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Abstract
Recently, many software organizations have been adopting Continuous Delivery and Contin-
uous Deployment (CD) practices to develop and deliver quality software more frequently and
reliably. Whilst an increasing amount of the literature covers different aspects of CD, little is
known about the role of software architecture in CD and how an application should be (re-)
architected to enable and support CD. We have conducted a mixed-methods empirical study
that collected data through in-depth, semi-structured interviews with 21 industrial practitioners
from 19 organizations, and a survey of 91 professional software practitioners. Based on a
systematic and rigorous analysis of the gathered qualitative and quantitative data, we present a
conceptual framework to support the process of (re-) architecting for CD. We provide
evidence-based insights about practicing CD within monolithic systems and characterize the
principle of “small and independent deployment units” as an alternative to the monoliths. Our
framework supplements the architecting process in a CD context through introducing the
quality attributes (e.g., resilience) that require more attention and demonstrating the strategies
(e.g., prioritizing operations concerns) to design operations-friendly architectures. We discuss
the key insights (e.g., monoliths and CD are not intrinsically oxymoronic) gained from our
study and draw implications for research and practice.

Keywords Software architecture . Continuous delivery . Continuous deployment . DevOps .

Empirical study

1 Introduction

Development and Operations (DevOps) is a relatively new software development paradigm
that promises many benefits such as solving the disconnect between development and
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operations teams, faster development and deployment of new changes, and faster failures
detection (Bass et al. 2015; 2015 State of DevOps Report 2015; Bass 2017). Continuous
integration, delivery, and deployment practices are key DevOps practices to fully realize the
promises of DevOps without compromising quality (Bass et al. 2015). Continuous Integration
(CI) is the practice of integrating code changes constantly (i.e., at least daily) into the main
branch and entails automated build and testing (Fowler 2015a; Fitzgerald and Stol 2017). As
shown in Fig. 1,1 CI is the first and core enabler for adopting continuous delivery and
deployment practices (2015 State of DevOps Report2015; Hilton et al. 2017). Whilst contin-
uous delivery is focused on keeping software releasable all the time, continuous deployment
extends it in order to continuously and automatically deploy new changes into production
(Humble 2007).

Precise definitions of continuous delivery and deployment are often missing in both the
literature and industrial circles (Fitzgerald and Stol 2017; Humble 2007; Fowler 2013).
Continuous deployment is a push-based approach, by which code changes are automatically
deployed to a production environment through a pipeline as soon as they are ready, without
human intervention (Skelton and O'Dell 2016). Continuous delivery is a pull-based approach,
in which a person (e.g., a manager) is required to decide which and when production-ready
code changes should be released to production (Skelton and O'Dell 2016). Figure 1 shows the
relationship between these practices and how an application is deployed to different environ-
ments (Prince 2016). Whilst a production environment is where the applications or services are
available for end users, a staging environment aims at simulating the production environment
as closely as possible. Continuous delivery and deployment share common characteristics and
are highly correlated and intertwined (Thiele 2014; Luke and Prince 2016). Hence, we refer to
Continuous Delivery and Deployment (CD) as CD practices in this paper.

To support CD, organizational processes and practices may need to change and/or be
supplemented by innovative tools and approaches. To this end, several efforts have been
allocated to study and understand how organizations effectively adopt and implement CD
practices. A number of studies emphasize the importance of choosing appropriate tools and
technologies to design and augment modern deployment pipelines to improve the software
delivery cycle (Chen 2015a; Mäkinen et al. 2016; Jong et al. 2017). Other research argues that
the highly complex and challenging nature of CD practices requires changes in a team’s
structures, mindset, and skill set to gain the maximum benefits from these practices (Leppanen
et al. 2015; Claps et al. 2015). The other areas of interest in CD research are focused on
improving automation in testing and deployment, and integrating performance and security
into the deployment process (Shahin et al. 2017a).

It has recently been claimed that the fundamental limitations to adopting CD practices are
deeply ingrained in the architecture of a system and these practices may bring substantial
architectural implications (Bass et al. 2015; 2015 State of DevOps Report 2015; Shahin et al.
2017a; Laukkanen et al. 2017). Whilst the industrial community, through white papers and
practitioners’ blogs, has investigated the role of software architecture in CD adoption (2015
State of DevOps Report 2015; Northrop 2015; Vishal 2015), there is little empirical effort to
study how software architecture is being impacted by or is impacting CD practices (Chen
2015b; Bellomo et al. 2014; Schermann et al. 2016). This is evident in the recently published
systematic reviews on CD (Shahin et al. 2017a; Laukkanen et al. 2017; Rodríguez et al. 2017),
in which a new line of research has been called to explore how an application should be (re-)

1 Note that some of icons used in this figure are taken from freepik.com and thenounproject.com
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architected for CD. Furthermore, to succeed in the DevOps/CD movement, which emphasizes
treating operations teams and operational aspects as first-class entities in the software devel-
opment process, modern architectures should deal with both design and runtime considerations
(e.g., predictive monitoring) (Bass et al. 2013, 2015; Dooley 2015; Hohpe et al. 2016; Woods
2016). For example, software architecture in a CD context should ensure the desired level of
quality attributes (e.g., deployability), and reduce the feedback cycle time from operations to
development (Bellomo et al. 2014). We assert that an appropriate software architecture (SA) is
required to maximize the potential benefits of CD practices. To characterize CD-driven
architectures, we carried out a large-scale empirical study, using a mixed-methods approach,
which involved 21 semi-structured interviews with participants from 19 organizations and a
follow-up survey of 91 software practitioners to assess and quantify the interviews’ findings.
Our study was guided by the following research question:

RQ. How should an application be (re-) architected to enable and support continuous
delivery and deployment?

Our results suggest monoliths and CD are not intrinsically oxymoronic. However, adopting
CD in this class of systems is more difficult due to the hurdles that they present in terms of
team autonomy, fast and quick feedback, enabling automation (e.g., test automation) and
scalable deployment. To that end, the principle of “small and independent deployment units” is
used as an alternative to the monoliths by some participants’ organizations. We find that
autonomy in terms of deployability, modifiability, testability, scalability, and isolation of
business domain are the main characteristics of this principle. With that information, we intend
to support organizations to move from a monolith to “small and independent deployment
units”. We also discuss quality attributes including deployability, modifiability, testability,
loggability, monitorability, and resilience (also indicated by previous research (Chen
2015a)), which require more attention when designing an application in a CD context. We
provide concrete examples of these quality attributes in action and discuss their role for CD
success. Finally, we demonstrate three strategies (e.g., prioritizing operations concerns) sug-
gested by our participants to design operations-friendly architectures. This study, as the first
large-scale qualitative study of architecting for CD, makes the following contributions:

(i) A better understanding of the characteristics of CD-driven architectures;
(ii) A catalog of 16 empirically-justified findings that can be used to help organizations and

practitioners to adopt CD and to guide them in creating CD-driven architectures;

Fig. 1 The relationship between continuous integration, delivery and deployment
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(iii) A conceptual framework to support the process of (re-) architecting for CD;
(iv) Concrete and actionable recommendations for both practice and research.

We have previously reported the design and findings of the interview part of our research on
this topic, based on an analysis of 16 interviews (Shahin et al. 2016). This paper significantly
extends and enhances the previously published work by adding the analysis and findings from
five more interviews, assessing and generalizing the findings from the analysis of the data
gathered by surveying 91 practitioners, characterizing “small and independent deployment
units”, and providing additional perspectives on operational aspects drawn from the previously
published work.

The rest of the paper is organized as the follows: Section 2 summarizes prior related work.
Section 3 presents our research method. We present demographic information in Section 4.
The quantitative and qualitative results are described in Section 5. Section 6 closes the paper
with our discussion and reflection on the findings.

2 Related Work

The related work is divided into the general literature on CI and CD practices, and the specific
literature on the role of SA in CI and CD adoption.

2.1 General Literature

Primary Studies Transition to CI/CD practices is a nontrivial process that necessitates tech-
nical, cultural, process and tooling changes in organizations to support the highly complex and
challenging nature of these practices. A set of studies have examined the barriers to
implementing CI (Hilton et al. 2017; Debbiche et al. 2014; Mårtensson et al. 2017). For
example, Hilton et al. (2017) show that debugging CI build failures and long build times are
the top two barriers faced by practitioners using CI. Debbiche et al. (2014) indicate test
dependencies and long-running tests as barriers in this regard. Another line of research has
focused on developing techniques or practices to improve CI adoption (see (Shahin et al.
2017a) for more information), e.g., prioritizing tests to reduce build and test times in CI
(Elbaum et al. 2014; Jiang et al. 2012) and increasing visibility for CI process through
visualizing the data produced in CI (Brandtner et al. 2015; Kim et al. 2009).

