational study, rather than a strictly statistically
robust undertaking.

Empirical Software Engineering (2019) 24:3904–39323916



The counts of each category found in our manual inspection is shown in Table 1. In
the case of R, we argue that reliance and/or trust in the mentionee is clear: the mentioner
explicitly requests that the mentionee performs some defined task; if the mentionee was
deemed unreliable, the mentioner would be unlikely to trust them with an explicit task.

For R-S, the mentionee is not explicitly called upon to perform some task. However, the
mentioner seems to want the mentionee to respond (or perform a task), but does not wish to
explicitly tell the mentionee to act, likely out of politeness. Though the call to action is not
explicit, we argue this still represents mentionee reliability; like R, the mentioner wants the
mentionee to perform an action, but does not explicitly state as much.

In the case of I, the call is meant to tag the @-mentionee in case they want to participate;
not necessarily in order to respond to the thread, or perform some action. However, the
mentioner believes that the mentionee may be interested in the issue at hand. This is similar
to R-S, albeit slightly weaker, as the mentioner may not have a particular task in mind for
the mentionee. However, this still indicates that participation from the mentionee may be
appreciated. E.g., in Table 1, in the I example, @DavidGoll @karelz are cc-ed in a message
to @mconnew, to inform them of a new development in a discussion they were previously
involved.

In the case of CA, the mentioner is calling the mentionee in order to give credit, e.g.,
when the mentionee produced an important patch that is relevant to the discussed issue.
Though this is not a clear reliance on the mentionee in description, in practice we find it is
often used in a similar way to I; participation from the mentionee may be appreciated, but
not necessary.

Across all 100 manually inspected cases, we found only 3 cases in which the call @-
mention does not fall into the aforementioned categories (3%); one appears to be a misuse of
the @-mention; the other two are due to users changing their GitHub display name after the
@-mention is seen, thus throwing off our detection of the @-mention as a call rather than
a reply. Thus, we argue that the call @-mention is consistently representative of reliance on
the mentionee.

Table 1 Call @-mention categories, samples, and case study

Category Example Count

R (Request) Project: hashicorp/terraform; Issue: 7886
“@phinze - can we please have someone
take a look at this PR now that tests and docs
are complete?”

39

R-S (Request-Suggest) Project: dotnet/roslyn; Issue: 18363 “”... I
don’t know if the test flavor recognizes this
capability. @codito @sbaid would know.”

17

I (Inform) Project: dotnet/corefx; Issue: 8673 “/cc
@DavidGoll @karelz @mconnew My cur-
rent understanding (based on WinHTTP’s
response) is ...”

33

CA (Credit Attribution) Project: avajs/ava; Issue: 1400 “... There
is already a PR for this though, thanks to
@tdeschryver ...”

8

Misuse or Misclassification Project: celery/celery; Issue: 817 “We are
also using them in production @veezio for
quite some time, works fine.” Author’s note:
@veezio is a company GitHub account.

3

Empirical Software Engineering (2019) 24:3904–3932 3917



5.2 Future @-MentionModels

Figure 2 shows a selection of variables from our categories of interest and their paired
relationship with future @-mentions. For all variables, we see a strong positive relationship
with @-mentions; the largest correlation sits with developer responsiveness (78.90%).

Though paired scatter plots provide initial insight to determinants of potential power, we
must model them in the presence of other variables, along with controls, to properly answer
our questions.

RQ 1: Can we describe/predict future @-mentions in terms of developer visibility,
expertise, productivity, and responsiveness?

Table 2 shows our model of future @-mentions, with determinants of interest grouped
and separated from one another. Our analysis points to a zero hurdle model as providing
the best fit, which separately models the process of attaining one’s first call (“zero” model,

Fig. 2 Future @-mentions vs. selected attributes of visibility, expertise, productivity, and responsiveness.
Axes log scaled

Empirical Software Engineering (2019) 24:3904–39323918



Table 2 Future @-mention model; p-values corrected by BH method. User subscripts omitted; they refer to
the developer under observation within the model

Dependent variable:

Future @-mentions (6 months later)

Count (Std. Err.) Zero (Std. Err.)

Visibility

OSSρ 0.103a (0.045) 0.351c (0.100)

OSSκ −0.046 (0.040) 0.508c (0.099)

ISSκ −0.283c (0.047)

Log Social Outdegree 0.058c (0.008) 0.433c (0.022)

Expertise

Log Number of Buggy Commits −0.065y (0.010) 0.187c (0.043)

DAF −0.040 (0.042) −0.134 (0.101)

Top Committer or Project Owner 0.055 (0.044) 0.691 (0.534)

Productivity

Log Commits 0.086c (0.008) 0.453c (0.025)

Responsiveness

Log User Responsiveness −0.003 (0.012)

Controls

Committer Only 0.141c (0.039) −1.584c (0.060)

Log Total Posts in Project 0.021a (0.010) 0.151c (0.021)

Log Observed @-Mention Value 0.980c (0.011)

User GitHub Age (Days) −0.137c (0.020) −1.470c (0.430)

User GitHub Age (Days) Squared 0.116c (0.031)

Intercept 0.637c (0.180) 1.684 (1.511)

Observations 17,171

Mean Absolute Error 0.910

Mean Squared Error 15.769

†p<0.1; ap<0.05; bp<0.01; cp<0.001

logistic regression), and the process of attaining beyond one call (“count” model, negative
binomial regression). We tested for the usage of a negative binomial regression as opposed
to a Poisson regression in the count model by fitting an additional quasi-poisson model
to test for issues of under- and over-dispersion, which can be an issue for Poisson models
and may affect model quality. Quasi-poisson models explicitly fit a dispersion parameter
which can be used to evaluate under- and over-dispersion; negative binomial models can be
used for over-dispersed data (Rodrıguez 2013). Results from these tests suggested that over-
dispersion was an issue for our data; in addition, a negative binomial count model had a
better fit than both Poisson and quasi-poisson models. Thus, we chose to model non-zeroes
using a negative binomial model in our hurdle regressions. Figure 3 depicts predicted and
observed values along with a y = x and trend line.

