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Abstract
The competitive market of mobile applications (apps) has driven app developers to pay more
attention to addressing the issues of mobile apps. Prior studies have shown that address-
ing the issues that are reported in user-reviews shares a statistically significant relationship
with star-ratings. However, despite the prevalence and importance of user-reviews and issue
reports prioritization, no prior research has analyzed the relationship between issue reports
prioritization and star-ratings. In this paper, we integrate user-reviews into the process of
issue reports prioritization. We propose an approach to map issue reports that are recorded
in issue tracking systems to user-reviews. Through an empirical study of 326 open-source
Android apps, our approach achieves a precision of 79% in matching user-reviews with
issue reports. Moreover, we observe that prioritizing the issue reports that are related to user-
reviews shares a significant positive relationship with star-ratings. Furthermore, we use the
top apps, in terms of star-ratings, to train a model for prioritizing issue reports. It is a good
practice to learn from the top apps as there is no well-established approach for prioritizing
issue reports. The results show that mobile apps with a similar prioritization approach to
our trained model achieve higher star-ratings.
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1 Introduction

The revenue of Android applications (apps) has increased enormously in the past few years
(Statista 2017b; Stats 2016). App markets, such as Google Play Store (Google 2017; Statista
2017a), are very competitive for app developers. Google Play Store provides a scoring sys-
tem where users can rate apps from one star (the lowest star-rating) to five stars (the highest
star-rating) and post their comments (i.e., user-reviews). Star-ratings can affect the number
of downloads and the income of app development companies (Bavota et al. 2015; Kim et al.
2011). Associated user-reviews with star-ratings contain valuable information, such as bug
reports and feature requests (Iacob and Harrison 2013; Panichella et al. 2015). Such infor-
mation can be useful for app developers to manage issues and demands of users to achieve
higher star-ratings.

Traditionally, issues are managed and prioritized through issue tracking systems. Many
mobile apps use GitHub (2018a) as an issue tracking system to manage the issues that are
reported by developers. It has been found that addressing the issues that are reported in user-
reviews can increase the star-ratings (Palomba et al. 2015). However, there is no precise
link between the issue reports in issue tracking systems and the user-reviews on Google
Play Store. We propose a solution to establish a connection between issue reports and user-
reviews. The benefits of having a connection between user-reviews and issue reports are
twofold. First, developers can focus on the issue reports that can increase the star-ratings
of their apps. However, it is still hard for app developers to decide which user-related issue
report should be addressed first. For instance, an issue that is reported by an expert developer
may receive high priority (Xuan et al. 2012), as well as an issue appearing in many user-
reviews. A resolution of various aspects is beneficial for prioritizing issue reports. Second,
app developers would identify the issues that have already been reported in the issue tracking
system. Hence, developers can avoid issue report duplications (Cavalcanti et al. 2013) if
they plan to add the issues that are reported in the user-reviews to the issue tracking system.

Prior studies, such as Villarroel et al. (2016) and Chen et al. (2014), only focus on user-
reviews, but neglect the information provided in issue tracking systems. The issue reports
in issue tracking systems are the outcome of developers’ efforts in identifying potential
issues and should not be neglected. Chen et al. (2014) propose an approach to extract infor-
mative user-reviews using textual features of user-reviews, and rank them. Villarroel et al.
(2016) enhance release planning by classifying user-reviews into meaningful groups of bug
reports and feature requests. Our work aims to prioritize issue reports by leveraging both
user-reviews and issue reports. Therefore, we can prioritize issue reports by integrating
both the users’ feedback reflected in user-reviews and developers’ experience in handling
issues.

In this paper, we collect all the Android apps (i.e., 1,310 apps) that are available on
FDroid (2017). F-Droid is the largest repository for open-source Android apps. We study
326 of 1,310 apps that have a non-trivial amount of user-reviews and issue reports (Khalid
et al. 2016). We address the following research questions:

RQ1) How precisely can user-reviews be mapped to issue reports?

A user-review is an unstructured piece of text (Palomba et al. 2015) that is not longer than
two lines on average. We cluster user-reviews to enhance the precision of matching user-
reviews with issue reports. Each cluster contains the user-reviews that are related to the
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same issue. To map each cluster to its related issue report, we compute the textual similar-
ity between issue reports and clusters of user-reviews. The results show that our approach
achieves a precision of 79%.

RQ2) Does prioritizing user-related issue reports have a relationship with
star-ratings?

To explain the prioritization order of issue reports, first, we compute 59 issue report metrics
and 31 user-review metrics. Then, we use the metrics to model the issue reports prioritiza-
tion of each app. Our models fits well (i.e., adjusted R2 ≥ 0.5 (Nelder and Baker 1972))
for 37% of the apps but fails to fit for 63% of the apps. We observe that the apps which
share a significant relationship between their star-ratings and our metrics tend to receive
higher star-ratings. The results imply that prioritizing the issue reports with respect to our
suggested metrics is beneficial for achieving higher star-ratings.

RQ3) How can app developers prioritize user-related issue reports to achieve
higher star-ratings?

It is beneficial to learn from the top-rated apps for prioritizing issue reports. We use the
top apps to train a prediction model using the random forest technique (Liaw and Wiener
2002). We apply the trained model to the remaining apps. For each app, we compare the
similarity score between the predicted prioritization orders and the actual prioritization
orders of issue reports. We obtain two groups of apps: (i) the apps with higher similar-
ity scores of prioritization, and (ii) the apps with lower similarity scores. We observe that
the first group of apps receive higher star-ratings than the second group. Hence, our sug-
gested method can be a helpful solution for app developers in order to prioritize the issue
reports.

Paper organization Section 2 explains our experiment setup. Section 3 describes the
details of the research questions and findings. Section 4 discusses the potential threats to the
validity of our work. Section 5 introduces the related work. Finally, we conclude the paper
in Section 6.

2 Experiment Setup

An overview of the experiment setup is depicted in Fig. 1. As shown in Fig. 1, our experi-
ment setup mainly consists of the following steps: (i) preprocessing user-reviews and issue
reports, (ii) clustering user-reviews, (iii) computing metrics of both user-reviews and issue
reports, and (iv) measuring prioritization orders of issue reports.

We apply the vector space model (Salton et al. 1975) adopting the term frequency-inverse
document frequency (TF-IDF) (Salton and Mcgill 1983) to measure the cosine similarity
between issue reports and each cluster of user-reviews. We use metrics of clusters of user-
reviews and issue reports to model issue reports prioritization. Finally, we build a prediction
model based on top apps to predict issue reports prioritization of mobile apps. We observe
that the apps that follow similar prioritization orders as our predicted ones, receive better
star-ratings.
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Fig. 1 Overview of the experiment setup

2.1 Data Sources

We retrieved a set of open-source apps associated with their GitHub repositories from F-
Droid app market (FDroid 2017). F-Droid is an app store for open-source Android apps that
provides access to both source codes and binary files (FDroid 2017).

2.1.1 Apps

1,310 open-source Android apps were hosted on F-Droid app market (FDroid 2017) as of
September 1, 2016. Not all the 1,310 apps were associated with GitHub repositories. We
obtained 1,120 apps (i.e., 85% of the total apps) that were associated with their GitHub
repositories.

We build a distinct model for each individual app (see Section 3.2). The number of Events
Per Variable (EPV) is a metric that calculates the ratio of data points to the number of vari-
ables (Tantithamthavorn et al. 2017). To avoid the risk of over-fitting and having unstable
results, having an EPV ≥ 10 is recommended (Tantithamthavorn et al. 2017). With less than
10 user-reviews or less than 10 issue reports, achieving an EPV ≥ 10 is not possible. There-
fore, we excluded the apps that have received less than 10 user-reviews or issue reports from
our study. We identified 326 Android apps that meet the aforementioned criteria.

