
https://doi.org/10.1007/s10664-019-09700-1

An empirical study on the teams structures in social
coding using GITHUB projects

Mariam El Mezouar1 · Feng Zhang1 ·Ying Zou2

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Social coding enables collaborative software development in virtual and distributed commu-
nities. Social coding platforms (e.g., GITHUB) provide the pull request feature that allows
developers to clone a project, make code changes, and request the project owners to review
and integrate the code changes to the main stream of a project. The pull request feature has
been widely adopted by a large number of GITHUB projects, as it minimizes the risk of
exposing the projects to the open communities. The efficiency of the pull requests review
process depends both on technical (e.g., the code quality) and social (e.g., the connection
of a contributor to the project maintainer) factors. However, it is still unclear which social
factors have the most impact on the efficiency of the review process. To identify the social
factors, we study the team structures formed by the developers within the projects that adopt
the pull-based development model. We build the pull-based networks, where two develop-
ers are linked if one has integrated a pull request submitted by the other. We investigate the
7,850 most popular projects on GITHUB that are developed in ten programming languages.
We identify the network metrics that have a significant association with the speed of pro-
cessing the pull requests. Specifically, maintaining a strong core of contributors and denser
interactions among the developers is associated with faster response and processing of the
pull requests. We further find that more than 90% of the studied projects follow 8 domi-
nant team structures out of 18 possible team structures. In the larger projects, only a set
of developers is granted review and integration privileges of the pull requests, reflecting a
strict decision making process. The small to medium projects are characterized by a small
number of core contributors who maintain repeated interactions, and are able to process the
incoming pull requests more efficiently. The evolution of the team structures of projects
over time reveals that only a low percentage of the projects witnesses a change towards team
structures associated to faster pull requests processing (e.g., stronger centralization).

Keywords Pull request · Social coding · Team structure · Github

Communicated by: Jeffrey C. Carver

� Mariam El Mezouar
mariam@cs.queensu.ca

Extended author information available on the last page of the article.

Published online: 22 May 2019

Empirical Software Engineering (2019) 24:3790–3823

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09700-1&domain=pdf
http://orcid.org/0000-0002-3317-7051
mailto: mariam@cs.queensu.ca

1 Introduction

Social coding websites (e.g., GITHUB), provide a friendly platform for source code manage-
ment, issue tracking, and networking among distributed communities (Dabbish et al. 2012).
The open source software development benefits from social coding websites, by improv-
ing collaboration (Dabbish et al. 2012). The core of many social coding websites is the pull
request feature (a.k.a. the pull-based development model) (Barr et al. 2012). A developer
(i.e., contributor) is free to create a local copy of the project repository, make code changes,
and submit a pull request to the project owner. A project owner, maintainer, or integrator is
responsible to respond to a pull request by reviewing the code changes and determining if
the pull request can be integrated into the main branch of the project.

The pull-based development model eliminates the need for a shared repository, lowers
the upfront coordination, and decreases the barriers for the first-time contributors (Gousios
et al. 2014). As such, many projects adopt the the pull-based development model, as a sub-
stitution to the past collaboration channels, such as submitting patches via issue tracking
systems and/or mailing lists (Bird et al. 2007; Gharehyazie et al. 2015). In terms of pop-
ularity, a study by Gousios et al. (2014) reports that pull requests and shared repositories
are equally used among GitHub projects (≈ 14% of the projects each), with the remaining
projects being single-developer projects. The pull-based development model is particularly
appreciated for separating the development effort from the decision making process about
the submitted changes (Gousios et al. 2014).

The performance of the pull-based development model depends not only on the quality of
the submissions made by the contributors but also on the processing of the pull requests by
the project maintainers (particularly, the integrators of pull requests) (Gousios et al. 2015).
A qualitative study by Gousios et al. (2016) and Gousios et al. (2015) shows that the inte-
grators struggle to review or motivate other developers to review the submitted changes. The
lack of responsiveness of the project maintainers is a common complaint from the contrib-
utors(Gousios et al. 2016). The low responsiveness in processing pull requests delays the
integration of code changes on new features and bug fixes, therefore it weakens the power
of the pull-based development model.

In this paper, we study the types of team structures that possibly impact the perfor-
mance of the pull-based development model. We build the pull-based networks of 7,850
GITHUB projects. In a pull-based network, two developers are connected if one of them
has merged at least one pull request that was submitted by the other. We describe the pull-
based networks by a set of network metrics, such as the centralization, and the reciprocity.
The network metrics capture the roles of developers as integrators or contributors or both
(i.e., reciprocity). The network metrics can also identify the existence of core developers,
or equally important participants (i.e., centralization). We use the network metrics of the
pull-based networks to infer the team structures formed in the GITHUB projects. A team
structure reflects how a development team self-organizes as they submit and review the pull
requests. We systematically identify the set of existing team structures based on a set of
influential network metrics from the open source projects. Specifically, we investigate the
following four research questions:

RQ1. What are the influential network metrics on the performance of the pull-based
development model?

We compute the network metrics of the pull-based networks. Then, we compute
four performance metrics that reflect the productivity and efficiency of a team in
managing the pull requests. We build a regression model to identify the influential

Empirical Software Engineering (2019) 24:3790–3823 3791

network metrics on the performance of a team. We find that three metrics (i.e.,
density, out-degree centralization and reciprocity) are significantly associated with
all four performance metrics.

RQ2. What are the common team structures in the pull-based development model?
We capture the team structures using the three influential network metrics that

are identified in RQ1. We define the possible team structures by discretizing the
values of the three influential network metrics (e.g., the out-degree centralization
metric is discretized into 3 levels based on its distribution). We obtain 18 (i.e.,
3×3×2) structures in total. We observe that 8 dominant team structures are adopted
by over 90% of the projects. More than a third of the projects follow a team struc-
ture characterized by developers taking dedicated roles, and disconnected sub-teams
working on different parts of the project.

RQ3. Are there team structures that yield higher performance in processing the pull
requests?

We attempt to rank the 8 dominant team structures based on the performance of
the associated projects. The team structures describing well-connected teams with
a small number of core contributors exhibit the highest performance.

RQ4. Does changing the team structure over time have an impact on the perfor-
mance of the pull-based development model?

The team structure of projects evolve over time. We compute the team structures and
the performance metrics of a project at different temporal snapshots. The adoption of more
desirable team structures that we identify in RQ3 is strongly associated to an improvement
in the performance of the pull-based development model.

Paper organization We describe the related work in Section 2. The background on the pull-
based network is presented in Section 3. We present the experimental setup of the empirical
study in Section 4, followed by our results in Section 5. We discuss the threats to validity in
Section 7, and conclude in Section 8.

2 RelatedWork

In this section, we first present the related work on the governance of open source projects,
followed by the evaluation of pull requests. We then discuss the developer social networks
and their impact on the development process.

2.1 Governance in Open Source Projects

The governance of software projects is a process, by which the projects are strategically
managed, to control the progress and continuous commitment of the developers (Capra et al.
2008). O’Mahony and Ferraro (2007) argue that although the online communities that form
the open source projects are enabled by technology, they are not immune to the well-known
general principles of organizing. Even if the technical contributions of the developers are a
vital part to the progress of the open source projects, O’Mahony and Ferraro (2007) further
argue that the process of coordinating the developers became vital to leadership, particu-
larly as projects become mature. As such, a line or work emerged to investigate the social
and informal structures of open source projects (Rigby et al. 2013; Crowston and Howison
2006; Dinh-Trong and Bieman 2005). In a study by Rigby et al. (2013), the relationship

Empirical Software Engineering (2019) 24:3790–38233792

between open source project governance and distributed version control is investigated.
Similarly to our study, the relationship between two developers x and y is defined with the
number of times x signed off or reviewed the code change of y and vice versa. Accord-
ingly, it is found that large open source projects are oligarchies or dictatorships that have a
large number of external contributors who do not have the sign-off authority. In an effort to
examine the social structure of open source projects, Crowston and Howison (2006) look
into the interactions related to the bug fixing process, through the issue tracking systems.
The study reveals that although the project teams are highly hierarchical, the centraliza-
tion levels tend to vary and are negatively correlated to project size, suggesting that large
projects are more modular. Dinh-Trong and Bieman (2005) investigate the common char-
acteristics in the development processes of successful open source projects. For instance,
the FreeBSD project follows prescribed processes that determine developers’ responsibil-
ities, deal with enhancements and defects, and manage releases. Both the FreeBSD and
Apache projects have a small set of core developers who control the code base. Bird et al.
(2008) study the latent sub-communities from the email social network of several projects
to understand how successful open source projects can self-organize. It is revealed that a
strong community structure existed within the communication patterns of the participants,
and that the structure was more modular when the discussions in the emails focused directly
on source code artifacts. Additionally, sub-communities within a project were also represen-
tative of the collaboration behavior of the developers. In terms of developers’ roles, Joblin
et al. (2017) propose a relational perspective to classify developers into core and peripheral
using network metrics. The authors further report that core developers exhibit upper posi-
tions in the hierarchy, high positional stability, and are at the centre of coordination with
other developers.

In prior work, the social structures of open source projects has been captured using met-
rics such as hierarchy (Rigby et al. 2013), and centralization (Crowston and Howison 2006).
Given the rich insights that could be obtained from network structure, we include in our
study a more comprehensive set of network metrics (Butts et al. 2008) shown in Table 1,
and we attempt to identify the most significant metrics in the context of the pull-based
development model (RQ1) in order to capture the team structures (RQ2).