The mean average and mean squared error are 0.910 and 15.769, respectively. To aid in
interpretation of how good this predictive model is, we note that the range for the observed
future @-mentions is from 0 to 136, with an average of 2.637; thus our mean average

Empirical Software Engineering (2019) 24:3904–3932 3919



0

50

100

150

0 50 100
Observed Value

P
re

di
ct

ed
 V

al
ue

Trend Line

y = x

Fig. 3 Predicted vs. observed values

error with respect to the spread is 0.910/173 = 0.670% and with respect to the average is
0.910/2.380 = 38.24%. In other words, looking at the mean average error, our model dif-
fers from the observed value by an average of 0.910 call @-mentions. Thus, we say this
indicates a good model fit.

Visibility We see that OSSρ and social outdegree are positive for both the count and zero
components of our model. This suggests that a higher social focus (in replying to others)
and larger overall social outdegree associates with being @-mentioned in the future - be it
in the transition from zero to greater than zero @-mentions, or in increasing @-mentions.
However, we see a negative coefficient for ISSκ , suggesting that when others focus their
calls on the observed individual, the observed’s @-mention count decreases.13 This negative
coefficient is not unexpected; ISSκ is derived from the Kullback-Leibler divergence, and
when there are many cells (i.e., others that can be called), it is expected that a higher focus
is correlated with a lower raw value. E.g., consider the case where 10 individuals can call on
developer A. If each calls A once, the raw value for calls is 10 and ISSκ is low; if only one
developer calls A, the raw value is 1 but ISSκ is high. In support of this intuition, Posnett
et al. (2013) found that a higher value of DAF associates with a lower raw cell count.

In sum, having a larger social presence (OSSρ , social outdegree) may associate with
one’s future @-mention count. These values are much easier to increase for an individual
than ISSκ , as ISSκ is a function of indegree, and thus less in the individual’s control.

Expertise The number of likely buggy commits a developer makes has a negative coeffi-
cient for the count component, suggesting that a larger number of likely buggy commits

13ISSκ is not used for the zero component; it is undefined when call mentions are 0.

Empirical Software Engineering (2019) 24:3904–39323920



associates with a decrease in @-mentions. This is as expected: a higher expertise should
lead to more future @-mentions. However, we see a positive coefficient for the zero com-
ponent. This is puzzling at first, but may be explained thusly: it is known that contributions
are extremely important in order to gain technical trust in OSS (Gharehyazie et al. 2015),
supported also by the large coefficient for commits in the zero component (0.453). As
the number of likely buggy commits is correlated with the number of overall commits by
a developer, this positive coefficient indicates that contributing at all, regardless if one’s
contribution is buggy, is important in getting the first call mention, and thus the first
@-mention.

Productivity In both the zero and count components, we see a positive coefficient for com-
mits, indicating that increased productivity is associated with higher @-mentions. The zero
model coefficient is very high. This is in support of productivity being important in receiving
the first @-mention.

Responsiveness Interestingly and contrary to our hypothesis, for the count component, we
see an insignificant coefficient. Responsiveness is not considered in the zero component as
one must be called in order to reply, which means responsiveness is undefined for those
with an @-mention count of 0.

Research Answer 1: We see a positive effect of visibility measured by , and a
negative effect for . More likely buggy commits (a measure of negative expertise)
is associated with lower @-mentions when one has already been @-mentioned, and
higher @-mentions if one has not yet been @-mentioned, possibly explained by the
idea that any productivity associates with a first @-mention. We see positive effects for
productivity, and no significant effect of responsiveness.

5.3 Case Study: Attributes of Interest andModel Fit

To further examine RQ 1 and provide concrete reasoning behind our model’s fit, we per-
formed case studies. Specifically, we looked at those with high observed future @mentions
but low model predictions, and those who transition from zero to nonzero @-mentions.

5.3.1 Sub-Case Study: High Observed @-Mentions, Low Predicted @-Mentions

For this study, we manually examined those with less than 50 and greater than 15 observed
future @-mentions, nonzero observed past @-mentions, and a predicted @-mention count
of less than or equal to 1; i.e., those along the bottom of the x-axis of Fig. 3. In this region,
all individuals have never explicitly replied to another developer (i.e., OSSρ and social
outdegree are both 0), a low number of commits (1 to 9); as these coefficients are positive in
our model, these individuals should be pushed to higher counts. However, all developers in
this region also have relatively high ISSκ (0.1 to 1.0), and have experience in other projects
(indicated by a large developer age). As both ISSκ and developer age have a relatively
large negative influence in our model, this explains why our predicted future @-mentions
are low from a statistical standpoint.