Adams and McIntosh (2016) characterize a modern release engineering pipeline by defin-
ing six major phases (e.g., infrastructure-as-code), which can help to ease the adoption of
modern release practices (e.g., CD practices). The study argues that whilst the industry has
started widely implementing these practices, the empirical evaluation of these practices is in
the nascent phase. A number of studies have examined the challenges, pitfalls, and changes
that organizations may have experienced in CD adoption and/or adopted practices for this
purpose. Claps et al. (2015) studied the technical and social challenges of adopting continuous
deployment in a single case software company. Based on the analysis of the data gathered from
20 interviews with software practitioners in the case company, they identified 20 challenges
such as team experience, team coordination, continuous integration, infrastructure, and partner
plugins. They reported on the strategies (e.g., rigorous testing for databases) adopted by the
case company to alleviate the challenges. The findings of this study reveal that adopting
continuous deployment necessitates changing team responsibilities, greater team coordination
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and involves several risks. Savor et al. (2016) present an experience report on implementing
continuous deployment at Facebook and OANDA. The study reveals that despite the tremen-
dous increase in the number of team members and the complexity of code size over 6 years,
continuous deployment did not negatively affect the team productivity (i.e., lines of added or
modified code deployed to production per developer) and software quality (i.e., number of
production failures). Furthermore, the study distills some issues such as management support
and extra effort for understanding updates that an organization may encounter during the
journey towards continuous deployment adoption. Chen (2015a) and Leppanen et al. (2015)
report the benefits that CD practices provide for software development organizations, includ-
ing reduced deployment risks, lower development and deployment costs, and faster user
feedback. A number of obstacles and challenges (e.g., resistance to change, customer prefer-
ence, and domain constraints) to CD are also reported in (Chen 2015a; Leppanen
et al. 2015), which are in line with the challenges reported by Claps (Claps et al.
2015). Apart from the challenges reported in (Chen 2015a; Leppanen et al. 2015;
Claps et al. 2015), the stage-gate process is also a roadblock to continuous delivery
success (Laukkanen et al. 2016). A stage-gate process has several quality gates to
ensure the quality of new releases before entering the next stage. Laukkanen et al.
(2016) indicate that tight schedules, process overheads and multiple branches, which
are associated with a stage-gate process, make it almost impossible to adopt the
continuous delivery practice in a stage-gate managed organization.

Secondary Studies Based on a Systematic Literature Review (SLR), Stahl et al. (Ståhl and
Bosch 2014) identified 22 variations (e.g., fault responsibility) in the implementation of CI in
software industries. From the design perspective, one of the variation points is related to
modularized CI, discussing the statements about the composition of components in a system,
and how components can be managed (e.g., managing source code) independently. Recently,
there have been several reviews published on CD practices (Shahin et al. 2017a; Laukkanen
et al. 2017; Rodríguez et al. 2017) and rapid release (Mäntylä et al. 2015). Mäntylä et al.
(2015) conducted an SLR aimed at identifying the benefits (e.g., customer satisfaction),
enablers (e.g., tools for automatic deployment) and challenges (e.g., time pressure) of rapid
release (including CI and CD). Based on 24 primary studies, the review concludes that rapid
release is a popular practice in the industry; however, there is a need for empirical studies to
prove the claimed advantages and disadvantages of rapid release. Three recently published
reviews (Shahin et al. 2017a; Laukkanen et al. 2017; Rodríguez et al. 2017) on CD practices
mostly focused on the issues that hinder adopting CD, along with solutions to address those
issues. Among others, some of the major stumbling blocks to CD are rooted in the system
design, production environment, and testing practices. Furthermore, it has been revealed that
the solutions to testing and system design problems in CD are rare. Shahin et al. (2017a) also
define the critical factors that a given organization needs to consider carefully along the CD
adoption path, including testing (effort and time), team awareness and transparency, good
design principles, customer satisfaction, highly skilled and motivated teams, application
domains, and appropriate infrastructure(s). Rodríguez et al. (Rodríguez et al. 2017) identify
10 factors, such as fast and frequent release, continuous testing and quality assurance, and the
configuration of deployment environments, which together characterize CD practices. The
configuration management process in CD refers to storing, tracking, querying, and modifying
all artifacts relevant to a project (e.g., application) and the relationships between them in a fully
automated fashion (Humble and Farley 2010).
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2.2 Architecting for CI and CD Practices

The software architecting process aims at designing, documenting, evaluating, and evolving
software architecture (ISO/IEC/IEEE Systems and software engineering – Architecture de-
scription 2011). Recently, Software Architecture (SA) research has been experiencing a
paradigm shift from describing SA with quality attributes and the constraints of context (i.e.,
the context and requirement aspect) and structuring it as components, connectors and views
(i.e., the structure aspect) to focusing on how stakeholders (e.g., the architect) make architec-
tural decisions and reason about the chosen structures and decisions (i.e., the decision aspect)
(Hohpe et al. 2016; Capilla et al. 2016). Whilst current research and practice mostly consider
architecting as a decision-making process, it has recently been argued that SA in the new
digitalization movements (e.g., DevOps) should cover the realization aspect as well (Hohpe
et al. 2016). The realization aspect of software architecture design is expected to deal with
operational considerations such as automated deployment, monitoring, and operational con-
cerns. However, the SA research community has provided few guidelines and systematic
solutions for this aspect of software architecture (Woods 2016). Accordingly, our findings in
this study are placed in all four aspects of software architecture in the CD context, as Sections
5.1 and 5.2 mostly focus on the structure aspect, Section 5.3 is about the context and
requirement aspect and Section 5.4 concerns the realization aspect. Finally, the decisions
and rationales (the decision aspect) that are made at the level of architecture for CD, are
embedded in these aspects of software architecture.

Nonetheless, whilst previous works indicate that an unsuitable architecture would be a
major barrier to CD transition (Shahin et al. 2017a; Laukkanen et al. 2016, 2017; Rodríguez
et al. 2017), there has been little empirical research on the role of SA as a contributing factor
when adopting CD practices. Some initial efforts on this topic have been reported in (Chen
2015b; Bellomo et al. 2014; Schermann et al. 2016; Mårtensson et al. 2017; Balalaie et al.
2016). Mårtensson et al. (2017) have conducted a case study to explore the behavior of
developers in CI practice in two case organizations. They identify 12 enabling factors (e.g.,
“work breakdown” and “test before commit”) impacting the capability of the developers to
deliver changes to the mainline. The study (Mårtensson et al. 2017) argues that some of these
factors (e.g., work breakdown) can be limited by the architecture of a system. Chen (2015b)
reports on the experience of architecting 25 software applications for continuous delivery. The
study indicates that continuous delivery creates new challenges for architecting software
applications. According to Chen, continuous delivery heavily influences a set of Architectur-
ally Significant Requirements (ASRs), such as deployability, security, modifiability, and
monitorability. It is asserted that the maximum benefits of continuous delivery are achieved
by effectively satisfying the aforementioned quality attributes. Bellomo et al. (2014) studied
three projects involving continuous integration and delivery to understand deployability goals
of those projects. The study (Bellomo et al. 2014) reveals that most of the decisions made to
achieve the desired state of deployment (i.e., the deployability quality attribute) were related to
the architecture of the systems in those projects. Based on the study’s findings, the authors
formed a deployability tactics tree. Schermann et al. (2016) conducted an empirical study to
identify the current practices and principles in the software industry to enable CD practices.
They observed that A/B test and dark launches as practices of CD are not often applied in
industry and the feature toggles technique may bring unwanted complexity. Recently, a few
academic and white papers have discussed microservices architecture as a first and promising
architectural style for CD practices (Balalaie et al. 2016; Newman 2015; Ford and Parsons
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2016). Microservices architecture aims to design software applications as a set of indepen-
dently deployable services (Newman 2015; Lewis and Fowler 2010). Balalaie et al. (2016)
report an experience of migrating a monolith to a microservices architecture. Apart from
changing team structures (e.g., forming small cross-functional teams), they applied a number
of migration patterns (e.g., change code dependency to service call) to decompose the
monolithic system into microservices (Balalaie et al. 2016). Furthermore, the migration
process included introducing new supporting components and using containerization to
support CD practices.

3 Research Method

It is argued that the research method should be selected based on the nature and objectives of
the studied problem (Easterbrook et al. 2008). To help realize this goal, we chose a mixed-
methods approach with a sequential exploratory strategy (Easterbrook et al. 2008) consisting
of interviews and a survey to find the answer to the research question for this study. Gathering
data from different sources (i.e., data triangulation) increases the accuracy and reliability of the
results (Easterbrook et al. 2008; Waterman 2014). As shown in Fig. 2, after creating an
interview guide, we conducted 21 interviews with both architecture and non-architecture
practitioners to gather a wide range of perspectives and to gain a deep understanding of how
adopting CD practices may impact on the software architecting process. The interviews had a
qualitative focus and mainly dealt with “How” and “What” questions (see Appendix 1). At the
next step, we ran a survey to reach out to a large number of populations of software industrial
practitioners. The survey aimed at quantifying, augmenting, and generalizing the
findings obtained from the interviews. Although the survey mostly focused on quan-
titative aspects, we had some open-ended questions to gain further thoughts and
opinions from the respondents. We developed a research protocol using appropriate
guidelines (Hove and Anda 2005; Kitchenham and Pfleeger 2008) and meticulously
followed it whilst conducting this study.