2.1.2 User-Reviews

A user-review that is posted by an individual user contains a text, star-rating, and date on
which the review is posted. Figure 2 shows an overview of the process of retrieving user-
reviews. We gradually retrieved the user-reviews by building a crawler on top of Selenium
automation tool (Selenium 2017). In the following paragraphs, we describe Selenium tool,
the crawler, and gradual retrieving method.

Selenium Selenium provides a set of tools and APIs to automate web browsing. The chief
purpose of Selenium is web testing. However, it can be used for other purposes, such as
web crawling. The primary parts of Selenium are (i) an IDE, (ii) a client API, and (iii) a
web driver. The Selenium IDE is implemented as a Firefox add-on that allows recording,
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Fig. 2 Overview of the process of retrieving user-reviews

editing, and debugging web tests (Bruns et al. 2009). The client API lets developer commu-
nicate with Selenium. Finally, the web driver sends the Selenium commands to the browser
(Selenium 2017).

Crawler To retrieve the user-reviews, we built a crawler using Selenium (2017). The crawler
extracts all of the app information, such as app names, and the associated user-reviews.

Gradual retrieving Google Play Store limits the total number of user-reviews that a user
can view to 2,400 user-reviews (Khalid et al. 2014). Therefore, one cannot access all the
available user-reviews of an app at once if it comes with more than 2,400 user-reviews
(Khalid et al. 2014; Google 2017). Therefore, we run the crawler on a daily basis for five
years to get the latest user-reviews of each app. Then, we merge the new user-reviews with
the existing user-reviews in our database. Hence, we could capture all the user-reviews for
all the subject apps. The process of getting the new user-reviews takes about one hour a day.

2.1.3 Issue Reports

An issue report that is posted by a user on GitHub includes a title, text, and date on which
the issue is posted. We retrieved all the available issues of our subject apps using GitHub
application programming interface (API) (Developer 2018). As an alternative approach,
GHTorrent (Gousios 2013) could also have been used to measure the required metrics. As
we only need the issue reports of a limited number of projects (i.e., 1,120 apps), using
GHTorrent is not necessary. Figure 3a shows the number of issue reports for each of the 326
subject apps. As shown in Fig. 3a, the number of issue reports varies for each app.

2.2 Preprocessing Data

A user-review is an informal piece of text (Google 2017; Palomba et al. 2015) that can
potentially suffer from grammatical issues and typos. For example, a user-review such as
“Tha pics couldnt be sentttt” has several typos: “Tha” and “sentttt” need to be changed to
“The” and “sent”, respectively. Moreover, user-reviews are usually short with few words.
Furthermore, there are no consistent choices of words to describe the same issues. For
instance, different users may use either error or problem to report a bug. In addition,
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Fig. 3 Number of issue reports (from GitHub) and user-reviews (from Google Play Store) for all the 326 apps

user-reviews contain negations that confuse automatic approaches. Without considering
negations, a user-review such as “Great app! Runs with no problem!” could have been
interpreted as a user-review that reports a problem.

In the following paragraphs, we describe the taken steps for addressing the challenges
that are mentioned above. In addition, we asked three non-authors to evaluate the mappings
between user-reviews and issue reports. The evaluators are graduate students in computer
science and software engineering. We randomly selected 384 user-reviews with the asso-
ciated issue reports with the confidence level of 95% and the confidence interval of 5%.
Each evaluator independently evaluated the mapping between the user-reviews in the sam-
ple and the issue reports. We applied the major vote rule to solve the conflicts among the
evaluators. In each step, we use the above set of user-reviews as a reference to measure the
improvement in the mapping precision.

2.2.1 Filtering Out Uninformative User-Reviews

In total, we collected 170,373 user-reviews. An uninformative user-review, such as “This
app is OK”, has no valuable information for app developers. The most recent studies (Chen
et al. 2014; Villarroel et al. 2016) propose different approaches to filter out uninformative
user-reviews. For example, Chen et al. (2014) employ the expectation maximization for
Naı̈ve Bayes classifier (Calders and Verwer 2010) to identify uninformative user-reviews.
However, we cluster the related user-reviews together. Therefore, a group of uninformative
user-reviews can potentially become informative when they are grouped together. Having
groups of related user-reviews (informative or uninformative) allows us to calculate the
required metrics more accurately (see Section 2.4). Consequently, we only filter out the
user-reviews that only praise or condemn an app. To this end, we use linguistic rules (Iacob
and Harrison 2013). The main author defined the linguistic rules by manually investigating
5,000 randomly selected user-reviews. Although more is always better, we chose 5,000 user-
reviews because (i) a set of 5,000 user-reviews is a representative sample of user-reviews
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and (ii) manually analyzing the user-reviews is a time-consuming task. On average, each
user-review takes 15 seconds to analyze. Therefore, it takes about 21 hours to analyze all the
user-reviews. Among 5,000 user-reviews, we identified 3,789 user-reviews as informative
and 1,211 user-reviews as uninformative ones according to the rules that are listed in Table 1.
As an example, for the first rule, we match ‘this app works fine’ and ‘is very awful’. For the
second rule, we match ‘not a good app’ and ‘terrible’. For the last rule, we match phrases
like ‘thank you!!!’.

Moreover, we put aside non-English user-reviews from the collected user-reviews using
Language Detector (Optimaize 2017). The Language Detector creates a distinct profile
for different languages. Then, it uses each profile to identify the language of a given text
(Optimaize 2017). We end up with 130,712 user-reviews. Figure 3b shows the number of
user-reviews for each subject app.

2.2.2 Correcting Typos

Typos usually impact the results of text analysis techniques (Nord 2005). We use Jazzy
Spell Checker (Jazzy 2017) with a dictionary of 645,289 English words to fix the typos of
user-reviews and issue reports. Jazzy provides a set of Java APIs that allows us to detect
misspelled words and replace them with the correct ones. Based on manually investigating
384 user-reviews with the confidence level of 95%, Jazzy corrects 68% of the incorrect
words. Correcting typos allows us to increase the mapping precision by 4%.

2.2.3 Resolving Synonyms

General-purpose thesaurus, such as WordNet (Miller 1995), are not sufficient to resolve
the synonyms of an informal text, such as a user-review (Noei et al. 2018; Villarroel et al.
2016). Therefore, we build our own dictionary of words to resolve the synonyms. To ease
the processing of building the dictionary, we applied LDA topic modeling technique (Blei
et al. 2003; Noei and Heydarnoori 2016) on our data. We manually investigate each group of
words that appear in the same topic and group the words that have similar meaning together
accordingly. From each set of similar words, we pick one as the representative word and
replace the other words with the representative word of each group. For example, bug, error,
and glitch belong to the same group of terms.

Table 1 Linguistic rules for filtering out uninformative user-reviews

# Rule

1 <pronoun>? <App|Application>? <verb> <just,really,very,not>*
<adjective>? <adverb>?

Note. In this rule, verb ∈ {work, is, run} ∪ {describing verbs}, including all
the variants of a verb. For example for work, we considered works, does not
work, is working, has worked, has been working, and has not worked. Describing
verbs are the verbs that demonstrate users’ feelings, such as rocks and stinks.

2 <just,not,article,really,very>* adjective <App|Application>?

Note. Articles include a, an, and the.

3 <Appreciation>

Note. The appreciation verbs are thanks, thank you, thanks a lot, thanks so much,
thank you so much, and thank you very much
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We also replaced abbreviations and informal messaging vocabularies with formal words.
We find the abbreviations and informal messaging vocabularies from the available online
sources (Allacronyms 2017; Netlingo 2017). For example, “luv” should be replaced with
“love”. In our experiment, resolving synonyms let us increase the mapping precision by
3%.

2.2.4 Resolving Negations

The negations in the user-reviews can mislead the text processing techniques in getting the
real meaning of user-reviews. To avoid this, we use Stanford natural language processing
toolkit (Manning et al. 2014) to find and resolve the negated terms (Villarroel et al. 2016).
In our experiment, resolving negations increases the precision of our mapping by 3%.

