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Abstract
In the literature, there is a rather clear segregation between manually written tests by
developers and automatically generated ones. In this paper, we explore a third solution: to
automatically improve existing test cases written by developers. We present the concept,
design and implementation of a system called DSpot, that takes developer-written test cases
as input (JUnit tests in Java) and synthesizes improved versions of them as output. Those
test improvements are given back to developers as patches or pull requests, that can be
directly integrated in the main branch of the test code base. We have evaluated DSpot in
a deep, systematic manner over 40 real-world unit test classes from 10 notable and open-
source software projects. We have amplified all test methods from those 40 unit test classes.
In 26/40 cases, DSpot is able to automatically improve the test under study, by triggering
new behaviors and adding new valuable assertions. Next, for ten projects under considera-
tion, we have proposed a test improvement automatically synthesized by DSpot to the lead
developers. In total, 13/19 proposed test improvements were accepted by the developers
and merged into the main code base. This shows that DSpot is capable of automatically
improving unit-tests in real-world, large scale Java software.
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1 Introduction

Over the last decade, strong unit testing has become an essential component of any serious
software project, whether in industry or academia. The agile development movement has
contributed to this cultural change with the global dissemination of test-driven development
techniques (Beck 2003). More recently, the DevOps movement has further strengthened the
testing practice with an emphasis on continuous and automated testing (Roche 2013).

In this paper we study how such modern test suites can benefit from the major results
of automatic test generation research. We explore whether one can automatically improve
tests written by humans, an activity that can be called “automatic test improvement”. There
are few works in this area: the closest related techniques are those that consider manually
written tests as the starting point for an automatic test generation process (Harder et al. 2003;
Fraser and Arcuri 2012; Xuan and Monperrus 2014; Yoo and Harman 2012; Danglot et al.
2017; Xuan et al. 2015). To this extent, automatic test improvement can be seen as forming a
sub-field of test generation. Automatic test improvement aims at synthesizing modifications
of existing test cases, where those modifications are meant to be presented to developers. As
such, the modifications must be deemed relevant by the developers themselves (the corollary
being that they should not only maximize some criterion).

For our original study of automatic test improvement, we have developed DSpot, a
tool for automatic test improvement in Java. DSpot adapts and combines two notable test
generation techniques: evolutionary test construction (Tonella 2004) and regression oracle
generation (Xie 2006a). The essential adaptation consists in starting the generation process
from the full-fledged abstract syntax trees of manually written test cases. The combination
of both techniques is essential so that changes in the setup together are captured by changes
in the assertion part of tests.

Our study considers 10 mature Java open source projects. It focuses on three points
that have little, or never, been assessed. First, we propose 19 test improvements generated
by DSpot to the developers of the considered open source projects. We present them the
improvement in the form of pull requests, and we ask them whether they would like to
merge the test improvements in the main repository. In this part of the study, we extensively
discuss their feedback, to help the research community understand the nature of good test
improvements. This reveals the key role of case studies, as presented by Flyvbjerg (2006),
to assess the relevance of our technique for developers. Second, we perform a quantitative
assessment of the improvements of 40 real-world test classes from our set of 10 open-
source projects. In particular, we consider the difficult case of improving strong test classes.
Third, we explore the relative contribution of evolutionary test construction and of assertion
generation in the improvement process.

Our key results are as follows: first, thirteen GitHub pull requests consisting of automatic
test improvements have been definitively accepted by the developers; second, an interest-
ing empirical fact is that DSpot has been able to improve a test class with a 99% initial
mutation score (i.e. a really strong test); and finally, our experiment shows that valuable test
improvements can be obtained within minutes.

To sum up, our contributions are:

– DSpot, a system that performs automatic test improvement of Java unit tests;
– the design and execution of an experiment to assess the relevance of automatically

improved tests, based on feedback from the developers of mature projects;
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Fig. 1 Example of what DSpot produces: a diff to improve an existing test case

– a large scale quantitative study of the improvement of 40 real-world test classes taken
from 10 mature open-source Java projects.

– fully open-science code and data: both DSpot1 and our experimental data are made
publicly available for future research2

The remainder of this article is as follows. Section 2 presents the main concepts of auto-
matic test improvement and DSpot. Section 3 presents the experimental protocol of our
study. Section 4 analyses our empirical results. Section 5 discusses the threats to valid-
ity. Section 6 discusses the related work. and Section 7 concludes the article. Note that a
previous version of this paper can be found as Arxiv’s working paper (Baudry et al. 2015).

2 Automatic Test Improvement

In this section, we present the concept of automated test improvement, and its realization in
the DSpot tool.

2.1 Goal

The goal of automatic test improvement is to synthesize modifications to existing test cases
to increase test quality. These modifications are meant to be given to developers and com-
mitted to the main test code repository. The quality assessment is driven by a specific test
criterion such as branch coverage or mutation score. In this paper, we focus on improving
the mutation score of an existing test suite but automatic test improvement is more general
and it is not bound to the mutation score.

2.2 DSpot

DSpot is an automatic test improvement tool for Java unit tests. It is built upon the
algorithms of Tonella (2004) and Xie (2006b).

2.2.1 DSpot Inputs

The input of DSpot consists in a set of existing test cases, manually written by the develop-
ers. As output, DSpot produces variants of the given test cases. These variants are meant to
be added to the test suite. By putting together existing test cases and their variants, we aim
at strictly improving the overall test suite quality. By construction, the enhanced test suite is
at least as good, or better than the original one w.r.t. the considered criterion.

1https://github.com/STAMP-project/dspot/
2https://github.com/STAMP-project/dspot-experiments/

https://github.com/STAMP-project/dspot/
https://github.com/STAMP-project/dspot-experiments/
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Concretely, DSpot synthesizes suggestions in the form of diffs that are proposed to the
developer: Fig. 1 shows such a test improvement.

DSpot is an automatic test improvement system because it only modifies existing test
cases. As such, all test improvements, by construction, are modifications to existing test
cases. DSpot’s novelty is twofold: 1) first, it combines those algorithms in a way that
scales to modern, large Java software 2) second, it makes no assumption on the tests to be
improved, and works with any arbitrary JUnit test.

2.2.2 DSpot’s Workflow

The main workflow of DSpot is composed of 2 main phases: 1) the transformation of the
test code to create new test inputs inspired by Tonella’s technique, we call this “input space
exploration”; this phase consists in changing new test values and objects and adding new
method calls, the underlying details will be explained in details in Section 2.4.1. 2) the
addition of new assertions per Xie’s technique (Xie 2006b), we call this phase “assertion
improvement”. The behavior of the system under test is considered as the oracle of the asser-
tion, see Section 2.4.2. In DSpot, the combination of both techniques, i.e. the combination
of input space exploration and assertion improvement is called “test amplification”.

DSpot keeps the modifications that add the most value for the developers. To do so,
DSpot uses the mutation score as a proxy to the developers’ assessed value of quality. In
essence, developers value changes in test code if they enable them to catch new bugs, that
is if the improved test better specifies a piece of code. This is also reflected in the mutation
score: if the mutation score increases, it means that a code element, say a statement, is
better specified than before. In other words, DSpot uses the mutation score to steer the test
case improvement, following the original conclusions of DeMillo et al. who observed that
mutants provide hints to generate test data (DeMillo et al. 1978). To sum up, DSpot aims at
producing better tests that have a higher potential to catch bugs.