Fig. 2 Research method steps
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3.1 Interviews

3.1.1 Protocol

The interview guide involved 30 open-ended questions that were designed to support a natural
conversation between the interviewer and the interviewee. The interview questions enabled the
participants to freely and openly share their experiences and thoughts. We carried out 21 semi-
structured, in-depth interviews with participants from 19 organizations. Most of the interviews
(i.e., 19) were carried out via Skype. Given the time and geographical restrictions, 2 of the
participants opted for sharing their responses via email. After getting practitioners’ consent for
participation in the interviews, we shared the questions with them before conducting the
interviews. This practice enabled the participants to become familiar with the objectives of
the interview’s questions before participating in the interview (Hove and Anda 2005). As the
study progressed, we modified some of the questions based on the feedback from the
interviewees (Waterman 2014). This included rephrasing three questions, dropping four
questions (e.g., the question related to development methodology) to shorten the interview
time, and adding two questions (i.e., Q 12.2 and Q 15 in Appendix 1). Although the interview
questions were only stable after the fifth interview, we believe this did not affect our findings,
as the findings reported in this paper were confirmed by multiple interviewees. It is worth
mentioning that the interviews were exploratory in nature and generalizability was not the
main goal. The first author conducted the interviews, each of which lasted from 60 to 90 min.
With the interviewees’ consent, we audio-recorded the interviews and fully transcribed them
for an in-depth analysis. For readability purposes, we corrected the grammatical issues in the
transcripts of the interviews. Our interview guide was created based on our earlier systematic
review (Shahin et al. 2017a) and a multi-vocal literature review (i.e., non-peer-reviewed
sources of information such as blogs (Garousi et al. 2016)). The interview instrument had
five parts: first, it started with a short explanation of the research goals. Second, the inter-
viewees were asked demographic questions (e.g., role and number of years of experience).
Third, we asked them to select at least one project from their organization or client that had
adopted or was adopting continuous delivery or deployment practices. In fact, continuous
delivery and deployment had to be the major focus in the project to be used as a reference point
for each of the interviews. Then the interviewees were asked to share the challenges, pitfalls,
and the changes that CD practices may have brought to the architecting process, and the
architectural principles and practices that they used to address them. Fifth, we asked them to
share how they took into consideration the operations teams and their concerns in their
respective development processes. At the end of each interview, we asked the interviewees
to share any other comments and potential issues regarding the questions. The interviews
produced a total of almost 23 h of audio and over 90,000 words of transcriptions. The key parts
of the interview guide have been included in Appendix 1 of this paper.

3.1.2 Participants

We aimed to recruit participants using purposive sampling for this study (Palinkas et al. 2015).
We approached software practitioners who either had valuable experience in (re-) architecting
for CD (e.g., were the architect) or were closely involved with or influenced by architecture
(e.g., were DevOps engineers). They had worked for organizations that had adopted or were
adopting CD or were part of CD/DevOps consulting organizations. The interviewees were
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identified in multiple ways, including industry contacts, our personal networks and (keynote)
speakers and attendees of industry-driven conferences on DevOps, CD, or SA. Furthermore,
we ran the following search terms on the Google search engine to find highly relevant
practitioners in this regard: “architecting for DevOps”, “architecting for continuous delivery/
deployment”, and “microservices and continuous delivery/deployment”. Then we invited them
for the interview study directly. Apart from rigorously analyzing the potential participants’
profiles to understand whether they had the right types of competences for this study, as
discussed in Section 3.1.1, the interview questions were sent in advance to the potential
participants so that they could decide whether or not they were suitable participants. We
motivated the interviewees by giving them a free copy of a book (i.e., “DevOps: A Software
Architect’s Perspective” (Bass et al. 2015)) after the study. It should be noted that we
interviewed practitioners with different levels of seniority, different project roles, and different
types of experiences in order to achieve a broad and rich understanding and characterization of
the implications of CD practices on the architecting process. The interviewees were working in
different types of organizations from a set of diverse domains and of varying business sizes,
e.g., from small (<100 employees), medium-sized (100–1000 employees) and large organiza-
tions (> 1000 employees). We also used a “snowballing technique” to ask participants to
introduce suitable candidates for participation (Goodman 1961). Out of 21 interviewees, 5
were identified through our personal contacts, 2 using the snowballing technique and 14 by
googling and browsing their profiles.

3.1.3 Analysis

We performed a qualitative analysis of the interview data using a conceptualized thematic
analysis technique in software engineering (Cruzes and Dyba 2011). Given the large volume of
data, we decided to use a qualitative data analysis tool called NVivo.2 We initiated the analysis
by creating three top-level nodes in NVivo: (1) the challenges and pitfalls that the interviewees
faced at the architecture level in transition to CD; (2) the architectural principles, solutions, and
practices they employed to better support CD; and (3) the strategies and practices that the
interviewees’ organizations employed to treat operations team and their concerns as first-class
entities. Our data analysis process started after the third interview, indicating both data
collection and analysis proceeded in parallel (Seaman 1999). While the first researcher
performed the analysis process, the second researcher examined all extracted themes to both
confirm the themes and identify any other potential themes. We followed the five steps of the
conceptualized thematic analysis as detailed below:

1. Extracting data: data analysis began with reading and examining the transcripts of the
interviews to extract the key points of each interview.

2. Coding data: at this step of the analysis, the initial codes were constructed. Our interview
mostly targeted “How” questions, which were answered in a few sentences rather than
being abstract. This enabled us to extract the initial architectural challenges, principles and
solutions as well as strategies for addressing operational aspects (Fig. 3.A). Making use of
NVivo enabled us to move back and forth between the codes easily and review all the
extracted data under a particular code.

2 http://www.qsrinternational.com
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3. Translating codes into themes: for each interview transcript, we tried to combine the
different initial codes generated from the second step into potential themes (Fig. 3.B).

4. Creating a model of higher-order themes: the extracted themes were constantly compared
against each other to understand which themes had to be merged with others or dropped
(e.g., through a lack of evidence) (Braun and Clarke 2006). We grouped them into
categories that represent a higher-order model of themes (Fig. 3.C).

5. Assessing the trustworthiness of the synthesis: through this step, we first assessed the
trustworthiness of the interpretations from which core themes emerged (Cruzes and Dyba
2011). In this step, we established arguments for the extracted themes, for example in
terms of credibility, are the claimed core themes supported by the evidence of the thematic
synthesis? For confirmability purposes, is there any consensus among the researchers on
the coded data? Then, each core theme was given a clear and precise name.

Figure 3 shows the application of the conceptualized thematic method on some of the
interview transcripts to identify the “team dependences” theme.

3.2 Survey

3.2.1 Protocol

The online survey was designed based on the guidelines suggested by Kitchenham and
Pfleeger (Kitchenham and Pfleeger 2008) and hosted on Google Forms. The survey questions
were formulated based on the interviews’ findings to augment and generalize the findings with
a larger sample size. In the survey preamble, we briefly explained the study’s goals and the
eligibility requirements of potential participants. We also defined the architecting process,
continuous delivery, continuous deployment, and deployability terminologies. This informa-
tion was necessary to ensure that all of the survey participants understood and used those
terminologies consistently. Similar to the interview guide, the survey targeted questions about
the participants’ backgrounds, the impact of CD on the architecting process, and operational
aspects of CD. Apart from demographic questions, the survey had 30 questions including five-
point Likert-scale (25 questions), multiple-choice (1 question), single-choice (2 questions) and
open-ended (2 questions) questions. All questions were mandatory. In multiple- and single-

Fig. 3 The steps of applying conceptualized thematic analysis on the interview transcripts
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choice questions, we also provided an “Other” field to collect further opinions and thoughts
from the participants (Gousios et al. 2016). Likert-scale questions asked the participants to rate
three types of statements: (1) how they agreed or disagreed with the statements (i.e., from
strongly agree to strongly disagree); (2) how important (i.e., from very important to unimpor-
tant) the statements or the challenges reported in the statements were; (3) how frequently the
statements occurred (i.e., from almost always to never). At the end of the survey, we included
an optional open-ended question to collect any general comments about the questionnaire. The
feedback provided by the participants through this question helped us to rephrase five
questions (e.g., removing ambiguity in a question’s wording) and add two questions including
statements S1 (n = 42) and S17 (n = 83) in the middle of running the survey to cover more
aspects of CD and SA. It is worth noting that the survey questions were not reworded any
further after receiving the tenth response. The survey was in English and took about 20 min to
complete. The complete list of the survey questions is shown in Appendix 2 of this paper.

3.2.2 Participants

We advertised the survey to several groups interested in the topics related to DevOps, CD, and
microservices on LinkedIn. Then we emailed 4050 GitHub users and asked them to complete
the survey. In the email invitation and survey preamble, we asked the participants to forward the
survey to any colleagues eligible to participate. We incentivized participation in the survey by
offering five copies of a DevOps book (i.e., “DevOps: A Software Architect’s Perspective”) to
five randomly selected respondents, who wished to be considered for the draw. However, fewer
than 10% of all responses came from the above-mentioned recruitment approaches. We believe
that is mainly because our survey needed an advanced level of knowledge and expertise in both
SA and CD. Murphy-Hill et al. (Murphy-Hill et al. 2015) also revealed that posting the survey
on social networks may not encourage a large number of practitioners to participate. Although
we only used the email addresses that were publicly available on GitHub to invite the GitHub
users, this approach raised minor issues, e.g., a few of them complained about their email
addresses being harvested. Therefore, we approached the highly relevant practitioners by
following the process used to recruit the interviewees: finding highly relevant practitioners
(e.g., speakers at industry-driven conferences on CD, DevOps, and SA), thoroughly analyzing
their profiles, and contacting them directly via email. Overall, we emailed the survey to 487
highly relevant practitioners. In the end, we received 96 responses from all the three recruitment
methods. All 96 responses were examined to identify careless responses (Meade and Craig
2012). We found 5 invalid responses by analyzing outliers, examining inconsistencies in
response to two related questions (e.g., S4 and S5), and recognizing the same responses to
consecutive questions (e.g., S7 to S10) (Meade and Craig 2012). It should be noted that we
abstained from measuring a response rate for our survey due to having a heterogeneous target
population (e.g., practitioners might be members of multiple LinkedIn groups).