2.2 Evaluation of Pull Requests

In social coding, the evaluation of the pull requests made by external contributors plays
a key role in the success of distributed software development. The evaluation of exter-
nal contributions involves both social (Ducheneaut 2005; Marlow et al. 2013; von Krogh
et al. 2003) and technical factors (Jiang et al. 2013; Mockus et al. 2002; Rigby and Storey
2011). Prior work has found that the social and technical impressions of external contribu-
tors influence the evaluation of their contributions (Tsay et al. 2014a, b). Particularly, Tsay
et al. (2014a) found that project integrators are likely to consider both the technical quality
of the contribution and the social connection of the contributor to the project integrators.
For instance, pull requests with many comments were less likely to be accepted, and their
acceptance was dependent on the submitter’s prior interaction with the project. Moreover,
Tsay et al. (2014a) report that well-established projects were more conservative in accepting
pull requests. In addition to the technical factors, such as code quality (Gousios et al. 2015;
Tsay et al. 2014a), adherence to project conventions (Gousios et al. 2015), and inclusion of
test code in the pull request (Gousios et al. 2015; Tsay et al. 2014a), the study by Gousios
et al. (2014) shows that the time it takes to accept and merge a pull request is also influ-
enced by the previous track record of a developer. Yu et al. (2014a) propose to recommend

Empirical Software Engineering (2019) 24:3790–3823 3793

Ta
bl
e
1

A
de
sc
ri
pt
iv
e
su
m
m
ar
y
of

th
e
pu
ll-
ba
se
d
ne
tw
or
ks

ex
tr
ac
te
d
fr
om

th
e
G
IT
H
U
B
pr
oj
ec
ts

N
um

be
r
of

de
ve
lo
pe
rs

L
es
s
th
an

5
B
et
w
ee
n
5
an
d
10

B
et
w
ee
n
11

an
d
20

B
et
w
ee
n
21

an
d
50

B
et
w
ee
n
51

an
d
10
0

M
or
e
th
an

10
1

#
pr
oj
ec
ts

19
18

18
48

17
17

15
78

52
5

26
4

Pe
rc
en
t(
%
)

24
.4
3

23
.5
4

21
.8
7

20
.1
0

6.
69

3.
36

A
vg

#
co
nt
ri
bu
to
rs

2.
53

6.
38

12
.7
9

29
.2
5

65
.3
4

21
8.
49

A
vg

#
in
te
gr
at
or
s

1.
91

3.
16

4.
29

4.
98

6.
56

11
.0
6

A
vg

#
of

de
ve
l-

op
er
s

ac
tin

g
as

bo
th

co
nt
ri
bu
to
rs

an
d
in
te
gr
at
or
s

0.
97

1.
79

2.
47

2.
76

3.
98

8.
04

A
vg

#
co
nn
ec
tio

ns
3.
35

8.
92

17
.9
6

37
.1
9

83
.3
1

29
9.
16

A
vg

#
bi
-d
ir
ec
tio

na
lc
on
ne
ct
io
ns

0.
58

1.
03

1.
50

1.
58

2.
41

5.
42

A
vg

w
ei
gh
to

f
co
nn
ec
tio

ns
5.
56

3.
98

3.
15

2.
50

2.
23

2.
35

Empirical Software Engineering (2019) 24:3790–38233794

a pull request reviewer based on comment networks of projects, since the review process is
mostly embedded in the discussion section of the pull request. Vasilescu et al. (2015) study
the effect of introducing continuous integration to the pull request process. The continu-
ous integration is found to be associated to more pull requests being processed to be either
accepted and merged or rejected, without compromising the quality of the source code.

Given the importance of the social aspects in the evaluation of the pull requests as shown
by previous studies (Gousios et al. 2014; Tsay et al. 2014a), we complement the existing
line of study by investigating the team structures formed within the pull-based development
model (RQ2), and their association with the productivity and efficiency of processing the
pull requests (RQ3).

2.3 Developer Social Networks

Distributed development is very common for OSS projects. A number of studies (Ehrlich
and Cataldo 2012; Wolf et al. 2009; Zanetti et al. 2013) have investigated the social aspects
of distributed development, and their relation to the collective and individual performance of
a distributed team. Such studies examine the networks formed by the developers as they con-
tribute, communicate, and possibly thrive in their respective communities. There are many
ways to build a developer network. Two developers can be connected if they communicated
in a discussion thread in the past, thus forming a communication network. Bettenburg and
Hassan (2010) and Wolf et al. (2009) report that the structure of communication networks
shows an associated to future failures, in addition to the quality of bug reports, as revealed
by Zanetti et al. (2013). In the communication network of a large software project, Ehrlich
and Cataldo (2012) found that the centrality of developers in the network indicates their per-
formance in fixing bugs. The follow networks of developers capture the follow behaviours
among developers in social coding platforms, such as GITHUB. Schall (2014) examine the
follow network of developers on GITHUB to recommend who to follow. The purpose is to
help developers build a reputation and a strong network among their peers (Schall 2014).
Yu et al. (2014b) mine the follow networks, and identify the behaviour patterns of develop-
ers from the networks (e.g., star, group, or hub shaped). Yu et al. (2014b) further claim that
the identified behavior patterns can inform the design of assistive tools for developers, such
as recommendation systems.

Pull-based collaboration networks capture a different layer of interactions among devel-
opers in social coding platforms. In the context of the pull-based development, the
collaboration happens when one developer reviews the pull request made by others, as stud-
ied by Rigby et al. (2013). However, the hierarchy of the networks is the only aspect studied
by Rigby et al. (2013) in their investigation of the review networks of developers. In our
paper, we perform a more comprehensive study and include other network metrics to cap-
ture the team structures of the projects in the pull-based development model. Additionally,
we also look into the evolution of the pull-based networks over time (RQ4).

3 Pull-Based Networks

In this section, we provide a background of the pull-based software development, describe
the pull-based networks inferred from the existing open source projects, and discuss the
metrics used to capture the performance of the pull-based development model.

Empirical Software Engineering (2019) 24:3790–3823 3795

3.1 Pull-Based Software Development

The pull-based development model has become the de facto standard of collaboration within
open source projects (Gousios et al. 2015). There are two types of roles for developers to
participate in a pull-based model: 1) contributors who make the code changes and submit
the pull requests; and 2) integrators who are responsible to review pull requests and decide
whether to merge the pull requests to the main code base. A contributor can either be part of
the project maintainers or an external developer to the project. An integrator is, on the other

Fig. 1 Example of a pull request

Empirical Software Engineering (2019) 24:3790–38233796

hand, necessarily part of the team that maintains the project. In some projects, the project
maintainers can directly commit their changes to the code base; while external developers
need to create pull requests to submit their changes. In other projects, the project maintainers
and external developers can both solely use pull requests to submit code changes. In this
case, pull requests are used to track, review, and discuss all the code changes (Gousios et al.
2015).

On social coding websites, such as GITHUB, and BITBUCKET, the contextual and struc-
tured information are recorded for each pull request. For instance, a single pull request
contains three tab pages on GITHUB as shown in Fig. 1: 1) the “Conversation” tab page
is used to track the discussions and activities related to the pull request; 2) the “Commit”
tab page shows all the commits associated with the pull request; and 3) the “Files changes”
tab page lists all files changed in the pull request and records the differences resulting from
each code change.

3.2 Pull-Based Network

We define a pull-based network as a directed and weighted graph. Each node represents
a developer. An edge between two nodes signifies that two developers have engaged in
a <contributor, integrator> collaboration. The edges of the network are weighted by the
number of times that two developers collaborated in the past. We conjecture that the
<contributor, integrator> relationship constitutes collaboration between two developers,
because the review process of a pull request involves both a review of the code submitted,
along with back-and-forth discussions to request changes if needed. The network includes
all the developers who have either submitted a pull request, reviewed and integrated a pull
request, or both (regardless of the developers’ level of participation in the project). For each
project, we build a pull-based network, as shown in Fig. 2. We represent the pull-based
networks as a set of vectors with each vector in the form of Contributor, Integrator, Num-
ber collaborations. We show in Table 1 a descriptive summary of the pull-based networks
of the 7,850 GITHUB projects.

It is possible to mirror the network structure of development teams using other types of
relationships, such as the co-editing of files or the participation in communication threads.
However, in this paper, we purposefully investigate the high level structure of the develop-
ment teams, as reflected by the review process of the pull-based development model (i.e., the
<contributor, integrator> relationship). Our goal is to infer from the constructed networks
the structures of the development teams in the pull-based development model.

We use the network metrics to describe the pull-based networks. From the network met-
rics, we can infer information such as the centralization of the developers, or how densely
the developers in a network are connected. Specifically, network metrics are used to describe
the structural properties of a network in its entirety (Anderson et al. 1999), in terms of

Fig. 2 Construction of the pull-based collaboration network

Empirical Software Engineering (2019) 24:3790–3823 3797

centralization (Freeman 1977, 1978), informal organization (Krackhardt 1994), and general
structure (Garlaschelli and Loffredo 2004). We compute 10 commonly used network met-
rics to understand the team structures in the context of the pull-based development model.
We capture the team structures based on a discretization of the most influential network

Table 2 The extracted network metrics

GLI Category GLI Description Purpose

Global structure (Gar-
laschelli and Loffredo
2004)

Density The ratio of the number of edges to
the number of possible edges.

Measures the sparsity of
the connections in a graph.

Reciprocity The fraction of edges which are
symmetric (reciprocal edges).
It can include the null edges
(i.e., reciprocity 1) or
only the mutual edges (i.e.,
reciprocity 2).

Measures the likelihood of
nodes in a directed graph
to be mutually linked.

Transitivity The fraction of triangles in a
graph relative to the total num-
ber of connected triples of nodes
in the graph. It is computed
in two ways: strong transitiv-
ity (i.e., transitivity 1):
(i, j), (j, k) ∈ E ⇒
(i, k) ∈ E, f or(i, j, k) ∈
V); and weak transitivity
(i.e., transitivity 2):
(i, j), (j, k) ∈ E) ⇒ (i, k) ∈ E)
(where E is the set of graph edges
and V is the set of graph vertices).

Measure the tendency
of the nodes to cluster
together. High transitivity
means that the network
contains communities
or groups of nodes that
are densely connected
internally

Centralization (Free-
man 1977, 1978)

In-degree cen-
tralization

The metric is computed at the graph
level as the total deviation from the
maximum observed in-degree cen-
trality score

Measures the presence of
central nodes based on
incoming edges.

Out-degree
centralization

The metric is computed at the graph
level as the total deviation from
the maximum observed out-degree
centrality score

Measures the presence of
central nodes based on
outgoing edges.

Informal organiza-
tion (Krackhardt
1994)

Connectedness The fraction of all nodes pairs
which are not strongly discon-
nected (i.e., there exists a path that
connects the two nodes)

Describe the extent to
which the structure of a
graph approaches that of a
tree.

Efficiency Essentially, the degree to which the
graph uses as few links as possi-
ble to connect the nodes which are
already connected in the graph. An
index of the number of extra lines
in the graph.

Hierarchy The fraction of nodes pairs in the
graph which are neither strongly
connected nor strongly discon-
nected, i.e., one node can reach the
other through some path, but the
other node cannot reach it.