To dig deeper, we consider the case of a particular developer in this region: devel-
oper arthurevans, for project google/WebFundamentals. In issue #4928 of the project, a

Empirical Software Engineering (2019) 24:3904–3932 3921



discussion about PRPL patterns,14 the poster says: “I’ll defer to the grand master of all
things PRPL, @arthurevans for what the final IA for this section might look like”. Although
arthurevans has low observed activity in the project itself (e.g., low social outdegree and low
commit count), this indicates that the poster greatly values arthurevans’s input. The story
is similar for the others in this region;15 the issue poster values the opinion of the called-in
person, indicating a level of outside-project expertise.

In summary, it appears this region consists of those who are actually expert, but this
expertise is not reflected by their in-project contributions. Although we attempt to capture
outside expertise through a developer’s overall GitHub age, we were unable to include other
metrics of outside expertise (e.g., number of public repositories contributed to) due to high
multicollinearity. Orthogonal metrics of outside expertise may exist that can better fit these
individuals.

5.3.2 Sub-Case Study: Transitioning From Zero @-Mentions

For this study, we took a random sample of 10 individuals (out of 235) who had zero
observed @-mentions, but transitioned to nonzero @-mentions in the next 6 months, i.e., our
future period. In this region, we observe a combination of factors: project age and newcom-
ers who wish to participate more. Some projects are relatively new or newly popular, which
means that although they are rapidly gaining popularity on GitHub, their issue production
rate hasn’t yet caught up. Though all individuals have contributed to the project, there has
not been a chance for @-mentions to be observed; those transitioning from zero @-mentions
to nonzero @-mentions would likely have nonzero @-mentions had the observation time
split been later in the project.

Perhaps more interesting, we see some new individuals that have recently contributed
commits and seem genuinely interested in participating more. For example, in pull request
#2587 of the project prometheus/prometheus, we see the first call to developer mattbostock,
causing a transition from zero to nonzero @-mentions. Prior to this, we see that mattbo-
stock had been contributing to issue discussions (e.g. issues #1983 and #10), bringing up
problems and providing potential solutions. Thus, due to signaling interest and participating
in discussions (visibility), providing commits (productivity), and having no issues against
these commits (expertise), we see them being eventually recognized in an @-mention.

RQ 2: Can models trained entirely on one project be reliably used to predict @-
mentions on another project?

To answer this question, we require project-specific models of @-mentions. Due to the
sparseness of data, adding a factor to the existing model in Table 2 causes estimation to
diverge. Thus, to avoid divergence, we fit simplified models with selected attributes of vis-
ibility (OSSρ , ISSκ , social outdegree), expertise (likely buggy commits), productivity
(commits), responsiveness, and developer’s outside project experience (GitHub age). A sub-
set is required due to the smaller number of observations per project; too many variables
for too little data can cause issues as, e.g., small multicollinearity can cause big issues for
small data. Thus, we select only a few representative variables from each of our groups of
interest. For consistency, we explicitly fit separate models for the transition from zero to

14https://developers.google.com/web/fundamentals/performance/prpl-pattern/
15We could not perform this in-depth study for discussions not in English.

Empirical Software Engineering (2019) 24:3904–39323922

https://developers.google.com/web/fundamentals/performance/prpl-pattern/


nonzero (zero component) and for nonzero count (count component), as is done implicitly
by the hurdle model.

Figure 4 contains symmetric heatmaps of predictability for our project-specific models
(count and zero, respectively). To measure predictability of the count component, we use
the average of mean absolute error (MAE) between each pair of models. For projects i and
j , with data di and dj , and models yi and yj , we compute predicted values ŷi = yi(dj )

and ŷj = yj (di); i.e., we predict using one model’s fit and the other model’s data, thus
providing a measure of cross-project model fit. We then compute the average MAE between

the two fits i.e.,
ŷi+ŷj

2 , and plot this value in each heatmap cell. For the zero component,
we analogously compute fit by calculating the average area under the receiver operating

characteristic curve (AUC) between two projects i.e.,
AUC(ŷi )+AUC(ŷj )

2 . For MAE, a lower
value is better; for AUC, a higher value. We then plot a dendrogram, showing clusters of
projects based on predictive ability.

For both the count and zero components, we generally see good fit across projects (lower
average MAE, higher average AUC), with some outliers. For the count case, we see that
uxsolutions/bootstrap-datepicker is an anomaly in having poor fit for many projects, being

Fig. 4 Cross-project predictive power heatmap for each project-specific model, count (a) and zero (b)
components

Empirical Software Engineering (2019) 24:3904–3932 3923



grouped in its own cluster. Otherwise, there are no immediately clear clustering relation-
ships between projects, other than that the mean MAE is generally below 10, as noted in the
density plot.

For the zero case, we also see one clear outlier: akka/akka. In general, cross-project fits
for this project are relatively poor compared to the majority. The reason for this may be
due to the difference in importance for our determinants of interest as compared to other
projects. Figure 5 shows our fitted coefficients for each project model. For the zero com-
ponent, though akka/akka does not lie on its own according to hierarchical clustering, we
see that its coefficients are very different from other projects, with a negative coefficient
for commits and almost zero coefficients for all other variables (except social outdegree).
This explains the poor cross-project fit; in this project, a higher number of commits asso-
ciates with a lower predicted @-mention count, while in the majority of other projects this
coefficient is positive (or nearly zero).