3.2.3 Analysis

We applied descriptive statistics to analyze the data gathered from the closed-ended questions
(e.g., Likert-scale questions) (Murphy-Hill et al. 2015). To analyze the open-ended questions,
we followed the conceptualized thematic analysis method described in Section 3.1.3. Similar-
ly, the first author conducted the analysis process and then the second author examined all the
extracted themes.
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3.3 Threats to Validity

Whilst we followed the existing guidelines strictly to conduct this study (Kitchenham and
Pfleeger 2008; Kitchenham et al. 1995), similar to other empirical studies, there are some
threats that may have affected the findings of this study. One of the threats that may occur in
any empirical study concerns the sampling method. As we described in Sections 3.1.2 and
3.2.2, we purposively recruited the participants (e.g., analyzing the profiles of potential
practitioners). We are confident that most of the interviewees and the survey participants
had the right experience and expertise to participate in our study. However, this may have led
to an overstatement of the importance of SA in successfully adopting CD (Cito et al. 2015).
We minimized this threat by recruiting non-architecture practitioners, such as developers and
DevOps engineers in both the survey and interviews. We also included participants holding
different roles in the same organization to help reduce any personal bias. In the retrospective
studies (e.g., interviews), the participants may not have been able to remember all the details
during interviews (Murphy-Hill et al. 2015). We adopted two strategies to alleviate memory
bias: first we sent the interview questions in advance to the interviewees to help them to refresh
their memories of all the relevant details and implicit decisions. We also asked them to share
their experiences from their most recent projects or clients. Another threat that may have
influenced the participants’ answers was social desirability bias (Cito et al. 2015; Adrian
1996), in which a participant tries to answer the questions in a manner that s/he perceives a
researcher would want. We limited this bias by informing the participants at the beginning of
the interviews and survey that personal details are not to be divulged and all the collected data
would be anonymized (Gousios et al. 2016). Another limitation lies in the validity and
presentation of the questions used in the interviews and the survey (Fowler Jr 2013). All the
questions were designed by the first author and thoroughly reviewed and validated by the other
authors and a select number of industrial practitioners. We also improved the questions’
wording based on the received feedback. During the interviews, we mostly used open-ended
questions, and extensively encouraged the interviewees to provide as detailed answers
as possible. Whilst the email-based interviews may not have generated in-depth
information, it is argued that the responses sent for the email-based interviews are
more thoughtful and focused (Meho 2006). The survey questions originated from the
interview findings. Wherever required we included open-ended questions or an “Oth-
er” field in order to collect additional information. We note that we did not find too
much additional information through the open-ended questions and “Other” fields,
suggesting the interviews successfully identified the significant findings.

Researcher bias can be another potential threat to the validity of the findings in a qualitative
study. A large part of the data analysis step was conducted by the first author. In order to
minimize this threat, the second author investigated all the extracted themes. In case of any
doubt, continuous discussions were organized with the second author to maintain the accuracy
of the analysis process, which was also guided by the pre-defined research protocol described
in Sections 3.1 to 3.2. This study used the triangulation technique to collect data from two
sources to minimize any researcher bias. The findings of the interviews and formulation of the
survey questions heavily relied on the interviewees’ statements, which might be subjective,
and can negatively impact on the findings of this study. To alleviate this threat, we have only
reported those findings that were confirmed by multiple participants (e.g., at least two
participants). In addition, we provided a precise description of the terminologies used
in the interview and survey questions to the participants. We are confident that this
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strategy helped both the researchers and the participants to have a common under-
standing of the terminologies used.

Similar to other empirical studies, generalizability is a potential threat to the findings of our
study. For the interviews, the participants with a wide range of backgrounds (e.g., different
roles) were knowingly selected and invited from very diverse types of organizations in terms
of size, domain, and way of working, in several countries. We believe our sampling technique
largely improved the reliability of our analysis and the generalizability of the findings.
Additionally, we augmented and generalized the findings of the interviews through the survey.

4 Demographics

4.1 Participants’ Profiles

We interviewed 21 software practitioners (indicated by P1 to P21) from 19 organizations in 9
countries. Table 1 presents a summary of the demographic details of the interviewees. We also
received 91 responses to the survey (indicated by R1 to R91).

Technical Roles For both the interviews and survey, the dominant participants were architects
(33.3 and 42.8% respectively). The interview study also included 4 consultants, 2 executives
(e.g., a Director of Engineering), 2 project managers, 2 technical leads, and there was one
developer, one DevOps engineer, one operations engineer and one software engineer. The
remainder of the roles participating in the survey included 10 consultants, 9 DevOps engineers,
7 developers, 6 team leads, 6 software engineers, 3 operations engineers, 3 executives, 2
program managers, and 6 with other roles.

Table 1 Summary of the interviewees’ details

ID Role Exp. Year Org. Size Org. Domain

P1 Architect >10 Medium Research Institute
P2 Developer 7 Large Technology
P3 Senior DevOps Consultant >10 Large Consulting and IT Services
P4 Program Manager >10 Large Telecommunications
P5 Director of Engineering >10 Small RFID
P6 Vice President of Development >10 Large Financial
P7 Project Manager >10 Medium Networking
P8 DevOps Engineer 8 Large Telecommunications
P9 IT Consultant >10 Medium Consulting and IT Services
P10 Continuous Delivery Consultant >10 Medium Consulting and IT Services
P11 Architect >10 Medium Consulting and IT Services
P12 Technical Lead 8 Large Consulting and IT Services
P13 Architect >10 Large Consulting and IT Services
P14 Architect 6 Medium Financial
P15 Architect >10 Small Consulting and IT Services
P16 Operations Engineer >10 Small Games
P17 Technical Lead 7 Medium Games
P18 Consultant >10 Small Consulting and IT Services
P19 Solution Architect >10 Large Technology
P20 Software Engineer 4 Large Technology
P21 Solution Architect 2 Small Startup
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Experience 90.4% of the interviewees and 89% of the survey participants had at least 6 years
of experience in software development. Furthermore, 74.7% of the survey respondents had
more than 10 years of software development experience

Organization Sizes and Domains The interviewees and the survey respondents came from
organizations of varying sizes. The majority of the participants came from large organizations
(i.e., 42.8% of the interviewees, 38.4% of the survey respondents), followed by medium-sized
organizations (33.3% of the interviewees and 32.9% of the survey respondents) and small
organizations (23.8% of the interviewees and 28.5% of the survey respondents). Although the
interviewees and the survey respondents came from a diverse set of organizations in terms of
domains, the dominant domains were consulting and IT services, financial services, and
telecommunications.

4.2 Practicing Continuous Delivery and Deployment

We asked both the interviewees and the survey participants to indicate how often, on overage,
the applications in their respective or client organizations are in the deployable state (i.e.,
implementing continuous delivery) and how often they deploy the applications to production
(i.e., implementing continuous deployment). These questions were designed, to a large extent,
to determine the maturity of implementing continuous delivery and deployment practices (i.e.,
how an organization adopts and implements continuous delivery and deployment) (Leppanen
et al. 2015). It is clear from Fig. 4 that 57.1% of the interviewees (12) and 54.9% of the survey
participants (50) indicated that on average the applications in their respective or client
organizations were in a releasable state multiple times a day or once a day. This number for
continuous deployment practice was lower, as 7 interviewees (33.3%) and 34 survey respon-
dents (37.3%) stated that they automatically deploy their applications multiple times a day or
once a day to production. These results indicate that our findings came from reliable sources as
the participants’ organizations successfully implemented CD practices. Three interviewees
(i.e., P11, P12, and P19) had no idea about how often the application changes were in the
deployable state (i.e., shown as N/A in Fig. 4). Interestingly, 6 participants indicating the
changes were production-ready at least a few times a month had actual production deployment
a few times a year. We argue that the reason for this may stem from factors such as domain
constraints and quality concerns (Shahin et al. 2017b).

Fig. 4 How continuous delivery and deployment are implemented in the interviewees’ (left) and surveyed
participants’ (right) organizations
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5 Findings

Based on the findings from this study, we have drawn a conceptual framework to support (re-)
architecting a system for CD (Fig. 5). This framework consists of five parts: Monoliths,
Migration, Small and Independent Deployment Units, Quality Attributes, and Operational
Aspects.Monoliths part is shown on the top left side of Fig. 5, which reflects the possibility of
practicing CD within monoliths with potential challenges that may hinder CD adoption in this
class of systems (Section 5.1). Since monolithic architecture is predominant in software
industries (Andre van Hoorn et al. 2017), there may be organizations that want to achieve
CD with their monoliths. To this end, they need to augment/improve the architecture of their
systems by applying the practices and strategies presented in Quality Attributes and Opera-
tional Aspects. Quality Attributes and Operational Aspects have the main goal of creating a
CD-driven architecture, apart from the chosen architecture style. It is worth mentioning that
this is mainly because the practices and strategies in these two parts were often reported by our

Fig. 5 A conceptual framework of the findings showing how to (re-) architect for CD
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participants as prerequisites to, or supportive of, CD-driven architectures. The framework
indicates that the Operational Aspects can be injected into the architecting process in the
context of CD and Quality Attributes serve as input to both Monoliths and Small and
Independent Deployment Units. The Operational Aspects (left bottom side of Fig. 5) provide
the strategies to design operations-friendly architectures (Section 5.4). At the bottom of Fig. 5,
we have the Quality Attributes that need to be carefully considered to design CD-driven
architectures (Section 5.3). We find that these quality attributes impact the architecture in the
CD context in two dimensions: positive (+) and negative (−).