2.2.5 Removing Stop-words

Stop-words are the most common words that exist in a language, such as “is” and “the”.
We remove stop-words using Stanford CoreNLP (Manning et al. 2014). Removing stop-
words allows text processing techniques to focus on the main words of user-reviews and
issue reports (Rajaraman et al. 2012).

2.2.6 Stemming

Reducing inflected words to their word stem is called stemming (Lovins 1968). By stem-
ming user-reviews and issue reports, all forms of a word can be transformed to the same
stem. For example, “report” and “reporting” have the same word stem that is “report”.
We use the Snowball program (Snowball 2018) to stem the words.

2.2.7 Extracting n-grams

Sometimes, words share a more concrete meaning when they come together. For example, a
four-word phrase, such as does not send pictures, shows a problem in sending pictures,
while having these four words separated does not reflect its real meaning. A n-gram is a
contiguous sequence of n words from a given sentence or sequence of words (Broder et al.
1997). For each user-review and issue report, we extract the n-grams with n varying from
2 to 4. Extracting the n-grams helps us to deal with the negations more effectively. Similar
to Villarroel et al. (2016), we extract the n-grams before the preprocessing steps to avoid
losing any potential information. In our experiment, extracting 2-grams, 3-grams, and 4-
grams, increase the mapping precision by 3%, 1%, and 1% respectively. In total, extracting
n-grams (n ∈ {2, 3, 4}) increases the mapping precision by 5%.

2.3 Clustering User-Reviews

We cluster the related user-reviews by customizing the Villarroel et al. approach (2016),
such as adding a step for correcting typos. By clustering user-reviews, even short and unin-
formative user-reviews can become helpful when they are considered together. Furthermore,
clustering user-reviews is required in this study for two main reasons: (i) having the related
user-reviews clustered together significantly increases the mapping precision by 45%, and
(ii) computing the metrics of user-reviews requires a group of related user-reviews, such as
quantifying the number of user-reviews that report the same issue.



1972 Empirical Software Engineering (2019) 24:1964–1996

2.3.1 Approach

We apply DBSCAN (Ester et al. 1996) on user-reviews of each app. DBSCAN is a
density-based clustering algorithm that groups the elements of user-reviews (i.e., words and
n-grams) together that are closely placed near each other. We compute the distance between
two user-reviews by applying the vector space model (Salton et al. 1975) cosine similarity
between (i) associated star-ratings (Villarroel et al. 2016), (ii) post-processed user-reviews,
and (iii) lists of n-grams. We adopt TF-IDF (Salton and Mcgill 1983) on the vectors of
user-reviews. TF-IDF allows us to measure the frequency of each term and estimate how
much information each term provides. DBSCAN requires two parameters: (i) the maximum
distance between user-reviews, and (ii) the minimum number of user-reviews that can be
clustered together. We set the maximum distance between two user-reviews to 0.6 as it gives
the best performance of DBSCAN. We set the minimum number of points of DBSCAN to
1 as one user-review may be useful in identifying a potential issue.

2.3.2 Evaluation

We followed the same approach as Villarroel et al. (2016) to evaluate the clustering
approach. We randomly selected 384 user-reviews with the confidence level of 95% and the
confidence interval of 5%. The external evaluators clustered the related user-reviews. Then,
we compared the manually clustered user-reviews with the automatically clustered user-
reviews. We achieved an accuracy of 80% in clustering the user-reviews. An example of an
issue report that is matched with a cluster of user-reviews is shown at Table 2. As shown
in Table 2, the reported issue is about an issue in the auto-correcting module where there
exists some user-reviews reporting the same issue.

2.4 ComputingMetrics of User-Reviews

We follow the Goal / Question / Metric (GQM) paradigm (Basili 1992; Van Solingen et al.
2002) to capture the metrics of user-reviews. The GQM is a measurement paradigm that is
based on three levels: (i) conceptual, (ii) operational, and (iii) quantitative. The conceptual
level, i.e., the goal, should be defined with respect to the purpose of a given model. The
operational level is a set of questions to describe the goal that is defined at the conceptual
level. The quantitative level is a set of metrics that can be measured to address each ques-
tion of the operational level. Also, the availability of each metric has to be considered. For
instance, we cannot capture the level of expertise of a user who posts a user-review, but we
can capture the number of users that post similar user-reviews.

Table 2 A sample issue report matched with a cluster of user-reviews

Issue report User-reviews

Title: Autocorrect stopped working in (i) Autocorrect not working

comment reply field (ii) Fix the autocorrect

Body: If you reply to a comment in Notifications (iii) When replying in nofications,

or the Reader, you won’t get any autocorrect autocorrect crashes

suggestions above the keyboard. From a quick (iv) Would give 5 stars, but the

poke around in the code, it appears to be related recent autocorrect issues... 3 stars

to using a subclass of AutoCompleteTextView (v) Posting a comments makes autocorrect stop
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We set our goal to quantify the user-reviews. Table 3 shows our GQM model for captur-
ing the user-reviews. As shown in Table 3, we measure 31 metrics of user-reviews, such as
the number of similar user-reviews and the proportion of negative and positive user-reviews.
For star-ratings, sizes of user-reviews, and sentiment scores, we compute the mean, median,
minimum, maximum, 1st quartile, and 3rd quartile of each metric. The median is a met-
ric to measure the central tendency of the data. However, it does not reflect the distribution
of data below and above the median. To reduce such a limitation, we measure the 1st and
3rd quartile in addition to the median. For instance, if the 1st quartile is far away from the
median but the 3rd quartile is close to the median, we can infer that the data points that are

Table 3 GQM model to capture the metrics of user-reviews, along with a brief description

Question Metric(s) Description #

Goal: Quantifying the user-reviews for a given issue

How many users
reported the same
issue?

Number of similar
user-reviews

The number of times that an issue
is reported can affect its priority.
Developers may consider resolving
an issue in the next release if the
majority of users report the same
issue.

1

How did the users
reporting the same
issue rate an app?

Star-ratings To maintain the level of star-ratings,
developers are more likely to priori-
tize the issues that are reported with
low star-ratings.

6

What is the propor-
tion of high, low, and
neutral star-ratings
for the user-reviews
reporting the same
issue?

Proportion of low,
neutral, and posi-
tive star-ratings

To capture the diversity of ratings,
we measure the proportion of neg-
ative, positive, and neutral user-
reviews within each cluster. We
consider a user-review with a star-
rating equal to 3, greater than 3, or
less than 3 as a neutral, high, or
low user-review, respectively (Noei
et al. 2017).

3

How much effort do
users put to describe
an issue and how
much information is
provided?

Sizes of user-reviews The size of a user-review can reflect
the helpfulness and the importance
of the user-review (Kim et al.
2006). We use Stanford parser (De
Marneffe et al. 2006) to count the
number of words and sentences in
the user-reviews.

12

How was the users’
experience with a
given issue?

Sentiment scores The star-ratings do not always
reflect the real sentiments of user-
reviews. To capture the sentiment
scores of user-reviews, we apply
sentimental analysis on the user-
reviews using the SentiStrength-SE
tool (Islam and Zibran 2017).

6

What is the propor-
tion of user-reviews
with positive, nega-
tive, and neutral senti-
ment scores?

Proportion of neg-
ative, neutral, and
positive sentiment
scores

We measure the proportion of neg-
ative, positive, and neutral user-
reviews in each cluster of user-
reviews.

3

Total: 31
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greater than the median are closely placed together in comparison with the data points that
are less than the median (Kelley 1947).

2.5 ComputingMetrics of Issue Reports

Table 4 shows the GQM model to quantify the issue reports. We compute the mean, median,
minimum, maximum, 1st quartile, and 3rd quartile of the following metrics: (i) the sizes of
comments, (ii) contribution, (iii) number of following, (iv) number of followers, (v) number
of gists of the people who have involved in an issue, and (vi) the time since they have joined
GitHub.