2.3 Definitions

We first define the core terminology of DSpot in the context of object-oriented Java
programs.

Test suite is a set of test classes.
Test class is a class that contains test methods. A test class is neither deployed nor

executed in production.
Test method or test case is a method that sets up the system under test into a specific

state and checks that the actual state at the end of the method execution is the expected
state.

Unit test is a test method that specifies a targeted behavior of a program. Unit tests are
usually independent of each other and execute a small portion of the code, i.e. a single
unit or a single component of the whole system.

2.3.1 Modern Test Cases

DSpot improves the test cases of modern Java programs, which are typically composed of
two parts: input setup and assertions. The input setup part is responsible for driving the
program into a specific state. For instance, one creates objects and invokes methods on them
to produce a specific state.
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The assertion part is responsible for assessing that the actual behavior of the program
corresponds to the expected behavior, the latter being called the oracle. To do so, the
assertion uses the state of the program, i.e. all the observable values of the program, and
compare it to expected values written by developers. If the actual observed values of the
program state and the oracle are different (or if an exception is thrown), the test fails and
the program is considered as incorrect.

Listing 1 illustrates an archetypal example of such a test case: first, from line 4 to line
6, the test input is created through a sequence of object creations and method calls; then, at
line 8, the tested behavior is actually triggered; the last part of the test case at 11 and 12, the
assertion, specifies and checks the conformance of the observed behavior with the expected
one. We note that this notion of call sequence and complex objects is different from test
inputs consisting only of primitive values.

2.4 Algorithms

2.4.1 Input Space Exploration Algorithm

DSpot aims at exploring the input space so as to set the program in new, never explored
states. To do so, DSpot applies code transformations to the original manually-written test
methods.

I-Amplification: I-Amplification, for Input Amplification, is the process of automatically
creating new test input points from existing test input points.

DSpot uses three kinds of I-Amplification.

1) Amplification of literals: the new input point is obtained by changing a literal used in
the test (numeric, boolean, string). For numeric values, there are five operators: +1, −1,
×2, ÷2, and replacement by an existing literal of the same type, if such literal exists.
For Strings, there are four operators: add a random char, remove a random char, replace
a random char and replace the string by a fully random string of the same size. For
booleans, there is only one operator: negate the value;

2) Amplification of method calls: DSpot manipulates method calls as follows: DSpot
duplicates an existing method call; removes a method call; or adds a new invocation for
an accessible method with an existing variable as target.

Listing 1 An example of an object-oriented test case (inspired from Apache Commons Collections)
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Listing 2 An example of an
I-Amplification: the amplification
added a method call to
removeAll() on tl

3) Test objects: if a new object is needed as a parameter while amplifying method calls,
DSpot creates a new object of the required type using the default constructor if it exists.
In the same way, when a new method call needs primitive value parameters, DSpot
generates a random value.

DSpot combines the different kinds of I-Amplification iteratively: at each iteration all
kinds of I-Amplification are applied, resulting in new tests. From one iteration to another,
DSpot reuses the previously amplified tests, and further applies I-Amplification.

For example, if we apply an I-Amplification on the example presented in Listing 1, it
may generate a new method call on tl. In Listing 2, the added method call is “removeAll”.
Since DSpot changes the state of the program, existing assertions may fail. That is why it
removes also all existing assertions.

2.4.2 Assertion Improvement Algorithm

To improve existing tests, DSpot adds new assertions as follows.

A-Amplification: A-Amplification, for Assertion Amplification, is the process of auto-
matically creating new assertions.

In DSpot, assertions are added on objects from the original test case, as follows: 1) it
instruments the test cases to collect the state of a program after execution (but before the
assertions), i.e. it creates observation points. The state is defined by all values returned
by getter methods. 2) it runs the instrumented test to collect the values, the result of this
execution is a map that gives, for each test case object, the values from all getters. 3) it
generates new assertions in place of the observation points, using the collected values as
oracle. The collected values are used as expected values in the new assertions. In addition,
when a new test input sets the program in a state that throws an exception, DSpot produces
a test asserting that the program throws a specific exception.

For example, let consider A-Amplification on the test case of the example above.
First, in Listing 3 DSpot instruments the test case to collect values, by addding method

calls to the objects involved in the test case.

Listing 3 In A-Amplification, the
second step is to instrument and
run the test to collect runtime
values
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Second, the test with the added observation points is executed, and subsequently, DSpot
generates new assertions based on the collected values. On Listing 4, we can see that DSpot
has generated two new assertions.

2.4.3 Test Improvement Algorithm

Algorithm 1 Main amplification loop of DSpot.

Input: Program

Input: Test Suite

Input: Amplifiers to generate new test data input

Input: number of iterations of DSpot’s main loop

Output: An Amplified Test Suite

1:

2: for in do

3:

4: x improves mutation score

5:

6: for 0 to do

7:

8: for in do

9: .

10: end for

11:

12: x improves mutation score

13:

14: end for

15: end forreturn

Algorithm 1 shows the main loop of DSpot. DSpot takes as input a program P and its
Test Suite T S. DSpot also uses an integer n that defines the number of iterations. DSpot
produces an Amplified Test Suite AT S, i.e. a better version of the input Test Suite T S

according to a specific test criterion such as mutation score. For each test case t in the test
suite T S (Line 1), DSpot first tries to add assertions without generating any new test input
(Line 3), method generateAssertions (t) is explained in Section 2.4.2. Note that adding
missing assertions is the elementary way to improve existing tests.

DSpot initializes a temporary list of tests T MP and applies n times the following steps
(Line 6): 1) it applies each amplifier amp on each tests of T MP to build V (Line 8-9 see

Listing 4 In A-Amplification, the last step is to generate the assertions based on the collected values
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Section 2.4.1 i.e. I-Amplification); 2) it generates assertions on generated tests in V (Line
11 see Section 2.4.2, i.e. A-Amplification); 3) it keeps the tests that improve the mutation
score (Line 12). 4) it assigns V to T MP for the next iteration. This is done because even
if some amplified test methods in V have not been selected, it can contain amplified test
methods that will eventually be better in subsequent iterations.

2.4.4 Flaky Tests Elimination

The input space exploration (see Section 2.4.1) may produce test inputs that results in non-
deterministic executions. This means that, between two independent executions, the state
of the program is not the same. Since DSpot generates assertions where the expected value
is a hard coded value from a specific run (see Section 2.4.2), the generated test case may
become flaky: it passes or fails depending on the execution and whether the expected value
is obtained or not.

To avoid such flaky tests generated by DSpot, we run n times each new test case resulting
from amplification (n = 3 in the default configuration). If a test fails at least once, DSpot
throws it away. We acknowledge that this procedure does not guarantee the absence of
flakiness. However, it gives incremental confidence: if the user wants more confidence, she
can tell DSpot to run the amplified tests more times.