The challenging nature of the monoliths may compel organizations to move from mono-
lithic systems with long development and deployment cycles to Small and Independent
Deployment Units (top right side of Fig. 5). The framework supports organizations in this
journey by providing a list of reliable factors, shown asMigration in the middle of Fig. 5. They
can be used to characterize Small and Independent Deployment Units (Section 5.2.1). The
migration journey results in vertical layering or microservices (Section 5.2.2).

5.1 Monoliths and CD

In its non-technical definition, a monolith is defined as “a large block of stone”. Exploring
literature and practitioners’ blogs shows that there is no common understanding and interpre-
tation of the term monolith as different types of monoliths may be created during software
development: for example, monolithic applications, monolithic builds and monolithic releases
(Skelton 2016). In our study, we define a monolith as a single executable artifact that contains
various domains, layers, and many components, modules, and libraries, in which all the
functionality is managed and packaged in one deployable unit (see Fig. 5) (Self-Contained
Systems: Assembling Software from Independent Systems 2014; Dragoni et al. 2017). Our
interview study demonstrates that monolithic architectures are seen as a major problem in
organizations during CD adoption. The following is a representative quotation about the
negative impressions given of monoliths: “I do not know [if] they [the architects] are aware
of that; they create kind of monolithic applications and the monolithic application contains
large functional domains [that] would be hard to use in a large-scale organization if you want
to have continuous delivery” P10.

Whilst the monolithic architecture, as a barrier to CD, was one of the most commonly
occurring codes in the interviews (i.e., indicated by 15 interviewees, of which 6 of them were
in the role of architect), we also found evidence in the interviews that CD can be implemented
in monoliths. Particularly, when there is a loosely coupled and modular architecture with
clearly defined interfaces and one single team working on it, e.g., “I have seen [examples of
adopting] CD in monolithic applications, when they [organizations] don’t split them and they
go very fast because [there is] still single team, they can be extremely fast, high-quality. The
software is modular, and it is not split, and it works well for them” P14.

Furthermore, while conducting the survey, we received comments from the survey respon-
dents that they had been successful in adopting CD within monolithic applications (e.g., “A
monolithic service can use CD” R44 and “Microservices are not required nor is breaking up a
monolith [for CD]” R22). All this motivated us to add a new statement to the survey: “It is
possible to practice CD successfully in monolithic applications”. Figure 6 shows that 59.5%
(25 out of 42) of the survey respondents answered this question as agree or strongly agree.
Only 21.4% responded strongly disagree or disagree and others (i.e., 19%) took a neutral
position in this regard (see statement S1 in Fig. 6). It is interesting to note that among 25
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respondents who believed in the possibility of implementing CD within monoliths, only 8
were in the role of architect. 6 architects (strongly) disagreed with statement S1, and 2 adopted
a neutral position. Team leads, consultants, and developers were the roles that were the most
positive about monoliths. We assert that this finding is not necessarily in conflict with the
interviews’ findings, as we did not conclude that it is impossible to practice CD within
monoliths, but it seems that it would be much harder and more complicated to achieve CD
within monolithic applications (e.g., “Any component or service can adopt CD: a larger one
[has] a slower cycle. Components without tests cannot adopt CD” R85).

In line with the work by Schermann et al. (Schermann et al. 2016), our interview study
shows that once the size of an application grows (e.g., by expanding its functionality) and the
number of teams increases, the monoliths significantly impeded achieving scalable continuous
deployment (e.g., “The main challenge is the weight of your architecture, it could be the
reason why you can’t move to CD” P15 and “We had to change the structure of our business as
we had a large monolithic codebase and it was hard to work on when you have 50 or 100
people working on the same codebase” P14). This is mainly because the monoliths may slow
down the deployment process and a small change may necessitate rebuilding, retesting and
redeploying the entire application (Chris 2014; Arun 2015). The next subsection lists the main
categories of challenges about monoliths, which together hinder achieving CD.

5.1.1 Why it is Difficult to Practice CD within the Monoliths

C1. Dependency (Tightly Coupled): As the size and complexity of a monolith grows, the
dependencies across the system will be so strong that it will become difficult to change
different parts of the monolithic system independently. This impedes deploying software on
a continuous basis, as there is a need to thoroughly analyze and maintain all the dependencies
in the deployment process (Gibson 2016). One interviewee described this point vividly, “When
you say we have software component X and I would like to deploy that to the customer; do I
need to deploy other software components as well; do I really need to or not? These are the
design issues that we really face” P9.

External dependencies with other applications were another roadblock to frequent deploy-
ment (i.e., also confirmed by 24.2% of the survey respondents). Whilst an application might
always be at a releasable state, deploying a modified functionality within that application on a
continuous basis may also necessitate the deployment of all dependencies (e.g., dependent
applications). Therefore, software organizations need to refactor other legacy applications and
ensure that there is no integration problem in the deployment process. As explained
by an architect, “You always get integration challenges [in the deployment process]
because you’re mixing new code, new systems with old systems; you still rely on old
systems to do something” P13.

Our study identifies challenges regarding (monolithic) databases in the context of CD. The
interviewees’ organizations often faced difficulties in deploying monolithic databases contin-
uously as modifying any functionality in an application demands changing and incorporating
database schema as well. Therefore, they gradually become an operational bottleneck and an
undeployable unit. The interviewees expressed dissatisfaction with monolithic databases, e.g.,

Fig. 6 Survey responses to the statement on the possibility of practicing CD within the monoliths (n = 42)
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“One of the traditional [approaches] is that for big applications, they [organization] used one
database. Then you know for every piece of functionality that you change, you also need to
incorporate database changes, you need to test the database. These are a source of single
point of [failure] for these big organizations, so they cannot continuously deploy the database.
So, they need to refactor [it] and do changes [in] the software architecture” P9.

Our combined findings indicate that software organizations often need to split their existing
monoliths into small deployable parts that can be maintained and deployed independently for
supporting CD. However, the interviewees highlighted the difficulties of breaking down a
monolith (at application and database level) into smaller units. Through the survey, we asked
the participants the extent to which they understand this issue as a challenge. As can be seen in
Fig. 7, 82.4% of the respondents considered the difficulty of splitting a (monolithic)
application into independently deployable and autonomous components/services (i.e.,
statement S2) as very important, important or moderately important challenge. Fur-
thermore, the difficulty of splitting a single-monolithic database (i.e., statement S3)
was also widely recognized by the participants, as only 23% of the survey respon-
dents considered it as unimportant or of little importance.

C2. Teams: According to Conway’s law, the architecture of a system mirrors the commu-
nication structure of the organization that designed it (Conway 1968). Our analysis demon-
strates that introducing CD is challenging in those organizations where multiple teams work on
a monolithic application. We observed that cross-team dependencies could cause frictions in
the CD pipeline. While one team could have full control over its development process, run
quality-driven builds and release its output constantly, they can still be dependent on the
performance of other teams. Therefore, they can easily break the changes that other teams are
working on. As P12 explained, “We had multiple teams working on the same [monolithic]
codebase. We started noticing that it was really affecting our ability to deploy software
[continuously], because many teams were trying to push many things at the same time”.
The interviewees also referred to tension between software and hardware teams as a challenge
to truly practicing CD, as software teams sometimes rely on infrastructure readiness at
production, “Integration issues were part of the deployment [process] and [we had to] deal
with their [hardware team’s] backend systems. They had their [own] infrastructure, [which]
was not ready; they had a serious quality cycle. So, we had to go through this [cycle], which
caused additional preparation work. It was exhausting [for us] when we [as the development
team] were going to the deployment cycle. So, it was a challenge to adopt DevOps” P5.
Furthermore, the interviewees’ organizations that had large teams working on the same
codebase experienced difficulties in coordinating among interdependent teams and
planning before each release.

As shown in statement S4 in Fig. 7, 70.3% of the survey respondents ranked the challenge
of team interdependencies and coordination effort when adopting CD as very important or
important. CD may also require changes in organizational structures in order to align them
with CD throughput (Humble 2011). When we asked the respondents how important
the challenge of “inflexibility of the organization’s structure with the spirit of CD
practice” is, 69.2% of them ranked this as very important or important (see statement
S5 in Fig. 7)

C3. Feedback: Difficulties in getting fast, direct, and optimum feedback on code and test
results in the monolithic applications was another category of challenges. Our analysis
revealed that long build time, long-running tests, and size of changes in the monoliths were
the main causes of slow and indirect feedback. As P12 explained, “[In our monolithic
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architecture] we started noticing that the number of tests started loading up, the feedback cycle
was becoming very slow. We arrived at a state where [we had] very little ownership of [things]
like test failures. We would have taken, like, around 3 or 4 hours to get any feedback. You
could see a lot of friction on the deployment pipeline itself”.