Regarding the size of an issue report, it can reflect the amount of information contained in
the issue report (Kim et al. 2006). Moreover, Yu et al. (2015) indicate that the size of a given
document can be associated with the quality and complexity of a document. For example,
consider the example issue reports that are listed in Table 5. The first issue report with a
bigger size provides comprehensive details of the reported issue, including the expected
behavior, the actual behavior, and the steps to reproduce the issue. However, the second
issue with a smaller size report does not provide enough context to understand and resolve
the issue.

2.6 Measuring the Prioritization Orders of Issue Reports

Developers react to some issues very fast, while they might postpone responding to some
other issues for many weeks. We consider the developers’ reaction attitude as an indicator
of the importance of the issues. To estimate developers’ reaction to each issue, we consider
the following actions: (i) post comments on an issue report, (ii) submit commits for an issue
report, and (iii) adding specific keywords to an issue report, including “Fixed”, “Solved”,
“Resolved”, “Closed”, “Feature added”, and “Finished”. To measure the reaction time for
each issue, we compute the minimum value of the intervals between each of the aforemen-
tioned actions and the time since an issue report has been posted on GitHub. We use the
reaction times to measure the prioritization orders of issue reports.

However, some noises may be introduced by considering posting comments as indicators
of prioritization orders. For example, a developer may immediately post a comment on an
open issue to mention that they will take care of it after dealing with more important issues.
We manually investigate the comments of a sample issue reports (384 issue reports) with the
confidence level of 95%, confidence interval of 5, and population of 239,736. We observe
that only 1.7% of the comments are irrelevant to the associated issue reports which is a
tolerable proportion of comments.

3 Research Questions and Results

For each research question, we present our motivation, approach, and findings.

3.1 RQ1) How Precisely can User-reviews beMapped to Issue Reports?

3.1.1 Motivation

Mobile apps may have hundreds or even thousands of user-reviews. It is not a trivial task
for app developers to manually analyze all of the user-reviews. It is beneficial to map
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Table 4 GQM model to capture the metrics of issue reports, along with a brief description

Question Metric(s) Description #

Goal: Quantifying the issue reports

How many users con-
tributed to resolving
an issue?

Number of users The number of GitHub users who
have involved in the discussions can
implicitly show the importance of
an issue.

1

How many interac-
tions have been hap-
pened for resolving
an issue?

Number of comments The number of comments can reflect
the complexity of resolving an issue.

1

How well an issue is
described?

Sizes of issue reports To capture the size of an issue
report, we count (i) the number of
words of the title, and (ii) the num-
ber of words and sentences of the
body.

3

How well the com-
ments of an issue are
described?

Sizes of comments Similar to the size of an issue
report, we measure the number of
words and the number of sentences
of the comments posted on the issue
report.

12

What is the contri-
bution of an issue
reporter?

Reporter contribu-
tion

If an issue report is reported by a
user with a high contribution, the
issue report may be prioritized with
a higher rank. For each member,
GitHub (2018a) computes a contri-
bution score based on the activities
of the user.

1

What is the contri-
bution of the users
who have involved
in resolving an
issue?

Contribution of
users who have
involved in issues

Similar to the contribution of the
reporter, we measure the contribu-
tion of the users who have involved
in each issue.

6

For how long a
reporter is a mem-
ber of GitHub?

Time since reporter
has joined GitHub

A more experienced user may
be more active on GitHub. We
compute the time since each
reporter has joined GitHub as of
September 1, 2016.

1

For how long the
users who have
involved in an issue
are members of
GitHub?

Time since contrib-
utors have joined
GitHub

We measure the time since each dis-
tinct user who has contributed to an
issue report has joined GitHub.

6

How popular is the
reporter?

Number of follow-
ing and followers
of reporters

The number of followers and fol-
lowings of a user can estimate
the popularity of the user (Romero
et al. 2011; Bertram et al. 2010).
A user with many followers could
be very popular. This can result
in addressing the issues that are
reported by such a user earlier than
other issues.

2
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Table 4 (continued)

Question Metric(s) Description #

How popular are the
users who have involved
in an issue?

Number of following
and followers of con-
tributors

We measure the number of follow-
ers and the number of followings of
the users who have contributed to
each issue report.

12

How many code snippet
a reporter has shared?

Number of gists of
reporter

Gist is a GitHub service that allows
users to share code snippets with
others (GitHub 2018a). The num-
ber of gists can show how much
a developer intends to help the
development community that could
be associated with the developers’
activity.

1

How many code snip-
pet the contributors have
shared?

Number of gists of
contributors

We measure the number of gists of
the users who have contributed to
an issue report.

6

What is the number
of repositories of the
reporter?

Number of public
repositories of reporters

A user can contribute to different
public repositories on GitHub. The
number of repositories on which a
user works can capture the level
of expertise and engagement of the
user in different projects.

1

What is the number
of repositories of con-
tributors?

Number of public repos-
itories of contributors

We count the number public reposi-
tories of the contributors to an issue
report.

6

Total: 59

user-reviews to issue reports automatically. Therefore, app developers would be able to use
the user-reviews to prioritize the issue reports. Moreover, having the knowledge of the issues
that are also mentioned in the user-reviews can help app developers to better manage the
issues and prevent issue report duplications (Cavalcanti et al. 2013).

Table 5 Two sample issue reports

# Issue report

1 Title: Refresh a post view

Body: Expected behavior: When you are reading a post (I mean: when you have
tapped in one the items in your posts list in the reader and are reading the expanded
view), I expect to be able to “pull to refresh” so I can update the comments & favs
of the post. Actual behavior: Nothing happens. Pull to refresh is not available when
you are reading a post. If you want to refresh the comments you need to go pack to
your posts lists, refresh there and then tap back in the post. Steps to reproduce the
behavior:Go to the reader. Tap on any post. Try to refresh it.

Date: Apr 12, 2016

Status: Closed

2 Title: after creating custom ref the spinner ‘from’ does not get updated (shows
only after second exec or refresh).

Body: NULL

Date: Apr 10, 2013

Status: Open
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3.1.2 Approach

As described in Section 2.3, first, we cluster the related user-reviews. We consider all
the user-reviews that belong to the same cluster as a single document that describes
the same issue. To determine the similarity between user-reviews and issue reports,
we apply the vector space model (Salton et al. 1975). First, we compute TF-IDF
(Salton and Mcgill 1983) to obtain the vector of each document, i.e., either a clus-
ter of user-reviews or an issue report. Second, we calculate cosine similarities between
issue reports and each cluster of user-reviews. We associate a cluster of user-reviews
with an issue report if their similarity is greater than the threshold τ . We evaluate
our experiment with different thresholds from 0.05 to 0.95 on five randomly selected
apps.

To measure the performance of the mapping approach, we measure the precision of
the correctly matched pairs of clusters of user-reviews and issue reports amongst all the
matched pairs. We asked three non-authors to manually examine the correctness of each
matched pair on a statistically representative sample set of the rest of the apps, i.e., all
apps excluding the five apps that we used to determine the best threshold. To obtain such
a set, we randomly selected 384 user-reviews with their associated issue reports from
30,520 user-reviews with the confidence level of 95% and the confidence interval of 5%.
The three evaluators independently evaluated the sample of user-reviews matched with
the issue reports. We applied the major vote rule to resolve the conflicts amongst the
evaluators.

3.1.3 Findings

We achieve a precision of 79% in matching user-reviews with issue reports. Figure 4a shows
the precision achieved by our approach with various thresholds and Fig. 4b shows the num-
ber of matches between user-reviews and issue reports. We set the threshold to 0.85 with a
trade-off between the precision of matches and the number of matches. Based on the man-
ual analysis by the three evaluators, our approach achieves a precision of 79% with the
threshold τ of 0.85.