2.4.5 Selecting Focused Test Cases

DSpot sometimes produces many tests, from one initial test. Due to limited time, the devel-
oper needs to focus on the most interesting ones. To select the test methods that are the
most likely to be merged in the code base, we implement the following heuristic. First, the
amplified test methods are sorted according to the ratio of newly killed mutants and the
total number of test modifications. Then, in case of equality, the methods are further sorted
according to the maximum numbers of mutants killed in the same method.

The first criterion means that we value short modifications. The second criterion means
that the amplified test method is focused and tries to specify one specific method inside the
code.

If an amplified test method is merged in the code base, we consider that the correspond-
ing method as specified. In that case, we do not take into account other amplified test
methods that specify the same method.

Finally, in this ordered list, the developer is recommended the amplified tests that are
focused, where focus is defined as where at least 50% of the newly killed mutants are located
in a single method. Our goal is to select amplified tests which intent can be easily grasped
by the developer: the new test specifies the method.

2.5 Implementation

DSpot is implemented in Java. It consists of 8800+ logical lines of code (as measured
by cloc). For the sake of open-science, DSpot is made publicly available on Github.3

DSpot uses Spoon (Pawlak et al. 2015) to analyze and transform the tests of the software
application under amplification.

3https://github.com/STAMP-project/dspot

https://github.com/STAMP-project/dspot
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In this paper, we aim at improving the mutation score of test classes. In DSpot, we use
Pitest4 because: 1) it targets Java programs, 2) it is mature and well-regarded, 3) it has an
active community.

An important feature of Pitest is that if the application code remains unchanged, the gen-
erated mutants are always the same. This property is very interesting for test amplification.
Since DSpot only modifies test code, this feature allows us to compare the mutation score
of the original test case against the mutation score of the amplified version and even com-
pare the absolute number of mutants killed by both test case variants. We will exploit this
feature in our evaluation.

By default, DSpot uses all the mutation operators available in Pitest: conditionals
boundary mutator; increments mutator; invert negatives mutator; math mutator; negate
conditionals mutator; return values mutator; void method calls mutator.

3 Experimental Protocol

Automatic test improvement has been evaluated with respect to evolutionary test inputs
(Tonella 2004) and new assertions (Xie 2006b). However: 1) the two topics have never been
studied in conjunction 2) they have never been studied on large modern Java programs 3)
most importantly, the quality of improved tests has never been assessed by developers.

We set up a novel experimental protocol that addresses those three points. First, the
experiment is based on DSpot, which combines test input exploration and assertion genera-
tion. Second, the experiment is made on 10 active GitHub projects. Third, we have proposed
improved tests to developers under the form of pull-requests.

We answer the following research questions:

RQ1: Are the improved test cases produced by DSpot relevant for developers? Are the
developers ready to permanently accept the improved test cases into the test repository?

RQ2: To what extent are improved test methods considered as focused?
RQ3: To what extent do the improved test classes increase the mutation score of the

original, manually-written, test classes?
RQ4: What is the relative contribution of I-Amplification and A-Amplification to the

effectiveness of automatic test improvement?

3.1 Dataset

We evaluate DSpot by amplifying test classes of large-scale, notable, open-source projects.
We include projects that fulfill the following criteria: 1) the project must be written in Java;
2) the project must have a test suite based on JUnit; 3) the project must be compiled and
tested with Maven; 4) the project must have an active community as defined by the presence
of pull requests on GitHub, see Section 4.1.

We implement those criteria as a query on top of TravisTorrent (Beller et al. 2017).
We randomly selected 10 projects from the result of the query which produces, the dataset
presented in Table 1. This table gives the project name, a short description, the number of
pull-requests on GitHub (#PR), and the considered test classes. For instance, javapoet is

4We use the latest version released: 1.2.0.https://github.com/hcoles/pitest/releases/tag/1.2.0

https://github.com/hcoles/pitest/releases/tag/1.2.0
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a strongly-tested and active project, which implements a Java file generator, it has had 93
pull-requests in 2016.

3.2 Test Case Selection Process for Test-Suite Improvement

For each project, we select 4 test classes to be amplified. Those test classes are chosen as
follows.

First, we select unit-test classes only, because our approach focuses on unit test amplifi-
cation. We use the following heuristic to discriminate unit test cases from others: we keep
a test class if it executes less than an arbitrary threshold of N statements, i.e. if it covers a
small portion of the code. In our experiment, we use N = 1500 based on our initial pilot
experiments.

Among the unit-tests, we select 4 classes as follows. Since we want to analyze the per-
formance of DSpot when it is provided with both good and bad tests, we select two groups
of classes: one group with strong tests, one other group with low quality tests. We use the
mutation score to distinguish between good and bad test classes. Accordingly, our selection
process has five steps: 1) we compute the original mutation score of each class with Pitest
(see Section 2.5; 2) we discard test classes that have 100% mutation score, because they can
already be considered as perfect tests (this is the case for eleven classes, showing that the
considered projects in our dataset are really well-tested projects); 3) we sort the classes by
mutation score (see Section 3.3), in ascending order; 4) we split the set of test classes into
two groups: high mutation score(> 50%) and low mutation score (< 50%); 5) we randomly
select 2 test classes in each group.

This selection results with 40 test classes: 24 in high mutation group score and 16 in low
mutation score group. The imbalance is due to the fact that there are three projects really
well tested for which there are none or a single test class with a low mutation score (projects
protostuff, jsoup, retrofit). Consequently, those three projects are represented with 3 or 4
well-tested classes (and 1 or 0 poorly-tested class). In Table 1, the last column contains the
name of the selected test classes. Each test class name is indexed by a “h” or a “l” which
means respectively that the class have a high mutation score or a low mutation score.

3.3 Metrics

We use the following metrics during our experiment.

Number of Killed Mutants (#Killed.Mutants): is the absolute number of mutants
killed by a test class. We use it to compare the fault detection power of an original test
class and the one of its amplified version.

Mutation Score: is the percentage of killed mutants over the number of executed
mutants. Mathematically, it is computed as follow:

#Killed .Mutants

#Exec.Mutants
.

Increase Killed: is the relative increase of the number of killed mutants by an original
test class T and the number of killed mutants by its amplified version Ta . It is computed
as follows:

#Killed .MutantsTa − #Killed .MutantsT

#Killed .MutantsT

The goal of DSpot is to improve tests such that the number of killed mutants increases.
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3.4 Methodology

Our experimental protocol is designed to study to what extent the test improvements are
valuable for the developer.

– RQ1 To answer to RQ1, we create pull-request on notable open-source projects. We
automatically improve 19 test classes of real world applications and propose one test
improvement to the main developers of each project under consideration. We propose
the improvement as a pull request on GitHub. A PR is composed of a title, a short text
that describes the purpose of changes and a set of code change (aka a patch). The main
developers review, discuss and decide to merge or not each pull request. We base the
answer on the subjective and expert assessment from projects’ developers. If a devel-
oper merges an improvement synthesized by DSpot, it validates the relevance of DSpot.
The more developers accept and merge test improvements produced by DSpot into their
test suite, the more the amplification is considered successful.