Empirical Software Engineering (2019) 24:3790–38233798

metrics that we identify in RQ1. As such, we are able to systematically define the differ-
ent structures formed by the developers as they collaborate through the pull-based model.
Table 2 shows the list of the network metrics and the corresponding descriptions.

3.3 PerformanceMetrics for Evaluating the Pull-BasedModel

It is important to process the incoming pull requests in an efficient and productive manner
in order to maximize the benefits of the pull-based model. In previous studies on the pull-
based development model (Gousios et al. 2014; Yu et al. 2015), models are built to predict
the decision to merge a pull request, and the time it takes to process it.

In our study, we focus on the responsiveness of the team in processing the pull requests.
Since it is not our goal to identify the factors behind a pull request acceptance, we do not
consider the decision to merge a pull request as an outcome metric, but we include the time
to process a pull request. Moreover, we add three metrics, i.e., the ratio of long running pull
requests, the number of pull requests closed daily, and the response time. We explain the
performance metrics in more details below.

3.3.1 Productivity

We compute the following two metrics to capture the productivity of a development team.
The productivity metrics are designed to assess whether the developers are able to produce
the intended results, i.e. closing the pull requests, within a time period.

– The ratio of long running pull requests. GitHub defines a long running pull request
as one that has lived for more than a month, with some activity (e.g., a comment)
within the past month (Rick 2013). This metric helps us assess whether the team leaves
pull requests lingering for an extended period of time. The higher the ratio of the long
running pull requests, the lower the productivity of the team.

– The average number of pull requests closed daily. The higher the average, the more
productive the team is. As more pull requests are closed, more issues are fixed and more
new features are introduced to the project.

3.3.2 Efficiency

We extract the following two metrics to quantify the efficiency of a development team. The
efficiency metrics are meant to measure whether the developers process the pull requests
using the least amount of resources, i.e., time.

– The average response time. The time it takes project maintainers to provide a first
response to the pull request. The sooner project maintainers provide an initial feedback
to the contributor, the more likely the contributor is motivated to work on the requested
reviews to improve the quality of the code change.

– The average processing time. The time it takes the team to process and close a pull request.
The lower the processing time, the sooner the integrators can focus on processing other
pull requests, and the sooner contributors can work on new code changes.

To ensure that the performance metrics can capture distinct information, we compute the
pairwise correlation among the collected metrics using the Spearman’s rank coefficient.
We choose Spearman’s rank correlation test over other non-rank correlation tests (e.g.,
Pearson’s coefficient) because rank correlation is more robust to data that is not normally
distributed (Zar 2005). For each pair of metrics, we find that the value of the Spearman’s

Empirical Software Engineering (2019) 24:3790–3823 3799

Fig. 3 Overall approach to study the team structures formed within the pull-based networks, and their
performances

rank coefficient is always less than 0.7 (i.e., the recommended threshold by Zar (2005)).
Therefore, we use all four metrics to measure the productivity and the efficiency of a
development team.

4 Experimental Setup

In this section, we provide details on collecting and processing the GITHUB data. Figure 3
depicts our experimental setup including the overall approach.

4.1 Collecting the GITHUB Data

GITHUB1 is not only the largest code host (over 38 million repositories), but also a very
popular social coding platform. GITHUB provides issue tracking, pull requests, commits
history, subscriptions to other users, and documentation. Developers can easily share their
profile and their activities through GITHUB.

To collect the GITHUB data, we use GHTORRENT (Gousios 2013), an off-line mirror
of the GITHUB data. GHTORRENT has been collecting data since February 2012 and is
updated periodically, i.e., every two to three weeks. We download eight temporal snapshots
(i.e., 2014-01-02, 2014-08-18, 2015-01-04, 2015-08-07, 2016-02-16, 2016-03-01, 2016-06-
01, and 2016-11-01) of the GITHUB data dump. We intentionally keep approximately a
6-month interval between each two snapshots whenever possible. The multiple snapshots
enable us to study the evolution of the pull-based networks. We apply the following three
filters to select the subset of subject projects:

F1. Programming language filter.We choose the projects that are written in the ten most
popular programming languages on GITHUB: JavaScript, Java, Python, CSS, Php,
Ruby, C++, C, Shell, and C#.

F2. Type of project filter.We only extract the non-forked projects. A non-forked project
is an original repository that was started from scratch, as opposite to forked projects
which are copies of other repositories. At this step, we obtain over six million projects.

1https://github.com/

Empirical Software Engineering (2019) 24:3790–38233800

https://github.com/

F3. Activity level filter. An almost equal number of projects use pull requests and
shared repositories for distributed collaboration (∼ 14%) (Gousios et al. 2014). The
remaining projects that do not use either collaboration approches (over 60%) are
single-developer projects (Gousios et al. 2014). We focus on the most active projects
in terms of the number of recorded pull requests, as we need to build pull-based net-
works. We select the projects in the top 95% percentile, with over 100 recorded pull
requests. In total, we obtain 7,850 projects with a total of 2,854,917 pull requests.

4.2 Computing and Normalizing the NetworkMetrics

We process the pull-based networks using the R package SNA (Social Network Analysis)
developed by Butts (Butts et al. 2008). The SNA packages transforms each network into a
matrix, and provides a set of functions (e.g., grecip()) to compute the network metrics
listed in Table 2. Moreover, it is important to include other project measures that have shown
to have strong predictive power in the previous studies (Moser et al. 2008; Nagappan and
Ball 2007). Therefore, we include the number of commits and the number of developers
overtime, to control the impact of the activity level of a project and the size of the project
team. To control the impact of the number of developers, we use a normalized metric nodes

edges
,

where the number of nodes is a simple count of the developers in a project, and the number
of edges describes the sparsity of collaborations among the developers.

Reason for the normalization When two networks have different sizes, it is not recom-
mended to directly compare the values of their associated network metrics (Anderson et al.
1999; Butts et al. 2008; de Reus and van den Heuvel 2013). For instance, we assume that two
networks N1 and N2 have the same centralization value C, but different sizes (N1 > N2).
The centralization of a network measures the importance of the different nodes based on
the number of edges. As a network grows in size, its centralization value inevitably changes
as well. A centralization value equal to C is within the norm for N1, compared to other
networks of the same size. However, the same centralization C is larger than what is usual
for the smaller network N2. A prior study (Anderson et al. 1999) has shown that the inter-
action between network metrics and the size of a network can not be ignored. Considering
the intrinsic dependence on the size of a network, it is likely that the difference in the met-
ric values can be partly explained by the difference in the network sizes. Therefore, it is
important to normalize the network metrics by controlling the effect of the network size.
The normalized metrics allow for a more sound interpretation of the network metric values,
and a fair comparison of graphs with different sizes (de Reus and van den Heuvel 2013).

The CUG test for normalization To control the effect of size, we perform the Conditional
Uniform Graph (CUG) hypothesis test (Anderson et al. 1999), a simple model that fixes
certain properties of a network (e.g., the number of nodes) at particular values, and treats
all networks meeting the selected properties as equally probable. The CUG test is ade-
quate for the task of controlling the effect of size on the remaining network metrics, as
the effect of size is the only substantial effect reported by the literature (Anderson et al.
1999; Butts et al. 2008; de Reus and van den Heuvel 2013). In the CUG test, a baseline
model is built and used as the null hypothesis. Under the baseline model, a number of net-
works of the same size are used as the input network and are simulated using Monte Carlo
simulation (Handcock et al. 2008). Monte Carlo simulation shuffles edges while fixing the
number of nodes to simulate the networks for the baseline model. The test generates the

Empirical Software Engineering (2019) 24:3790–3823 3801

distribution of a network metric under the baseline model, and compares the observed net-
work metric to the baseline distribution. To perform the CUG tests, we use Statnet, an R
package developed by Handcock et al. (2008). For each network metric value, the CUG
test returns the probability of the observed value to be greater than or equal to the values
under the baseline model (i.e., Probgreater = Prob(X <= Observed)), and the probabil-
ity of the observed value to be less than or equal to the values under the baseline mode (i.e.,
Probless = Prob(X >= Observed)).

Normalizing the metrics To normalize the values of the network metrics, we choose to
transform each metric value into Probgreater , as we find it easier to interpret. When
Probgreater is closer to 1, the value of the network metric is unusually high for networks
of the same size. The closer Probgreater is to 0, the smaller is the observed value of the
network metric compared to the baseline. For instance, assuming Probgreater = 0.9 for the
metric centralization in a network, we can conclude that the network is particularly central-
ized compared to other networks of the same size. Thus, the normalized metric values help
us compare the strength of a network property across networks with different sizes.

5 Results

In this section, we present the results of our experiments with respect to four research
questions.

RQ1. What are the influential network metrics on the performance of the pull-based
development model?

Motivation In distributed software development, the social and organizational aspects have
an impact on the individual and collective performance of the developers (Ehrlich and
Cataldo 2012). As such, the performance of the pull-based development model is governed
by both technical factors (e.g., the quality of the code changes), and social factors (e.g.,
the team structure). However, it is unclear which team structure properties have the high-
est impact on the performance of processing the pull requests. In this research question, we
identify the network metrics (described in Section 3.2) that have a significant association
with the performance metrics of the pull-based development model (listed in Section 3.3).

Approach For each subject project, we first build a pull-based network. Second, we com-
pute and normalize the network metrics to describe the structural properties of the pull-based
network (see Section 3.2). Finally, we conduct the following steps to identify the influential
network metrics.

Reduce highly-correlated metrics

In the presence of highly-correlated metrics, the estimate of the impact of one metric on
the dependent variable tends to be less precise, thus weakening the classification model.
Therefore, we use the R function cor() to generate the correlation matrix of the number of
vertices and edges in the network, in addition to the ten network metrics. If the correlation
between two metrics is more than 0.7 (i.e., the recommended threshold by Zar (2005)),
we select the one which is easier to interpret in the context of the pull-based development
model.

Empirical Software Engineering (2019) 24:3790–38233802

Build a regression model

The purpose of the analysis is to model the relationship between the response variable (i.e.,
the performance metrics, such as the average response time) and the predictors (i.e., the
network metrics, such as the density). Therefore, we use linear regression to determine
which predictors are statistically significant and how changes in the predictors relate to
changes in the response variable.