C4. Automation: A key practice in CD is automation (Humble and Farley 2010). A few
interviewees ‘experience suggested that the heavy-weight nature of monoliths can often be a
challenge (e.g., extra effort is needed) to fully automate tests and deployment across different
environments. For example, P15 explained how this situation would result in a longer and
slower CD pipeline and extreme difficulties to move to automation: “If your monolithic
architecture is complex, it may be hard to move to continuous delivery because the more
components you have, the harder it is to install them, to deploy them, the pipeline will be
longer, and harder to automate”.

Key Findings
Finding 1. Monoliths (application and database) are great sources of pain for CD success, as they are hurdles

for having team autonomy, fast and quick feedback, enabling automation (e.g., test automation) and scalable
deployment. Furthermore, among other roles (e.g., consultants), software architects are more pessimistic
about CD success within monoliths.

Finding 2. Implementing CD is a challenge where multiple teams are working on one monolithic application, as
they gradually become dependent and need to spend too much time to coordinate and plan the delivery
process.

Finding 3. The inflexibility of the organizational structure with CD is the most critical barrier for implementing
CD.

5.2 Moving Beyond the Monoliths

In the previous section, we discussed how practicing CD in large monolithic systems
with multiple teams is not a straightforward approach, as it might have negative
impacts on team autonomy, direct and quick feedback, and automation. In this section,
we first characterize a key architectural principle adopted by the participants to
address the reported monolith-related challenges and then investigate how the key
principle is implemented in industry.

5.2.1 Characterization of an Architectural Principle: Small and Independent Deployment
Units

Our findings agree with the argument of Lewis and Fowler (2010), that a key architectural
principle employed by the participants’ organizations for successfully practicing CD is to

Fig. 7 The survey respondents indicated the most important challenges in architecting for CD. Inflexibility of the
organizational structure with CD is the most critical barrier for implementing CD
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design software-intensive systems based upon “small and independent deployment units” (e.g.,
service, component, and database). By ‘architectural principle’, we mean fundamental rules
and approaches that serve as a guide to architects to govern architecture designs (Beijer and de
Klerk 2010). P18 described that applying this principle enabled them to bring the small units
into production independently, “We are moving to smaller services, where microservices to my
mind are a less interesting aspect, but the services are much smaller than in the past and they
will be deployed into their own server and they [are] managed [e.g., deployed] by one team”.

As we described in Section 5.1, the participants’ organizations had challenges with splitting
the monoliths into smaller chunks. That is why they usually perform this process incremen-
tally. As an example, “We started with a big monolith. To be honest, initially we simply split it
into a number of smaller chunks; maybe like seven or eight. That already gives us more value
[in the deployment process]. In the future, we might split things further” P18.

Gradually breaking down applications should avoid the difficulties of service granularity.
P13 shared that it is easier to initiate the decomposing process with a few large services and
incrementally decompose them into smaller, fine-grained units: “If you are trying to go from
monolithic to something like service-based or microservices, don’t try to break it down into
little tiny pieces first of all right away. You’ll get struggles at service level, structurally you
have to look at how coupled your components are”.

Nevertheless, the above principle leaves us with yet another question: what does it actually
mean? To characterize this principle, we asked the interviewees a number of questions to
elaborate on their perception from a small and independent deployment unit, which serves as
the foundation for CD success. We found that the practitioners typically consider four main
criteria to characterize small and independent units, and accordingly design applications or
break down large components or monolithic applications for practicing CD. These criteria
include autonomy in terms of deployability (e.g., “[The monolith is split into] those small
components [that] can be deployed and reproduced more quickly so as to map smaller
iterative deliverables” P5), scalability (e.g., “The majority [of criteria in the decomposing
process] were [to have] components that are very scalable, which means whatever you design
and whatever you develop must be scalable” P5), modifiability (e.g., “[The monolith is] split
into components, so that changes are likely to influence just one component” P11), and
testability (e.g., “It can be tested/qualified by itself, and won’t break a product or require
other services/components to be pushed” P19). Furthermore, some other criteria emerged from
data that were only reported by a few interviewees. To give an example, for one of the
interviewees small meant that the maximum amount of work required for coding and testing a
single feature should not exceed a three-day effort for one person.

We asked the survey respondents to rate these four top criteria (see statements S7-S10 in
Fig. 8) with a 5-level Likert-scale. The results show that, in general, the respondents consid-
ered all the above-mentioned criteria for this purpose. As shown in Fig. 8, for each of the
statements, fewer than 10 respondents disagreed or strongly disagreed. However, statement S7
(“a component/service is small if it can be modified (changed) independently”) received more
attention than others, and 78%, 76.9 and 68.1% of the survey respondents answered to
statements S9, S8 and S10 strongly agree or agree, respectively.

Through a mandatory open-ended question, we also asked the surveyed practitioners to
share any other criteria or factors (i.e., those not covered by statements S7-S10) that need to be
considered to characterize small and independent units for CD and also to decompose the
monoliths for this purpose. Some of the respondents tried to elaborate what they had
previously chosen in the Likert-scale questions (e.g., “It [the service] can be deployed/
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updated independently of any other service” R84, “Every feature (roughly mapping onto an
Epic) should be small enough to be deployed independently” R31). The analysis of the open-
ended question revealed four other criteria or factors as listed below, in order of their
popularity (see Fig. 9):

Representing only one business domain problem (23): Although a few interviewees
indicated that monoliths need to be decomposed into smaller units, so they only cover and
solve one business domain problem, this criterion was highly cited by the survey participants.
For example, R88 explained, “A component [in a CD context] should implement a frontend
and backend for one business concept”. We found that the definition of one domain problem
varied significantly among the respondents. For some respondents, it means one function or
one task (e.g., “[A small deployment unit in CD] should encapsulate one unit task end-to-end”
R20), however, others believed that it can serve a logical set of functionalities for a line of
business capability, e.g., “One [service] that solves one specific domain problem, not too small
to be just a function, not bigger to try to solve different domain’s business” R43 and “It [the
service] should manage one aspect or collection of features [within] a bounded context” R41.

The participants suggested different techniques such as domain-driven design,
bounded context,3 and event storming to identify a business domain problem. For
example, one of the interviewees told us: “We primarily use techniques such as
domain-driven design and event storming to actually identify the autonomous business
capability of software architecture” P21. Domain-Driven Design (DDD) aims to
“design software based on connecting the implementation to an evolving model of
the core business concepts” (Gitlevich and Evans 2015). Bounded context is a concept
in DDD to describe the conditions under which a specific model is defined (Gitlevich
and Evans 2015; Evans 2004). The models in each bounded context do not need to
communicate with the models inside other contexts (Newman 2015). Event Storming
is a collaborative design technique in which all the key stakeholders (e.g., domain
experts) assemble to identify and describe what operations (i.e., domain events)
happen within a business domain (Brandolini 2013).

Low dependency (18): Some participants stated that the size of a component/service
is not an important factor for them, but a component or service should have little
dependency on other components/services, in particular during the deployment pro-
cess: “[It is] less about size (e.g., lines of code), [but I think] more about loose
coupling and clear implementation for component APIs, such as RESTful interfaces
“R46. Respondent R91 emphasized that a service in a CD context needs to be
decoupled from other services in such a way that the upgrade and downgrade of
the service would have no impact on SLAs and ongoing transactions. This factor can
be augmented by implementing a well-defined interface for each service or component

3 http://martinfowler.com/bliki/BoundedContext.html

Fig. 8 The main characteristics of the principle of “small and independent deployment units”; A few survey
participants (less than 12%) disagree with the above-mentioned criteria
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(e.g., “[A component should be a] small code base, independent of all other services
except via API calls” R72). A few participants also reported that having separate data
storage per service (i.e., no common database) can help to achieve low dependency
among services. Respondent R61 stated that a service should have “no shared storage
(with other services)”, while another respondent pointed out that “my definition isn’t
about the size, it’s [about] the boundaries and responsibilities, including what data it
owns versus what data it uses” R39.

Automation (13): Another factor that emerged from the responses was that a small
and independent unit needs to be tested and released in an entirely automated fashion
within a time-boxed slot, in which it does not require to coordinate with external
components/services: “It must be designed with the intention of being easily built and
automatically tested and deployed” R53. The respondents shared that CD essentially
requires components or services with fast build times and fast testing loops in order to
have quick and direct feedback, e.g., “The service should be built and tested in less than
a couple of minutes” R76.

Team autonomy (7): We perceived that having team-scale autonomy strongly affects the
size of a component and decisions during decomposition. The respondents shared that
adopting CD practices for a component/service is easier if one team can comprehend, build,
test and deploy it (e.g., “[A component should be] small enough for the owning team to
comprehend it” R9). Another participant answered as “A team should be able to own a backlog
of multiple deployable [items]” R30.

Key Findings
Finding 4. The participants’ organizations are increasingly considering small and independent deployment

units as a key architectural principle to provide them with more flexibility in a CD path and achieve frequent
and reliable deployments.