In summary, we do see a general trend of good fit for both the count component and, to
a lesser extent, the zero component.

Research Answer 2: The count component of each project-specific model has over-
all good fit when predicting purely cross-project. A similar trend exists for the zero
component, though to a lesser extent on average.

RQ 3: Is there evidence of project-specific @-mention culture? Or are the determi-
nants of @-mentions a GitHub-wide phenomenon?

Figure 5 contains heatmaps of coefficients for the count and zero components of our
project-specific models. When looking at each column, we see some coefficients that are
almost uniformly the same, e.g., responsiveness for both components, commits for the count
component, and likely buggy commits for the zero component. However, we do see differ-
ences, e.g., OSSρ in both model components is negative for some and positive for other
rows.

The fact that there are differences per column (i.e., per coefficient) for most coefficients
lends credence to the idea that there are project-specific @-mention culture differences on
a per attribute basis. However, there are things that don’t change across projects, e.g., the
importance of commits in gaining more @-mentions. In addition, the generally high cross-
project predictive power shown in Fig. 4 suggests that project-specific culture differences
may not matter too much. To identify some concrete reasoning behind these particular
differences in variable importance, we turn to another case study.

5.4 Case Study: Project-Level Differences

Reflecting on Fig. 5, here we ask: why are some coefficients positive for a number of
projects, and negative for others?

As OSSρ seems to exhibit this behavior in both our count and zero models, and sig-
nificantly so for our global model, we choose it for our study. For the zero model, we see
a negative coefficient for projects uxsolutions/bootstrap-datepicker, pouchdb/pouchdb, and
codemirror/CodeMirror; indicating higher specialization in one’s replies associates with
lower future @-mentions in the projects.

One explanation for this phenomenon could be due to a larger inner circle as com-
pared to other projects; i.e., to gain @-mentions one must become visible to more people.

Empirical Software Engineering (2019) 24:3904–39323924



Fig. 5 Heatmap of coefficients for project-specific models, a count and b zero components

For both uxsolutions/bootstrap-datepicker and pouchdb/pouchdb, this seems to be the case.
When looking at the distribution of commits across contributors, in both projects the origi-
nal top committer has largely reduced their commit rate, while in the mean time the second
largest committer has picked up the pace. In addition, the distribution of commits seems
to be comparatively more uniform across contributors, indicating a larger inner circle. For

Empirical Software Engineering (2019) 24:3904–3932 3925



codemirror/CodeMirror, the distribution of commits is highly concentrated in the top com-
mitter; however, when viewing issues, we see that multiple others contribute to review and
discussion. This likewise indicates a larger inner circle that one must be visible to. For the
count model, the story seems to be the same for projects with a negative coefficient; there is
either a more uniform distribution of commits across the top contributors, or a larger number
of individuals participating in issue discussions, indicating a larger inner circle.

For projects with positive coefficients, we see a different behavior. In pull requests, it
appears the top project members are more open to calling on others to provide input. E.g.,
for project spotify/luigi pull request #2186, a top contributor asks the original poster to run
git blame on the modified code to see who originally posted it, admitting a lack of expertise
about the associated module; we see similar behavior for pull request #2185. For project
addyosmani/backbone-fundamentals issue #517, we see the project owner calls on another
contributor for their input, stating “[I] would love to suggest your project to devs ...”. Recall
that a positive coefficient for OSSρ indicates a specialization in reply behavior, i.e., more
focus in one’s social behavior. As the top contributors for these projects seem to be the
ones calling on others, it appears one may specialize their social behavior towards the top
contributors to get noticed; hence, more social specialization may associate with higher
future @-mentions.

Research Answer 3: We see slight indications of project-specific @-mention culture.
The high cross-project performance suggests that these differences may not matter
much for predictivity.

6 Practical Implications

Understanding which of the observable attributes of a developer are most correlated with
their status can inform developers about how others see them, and help them learn the com-
munity values. To that end, our models of future @-mentions based on past observable
behavior can be useful for informing developers as to which of their external characteristics
matter to others, for them to be called for help. Such an understanding can be a first step to
becoming a part of a community, or belonging. In practice, this means examining the coef-
ficients of our models, and noting the attributes (i.e., metrics) having significant positive
and significant negative coefficients in the models. Those would be the attributes that the
data says may matter most to the community. Since we model two separate phenomena, the
count and the zero models in Table 2, there are different attributes that matter to the commu-
nity for attaining a higher count than for getting the first @-call, as discussed in the Results
and Discussion section.

But understanding community values can also lead to wanting to enhance those values, or
perhaps modify them. Periodic re-fitting and examination of the models can reveal trajectory
changes in the community values, e.g., increased emphasis on participating in discussions,
or decreased emphasis on responsiveness over time. If the resulting trajectories are showing
a departure from the community goals, then concerted, community-wide efforts, e.g. by
establishing guidelines or even rules, may be needed to modify those trajectories and bring
them closer to the ideals.