For each performance metric, we build a separate regression model and use the R2 metric
to assess the fit of the model. The R2 measures the “variability explained” of the response
variable that is analyzed (Steel and Torrie 1960). For instance, an R2 of 0.5 indicates that
50% of the variability of the response variable is being modeled (i.e., “explained”) by the
predictors. The remaining 50% of the variability may be due to external factors that are
not being modeled or cannot be controlled. The interpretation of R2 values depends on the
analysis that is being performed. For example, when the main goal is prediction, the R2

values should be very high (e.g., around 0.7 to 0.9) (Choi and Varian 2012). Low R2 values
(e.g., around 20%) may also generate interesting insights in fields such as social sciences or
psychology (Bersani et al. 2016).

Identify the influential network metrics

We identify the predictors (i.e., network metrics) that show the highest association with
the response variables (performance metrics). The influential predictors can then be used
to define the team structures. Therefore, we identify the significant predictors (p-value <

Fig. 4 Correlation analysis of the network metrics

Empirical Software Engineering (2019) 24:3790–3823 3803

0.05). We also report the regression coefficients of the predictors, to assess the influence
of each predictor on the response variable. The regression coefficient tells us how much
the response variable (e.g., the response time) is expected to increase when the predictor
variable (e.g., the density) increases by one, holding all the other predictors constant. The
regression coefficients of different predictors are not always comparable because the pre-
dictors have different types of unit. For example, the response time is measured in seconds,
while the number of pull requests closed daily is counted as units of pull requests.

Results The correlation analysis leads to the removal of two network metrics (i.e.,
hierarchy, and efficiency). We show in Fig. 4 the results of the correlation analy-
sis. We retain the metric density (over the efficiency) because it reflects whether developers
collaborate with the entire team or only a subgroup of developers in the team. The metric
efficiency measures whether the network uses as few edges as possible to connect the devel-
opers (see Table 2). Low network efficiency means two developers are indirectly connected
more than once, which is not as easy to interpret in this context as the density. Finally,
we choose the reciprocity (over the hierarchy) because the reciprocity measures whether
the developers take single or multiple roles in the team (i.e., contributors and integrators).
The notion of hierarchy is not applicable in the pull-based development model because
a directed edge from a contributor to an integrator does not indicate hierarchy levels, but
rather collaboration.

The four most influential network metrics in terms of their association with the per-
formance of pull-based development model include: the vertices over edges, reciprocity
type 2, out-degree centralization, and the density. To select the top influential network
metrics, we identify the metrics that return a p−value < 0.05. We further report the regres-
sion coefficients of the selected metrics, to measure the influence of each predictor. Table 3
shows the regression coeffients of the significant predictors, for each of the linear regres-
sions models (a model is built for each performance metric defined in Section 3.3). We also
show in Table 3 the coefficient of determination R2 of the trained models. The resulting R2

values are low (i.e., 0.32 or less), therefore, the network metrics can only explain up to 32%
of the variability of the performance metrics. Therefore, the team structure properties (as
measured by the network metrics) can only partly explain the productivity and efficiency
of the development team in processing the pull requests. The remaining variability is likely
due to other factors, such as the complexity of the code change in the pull requests and
the time availability of developers. However, we can still infer interesting insights about
the relationship between the network metrics and the performance metrics. For instance, an
increase in one unit of the network density is associated to the decrease by 12465.85 sec-
onds (3.46 hours) in the processing time of the pull requests. A more dense network implies

Table 3 Regression coefficients of the significant metrics from the linear regression models

Regression coefficients

Long running pull
requests R2 = 0.25

Pull requests closed
daily R2 = 0.28

Response time
R2 = 0.32

Processing time
R2 = 0.18

vertices over edges −31.85 – −87228.75 –

commits 0.0036 0.0041 – 16983.65

reciprocity 2 −64.99 18.62 – −456455.56

outdegree centralization −0.7126 5.9078 – −78974.6

density – −34455.69 −12465.85

Empirical Software Engineering (2019) 24:3790–38233804

a developers would collaborate at the pull request level with diverse developers, instead a
reduced number of developers. In other words, encouraging more collaboration links among
the developers who process the pull requests could be associated to reducing the process-
ing time of the pull requests. Unsurprisingly, an increase in the processing time can occur
when the number of commits a projects receives is higher. Every additional commit is asso-
ciated with an increase of 16983.65 seconds (4.72 hours) in the processing time. A higher
reciprocity is possibly associated to lower processing time. A reciprocal link between two
developers indicates prior connection between the two developers. Therefore, this result
confirms a previous finding by Tsay et al. (2014a) regarding the role that a contributor’s
prior connection to the project integrators has on the processing of the pull requests.

We find an association between faster response and pro-
cessing times of the pull requests, and developers taking
multiple roles and collaborating densely. The presence
of central developers that act as both contributors and
integrators is associated with closing more pull requests.

RQ2. What are the common team structures in the pull-based development model?

Motivation In RQ1, we identify the network metrics that have the highest influence on the
performance of processing pull requests. In this research question, we attempt to capture
the different structures formed by the developers as they submit or review pull requests,
within a large set of GITHUB projects (7,850 projects). We use the term team structure to
describe the self-organization of developers within the pull-based development model using
the contributor and integrator relationship. From the pull-based networks of the GITHUB

projects, we infer the existing frequently adopted team structures.

Approach First, we capture the team structures within the pull-based development model
from the selected GITHUB projects. We then investigate the frequency of each team structure
among the selected GITHUB projects, and describe the most frequent team structures found
in the selected pool of projects.

To identify the existing team structures adopted by the studied projects, we character-
ize the pull-based network associated to each project using the influential network metrics
identified in RQ1. We present below the interpretation of each network metric in the context
of the pull-based development model.

a) Out-degree centralization: measures the importance of contributors based on the
activity levels (i.e., the number of submitted pull requests). High out-degree central-
ization indicates the existence of core contributors; while low out-degree centralization
shows that the contributors participate equally.

b) Density: measures how connected the network of developers is. High density reflects
a strongly connected team where the developers have prior interactions with many of
their teammates. Low density characterizes teams with sparse connections.

c) Reciprocity: measures the likelihood of developers to both contribute and integrate
pull requests. High reciprocity indicates that developers are more likely to take both
roles (i.e., integrator and contributor). Low reciprocity shows that developers are likely
to have dedicated roles.

Empirical Software Engineering (2019) 24:3790–3823 3805

−0.2 0.2 0.6 1.0

0
1

2
3

4
Out−degree centralization

Normalized metric value

K
e
r
n
e
l
d
e
n
s
it
y

−0.2 0.2 0.6 1.0

0
1

2
3

4

Density

Normalized metric value
K
e
r
n
e
l
d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2
0

4
0

6
0

8
0

1
2
0

Reciprocity

Normalized metric value

K
e
r
n
e
l
d
e
n
s
it
y

Fig. 5 Distribution of the influential network metrics

Each network is assigned a discrete representation that reflects the team structure adopted
by the project, by discretizing the values of the influential network metrics. The discretiza-
tion is performed in two steps: 1) we normalize the values of the networkmetrics to the range 0-
1 (as explained in Section 4.2), and 2) we perform the transformation into an n-level scale
depending on the distribution of each metric. We examine the distributions of the three selected
metrics to identify the proper discretization scale. Figure 5 shows the distributions of the
network metrics. We observe that the out-degree centralization and the density both roughly
follow a multimodal distribution; while the reciprocity follows an exponential distribution.

We discretize the two metrics Out-degree centralization and Density using a 3-level
scale that captures the two local maxima and the flat area between them. The Reciprocity

Fig. 6 Illustrating example of project pull-based networks and their assigned team structures in the form
Outdegree-Density-Reciprocity. The size of the node reflects the importance of the developers. An egde
goes from a contributor to an integrator

Empirical Software Engineering (2019) 24:3790–38233806

Table 4 Spearman’s correlation coefficients between the network metrics and the activity metrics of the
projects

of developers # of commits # SLOC

Centralization −0.24 0.29 0.19

Density −0.56 0.07 0.09

Reciprocity −0.47 0.04 –

is discretized using a 2-level scale to mirror the initial peak and the flat area that follows.
We compute the Spearman correlation among the discretized network metrics, and the met-
rics that measure the size of projects (i.e., the # of developers, the # of commits, the #
of LOC), and we report the coefficients of the pairs that show significant correlation (i.e.,
p − value < 0.05). With the discretized network metrics, we generate 18 (3 x 3 x 2)
possible team structures. Each network is assigned a team structure encoded in the form
Outdegree-Density-Reciprocity. The team structure reflects the strength of each metric (e.g.,
reciprocity) in the network. We show in Fig. 6 illustrating examples of pull-based networks
and their assigned team structures.

Results There is a negative moderate correlation between the network metrics and
the size of the development team (Table 4). As a team grows in size, it tends to be
less centralized, less dense, and less reciprocal. Prior work has shown that centralization
scores are negatively correlated with the number of developers who contributed to the bug
reports (Crowston and Howison 2005; Howison et al. 2006). In the context of contribu-
tions to pull requests, our analysis result in similar conclusions related to centralization
(r = −0.24 and p < 0.05). A possible interpretation of this finding is that in a large
project, it might not be possible for a single developer to be involved in processing every
pull request. As projects grow, they tend to become more modular, with different develop-
ers responsible for different modules. A similar finding is observed for the metric density
(r = −0.56 and p < 0.05). This further suggests that as a project grows, it becomes
challenging for a given developer to maintain collaboration with everyone in the team, and
would build relationships with a reduced set only resulting in a less dense network. To con-
clude, the analysis of the pull-based networks confirms some of the findings resulting from
other types of developer networks that are built based on different communication venues
(e.g., issue tracking systems).

Out of the 18 possible team structures, 16 structures exist in our selected set of
projects with varying frequencies. Half of the existing team structures (i.e., 8) cover
more than 90% of the studied projects. We focus on the 8 most frequent team structures
that account for the majority of the projects, in order to study a reduced set of team struc-
tures. Table 5 shows the 8 frequent team structures, their associated frequencies, and the
number of projects. The 8 most frequent team structures can be grouped within three groups.
We describe the three groups in the form Outdegree-Density-Reciprocity, where a metric is
assigned an X if it varies within a group.

1) Sparse team with multi-role developers (X-1-2): This group includes 3 of the team
structures shown in Table 5, with a total frequency of 29.2%. In a sparse team (i.e.,
very loosely connected), developers collaborate with a subset of the team only. The
developers are likely to act as both contributors and integrators. Within this group, the
most frequent team structure (i.e., 3-1-2) describes a development team with few core
contributors, who submit most of the pull requests. As shown in Table 5, the team

Empirical Software Engineering (2019) 24:3790–3823 3807

Ta
bl
e
5

T
he

m
os
tf
re
qu
en
tt
ea
m

st
ru
ct
ur
es

sh
ow

n
in

th
e
fo
rm

O
ut
de
gr
ee
-D
en
si
ty
-R
ec
ip
ro
ci
ty

G
ro
up

G
ro
up

fr
eq
ue
nc
y

Te
am

st
ru
ct
ur
e

Fr
eq
.