Finding 5. Autonomy in terms of deployability, modifiability, testability, scalability, and isolation of the business
domain are the main factors to characterize the principle of “small and independent deployment units”, and
they significantly drive decomposing strategies to safely and incrementally break down a monolith into
smaller independent parts.

5.2.2 How is the Principle of “Small and Independent Deployment Units” Implemented
in Industry?

To embrace the principle of “small and independent deployment units”, the participants’
organizations usually adopted two approaches: vertical layering and microservices (see Fig. 5).
Whilst these approaches might be used in many different scenarios to reach different goals
(e.g., scalability), we examine them from the perspective of CD practices (i.e., promoting
delivery speed). We note that vertical layering and microservices share many common
characteristics. As shown in Fig. 5, both represent independent deployment units, but the

Fig. 9 The additional criteria/factors shared by the survey participants to characterize “small and independent
deployment units”
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main difference between them is the level of granularity. Vertical layering is more coarse-
grained than microservices (Self-Contained Systems: Assembling Software from Independent
Systems 2014; Hasselbring and Steinacker 2017). Verticals are autonomous systems that are
larger than microservices. Verticals are mainly used to reduce operations’ complexity, as there
would be fewer deployment units. Another notable difference is that vertical layering allows
sharing of some assets such as databases and infrastructures, as exemplified by P17, “Every
vertical slice would have talked to the same databases in the same way unless we explicitly
decided that we didn’t want one service talking to a specific backend. It was a hybrid model that
worked very well for us”.

Vertical layering (decomposition) was a significant approach attempting to embrace the
principle of “small and independent deployment units”. Through this approach, a software
application or a large component is decomposed into vertical layers (i.e., independent,
autonomous systems) rather than horizontal layers; accordingly one team (ideally) would be
responsible for one layer or component during the full development lifecycle (Self-Contained
Systems: Assembling Software from Independent Systems 2014) (e.g., “We are changing
the paradigm of a more horizontal layered architecture to a more vertical one and isolating
architectures, as it will help us to get this performance [deployability]” P9). Vertical layering
also decreases interdependency among teams as a team minimally depends on what other
teams are working on or are responsible for. Furthermore, this approach hampers the ripple
effects resulting from any changes. Nevertheless, it was found that adopting this approach was
associated with challenges in the formation of one integrated development team comprising all
the required skills (e.g., operations skills), as there is a tendency in software organizations to
team up those human resources with similar skill sets. Here are just a few of the examples
indicating the benefits of this approach for CD:

“We had separated layers in the architecture. If there are three teams responsible for one
of these layers, all teams need to work together to bring a new piece of functionality
alive [in production]. To make it better [the delivery process], we swapped the organi-
zation and now each team is focused on one functional domain and works in its own
layer. So, they are working in large isolation and we minimize the dependencies” P10.

“We also changed the teams to align them to one or two (autonomous) subsystems. It
was a big change because before that the teams worked on any part of the system. So
that contributed to the monolith. It’s not perfect but we definitely get some benefits from
splitting down the domain lines and restricting development of that part to just one team
as they can focus on it and have ownership around that” P18.

A microservices architecture style was adopted by some interviewees’ organizations as a
practical architectural style that suits CD (Bass et al. 2015; Ford 2016). Our interviews
revealed that some of the organizations have been able to successfully adopt the microservices
style to smooth their CD adoption journey. Nevertheless, it was evident that implementing this
architectural style was also associated with challenges that could negatively impact on the
deployment capability of organizations. As mentioned by P15, “So microservices solve some
of the issues but also introduce some other issues, especially the orchestration and the
configuration of that. Microservices can bring some overhead for operations team as well…
if you split too much, you have too many microservices. The operational aspects [of]
managing all those services becomes more complex because you have to make all the
configuration options available, you have to orchestrate all those services”.
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Due to these difficulties, some of the participants’ organizations either avoided
implementing microservices or did not experience promising results from this architectural
style. One of the frequently raised issues regarding microservices was the operational overhead
that they introduce (e.g., for monitoring and administrating services), which require highly
skilled operations teams for implementation. P12, a technical lead and architect, opted to break a
monolith codebase into smaller components, eachwith its own repository.Whilst this decision gives
more flexibility to the teams working on the codebase, as the teams were not mature enough to
handle multiple runtime services, they decided to have one deployment unit rather than several
runtime services. As stated by P12, “We felt that the teams were not ready for that [implementing
microservices] and then we compromised, deciding we are not going to make the application as
microservices at least for now”. Each component, which in this case is a binary dependency, is
added as a runtime dependency on the parent application.We recognize that the implementation of a
microservices style of architecture enforces changes in the organizational structure. The organiza-
tions that successfully implemented themicroservices style tended to have the structure of teams and
their communication pattern aligned with this architectural style. Yet, being able to implement the
microservices style at this level requires teammaturity and organizational readiness (Fowler 2015b).
P14 observed, “A company struggles with microservices architecture and they have implemented
microservices, as they slow down [software releases]. [It is] because they are not ready to change
the organization to support this microservices architecture. The microservices’ interactions don’t
reflect the structure that they have”.

We have previously, in Section 5.1, discussed how (monolithic) databases bring unique
challenges to CD. Two of the above-mentioned approaches highlight the importance of revising
the core database design and decomposing it into smaller individual databases. There are
repeated statements in the interviews which support the need to treat the database as a continu-
ously deployable unit, similar to other software components. Incorporating the database in the
CD pipeline as a software component is expected to avoid unexpected issues that database
updates may pose at production deployment. We found that keeping everything related to
databases (e.g., associated configurations) in a version control system in a consistent manner
plays a crucial role in improving the deployability of databases, because that helps trace the
changes to the database schema. P18 emphasized that this practice “is really useful to monitor
databases in different environments and [to] compare them to know [whether] databases have
deviated [from] version control”. Using tools to automate the database schema changes and
configurations, and also to automate detection of database changes in different environments, was
also indicated as helpful for continuously deploying databases. Furthermore, our findings show
that a schema-less database (i.e., the schema exists in code, not in the database) is more
compatible with the spirit of CD practices. As mentioned by participant P17, “Schema just exists
in the code instead of living permanently in the database. Schema-less lets you change the schema
with a code, which is exactly what you want with continuous deployment. This is a significant
architecture change driven almost exclusively by continuous deployment requirements”.

Key Findings
Finding 6. Vertical decomposition and microservices are two primary architectural styles to implement the

principle of “small and independent deployment units” in industry. However, adopting these architecture
styles comes at a cost as they necessitate considering organizational structures and highly skilled teams (e.g.,
operations skills). Ignoring this necessity may negatively impact the deployment capability of an organization.

Finding 7. The key practices to improve the deployability of the database in a CD context are (1) incorporating
the database in a CD pipeline as a software component; (2) keeping database configurations in version
control; (3) automating database schema changes and migration, and (4) using the schema-less database.
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5.3 Quality Attributes that Matter (Really/Less) in CD

While we have investigated both practicing CD within monoliths and breaking apart the monoliths
into “small and independently deployment units”, we are also interested in the quality attributes that
are most likely to affect (negatively or positively) CD success (see Fig. 5). In the following sections,
we try to answer this question regardless of the choice of architectural styles, as the following quality
attributes deserve serious consideration to realize the anticipated benefits from CD.

5.3.1 Deployability

The findings from our interviews indicated that deployability has gained a high priority in CD as
the interviewees frequently shared that deployability concerns are accredited during architectural
design and drive many decisions to have independently deployable units (2015 State of DevOps
Report 2015; Chen 2015b). We were interested in understanding how deployability concerns
impact different aspects of (architecture) design. Taking inspiration from Manotas et al. (Manotas
et al. 2016), we introduced statements S11-S14 to ask the surveyed practitioners how often
deployability concerns impact the design of individual classes, components/services, and interac-
tions among components/services and the entire application. We provided a definition of
deployability for all the participants to ensure common understanding. We defined deployability
as: “deployability is a quality attribute (non-functional requirement) whichmeans how reliably and
easily an application/component/service can be deployed to a (heterogeneous) production envi-
ronment”. Figure 10 indicates that the frequency of impacting deployability concerns on low-level
designs is not significant as a sustainable number of the respondents (70 out of 91, 76.9%) indicated
that in the projects adopting CD practices, deployability impacted class’ design sometimes, rarely
or never. In contrast, high-level designs were more influenced by deployability concerns (see
statements S12-S14 in Fig. 10). It is a commonly held belief among over 60% of the respondents
that deployability impacted the design of components/services, interactions, and entire applications
often or always. We observed that none of the respondents answered statements S12 and S13 as
never and only 3 respondents believed that the design of the entire application was never impacted
by deployability concerns.

During the interviews, we found that deployability has a minimum conflict with other quality
attributes (e.g., “They [quality attributes] sometimes have conflicts; deployability has a minimum
conflict with other quality attributes” P4). Another interviewee, P14, described the relationship
between deployability and other quality attributes as follows: “I would say that deployability
doesn’t really conflict with other aspects of continuous delivery, but it requires some practices”. To
investigate this claim further, we asked the participants how frequently they could compromise
other quality attributes to improve the deployability of an application. Figure 10 shows that the vast
majority of the respondents are not willing to compromise other quality attributes to improve
deployability. 68.1% of the respondents answered statement S15 with rarely or often, while 29.6%
believed that they could sometimes sacrifice other quality attributes to achieve more deployability.