As discussed in Theory and Related Work above (Section 2), the (call) @-mention repre-
sents a deeper underlying phenomenon than just a tool for getting attention. It is also a belief

Empirical Software Engineering (2019) 24:3904–39323926



in the @-mentionee’s abilities to provide valuable input (Tsay et al. 2014), often explicitly
stated as being greater than the caller’s, to accomplish a particular task at hand. Attaining
a social (or technical) status as the developer who “gets the job done” can be desirable,
as these individuals may more easily enter the “circle of trust” within a given OSS project
(Gharehyazie et al. 2015), potentially reducing the time it takes for their commits to be
incorporated into the code base (Dabbish et al. 2012; Calefato et al. 2017). Having higher
status also increases one’s visibility, and with it the chances of participating (or further-
ing participation) in popular projects (Dabbish et al. 2012). In addition, social interaction
between work group members has been found to be important for task success (Saavedra
et al. 1993), and the elevation of members to a “role model” status (Bandura 1973; Bandura
and Walters 1977). On GitHub, these role models (“rockstars”) have been found to be impor-
tant influencers on the general community, providing examples of coding best practices and
facilitating novice developers to learn (Dabbish et al. 2012; Lee et al. 2013). Our models
in Table 2 offer good predictivity, and indicate which attributes of developer activities may
be influential in attaining future @-mentions. For example, our model shows that commit-
ting more is associated with more future @-mentions, for the first mention and beyond.
In addition, having a larger outgoing social presence (social outdegree) is associated with
more future @-mentions. Thus, developers who wish to attain the above mentioned status
roles can use these model associations as guidelines to finely calibrate their behavior over
time to exhibit in the community the characteristics that can result in them gaining higher
status.

Our finding that the models can perform cross-project prediction well suggests that, on
average, it can be expected that one’s activity pattern in a project, if emulated in other
projects, can result in the same level of @-mentions for them. This also implies that by
simply joining the other project and continuing the same behavior as in the former project,
one can expect similar @-mention levels there. However, in each project a developer needs
to demonstrate sufficient levels of the predictors mentioned above in order to be called upon,
which presumably will take some time.

Some of our results were less obvious than others, e.g., the insignificant effect of respon-
siveness. This may indicate that it is worth calling on and waiting for the high-status people
to get involved, even if they are slow.

From a security perspective, trusting new people with the project’s code is associated
with more maintenance and supervision, which is certainly a concern. Based on our results
in this paper, increased efforts could be useful towards training new people to the specifics
of the project’s code, e.g., by creating a portal for newcomers (Steinmacher et al. 2016).
Future work may include building online tools to facilitate newcomer onboarding, e.g., the
creation of “tag profiles” which provide suggestions to new users regarding how to increase
their @-mentions, an indicator that they are important to a project’s success, thus benefiting
the project as a whole; also (and perhaps more controversially) it might be helpful to have
tools to measure how often each developer’s changes induce future fixes.

7 Threats to Validity

There were challenges involved in all aspects of the work, largely due to the loaded rea-
soning behind @-mentions. Being @-mentioned is not just a result of technical prowess;
@-mentioning is also a social phenomenon. Many potential issues were anticipated and
carefully addressed. Once we settled on the idea of using call @-mentions, we were able to
connect our outcome with background theory on the multidimensionality of @-mentions.

Empirical Software Engineering (2019) 24:3904–3932 3927



To define @-mentions precisely, we necessarily had to narrow our definition specifically to
call mentions in issue discussions.

We acknowledge that only considering individuals with non-zero commits is a threat.
However, the density of @-mentions for those with zero commits is highly concentrated at
zero (median 0 @-mentions for those with zero commits, mean 0.26). In addition, this helps
alleviate the threat of bots as bots often must be @-mentioned to be activated; however,
most bots do not show up in the “authors” field for a given commit (they may show up in
the “committer” field, but we do not use this field in our work). In addition, as we have
data from many projects, unless bots are the vast majority of our data points, they should
not have a palpable effect on our model fit. We also manually inspected commits to try and
filter out bots. However, we cannot be certain that all bots are removed from our data; thus,
we acknowledge bots as a threat.

Regarding our identification of “reply” and “call” @-mentions, it is possible that we
misidentify a “reply” as a “call” if an individual uses multiple GitHub accounts to post
within a project. E.g., if someone first posts with username A, then later posts as username
B, we would identify B as a “call” rather than a “reply”. Due to the confusion that would
likely ensue if this was common, we do not see this as a major threat.

We acknowledge that our identification of likely buggy commits may have issues. The
method we use is supported by multiple prior works (Śliwerski et al. 2005; Kim et al. 2006),
and seen as a “standard method”. However, this does not have the robustness of a method
that, e.g., uses an explicit bug tracker to identify buggy commits, and has issues as described
by prior work (da Costa et al. 2017; Rodrı́guez-Pérez et al. 2018). Due to the structure of
GitHub, there is no guaranteed method to identify buggy commits that will work across all
projects. Thus, we acknowledge this as a threat.

We note that our operationalization of productivity through commits has its issues. This
includes the issue of varying commit styles amongst developers and between projects; some
projects may want commits to be as small as possible, while others may not care for or
enforce such a rule. We also tested for the inclusion of MAF and DAF in their original
forms from prior work, which can be seen as productivity measures, as well as raw lines
of code. However, these measures were highly correlated with commits. Thus, we chose to
represent productivity with a more easily understood measure - commits - for the sake of
model parsimony (Vandekerckhove et al. 2015).

