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Abstract
This paper presents a novel code clone search technique that is accurate, incremental, and
scalable to hundreds of million lines of code. Our technique incorporates multiple code
representations (i.e., a technique to transform code into various representations to capture
different types of clones), query reduction (i.e., a technique to select clone search keywords
based on their uniqueness), and a customised ranking function (i.e., a technique to allow a
specific clone type to be ranked on top of the search results) to improve clone search perfor-
mance. We implemented the technique in a clone search tool, called Siamese, and evaluated
its search accuracy and scalability on three established clone data sets. Siamese offers the
highest mean average precision of 95% and 99% on two clone benchmarks compared to
seven state-of-the-art clone detection tools, and reported the largest number of Type-3 clones
compared to three other code search engines. Siamese is scalable and can return cloned code
snippets within 8 seconds for a code corpus of 365 million lines of code. Using an index
of 130,719 GitHub projects, we demonstrate that Siamese’s incremental indexing capabil-
ity dramatically decreases the index preparation time for large-scale data sets with multiple
releases of software projects. The paper discusses the applications of Siamese to facilitate
software development and research with two use cases including online code clone detection
and clone search with automated license analysis.

Keywords Code clone search · Code search engine

1 Introduction

Code search is becoming increasingly important when considering the plethora of source
code currently proliferating on the Internet (Sadowski et al. 2015). Developers prefer to
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reuse coding solutions from online sources, such as Stack Overflow, instead of official doc-
umentation or books (Acar et al. 2016). Researchers have also leveraged large amounts
of online code snippets to make suggestions to developers during development (Keivan-
loo et al. 2014; Park et al. 2014; Ponzanelli et al. 2013, 2014). Online code snippets may
be exploited for program repair (Ke et al. 2015) or code examples (Keivanloo et al. 2014;
Nasehi et al. 2012). On the other hand, reusing code from online sources have been found
to introduce negative effects to software quality (Abdalkareem et al. 2017; Acar et al. 2016)
or to violate software licenses (An et al. 2017; Baltes and Diehl 2018).

Text search engines (e.g., Google) are not designed for source code, hence they can
only locate exactly similar code snippets (a challenge for clone recall) or ignore the source
code’s structure (a challenge for clone precision). Current code clone detection tools and
techniques offer high clone detection accuracy but are not effective at finding clone candi-
dates in a very short time (a scalability challenge). To locate or study clones from online
sources as previously mentioned, a special type of code search, namely code clone search,
which accepts a code fragment as a query and performs a code-to-code search in large code
corpora (Kim et al. 2018; Nishi and Damevski 2018) is needed.

To tackle the scalability and clone recall and precision challenges in large-scale clone
search, this paper presents and evaluates a scalable code clone search technique that retrieves
Type-1 to Type-3 code clones in seconds, and supports incremental changes in software
projects. The novelty of the paper lies in using multiple code representations (i.e., multi-
representation) to locate clones. Unlike other clone detection or clone search tools that are
based on a single representation of code (e.g., a sequence of string, a sequence of tokens, or
a set of tokens), we employ four code representations to locate clones. Moreover, we mine
token frequencies in a code corpus on-the-fly and automatically adjust a query’s length
to improve the search speed and accuracy. Our technique also allows incremental updates
to the source code bases being analysed. We implemented a tool for the technique, called
Siamese (Scalable, incremental, and multi-representation) clone search engine. The eval-
uation of Siamese shows that the technique scales to 365 MLOC and returns the results
within 8 seconds. Our technique offers a search precision of 95% and 99% on two estab-
lished clone benchmarks, which are higher than seven state-of-the-art clone detection tools.
The technique reports the largest number of Type-3 clones compared to three code search
engines. Moreover, the technique also exhibits high recall and precision for all clone types
in the BigCloneBench (Svajlenko et al. 2014), a large-scale clone benchmark. This paper
makes the following primary contributions.

1. A multi-representation and query reduction technique for code clone search that is
accurate and scalable, and their evaluation.

2. The Siamese clone search engine1 which is scalable and incremental, suitable for per-
forming instant clone search on large-scale data sets, such as online code repositories.

The rest of the paper is organised as follows. Section 2 explains the background and
the motivation of the paper. Section 3 describes the Siamese clone search architecture, fol-
lowed by implementation details in Section 4. Experimental design is presented in Section 5
and the evaluation results are discussed in Section 6. Section 7 presents two case studies
using Siamese. Threats to validity are discussed in Section 8 and related work is present in
Section 9, before Section 10 concludes the paper.

1Tool and data sets used are available at https://github.com/UCL-CREST/Siamese.

https://github.com/UCL-CREST/Siamese
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2 Background andMotivation

It is difficult to obtain high precision, recall, and scalability at the same time in code clone
search. Text-based search engines such as Bing and Google are scalable to the Internet
but are not designed for source code and rely only on keyword search (Sadowski et al.
2015). Dedicated code search engines such as BlackDuck OpenHub (BlackDuck 2016),
Krugle (Aragon Consulting Group 2018) or Searchcode (Boyter 2018) cannot efficiently
handle code clones with modifications (Keivanloo et al. 2014; Kim et al. 2018). Hummel
et al. (2010) and Koschke (2014) are among the first to propose scalable clone detection
systems. However, the trade-off for the scalability is their ability to report only copy-and-
paste clones or clones with variable renaming (i.e., Type-1 and Type-2 clones), while the
largest number of clones found in software are clones with added or deleted statements (i.e.,
Type-3 clones) (Roy and Cordy 2009; Svajlenko et al. 2014). Although there are scalable
clone detection and clone search techniques that can locate Type-3 clones with some level
of success (Keivanloo et al. 2011a, b; Sajnani et al. 2016; Kim et al. 2018), scalably finding
Type-3 clones is still an open challenge.

Retrieving a ranked list of clones is preferred over a full list of clone pairs in various
contexts, such as finding similar code examples (Keivanloo et al. 2014) or searching for
candidates for bug fixing (Ke et al. 2015). Code clone detectors that report a complete set
of clones are not suitable for these tasks because a large number of clone pairs have to
be manually investigated (An et al. 2017; Yang et al. 2017; Bauer et al. 2016). In these
circumstances, the user would only need a ranked list of top n cloned code fragments instead
(Niu et al. 2017). There have been a number of code search tools which produce a ranked
list of code candidates (Grechanik et al. 2010; Inoue et al. 2012; Keivanloo et al. 2014;
Kim et al. 2018; McMillan et al. 2011; Niu et al. 2017; Zhang et al. 2017). Some of the
tools offer limited benefits because they rely on external code search engines which are no
longer available (Inoue et al. 2012), or they need a specific intermediate data set (Kim et al.
2018) in order to work properly. To support a broad range of applications, we prefer a clone
search engine that is general, works out-of-the-box and is not tied to any specific use cases
or scenarios.

Moreover, to find good candidates for program repair, one looks for clones which deviate
from the original buggy code (i.e., Type-3/Type-4) to increase the chance of successful
repairs (Ke et al. 2015). On the other hand, to check for copy-and-paste code from online
sources and investigate their license compatibility, one is interested in clones that are closer
to the original (i.e., Type-1/Type-2) to reduce the manual investigation time. Thus, it is
important that the clone search tool captures different types of clones and adapts the ranking
to report a specific type of clones according to the users’ need.

Lastly, most of the clone detectors do not handle incremental addition or deletion of
software projects. Thus, adding new projects to the code base under analysis or updating
existing projects would result in the need to rerun the clone detection for the complete data
set. Several of the proposed techniques that support incremental clone detection do not scale
to large-scale data sets (Göde and Koschke 2009; Kawaguchi et al. 2009; Nguyen et al.
2009) or do not detect Type-3 clones in sacrificing for scalability (Hummel et al. 2010;
Koschke 2014).

Our technique tackles the previously mentioned challenges by incorporating a novel idea
of multiple code representations and three techniques, i.e., inverted index, query reduction,
and customised ranking, drawn from information retrieval.

By using multiple code representations, we capture different types of clones simultane-
ously without a need to change the configurations. The approach also allows customisation
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of the ranking function to return a specific clone type on top of the search results. By using
an inverted index structure to store and retrieve clones, we obtain the scalability for clone
search. The inverted index is a widely-used data structure for a fast document retrieval.
The index associates a term to a list of documents containing the term. By giving a query
of search terms, only documents that match with the query terms are retrieved. It offers a
short query response time and is scalable to large-scale data sets (Manning et al. 2009). It
has been used in scalable code clone detection tools and techniques, such as Hummel et al.
(2010), Koschke (2014), Sajnani et al. (2016), Kim et al. (2018), and Saini et al. (2018), and
has shown to offer high scalability on large code corpora.

3 Siamese Clone Search Architecture

We designed the architecture of our clone search approach by adopting inverted index and
code clone detection techniques as depicted in Fig. 1. Source code from code corpora is
stored in an inverted index, which is a widely-used data structure for fast querying of rele-
vant documents (Manning et al. 2009). Our architecture separates the necessary indexing of
source code, where the search index is created, from querying, where the clones of a queried
code fragment are retrieved. Inverted index and tf-idf-based scoring functions are exploited
as the infrastructure of code retrieval and similarity measurement. Siamese works at token
level which supports scalable detection of near-missed clones (Kim et al. 2018; Sajnani et al.
2016). The two techniques normally found in token-based clone detection including token
normalisation (Kamiya et al. 2002; Prechelt et al. 2002; Roy and Cordy 2008) and n-gram
generation (Burrows et al. 2007; Ohmann and Rahal 2014; Prechelt et al. 2002; Schleimer
et al. 2003) are performed during indexing and querying time.

Fig. 1 Siamese architecture
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The architecture incorporates a novel multi-representation and query reduction tech-
nique to increase clone search precision and flexibility of clone matching. The multi-
representation module (Section 3.3) enables clone detection based on multiple code
representations instead of one representation as in other tools. The query reduction mod-
ule (Section 3.4) leverages the knowledge of token document frequency in a code corpus
to improve the quality of the query on-the-fly. Our customised scoring and ranking mod-
ule (Section 3.5) computes scores for matched code fragments and returns a ranked list of
clones. Lastly, the incremental update module (Section 3.6) allows the user to add new
code fragments to the index or delete selected existing code fragments from the index with-
out affecting other indexed code fragments. Siamese performs a two-phase approach: an
indexing and a querying phase.

3.1 Indexing Phase

In this phase, Siamese processes a given source code base(s) to generate a searchable code
index. Siamese supports two types of code fragments, files and methods, and the input
code fragments are preprocessed before being stored into the inverted index. Siamese is
a token-based tool and is resilient to incomplete or uncompilable code fragments. If the
method parsing fails, it falls back to store the source code at a file level. Each input code
fragment F (file or method depending on its granularity) is then tokenised into a stream of
tokens and sent to the multi-representation (MR) conversion module to generate four code
representations which capture the code structure at different levels, before being stored in
the index. Indexing source code files is an expensive task because the tool has to process all
the available code data. Fortunately, it occurs far fewer times than the querying phase.

3.2 Querying Phase

The querying phase happens when the clone search tool receives a code query from its user
and returns clone results. Only indexed documents containing the query terms are retrieved
and ranked. Querying is the main activity for Siamese and usually occurs many more times
than indexing. In this phase, the source code query is prepared in the same way as in the
indexing phase by passing through method extraction and tokenisation steps. The query
phase also supports two types of code fragments: files and methods. A tokenised code query
Q is sent to the MR module to generate four query representations, i.e., siblings. The query
reduction (QR) module rewrites and generates reduced queries from the original four query
siblings. The reduced query siblings are combined into a single search request and executed
on the search engine. Siamese retrieves indexed code fragments that match with the com-
bined query and computes the ranking of results using a customised scoring function before
reporting them to the user.

3.3 Multi-Representation (MR)

The Siamese clone search approach works with four code siblings derived from the original
source code fragment F by the multi-representation module. To be able to detect clones of
each clone type with a high precision, each clone type has a dedicated code representation.
The set of four code representations {r0, r1, r2, r3} that represent F are defined as follows.

1. Original representation r0: A stream of tokens, i.e., 1-grams, containing tokens from
the original source code (text search).
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Table 1 Representative tokens
for specific token types D data types J Java class names

K Java keywords P Java packages

O operators S string literals

V numbers W words (other identifiers)

2. Type-1 representation r1: A stream of n-grams containing tokens from the original
code (Type-1 clone search).

3. Type-2 representation r2: A stream of n-grams containing normalised n-grams with
identifier, literal, and type tokens replaced by the representative tokens (Type-2 clone
search).

4. Type-3 representation r3: A stream of n-grams containing normalised n-grams with
all tokens replaced by the representative tokens, except Java punctuators {, }, [, ], (,
), and ;. Punctuators are not normalised as they are meaningful to the code structure
(Type-3 clone search).

The three n-gram-based representations (r1, r2, r3) are derived from the stream of tokens
in the original representation (r0). Our MR module augments the normal text search and
makes it more suitable for code search by including three more representations that leverage
token types, code structure, and the knowledge of clone types. For Type-1 representation
(r1), the n-grams are generated directly from the original representation (r0). For Type-2
(r2) and Type-3 representation (r3), the stream of tokens r0 is normalised to a reduced token
stream in which tokens of specific types are replaced by a representative token. Table 1
shows the list of our pre-defined representative tokens containing D for data types, J for
Java class names, K for Java keywords, P for Java packages, O for operators, S for string
literals, V for numbers, and W for words, i.e., other identifiers. In case of r2, all identifiers,
types, numbers, and string literals are replaced by a representative token W, D, V, and S
respectively. For r3, all tokens are replaced with their respective representative tokens. Then,
r1, r2, and r3 are obtained by n-gramising their respective reduced token stream.

For example, given a code fragment of a binary search method in Fig. 2, the four
representations r0, r1, r2, r3 generated from the MR module are depicted in Table 2.