We match 27% of the user-reviews with the 33% of the issue reports. The issue
tracking systems are normally the working area of app developers (Janák 2009), while
user-reviews are from external users. The matches between the issue reports and clus-
ters of user-reviews show the issues that are reflected in both user-reviews and issue
reports. In the next research questions, we show that prioritizing only the user-related
issue reports shares a significant relationship with star-ratings. Therefore, our approach
can help app developers to prioritize user-related issue reports to receive higher star-
ratings. Having considered the user-reviews that are grouped together, developers can create
new issue reports concerning the user-reviews that are left out. Therefore, with respect
to our approach, developers can cover more of the user-reviews when maintaining their
apps.
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Fig. 4 Precision of our approach
and number of matches between
user-reviews and issue reports
obtained using thresholds from
0.05 to 0.95
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(b) The number of matches between user-reviews and
issue reports.

3.2 RQ2) Does Prioritizing User-Related Issue Reports have a Relationship
with Star-Ratings?

3.2.1 Motivation

Developers may take different priority orders when addressing the user-related issue reports.
Although the lack of issue reports prioritization can negatively impact star-ratings, there
is no empirical evidence to show the relation between prioritizing the user-related issue
reports and star-ratings. Therefore, we investigate the relationship between star-rating and
the metrics of user-reviews and issue reports.

3.2.2 Approach

We model the issue reports prioritization using linear regression models (Faraway 2005).
The dependent variable of the regression models is the prioritization orders of the apps. The
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independent variables are the metrics computed from both user-reviews and issue reports.
The goodness of fitness, i.e., adjusted R2 (Nelder and Baker 1972), of the linear regression
models shows whether issue reports prioritization has a relationship with the metrics of
user-reviews and issue reports. Figure 5 shows an overall overview of our approach.

Before building the regression models, we identify the correlated variables. We apply
variable clustering analysis (Hmisc 2017) to build a hierarchical overview of the correlation
between the independent metrics (Noei et al. 2017). The metrics within each sub-hierarchy
of metrics with Spearman’s |ρ| > 0.7 are considered as correlated variables (Nguyen et al.
2010). We choose one metric that is easier to comprehend for inclusion in our model from
each sub-hierarchy of metrics. We build two types of regression models:

(i) Generic Model. We build a generic model using all of the subject apps. Building a
generic regression model with a high goodness of fitness can show that different apps
are following a similar strategy for prioritizing issue reports.

(ii) Specific Models. For each app, we build an independent regression model. We get
a goodness of fitness for each independent regression model. A higher goodness of
fitness can indicate that the issue reports prioritization of an app has a significant
relationship with the metrics of user-reviews and issue reports.

The EPV measures the ratio of data points to the number of variables (Tantithamthavorn
et al. 2017). An EPV of greater than 10 is recommended to have a low risk of over-fitting
and unstable results (Tantithamthavorn et al. 2017). We did not consider 14% of the apps
with EPVs less than 10. We divide the apps into two groups; one group with R2 ≥ 0.5
and another one with R2 < 0.5 (Nelder and Baker 1972). We compare the star-ratings of
the two groups of apps using Mann–Whitney U test (Mann and Whitney 1947). As a null
hypothesis, we assume that the distributions of the star-ratings between the two groups of
the apps are the same. The Mann–Whitney U test rejects this hypothesis with a p − value

of less than 0.05.
The Mann–Whitney U test may show a significant difference for a sufficiently large

sample even if the difference is negligible. Therefore, we also measure the effect size of
the differences between star-ratings by applying Cliff’s δ (Cliff 1993). Cliff’s δ is a non-
parametric measure without assumptions about the distribution of data (Cliff 1993). Cliff’s
δ measures the degree of overlap between the two sets of star-ratings. The output of the
Cliff’s δ is a number between −1 and +1. If the distribution of star-ratings between the two
sets of apps is identical, the Cliff’s δ would be 0 (Cliff 1993). If all the values of the first set
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Fig. 5 Overview of our approach for addressing the second research question
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Fig. 6 Adjusted R2s that are obtained from the regression models that are built for each app

are greater than the second set, it would be +1, and vice versa. We use Cohen’s d (Cohen
2013) to interpret the effect sizes (Zhang et al. 2015). Cliff’s δ could be mapped to Cohen’s
standards; the values of 0.147, 0.330, and 0.474 denote small, medium, and large effect size,
respectively (Zhang et al. 2015).

3.2.3 Findings

Developers of different apps do not follow the same strategy to prioritize the user-related
issue reports. Our generic model using all of the subject apps has a very low goodness
of fitness, i.e., R2 < 0.05. Thus, there is no statistically significant universal relationship
between the issue reports prioritization and metrics of user-reviews and issue reports for all
different apps.

For 37% of the subject apps, issue reports prioritization can be modeled with the metrics
of user-reviews and issue reports. The regression models of 37% of the subject apps achieve
R2s ≥ 0.5, i.e., the issue reports prioritizations share significant relationships with the
metrics of user-reviews and issue reports. Figure 6 shows the obtained R2s. Tables 6 and
7 show two sample models that are built for two distinct apps, i.e., Indic Keyboard1 and
Vanilla Music,2 sorted by p − value. In the last column in both tables, upward arrows
indicate when the values of the associated metrics increase, the prioritization rank is more
likely to increase, while downward arrows indicate otherwise. For the remaining 63% of the
apps, we could not build regression models with a proper goodness of fitness.

Developers of different apps do not consider the same importance level for the metrics of
issue reports and user-reviews. Amongst the apps having the user-related issue reports prior-
itized, the sets of significant metrics are different from each other. For example, some issue
reports are prioritized according to the metrics that are defined in the scope of issue track-
ing systems, such as the contribution of a user who has reported the issue. Some other issue
reports are prioritized by considering the user-reviews, such as the number of user-reviews.
We count the frequencies of the metrics that share statistically significant relationships with
the issue reports prioritization. Table 8 shows the top five metrics of the issue reports and

1https://play.google.com/store/apps/details?id=org.smc.inputmethod.indic
2https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla

https://play.google.com/store/apps/details?id=org.smc.inputmethod.indic
https://play.google.com/store/apps/details?id=ch.blinkenlights.android.vanilla
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Table 6 The model that is built for Indic Keyboard app, sorted by p − value

Metric Pr(>|t|) Effect

Reporter contribution 0.001 *** ↗
Minimum star-rating 0.015 * ↘
Proportion of high star-ratings 0.023 * ↘
Maximum sentiment score of user-reviews 0.051 . ↘
Number of reviews 0.053 . ↗
Maximum contribution of users who involve in issues 0.065 . ↗
Maximum number of sentences in user-reviews 0.099 . ↗
Minimum number of sentences in user-reviews 0.119 ↘
Proportion of low star-ratings 0.132 ↗
Number of gists of reporter 0.141 ↘
Time since reporter has joined GitHub 0.172 ↗
Minimum sentiment score of user-reviews 0.370 ↗
Number of comments 0.452 ↘
Proportion of positive sentiment scores 0.470 ↘
Minimum contribution of people who involve in issues 0.631 ↘
Number of followers of reporter 0.662 ↗
Title size 0.776 ↘
Minimum number of words in user-reviews 0.809 ↘
Maximum star-rating 0.898 ↗
Number of words in issue reports 0.974 ↘

p − value codes: ‘***’< 0, ‘**’< 0.001, ‘*’< 0.01, ‘.’< 0.05

the user-reviews that appear the most. In particular, the size of the title and body, the num-
ber of comments, and the contribution of the person who reported the issue are the metrics
that appear the most as a significant metric. The star-ratings and the number of user-reviews
are the two metrics of user-reviews that have the most relationship with the issue reports
prioritization.