– RQ2 To answer RQ2, we compute the number of suggested improvements, to verify
that the developer is not overwhelmed with suggestions. We compute the number of
focused amplified test cases, per the technique described in Section 2.4.5, for each
project in the benchmark. We present and discuss the proportion of focused tests out of
all proposed amplified tests.

– RQ3 To answer RQ3, we see whether the value that is taken as proxy to the developer
value – the mutation score – is appropriately improved. For 40 real-world classes, we
first run the mutation testing tool Pitest (see Section 2.5) on the test class. This gives the
number of killed mutants for this original class. Then, we amplify the test class under
consideration and we compute the new number of killed mutants after amplification.
Finally, we compare and analyze the results.

– RQ4 To answer RQ4, we compute the number of A-Amplification and I-Amplification
amplifications. The former means that the suggested improvement is very short hence
easy to be accepted by the developer while the latter means that more time would be
required to understand the improvement. First, we collect three series of metrics: 1) we
compute number of killed mutants for the original test class; 2) we improve the test class
under consideration using only A-Amplification and compute the new number of killed
mutants after amplification; 3) we improve the test class under consideration using
I-Amplification as well as A-Amplification (the standard complete DSpot workflow)
and compute the number of killed mutants after amplification. Then, we compare the
increase of mutation score obtained by using A-Amplification only and I-Amplification
+ A-Amplification.5

Research questions 3 and 4 focus on the mutation score to assess the value of amplified
test methods. This experimental design choice is guided by our approach to select “focused”
test methods, which are likely to be selected by the developers (described in Section 2.4.5).
Recall that the number of killed mutants by the amplified test is the key focus indicator.
Hence, the more DSpot is able to improve the mutation score, the more likely we are to find
good candidates for the developers.

5Note that the relative contribution of I-Amplification cannot be evaluated alone, because as soon as we
modify the inputs in a test case, it is also necessary to change and improve the oracle (which is the role of
A-Amplification).
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4 Experimental Results

We first discuss how automated test improvements done by DSpot are received by devel-
opers of notable open-source projects (RQ1). Then, RQ2, RQ3 and RQ4 are based on a
large scale quantitative experiments over 40 real-world test classes, whose main results are
reported in Table 5. For the sake of open-science, all experimental results are made publicly
available online:

https://github.com/STAMP-project/dspot-experiments/.

4.1 Answer to RQ1

RQ1: Would developers be ready to permanently accept automatically improved test
cases into the test repository?

4.1.1 Process

In this research question, our goal is to propose a new test to the lead developers of the
open-source projects under consideration. The improved test is proposed through a “pull-
request”, which is a way to reach developers with patches on collaborative development
platforms such as Github.

In practice, short pull requests (i.e. with small test modifications) with clear purpose,
i.e. what for it has been opened, have much more chance of being reviewed, discussed
and eventually merged. So we aim at providing improved tests which are easy to review.
As shown in Section 2.4.1, DSpot generates several amplified test cases, and we cannot
propose them all to the developers. To select the new test case to be proposed as a pull
request, we look for an amplified test that kills mutants located in the same method. From
the developer’s viewpoint, it means that the intention of the test is clear: it specifies the
behavior provided by a given method or block.

The selection of amplified test methods is done as described in Section 2.4.5. For each
selected method, we compute and minimize the diff between the original method and the
amplified one and then we submit the diff as a pull request. A second point in the preparation
of the pull request relates to the length of the amplified test: once a test method has been
selected as a candidate pull request, we make the diff as concise as possible for the review
to be fast and easy.

4.1.2 Overview

In total, we have created 19 pull requests, as shown in Table 2. In this table, the first column
is the name of the project, the second is number of opened pull requests, i.e. the number of
amplified test methods proposed to developers. The third column is the number of amplified
test methods accepted by the developers and permanently integrated in their test suite. The
fourth column is the number of amplified test methods rejected by the developers. The fifth
column is the number of pull requests that are still being discussed, i.e. nor merged nor
closed. (This number might change over time if pull-requests are merged or closed.)

Overall 13 over 19 have been merged. Only 1 has been rejected by developers. There are
5 under discussion. In the following, we perform a manual analysis of one pull-request per
project. Table 3 contains the URLs of pull requests proposed in this experimentation.

We now present one case study per project of our dataset.

https://github.com/STAMP-project/dspot-experiments/
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Table 2 Overall result of the
opened pull request built from
result of DSpot

Project # opened # merged # closed # under
discussion

Javapoet 4 4 0 0

Mybatis-3 2 2 0 0

Traccar 2 1 0 1

Stream-lib 1 1 0 0

Mustache 2 2 0 0

Twilio 2 1 0 1

Jsoup 2 0 1 1

Prostostuff 2 2 0 0

Logback 2 0 0 2

Retrofit 0 0 0 0

Total 19 13 1 5

4.1.3 javapoet

We have applied DSpot to amplify TypeNameTest. DSpot synthesizes a single assertion
that kills 3 more mutants, all of them at line 197 of the equals method. A manual analysis
reveals that this new assertion specifies a contract for the method equals() of objects of
type TypeName: the method must return false when the input is null. This contract was not
tested.

Table 3 List of URLs to the
pull-requests created in this
experiment

Project Pull request urls

Javapoet https://github.com/square/javapoet/pull/669

https://github.com/square/javapoet/pull/668

https://github.com/square/javapoet/pull/667

https://github.com/square/javapoet/pull/544

Mybatis-3 https://github.com/mybatis/mybatis-3/pull/1331

https://github.com/mybatis/mybatis-3/pull/912

Traccar https://github.com/traccar/traccar/pull/2897

https://github.com/traccar/traccar/pull/4012

Stream-lib https://github.com/addthis/stream-lib/pull/128

Mustache https://github.com/spullara/mustache.java/pull/210

https://github.com/spullara/mustache.java/pull/186

Twilio https://github.com/twilio/twilio-java/pull/437

https://github.com/twilio/twilio-java/pull/334

Jsoup https://github.com/jhy/jsoup/pull/1110

https://github.com/jhy/jsoup/pull/840

Protostuff https://github.com/protostuff/protostuff/pull/250

https://github.com/protostuff/protostuff/pull/212

Logback https://github.com/qos-ch/logback/pull/424

https://github.com/qos-ch/logback/pull/365

https://github.com/square/javapoet/pull/669
https://github.com/square/javapoet/pull/668
https://github.com/square/javapoet/pull/667
https://github.com/square/javapoet/pull/544
https://github.com/mybatis/mybatis-3/pull/1331
https://github.com/mybatis/mybatis-3/pull/912
https://github.com/traccar/traccar/pull/2897
https://github.com/traccar/traccar/pull/4012
https://github.com/addthis/stream-lib/pull/128
https://github.com/spullara/mustache.java/pull/210
https://github.com/spullara/mustache.java/pull/186
https://github.com/twilio/twilio-java/pull/437
https://github.com/twilio/twilio-java/pull/334
https://github.com/jhy/jsoup/pull/1110
https://github.com/jhy/jsoup/pull/840
https://github.com/protostuff/protostuff/pull/250
https://github.com/protostuff/protostuff/pull/212
https://github.com/qos-ch/logback/pull/424
https://github.com/qos-ch/logback/pull/365
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Consequently, we have proposed to the Javapoet developers the following one liner pull
request:6

The title of the pull resuest is: “Improve test on TypeName” with the following short
text: “Hello, I open this pull request to specify the line 197 in the equals() method of
com.squareup.javapoet.TypeName. if (o == null) return false;” This test improvement syn-
thesized by DSpot has been merged by of the lead developer of javapoet one hour after its
proposal.