This MR technique enables Siamese to capture multiple clone types at the same time.
During the search, each code representation in the query will match with its respective

Fig. 2 An example code fragment of a binary search method
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Table 2 The four representations of the binarySearch1 method generated from the MR module

r0 (n-gram size = 1)

public static int binarySearch1 ( int arr [ ]

, int key , int imin , int imax ) ... ;

else return imid ; }
r1 (n-gram size = 4)

publicstaticintbinarySearch1 staticintbinarySearch1( intbinarySearch1(

int binarySearch1(intarr (intarr[ ...

;elsereturnimid elsereturnimid; returnimid; }
r2 (n-gram size = 4)

publicstaticDW staticDW( DW(D W(DW (DW[ DW[] W[],

[],D ],DW ,DW, DW,D W,DW ,DW) DW) W){if ){if( ...

);elsereturn ;elsereturnW elsereturnW; returnW; }
r3 (n-gram size = 4)

KKDW KDW( DW(D W(DW (DW[ DW[] W[], [],D ],DW ,DW,

DW,D W,DW ,DW) DW){ W){K ){K( K(W K(WO (WOW ...

KK(W WOV, OV,W V,W) ,W); W);K ;KKW KKW; KW; }

representation of the indexed code fragments. We apply MR conversion to the source code
in both the indexing and querying phase. In the indexing phase, Siamese creates a new
document for a given code fragment and puts the four representations in separated fields
inside the document. Then, the document is stored in the search index. In the querying phase,
Siamese creates a combined query containing four sub queries of the four representations.

3.4 Query Reduction (QR)

Clone search suffers the long query problem (Kumaran and Carvalho 2009) since a code
fragment is given as a query. To tackle this problem, we adopted a query reduction technique
using token document frequency (df ), i.e., the number of documents in which the token
appears, as a query quality predictor (Kumaran and Carvalho 2009). We rewrite the query to
contain only rare tokens and discard frequent ones. According to studies of Zipf’s power law
in software (Zipf 1932; Knuth 1971; Zhang 2008), there are a few highly frequent tokens in
programming languages and the frequency of tokens drop rapidly inversely proportional to
their ranks. Thus rare code tokens are ranked among the last and share only a few documents
with others. By choosing only rare tokens to form a reduced query, one can (1) decrease the
number of retrieved code snippets to be only highly relevant ones, (2) increase the search
speed due to fewer search terms to process, and (3) avoid false positive results. Our query
reduction technique chooses rare tokens in a query on-the-fly by analysing df scores of all
query tokens.

Siamese derives four sibling queries q0, q1, q2, q3 from the original query Q, i.e., a given
code fragment, and shortens all of them. The QR module gets rid of duplicated tokens by
consolidating tokens or n-grams in q0, q1, q2, q3 into a set of unique tokens and n-grams.
Then it filters the tokens based on their df score. For each representation qi , tokens with df
score lower than or equal to a threshold θi are kept in the reduced query, and tokens with df
score higher than θi are discarded. The θi value is a proportion of the number of documents
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in the index and can be adjusted via a variable called dfCapi (ranging from 0 to 100 percent).
The threshold θi and each reduced token query q ′

0, q
′
1, q

′
2, and q ′

3 are defined as below.

θi = dfCapi × |documents|, i ∈ [0, 3]
q ′
i = {t ∈ qi : df (t) ≤ θi}, i ∈ [0, 3]

The optimal θi value for the four representations may be different based on the dis-
tribution of tokens and n-grams in each representation. Setting a low θ value offers high
discriminative power since it allows only rare tokens to appear in the query, and results in
a short query, while selecting a high θi value gives low discriminative power and allows
frequent tokens to be included in the query.

3.5 Scoring and Ranking of the Results

Siamese exploits Apache Lucene’s scoring and ranking function to create a list of ranked
cloned results. The scoring and ranking technique is based on a vector space model (VSM)
(Salton et al. 1975) representation by converting documents, i.e., code fragments, into k-
dimensional weight vectors V = 〈w1, w2, w3, ..., wi, ..., wk〉 where k equals the number
of terms in the dictionary. A popular weighting scheme is term frequency (tf) and inverse
document frequency (idf). tf represents how frequent a term occurs in a document and is
defined as tf(t, d) = √

frequency(t, d). idf represents how often the term occurs across all

the documents in the corpus and is defined as idf(t) = 1 + log( |documents|
df (t)+1 ), where df (t)

stands for document frequency of term t .
Apache Lucene computes a relevance score between a query vector and a document

vector in order to gain speed in searching and ranking. Relevant documents are ranked
according to their scores, i.e., their relevancy to the query, before returning to the user. The
Lucene scoring formula (Elasticsearch 2012) is

score(q, d) =
∑

t∈q

[tf(t, d) · idf(t)2 · t .getBoost() · norm(t, d)] · queryNorm(q) · coord(q, d),

(1)
where a score(q, d) between a document d in the index and the query q is computed
from a sum of term scores for all the terms in q. A score for each term t in the query is
computed from a multiplication of the term frequency in document tf(t, d), the squared
inverse document frequencies idf(t)2, the term boosting weight t .getBoost(), and the field
length normalisation norm(t, d). Finally, the sum of term scores is multiplied by a query
normalisation factor, queryNorm(q), and a query coordination, coord(q, d).2

Since tf(t, d) will be zero for terms that do not exist in the document, only matched terms
contribute to the score. Siamese relies on four representations of Java code, hence the final
score of each code snippet is a sum of scores from the four reduced queries q ′

0, q
′
1, q

′
2, and

q ′
3. Our customised scoring function is

scoreSiamese(Q, d) =
3∑

i=0

score(q ′
i , d). (2)

2Detailed explanation: a query normalisation factor, queryNorm(q), enables a comparison between results
of different queries; query coordination, coord(q, d), gives higher scores to documents that contain a high
percentage of terms in the query; query boosting, t .getBoost(), gives a boosted term more importance than
another; and field length normalisation, norm(t, d), gives higher weight to a shorter field than a long field in
case a document is represented by more than one field, e.g., title and body.
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In addition, during computation of the reduced query scores, we assign a specific query
term boosting weight for each representation, t .getBoost(), equals the size of n-gram. The
terms in q ′

0 are not boosted, i.e., t .getBoost() = 1, since the original code tokens are 1-gram
and can match relatively more frequently compared to other representations (we empirically
validated this in Section 4.2). In contrast, the search terms in the n-gram-based represen-
tation q ′

1, q ′
2, q ′

3 receive a higher query boosting weight. For example, if we choose the
n-gram size for the query terms in q ′

1 at 4, the matched n-grams in q ′
1 will receive a boost-

ing weight of 4. Since the query boosting score equals to the size of n-gram, the larger
chosen n-gram size for each representation, the higher the query boosting weight is given
and the higher score is received when terms in that representation find a match. We later
explore that this boosting scores can be adjusted to accurately search for a specific clone
type.

Finally, after the scores have been computed, the candidates are ranked based on their
scores from the highest to the lowest. If two documents obtain the same score, they are
sorted based on the alphabetical order of the file and method names. Siamese then returns
the top n results from the ranked list to the user.

3.6 Incremental Updates

Siamese allows incremental updates to its index which is beneficial for maintaining an index
of large-scale code repositories where the index can be updated to new changes without a
need to reindex all the repositories again, similar to Hummel’s work (Hummel et al. 2010).
With large-scale source code data, it becomes a necessity for code clone detection or clone
search tool to handle changes in code bases incrementally. Siamese leverages the flexibility
of inverted index to allow its user to add, edit, delete code fragments in the index without
affecting other indexed code fragments. For addition, the user can tell Siamese to incre-
mentally add a given code fragment or project(s) to its index instead of recreating the index
from scratch. For deletion, Siamese uses a given wildcard pattern for matching with the
project or file name of code fragment(s) intended to be deleted and performs a deletion on
the matched fragments. An update operation can be done using a deletion followed by an
addition.

4 Siamese Implementation

Our implementation of Siamese utilises Elasticsearch (Elasticsearch 2016), an open-source
high performance distributed full-text search engine, for a scalable code indexing and
retrieval. The current implementation is in Java and uses a single Elasticsearch node with
one shard. We built the preprocessing, MR module, QR module, and scoring function on
top of Elasticsearch’s infrastructure. The Java method parsing is done using the Java parser
(van Bruggen 2017) and the tokenisation is done using the Antlr4 lexer with a Java 8
grammar (Parr et al. 2017). Our implementation allows the tool to be executed on a sin-
gle desktop machine or in a distributed manner by increasing the number of Elasticsearch
nodes.

The MR, QR, scoring and ranking modules are language agnostic while the parser,
tokeniser, and normaliser are language dependent. The current implementation of Siamese
supports Java. To add a new language, one has to provide an implementation of the method
extractor, tokeniser, and code normaliser for the language.
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4.1 Selection of N-Gram Sizes

The selection of the optimal n-gram size is not a trivial task. Selecting a large n-gram
restricts Siamese to detect clones with small gaps of modified, inserted or deleted state-
ments to ensure the confidence of being clones. In addition, a large n-gram size encodes
more information in each gram and also contains a longer overlapping region between each
gram, which will affect the memory required and the disk I/O time to process the n-grams.
On the contrary, selecting a small n-gram allows larger gaps with better matching flexibil-
ity and requires less memory and disk access time, but also results in a higher chance of
retrieving false clone pairs.

We surveyed the literature that use n-gram for clone detection and code similarity to
study their choices of n-gram sizes. Burrows et al. (2007) selected 4-grams in their software
plagiarism detection approach. Myles and Collberg (2005) found that the size of 4-gram or
5-gram offers a suitable tradeoff between credibility and resilience for their n-gram-based
software birthmark technique. Ohmann and Rahal (2014) observed that n = 4 and n = 13
is the optimal choice for Manhattan and cosine distance respectively. We observed that 4-
gram was chosen and shown a good performance in the three studies. Thus, we selected
the n-gram size of 4 for our three code representation r1, r2, and r3 in the MR module. 4-
gram is long enough to capture code sequences but still allows small modifications within
a statement. The representation r0 relies on 1-gram to function as a keyword search, which
is useful when looking for a specific token among the cloned fragments.

4.2 Choosing the Query Reduction Thresholds

Similar to the n-gram sizes, the selection of appropriate query reduction thresholds is
important for generating high-quality queries. We used two data sets to select the optimal
threshold θ values for the QR module. First, we selected the well-known Bellon’s clone
benchmark (Bellon et al. 2007) for this analysis. The benchmark provides a partial clone
ground truth in C and Java systems and has been used in several code clone studies (Wang
et al. 2013; Svajlenko and Roy 2014; Koschke et al. 2006). The Bellon’s benchmark was
only used in this empirical n-gram analysis, and not used in any of Siamese’s evaluation to
avoid configuration bias. We used the four Java systems, java-swing (204K SLOC), eclipse-
jdtcore (148K SLOC), eclipse-ant (16K SLOC), and netbeans-javadoc (19K SLOC) from
the benchmark. Second, we employed the Qualitas corpus (Tempero et al. 2010). It is a
curated Java corpus that has been used in several software engineering studies (Taube-
Schock et al. 2011; Beckman et al. 2011; Vasilescu et al. 2011; Omar et al. 2012). The
projects in the corpus represent various domains of software systems ranging from pro-
gramming languages to visualisation. We selected the 20130901r release of the Qualitas
corpus containing 111 Java open source projects. Since we need four threshold values for
the four reduced query siblings q ′

0, q
′
1, q

′
2, and q ′

3, we derived four data sets from Bellon’s
benchmark and the Qualitas corpus, namely r0, r1, r2, and r3 respectively, to match with the
structure of our four code representations. For r1, r2, and r3, we adopted the n-gram sizes of
4 as previously discussed. Then, we counted document frequencies of the tokens and sorted
them based on their frequency.

A visualisation of the term’s document frequency vs. its rank from Bellon’s benchmark
is shown in Fig. 3. The two sub figures at the bottom show a zoomed-in version of the
two original plots. We observed that the document frequency of r0, the original tokens,
dropped sharply and started rapidly converging to one at approximately 10% (2K) of all the
documents in the corpus. Similar observation was found for r1. The document frequency
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Fig. 3 Java term rank and its document frequency

of r2 and r3 also converged to one. They dropped to one slightly slower than r0 and r1 due
to the token normalisation, but they were also almost distinct at 10% of all the documents.
Similar findings were observed for the Qualitas corpus as depicted in Fig. 3b. With this
observation, we picked the same query reduction threshold for all representations at 10%.

5 Experimental Design

We designed Siamese to be a multi-purpose clone search tool that can be exploited for
various clone-related applications. To be useful, the tool must scale to the size of code
corpora on the Internet while still return accurate ranked lists of clone results in a reasonable
time (i.e., seconds).

We asked the following research questions to asses the practicality of Siamese to clone
search applications.

RQ1: Multi-Representation and Query Reduction: How effective are multi-
representation and query reduction (MR-QR) to improve clone search accuracy?
To measure the effectiveness of our multi-representation and query reduction tech-
niques, we compared the search accuracy of Siamese with MR and QR reduction
to the baseline text search engine.
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RQ2: Search Accuracy: How accurate are Siamese search results? We measured
Siamese search accuracy on the three established clone data sets and and a GitHub
data set. We compared Siamese to several state-of-the-art clone detection and clone
search tools. The findings demonstrate the quality of Siamese’s search results
compared to other tools.

RQ3: Clone Ranking: How effective is Siamese clone ranking on finding alternative
implementations? We exploited Siamese MR for a fine-grained search targeting
only Type-3 clones for alternative implementations and evaluated the accuracy of
the ranked results.

RQ4: Scalability: How practical is Siamese to index and search on large-scale code
corpus? Scalability is one of the most important aspects of Siamese. We eval-
uated Siamese’s scalability by measuring its indexing and querying time on the
BigCloneBench data set containing 365M SLOC.

RQ5: Incremental Update: How fast is Siamese’s incremental update? Using an index
of 130,719 GitHub projects, we evaluate Siamese’s incremental update module by
measuring an index update time over hundreds of releases of the three most-starred
Java software projects. The findings show the time saved by Siamese incremental
index update when the user wants to update projects in the existing index.