The title size is the most popular and the most important metric when it comes to issue
reports prioritization. As shown in Table 8, for 59% of the subject apps, the title size appears
as a statistically significant metric. The next important metric is the number of comments
that are posted for an issue report. The issues that are associated with a higher prioritization
order tend to receive more comments. Having considered the title size and the body size as
two significant metrics, the contents of issue reports play an important role in issue reports
prioritization. Another interesting observation is where the reporter contribution appears as
a significant metric for 41% of the apps and the time since the reporter has joined GitHub
appears for 40% of the apps. This can show that an issues report that is reported by a
developer with a higher reputation tend to be addressed at a faster pace.

Among the user-review metrics, the minimum star-rating, the proportion of neutral
star-ratings, and the proportion of low star-ratings appear for 13%, 10%, and 8% of the sub-
ject apps as statistically significant metrics, respectively. This may be because developers
would like to reduce the number of low star-ratings by addressing the user-reviews that are
associated with lower star-ratings (Noei et al. 2017).
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Table 7 The model that is built for Vanilla Music app, sorted by p − value

Metric Pr(> |t|) Effect

Title size 0.001 *** ↘
Number of gists of reporter 0.007 ** ↗
Proportion of negative star-ratings 0.017 * ↗
Number of followers of reporter 0.022 * ↗
Minimum number of words in user-reviews 0.034 * ↗
Reporter contribution 0.081 . ↗
Proportion of high star-ratings 0.096 . ↘
Number of words in issue reports 0.116 ↘
Proportion of user-review with neutral sentiment scores 0.180 ↘
Time since reporter has joined GitHub 0.210 ↘
Minimum contribution of people who involve in issues 0.248 ↗
Number of comments 0.252 ↘
Minimum sentiment score of user-reviews 0.350 ↘
Number of user-reviews 0.352 ↗
Maximum contribution of people who involve in issues 0.369 ↗
Minimum number of sentence in user-reviews 0.438 ↘
Minimum star-rating 0.541 ↘
Number of following of reporter 0.738 ↗
Proportion of positive sentiment scores 0.956 ↘

p − value codes: ‘***’< 0, ‘**’< 0.001, ‘*’< 0.01, ‘.’< 0.05

Addressing the issues reported in user-reviews has a statistically significant relationship
with star-ratings. Figure 7 shows that the apps that we could match their issues reports
with user-reviews receive higher star-ratings. The differences between the star-ratings of
the apps that we could match their issues reports with the user-reviews (the first and the
second boxplot in Fig. 7) and the apps that we could not match their issues reports with the
user-reviews (the third boxplot in Fig. 7) are statistically significant with a p − value of
5.37e − 05 and a medium effect size with Cohen′sd of 0.37.

Table 8 Ranking and percentages of the occurrence of the top five metrics of issue reports and user-reviews

Context Rank Metric Occurrence

1 Title size 59%

Issue 2 Number of comments 55%

Reports 3 Body size 44%

(GitHub) 4 Reporter contribution 41%

5 Time since reporter has joined GitHub 40%

1 Minimum star-rating 13%

User-reviews 2 Number of user-reviews 12%

(Google 3 Proportion of neutral star-ratings 10%

Play Store) 4 Minimum sentiment score 8%

5 Proportion of low star-ratings 8%
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Prioritizing issue reports with respect to our metrics shares a statistically significant rela-
tionship with star-ratings. The first two boxplots in Fig. 7 show the apps that we could match
their user-reviews with their issue reports. The differences between the apps that (i) the
issue reports prioritization is statistically significantly related to our metrics (the first box-
plot in Fig. 7) and (ii) the issue reports prioritization is not statistically significantly related
to our metrics (the second boxplot in Fig. 7) are statistically significant with a p − value of
8.82e − 06 and a medium effects size with a Cohen′s d = 0.55. The star-ratings of the first
group of apps are higher than the other apps.

3.3 RQ3) How can App Developers Prioritize User-Related Issue Reports to Achieve
Higher Star-Ratings?

3.3.1 Motivation

In RQ2, we observe that issue reports prioritization shares a significant relationship with
star-ratings. To utilize the important findings of RQ2, we suggest a prioritization method
for ranking issue reports in order to achieve higher star-ratings.

3.3.2 Approach

Figure 8 shows an overview of our approach. To better prioritize the issue reports, we define
four levels of prioritization. Given the list of issue reports that are ranked based on the
prioritization order of issue reports (see Section 2.6), we define the prioritization levels of
issue reports as follows:
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Fig. 7 The average of star-ratings of the apps that:

1) We could match their user-reviews with issue reports and issue reports prioritization is statistically
significantly related to the metrics.

2) We could match their user-reviews with issue reports but issue reports prioritization does not share a
statistically significant relationship with the metrics.

3) We could not match their user-reviews with issue reports.
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(i) High Priority: The issue reports within the first quartile (0−25%) of the prioritization
orders are labeled as high priority.

(ii) Medium Priority: The issue reports within the second quartile (25 − 50%) of the
prioritization orders are labeled as medium priority.

(iii) Low Priority: The issue reports within the third quartile (50 − 75%) of the prioritiza-
tion orders are labeled as low priority.

(iv) Trivial Priority: The issue reports within the last quartile (75 − 100%) of the
prioritization orders are labeled as trivial priority.

Issue tracking systems usually define a limited number of prioritization orders for the
issue reports (Xuan et al. 2012). For example, Bugzilla (2018) defines five orders of priori-
tization orders from trivial to high priority. We chose four levels of prioritization according
to the distribution of the prioritization orders of our subject apps. The high priority issue
reports are addressed within an hour. The medium priority issue reports are addressed within
a day. The low priority issue reports are addressed within five days. The trivial priority issue
reports are addressed after five days.

We build a random forest model (Liaw and Wiener 2002) to predict the prioritization
levels of issue reports. Random forest (Ho 1995) is a classification approach that builds
a number of decision trees at the training stage. Random forest runs efficiently on large
databases and works accurately for predictions (Ho 1995). First, we train a model with the
issue reports (that are labeled with four levels of prioritization) of top N apps that hold the
highest star-ratings. Second, we use the trained model to predict the prioritization levels of
issue reports of the rest of the apps. Third, we measure the accuracy of the predicted levels
with the real levels using (1). In (1), for an app a, Ic(i) denotes the number of issue reports
with correct predicted levels, and the I (i) shows the total number of issue reports for the
app a.

Accuracy = Ic(i)

I (i)
(1)

Fourth, we divide the test apps into two groups based on the accuracy of the predicted levels.
We put the apps with the pair-wise similarity of more than or equal to the threshold σ into
one group. The apps with the pair-wise similarity of less than σ are placed into another
group. We compare the average star-ratings of the two groups of apps using the Mann–
Whitney U test (Mann and Whitney 1947) to verify whether there is a difference between
the star-ratings of the two groups of apps. If the p − value is less than 0.05, it shows that
the difference between the star-ratings of two groups of apps is statistically significant. We
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Fig. 8 Overview of our approach for addressing and evaluating the third research question
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also calculate the effect size of differences between the star-ratings by measuring Cliff’s δ

(Cliff 1993).
To find the best number of top apps (i.e., top N apps), we conduct a sensitivity analysis

on the value of N . We did the sensitivity analysis by incrementally adding top apps; starting
with the app that has received the highest star-ratings (N = 1), adding the second app with
the highest star-ratings (N = 2), and continuing this process until covering all the apps. We
train our prioritization model based on top N apps and test the model using the rest of the
apps.

We observe that with N = 5, we can build up a prioritization model that can statistically
significantly distinguish the star-ratings of the two groups of apps with the lowest p−value

(i.e., p−value ≤ 2.7e−2). Starting from N = 5, as the value of N increases (or decreases)
the p − value tends to increase. We decided to consider the top five apps as the difference
in the star-ratings of the two groups of apps is larger by having N = 5.