4.1.4 mybatis-3

In project mybatis-3, We have applied DSpot to amplify a test for MetaClass. DSpot
synthesizes a single assertion that kills 8 more mutants. All new mutants killed are located
between lines 174 and 179, i.e. the then branch of an if-statement in method
buildProperty(String property, StringBuilder sb) of MetaClass.
This method builds a String that represents the property given as input. The then branch
is responsible to build the String in case the property has a child, e.g. the input is
“richType.richProperty”. This behavior is not specified at all in the original test class.

We have proposed to the developers the following pull request entitled “Improve test on
MetaClass” with the following short text: “Hello, I open this pull request to specify the lines
174-179 in the buildProperty(String, StringBuilder) method of MetaClass.”:7

The developer accepted the test improvement and merged the pull request the same day
without a single objection.

4.1.5 traccar

We have applied DSpot to amplify ObdDecoderTest. It identifies a single assertion
that kills 14 more mutants. All newly killed mutants are located between lines 60 to 80,
i.e. in the method decodesCodes() of ObdDecoder, which is responsible to decode
a String. In this case, the pull request consists of a new test method because the new

6https://github.com/square/javapoet/pull/544
7https://github.com/mybatis/mybatis-3/pull/912/files

https://github.com/square/javapoet/pull/544
https://github.com/mybatis/mybatis-3/pull/912/files
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assertions do not fit with the intent of existing tests. This new test method is proposed into
ObdDecoderTest, which is the class under amplification. The PR was entitled “Improve
test cases on ObdDecoder” with the following description: “Hello, I open this pull request
to specify the method decodeCodes of the ObdDecoder”.8

The developer of traccar thanked us for the proposed changes and merged it the same
day.

4.1.6 stream-lib

We have applied DSpot to amplify TestMurmurHash. It identifies a new test input that
kills 15 more mutants. All newly killed mutants are located in method hash64() of
MurmurHash from lines 158 to 216. This method computes a hash for a given array of
byte. The PR was entitled “Test: Specify hash64” with the following description: “The pro-
posed change specifies what the good hash code must be. With the current test, any change
in ”hash” would still make the test pass, incl. the changes that would result in an inefficient
hash.”:9

Two days later, one developer mentioned the fact that the test is verifying the overload
of the method and is not specifying the method hash itself. He closed the PR because it was
not relevant to put changes there. He suggested to open an new pull request with a new test
method instead of changing the existing test method. We proposed, 6 days later, a second
pull request entitled “add test for hash() and hash64() against hard coded values” with no
description, since we estimated that the developer was aware of our intention:10

8https://github.com/tananaev/traccar/pull/2897
9https://github.com/addthis/stream-lib/pull/127/files
10https://github.com/addthis/stream-lib/pull/128/files

https://github.com/tananaev/traccar/pull/2897
https://github.com/addthis/stream-lib/pull/127/files
https://github.com/addthis/stream-lib/pull/128/files
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The pull request has been merged by the same developer 20 days later.

4.1.7 mustache.java

We have applied DSpot to amplify AbstractClassTest. It identifies a try/catch/fail
block that kills 2 more mutants. This is an interesting new case, compared to the ones
previously discussed, because it is about the specification of exceptions, i.e. of behavior
under erroneous inputs. All newly killed mutants are located in method compile() on
line 194. The test specifies that if a variable is improperly closed, the program must throw
a MustacheException. In the Mustache template language, an improperly closed vari-
able occurs when an opening brace “{” does not have its matching closing brace such as in
the input of the proposed changes. We propose the pull request to the developers, entitled
“Add Test: improperly closed variable” with the following description: “Hello, I proposed
this change to improve the test on MustacheParser. When a variable is improperly closed, a
MustacheException is thrown.”11

11https://github.com/spullara/mustache.java/pull/186/files

https://github.com/spullara/mustache.java/pull/186/files
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12 days later, a developer accepted the change, but noted that the test should be in
another class. He closed the pull request and added the changes himself into the desired
class.12

4.1.8 twilio-java

We have applied DSpot to amplify RequestTest. It identifies two new assertions that
kill 4 more mutants. All mutants were created between lines 260 and 265 in the method
equals() of Request. The change specifies that an object Request is not equal
to null nor an object of different type, i.e. Object here. The pull request was entitled
“add test equals() on request”, accompanied with the short description “Hi, I propose this
change to specify the equals() method of com.twilio.http.Request, against object and null
value”:13

A developer merged the change 4 days later.

4.1.9 jsoup

We have applied DSpot to amplify AttributeTest. It identifies one assertion that
kills 13 more mutants. All mutants are in the method hashcode of Attribute. The
pull request was entitled “add test case for hashcode in attribute” with the following
short description “Hello, I propose this change to specify the hashCode of the object
org.jsoup.nodes.Attribute.”:14

12the diff is same:https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae
4d8fb2d
13https://github.com/twilio/twilio-java/pull/334/files
14https://github.com/jhy/jsoup/pull/840

https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/spullara/mustache.java/commit/9efa19d595f893527ff218683e70db2ae4d8fb2d
https://github.com/twilio/twilio-java/pull/334/files
https://github.com/jhy/jsoup/pull/840
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One developer highlighted the point that the hashCode method is an implementation
detail, and it is not a relevant element of the API. Consequently, he did not accept our test
improvement.

At this point, we have made two pull requests targeting hashCode methods. One
accepted and one rejected. hashCode methods could require a different testing approach
to validate the number of potential collisions in a collection of objects rather than check-
ing or comparing the values of a few objects created for one explicit test case. The different
responses we obtained reflect the fact that developer teams and policies ultimately decide
how to test the hash code protocol and the outcome could be different from different
projects.

4.1.10 protostuff

We have applied DSpot to amplify TailDelimiterTest. It identifies a single asser-
tion that kills 3 more mutants. All new mutants killed are in the method writeTo of
ProtostuffIOUtil on lines 285 and 286, which is responsible to write a buffer into a
given scheme. We proposed a pull request entitled “assert the returned value of writeList”,
with the following short description “Hi, I propose the following changes to specify the line
285-286 of io.protostuff.ProtostuffIOUtil.”15 shown earlier in Fig. 1

A developer accepted the proposed changes the same day.

4.1.11 logback

We have applied DSpot to amplify FileNamePattern. It identifies a single assertion
that kills 5 more mutant. Newly killed mutants were located at lines 94, 96 and 97 of the

15https://github.com/protostuff/protostuff/pull/212/files

https://github.com/protostuff/protostuff/pull/212/files
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equals method of the FileNamePattern class. The proposed pull request was entitle
“test: add test on equals of FileNamePattern against null value” with the following short
description: “Hello, I propose this change to specify the equals() method ofFileNamePattern
against null value”:16

Even if the test asserts the contract that the FileNamePattern is not equals to null,
and kills 5 more mutants, the lead developer does not get the point to test this behavior. The
pull request has not been accepted.