Though we attempt to model developer expertise through their GitHub age (in days), we
acknowledge a threat with this operationalization. Though age is often an important indi-
cator of expertise, expertise can be measured outside of age, e.g., a contributor may have a
specific skill set that is sought after in a project, and thus may be called upon regardless of
their age. We do have a semi-overlapping measurement of code-based skill through com-
mits, though this is not guaranteed to be adequate in controlling for this phenomenon. And,
as noted above, MAF and DAF - which can be interpreted as more complex measures of
expertise - were highly correlated with commits. It may be possible to measure skill-specific
expertise by, e.g., looking at a developer’s commit history and seeing the subject domain
of their contributions prior to being called. However, this measurement would be difficult
to obtain as it would require a labeling of subject domains, which GitHub does not reliably
provide. Thus, though we attempt to control for developer expertise, we note this as a threat
to validity.

We also acknowledge that coefficient estimates are somewhat small, and we do not report
effect sizes (beyond interpreting coefficient estimates as “effect sizes” themselves). This is
because standard effect size calculations, E.g., Cohen’s d (1988), are not well-behaved for
non-Gaussian distributions - as is the case in our models.

Empirical Software Engineering (2019) 24:3904–39323928



Our case studies would benefit from larger amount of data. The case study sizes were due
to the regions of interest; our regions were small, and thus our case studies were relatively
small.

Our work is supported by prior qualitative research into @-mention usage. Still, we
acknowledge that our study would likely benefit from further qualitative studies, e.g., a
survey of developers on their use of the @-mention.

8 Conclusion

We performed a quantitative study of @-mentions in GitHub, as captured in calls to peo-
ple in discussions. We supplemented those with case studies on samples of discussions, to
help triangulate our findings. Our models have good fits to the data, suggesting that our
formulation of @-mentions is explained well by the data.

The idea that projects in an ecosystem have similar models of what it means to be wor-
thy of an @-mention is appealing. We find that the good cross-project predictive power
cannot be simply distilled down to productivity in our models, thus adding evidence toward
the multidimensional nature of @-mentions. It is also very reasonable that there would be
cliques of projects in which the sense of who to @-mention is even more uniform than
across the whole ecosystem, and our findings underscore that. Obvious open questions here
are: how do notions of @-mentions get in sync? And, to borrow from ecology, does the
robustness of the @-mention models across GitHub convey any fitness benefit in the ecosys-
tem? We can see a plausible mechanism that would offer an answer to the first: projects
share people and people cross-pollinate the @-mentioning behavior across projects in which
they participate. We leave the validation of this, and other models, to future work. The @-
mention model robustness, likewise, implies some preference for success, be it by design or
an emerging one, across the ecosystem. This can be a function of people’s mobility in the
ecosystem and their preference for and vigilance to participate in popular projects; we leave
the answers for future work.

References

Ackerman AF, Fowler PJ, Ebenau RG (1984) Software inspections and the industrial production of software.
In: Proceedings of a symposium on Software validation: inspection-testing-verification-alternatives.
Elsevier North-Holland, Inc, pp 13–40

Allison P (2012) When can you safely ignore multicollinearity? https://statisticalhorizons.com/multicollinearity
Bandura A (1973) Aggression: A social learning analysis. Prentice-Hall
Bandura A, Walters RH (1977) Social learning theory
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the royal statistical society. Series B (Methodological) pp 289–300
Bird C, Gourley A, Devanbu P, Swaminathan A, Hsu G (2007) Open borders? immigration in open source

projects. In: The Fourth international workshop on mining software repositories
Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of mining

git. In: 6th IEEE international working conference on mining software repositories, 2009. MSR’09, pp
1–10. IEEE

Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC
Ecol 6(1):9

Brenkert GG (1998) Trust, business and business ethics: an introduction. Bus Ethics Q 8(2):195–203
Brockner J (1996) Understanding the interaction between procedural and distributive justice: The role of trust
Burke M, Marlow C, Lento T (2009) Feed me: motivating newcomer contribution in social network sites. In:

Proceedings of the SIGCHI conference on human factors in computing systems, pp 945–954. ACM

Empirical Software Engineering (2019) 24:3904–3932 3929

https://statisticalhorizons.com/multicollinearity


Burke M, Marlow C, Lento T (2010) Social network activity and social well-being. In: Proceedings of the
SIGCHI conference on human factors in computing systems, pp 1909–1912. ACM

Calefato F, Lanubile F, Novielli N (2017) A preliminary analysis on the effects of propensity to trust
in distributed software development. In: 2017 IEEE 12th international conference on global software
engineering (ICGSE), pp 56–60. IEEE

Cameron AC, Trivedi PK (2013) Regression analysis of count data, vol 53. Cambridge University Press,
Cambridge

Casalnuovo C, Vasilescu B, Devanbu P, Filkov V (2015) Developer onboarding in github: the role of prior
social links and language experience. In: Proceedings of the 2015 10th joint meeting on foundations of
software engineering, pp 817–828. ACM

Chow SC, Shao J, Wang H, Lokhnygina Y (2017) Sample size calculations in clinical research. Chapman
and Hall/CRC

Cohen J (1988) Statistical power analysis for the behavioural sciences
Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the

behavioral sciences. Routledge
da Costa DA, McIntosh S, Shang W, Kulesza U, Coelho R, Hassan AE (2017) A framework for evaluating the

results of the szz approach for identifying bug-introducing changes. IEEE Trans Softw Eng 43(7):641–
657