The threshold σ divides the tested apps into two groups of apps that: (i) have similar pri-
oritization orders to our predicted levels, and (ii) have different prioritization orders from
our predicted levels. To identify the best value of σ , we conduct a sensitivity analysis. In our
sensitivity analysis, we repeat our experiment with different values of 0.01 <= σ <= 0.99
(with the increment value of 0.01). The results of our sensitivity analysis show that any val-
ues of σ between 0.43 and 0.55 cause a statistically significant difference between the two
groups of the tested apps. 48 apps have a similar prioritization approach to the top five apps.

We calculate the mean decrease in Gini, i.e., Gini importance (Archer and Kimes 2008),
to sort the metrics of the ranking model with respect to their importance. The mean decrease
in Gini measures the contribution of each metric to the homogeneity of the nodes and the
leaves in the model (Biau and Scornet 2016). As all the metrics are numerical, the mean
decrease in Gini is a proper approach to identify the important metrics (Strobl et al. 2007;
Archer and Kimes 2008).

3.3.3 Findings

Top apps can provide good patterns for other apps in order to prioritize the issue reports as
the apps that have similar prioritizations to our predicted prioritizations receive higher star-
ratings than other apps. Figure 9 shows the distribution of star-ratings for the apps that: (i)
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Fig. 9 Average of star-ratings of the apps that: 1) have similar prioritizations as our predicted prioritizations,
2) have different prioritizations from our predicted prioritizations
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the prioritizations of the issue reports are similar to our predicted prioritizations, and (ii)
the prioritizations of the issue reports are different from our predicted prioritizations. As
shown in Fig. 9, the star-ratings are higher for the apps that have similar prioritizations to
our predicted prioritizations. The difference in star-ratings between the two groups of apps
is statistically significant. The p − value is 3.4e − 2 and the effect size is medium with a
Cohen′sd = 0.30, indicating that the difference is observable and cannot be neglected.

Table 9 shows the metrics that are used to build the ranking model with respect to the
top five apps. As shown in Table 9, the time since a reporter has joined GitHub holds the
highest Gini importance. The appearance of the time since a reporter has joined GitHub as
a statistically significant metric could be due to the lack of knowledge and experience of
the newer members (Steinmacher et al. 2018; Vasilescu et al. 2015). Vasilescu et al. (2015)
investigated different aspects of having a diverse (e.g., new and experienced) team members
on GitHub. Having diverse developers has some advantages, such as providing a wider range
of new ideas (Vasilescu et al. 2015). However, it takes some time for new developers to fit
in a project (Zanatta et al. 2017). Improper contributions by newcomers require more efforts
for integrations which makes the development process harder (Vasilescu et al. 2015). Also,
sometimes new developers are not fully familiar with GitHub (Vasilescu et al. 2015). As
a result, new developers face various barriers when contributing to an open source project
(Steinmacher et al. 2018; Zanatta et al. 2017), such as lack of experience and communication
issues (Steinmacher et al. 2018). Different strategies, such as recruiting mentors, have been
suggested in the literature to let new developers better contribute to open source projects
(Steinmacher et al. 2012).

The size of an issue is the second metric with the highest Gini importance. Similarly, the
size of the user-reviews holds the highest Gini importance among the user-related metrics.
This can denote that developers of top five apps normally tend to address the user-reviews
that have described an issue more in detail.

For the top apps, we could match a higher proportion of user-reviews to issue reports
in comparison with the rest of the apps. As reported in the first research question (see
Section 3.1), we could match 27% of the user-reviews with 33% of the issue reports.
However, for the top five apps, 52% of the user-reviews are matched with 29% of the
issue reports. There is a notable increase in the proportion of the matches in the user-
reviews. However, there is a small decrease in the proportion of matches in the issue
reports, i.e., 33% to 29%. The top five apps address more issues that are reported in the
user-reviews, while developers keep reporting other issues that may not be reflected in the
user-reviews.

4 Threats to Validity

In this section, we discuss the threats to the validity of our study (Yin 2013).
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Table 9 Metrics of the ranking model based on top five apps, sorted by mean decrease in Gini

Metric Description Gini

Time since reporter has
joined GitHub

Estimates the reporter experience
by measuring the time since the
reporter is on GitHub.

89.94

Number of words in body The number of words that is used to
report an issue.

73.43

Reporter contribution The contribution of the reporter
is based on the contribution score
that is reported by GitHub. Github
calculates the contribution scores
with respect to the following
actions: committing, opening an
issue, proposing a pull request,
submitting a pull request, and co-
authoring commits in a repository
(GitHub 2018b).

54.16

Title size The number of words in the title of
an issue report.

51.60

Mean of time since users
who have involved have
joined GitHub

The mean value is calculated by
considering all the users who have
involved in an issue report, includ-
ing posting a comment and resolv-
ing the issue report.

49.70

Number of sentences
in body

The number of sentences in the
body of an issue report.

45.09

Mean of number of
words in user-reviews

The mean value is calculated by
considering the number of words in
each user-review that is related to
the issue report.

44.55

Mean of contribution
of users who have
involved in an issue

The mean value is calculated by
considering all the users who have
involved in an issue report, includ-
ing posting a comment and resolv-
ing the issue report. The contribu-
tion of each person is calculated by
GitHub.

40.46

Number of comments The number of comments that are
posted on an issue report.

39.31

Mean of number of sen-
tences in user-reviews

The mean value of the number of
sentences in the user-reviews that
are related to the issue report.

39.10

Mean of sentiment
scores of user-reviews

The mean value of the sentiment
scores of every user-review that is
related to the issue report.

32.65

Mean of numbers of
followers of users
who have involved in
an issue

The mean value of the number
of followers of the users who
have involved in resolving an issue
report, including posting a com-
ment and resolving the issue report.

29.92

Number of gists of
reporter

The number of gists that the
reporter has shared.

28.43
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Table 9 (continued)

Metric Description Gini

Mean of star-ratings Average of star-ratings that are associated
with an issue report.

26.63

Median of star-ratings Median of star-ratings that are associated
with an issue report.

24.32

Number of followings The number of users that the reporter follows
them on GitHub.

21.02

Number of repositories of
reporter

The number of repositories which to the
reporter contributes.

16.63

Proportion of user-reviews
with positive sentiment
scores

The user-reviews with positive sentiment
scores associated with an issue report.

16.13

Proportion of user-reviews
with neutral sentiment
scores

The user-reviews with neutral sentiment
scores associated with an issue report.

8.34

Proportion of user-reviews
with negative sentiment
scores

The user-reviews with negative sentiment
scores associated with an issue report.

7.54

Number of user-reviews The number of user-reviews associated with
an issue report.

7.24

Proportion of user-reviews
with high star-ratings

The user-reviews with high star-ratings asso-
ciated with an issue report.

6.76

Proportion of user-reviews
with low star-ratings

The user-reviews with low star-ratings asso-
ciated with an issue report.

6.19

Number of followers of
reporter

The number of users that follow the reporter
on GitHub.

3.58

Mean of numbers of fol-
lowings of users who have
involved in an issue

The average of the numbers of followings of
users who have involved in an issue, includ-
ing posting a comment and resolving the
issue report.

3.27

Mean of numbers of
repositories of users who
have involved in an issue

The average of the numbers of reposito-
ries of users who have involved in an issue,
including posting a comment and resolving
the issue report.

3.00

Proportion of user-reviews
with neutral star-ratings

The user-reviews with neutral star-ratings
associated with an issue report.

1.84

Mean of numbers of
gists of users who have
involved in an issue

The average of the numbers of gist of users
who have involved in an issue, including
posting a comment and resolving the issue
report.

1.82

4.1 Conclusion Validity

Threats to conclusion validity concern the relationship between the treatment and the out-
come. Martin et al. (2015a) report that using an incomplete set of user-reviews can introduce
bias to the findings of an empirical study. To eliminate this threat, we take all the user-
reviews of our apps into consideration. The choice of modeling technique is another threat
to conclusion validity. We use the linear regression model in the second research question.
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To evaluate the possible threat from the choice of modeling technique, we repeat our experi-
ment using a multinomial regression model and find that our conclusion is not affected (i.e.,
no generic model can be built and the same trend as in Fig. 7 is obtained).