4.1.12 retrofit

We did not manage to create a pull request based on the amplification of the test suite of
retrofit. According to the result, the newly killed mutants are spread over all the code, and
thus the amplified methods did not identify a missing contract specification. This could be
explained by two facts: 1) the original test suite of retrofit is strong: there is no test class
with low mutation score and a lot of them are very high mutation score, i.e. 90% and more;
2) the original test suite of retrofit uses complex test mechanism such as mock and fluent
assertions of the form the assertThat().isSomething(). For the former point, it
means that DSpot has been able to improve, even a bit, the mutation score of a very strong
test suite, but not in targeted way that makes sense in a pull request. For the latter point,
this puts in evidence the technical challenge of amplifying fluent assertions and mocking
mechanisms.

4.1.13 Contributions of A-Amplification and I-Amplification to the Pull-Requests

In Table 4, we summarize the contribution of A-Amplification and I-Amplification, where a
contribution means an source code modification added during the main amplification loop.
In 8 cases over the 9 pull-requests, both A-Amplification and I-Amplificationwere necessary.
Only the pull request on jsoup was found using only A-Amplification. This means that for
all the other pull-requests, the new inputs were required to be able: 1) to kill new mutants
and 2) to obtain amplified test methods that have values for the developers.

Note that this does not contradict with the fact that the pull-requests are one-liners. Most
one-liner pull-requests contain both a new assertion and a new input. Consider the following

16https://github.com/qos-ch/logback/pull/365/files

https://github.com/qos-ch/logback/pull/365/files
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Table 4 Contributions of A-
Amplification and I-Amplification
on the amplified test method
used to create a pull request

Project #A-Amplification #I-Amplification

javapoet 2 2

mybatis-3 3 3

traccar 10 7

stream-lib 2 2

mustache 4 3

twilio 3 4

jsoup 34 0

protostuff 1 1

logback 2 2

Javapoet’s one liner assertFalse(x.equals(null)) (javapoet). In this example,
although there is a single line starting with “assert”, there is indeed a new input, the value
“null”.

In the area of automatic test improvement, this experiment is the first to put real devel-
opers in the loop, by asking them about the quality of automatically improved test cases.
To our knowledge, this is the first public report of automatically improved tests accepted by
unbiased developers and merged in the master branch of open-source repositories.

4.2 Answer to RQ2

RQ2 To what extent are improved test methods considered as focused?

Table 5 presents the results for RQ2, RQ3 and RQ4. It is structured as follows. The first
column is a numeric identifier that eases reference from the text. The second column is the
name of test class to be amplified. The third column is the number of test methods in the
original test class. The fourth column is the mutation score of the original test class. The
fifth is the number of test methods generated by DSpot. The sixth is the number of ampli-
fied test methods that met the criteria explained in Section 2.4.5. The seventh, eight and
ninth are respectively the number of killed mutants of the original test class, the number of
killed mutants of its amplified version and the absolute increase obtained with amplification,
which is represented with a pictogram indicating the presence of improvement. The tenth
and eleventh columns concern the number of killed mutants when only A-amplification is
used. The twelfth is the time consumed by DSpot to amplify the considered test class. The
upper part of the table is dedicated to test classes that have a high mutation score and the
lower for the test classes that have low mutation score.
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For RQ2, the considered results are in the sixth column of Table 5. Our selection tech-
nique produces candidates that are focused in 25/26 test classes for which there are improved
tests. For instance, considering test class TypeNameTest (#8), there are 19 improved test
methods, and among them, 8 are focused per our definition and are worth considering to be
integrated in the codebase. On the contrary, for test class ConcurrencyTest (#29), the tech-
nique cannot find any improved test method that matches the focus criteria presented in
Section 2.4.5. In this case, that improved test methods kill additional mutants in 27 differ-
ent locations. Consequently, the intent of the new amplified tests can hardly be considered
as clear.

Interestingly, for 4 test classes, even if there are more than one improved test methods,
the selection technique only returns one focus candidate (#23, #24, #25, #40). In those
cases, there are two possible different reasons: 1) there are several focused improved tests,
yet they all specify the same application method (this is the case for #40 2) there is only one
improved test method that is focused (this is the case for #23, #24, and #25)

To conclude, according to this benchmark, DSpot proposes at least one and focused
improved test in all but one cases. From the developer viewpoint, DSpot is not overwhelm-
ing it proposes a small set of suggested test changes, which are ordered, so that even with a
small time budget to improve the tests, the developer is pointed to the most interesting case.

4.3 Answer to RQ3

RQ3: To what extent do improved test classed kill more mutants than developer-
written test classes?

In 26 out of 40 cases, DSpot is able to amplify existing test cases and improves the
mutation score (MS) of the original test class. For example, let us consider the first row,
corresponding to TypeNameTest. This test class originally includes 12 test methods that
kill 599 mutants. The improved, amplified version of this test class kills 715 mutants, i.e.
116 new mutants are killed. This corresponds to an increase of 19% in the number of killed
mutants.

We first discuss the amplification of the test classes that can be considered as being
already good tests since they originally have a high mutation score: those good test classes
are the 24 tests in Table 5. There is a positive increase of killed mutants for 17 cases. This
means that even when human developers write good test cases, DSpot is able to improve
the quality of these test cases by increasing the number of mutants killed. In addition, in 15
cases, when the amplified tests kill more mutants, this goes along with an increase of the
number of expressions covered with respect to the original test class.

For those 24 well-test classes, the increase in killed mutants varies from 0,3%, up to
53%. A remarkable aspect of these results is that DSpot is able to improve test classes that
are initially extremely strong, with an original mutation score of 92% (ID:8) or even 99%
(ID:20 and ID:21). The improvements in these cases clearly come from the double capacity
of DSpot at exploring more behaviors than the original test classes and at synthesizing new
assertions.
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Still looking to the upper part of Table 5 (the well-tested classes), we now focus on the
relative increase in killed mutants (column “Increase killed”). The two extreme cases are
CallTest (ID:24) with a small increase of 0.3% and CodeInputTest (ID:18) with an
increase of 53%. CallTest (ID:24) initially includes 35 test methods that kill 69% of 920
covered mutants. Here, DSpot runs for 53 minutes and succeeds in generating only 3 new
test cases that kill 2 more mutants than the original test class, and the increase in muta-
tion score is only minimal. The reason is that input amplification does not trigger any new
behavior and assertion amplification fails to observe new parts of the program state. Mean-
while, DSpot succeeds in increasing the number of mutants killed by CodeInputTest
(ID:18) by 53%. Considering that the original test class is very strong, with an initial muta-
tion score of 60%, this is a very good achievement for test amplification. In this case, the
I-Amplification applied easily finds new behaviors based on the original test code. It is also
important to notice that the amplification and the improvement of the test class goes very
fast here (only 52 seconds).