#
of

Pr
oj
ec
ts

M
ed
ia
n
#
of

de
ve
lo
pe
rs

M
ed
ia
n
#
of

co
m
m
its

M
ed
ia
n
#
SL

O
C

X
-1
-2

29
.2
%

3-
1-
2

21
.4
%

16
80

28
15
08

19
43
3

2-
1-
2

4.
4%

34
5

21
70
6

13
70
2.
5

1-
1-
2

3.
7%

29
0

36
84
2

48
39

X
-1
-1

39
.9
%

3-
1-
1

19
.1
%

14
99

26
96
1

15
43
9.
5

1-
1-
1

14
.3
%

11
22

35
45
9

52
88

2-
1-
1

6.
5%

51
0

28
73
2

91
39

3-
3-
X

24
.3
%

3-
3-
2

18
.7
%

14
68

9
12
05
.5

19
75
7

3-
3-
1

5.
6%

44
0

8
78
4.
5

22
05
6

Empirical Software Engineering (2019) 24:3790–38233808

structure 3-1-2 is mainly associated to the smaller projects in terms of the number of
developers (median = 14.64), and the size of the source code (median = 31552.76).
It is expected for the smaller open source projects to have a centralized structure,
with developers participating as both contributors and integrators of the pull requests.
The connections in the pull-based network of this type of team structure are sparse,
as would be expected for a smaller or newer open source project. In the remaining
and less frequent team structures, we observe varying levels of out-degree central-
ization (Outdegree[1-2]-Density[1]-Reciprocity[2]), indicating development teams that
have different ratios of core contributors.

2) Sparse team with single-role developers (X-1-1): This group is the most frequent
(i.e., 39.9%) and covers 3 of the team structures shown in Table 5. It is similar to the
first group as it also describes sparse teams. However, the developers are more likely
to take on a single role only, for example as integrators. Within this group, the most
frequent team structure (i.e., 3-1-1) describes a sparse development team with few core
contributors who submit most of the pull requests, and with mostly single-role develop-
ers. The second most frequent team structure in this group (i.e., 1-1-1) highlights sparse
development teams with contributors who contribute equally, and take on single roles.
Both team structures (i.e., 3-1-1 and 1-1-1) are associated to larger projects in terms of
team size (see Table 5). As reflected by the reciprocity metric, the fact that developers
take dedicated roles reflects the decision making process in large projects. By assign-
ing developers to specific roles (e.g., deciding or not to integrate the pull requests), the
development team is more strict in its structure, in order to maintain the code quality.
This observation is conformant with prior work on the characteristics of open source
projects (Gacek and Arief 2004; Rigby et al. 2013), which speculates that a set devel-
opers has more power than other developers in making executive decisions. Within this
group of team structures, the centralization degree varies from projects with a more
centralized power structure (similar to Linux), to more decentralized organizations, as
was similarly reported by Gacek and Arief (2004).

3) Well-connected team with core contributors (3-3-X): This group covers 2 of the
team structures shown in Table 5, with a total frequency of 24.3%. In a well con-
nected team, the developers tend to collaborate with many team members. The team
is very centralized around core contributors, who are responsible of submitting most
pull requests. The most frequent team structure within the group (i.e., 3-3-1) describes
well-connected development teams with core contributors and single role developers. A
study on the email communications between developers in the Apache project reveals
that a set of core developers self organize into sub-groups that communicate intensely
in completing the project (Robertsa et al. 2006). This finding describes a team struc-
ture similar to the structure 3-3-X. Additionally, we find that the Apache Ignite project
hosted on GitHub2 also follows the team structure 3-3-2. Therefore, the analysis per-
formed in prior work on other types of developer networks generates similar findings
as the pull-based networks.

We capture three groups of team structures from the
GITHUB projects: sparse teams with multi-role devel-
opers, sparse teams with single-role developers, and
well-connected teams with core contributors.

2https://github.com/apache/ignite

Empirical Software Engineering (2019) 24:3790–3823 3809

https://github.com/apache/ignite

RQ3. Are there team structures that yield higher performance in processing the pull
requests?

Motivation The 8 frequent team structures are found in over 90% of the studied projects. It
is unclear if all of them are associated to differing performance of the pull-based develop-
ment model. In this question, we rank the team structures in terms of the productivity and
efficiency of the associated projects. Identifying the efficient and productive team structures
can provide useful insights to practitioners to improve their current approach to processing
the incoming pull requests.

Approach We investigate the performance of the 8 most frequent team structures. We first
identify the projects associated to each team structure. Then, we assign to every team struc-
ture the values of the performance metrics (e.g., average response time) of the associated
projects. For each performance metric, we rank the team structures using the associated
distributions of the performance metric.

We further examine the significance of difference among the team structures. We first
perform a Kruskal-Wallis test (Kruskal and Wallis 1952) on the distributions of the met-
ric values of all the team structures. The Kruskal-Wallis test is a non-parametric statistical
test to evaluate whether two or more distributions have equally large values. The advan-
tage of using non-parametric statistical methods is that they make no assumptions about the
distribution of the data. If the distributions are statistically different (p-value < 0.05), we
conclude that at least one team structure is different from the others in terms of the tested
performance metric. We determine which team structures are different by performing a mul-
tiple comparison test with pairwise comparisons, and by adjusting the p-values for multiple
comparisons. We specifically use the R function KRUSKALMC (Siegel 1956) from the pack-
age PGIRMESS. The multiple comparison test returns a significance value for each pair of
team structures. The significance value indicates if one team structure outranks the other.

Finally, we attempt to examine further characteristics of some team structures associated
with the highest and lowest performances (Fig. 7). Specifically, we examine three aspects of
the projects and their relation with the team structures: a) the size of the projects teams, b)
the clustering of the projects networks into cliques (using the transitivity metric explained
in Table 2), and c) the past interactions among the developers by computing the median
weights of the edges between the developers (i.e., the nodes). The higher the weight of an
edge between two developers, the more interactions the two developers had in the past.

Fig. 7 Significant differences between the high performing team structure 3-1-2 and the low performing
team 1-1-1 in terms of 3 aspects

Empirical Software Engineering (2019) 24:3790–38233810

Results The rankings across the different metrics show that some team structures,
such as 3-3-2 and 3-3-1, are associated to higher performance of the pull-based devel-
opment model, regardless of the investigated metric. Other team structures characterized
by both lower density and reciprocity (e.g., 3-1-1, 2-1-1, and 1-1-1) appear towards the
bottom of the ranking. Figure 8 shows the ranking of the team structures based on the 4
performance metrics. The significance tests confirm that some team structures (i.e., 3-3-X)
are significantly superior to other team structures, under all performance metrics. Table 6
lists the team structures that are superior in terms of all performance metrics (column 1), in
comparison to the team structures shown in column 2.

We observe that the most frequent team structures do not appear high in the rank-
ings obtained based on all the performance metrics. The most frequent team structures
(i.e., 3-1-2 and 3-1-1), that characterize loosely connected teams with very high central-
ization, rank respectively in the middle and towards the bottom of the 4 rankings shown
in Fig. 8. Our ranking results also show that the best team structures according to the 4
rankings (i.e., 3-3-2 and 3-3-1) characterize projects where developers form well-connected
teams, and where there are core contributors who take charge. Yet, this group of team struc-

Fig. 8 Boxplots showing the ranking of the team structures from best to worst. The team structures are
encoded as Outdegree-Density-Reciprocity

Empirical Software Engineering (2019) 24:3790–3823 3811

Table 6 Summary of the results of the pairwise comparisons. Group 1 is the set of team structures asso-
ciated to significantly higher performance compared to the team structures in Group 2, in terms of all the
performance metrics

Group 1 (higher performing structures) Group 2 (lower performing structures)

3-3-2 3-1-2, 2-1-2, 1-1-2, 3-1-1, 2-1-1, 1-1-1

3-3-1 3-1-2, 2-1-2, 1-1-2, 3-1-1, 2-1-1, 1-1-1

3-1-2 3-1-1, 2-1-1, 1-1-1

2-1-2 3-1-1, 2-1-1, 1-1-1

1-1-2 1-1-1

3-1-1 1-1-1

2-1-1 1-1-1

tures that ranks high in all 4 rankings accounts for only 24.3% of our pool of projects. Based
on the information shown in Table 5, the group 3-3-X is associated to the projects that are
smaller in terms of the number of developers compared to others, but comparable in terms
of the number of lines of code. We conclude that the development team is able to maintain
a superior performance in processing the pull requests with a reduced set of developers.
As the number of contributors grows such is the case for the team structure 3-1-1, it takes
longer to respond, process, and close the pull requests.

We find that the highest (e.g., 3-3-2) and the lowest (e.g., 1-1-1) performing team
structures are statistically different in terms of the three investigated aspects. With
regards to the size of the development team, the projects that follow the structure 1-1-1 tend
to be larger in size, compared to the projects belonging to the structure 3-3-2. As shown in
Fig. 7a, the two distributions of the projects are statistically different based on the results
of the Wilcoxon-Mann-Whitney test (Mann and Whitney 1947) (p=value < 0.05). Specif-
ically, the median number of developers in the projects associated to the structure 3-3-2 is
9, versus a median of 35 developers in the projects following the structure 1-1-1. There-
fore, despite controlling for the effect of size when defining the team structures, some team
structures (e.g., 3-3-2) only exist in the smaller projects; possibly because it is not possible
to sustain a central core and dense interactions with the increasing number of developers.
Second, we measure the clustering into cliques using the transitivity metric (Wasserman and
Faust 1994), a measure that varies from 0 when there is no clustering, to 1 for maximal clus-
tering, which happens when the network consists of disjoint cliques. The projects in the first
distribution (3-3-2) show moderate clustering (median = 0.42), indicating the existence of
some cliques within the network of developers. The second distribution of projects, on the
other hand, returns a transitivity median equal to 1, showing that most projects in this dis-
tribution exhibit a strong clustering into disjoint cliques (as shown in Fig. 7b). The stronger
clustering in projects associated to the structure 1-1-1 could be possibly attributed to differ-
ent reasons. One possible reason is the modularity of the code base of the projects as they
grow, leading to cliques of developers focusing on specific modules of the projects. A sec-
ond possible explanation is the affinity of developers to work with specific people. Finally,
we investigate the difference between the two distributions in terms of the past interactions
among the developers. For each project, we compute the median weight of the pull-based
network edges. A weight of an edge between 2 developers that is equal to 3 indicates that
the two developers interacted 3 times in the past in the review process of the pull requests.
We find that the projects associated to the higher performing structure 3-3-2 show higher

Empirical Software Engineering (2019) 24:3790–38233812

numbers of past interactions (median = 3), compared to a median of 1 in the second distri-
bution (1-1-1). Therefore, the low performing team structures are more likely to experience
the existence of cliques, coupled with the drive-by contributors. This finding agrees with the
previous work by Joblin et al. (2017), which also finds evidence regarding the co-existence
of cliques and the drive-by contributors. The developers’ networks built by Joblin et al.
(2017) are based on mailing lists and version control systems.