5.1 Data Sets

We adopted three existing data sets used in other empirical code clone studies namely the
OCD data set (Ragkhitwetsagul et al. 2018), the SOCO data set (Flores et al. 2014), and the
BigCloneBench data set (Svajlenko et al. 2014; Svajlenko and Roy 2016) for our evalua-
tion. Their summary is displayed in Table 3. There is a complete ground truth for the first
two data sets, while there is a partial ground truth for the third data set. The OCD data set
provides Java files with pervasive code modifications made by code obfuscators and com-
piler/decompilers. It covers clones of Type-1 to Type-4 (i.e., semantic clones or two code
fragments with different syntax but share the same semantic). The OCD data set contains
100 Java files with a ground truth of 1,000 clone pairs at file-level. The 100 files consist of
10 groups of 10 files that are derived from one file and are therefore clones of each other.
The SOCO data set was created for the detection of source code reuse competition. It con-
tains clones of boiler-plate code fragments with a few or without modifications. The data
set contains 259 files with a ground truth of 453 clone pairs at file-level. The OCD and the
SOCO data sets were used in our previous study to compare 30 code similarity analysers
(Ragkhitwetsagul et al. 2018). Third, the BigCloneBench data set is one of the largest clone
benchmarks available to date. It is created from IJaDataset 2.0 (Rilling et al. 2018), a data
set of 25,000 Java systems. The benchmark contains 2.9 million files with 8 million manu-
ally validated clone pairs of Type-1 up to Type-4. The BigCloneBench data set was used for
clone evaluation and scalability test in several large-scale clone detection and clone search
studies (Kim et al. 2018; Li et al. 2017; Sajnani et al. 2016; Svajlenko et al. 2014; Svajlenko
and Roy 2015). Lastly, for the evaluation of Siamese’s incremental update, we relied on a
set of publicly available 130,719 GitHub Java projects.

5.2 Error Measures

We evaluated our approach to answer RQ1 and RQ2 using three error measures: precision
at 10, mean average precision (MAP), and mean reciprocal rank (MRR). They are defined
as follows.
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Table 3 The data sets for Siamese evaluation

No. Data set Files Clone pairs SLOC

1. OCD 100 1,000 9,618

2. SOCO 259 453 26,122

3. BigCloneBench 2,876,220 8,375,313 365M

Given the top n ranked results of which TP are true positives, precision at n (denoted
n-prec) is defined as

n-prec = TP

n
. (3)

Precision at 10 (i.e., 10-precision) is a special case of precision at n where n = 10. It
is used when only the top 10 results are taken into account, which reflects real-world web
search scenarios that only 10 results are displayed per page (Manning et al. 2009).

Mean average precision (MAP) measures the quality of results across several recall lev-
els where each relevant result is returned. It is calculated from multiple average precision
scores (denoted APrec) obtained for the set of top k documents existing after each relevant
document is retrieved, and this value is then averaged over all the queries (Manning et al.
2009). If the set of relevant documents for a query qj ∈ Q is {d1, ...dmj

} and Rjk is the set
of ranked retrieval results from the top result until we get to document dk , then

MAP = 1

|Q|
|Q|∑

j=1

1

mj

mj∑

i=1

APrec(Rjk). (4)

Mean reciprocal rank (MRR) considers the case where only one relevant document is
needed. MRR measures, on average across |Q| queries, the reciprocal rank of the relevant
document (i.e., clone) to each query q in the search result (Craswell 2009), i.e.,

MRR = 1

|Q|
|Q|∑

i=1

1

ranki

. (5)

6 Evaluation and Results

The evaluation of Siamese was performed on a single desktop computer. In RQ1, RQ2, and
RQ3, Siamese was run on a MacBookPro with a single 2.9 GHz processor, 16 GB of RAM,
and 512 GB of SSD. In RQ4, Siamese was run on a CentOS 7.4.1708 machine with eight
3.00 GHz processors, 32 GB of RAM, and 500 GB SATA disk. In RQ5, Siamese was run
on an Ubuntu 16.04.4 LTS machine with eight 3.70 GHz processors, 32 GB of RAM, and
2.8 TB SATA disk.

6.1 RQ1: Multi-Representation and Query Reduction

How effective are multi-representation and query reduction (MR-QR) to improve clone
search accuracy?
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Table 4 Search performance (MAP) with different combinations of code representations

(a) One and two representations

Data set 1 rep. 2 reps.

r0 r1 r2 r3 r01 r02 r03 r12 r13 r23

OCD 0.785a 0.921 0.889 0.892 0.850 0.844 0.842 0.923 0.938 0.900

SOCO 0.977a 0.990 0.948 0.939 0.987 0.964 0.960 0.979 0.978 0.942

(b) Three and four representations

Data set 3 reps. 4 reps.

r012 r013 r023 r123 r0123

OCD 0.885 0.882 0.865 0.930 0.900

SOCO 0.979 0.978 0.956 0.971 0.976

ausing the same representation as the baseline (token-based keyword search)

To answer RQ1, we used the two data sets for which we knew the complete ground
truth and measured the improvement of clone search offered by the multi-representation and
query reduction (MR-QR) technique using MAP. To observe the clone search improvement
offered by the MR module; the QR module; and the combination of MR-QR to a traditional
search engine, we compared the baseline text search engine represented by Elasticsearch
to three variants of Siamese: (1) Siamese with MR, (2) Siamese with QR, and (3) Siamese
with MR-QR. The baseline represents code search engines that rely on keyword search of
source code fragments, and do not take code structure into account. Moreover, the baseline
of Elasticsearch text search engine is adopted by GitHub to search for code in its 8 million
code repositories.3 Thus, the baseline also represents the code search capabilities of GitHub.
For the OCD data set, we retrieved 100 queries from the ground truth and expected 10
clones at the top for each query result (r = 10). For the SOCO data set, the 453 clone pairs
in the ground truth came from 115 unique files, which we used as the queries. The number
of relevant results r for each query was varied and based on the number of cloned files
associated with each query as specified in the ground truth.

We started by evaluating the clone search performance based on 15 unique combinations
of code representations as displayed in Table 4, denoted by the subscripted number. For
example, r123 represents the combination of r1, r2, and r3. For the OCD data set, Siamese
already performed decently well using one representation especially r1 with the MAP of
0.921. The highest MAP score was from a combination of r13 at 0.938. The combination
of four representations (r0123) received a slightly lower MAP of 0.900. However, we will
show later that by using query reduction to get rid of the extraneous tokens, we could obtain
even higher MAP scores than using r1 and r13. For the SOCO data set, the best combination
was using a single representation of r1 at 0.990. The r1 representation performed well with
the SOCO data set because it contained clones of boiler-plate code with very few changes
(Type-1 clones). Thus, using the n-gram sequences of original tokens in r1 would match best
with the clones. The combination of four representations gave the MAP of 0.976, slightly
lower than r1.

The results from Table 4 shows that there is no single representation that performs
well on both data sets. We could sacrifice some level of search precision by combining

3https://www.elastic.co/use-cases/github

https://www.elastic.co/use-cases/github
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code representations to be able to locate different types of clones in different data sets
without changing the configurations. This supports our intuition of using multiple code
representation for clone search.

By adopting the multi-representation alone, we could gain a higher MAP score than the
baseline by up to 15% (from 0.785 to 0.900). By applying QR on top of the baseline text
search, we also received an improvement. As displayed in Table 5, The MAP score on OCD
increased by about 18% (from 0.785 to 0.926). However, we observed a slight decrease of
MAP after applying QR for the SOCO data set with the MAP score decreased from 0.977
to 0.975. Thus, using QR alone can be beneficial only in some cases. Nevertheless, after
combining MR and QR together, we always obtained the highest MAP for both two data
sets. The MAP scores increased to 0.953 (21% improvement) for OCD and to 0.991 (1.4%
improvement) for SOCO. We can see that the strength of MR comes with a combination
with QR, and it would be best to have both modules working at the same time. However,
storing four code representations in a code search index occupies roughly four times of disk
space of only having a single code representation. Users of Siamese can also choose to turn
off MR when storage space is limited, and only enjoy the benefits of QR.

To confirm our findings of improvements by MR-QR, we performed a statistical test
using a two-tailed non-parametric randomisation test due to its robustness in information
retrieval (Smucker et al. 2007). Our null hypothesis (H0) was that there is no significant
difference between the results from the baseline to the results of Siamese using MR-QR.
We performed the test using 100,000 random samples with a confidence interval value
of 99% (i.e., α ≤ 0.01). The values in bold represent a statistically significant improve-
ment which rejects the null hypothesis. We found that MR-QR helps to improve the clone
search precision with statistical significance compared to the baseline on the OCD data
set. The improvement for SOCO was not statistically significant due to an already high
MAP score reported by the baseline. We complemented the statistical test by employing a
non-parametric effect size measure called Vargha and Delaney’s A12 measure (Vargha and
Delaney 2000) to measure the level of differences between two populations and found that
the effect size on the OCD data set is large (0.743), while on the SOCO data set is neg-
ligible (0.522). These findings show that MR-QR is highly effective against clones with
several modifications applied to the source code, and mildly effective against clones with
boiler-plate code or exact code copies.

To answer RQ1, the adoption of MR-QR improves the clone search performance com-
pared to the baseline text search engine with statistical significance. The inclusion of MR
and QR alone increases the search accuracy in most of the cases.

6.2 RQ2: Search Accuracy

How accurate are Siamese search results?

Table 5 Search performance improvement (MAP) after adding multi-representation and query reduction

Data Settings p-value A12

Baseline MR QR MR-QR

OCD 0.785 0.900 0.926 0.953 0.000 0.743

SOCO 0.977 0.976 0.975 0.991 0.205 0.522
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We utilised all three clone data sets and a GitHub data set to measure Siamese’s search
accuracy (recall and precision). Each of them is discussed separately below.

6.2.1 OCD and SOCO

For the OCD and SOCO data set, we compared Siamese using MAP to seven state-of-the-art
clone detectors at file level. The other clone detectors included SourcererCC (Sajnani et al.
2016), CCFinderX (Kamiya et al. 2002), Deckard (Jiang et al. 2007), iClones (Göde and
Koschke 2009), JPlag (Prechelt et al. 2002), NiCad (Roy and Cordy 2008), and Simian
(Harris 2015). For CCFinderX, Deckard, iClones, JPlag, NiCad, and Simian, we relied on
the results reported by our previous study (Ragkhitwetsagul et al. 2018) based on the same
data sets. For SourcererCC, we followed the method shown by the same study to automatically
compute a similarity score based on the clone pairs reported by the tools, create a ranked results
based on the similarity scores, and measure MAP score. If allowed by the tools, we con-
figured them to use method-level or file-level clone detection, rather than lines, to reduce a
comparison bias to Siamese that searches for clones at file level in this experiment.

We also tuned Siamese and compared the optimised Siamese to the other tools’ optimised
configurations as a previous study (Wang et al. 2013) and our study (Ragkhitwetsagul et al.
2018) have shown that the default configurations of clone detectors could harm the validity
of studies relying on them.

The mean average precision of Siamese compared to seven other clone detectors using
their default configurations on the two data sets, OCD and SOCO, is displayed in Table 6
and Table 7. With the default configurations of n-gram sizes and query reduction thresholds
(θ ) derived from the empirical study, Siamese performed best on the OCD data set with

Table 6 Comparison of search performance (MAP) on the OCD data set (100 queries)

Tool Default Optimised

Settings MAP Settings MAP

Siamese r1=4-gram, r2=4-gram, 0.953 r1=[4,8,12,16,20,24]-gram, 0.997

r3=4-gram, r2=24-gram, r3=8-gram,

θ=10%, 10%, 10%, 10% θ=2%, 2%, 2%, 2%

Text Search N/A 0.785 – –

SourcererCC similarity=80% 0.471 similarity=40% 0.848

CCFinderX b=50, t=12 0.569 b=5, t=11 1.000
Deckard mintoken=50, 0.665 mintoken=30, 0.924

stride=inf stride=1

similarity=1.0 similarity=0.95

iClones minblock=20, 0.444 minblock=10, 0.668

minclone=100 minclone=50

JPlag t=9 0.857 t=5 0.918

NiCad UPI=0.30, 0.457 UPI=0.50, 0.859

minline=10, minline=10,

rename=none, rename=blind,

abstract=none abstract=declaration

Simian threshold=6 0.442 threshold=3, 0.916

ignoreIdentifiers

Values in bold highlight the largest value in the column
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Table 7 Comparison of search performance (MAP) on the SOCO data set (115 queries)

Tool Default Optimised

Settings MAP Settings MAP

Siamese r1=4-gram, r2=4-gram, 0.991 r0=1-gram, 0.994

r3=4-gram, r1=[4,8,12,16,20,24]-gram,

θ=10%, 10%, 10%, 10% r2=4-gram, r3=16-gram,

θ=8%, 8%, 8%, 8%

Text Search N/A 0.977 – –

SourcererCC similarity=80% 0.776 similarity=60% 0.839

CCFinderX b=50, t=12 0.942 b=5, t=9 0.982

Deckard mintoken=50, 0.946 mintoken=30, 0.980

stride=inf stride=2

similarity=1.0 similarity=0.95

iClones minblock=20, 0.799 minblock=8, 0.882

minclone=100 minclone=70

JPlag t=9 0.991 t=8 0.997

NiCad UPI=0.30, 0.870 UPI=0.30, 0.931

minline=10, minline=5,

rename=none, rename=blind,

abstract=none abstract=literal

Simian threshold=6 0.884 threshold=4, 0.978

ignoreIdentifiers

Values in bold highlight the largest value in the column

MAP of 0.953 and for the SOCO data set, Siamese was ranked first along with JPlag with
MAP of 0.991.