One can notice 4 cases (IDs:3, 13, 15, 24) where the number of new test cases is greater
than the number of newly killed mutants. This happens because DSpot amplifies test cases
with different operators in parallel. While we keep only test cases that kill new mutants, it
happens that the same mutant is newly killed by two different amplified tests generated in
parallel threads. In this case, DSpot keeps both test cases.

There are 7 cases with high mutation score for which DSpot does not improve the number
of killed mutants. In 5 of these cases, the original mutation score is greater than 87% (IDs:
2, 7, 12, 21, 22), and DSpot does not manage to synthesize improved inputs to cover new
mutants and eventually kill them. In some cases DSpot cannot improve the test class because
they rely on an external resource (a jar file), or use utility methods that are not considered
as test methods by DSpot and hence are not modified by our tool.

Now we consider the tests in the lower part of Table 5. Those tests are weaker because
they have a lower mutation score. When amplifying weak test classes, DSpot improves the
number of killed mutants in 9 out of 16 cases. On a per test class basis, this does not differ
much from the well tested classes. However, there is a major difference when one considers
the increase itself: the increases in number of killed mutants range from 24% to 428%.
Also, we observe a very strong distinction between test classes that are greatly improved
and test classes that are not improved at all (9 test classes are much improved, 7 test classes
cannot be improved at all, the increase is 0%). In the former case, we find test classes
that provide a good seed for amplification. In the latter case, we have test classes that are
designed in a way that prevents amplification because they use external processes, or depend
on administration permission, shell commands and external data sources; or extensively use
mocks or factories; or simply very small test cases that do not provide a good potential to
DSpot to perform effective amplification.
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The most notable point of this experiment is that we have considered tests that are already
really strong (Table 5), with mutation score in average of 78%, with the surprising case of a
test class with 99% mutation score that DSpot is able to improve.

4.4 Answer to RQ4

What is the contribution of I-Amplification and A-Amplification to the effectiveness of
automated test improvement?

The relevant results are reported in the tenth and eleventh column of Table 5. They give
the number of killed mutants and the relative increase of the number of killed mutants when
only using A-Amplification.

For instance, for TypeNameTest (first row, id #1), using only A-Amplification
kills 599 mutants, which is exactly the same number of the original test class. In this
case, both the absolute and relative increase are obviously zero. On the contrary, for
WrongNamespacesTest (id #27), using only A-Amplification is very effective, it
enables DSpot to kill 249 mutants, which, compared to the 78 originally killed mutants,
represents an improvement of 219%.

Now, if we aggregate over all test classes, our results indicate that A-Amplification only
is able to increase the number of mutants killed in 7 / 40 test classes. Increments range from
0.31% to 13%. Recall that when DSpot runs both I-Amplification and A-Amplification, it
increases the number of mutants killed in 26 / 40 test classes, which shows that it is indeed
the combination of A-Amplification and I-Amplification which is effective.

We note that A-Amplification performs as well as I-Amplification + A-Amplification in
only 2/40 cases (ID:27 and ID:28). In this case, all the improvement comes from the addition
of new assertions, and this improvement is dramatic (relative increase of 219% and 235%).

The limited impact of A-Amplification alone has several causes. First, many assertions
in the original test cases are already good and precisely specify the expected behavior for
the test case. Second, it might be due to the limited observability of the program under
test (i.e., there is a limited number of points where assertions over the program state can
be expressed). Third, it happens when one test case covers global properties across many
methods: test #28 WrongMapperTest specifies global properties, but is not well suited to
observe fine grained behavior with additional assertions. This latter case is common among
the weak test classes of the lower part of Table 5.

To the best of our knowledge, this experiment is the first to evaluate the relative con-
tribution of I-Amplification and A-Amplification to the effectiveness of automatic test
improvement.
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5 Threats to Validity

RQ1 The major threat to RQ1 is that there is a potential bias in the acceptance of the
proposed pull requests. For instance, if we propose pull requests to colleagues, they are
more likely to merge them. However, this is not the case here. In this evaluation, the pull
requests are submitted by the first author, who is unknown to all considered projects.
The developers who study the DSpot pull requests are independent from our group and
social network. Since the first author is unknown for the pull request reviewer, this is not
a specific bias towards acceptance or rejection of the pull request.

RQ2 The technique used to select focused candidates is based on the proportion of mutant
killed and the absolute number of modification done by the amplification. However, it
may happen that some improvements that are not focused per our definition would still
be considered as valuable by developers. Having such false negative is a potential threat
to validity.

RQ3 A threat to RQ3 relates to external validity: if the considered projects and tests are
written by amateurs, our findings would not hold for serious software projects. How-
ever, we only consider real-world applications, maintained by professional and esteemed
open-source developers. This means we tried to automatically improve tests that are
arguably among the best of the open-source world, aiming at as strong construct validity
as possible.

RQ4. The main threat to RQ4 relates to internal validity: since our results are of com-
putational nature, a bug in our implementation or experimental scripts may threaten our
findings. We have put all our code publicly-available for other researchers to reproduce
our experiment and spot the bugs, if any.

Oracle. DSpot generates new assertions based on the current behavior of the program. If
the program contains a bug, the resulting amplified test methods would enforce this bug.
This is an inherent threat, inherited from Xie (2006a), which is unavoidable when no
additional oracle is available, but only the current version of the program. To that extent,
the best usage of DSpot is to improve the test suite of a supposedly almost correct version
of the program.

6 RelatedWork

This work on test amplification contributes to the field of genetic improvement (GI) (Petke
et al. 2017). The key novelty is to consider a test suite as the object to be improved, while
previous GI works improve the application code. (Yet, they use the test suite as a fitness
function while assessing the degree of improvement.) The work of Arcuri and Yao (Arcuri
and Yao 2008) and Wilkerson and Tauritz (2010) are good examples of such work that
use the test suite as fitness, while improving the program for automatic bug fixing. Both
work follow a similar approach: evolve the input program into new versions that pass the
regression test suite and that also pass the bug revealing test case (that fails on the original
program). In this paper, we do not evolve the application code but the test code.

Evosuite is a state of the art tool to generate test cases for Java program (Fraser and
Arcuri 2013). Evosuite and DSpot have different goals. Evosuite generates new tests, while
DSpot improves existing developer-written tests. The interaction between developers and
synthesized tests is key here: in 2016, an empirical study demonstrated that developers who
are asked to add oracles in test cases generated by Evosuite, produce test suites that are
not better than manually written test suites at detecting bugs (Fraser et al. 2015). On the



2630 Empirical Software Engineering (2019) 24:2603–2635

contrary, DSpot is designed to improve manually written test suites to detect more bugs,
and the relevance study of RQ1 demonstrates that the outcome of DSpot is considered as
valuable by developers in order to improve existing test suites.

Our work is related to previous work that aim at automatically generating test cases to
improve the mutation score of a test suite. Liu et al. (2006) aim at generating small test cases,
by targeting a path that covers multiple mutants to create test inputs. They evaluate their
approach on five small projects. Fraser and Arcuri (2014) propose a search-based approach
to generate test suites that maximize the mutation score. However their work is different
from ours since they generate new test cases from scratch, while DSpot always starts from
developper-written tests. Baudry et al. (2005) improve the mutation score of test suites using
a bacteriological algorithm. They run experiments on a small dataset and confirm that their
approach is able to increase the mutation score of tests. However, the scope of the study is
limited to small programs, and they do not consider the synthesis of assertions.