Therefore, we conclude that:

– One of the highest performing team structures (e.g., 3-3-2) only exist in small to
medium projects, despite controlling for the effect of size. It is easier for smaller teams
to maintain a strong core and dense interactions, and thus achieve better processing of
the pull requests.

– The formation into disjoint cliques is more present in projects associated with lower per-
formance in processing the pull requests. Projects that maintain a moderate formation
of cliques achieve better processing of the pull requests.

– The processing of the pull requests could be faster due to the past interactions between
the developers (i.e., building of trust) in the structure 3-3-2. However, in team struc-
tures such as 1-1-1, integrators receive most contributions from drive-by and possibly
unknown contributors (i.e., the median of past interactions is equal to 1) .

The projects, characterized with a well-connected, cen-
tralized team around core contributors, are associated
to higher response, processing and closing of the pull
requests.

RQ4. Does changing the team structure over time have an impact on the perfor-
mance of the pull-based development model?

Motivation The team structure of a team might evolve over time. We are interested in
studying if the evolution of the team structures has an impact on the performance of the pull-
based development model. We want to examine if an improvement in the team structures is
linked to an improvement in the performance of processing the pull requests.

Approach First, we collect the GITHUB snapshots at different points in time as explained in
Section 4.1. Second, for each project, we build a pull-based network based on each temporal
snapshot; thus capturing the evolution of the pull-based networks over time. Third, for each
project network at time t , we assign the associated team structure based on the network metrics.
Lastly, we compute the performance metrics (listed in Section 3.3) of each project at the different
points in times to assess the improvement (or decline) of a project in processing pull requests.

To address this question, we use different time intervals (0.5, 1, 1.5, and 2 years) to
study the impact of the team structures evolution on the performance of the pull-based
development model. Therefore, given an interval [ti , ti+�], we first decide whether there
was an improvement, deterioration, or no change in the evolution of the team structure
(Table 7). Second, we examine whether the performance of the pull-based development
model has improved, deteriorated or has not changed between ti and ti+�.

Evolution of the performance metrics:

For each performance metric, we use the values at times ti and ti+� to measure the change.

Empirical Software Engineering (2019) 24:3790–3823 3813

1. Improvement: If the value at time ti+� is X% better than the value at time ti , we
consider that an improvement has occurred in terms of the given metric. We conjecture
that projects of different sizes are able to achieve different efficiency and productivity
levels. Therefore, we define X based on the median improvement of similarly-sized
projects.

2. Deterioration: If the value at time ti+� is X% worse than the value at time ti , we
consider that a deterioration has occurred in terms of the given metric. X is set based
on the median decline of projects of similar sizes.

3. Constant: Otherwise, we consider that no change has happened in terms of the
performance metric.

Evolution of the team structure:

1. Improvement or deterioration: In RQ3, we find that some team structures are associ-
ated to significantly higher performance than others at a given time t (see Table 6). If
the team structure at time ti+� belongs to group 1 in Table 6 (e.g., 3-3-2) and the team
structure at time ti belongs to the list of structures with significantly lower performance
in Group 2 (e.g., 1-1-1), we consider the change as an improvement. If, on the other
hand, the team structure changes the other way (e.g., from 1-1-1 to 3-3-2), we consider
the change as a deterioration.

2. Insignificant change: If the structure changes but the associated performances are not
significantly different based on the findings of RQ3 (e.g., 3-3-2 and 3-3-1), we can-
not decide whether there is an improvement or deterioration, and therefore, we do not
include such instances in this experiment.

3. Constant: If the team structure has remained the same (3-3-1 at both ti and ti+�), we
consider that there is no change in the team structure.

Next, we examine the impact of a change in the team structure on the performance of
the pull-based development model (Table 8). Accordingly, we define the following null
hypotheses:

“H 4
0 a: There is no difference in the probability of projects to witness a performance

improvement between projects with an improvement or no change in the team
structure”.

“H 4
0 b: There is no difference in the probability of projects to witness a performance

deterioration between projects with a deterioration or no change in the team
structure”.

Table 7 The number of GITHUB projects with an improvement, deterioration, insignificant change, or no
change in terms of the team structure

Evolution type 6 months 1 year 1.5 years 2 years

Improvement 389 (4.95%) 452 (5.76%) 530 (6.75%) 715 (9.11%)

Deterioration 106 (1.35%) 131 (1.67%) 176 (2.24%) 240 (3.06%)

Insignificant change 212 (2.70%) 359 (4.57%) 472 (6.01%) 380 (4.84%)

No change 7,143 (90.99%) 6,908 (88.00%) 6,672 (84.99%) 6,515 (82.99%)

Empirical Software Engineering (2019) 24:3790–38233814

Table 8 Results of Fisher’s test and Odds ratio. P1: Ratio of long running pull requests, P2: Average number
of pull requests closed daily, P3: Average response time, P4: Average processing time

Interval P1 P2 P3 P4

OR (p-value) OR (p-value) OR (p-value) OR (p-value)

Impact of improved team structure on the performance

6 months 7.22 (1.37e-12) Inf (2.91e-04) 7.04 (2.75e-11) 5.98 (7.01e-09)

1 year 5.03 (6.36.e-05) 3.75 (1.12.e-04) 3.13 (9.18.e-06) 6.45 (7.12e-08)

1.5 years 6.17 (5.56.e-10) 2.12 (4.58e-08) 2.86 (3.45e-06) 5.12 (8.08e-10)

2 years 4.86 (7.08e-11) 2.85 (3.54e-09) 2.12 (1.12e-08) 5.69 (8.12e-08)

Impact of deteriorated team structure on the performance

6 months 3.61 (2.11e-05) 1.76 (n.s) 3.69 (1.85e-06) 2.48 (1.89e-04)

1 year 1.22 (n.s) 2.15 (3.12.e-04) 1.55 (1.36.e-03) 1.78 (2.15e-03)

1.5 years 1.64 (3.67.e-03) 1.13 (n.s) 1.63 (9.12.e-04) 2.07 (5.64e-06)

2 years 1.78 (2.16e-03) 1.25 (n.s) 1.31 (n.s) 1.55 (3.69e-03)

To test H 4
0 a and H 4

0 b, we apply the Fisher’s exact test (Sheskin 2007). We reject the
null hypothesis if there is statistical significance (i.e., p-value < 0.05). We further compute
the Odds Ratio (OR) (Sheskin 2007) to determine if a change in the performance of the
pull-based development model has a higher or lower likelihood to occur for projects whose
team structure has evolved. To compute the OR within a duration �t with respect to a
performance metric P , we use the counts shown in Table 9. For instance, count1 is the
number of projects that witnessed both an improvement in the performance metric P , and
an improvement in terms of the team structure within the duration �t .

Results The majority of the projects (82.99% after 2 years) do not witness a change
in terms of the team structure. We show in Table 7 the number of projects that witness
an improvement, deterioration, insignificant change, or no change in terms of the team
structure. Only 9.11% and 3.06% witness a positive and negative change, respectively, after
2 years. 4.84% of the project experience a non-significant change in terms of their team
structures. The low percentage of projects that experience a change towards a significantly
better team structure might be an indication that the change is not necessarily a result of the
natural evolution of projects. Nevertheless, it is not possible to conclude from the data at
hand whether the change is conscious or coincidental.

The improvement of the team structure shows strong association with the improve-
ment of the performance of managing the pull requests. The better team structures
characterize well-connected teams that are centralized around core contributors. We find

Table 9 Counts of projects used to compute the Odds Ratio (OR = Count1∗Count4
Count2∗Count3

)

Team structure

Improved Unchanged

Metric P Improved Count1 Count2

Unchanged Count3 Count4

Empirical Software Engineering (2019) 24:3790–3823 3815

that it is highly likely for a development team whose pull-based network shows more desir-
able properties to improve its efficiency and productivity in managing the pull requests. Our
findings (shown in Table 8) are consistent across the different time intervals and across the
four performance metrics. For instance, the average processing time of a project is≈ 6 times
likely to decrease after 6 months if the team structure is significantly improved. Therefore,
we reject the null hypothesis H 4

0 a, and conclude that there is a strong association between
the team structures and the performance of the pull-based development model.

A worsening of the team structure is associated in many cases to a deterioration in
the performance of managing the pull requests over time. In cases where the team struc-
ture of a project deteriorates (i.e., displays higher sparsity and lower centralization around
core contributors), we observe the likelihood of a decline in most performance metrics. In
some cases (shown in Table 8), the difference is not significant (i.e., p-value > 0.05 and
OR < 1.5), indicating no strong association between the deterioration in the team structure
and the performance (especially for the average number of pull requests closed daily). The
overall results lead us to reject the null hypothesis H 4

0 b, and conclude that it is likely for a
team to witness a decline in the efficiency and productivity of managing the pull requests
when the density and centralization of the pull-based network decreases. We further inspect
the impact of an increasing size of the development team on the performance metrics. We
find a stronger association between the increasing number of developers and the increasing
processing time of the pull requests, compared to the impact of a deteriorating team struc-
ture on slowing down the processing time of pull requests. For instance, pull requests are
processed 8.96 times slower (p-value = 2.45e-18) with an increasing number of developers,
over a period of 2 years.

We find that the move of a development team towards
a structure that is more centralized (i.e., the presence of
a set of core contributors), more dense (i.e., each devel-
oper interacts with a larger set of developers), and more
reciprocal (i.e., more developers are involved as both
integrators and contributors), is associated with a sig-
nificant improvement in the speed of processing the pull
requests.