4.2 Internal Validity

Threats to internal validity concern the analysis methods and selection of subject systems.
We select the mobile apps that have more than N matches between the user-reviews and
issue reports. The underlying assumption is that the apps with fewer matches do not (or
rarely) address the issues described in user-reviews. With our setting (i.e., N = 10) (Khalid
et al. 2016), only two of our apps are outliers, which have a small number of issue reports
(i.e., 10 and 11) while more than 50% of their issue reports mapped to the user-reviews. Our
conclusion remains the same with or without the two outlier apps. The number of comments
is one of the metrics that we measured for the issue reports. Only 1.5% of the comments are
“+1 comments” in our study. We use the reaction time to estimate the prioritization orders.
However, such an estimation may introduce some noises. Nonetheless, unfortunately, there
is no specific indicator that shows the exact priority of an issue report, i.e., the issue reports
are not tagged with specific priority levels. As described in the paper, we carefully measured
the reaction times to mitigate this threat. Finally, we did not report the recall of our approach
as it requires manually matching the user-reviews with all the issue reports. Instead, we
reported the precision.

4.3 External Validity

Threats to external validity concern the possibility to generalize our findings. Although
we only study the open-source apps, the subject apps are from diverse categories such as
Tools, Video Players & Editors, and Shopping. Therefore, our subject apps can represent a
considerable amount of mobile apps. Future work is welcome to examine our findings on
proprietary mobile apps.

4.4 Reliability Validity

Threats to reliability validity concern the possibilities of replicating this study. The user-
reviews and issue reports of all our subject apps are publicly accessible.

5 RelatedWork

In this section, we summarize the related work from three aspects: (i) user-reviews, (ii) issue
tracking systems and bug reports, and (iii) issue reports prioritization.

5.1 User-reviews

Recent work investigates the user-reviews that are posted on Google Play Store (Google
2017) to ease the process of app development and app maintenance (Galvis Carreño and
Winbladh 2013; Guzman and Maalej 2014; Iacob and Harrison 2013).

Chen et al. (2014) proposed a tool to identify the uninformative user-reviews and rank
the informative ones. Chen et al. (2014) employed textual analysis to detect the informative
user-reviews. Villarroel et al. (2016) classified and ranked the issues that are reported in the
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user-reviews to help app developers in planning for the next releases of their app. Villarroel
et al. (2016) proposed a tool to classify the user-reviews into the groups of bug reports and
feature requests. However, neither work considers the issue tracking systems in the ranking
process. Some of the issues that are reported in the user-reviews could already have been
reported in the issue tracking systems. Therefore, adding such issues to the issue tracking
system can introduce issue report duplication (Cavalcanti et al. 2013).

Ciurumelea et al. (2017) proposed an approach to organize user-reviews with respect
to different topics, such as performance and memory. Having the user-reviews organized,
they recommend source-code using code localization. Di Sorbo et al. (2016) presented an
approach to summarize the user-reviews. Iacob and Harrison (2013) employed LDA (Blei
et al. 2003) to extract the feature requests from user-reviews. They applied LDA on user-
reviews and looked for linguistic rules. Guzman and Maalej (2014) presented an approach
to assist developers in analyzing user-reviews. Guzman and Maalej (2014) applied topic
modeling techniques on the user-reviews for extracting features.

Moran et al. (2015) introduced a tool, called FUSION, to auto-complete bug reports.
Moran et al. (2015) applied statistic and dynamic analysis on the decompiled code of
Android apps. FUSION helps developers in reproducing bugs and auto-completing bug
reports. Martin et al. (2015b) studied the impact of app release in mobile app stores. Martin
et al. (2015b) observed that 40% of app releases impact performance in Google Play Store.
Galvis Carreño and Winbladh (2013) applied textual analysis on users’ feedback. They
applied topic modeling and sentimental analysis on user-reviews to assist app developer in
the revision of requirements for the next releases of their apps.

Earlier studies attempted to extract knowledge from user-reviews and ease the devel-
opment process. None of the earlier work has integrated the user-reviews into the process
of prioritizing the issue reports of the Android apps and has not studied the relationship
between prioritizing issue reports and star-ratings.

5.2 Bug Reports and Issue Tracking Systems

The source code and the issue tracking system of the majority of the Android apps are not
publicly available. Thus, the number of papers that study bug repositories and issue tracking
systems of Android apps is not comparable to the number of papers that study user-reviews.

Some papers are based on empirical studies on characteristics of issue tracking systems.
Bhattacharya et al. (2013) conducted an empirical study on 24 open-source Android apps.
They defined some metrics of bug report quality and developer involvement. Bhattacharya
et al. (2013) observed that bug reports are of high quality, especially the security bug reports
have the highest quality among the bug reports. Palomba et al. (2015) studied 100 Android
apps. They compared user-reviews with the change log of open-source apps that are avail-
able on GitHub. They reported that implementing the users’ feature requests in the next
releases can increase the star-ratings.

Some recent researches are based on the source-code of the open-source Android app.
McDonnell et al. (2013) studied the API update adoption by Android apps. They noticed
that about 28% of references are not up-to-date. They reported that the propagation time
of the API references to be updated is around 14 months. Maji et al. (2010) applied a fail-
ure characterization study on Android and Symbian apps. They investigate the relationship
between bugs, locations of the bugs in the code and code changes. Linares-Vásquez et al.
(2015) studied open-source apps. They noticed that app developers rely on manual execution
of apps and user-reviews to identify performance bugs.
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None of the recent work has studied the relationship between prioritization of issue
reports and star-ratings of mobile apps.

5.3 Issue Reports Prioritization

In this section, we introduce the related work that concerns the issue reports prioritization
which is mainly done on other eco-systems rather than mobile apps.

Lamkanfi et al. (2010) proposed a severity prediction approach by analyzing textual
description of issue reports of three open-source communities, including Mozilla, Eclipse
and GNOME. They used Naı̈ve Bayes to label the issue reports as severe or non-severe.
Alenezi and Banitaan in Alenezi and Banitaan (2013) employed Naı̈ve Bayes, decision
trees, and random forest to predict the priority of issue reports in Bugzilla (2018). They
observed that random forest and decision tree outperform Naı̈ve Bayes. Yu et al. (2010)
used neural network to prioritize the issue reports. They showed their approach works better
than Naı̈ve Bayes. Kanwal and Maqbool (2012) applied Naı̈ve Bayes and SVM to predict
the issue reports prioritization. They observed that SVM is better than Naı̈ve Bayes when
adopting textual metrics, such as issue report descriptions. However, they observed that
when considering the categorical metrics, such as platform, Naı̈ve Bayes performs better
than SVM. Menzies and Marcus (2008) ranked the terms that appear in the issue reports
by adopting TF-IDF. They used top terms to predict the priority of issue reports. Tian et al.
(2012) used the similarity between the current issue reports and the issue reports in the past
to estimate the priority of the new issue reports.

None of the above work incorporates user-reviews with issue report for prioritization.
We take the metrics of both issue reports and user-reviews to prioritize the issue reports.

6 Conclusion

In this paper, we investigate the prioritizations of user-related issue reports and their rela-
tionship with star-ratings. First, we introduce an approach for mapping user-reviews to issue
reports. We perform an empirical study of 326 open-source Android apps that have both
user-reviews and issue tracking systems publicly available. Our approach achieves a pre-
cision of 79%. Second, we observe that prioritizing issue reports is positively related to
increases in star-ratings. Finally, we propose a prioritization prediction method using the
top apps. The prioritization model can be applied to each app to identify the prioritization
orders of issue reports. Our results show that the apps with similar prioritizations to our
recommended ones receive higher star-ratings.

In the future, we plan to further investigate the generalizability of our approach. For
example, we will apply our approach to user-reviews and issue reports from other app
markets and issue tracking systems.
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