Regarding the optimised version, we tuned Siamese’s n-gram sizes and θ to give the
highest MAP score. The n-gram sizes for the three code representation r1, r2, and r3 starts
from 4 to 24 with an increasing step of 4 (the representation r0 always has the n-gram size
of 1). We tried the four n-gram sizes on the three representation independently and obtained
216 different combinations. The query reduction thresholds θ cover 2%, 4%, 6%, 8%, and
10% and were identically set for the four representations. Combined the two parameters
together, we searched for 1,080 combinations of Siamese’s configurations. The other tools’
optimised configurations and their parameter search space are based on the results from our
study of comparing 30 code similarity analysers (Ragkhitwetsagul et al. 2018). CCFinderX
and JPlag was ranked 1st for OCD and SOCO with MAP of 1.000 and 0.997 respectively.
Although Siamese did not give the highest MAP scores based on the optimised configu-
rations, it still offered a very high MAP score (0.997 and 0.994) and was ranked the 2nd

for both OCD and SOCO. Moreover, Siamese always outperformed SourcererCC, Deckard,
iClones, NiCad, and Simian in both the default and the optimised configurations. Although
it gave slightly lower MAP score than CCFinderX and JPlag after tuning, Siamese offered
a much higher scalability than the two clone detectors as will be shown in RQ4.

The multi-representation module helped Siamese to perform well on different data sets
even without tuning as we observed that the optimised MAP values were very close to the
default configurations’ MAP values. In practice, it is very difficult to always tune a clone
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detector to their optimal performance. We could optimise the clone detectors in this study
because we knew the complete clone ground truth of the OCD and the SOCO data sets as
they were generated data sets. A clone ground truth does not exist in software projects. Thus,
we mostly have to rely on the default configuration of the clone detection tools. Moreover,
our previous study (Ragkhitwetsagul et al. 2018) shows that although we could find the
tools’ optimal configurations on one data set, we cannot efficiently reuse them on another
data set. The results in Tables 6 and 7 suggest that Siamese’s search performance, with or
without tuning, was still comparable or even better than other tools with their optimised
configurations. This shows that Siamese effectively handles clones with several code mod-
ifications in the OCD data set and boiler-plate code in the SOCO data set, while still offers
comparable search precision to other clone detection tools optimised for the data sets.

6.2.2 BigCloneBench

The third data set is the BigCloneBench, which is a well-known data set that has been
used to benchmark code clone detectors and clone search engines (Sajnani et al. 2016; Kim
et al. 2018; Li et al. 2017). To be able to compare with other tools’ existing results on
BigCloneBench, we evaluated Siamese using recall as reported in previous work. Because
Siamese is not a clone detector but a clone search tool, it does not report a set of clones that
can be used to measure recall and precision. Nevertheless, we compared its performance to
other tools here for a situation where it will be adapted as a clone detector.

The BigCloneBench data set’s size represents code corpora on the Internet and is suitable
to assess how well the tool differentiates and reports relevant code snippets from millions of
candidates. Moreover, the data set offers a ground truth of 8 million clone pairs. The evalua-
tion was performed at method level as required by the BigCloneBench oracle. We measured
Siamese’s clone recall by issuing multiple queries and evaluated the returned ranked results.

We followed the approach used by Kim et al. (2018), who also evaluated their clone
search engine for recall, by choosing 14,780 methods that appeared in the clone oracle as
the queries. Although we did not use all the methods in BigCloneBench to query, it does
not affect the clone recall. The methods that do not appear in the clone oracle do not have
any clone pair associated with them, thus using them to query for clones would only result
in false positives, which is not taken into account for recall (on the contrast, it will affect
precision). To compute the recall score, we utilised an automated tool called BigCloneEval
(Svajlenko and Roy 2016) which was created for recall computation on BigCloneBench.
For each query, we choose the result size of 900 to match with the settings used in the eval-
uation of a clone search engine, FaCoy, by Kim et al. (2018).4 After finishing querying, we
gave the result to the BigCloneEval tool for recall calculation. Tables 8, 9, and 10 shows
the recall scores of Siamese on BigCloneBench compared to the other five tools including
SourcererCC, CCFinderX, Deckard, iClones, and NiCad as reported in the study by Sajnani
et al. (2016) and FaCoy code search tool as reported in the study by Kim et al. (2018). Big-
CloneBench categorised the clone pairs into Type-1 (T1), Type-2 (T2), very-strongly Type-3
(VST3) with a similarity in range of 90% (inclusive) to 100%, strongly Type-3 (ST3): 70–
90%, moderately Type-3 (MT3): 50–70%, and weakly Type-3 or Type-4 (WT3/T4): 0–50%
(Svajlenko and Roy 2016). Moreover, BigCloneEval divides the evaluation into 3 sets: All

4We could not include the FaCoy tool in our other RQs because the tool is released as a virtual machine
image with an existing clone database. The only way to use the tool is via a web interface and there is no
instruction on how to switch FaCoy to analyse a new data set (such as OCD, SOCO used in our study).
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Table 8 BigCloneBench Recall Measurements (All Clones)

Tool All Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines

Siamese 99 99 99 99 88 17
FaCoy (Kim et al. 2018) 65 90 67 69 41 10

Clone detectors (Sajnani et al. 2016)

SourcererCC 100 98 93 61 5 0

CCFinderX 100 93 62 15 1 0

Deckard 60 58 62 31 12 1

iClones 100 82 82 24 0 0

NiCad 100 100 100 95 1 0

Values in bold highlight the largest value in the column

Clones, Intra-Project Clones, and Inter-Project Clones. We included the other tools’ results
for the all three sets except the FaCoy tool which reported its recall scores only for the All
Clones set.

For All Clones set (Table 8), Siamese provided recall scores of 99% for T1, T2, VST3,
and ST3. Siamese obtained the highest recall of 88% for MT3 compared to other tools
and 17% for WT3/T4. When dividing into Intra-Project (Table 9) and Inter-Project clones
(Table 10), Siamese performed slightly better on both sets with higher or the same recall
scores as in the All Clones set. Interestingly, we found that Siamese could return 99% of
MT3 clones in Intra-Project clones while other tools reported up to 14%. Similarly, Siamese
returned 77% of WT3/T4 clones while CCFinderX and Deckard reported only 1% of the
clones. A similar finding was observed for Inter-Project clones where Siamese obtained the
highest recall at 87% of MT3 clones and 16% of WT3/T4 clones. The results show that the
multi-representation and query reduction techniques enable Siamese to find more challeng-
ing clone pairs than state-of-the-art techniques. Although Siamese and SourcererCC share
fundamental concept of index-based and token-based clone detection, Siamese can offer
higher clone recall for the challenging clone types of ST3, MT3, and WT3/T4 because it

Table 9 BigCloneBench Recall Measurements (Intra-Project Clones)

Tool Intra-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines

Siamese 100 99 100 100 99 77
FaCoy (Kim et al. 2018) − − − − − −

Clone detectors (Sajnani et al. 2016)

SourcererCC 100 99 99 86 14 0

CCFinderX 100 89 70 10 4 1

Deckard 59 60 76 31 12 1

iClones 100 57 84 33 2 0

NiCad 100 100 100 99 6 0

Values in bold highlight the largest value in the column
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Table 10 BigCloneBench Recall Measurements (Inter-Project Clones)

Tool Inter-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4

Clone search engines

Siamese 99 100 99 99 87 16
FaCoy (Kim et al. 2018) − − − − − −

Clone detectors (Sajnani et al. 2016)

SourcererCC 100 97 86 48 5 0

CCFinderX 98 94 53 1 1 0

Deckard 64 58 46 30 12 1

iClones 100 86 78 20 0 0

NiCad 100 100 100 93 1 0

Values in bold highlight the largest value in the column

detects clones using four code representations (i.e., raw code tokens, Type-1 n-gram tokens,
Type-2 n-gram tokens, and Type-3 n-gram tokens). Moreover, it does not remove any token
from the code in the index. On the other hand, SourcererCC’s partial indexing keeps only
rare tokens of a single code representation (i.e., raw code tokens) in the clone index, which
restricts the tool to find only clones that share the rare tokens. The removal of frequent
tokens in Siamese occurs at query time and it only affects the tokens in the query. In addi-
tion, by using the query reduction technique, Siamese is more flexible than SourcererCC
during the querying phase. It can adjust the number of rare tokens from the token fre-
quencies in each data set. The dfCap parameters also allow Siamese’s users to adjust the
number of rare tokens in every query. In contrast, SourcererCC’s optimised index keeps
rare tokens based on a user’s selected clone similarity threshold at the index building time,
which applies to all the queries during the querying phase. However, Siamese suffers from
a larger clone index than SourcererCC due to the complete collection of code tokens and
also its multiple code representations.

To measure precision, there is no benchmark and standard methodology for precision
measurement in clone detection and some authors relied on a manual investigation of the
reported clone pairs (Sajnani et al. 2016). The BigCloneBench is created by using regular
expressions derived from 43 target functionalities, i.e., Java class files, to search for clone
candidates in 25,000 Java projects, followed by a manual confirmation. Thus, we chose
the 43 Java files that represented the target functionalities in BigCloneBench as the search
queries. We obtained 96 method queries from the 43 chosen files. The oracle of 8 million
manually validated clone pairs provided by the BigCloneBench authors is only a partial
ground truth as it only contains validated clone pairs but not all existing clone pairs. It
is possible that Siamese reports true clones which do not exist in the ground truth during
the evaluation. Thus, a manual validation is needed to obtain precision scores. To evaluate
Siamese as a clone search engine that returns a ranked list of top n results, we relied on
MRR and 10-precision for precision measurement. The two error measures are well-known
in information retrieval since they reflect a real-world setting of using a search engine where
only a few first results will be looked at due to a limited attention span of human investigator
(Miller 1956). The first author took the role of a human investigator.

Table 11 shows the MRR and 10-precision scores based on the ground truth in the bench-
mark and after the manual confirmation. Siamese’s search results of the 96 queries on
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Table 11 BigCloneBench
precision measurements MRR 10-prec T1 T2 T3

0.948 0.871 0 25 811

BigCloneBench offered an MRR score of 0.948 and 10-precision of 0.871. The MRR score
of 0.948 shows that Siamese mostly returns true clone fragment as the first result. The 10-
precision score of 0.871 shows that true clones are observed within the top ten on average
87.1% of the time. These are relatively high precision scores considering that there was no
Type-1 clone for all the 96 queries and only Type-2 and Type-3 clones were available.

During our manual confirmation of the BigCloneBench clone search results, we noticed
some interesting clones that were reported by Siamese. We found that in a few cases,
Siamese not only reported clones that were syntactically similar to the query but also
semantically similar. For example, consider the binarySearch1 method shown before
in Section 3.3 as the query. As shown in Fig. 4, the first result was very similar to the query
but with differences in the data types and expressions. The second result contained a more
diverse version of binary search with renamed variables and different conditional state-
ments. Interestingly, we found that the third result is a method that performed binary search
using a while loop instead of recursion as in the query and the fifth result was a method to
search for an index number which used binary search as the underlying search algorithm.

6.2.3 False Positives

To understand the weaknesses of our approach, we summarise a few patterns found
in the manually-validated false positive clone pairs from BigCloneBench. First, a num-
ber of false positive clone pairs come from a method that is declared inside another
method. For example, as shown in Fig. 5, the method deleteRecursively1 is
reported as clone pairs with its three inner methods: visitFile, visitFileFailed,
postVisitDirectory. This issue is due to the nature of the Java parser we used,5

which, in this situation of having methods inside another method, returns both the contain-
ing and contained methods after parsing. Once both the containing and contained methods
are included together during clone search, they are reported as clones because they automat-
ically have an exact-match code region. This problem can be fixed by analysing the clone
results and filtering these inner-method clone pairs out.

In addition, we observed that many of the false positive pairs are caused by two
methods that share several code tokens and n-gram sequences. As shown in Fig. 6,
the two methods perform a different task of checking a palindrome word and check-
ing for blank string. Nonetheless, they share several similar code tokens such as
for (int i = length - 1; i >= 0; i--), .charAt(i), or
length = original.length();. Increasing the n-gram sizes may remove these
false positives, while also reduce the chance of finding Type-3/Type-4 clones.

6.2.4 Comparison with Code Search Tools

Since the precision evaluations with OCD and SOCO are based on relatively small gener-
ated data sets, they may not fully represent real-world clone search scenarios where (1) each

5JavaParser: http://javaparser.org

http://javaparser.org
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Fig. 4 Search results with syntactic and semantic clones

code query may or may not have clones and (2) a search is performed on a large code base.
Moreover, we only compared Siamese to code clone detection tools, which are not specifi-
cally designed for code search. Thus, we replicated the experiment by Kim et al. (2018) by
creating Siamese’s code search index from 16,738 GitHub projects (with at least ten stars)
and used the same 10 queries of the top 10 Stack Overflow posts with the highest view
counts to search for clones. We configured Siamese to search for clones at a file level (i.e.,
search with a full code snippet) and with the maximum result size of 20 so that we can
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Fig. 5 A false positive clone pair containing methods inside a method

measure precision at 10 and precision at 20 similar to their study. In Table 12 we compare
the results for Siamese to the results reported by Kim et al. (2018) for their FaCoy tool and
the two other code search tools: Searchcode (Boyter 2018) and Krugle (Aragon Consulting
Group 2018). FaCoy is a clone search tool that finds semantically similar code fragments
to the code query by using a query alternation approach. The tool includes additional rel-
evant search keywords from Q&A posts (i.e., Stack Overflow) into a given search query.
Searchcode and Krugle are online code search engines which support clone search. After
the search using Siamese, the first author looked at the top 20 ranked clone results of each
query and validated if they are true positives (i.e., clones) and classified each result into the
four clone types.

The search results of Siamese, FaCoy, Searchcode, and Krugle are presented in Table 12.
The numbers are the number of true positives found for each query classified into four clone
types. We found that Siamese returned more true positive results than the other three tools,
especially for Type-3 clones.6 Siamese’s precision at 10 and precision at 20 is 0.79 and
0.80 respectively compared to 0.58 and 0.49 reported for FaCoy (Kim et al. 2018). Thus,
Siamese offers a higher search precision than FaCoy and found more clones, i.e., having a
higher recall, than Searchcode and Krugle on the same set of 10 Stack Overflow queries.