6 Discussion

6.1 Summary of Contributions

To gain a better understanding on the network metrics that can possibly impact the pro-
cessing of the pull requests, we study the relationship between a set of network metrics
extracted from the pull-based networks (e.g., reciprocity) and a set of performance metrics
(e.g., response time). The results of the linear regression reveal that the network metrics can
partially explain the performance metrics (R2 ¡= 0.32). Specifically, maintaining a strong
core of contributors and denser interactions among the developers is associated with faster
response and processing of the pull requests. The remaining variability observed in the mod-
els is likely due to other factors, such as the churn of the code change associated with the
pull requests, the expertise of the reviewers, and the turnover of the developers. Although
the models built in our study do not incorporate non-network based metrics, the network

Empirical Software Engineering (2019) 24:3790–38233816

metrics, such as centralization, implicitly cover some of the unaccounted for aspects. For
instance, if a core member exits a project (as a result of turnover), a drop in the centraliza-
tion of the project network would likely be observed. Another example is that developer’s
expertise is possibly reflected through their number of contributions (i.e., centralization),
and their ability to both produce and review pull requests (i.e., reciprocity). However, more
comprehensive models (i.e., that include both network and non-network measures) could be
essential to fully explain the performance of the pull-based model.

Using the significant network metrics, we systematically define and identify a set of team
structures, and examine their popularity in our subject projects. We observe that the most
commonly followed group of structures (Group 2 in RQ2) is characterized by sparse col-
laboration links among the developers (i.e., low density), and strict decision making process
(i.e., low reciprocity). Besides, it appears that smaller and larger projects form into different
team structures. Therefore, we believe that certain team behaviors are harder to sustain in
larger projects (e.g., high centrality coupled with dense collaborations - Group 3 in RQ2).
A comparison of the different team structures reveals that the projects that maintain a set of
core contributors that collaborate densely achieve better performance in processing the pull
requests. We take a closer look into the better performing teams structures. We observe that
developers within such projects have a higher median of past interactions, as measured by
the weights of edges in the pull-based networks. This finding confirms the findings of prior
work related to the pull request evaluation (Tsay et al. 2014a; Gousios et al. 2014). Indeed,
Tsay et al. (2014a) report that prior contributions are used as a signal of the trustworthiness
of a contributor; while Gousios et al. (2014) conclude that the time to merge a pull request
is influenced by a contributor’s previous track record.

6.2 Socially-Enabled Governance in Open Source Projects: What’s Different?

Many of our findings confirm the results of previous studies that look into the structural
properties of open source projects, based on different artifacts (e.g., bug tracking systems
or mailing lists). However, the structural properties of teams as they collaborate using pull
requests have not been studied in the prior work. The pull request development model is
unique in its nature, because it happens in the context of the social coding model. Specif-
ically, thanks to the transparency available in platforms such as GitHub, it is easy for the
developers to collect social signals about each others, such as, the size of their followers,
their number of stars, and their activity overview (e.g., 54% of the developer’s activity is
code review and 10% is issue reports). This results in a unique environment of collaboration,
where both technical and social factors come in play during the process of code (and devel-
oper) evaluation (Tsay et al. 2014a). Therefore, it is important to re-examine the commonly
known principles of open source governance, in a socially-enabled collaboration environ-
ment. Our findings suggest similarities with traditional collaboration venues, such as bug
tracking systems. Moreover, it reveals interesting insights, such as, how much can structural
properties explain the performance of the pull-based model, the distribution of the identified
team structures and the characteristics of their associated projects, the trends of evolution of
the structures over time, and the possible warning signs that a project is evolving towards a
worsening structure.

Empirical Software Engineering (2019) 24:3790–3823 3817

6.3 Do Projects Evolve Naturally Over Time to Form Better Team Structures?

Another question that arises from our study is whether the shift of projects towards more
desired team structures a result of natural evolution, or a conscious choice made by the
maintainers of projects. In our study, we find that:

a) only a low percentage of the projects witnesses a change towards team structures with
the desired properties (e.g., stronger centralization) over time, b) the most efficient and
productive team structures (e.g., 3-3-2) are associated only to the smaller sized projects,
where the size is measured using of the number of the developers.

The two aforementioned findings lead us to believe that projects do not evolve naturally
into team structures that achieve better performance of processing the pull requests. As
such, we recommend that the maintainers of the open source projects consciously monitor
the evolution of their team structures in the pull-based development model.

6.4 How CanMaintainers Monitor and Improve the Structure of Their Teams?

The pull-based networks can potentially help identify the overwhelmed developers (i.e.,
the developers with high centralization scores), or the developers with similar knowledge
(to select the developers for sharing or shifting the development tasks). The maintainers of
the projects could possibly prevent the evolution into team structure associated with low
performance. One of the warnings signs that a team structure is evolving negatively is the
formation of disjoint cliques as discussed in RQ3. Another warning sign is the increase in
the number of the ‘drive-by’ contributors, coupled with a decrease in the presence of the
core and trusted contributors. It would be possible in practice to prevent the propagation of
this phenomena by:

– creating mentoring or explicit links between new contributors and established devel-
opers within the projects, to built trust and favor retention. The creation of links
involves assigning specific developers to review the pull requests submitted by new
and unknown contributors. The assigned developers would ideally provide assistance
to the new contributors, and build their familiarity with the norms and conventions of
the projects.

– maintaining a central core within the team despite growing in size. To avoid the exten-
sive formation of cliques, it is important for a set of developers to maintain a general
awareness of the pull requests submitted in a project. Such developers would periodi-
cally get involved in the review process of pull requests associated to different modules
in the project.

7 Threats to Validity

This section discusses the threats to validity of our study.

Threats to conclusion validity concern the relation between the treatment and the outcome.
The performance in managing pull requests is impacted by many factors, other than the
team structure, such as the turnover of the developers, and the amount and complexity of
pull requests received by the project. Therefore, the performance of the pull-based model
cannot be fully explained by one of the factors only. However, as discussed in Section 6, we
are still able to obtain interesting insights from the relationship between the team structures

Empirical Software Engineering (2019) 24:3790–38233818

and the performance of the pull-based development model. Our future work will consider
additional factors, such as the amount and quality of pull requests received by the project,
to properly model the performance of the pull-based development model.

Threats to internal validity concern our selection of subject projects and analysis methods.
The completeness and popularity of the team structures identified depends on the selected
pool of projects. Since we study the pull-based networks, we select the projects with the
highest number of recorded pull requests (over 100 pull requests). To ensure the stability of
our results, we vary the threshold of pull requests used to select the projects, and find that
the most frequent team structures are similar with different numbers of selected projects.
As shown in Table 1, the majority of our subject projects (69.8%, i.e., 5,483 out of 7,850)
have 20 or less developers. This could indicate that our dataset could be biased towards the
smaller projects. However, as reported by Gousios et al. (2014), around 70% of the projects
hosted on GitHub are single-developer projects. As such, the resulting set of projects only
mirrors the widespread of the smaller projects hosted on GitHub, in terms of the number of
developers. Besides, our study design attempts to control for size using both the CUG test
for normalization, and by including control metrics (i.e., the number of developers and the
number of commits) in the models built. In our study, we consider the evolution of the team
structures using temporal snapshots of the projects separated by at least 6 months. We do
not study duration less than 6 months because we observe that 5% or less of the projects
experience a change in the team structure in shorter durations.

Threats to external validity concern the possibility to generalize our results. GITHUB is
the number one social coding platform with millions of active repositories. We study the
7,850 most active projects, and therefore our findings are based on a very active pool of
projects. Besides, our findings can be generalized to other open source projects using dif-
ferent social coding platforms, such as BITBUCKET, because the pull-based development
model works the same across platforms.

8 Conclusion

In open source distributed projects, the collaboration and self-organization of developers is
an important aspect to the success of projects. With the social coding platforms, distributed
teams are able to collaborate using friendly features, such as pull requests. Through a single
place (i.e., the pull request), code can be proposed, reviewed, and safely merged to the main
stream of a project. However, the pull-based development model exhibits to challenges,
such as the ability of the team to process all incoming pull requests on a timely manner.
The faster pull requests are merged into a project, the more issues are fixed or the more new
features are introduced to the project.

In this paper, we build pull-based networks for the most popular projects on GITHUB and
propose a way to identify the existing team structures based on a set of influential network
metrics. We find that over a third of the projects are characterized by loosely connected
teams, with single-role developers. Then, we attempt to rank the different team structures
and find that the most desirable structure characterizes projects where developers are well
connected (i.e., developers collaborate with many (if not most) of their teammates), are
centralized around key contributors, and possibly take roles as both integrators and contrib-
utors. Finally, we study the evolution of the team structures along with the performance of
the projects in processing the pull requests. Our findings reveal a strong association between

Empirical Software Engineering (2019) 24:3790–3823 3819

the improvement in the team structure and the increase in the performance of the pull-
based development model. In the future, we plan to study the team structures in more social
coding platforms, and include additional factors that could impact the performance of the
pull-based development model.