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: transparency and collaboration
in an open software repository. In: Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work, pp 1277–1286. ACM

Dourish P, Chalmers M (1994) Running out of space: Models of information navigation. In: Short paper
presented at HCI, vol 94, pp 23–26

Ducheneaut N (2005) Socialization in an open source software community: A socio-technical analysis.
Computer Supported Cooperative Work (CSCW) 14(4):323–368

Faraway JJ (2014) Linear models with R CRC press
Gallivan MJ (2001) Striking a balance between trust and control in a virtual organization: a content analysis

of open source software case studies. Inf Syst J 11(4):277–304
Gharehyazie M, Posnett D, Filkov V (2013) Social activities rival patch submission for prediction of devel-

oper initiation in oss projects. In: 2013 29th IEEE international conference on software maintenance
(ICSM), pp 340–349. IEEE

Gharehyazie M, Posnett D, Vasilescu B, Filkov V (2015) Developer initiation and social interactions in oss:
A case study of the apache software foundation. Empir Softw Eng 20(5):1318–1353

Good IJ (1953) The population frequencies of species and the estimation of population parameters.
Biometrika 40(3-4):237–264

Handy C (1995) Trust and the virtual organization. Harv Bus Rev 73(3):40–51
Hossain L, Zhu D (2009) Social networks and coordination performance of distributed software development

teams. J High Technol Managem Res 20(1):52–61
Husted BW (1998) The ethical limits of trust in business relations. Bus Ethics Q 8(2):233–248
Ibrahim WM, Bettenburg N, Shihab E, Adams B, Hassan AE (2010) Should i contribute to this discussion?

In: 2010 7th IEEE working conference on mining software repositories (MSR), pp 181–190. IEEE
Inglehan R (1999) Trust, well-being and democracy. Democracy and trust pp 88
Jarvenpaa SL, Knoll K, Leidner DE (1998) Is anybody out there? antecedents of trust in global virtual teams.

J Manag Inf Syst 14(4):29–64
Jones TM, Bowie NE (1998) Moral hazards on the road to the “virtual” corporation. Bus Ethics Q 8(2):273–

292
Kalliamvakou E, Damian D, Blincoe K, Singer L, German DM (2015) Open source-style collaborative

development practices in commercial projects using github. In: Proceedings of the 37th international
conference on software engineering-volume 1, pp 574–585. IEEE Press

Kavaler D, Sirovica S, Hellendoorn V, Aranovich R, Filkov V (2017) Perceived language complexity in
github issue discussions and their effect on issue resolution. In: Proceedings of the 32nd IEEE/ACM
international conference on automated software engineering, pp 72–83. IEEE Press

Kim S, Zimmermann T, Pan K, James Jr E et al (2006) Automatic identification of bug-introducing changes.
In: ASE’06. 21st IEEE/ACM international conference on automated software engineering, 2006, pp
81–90. IEEE

Kramer RM, Tyler TR (1996) Trust in organizations: Frontiers of theory and research. Sage
Lee MJ, Ferwerda B, Choi J, Hahn J, Moon JY, Kim J (2013) Github developers use rockstars to overcome

overflow of news. In: CHI’13 extended abstracts on human factors in computing systems, pp 133–138.
ACM

Empirical Software Engineering (2019) 24:3904–39323930



Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based expertise model of
developers. In: MSR’09. 6th IEEE international working conference on mining software repositories,
2009, pp 131–140. IEEE

McDonald N, Goggins S (2013) Performance and participation in open source software on github. In: CHI’13
extended abstracts on human factors in computing systems, pp 139–144. ACM

McKnight DH, Choudhury V, Kacmar C (2002) Developing and validating trust measures for e-commerce:
An integrative typology. Inf Syst Res 13(3):334–359

Mockus A, Herbsleb JD (2002) Expertise browser: a quantitative approach to identifying expertise. In: Pro-
ceedings of the 24rd international conference on software engineering, 2002. ICSE 2002, pp 503–512.
IEEE

Murphy G, Cubranic D (2004) Automatic bug triage using text categorization. In: Proceedings of the 16th
international conference on software engineering & knowledge engineering. Citeseer

Newton K (2001) Trust, social capital, civil society, and democracy. Int Polit Sci Rev 22(2):201–214
Oeldorf-Hirsch A, Sundar SS (2015) Posting, commenting, and tagging: Effects of sharing news stories on

facebook. Comput Hum Behav 44:240–249
O’Leary M, Orlikowski W, Yates J (2002) Distributed work over the centuries: Trust and control in the

hudson’s bay company, 1670-1826. Distributed work, pp 27–54
Posnett D, D’Souza R, Devanbu P, Filkov V (2013) Dual ecological measures of focus in software develop-

ment. In: Proceedings of the 2013 international conference on software engineering, pp 452–461. IEEE
Press

Qiu L, Lin H, Leung AKY (2013) Cultural differences and switching of in-group sharing behavior between an
american (facebook) and a chinese (renren) social networking site. J Cross-Cult Psychol 44(1):106–121

Robert LP, Denis AR, Hung YTC (2009) Individual swift trust and knowledge-based trust in face-to-face
and virtual team members. J Manag Inf Syst 26(2):241–279