6There were a few Stack Overflow posts which contained more than one code snippet and the table only
presents the results from the largest code snippet in each post. The full results can be found from our study’s
website: https://github.com/UCL-CREST/Siamese

https://github.com/UCL-CREST/Siamese
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Fig. 6 Another false positive clone pair containing similar code tokens

However, FaCoy still reports the largest number of Type-4 clones potentially due to its
query alternation approach. Nonetheless, there is a difficulty in comparing the experiment’s
results because the code search index differs for all four clone search tools, which is an
issue that the FaCoy study also suffers from. The FaCoy authors use Searchcode and Krugle
as-is with their own code search index, and use FaCoy to search on a code search index of
10,449 GitHub Java projects (which are forked at least once). We similarly used Siamese to

Table 12 Search results of the top 10 Stack Overflow Java posts with code snippets. The results of FaCoy,
Searchcode, and Krugle is from Kim et al. (2018)

Query Siamese FaCoy Searchcode Krugle

outputs T1 T2 T3 T4 outputs T2 T3 T4 outputs T1 T3 outputs T1

Q1 20a 1 8 11 18 5 4

Q2 20a 1 2 6 21 6 2

Q3 20a 20 18 9

Q4 20a 20 20 20 1 1

Q5 20 1 3 19 1 2 6 3 2 1

Q6 20 20 9 1 3 1 20 20

Q7 20 20 17

Q8 20a 1 19 0 17 7 7

Q9 20 7 2 2

Q10 20 20 9 1 7

aThe code snippet contains multiple methods (i.e., queries). The presented values are only the queries with
the largest code snippet
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search on a code search index of 16,738 GitHub Java projects (which have at least 10 stars).
Due to this issue, a comparison of the results of the four code search tools can only give an
impression of how good the tools are on finding clones on their selected code search index.

To answer RQ2, Siamese offers the highest mean average precision on two clone bench-
marks compared to seven clone detectors. Its multi-representation enables Siamese to detect
challenging Type-3 and Type-4 clone pairs better than other tools, while still reserves high
recall on Type-1, and Type-2 clones. It offers the highest recall scores of ST3, MT3, and
WT3/T4 clone pairs on BigCloneBench. Lastly, Siamese found the largest number of Type-
3 clones of the 10 highest-voted Stack Overflow code snippets compared to three other code
search engines.

6.3 RQ3: Clone Ranking

How effective is Siamese clone ranking on finding alternative implementations?

In this RQ, we evaluated the Siamese clone ranking technique for retrieving alternative
implementations of a code query on top of the search results. This technique is useful for
various purposes such as learning from different implementations of an original piece of
code, finding bug fix candidates, or a study of semantic clones. We are motivated by Ke
et al. (2015)’s study in which a defective code fragment is used as a query and semantically
similar clones are searched for (i.e., alternative implementations), using SMT constraints on
input-output behavior. The authors implemented the technique in a tool called SearchRe-
pair, then used the tool to search for semantically similar clones, and integrated each of the
retrieved clones into the software, replacing the defective part. The results for RQ2 show
that Siamese could locate the largest number of moderately Type-3 (MT3) and weakly Type-
3 or Type-4 (WT3/T4) clones in BigCloneBench. Thus, in this RQ, we investigate further
whether Siamese can also be used to search and rank alternative implementations on top of
the retrieved clones, which then are possibly fed as repair candidates to an automated soft-
ware repair technique. In this study, we define alternative implementations based on clone
types. They are code fragments that perform the same task as the query (i.e., semantically
similar), but are not identical (Type-1 clones) or not only differ in variable names and literal
values (Type-2 clones). To put it another way, alternative implementations are Type-3 and
Type-4 clones of the query. To locate such alternative implementations, the ranking of the
retrieved clones is crucial since we prefer to retrieve Type-3 and Type-4 clones rather than
Type-1 and Type-2 clones on top of the search results.

Although RQ2 shows that Siamese returns the largest number of Type-3 and Type-4
clones from BigCloneBench, the evaluation did not take the ranking into accounts. With the
multiple code representations offered by Siamese, we are allowed to search for a specific
type of clones that fits our needs. By adjusting a different boosting score for each repre-
sentation at a query time, we could target clones of a specific type to be ranked on top
of the search results, while discriminating against clones of unwanted types to be ranked
lower.

This clone ranking is difficult or impossible to achieve by traditional clone detection
tools. First, tools like CCFinderX, NiCad, or SourcererCC do not provide a ranked list of
clones. So a human investigator does not know which clone pairs to start the investigation
and has to rely on random sampling. Second, although we can rank the clone pairs based
on their similarity score (CCFinderX and NiCad can report similarity scores), we cannot
explicitly select clones of a specific type to be on top of the list. For example, let say we
are searching for alternative implementations of a buggy code fragment, and we use NiCad
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for this task. We do not want Type-1 or Type-2 clones because they are identical or very
similar to the buggy code fragment that we currently have. Thus, we configure NiCad to
find Type-3 clones. Nonetheless, since Type-3 clones subsume Type-2 and Type-1 clones by
definition, we cannot use NiCad to locate only Type-3 clones. The Type-1 clones reported
by NiCad will always have a similarity score higher than Type-2 and Type-3 clones, and
will always be ranked on top. The human investigator will have to manually go through
a number of Type-1 and Type-2 clones before finding the Type-3 clones that he or she is
looking for. Third, most of the clone detectors locate clones based on a given similarity
threshold. SourcererCC’s partial indexing only keeps code tokens that form a clone pair
with similarity higher than or equal to the threshold. Since this decision is made at indexing
time, a change of the similarity threshold to find stricter or more relaxed clones will result
in re-indexing of the code base. Other clone detectors such as Simian, Deckard, or iClones
would face the same issues.

Similar to RQ2, we used the BigCloneBench index with 8.1 million code fragments
and performed the clone search based on the 96 queries which represented 43 target func-
tionalities in BigCloneBench. They were chosen again for this RQ because the 96 queries
contained general functionalities that were normally found in Java programs, such as binary
search, bubble sort, file copy, and extraction of a compressed file. Moreover, the bench-
mark’s partial clone ground truth helped us in the manual clone investigation step. The
maximum number of clone results to be investigated is 10.

Since the 43 target functionalities had only Type-2 and Type-3 clone pairs and did not
have any Type-1 clone pair in BigCloneBench, we injected them into the index so they
could appear in the search results. We intentionally added them into the search index in
order to confuse the tool. Our goal was to find Type-3 clones that slightly or moderately
differ from the query, so the injected Type-1 clones should not appear on top of the search
results.

The adjusted boosting scores of Siamese for alternative implementation search is shown
in Table 13. The original and Type-3 representations r0 and r3 received positive boosting
scores of 10 and 1 respectively, while r1 and r2 received negative boosting scores of -1.
This setting was suitable for finding clones that deviate from the query because the literal
clones (Type-1) and parameterised clones (Type-2) were penalised with the negative boost-
ing scores. We need to keep positive boosting scores for tokens in the original representation
r0 to get rid of false positives due to accidental structural similarity matches on r3. We gave
a higher score of ten for r0 than one of r3 to push Type-3 clones with similarity keywords
on the top of the list. Since there was no clone detection in our study that gives ranked list
of clones, we compared Siamese to the baseline text search engine, i.e., using the source
code original tokens with no boosting score (boosting score equals one), and Siamese with
the default configurations with the boosting scores of 1 for r0 and 4 for r1, r2, and r3.

Table 13 Type-3-only search: the boosting scores for the four code representations and the search accuracy

Tool Representations MRR

r0 r1 r2 r3

Baseline (text search) 1 − − − 0.4633

Siamese (default) 1 4 4 4 0.4550

Siamese (boosted) 10 −1 −1 1 0.7050
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We adopted MRR to measure the search accuracy.7 Since the goal of this RQ is to find
bug fix candidates or alternative implementations, we only targeted Type-3 clones. Clones
with Type-1 or Type-2 were not considered as relevant and received a zero score when com-
puting MRR. Thus, in this case, the MRR score reflected how well the tool retrieved Type-3
clones on top of the search results, which fits perfectly well with our use case of finding
alternative implementations. A user using Siamese to search for alternative implementations
will try the first returned result and then try the next returned result until the result satisfies
her or his requirements. If the first result matches the requirements already, he or she does
not need to continue further. We consulted the BigCloneBench clone oracle to validate the
returned clone pairs and their clone types. When a clone pair could not be found in the clone
oracle, the first author performed a manual validation of the clones. Please note that the
BigCloneBench ground truth does not contain obvious Type-4 clones. Nonetheless, some
of the Type-3 clones in the ground truth, i.e., weakly Type-3 or Type-4 (WT3/T4) clones
with a similarity between 0–50%, lie on a grey area between Type-3 and Type-4 clones.
Thus, some of the verified Type-3 clones, which have a similarity between 0–50%, may be
considered as Type-4 clones.

The MRR scores of the baseline text search and Siamese are displayed in Table 13. The
baseline always returned Type-1 clone pairs on top of the search results (96 times out of
96 queries), followed by Type-2 and Type-3 clones and received an MRR score of 0.4633.
The default Siamese gave a similar performance with an MRR score of 0.4550. Boosted
Siamese outperformed the other two tools with a higher MRR score of 0.7050. The boosted
Siamese returned Type-3 clone pairs on the top result 59 times, returned Type-1 clone pairs
on the top 23 times, and did not return any correct clone pairs 14 times. Figure 7 shows
an example of a query and a Type-3 clone fragment returned by Siamese. The pair are
both methods to get a Fibonacci number. They share the same input/output but contain two
different implementations using recursion and a for loop.

To answer RQ3, Siamese can effectively search and return a specific type of clones on
top of the search results. Due to its multi-representation of code, Siamese can target which
type of clones to be ranked on top while at the same time discriminates clones of unwanted
types. This specific-clone-type ranking cannot be done using the existing clone detection or
code search tools due to their use of a single code representation. The search is beneficial
for a case where only a specific type of similar code is needed, such as finding potential bug
fix candidates which are not identical to the given query.

6.4 RQ4: Scalability

How practical is Siamese to index and search on large-scale code corpus?

We evaluated Siamese’s scalability by measuring the time needed to index and query
various code base sizes. We created 10 sets of Java code with different sizes by randomly
selecting files from BigCloneBench. The number of files in a set i, i ∈ [1, 10], is 22i . The
smallest set has 4 files (22 methods) and the largest set has 1,048,576 files (1,771,183) meth-
ods. We also added the complete BigCloneBench data set with 2.9 million files (4,870,113

7We were deterred from using the well-known mean Average Precision (MAP) or Normalised Discounted
Cumulative Gain (NDCG) that were suitable for assessing the quality of ranked results. MAP and NDCG
need a complete ground truth of relevant documents which were not the case for BigCloneBench.
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Fig. 7 An example of Type-3/Type-4 cloned fragment returned as the 1st result

methods) as the last (11th) set. The experiment was performed on a CentOS 7.4.1708
machine with eight 3.00 GHz processors, 32 GB of RAM, and 500 GB SATA disk.

We separately measured the tools’ index and query time in this RQ because we are more
interested in a scenario of clone search than clone detection. In the clone detection scenario
as performed by Koschke (2014) or SourcererCC (Sajnani et al. 2016), it is a one-off pro-
cess. An index of code bases is created. Then, queries containing code fragments either from
within the same project (intra-clone detection) or from other projects (inter-clone detection)
are issued on the index to locate clones. The clone index may be kept for later uses if needed
or recreated if the analysed code bases change. In this scenario, indexing and querying occur
one after the other in a single execution. On the other hand, in the clone search scenario
(or incremental and real-time detection as presented by Hummel et al. (2010)), an index of
large code bases is persisted only once and loaded into memory whenever the clone search
engine starts. The index is frequently updated to reflect the changes in the code bases. With
this approach, a clone search tool allows as many queries as needed without a need to rein-
dex the code bases again. We can tolerate slow indexing time as long as the tool offers fast
querying time since it occurs much more often. Thus, measuring both the index and query
time allows us to know how long it takes to prepare the index, and how long it takes to only
retrieve clones.

For the indexing phase, we compared our tool to seven clone detectors: SourcererCC,
CCFinderX, Deckard, iClones, JPlag, NiCad, and Simian. Since all the tools except Siamese
and SourcererCC do not separate their clone detection into indexing and querying phase,
we use their main command to detect clones to execute. Moreover, the other five clone
detectors besides SourcererCC do not use an indexed-based approach, so we cannot directly
compare their indexing time and rely on their clone detection time as the indexing time.
We included them in this comparison to assess their scalability to large-scale code data. For
Siamese and SourcererCC, we specifically instructed the tools to perform indexing on the
given data sets. Each tool was executed using their default configurations and, if allowed
by the tool, we allocated the same amount of 8 GB of memory for their execution. We
measured the execution time using the time command. Unfortunately, during the execution
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of CCFinderX, the tool reported encoding errors on several files. We needed to remove those
files from the data set to run the tool, which would affect its running time. So, we decided
to remove CCFinderX from this evaluation.

The tools’ indexing time is displayed in Fig. 8. The plot shows the tools’ execution time
against the number of methods in each data set. Every tool completed their analysis of
22, 50, 178, 423, 1723, 6.6K, and 28K methods with increasing execution time. Deckard
reported clones in the 28K set in 7 hours 14 minutes and did not return any result on the
111K set within a week, so we decided to terminate the tool’s execution. iClones and JPlag
finished their executions on the 6.6K set in 3 minutes and 15 minutes respectively and ran
out of memory on the 28K set. NiCad threw an error in cross-clone analysis on the 442K-
method set. Simian reported clones in the 28K set within 1 hour and 48 minutes and failed
to analyse the 442K set.