References

Anderson BS, Butts C, Carley K (1999) The interaction of size and density with graph-level indices. Soc
Networks 21(3):239–267

Barr ET, Bird C, Rigby PC, Hindle A, German DM, Devanbu P (2012) Cohesive and isolated development
with branches. In: Fundamental Approaches to Software Engineering, Springer, pp 316–331

Bersani FS, Lindqvist D, Mellon SH, Epel ES, Yehuda R, Flory J, Henn-Hasse C, Bierer LM, Makotkine I,
Abu-Amara D, Coy M, Reus VI, Lin J, Blackburn EH, Marmar C, Wolkowitz OM (2016) Association of
dimensional psychological health measures with telomere length in male war veterans. J Affect Disord
190:537–542

Bettenburg N, Hassan AE (2010) Studying the impact of social structures on software quality. In: 2010 IEEE
18th International Conference on Program Comprehension (ICPC), pp 124–133

Bird C, Gourley A, Devanbu P, Swaminathan A, Hsu G (2007) Open borders? Immigration in open source
projects. In: Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE
Computer Society, MSR ’07, pp 6

Bird C, Pattison D, D’Souza R, Filkov V, Devanbu P (2008) Latent social structure in open source projects.
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, ACM, pp 24–35

Butts CT et al (2008) Social network analysis with sna. J Stat Softw 24(6):1–51
Capra E, Francalanci C, Merlo F (2008) An empirical study on the relationship between software design

quality, development effort and governance in open source projects. IEEE Trans Softw Eng 34(6):765–
782

Choi H, Varian H (2012) Predicting the present with google trends. Econ Rec 88:2–9
Crowston K, Howison J (2005) The social structure of free and open source software development. First

Monday 10(2). https://doi.org/10.5210/fm.v0i0.1478
Crowston K, Howison J (2006) Hierarchy and centralization in free and open source software team

communications. Knowl Technol Policy 18(4):65–85
Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: Transparency and collaboration

in an open software repository. In: Proceedings of the ACM 2012 Conference on Computer Supported
Cooperative Work, ACM, New York, CSCW ’12, pp 1277–1286

de Reus MA, van den Heuvel MP (2013) The parcellation-based connectome: Limitations and extensions.
NeuroImage 80:397–404. mapping the Connectome

Dinh-Trong TT, Bieman JM (2005) The freebsd project: a replication case study of open source development.
IEEE Trans Softw Eng 31(6):481–494

Ducheneaut N (2005) Socialization in an open source software community: a socio-technical analysis.
Comput Supported Coop Work (CSCW) 14(4):323–368

Ehrlich K, Cataldo M (2012) All-for-one and one-for-all?: A multi-level analysis of communication patterns
and individual performance in geographically distributed software development. In: Proceedings of the
ACM 2012 Conference on Computer Supported Cooperative Work, ACM, New York, CSCW ’12, pp
945–954

Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry pp 35–41
Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1(3):215–239
Gacek C, Arief B (2004) The many meanings of open source. IEEE Softw 21(1):34–40
Garlaschelli D, Loffredo MI (2004) Patterns of link reciprocity in directed networks. Phys Rev Lett

93(26):268,701
Gharehyazie M, Posnett D, Vasilescu B, Filkov V (2015) Developer initiation and social interactions in oss:

a case study of the apache software foundation. Empir Softw Eng 20(5):1318–1353
Gousios G (2013) The ghtorent dataset and tool suite. In: Proceedings of the 10th Working Conference on

Mining Software Repositories, IEEE Press, pp 233–236
Gousios G, Pinzger M, Av Deursen (2014) An exploratory study of the pull-based software development

model. In: Proceedings of the 36th International Conference on Software Engineering, ACM, New York,
ICSE 2014, pp 345–355

Empirical Software Engineering (2019) 24:3790–38233820

https://doi.org/10.5210/fm.v0i0.1478

Gousios G, Zaidman A, Storey MA, van Deursen A (2015) Work practices and challenges in pull-based
development: The integrator’s perspective. In: Proceedings of the 37th International Conference on
Software Engineering, vol 1. IEEE Press, Piscataway, ICSE ’15, pp 358–368

Gousios G, Storey MA, Bacchelli A (2016) Work practices and challenges in pull-based development: The
contributor’s perspective. In: Proceedings of the 38th International Conference on Software Engineering,
ACM, New York, ICSE ’16, pp 285–296

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2008) Statnet: Software tools for the
representation, visualization, analysis and simulation of network data. J Stat Softw 24(1):1548

Howison J, Inoue K, Crowston K (2006) Social dynamics of free and open source team communications. In:
IFIP International Conference on Open Source Systems, Springer, pp 319–330

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast?: Case study on the linux
kernel. In: Proceedings of the 10th Working Conference on Mining Software Repositories, IEEE Press,
Piscataway, MSR ’13, pp 101–110

Joblin M, Apel S, Hunsen C, Mauerer W (2017) Classifying developers into core and peripheral: An empiri-
cal study on count and network metrics. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, pp 164–174

Krackhardt D (1994) Graph theoretical dimensions of informal organizations. Computational Organization
Theory 89(112):123–140

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583–621

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. The annals of mathematical statistics pp 50–60

Marlow J, Dabbish L, Herbsleb J (2013) Impression formation in online peer production: Activity traces and
personal profiles in github. In: Proceedings of the 2013 Conference on Computer Supported Cooperative
Work, ACM, New York, CSCW ’13, pp 117–128

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development: Apache
and mozilla. ACM Trans Softw Eng Methodol 11(3):309–346

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings of the 30th International Conference on Software
Engineering, ACM, New York, ICSE ’08, pp 181–190

Nagappan N, Ball T (2007) Using software dependencies and churn metrics to predict field failures: An
empirical case study. In: Proceedings of the First International Symposium on Empirical Software
Engineering and Measurement, IEEE Computer Society, Washington, ESEM ’07, pp 364–373

O’Mahony S, Ferraro F (2007) The emergence of governance in an open source community. Acad Manag J
50(5):1079–1106

Rick (2013) View long-running pull requests
Rigby PC, Storey MA (2011) Understanding broadcast based peer review on open source software projects.

In: Proceedings of the 33rd International Conference on Software Engineering, ACM, New York, ICSE
’11, pp 541–550

Rigby PC, Barr ET, Bird C, Devanbu P, German DM (2013)What effect does distributed version control have
on oss project organization? In: 2013 1st International Workshop on Release Engineering (RELENG),
IEEE, pp 29–32

Robertsa J, Hann IH, Slaughter S (2006) Communication networks in an open source software project. In:
IFIP International Conference on Open Source Systems, Springer, pp 297–306

Schall D (2014) Who to follow recommendation in large-scale online development communities. Inf Softw
Technol 56(12):1543–1555. special issue: Human Factors in Software Development

Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman &
Hall/CRC, Boca Raton

Siegel S (1956) Nonparametric Statistics for the Behavioral Sciences. McGraw-hill, New York
Steel RGD, Torrie JH (1960) Principles and Procedures of Statistics: with Special Reference to the Biological

Sciences. McGraw-Hill, New York
Tsay J, Dabbish L, Herbsleb J (2014a) Influence of social and technical factors for evaluating contribution in

github. In: Proceedings of the 36th International Conference on Software Engineering, ACM, New York,
ICSE 2014, pp 356–366

Tsay J, Dabbish L, Herbsleb J (2014b) Let’s talk about it: Evaluating contributions through discussion
in github. In: Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ACM, New York, FSE 2014, pp 144–154

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in github. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ACM, pp 805–816

Empirical Software Engineering (2019) 24:3790–3823 3821

von Krogh G, Spaeth S, Lakhani KR (2003) Community, joining, and specialization in open source software
innovation: a case study. Res Policy 32(7):1217–1241. open Source Software Development

Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications, vol 8. Cambridge
University Press, Cambridge

Wolf T, Schroter A, Damian D, Nguyen T (2009) Predicting build failures using social network analy-
sis on developer communication. In: Proceedings of the 31st International Conference on Software
Engineering, IEEE Computer Society, Washington, ICSE ’09, pp 1–11

Yu Y, Wang H, Yin G, Ling CX (2014a) Who should review this pull-request: Reviewer recommendation to
expedite crowd collaboration. In: 21St Asia-pacific Software Engineering Conference, vol 1. pp 335–342

Yu Y, Yin G, Wang H, Wang T (2014b) Exploring the patterns of social behavior in github. In: Proceedings
of the 1st International Workshop on Crowd-based Software Development Methods and Technologies,
ACM, New York, CrowdSoft 2014, pp 31–36

Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: Determinants of pull request evaluation
latency on github. In: 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, pp
367–371

Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F (2013) Categorizing bugs with social networks: A case
study on four open source software communities. In: Proceedings of the 2013 International Conference
on Software Engineering, IEEE Press, Piscataway, ICSE ’13, pp 1032–1041

Zar JH (2005) Spearman Rank Correlation. John Wiley & Sons, Ltd

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Mariam El Mezouar is a PhD candidate in the School of Computing at Queen’s University (Canada).
She received her B.S degree in Computer Science and her M.S degree in Software Engineering from Al
Akhawayn University (Morocco) in 2011 and 2013 , respectively. Her research interests include software
engineering, mining software repositories and defect prediction.

Empirical Software Engineering (2019) 24:3790–38233822

Feng Zhang is currently a Ph.D. candidate in School of Computing from Queen’s University in Canada.
He received both his B.S. degree and his M.S. degree from Nanjing University of Science and Technology
(China) in 2004 and 2006, respectively. His research interests include empirical software engineering, soft-
ware re-engineering, mining software repositories, source code analysis, and defect prediction. More about
Feng and his work is available online at http://feng-zhang.com

Ying Zou is a Canada Research Chair in Software Evolution. She is an associate professor in the Depart-
ment of Electrical and Computer Engineering, and cross-appointed to the School of Computing at Queen’s
University in Canada. She is a visiting scientist of IBM Centers for Advanced Studies, IBM Canada.
Her research interests include software engineering, software reengineering, software reverse engineering,
software maintenance, and service-oriented architecture.

Affiliations

Mariam El Mezouar1 · Feng Zhang1 ·Ying Zou2

Feng Zhang
feng@cs.queensu.ca

Ying Zou
ying.zou@queensu.ca

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
2 Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, Canada

Empirical Software Engineering (2019) 24:3790–3823 3823

http://feng-zhang.com
http://orcid.org/0000-0002-3317-7051
mailto: feng@cs.queensu.ca
mailto: ying.zou@queensu.ca

	An empirical study on the teams structures in social coding using GitHub projects
	Abstract
	Introduction
	Paper organization

	Related Work
	Governance in Open Source Projects
	Evaluation of Pull Requests
	Developer Social Networks

	Pull-Based Networks
	Pull-Based Software Development
	Pull-Based Network
	Performance Metrics for Evaluating the Pull-Based Model
	Productivity
	Efficiency

	Experimental Setup
	Collecting the GitHub Data
	Computing and Normalizing the Network Metrics
	Reason for the normalization
	The CUG test for normalization
	Normalizing the metrics

	Results
	Motivation
	Approach

	Reduce highly-correlated metrics
	Build a regression model
	Identify the influential network metrics
	Results
	Motivation
	Approach
	Results
	Motivation
	Approach
	Results
	Motivation
	Approach

	Evolution of the performance metrics:
	Evolution of the team structure:
	Results

	Discussion
	Summary of Contributions
	Socially-Enabled Governance in Open Source Projects: What's Different?
	Do Projects Evolve Naturally Over Time to Form Better Team Structures?
	How Can Maintainers Monitor and Improve the Structure of Their Teams?

	Threats to Validity
	Threats to conclusion validity
	Threats to internal validity
	Threats to external validity

	Conclusion
	References
	Affiliations