Rodrıguez G (2013) Models for count data with overdispersion
Rodrı́guez-Pérez G, Zaidman A, Serebrenik A, Robles G, González-Barahona JM (2018) What if a bug has

a different origin? making sense of bugs without an explicit bug introducing change. In: Proceedings
of the 12th ACM/IEEE international symposium on empirical software engineering and measurement,
p 52. ACM

Saavedra R, Earley PC, Van Dyne L (1993) Complex interdependence in task-performing groups. J Appl
Psychol 78(1):61

Sato Y, Arita S (2004) Impact of globalization on social mobility in Japan and korea: Focusing on middle
classes in fluid societies. Int J Jpn Sociol 13(1):36–52

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: ACM sigsoft software
engineering notes, vol 30, pp 1–5. ACM

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their
first contribution in open source software projects. In: Proceedings of the 18th ACM conference on
Computer supported cooperative work & social computing, pp 1379–1392. ACM

Steinmacher I, Conte TU, Treude C, Gerosa MA (2016) Overcoming open source project entry barriers with
a portal for newcomers. In: International conference on software engineering

Stolcke A, Ries K, Coccaro N, Shriberg E, Bates R, Jurafsky D, Taylor P, Martin R, Van Ess-Dykema C,
Meteer M (2000) Dialogue act modeling for automatic tagging and recognition of conversational speech.
Comput Linguist 26(3):339–373

Tsay J, Dabbish L, Herbsleb J (2014) Let’s talk about it: evaluating contributions through discussion in
github. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, pp 144–154. ACM

Vandekerckhove J, Matzke D, Wagenmakers EJ (2015) Model comparison and the principle. In: The Oxford
handbook of computational and mathematical psychology, vol 300. Oxford Library of Psychology

Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica:
Journal of the Econometric Society pp 307–333

Yu Y, Wang H, Yin G, Wang T (2016) Reviewer recommendation for pull-requests in github: What can we
learn from code review and bug assignment? Inf Softw Technol 74:204–218

Yu Y, Yin G, Wang H, Wang T (2014) Exploring the patterns of social behavior in github. In: Proceed-
ings of the 1st international workshop on crowd-based software development methods and technologies,
pp 31–36. ACM

Zhang Y, Wang H, Yin G, Wang T, Yu Y (2015) Exploring the use of@-mention to assist software develop-
ment in github. In: Proceedings of the 7th Asia-pacific symposium on internetware, pp 83–92. ACM

Zhang Y, Wang H, Yin G, Wang T, Yu Y (2017) Social media in github: the role of @-mention in assisting
software development. Science China Information Sciences 60(3):032102

Zucker LG (1986) Production of trust: Institutional sources of economic structure, 1840–1920. Research in
organizational behavior

Empirical Software Engineering (2019) 24:3904–3932 3931



Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

David Kavaler is a Senior Research Scientist in Data Science and
Cyber Analytics at Sandia National Laboratories in Livermore, Cali-
fornia. He graduated from the University of California, Davis in 2018
as a member of the DECAL Lab. His current research interests are in
machine learning and deep learning as applied to problems in Cyber
Security, especially applications of Natural Language Processing.

Premkumar Devanbu received his B.Tech from the Indian Institute
of Technology in Chennai, India, before you were born, and his PhD
from Rutgers University in 1994. After spending nearly 20 years at
Bell Labs and its various offshoots, he joined the CS faculty at UC
Davis in late 1997. For almost a decade now, he has been working at
ways to exploit the copious amounts of available open-source project
data (and meta-data) to bring more joy, meaning, and fulfillment to
the lives of programmers. He is an ACM Fellow.

Vladimir Filkov is Co-Director of the DECAL Lab and Full Profes-
sor of Computer Science at the University of California, Davis. His
research interests lie in understanding the organization and effective-
ness of large, linked systems, especially socio-technical systems of
computer programmers and their code, but also biological organisms
(mainly plants). Prof. Filkov’s research has been funded by the USA
NSF, USDA, USFS, AFOSR, DOD, and other entities. Prof. Filkov’s
has been fortunate to have advised diverse cohorts of talented students
and postdocs, who now work on the faculty at top universit ies in the
world, and in leading research and industry organizations. His papers
have received a Test-of-Time award, five best paper awards and other
recognitions. Prof. Filkov is member of the ACM. He received his
PhD in Computer Science from Stony Brook University in 2002.

Empirical Software Engineering (2019) 24:3904–39323932


	Whom are you going to call? determinants of @-mentions in Github discussions
	Abstract
	Introduction
	Theory and Related Work
	@-Mentions on GitHub
	@-Mentions and Personal Reliability
	@-Mentions and Trust
	@-Mentions and Social Exchange
	@-Mentions and Discourse/Dialogue
	Expertise Recommendation

	Research Questions
	Data and Methodology
	Filtering and Cleaning
	Issues and @-Mentions
	Focus
	Attributing Commits That Need Changing
	Variables of Interest
	Extra-Project Controls

	Modeling Future @-Mentions

	Results and Discussion
	Case Study: Project-Level Reasons for Call @-Mentions
	Future @-Mention Models
	Visibility
	Expertise
	Productivity
	Responsiveness


	Case Study: Attributes of Interest and Model Fit
	Sub-Case Study: High Observed @-Mentions, Low Predicted @-Mentions
	Sub-Case Study: Transitioning From Zero @-Mentions

	Case Study: Project-Level Differences

	Practical Implications
	Threats to Validity
	Conclusion
	References