Siamese and SourcererCC were the only two tools that could complete their indexing
of the 11 data sets. SourcererCC finished indexing 111K, 442K, and 1.7M methods within
8 minutes, 32 minutes, and 2 hours respectively. For the complete BigCloneBench (4.8M
methods, 365 MLOC), SourcererCC used 6 hours to complete the indexing. Siamese fin-
ished indexing the same data sets within 24 minutes, 1 hour 13 minutes, and 5 hours
respectively. For the complete BigCloneBench, Siamese took 18 hours 13 minutes to fin-
ish the indexing. Since Siamese derives multiple code representations from given code
fragments, its indexing time took around three times longer than SourcererCC.

We have also investigated the storage space of Siamese’s and SourcererCC’s index on
the BigCloneBench data set. We found that Siamese’s index size is 44 GB while Sourcer-
erCC’s index size is 3 GB. The large difference in the index size is because of three
factors. First, SourcererCC only keeps rare tokens in its index, hence the index size is
much smaller than storing all the code tokens as in Siamese. Second, Siamese keeps n-gram
tokens, instead of raw code tokens, in its index, hence the index size is larger than just stor-
ing raw code tokens because there are some duplicated code tokens among the n-grams.
For example, two consecutive 4-grams [public|static|int|binarySearch1]
and [static|int|binarySearch1|(] share 3-gram of static|int|binary
Search1). Third, Siamese stores the n-gram tokens for four code representations, hence

Fig. 8 Indexing time (minutes)
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it also occupies four times more space than just one index. Thus, we can see that the
Siamese’s index size is roughly five times larger than the BigCloneBench data set (which is
approximately 9 GB).

For the querying phase, we compare Siamese only to SourcererCC because it is the only
tool besides Siamese that successfully scaled to the full BigCloneBench data set. More-
over, it also works in a two-phase approach of indexing and querying like Siamese. Both
Siamese and SourcererCCwere configured with their default configurations, and only meth-
ods with at least ten lines were considered. After each subset was indexed into Siamese’s
and SourcererCC’s index, we performed 100 queries and measured the query response time.
We use a fixed set of 100 randomly selected files from BigCloneBench as the queries. One
query was issued at a time and the average query time was derived from the execution time
of all the queries as shown in Fig. 9. We observed a sharply increasing query response time
from SourcererCC when the number of methods in the index grew. Since SourcererCC is
designed for detecting clones within a data set, it has its optimal speed when a large col-
lection of files is given as an input and is processed in a batch. Nevertheless, SourcererCC
does not respond fast when it comes to a single query because it has to load the index into
memory every time a query is issued. On 111K; 442K; and 1.8M methods in the index,
SourcererCC’s query took 3.4, 9.3, and 28.3 seconds on average. Siamese offered a slightly
increasing query response time of 2.5, 3.2, and 5.0 seconds on the same sets of 111K; 442K;
and 1.8M methods. On the full BigCloneBench data set with 4.9M methods, Siamese’s
query time increased slightly to 8 seconds while it took SourcererCC 60 seconds to return
the results. This shows that Siamese is suitable for situations where one query is issued at
a time, such as searching for code examples, finding similar code candidates for program
repairs, or checking for cloned code from the Internet.

To answer RQ4, Siamese offers higher scalability than traditional clone detectors includ-
ing Deckard, iClones, JPlag, NiCad, and Simian. It scales to a large code corpus of 4.9M
methods with 365M SLOC in less than a day. Its indexing time is slower than SourcererCC,
but it offers a faster query response time within 8 seconds. Siamese’s query response time is
marginally affected by the index size. We observed 3 seconds increment in the query time
even when the index size grew three times larger.

Fig. 9 Querying time (seconds)
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6.5 RQ5: Incremental Updates

How fast is Siamese’s incremental update?

We followed the same approach used by Hummel et al. (2010) to evaluate the incremen-
tal update capability of Siamese. We instructed Siamese’s to update versions of software
projects in an index of 130,719 GitHub Java projects and measured the time taken to com-
plete the task. To create the code base of GitHub Java projects, we downloaded projects that
received at least one star to avoid trivial repositories. We obtained 130,719 projects rang-
ing from 29,465 stars to 1 star in January 2018. The most-starred project is RxJava (29,465
stars), followed by java-design-patterns (27,578 stars) and Elasticsearch (27,385 stars).

We simulated the scenario of maintaining a Siamese GitHub search index when the top
three most-starred projects have a new version release. We started by adding all the 130,719
Java projects into Siamese index one project at a time at method-level using incremental
addition with the minimum method size of 10 lines (the preferred size of clone detection in
large-scale code corpora Sajnani et al. 2016). The indexing took two weeks to finish, and
the complete GitHub index contained 8.7 million code fragments with the size of 62 GB.

Then, we downloaded all the available releases of RxJava, java-design-patterns, and Elas-
ticsearch to perform incremental version updates. We choose the three most-starred projects
due to their popularity which reflects their chance of being searched for code. As displayed
in Table 14, the number of releases and the size of each project varied. Elasticsearch had the
highest number of 214 releases, followed by RxJava (153), and java-design-patterns (13)
and also had the biggest size on average (62 megabytes), followed by java-design-patterns
(15 megabytes) and RxJava (7 megabytes).

For each project, we repeated the process of updating the project’s releases from the old-
est to the newest version by performing deletion of the current existing release stored in
the index followed by addition of the next release to the index. For each update (i.e., dele-
tion/addition) made to the Siamese’s index, we measured the time required to finish the task.
The results are shown in Fig. 10. The average time of updating java-design-patterns, which
was the smallest of the three projects, took 6.6 seconds on average (median 6.5s, max 8.2s).
For RxJava, the average project update time was 17 seconds (median 12.8s, max 51.1s). For
Elasticsearch, which was the biggest projects and had the largest amount of revisions, the
time Siamese took to update the index varied from 20 seconds to approximately 2 minutes
with the average of 73 seconds (median 82.1s). The results show that Siamese’s incremen-
tal update could save the time to prepare the search index of 130,719 GitHub projects when
a new version appears from 40,320 minutes (2 weeks) to 2 minutes.

To answer RQ5, Siamese incremental update efficiently handles the changes in software
releases and dramatically decreases the index preparation time.

Table 14 GitHub projects used for incremental update

Project #Releases Average (Min, Max)

Size (MB) Files SLOC

RxJava 153 7 (0.4, 16) 582 (1, 1.5K) 82K (3, 244K)

java-design-patterns 13 15 (11, 18) 787 (479, 989) 15K (192, 26K)

Elasticsearch 214 62 (10, 145) 3.7K (1.2K, 5.6K) 399K (87K, 720K)
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Fig. 10 Incremental index update time

7 Case Studies

Siamese is a general clone search tool which is applicable for several tasks involving code
similarity measurement. This section discusses the applications of Siamese to facilitate soft-
ware development and research with two use cases of online code clone detection and clone
search with automated license analysis.

7.1 Online Code Clone Detection on Stack Overflow

Recent studies (Abdalkareem et al. 2017; Acar et al. 2016; An et al. 2017; Baltes and Diehl
2018) show that developers are often reusing code snippets from Stack Overflow in real
software projects. We foresee that, in the future, it is important that clone detection will
not only happen between local software projects, but also between software projects and
online sources, such as Stack Overflow Q&A websites. We call such clones online code
clones. Compared to traditional code clones between software systems, online code clones
are harder to locate and fix since the search space in online code corpora is much larger
and no longer confined to a local repository. Hence, the clone detection technique must be
scalable and accurate to locate clones in large-scale online code corpora.

In this case study, we empirically show that researchers can use Siamese to tackle the
challenges of online code clone detection. We replicated the study of cloned code snippets
between Stack Overflow Java accepted answers and the Qualitas corpus (Ragkhitwetsagul
et al. 2019) using Siamese, and compared the results to the existing clone results by Simian
and SourcererCC.8 We used the same data sets of 72,365 Stack Overflow Java code snippets
and 111 open source Java projects in Qualitas (shown in Table 15), and followed the same
experimental framework to detect online code clones. The Stack Overflow code snippets
were extracted from accepted answers using <code>...</code> tags. Moreover, we fil-
tered out irrelevant code snippets that were not written in Java by using regular expressions
and manual checking. The Qualitas projects were used as-is without any pre-processing.
We did not need to partition the clone detection into multiple runs as we previously did

8We had also tried NiCad, CCFinderX, iClones, DECKARD, and PMD-CPD, but they failed to analyse
incomplete code snippets on Stack Overflow or took too long to report clones. Simian and SourcererCC
also have the benefit of having two different clone granularity levels. They complement each other as
SourcererCC’s clone fragments are always confined to method boundaries while Simian’s fragments are not.
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Table 15 Stack Overflow and
Qualitas datasets Data set No. of files SLOC

Stack Overflow 72,365 1,840,581

Qualitas 166,709 19,614,083

with Simian thanks to the scalability of Siamese. The Qualitas corpus was added to Siamese
index and the Stack Overflow code snippets were used as the queries. The search configu-
rations are shown in Table 16. We configured Siamese to consider methods with at least ten
lines for the search, which resulted in 71,348 queries out of 149,664 methods in the 72,365
Stack Overflow snippets. We limited the result size to at most 100 code snippets per query.

7.1.1 Similarity Threshold

Siamese is a clone search engine which returns a ranked list of clones based on relevance
scores between the query and the retrieved code fragments. The original Siamese has no
cut-off threshold to decide whether a retrieved code fragment is a cloned fragment of the
query or not. This is desirable behaviour for a search engine because the user will look at
only the top n results, but not for a clone detector that the user wants a comprehensive list of
clones. To be able to compare the clone results of Siamese to Simian’s and SourcererCC’s,
we adapted Siamese to incorporate a similarity measure called n-gram token ratio as the
clone similarity threshold.

N-gram Token Ratio (NTR) is an n-gram based similarity measure specifically invented for
Siamese. It is applied during search time. Siamese forces an NTR similarity score based on
the number of tokens in the query that match with tokens in the indexed code fragments. It
is similar to Jaccard similarity on n-gram tokens, except that the similarity score is purely
based on the query tokens instead of a union of tokens from the two code fragments. An
NTR similarity score between a query Q and a code fragment F is computed as follows.

SimNTR = |TQ ∩ TF |
|TQ| (6)

where TQ represents a set of n-gram tokens in Q and TF represents a set of n-gram
tokens in F . Since Siamese uses four code representations for its clone search, the similarity
score is applied to each of the four representations. Given a similarity threshold, Siamese
retrieves only code snippets that offer an NTR score equal to or higher than the threshold
on all four representations. The NTR score is applied when the search is performed. Only
code fragments that contain enough tokens to reach the defined NTR similarity threshold
are retrieved. This method effectively prunes unrelated code fragments and results in fast
query response time. In addition, the NTR is a simple token-based and language agnostic
similarity measure. Thus, it supports an analysis of any programming language and also
works with incomplete code fragments.

Table 16 Siamese execution on Stack Overflow and Qualitas corpus

Snippets Result size Exec. time Per query Clone pairs (80% sim.)

72,365 100 1h 55m 0.10s 1,088
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7.1.2 Results

As shown in Table 16, Siamese with NTR (Siamese-NTR) took approximately 2 hours
to complete the clone detection, and the average clone search time per query is 0.10 sec-
onds. We set the similarity threshold at 80% to be similar to the setting of SourcererCC’s
clone similarity and obtained 1,088 clone pairs. We also performed an additional analysis
regarding the chosen result size of at most 100 snippets. We found that, from 72,365 Stack
Overflow Java code snippets and 111 Qualitas projects, there were 382 Stack Overflow
snippets that had at least one clone candidate in Qualitas. The average number of clones
per query is 0.015, which is very low. There were 381 queries that had only 1 to 49 clone
results, and there was only 1 query with 100 clone results (the query is a boiler-plate code
snippet of DocumentListener() initialisation that can match with a large number of
code fragments in Qualitas that involve Java Swing components). Thus, the result size of
100 was large enough to exceed the number of clones per query between the two data sets.
Then, we compared the clone candidates to the existing clone results reported by Simian
and SourcererCC (denoted SM-SCC) in our previous study (Ragkhitwetsagul et al. 2019).
To find common clones between the new results from Siamese and the existing 2,289 SM-
SCC clone pairs, we employed the clone matching method used in our previous study by
applying the Bellon’s ok-match clone agreement with the threshold t of 0.5.

Common Clone Pairs The comparison results are displayed in Fig. 11. There were 413
common clone pairs between the SM-SCC results and Siamese-NTR. The common pairs
spread across several clone patterns of QS, SQ, EX, UD, BP, IN, and NC as shown in
Table 17. Siamese-NTR reported 125 Qualitas→Stack Overflow (QS) clone pairs out of the
153 discovered QS pairs by Simian and SourcererCC and one Stack Overflow→Qualitas
(SQ) clone pair. It reported 111 external sources→Stack Overflow (EX) pairs, 64 unknown
direction (UD) pairs, and 112 boiler-plate (BP) pairs. It did not report any inheritance/inter-
face (IN) or non-clone pair (NC).

Distinct Clone Pairs Siamese-NTR discovered 675 clone pairs that were not found before
and also missed 1,876 clone pairs reported by SourcererCC and Simian (see Fig. 11). To
gain insights into the clone pairs that were found only by Siamese, we performed a manual
investigation. We manually checked 245 randomly selected clone pairs from Siamese-NTR-
only, the number of statistically significant sample with 95% confidence level and ±5%
confidence interval. The manual clone validation reported 197 true clone pairs and 48 false
clone pairs (80% precision).