Other works aim at increasing fault detection capacities of test suites. Zhang et al. (2016),
propose the Isomorphic Regression Testing system and its implementation in ISON. It con-
siders two versions of a program P and P’(for instance P’ is the updated version of P, on
which we want to detect any regression). First, ISON identifies isomorphims, that is to say,
code fragments that have the same behavior. Then, they run the test suite on P and P’ to iden-
tify which of the branches are uncovered in the isomorphic part, and they collect the output.
In order to cover all branches, they compute a branch condition to execute the uncovered
code. They compare ISON to Evosuite, and conclude that Evosuite achieves a better branch
coverage, while ISON is able to detect faults that Evosuite does not.

Harder et al. (2003) start from an existing test suite. They evaluate the quality of this
initial test suite with respect to operational abstractions, i.e., an abstract description of the
behavior covered by the test suite. Their work is about selecting new valuable tests, while
ours is about synthesizing new valuable tests.

Then, they generate novel test cases and keep only the ones that change the operational
abstraction. The new test cases are generated by mining invariants using Daikon. They
evaluate their approach on 8 C programs, and show that it generates test cases with good
fault-detection capabilities.

Milani Fard et al. (2014) propose an approach which combines the advantages of man-
ually written tests and automatic test generation. They exploit the knowledge of existing
tests and then combine it with the power of automated crawling. It has been shown that
the approach can effectively improve the fault detection rate of the original test suite. Test
amplification, as considered in this work, is different, as it aims at enhancing the fault
detection power of manually written test suites.

Yoo and Harman (2012) propose Test Data Regeneration(TDR), which is a kind of test
amplification. They use hill climbing on existing test data (set of input) that meets a test
objective (e.g. cover all branch of a function). The algorithm is based on neighborhood and
a fitness functions as the classical hill climbing algorithm. The goal is to create new test
data inputs, that have the same behavior as the original one (e.g. cover same branches).
The key novelties of our work with respect to the work of Yoo and Harman (2012) are as
follow: they mutate only literals in existing test cases, while DSpot’s I-Amplification also
amplifies method calls and can synthesize new objects when needed, A-Amplificationmakes
the synthesis of assertions an integral part of our test suite improvement process and we
evaluate the relevance of the synthesized test cases by proposing them to the developers.

Xie (2006a) proposes a technique to add assertions into existing test methods. His
approach is similar to what we propose with A-Amplification. However, this work does
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not consider the synthesis of new test inputs (I-Amplification) and hence cannot cover new
execution paths. This is the novelty of DSpot and our experiments showed that this is an
essential mechanism to improve the test suite.

We now discuss a group of papers together. Pezzè et al. (2013) synthesize integration
test cases from unit test cases. The idea is to combine unit test cases, which test simple
functionalities on specific objects, to create new integration test cases supported by the fact
that unit test cases are early developed, and integration test cases require more effort to do
so. Rößler et al. (2012) aim to isolate failure causes. They propose BugEx, a system that
starts from a single failing test as input and generates test cases. It extracts the differences
in path execution between failing and passing tests. They evaluate BugEx on 7 failures and
show that it is able to lead to the failure root causes in 6 cases. Yu et al. (2013) augment
test suites to enhance fault localization. They use test input transformations to generate new
test cases in existing test suites. They transform iteratively some existing failing tests to
derive new test cases potentially useful to localize the specific encountered fault, similarly
at I-Amplification. Their tool is designed to target GUI applications. To reproduce a crash
occurred in production, Xuan et al. (2015) propose to transform existing test cases. The
approach first selects relevant test cases based on the stack trace in the crash, followed
by the elimination of assertions in selected test cases, and finally uses a set of predefined
transformations to produce new test cases that can help to reproduce the crash. None of
those works have evaluated whether the technique scales on object-oriented applications of
the size considered here, and whether the synthesized tests are considered valuable by senior
developers.

It can be noted that several test generation techniques start from a seed and evolve it to
produce a good test suite. This is the case for techniques such as concolic test generation
(Godefroid et al. 2005), search-based test generation (Fraser and Arcuri 2012), or random
test generation (Groce et al. 2007). The main difference between all these works and DSpot
lies in the nature of the seed: previous work use input values in the form of numerical or
String values, vectors or files, and do not consider any form of oracle. On the contrary, we
consider as a seed a real test case. It means the seed is a complete program, which creates
objects, manipulates the state of these objects, calls methods on these objects and asserts
properties on their behavior. This is the contribution of DSpot: using real and complex
object-oriented tests as seed.

Almasi et al. (2017) investigate the efficiency and effectiveness of automated test gen-
eration on a production ready application named LifeCalc. They use 25 real faults from
LifeCalc to evaluate two state-of-the-art tools, Evosuite and Randoop, by asking feedback
from the developers about the generated test methods. The result are as follows: overall the
tools found 19 over 25 real faults; The developers state that the assertions and the readabil-
ity of generated test methods must be improved. The developers also suggest that such tools
should be implemented in continuous integration. The reason of the 7 faults that remain
undetected is that they either require complex test data input or specific assertions. Our
experiment is larger in scope, we evaluate DSpot on 10 notable open-source software from
GitHub, by proposing amplified test methods in pull requests.

Allamanis et al. (2014) devised a technique to rename elements in code and evaluate their
approach through five pull requests where four of them have been accepted. Their work and
ours both rely on independent evaluation through pull-requests. One important difference is
that, in the description of the pull request, they say that the improvements are generated by
a tool, while in our case, we did not say anything about the research project underlying our
pull requests.
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7 Conclusion

We have presented DSpot, a novel approach to automatically improve existing developer-
written test classes. We have shown that DSpot is able to strengthen real unit test classes in
Java from 10 real-world projects. Our experiment with real developers indicates that they
are ready to merge test cases improved by DSpot into their test suite. The road ahead for
automatic synthesis of test case improvements is exciting.

First, there is a need to study how to generate meaningful natural language explana-
tions of the suggested test improvements: generation of well named tests, generation of text
accompanying the pull request, we dream of using natural-language deep-learning for this
task.

Second, we aim at automating even more the process of integrating the amplification
result in a ready-to-use pull request. This requires two major steps: first, one needs to iden-
tify which parts of the amplified test methods are “valuable”. Second, we need to choose
between modifying an existing test method or create a new one that is derived from an exist-
ing one, even if the new method is by construction an extension of an existing one. Such a
decision procedure must be made based on the intention of the existing test methods and the
potentially new intention of the amplified test. If we find an existing test method that car-
ries the same intention, i.e. it tests the same portion of code as the amplification, one would
preferably add changes there rather than creating a new test methods. This challenging
vision of mining and comparing test purposes is the main area of our future work.

Third, and finally, we envision to integrate DSpot in a continuous integration service
(CI) where test classes would be amplified on-the-fly for each commit. This would greatly
improve the direct industrial applicability of this software engineering research.
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