By applying the 80% NTR similarity to the four code representations, we forced Siamese
to discover clones that were strictly similar. However, we did find some interesting clone
pairs due to the NTR similarity computation that SourcererCC and Simian could not find.
Since the n-gram token ratio is computed based on the number of tokens in the query, we

Fig. 11 A comparison of Siamese-NTR clone pairs to the previous results by Simian and SourcererCC (SM-
SCC)
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Table 17 The 413 SM-SCC online clone pairs that are found by Siamese

QS SQ EX UD BP IN NC

125 1 111 64 112 0 0

found that Siamese-NTR could locate clones of the query inside another method. We call it a
contained clone pair. An example of a contained clone pair is shown in Fig. 12. The cmp()
method in the Stack Overflow answer ID 7843663 was reported as clone of the method
sort() from the Sorter.java file from JBoss project although the query matched with
only a segment of code inside the sort() method. Looking closely into the cloned region
between the two clone fragments, we observed a few differences between the two clone
fragments. The first clone fragment contained a method called cmp() while the second
clone fragment contained a method called compared, and the first clone fragment con-
tained if-else statements while the second clone fragment contained only if statements.
The Siamese-NTR query could match them because of Type-2 and Type-3 clone represen-
tation that allowed variable renaming and added/removed/modified statements. This clone
pair was not reported by SourcererCC due to the largely different number of lines. The two
code fragments had different sets of rare tokens and the overlap of the rare tokens was pos-
sibly smaller than SourcererCC’s similarity threshold. Although Simian works at line-level
and should not be affected by the size difference between the two code fragments, the clone
pair was still not detected, possibly because of the Type-3 differences between if-else
and if statements, which are not supported by Simian.

Moreover, we also randomly looked at 50 clone pairs that were reported by Sourcer-
erCC and Simian, but not Siamese, to see why Siamese did not report them. We found
many clones that were similar but their similarity probably lower than our defined thresh-
olds of 80%. In a few cases, they were Type-2 clones that were missed by Siamese-NTR.
It is because we equally applied 80% similarity to the four representations, and the r1,
i.e., Type-1, representation rejected the clones. In this case, we should give a lower sim-
ilarity threshold for the r1 and r2 representation and only maintain the 80% similarity
threshold for r0 and r3. Moreover, we observed several Simian-SCC clone pairs that were
missed by Siamese because they spanned over multiple methods. They were detected
by Simian because Simian only performed line matching to find clones. Since Siamese
tried to parse the code into methods when possible, it could not detect this kind of
clones.

7.1.3 Discussion

Our replication of online code clone detection between Stack Overflow and Qualitas cor-
pus using Siamese shows that the tool can be applied for fast searching of online code
clones. The clone results after applying the n-gram token ratio (NTR) similarity measure
have some overlaps with the existing clone pairs reported by Simian and SourcererCC and
some distinct clone pairs only reported by Siamese and vice versa. We manually checked
the pairs reported by Siamese only and found that many of them are true positive pairs. At
the same time, Siamese suffers from some false negatives. There were clone pairs that were
reported by either Simian or SourcererCC that Siamese could not locate. This is possibly
caused by a known problem of tools’ configurations (Wang et al. 2013). We leave a detailed
investigation as future work.
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Fig. 12 A contained Type-3 clone pair reported by Siamese-NTR

7.2 Clone Search with Software License Analysis

This section illustrates an example of using Siamese for a large-scale exploratory study of
clones that are shared between Stack Overflow and GitHub repositories and their license
compatibility. This case study is motivated by several discussion threads on StackExchange
and Stack Overflow Meta expressing the developers’ concerns of license violations by
cloning code snippets from Stack Overflow, such as meta.stackexchange.com/questions/
12527, meta.stackexchange.com/questions/25956, and meta.stackoverflow.com/questions/
321291. Moreover, several recent studies (Abdalkareem et al. 2017; Acar et al. 2016; Baltes
and Diehl 2018) reveal that such code cloning between Stack Overflow and open source

meta.stackexchange.com/questions/12527
meta.stackexchange.com/questions/12527
meta.stackexchange.com/questions/25956
meta.stackoverflow.com/questions/321291
meta.stackoverflow.com/questions/321291
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projects, especially the ones on GitHub, does exist and sometimes also causes issues like
license violations, degraded software quality, and security vulnerabilities.

An et al. (2017) performed a study of clones between Stack Overflow and 399 Android
apps and their ramifications of license incompatibility. Their clone detector (NiCad) did not
scale to the full data set and had to be executed in 100 smaller runs. Our study leverages
the scalability of Siamese to do a similar study on a larger scale of 16,738 GitHub projects
in a single run. The data sets used in this study consists of (1) Java code snippets on Stack
Overflow and (2) Java source code in GitHub projects. The statistics of the two data sets are
shown in Table 18. For GitHub, we used the 16,738 GitHub Java projects with at least ten
stars that we used previously in RQ2. For Stack Overflow, we reused the 72,365 extracted
code snippets from Java accepted answers employed in the previous case study.

To be able to check for license incompatibilities similar to the study by An et al. (2017),
Siamese was extended to support automatic software license identification using pattern
matching,9 so that a manual investigation of software licenses is reduced to only the clone
pairs that have incompatible licenses. We built a database of software license patterns by
studying the list of 33 software license types on GitHub,10 reading the text in each license
statement, and manually preparing the patterns. During an execution, Siamese identifies
the software license in a software project using a two-step approach. First, it reads a ded-
icated license file LICENSE or LICENSE.txt at the root level of each GitHub project
and matches it with the license patterns in its database to detect a license at project-level.
Second, Siamese reads a license statement on top of each Java source code file and per-
forms pattern matching of the license at file-level. When there is a conflict between the
file-level and the project-level license, Siamese prefers the finer-grained file-level one. If
the tool cannot identify the license, it reports unknown to flag that a manual validation is
needed.

Moreover, we configured Siamese to apply the n-gram token ratio (NTR) similarity of
100% to every query to make sure that we discovered only exact-match clones (Type-1
clones). It would be interesting to investigate the problem with Type-2 and Type-3 clones as
well. However, this will possibly introduce threats to the results. By searching for only 100%
similar code fragments, we made sure that we studied only exact copies of the code between
Stack Overflow and GitHub projects. In the case of license violations, it is very difficult
to confirm the direction of code copying because of a generally lack of evidence. Thus,
when performing license analysing, we usually prefer precision over recall (i.e., finding a
few correct license violations is better than finding a lot of false positives). By focusing on
Type-1 clones, at least we could narrow down the scope of potential license violations to be
only clones that are exactly similar, which have much higher chance to be copied than Type-
2 or Type-3 clones. The results can be considered as a lower bound of the actual number of
clones between the two locations.

Since Siamese supported incremental indexing, we sequentially indexed the 16,738
projects one at a time. This also facilitated the project-based license identification that
each project had to be analysed individually. The Siamese index, after analysing all the
projects, contained 2,639,565 methods with an index size of 25.6 gigabytes. The indexing
with license identification of GitHub projects took one day and twelve hours.

9We also tried integrating Ninka (German et al. 2010), a license identification tool, into Siamese but found
that it dramatically slowed down the indexing and querying time.
10GitHub license type: https://help.github.com/articles/licensing-a-repository

https://help.github.com/articles/licensing-a-repository
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Table 18 The data sets in the
case study Data set Files SLOC

Stack Overflow 72,365 1,840,581

GitHub 1,193,478 106,481,517

In the query phase, each code snippet from Stack Overflow was used as a query with a
results size of 100. The search for clones with similarity computation between the two data
sets took 1 hours and 57 minutes to complete.

7.2.1 Results

We initially set the minimum of 10 lines for clone size since it was recommended for a large-
scale clone detection to get rid of trivial clones (Sajnani et al. 2016). With the minimum
of 10 lines, we retrieved a large number of clone candidate pairs. However, after manually
investigating a few sampled clone pairs, we still found several trivial clones such as equals
methods or generated GUI-related code. These trivial clones had the size of around 10 to
20 lines, so we increased the minimum clone size to 20 lines. With the larger minimum
clone size, 378 clone pairs were reported. This is the lower bound of the number of clone
candidate pairs since we might also get rid of true positive clone pairs that were smaller than
20 lines. Nonetheless, as previously discussed, false negatives (i.e., not reporting a clone
pair while it is actually a clone pair) are preferred over false positives (i.e., reporting a clone
pair while it is actually a non-clone pair) in this case of license violation checking.

We compiled a list of 10 projects having the highest number of clones within the 16,738
projects we analysed as shown in Table 19. The Google’s J2ObjC (4,981 stars), which is a
command-line tool that translates Java to Objective-C code, has the highest number of 17
clone pairs. The second is JavaExercises project (34 stars), which contains a lot of Java
programming examples, with 13 clone pairs followed by XobotOS, Android porting from
Java/Dalvik to C#, (1,278 stars) with 11 clone pairs; JalaliCalendar, a Java Persian calendar
library, (51 stars) with 9 clone pairs; guideshow (85 stars – 7 pairs); react-native-lanscan
(16 stars – 7 pairs); AOSP Framework Support Library (1,253 stars – 5 pairs); java-tool (16
stars – 5 pairs); Dropbox’s hackpad (3,085 stars – 5 pairs); and AndroidRAT (37 stars – 5
pairs). We did not confirm the direction of cloning. However, after looking at the numbers,

Table 19 GitHub projects with the highest no. of clones

Project name Stars Clone pairs

google/j2objc 4,981 17

biblelamp/JavaExercises 34 13

xamarin/XobotOS 1,278 11

amirmehdizadeh/JalaliCalendar 51 9

javajavadog/guideshow 85 7

Odinvt/react-native-lanscan 16 7

aosp-mirror/platform frameworks support 1,253 5

osglworks/java-tool 16 5

dropbox/hackpad 3,085 5

ibrahimbalic/AndroidRAT 37 5
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we observed an interesting patterns: high and low stars projects both have high numbers of
clones, which possibly indicate the direction of cloning. We left an investigation for future
work.

Siamese reported the same license for 131 pairs, and different license for 247 pairs. We
further analysed the licenses in the clone pairs and the results are displayed in Table 20.
For the same license, 127 clone pairs do not have a license statement and 4 pairs have the
Apache-2.0 license. On the other hand, 65% of the clone pairs with different licenses (247
out of 378) contain no license on Stack Overflow while having a license on GitHub. The
three highest number of clone pairs have: 1) no license on Stack Overflow but Apache-2.0
license on GitHub (139 pairs); 2) no license on Stack Overflow and GPL-2.0 license on
GitHub (32 pairs); and 3) no license on Stack Overflow but MIT license on GitHub (27
pairs).

Although we did not confirm the violations of software license, the findings from the
study show that we can use Siamese to locate potential candidates of clones with software
license incompatibility, which save the time for a human investigator.

7.2.2 Discussion

The study demonstrated an application of Siamese to efficiently and effectively find clones
which potentially violate software licenses. Siamese found a number of clone pairs between
Stack Overflow and GitHub projects that the code were exactly matched but had differ-
ent software licenses. These clone pairs with different licenses may or may not create

Table 20 License comparison of the clones

License Stack Overflow GitHub Frequencies

Same license None None 127

Apache-2.0 Apache-2.0 4

Total 131

Different license None Apache-2.0 139

None GPL-2.0 32

None MIT 27

None GPL-3.0 12

None Apache 10

None BSD-2-Clause 6

None BSD-3-Clause 5

None LGPL-3.0 5

None AGPL-3.0 4

None Artistic-2.0 2

None Unknown 2

None CC0-1.0 1

Unknown GPL-2.0 1

Unknown WTFPL 1

Total 247

Grand total 378
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licensing conflicts depending on the direction of cloning, which requires a further thorough
investigation and is beyond the scope of this paper.

8 Threats to Validity

8.1 Internal and Construct Validity

We compared the tools’ performance based on three standard measurements of precision at
10, MAP, and MRR from information retrieval. Nevertheless, in some situations, other mea-
surements may be required and might not produce the same results. We compared Siamese
to seven state-of-the-art clone detectors on the default and the optimal configurations. We
might not cover all the tools’ parameters due to our selection of the value ranges and the
increasing step sizes. Moreover, we may introduce bias when comparing code clone detec-
tion tools that return the lines or tokens in the clone (e.g., CCFinderX, Simian), to Siamese
which only returns method-level or file-level clones. The query reduction thresholds were
derived from the Bellon corpus and may be subjective to the clones in the corpus but we
mitigated the issue by avoiding using Bellon corpus in the evaluation data sets to avoid con-
figuration bias. We confirmed the findings with the Qualitas corpus and observed the same
result. The manual validation of clone search results was carefully performed but may still
be subject to manual judgement and human errors. The MRR and precision at 10 used to
measure Siamese’s precision are based on the top n clone results and may not reflect the
precision score, which is based on the total number of returned results. The comparison of
Siamese to three code search tools, FaCoy, Searchcode, and Krugle, is based on a different
code search index, thus there may be bias in the reported search results. The proposed clone
search technique do not consider the order of n-grams and this decision allows Siamese to
detect relocated code statements. It is possible that Siamese may report some false positives
with the presence of two non-cloned code fragments sharing 100% n-grams. However, based
on our empirical observations, n-grams already partially capture the sequences in the code.
Thus, having two code fragments that are not clones but completely share 100% n-grams
are very unlikely. The clones found in the case study are subject to the chosen similarity
measure and the threshold. The results may be different if other code similarity technique
is selected. We used code clone detection benchmarks to evaluate Siamese on code clone
search. This could possibly introduce some bias due to such benchmarks being highly pop-
ulated with clones compared to real-world scenarios. Lastly, the clones with incompatible
licenses are based on our manually-prepared software license patterns, which may produce
false positives or false negatives.

8.2 External Validity

The three error measures, precision at 10, MAP, and MRR are based on queries with known
relevant results and may not fully represent real-world queries. We carefully chose the data
sets for our experiments and Siamese was evaluated on multiple data sets to cover sev-
eral types of cloned code and to alleviate the evaluation bias. Nonetheless, some of them
are generated data sets and may not fully cover the characteristics of code clones in real
world software. We tried to mitigate the issue by evaluating Siamese on 16,738 real-world
Java projects from GitHub, similar to what the authors of the FaCoy study have done. Our
multi-representation, query reduction techniques, indexing and searching performance of
Siamese are evaluated with Java and may not be generalised to other languages. However,
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we designed the Siamese’s architecture to work with other programming languages by
plugging in a new tokeniser and code normaliser module. The indexing and querying per-
formance of Siamese and SourcererCC were measured on a single computer and may not
represent their performance on other computers with different specifications or a cluster of
multiple Elasticsearch instances. The criteria for selecting the GitHub projects for incremen-
tal update is based on the stars and may not be generalised to other Java projects. The results
from the first case study are based on 72,365 Java code snippets on Stack Overflow and
111 Qualitas projects and may not be generalised to other programming languages or other
software projects. Similarly, the results from the second case study are restricted to 16,738
GitHub Java projects with at least ten stars. The results may be different for projects with
lower popularity and also projects in other programming languages. Moreover, we did not
consider Type-2 and Type-3 clones to minimise the number of false positives. The reported
number of clones and their license analysis may not cover code clones with modifications.

9 RelatedWork

9.1 Code Clones

Code clones, which are similar code fragments, occur by programmers duplicating source
code with or without modifications (Roy et al. 2009). It is a common activity found in
software development, and amount of clones may be used as a proxy to measure the software
quality (Fowler 1999). Clones may or may not complicate software maintenance depending
on several contexts, such as the languages and types of software projects being analysed
(one version vs. multiple variations of hardware drivers) (Kapser and Godfrey 2006) or
how consistently are the changes applied to clones (Aversano et al. 2007; Juergens et al.
2011). Nonetheless, clone researchers agree that clones need to be made explicit so that an
appropriate clone management process can be carried out (Chatterji et al. 2016).

The intention behind code cloning can vary from unintentional use of coding idioms
(Kapser and Godfrey 2006) to reusing well-written code in order to preserve functionality
and performance (Kamiya et al. 2002). Software development industry has utilised code
cloning intensively. Roy et al. (2009) and Davey et al. (1995) reported that a substantial
percentage (7–23% and 20–30% respectively) of a software module contains clones. Baxter
et al. (1998) similarly found that in average 12.7% are clones in the commercial software
project used in their study.

There are various approaches to code clone detection including text-based (Harris 2015;
Roy and Cordy 2008), token-based (Kamiya et al. 2002; Prechelt et al. 2002; Sajnani et al.
2016; Schleimer et al. 2003), tree-based (Baxter et al. 1998; Jiang et al. 2007), graph-based
(Krinke 2001), or deep learning techniques (Li et al. 2017;White et al. 2016) to locate clones
within or between software projects. Nevertheless, with the growing amount of source code
on the Internet, programmers are no longer limited to cloning code from local software
repositories, but are allowed to reuse a vast amount of code online (Acar et al. 2016; Yang
et al. 2017; Abdalkareem et al. 2017). A recent large-scale study by Lopes et al. (2017)
shows that 70% of the code on GitHub are clones.

9.2 Scalable Clone Detection

Hummel et al. (2010) is among the first to present clone detection tool for Type-1 and Type-
2 clones that is incremental and scalable using index-based techniques. A clone index is
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created from source code sequence hashes. The tool evaluation shows that it returns clones
for a file in 42M SLOC Eclipse code base within 1 second. The tool can be distributed
to gain even higher scalability. Lavoie et al. (2010) propose a new version of a dynamic
programming algorithm called DP-matching and use it for clone fragment similarity calcu-
lation on a graphic processing unit (GPU). However, the evaluation results show that their
GPU-based approach only slightly increases the performance of DP-matching from its CPU
implementation. Livieri et al. (2010) present a scalable approach for clone detection using
n-gram matching. Their evaluation of a tool implementing the idea, called Yocca, shows that
it is more scalable than CCFinder and Simian. However, the authors only discuss scalability
and did not report the clone detection accuracy of the tool.

Inoue et al. (2012) propose a system called Ichi Tracker that leverages the power of
three code search engines: Google Code Search, Koders,11 and SPARS/R.12 The system
is designed for tracking an origin and evolution of source code. Nevertheless, the Google
Code Search and Koders are no longer available, which severely affects the usability of the
system. Koschke (2014) presented a scalable inter-system clone detection using a suffix-
tree-based algorithm. The author evaluated the use of index-based hashes of token n-grams
to speed up the clone detection process and concluded that building an index was worthwhile
only if it is reused multiple times. Moreover, he showed that software metrics and a learned
decision tree increase the clone detection’s precision. Ohmann and Rahal (2014) propose a
large-scale approach, called Program It Yourself (PIY), for efficient source code plagiarism
detection using parallel execution and clustering algorithms. PIY uses n-grams to create
vectors and compare them using Manhattan and cosine distance metrics. Its efficiency in
large-scale data is dramatically enhanced by including parallel execution and clustering
methods. However, the biggest dataset tested with PIY contains approximately 23,000 files
which is still relatively small compared to BigCloneBench.

Tamersoy et al. (2014) show an efficient approach for large-scale malware detection
based on association graphs. The authors propose a method to estimate machine-program
co-occurrence strength using MinHashing algorithm (Rajaraman and Ullman 2011) and
Locality Sensitivity Hashing (LSH) (Slaney and Casey 2008), and implement a tool called
AESOP. The study analyses the massive amount of data from the Symantec Norton’s Com-
munity Watch containing 11 million machines and 43 million files. Nonetheless, based on
the underlying approach of AESOP, the tool needs source code data that contain associations
between the code and their owners, which may not always exist. Keivanloo et al. (2014)
presents a code search system aiming to find working code examples. It tackles the problem
of current code search systems that rely on API names as search keywords by proposing the
abstract programming solution extraction approach. Its evaluation on IJaDataset 2.0 shows
that the approach outperforms an industrial Ohloh Code search engine on finding working
code examples. However, the query set in the evaluation is limited to only 15 queries, and the
comparison of the two systems has been performed on a different data set, which makes the
findings not generalised. Svajlenko et al. (2014) present a large-scale clone detection solu-
tion by utilising classic clone detectors. The authors introduce a scalable non-deterministic
algorithm called shuffling framework. The framework partitions the dataset into small sub-
sets that fit with the tool’s input size and environments. The experimental results show that
the framework can enable Simian and NiCad to execute against large datasets. However, the

11http://code.openhub.net
12http://sel.ist.osaka-u.ac.jp/SPARS/index.html.en

http://code.openhub.net
http://sel.ist.osaka-u.ac.jp/SPARS/index.html.en
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proposed system suffers from problems of line-counting mismatches between the frame-
work and each clone detection tool, high generation time of inverted index, and a bottleneck
from sequential subset generation.

Sajnani et al. (2016) create a scalable code detection tool called SourcererCC. The tool
is a token-based detector based on an optimised inverted index to scalably retrieve clone
pair candidates within a short amount of time. The authors incorporate two filtering heuris-
tics, sub-block overlap and token positions, to dramatically reduce the number of pairwise
comparisons. The tool report high recall and precision compared to other state-of-the-art
clone detectors. It also scales to the IJaDataset 2.0 with 250 million lines of code. Later,
Nishi and Damevski (2018) extended SourcererCC by adding adaptive prefix filtering to
obtain higher clone detection scalability. Svajlenko and Roy (2017) adopted Sajnani et al.
(2016)’s sub-block heuristic into their scalable clone detector, CloneWorks. The tool’s scal-
ability is enhanced using partitioning of input code fragments to fit within an allowed
memory limit. They use a slightly modified version of Jaccard similarity to detect clones.
CloneWorks offers high precision and recall of Type-1, Type-2, and Type-3 clones on Big-
CloneBench compared to iClones, NiCad, and SourcererCC while giving a much faster
detection speed than SourcererCC. The tool finishes its clone detection in 4 hours (conser-
vative configurations) and 10 hours (aggressive configurations) compared to 110 hours by
SourcererCC.

Oreo is a scalable clone detector created by Saini et al. (2018) that integrates deep learn-
ing, information retrieval, and software metrics. By training a deep neural network model on
24 software metrics of cloned and non-cloned pairs reported by SourcererCC from 50,000
GitHub projects, the tool is capable of detecting a large number of challenging Type-3 and
Type-4 clone pairs. Oreo completes a clone detection on IJaDataset 2.0 within about a day.

9.3 Code Search

Internet-scale code search is an emerging field of research that targets on finding source
code data on the Internet for code reuse, bug fixing, or program comprehension (Gallardo-
Valencia and Sim 2009).

There are several tools available for code search. One can use Google as a code search
engine by choosing desired functionalities as the keywords (Sim et al. 2011). There are also
dedicated code search engines such as Krugle, searchcode, Codata, or Black Duck Open
Hub Code Search (formerly known as Koders) that take programming language structure
into account while searching. Researchers also create code search techniques and tools for
their study, which some of them are later opened for free of use.

Linstead et al. (2009) invented Sourcerer, a source code retrieval system on the Internet-
scale with million lines of code. Bajracharya et al. (2010) use structural semantic indexing
(SSI) to return code examples based on similarity of API usage. The evaluation of 346 jars
from Eclipse framework shows that SSI-based schemes are preferred over baseline schemes
that do not include usage similarity in the search. Martie et al. (2017) reflect that code
search is an iterative process where information seekers need to keep adapting their search
queries until they find relevant results. They present two tools,CodeLikeThis (CLT) and
CodeExchange (CE), to facilitate iterative code search and perform a user study to show
that the tools could improve code search experience. Niu et al. (2017) improve the ranking
schema of code results by applying a learning-to-rank machine learning algorithm. They
find that the approach outperforms five existing ranking schemas on normalised discounted
cumulative gain (NDCG) by at least 35.65%. The work by Gu et al. (2018) uses deep learn-
ing techniques called CODEnn (Code-Description Embedding Neural Network) to match
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code snippets and natural language descriptions in the query using joint high-dimensional
embedding vectors.

We refer the readers to a book by Sim and Gallardo-Valencia (2013) which presents a
comprehensive list of code search studies including motivation and behaviours of program-
mers to search for code, a user study on Internet-scale code search, and the infrastructures
and techniques for code and software component search engines.

9.4 Code Clone Search

In this paper, we focus on a specific kind of code search called code clone search. Code
clone search is a special case of code search where a piece of code is given as a query instead
of natural text keywords. By executing the query, a clone search system returns a list of
clones of the query. Code clone search differs from code clone detection because it is query-
centric. Instead of looking for a complete set of clone pairs or clone groups in given code
corpora as in clone detection, a clone search tool retrieves only clones that are associated
with the query. Due to the similarity between code clone detection and clone search and the
limited number of clone search tool available, sometimes clone detectors are also used to
search for similar code. Here, we discuss techniques that are dedicatedly invented for clone
search.

Lee et al. (2010) search for clone using structural similarity based on R*Tree indexing
structure. The technique searches for clones within 492 open source projects with less than
a second. Exemplar (Grechanik et al. 2010) leverages program analysis with information
retrieval to search for highly relevant applications. The tool searches for similar applications
based on similarity of their API calls. A user study with 39 professional Java programmers
showed that Exemplar outperformed SourceForge in searching for relevant applications.
Portfolio (McMillan et al. 2011) uses multiple techniques including natural language pro-
cessing, PageRank, and spreading activation network to find relevant functions and projects.
Keivanloo et al. presented a real-time code clone search which utilises ontologies to expand
the search keywords (Keivanloo et al. 2012). The authors also present other variations of
real-time clone search system using multi-level indexing (Keivanloo et al. 2011a, b), and
abstract programming solutions (Keivanloo et al. 2014). Ishio et al. (2017) present a scal-
able approach for detecting clone-and-own software packages using b-bit minwise hashing
technique. Then, an aggregated file similarity is applied to rank the returned search compo-
nents. The technique gives a recall score of 0.907 in an evaluation. Kim et al. (2018) created
FaCoy, a code-to-code search system that leverages the information on Stack Overflow to
expand the keywords in the search query. The tool aims for searching semantically similar
code. The evaluation shows that the technique can return code snippets with similar runtime
behaviours to the query snippet and are useful for patch recommendation.

9.5 Query Quality Improvement

Information retrieval community has proposed techniques to increase the quality of queries
before submitting them to a search engine by reducing the size of long queries (Kumaran
and Allan 2007; Kumaran and Carvalho 2009; Balasubramanian et al. 2010; Bendersky
and Croft 2008; Robertson 1990). Kumaran and Allan (2007) propose a method to select
short sub queries based on mutual information, maximum spanning tree, and named enti-
ties. Bendersky and Croft (2008) derive key concepts from long queries to improve retrieval
effectiveness. Kumaran and Carvalho (2009) and Balasubramanian et al. (2010) adopt learn-
ing to rank, a machine learning technique, with nine query quality predictors in order to
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choose a sub query with an optimal size. Zhang et al. (2017) improve natural-language
queries for code search by looking for additional search keywords from semantically related
API class names. Our study is the first to present a code query reduction technique based
on token document frequencies.

10 Conclusion

We present the architecture of a scalable and incremental clone search and its implementa-
tion as a tool called Siamese. Siamese incorporates a novel multiple code representations
(MR) technique to transform Java code into four code representations to detect differ-
ent types of clone at once and a query reduction (QR) technique to automatically reduce
the query size on-the-fly based on token document frequencies. We showed that MR-QR
increased clone search precision compared to the baseline of text search engine. We
evaluated Siamese on three data sets: OCD (clones with obfuscation, compilation, decom-
pilation), SOCO (clones with boiler-plate code), and BigCloneBench (a clone benchmark
with 8 million clone pairs). Siamese offers 95% and 99% mean average precision on the
OCD and the SOCO data set respectively and also offers high recall for all clone types in
the BigCloneBench data set. When compared to other three code search engines on the 10
highest-voted Stack Overflow code snippets, Siamese returns the largest number of Type-3
clones. Furthermore, Siamese provides scalability by returning clone search results in less
than 8 seconds even on the largest data set of 365 million lines of code. The technique sup-
ports incremental index updating that allows fast update to the existing index without the
need to recreate the index from scratch. The two case studies illustrate the applications of
Siamese to software engineering research. They show that Siamese can be adapted to the
problem of online code clone detection and software license analysis. The Siamese clone
search approach opens possibilities for discovering online code reuse, finding similar code
examples, detecting software plagiarism, and finding software licensing conflicts in real
time on large-scale code corpora.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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