Key Findings
Finding 8. Concerns about deployability (e.g., ease of deployment) impact how applications are designed.

However, high-level designs, in particular interactions among components/services, are more influenced by
deployability concerns than low-level designs (e.g., the design of individual classes). These concerns can be
supported in CD without major trade-off, as they have minimum conflict with other quality attributes and most
of the quality attributes are in support of deployability.
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5.3.2 Modifiability

One of the top priorities for the participants when designing an application in a CD context
was to support frequent and incremental changes. They reflected that they break down
software into units that are small enough to be modified, replaced and run independently.
The participants also tried to minimize the impact of changes for CD, as described by one of
the interviewees (i.e., an architect) as: “For me, autonomy is the most important quality
attribute for continuous delivery. If you don’t have dependency, you can isolate your changes
and, as a team, you can independently do your lifecycle and of course, your lifecycle also
means bringing it to production” P19. We learned that the participants employ four main
techniques for this purpose.

T1. Identify Autonomous Business Capabilities: Our findings show there is a tendency
among the participants’ organizations to structure an architecture based on business capabil-
ities rather than functionalities using techniques such as domain-driven design, bounded
context, and event storming (as described in Section 5.2.1) (Lewis and Fowler 2010). The
main idea behind identifying the autonomous business capabilities of software architecture is
to have units that can be independently developed, modified and deployed (Sokhan 2016).
However, our interviewees also suggested this would decrease team interdependencies, as
mentioned by P14, “[In our CD journey] we needed to break down requirements into different,
isolated, and autonomous business values and then each team had to be assigned to them, so
we could reduce the dependency between the teams”.

Our survey results were aligned with the findings from the interviews that domain-driven
design and bounded context patterns have become a mainstream in the CD context
when designing CD-driven architectures. A majority of the survey respondents (54 out
of 91, 59.3%) answered S20 (see Fig. 11) as strongly agree or agree, while only
7.6% strongly disagreed or disagreed. Interestingly, this statement (S20) received the
highest number of “neutral” responses (30 out of 91) by the survey respondents. Only
9 out of 30 respondents who selected “neutral” to respond to this statement intro-
duced themselves as an architect. This may suggest that this statement is a highly
specialized statement to architects, with which other roles may be unfamiliar. It is
interesting to note that the majority of the interviewees and survey respondents
believed that it was difficult to find the autonomous business capabilities of software
architecture, as 81.3% of the survey respondents rated the severity of this challenge as
very important, important or moderately important (see statement S6 in Fig. 7).

T2. Delay Decisions: Software architecture in CD should be extremely adaptable to
unpredictable and incremental changes (Ford and Parsons 2016). That is why we found that
it is difficult to make many upfront (architectural) design decisions in a CD context. Instead,
the participants in our study only focused on an initial set of core decisions and other

Fig. 10 Survey responses to the statements on deployability and operational aspects
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architectural decisions (e.g., decisions to choose a technology stack) are made as late as
possible. Decisions are made when the time is right, for example, when requirements and
facts are known (Erder and Pureur 2015). This enables architects to keep architecture alterna-
tives open to the last possible moment. Our findings show that deploying software changes
frequently may necessitate making (architectural) design decisions on a daily basis. Further-
more, the participants also reported that the decisions were sometimes made unconsciously in
a CD context. For example, P16 stated: “I try to avoid making big decisions. We probably need
to decide what kind of technologies [are] useful for running microservices; but I try, even for
those things, to keep them as flexible as possible. We probably want to change it [in the future]
and I also try not to look down and make too many strong decisions”.

To support this claim further, empirically, we asked the survey participants how
strongly they agree or disagree with this statement: “compared with less frequent
releases, we avoid big upfront architectural decisions for CD practice to support
evolutionary changes”. As shown in Fig. 11, 65% of the respondents (54 out of 83)
strongly agreed or agreed that architectural decisions in a CD context are made as late
as possible (see statement S17 in Fig. 11).

T3. Stateless Architecture: Having a stateless application, in which there is no need to
maintain the state within the application, was another technique used to support incremental
changes at operations level, e.g., “If a WAR file is completely stateless and if I want to deploy a
new version, I can simply deploy a new version on the top of it and there is no state to keep for
migrating to the new version” P10.

T4. Hide Unfinished Features at Run-time: Our study shows that working in CD mode
needs everybody to push their changes to the master branch on a continuous basis. We found
from the interview study (i.e., confirmed by P12, P20, and P21) that having long-lived feature
branches is a stumbling block for CD, as they are associated with challenges such as delayed
feedback and increased merge complexity (Rahman et al. 2016; Pauw 2017). The participants’
organizations realized that instead of creating new branches, which developers may work on
for a couple of months and then integrate back to the master, they need to switch off the long-
lived feature (i.e., the unfinished feature) and then release it to end users only when the feature
is ready. A feature toggle4 pattern was indicated by some interviewees to achieve this goal.
This pattern helps a team to release new changes to end users safely as the features that the
team are developing are still in production, but nobody can see them because they are toggled.
This pattern can be combined with and made more elegant by the branch by abstract5

technique, which aims at making large-scale changes to a system in production. This technique

Fig. 11 Survey responses to the statements on the quality attributes that need more attention in a CD context.
While the importance of monitorability, loggability, and modifiability has increased, overthinking about “reus-
ability” (confirmed by 43% of the surveyed participants) at architecture level may overturn CD adoption

4 https://martinfowler.com/articles/feature-toggles.html
5 http://polysingularity.com/branch-by-abstraction/
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first creates an abstraction layer around an old component and then gradually reroutes all
interactions to the already-created abstraction layer. Once the new implementation of the old
component finishes, all the interactions are rerouted to the new implementation. P12 stated,
“We can also make feature toggle much more elegant by using branch by abstraction when
you have implementation details separated out by interfaces and the child of implementation is
based on toggles”. Other participants realized incremental changes by having side-by-side
execution at component rather than at feature level. P7 explained, “We needed to improve the
architecture to have side-by-side execution of components as it might be two versions of
components, both installed at run-time. We could start to gradually cut the load over from the
old version to the new version”.

Key Findings
Finding 9. Domain-driven design and bounded context patterns are increasingly used by organizations to design

loosely coupled architectures based on autonomous business capabilities. However, most (81.3%) of the
participants stated that identifying the autonomous business capabilities of software architecture is difficult.

Finding 10. Compared with the less frequent releases, CD places greater emphasis on evolutionary changes.
This requires delaying (architectural) design decisions to the last possible moment.

5.3.3 Loggability and Monitorability

Building and delivering an application on a continuous basis may potentially increase the
number of errors, and the chance of unavailability of the application (Bass et al. 2015; Chen
2015b). This compelled the participants’ organizations to have more investment in logging
(i.e., the process of recording a time series of events of a system at runtime (Bass et al. 2015))
and monitoring (i.e., the process of checking the state of a system) in order to hypothesize and
run experiments for examining different functionalities of a system, identify and resolve
performance issues, and recover the application in case of problems. Therefore, the
organizations practicing CD need to appropriately record, aggregate and analyze logs
and metrics as an integral part of their CD environment. One interviewee highlighted
this trend as “We have everything based on the log. One aspect can be getting
visibility in any part of the components, which are being pushed in the DevOps
cycle. We already have it as part of our framework” P5.

When we asked, “since moving to CD practice, the need for monitoring (i.e., a centralized
monitoring system) has increased”, the survey participants rated this statement (S18) strongly
agree (36.2%), agree (46.1%), neutral (8.7%), disagree (6.5%), and strongly disagree (2.1%).
As shown in Fig. 11, the responses for statement S19 also indicate that 75.8% of the
respondents strongly agreed or agreed that the need for a centralized logging system has
increased since their clients or respective organizations moved to CD. In the following, we
provide more insights into how monitorability and loggability are improved:

T1. Use external tools: Our analysis shows that there are limitations in CD tools (e.g.,
Jenkins), as they are not able to provide sufficient log data and also enable aggregation and
analysis of logs from different sources. The participants’ organizations extensively used
external tools to address these limitations, e.g., “So, basically those logs will be collected by
other (external) systems. Then, we (the infrastructure team) can easily download and aggre-
gate those logs on our own big data platform” P2.

T2. Build metrics and logging data into software was another solution adopted by the
participants’ organizations. The participants stated that large-scale applications adopting CD
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need to expose different monitoring and logging data. For example, two interviewees men-
tioned: “You build log capability such they can be turned on and off in the code in order to
eliminate the performance problems” P6 and” If we are talking about the logging aspect, if any
tier fails for any particular reason, then an appropriate reason code must exist” P5.

Regarding the two above-mentioned solutions, the interviewees raised two areas that need
further consideration. Firstly, it is necessary to determine to what extent the log data should be
produced (e.g., “We have internal meeting discussions about how much effort we can put to
capture [logs] per system; you know how much with the level of detail [is] appropriate” P7).
Secondly, readability of the logs for all stakeholders should be taken into consideration. As the
developers mostly build the logging mechanism into the code, there is a chance that logs
become unfathomable for operations teams and may not be efficiently employed to perform
diagnostic activities: “Support people (the operations team) feel that there is too much logging.
So, they have to swim [in] too much information and find problems. The support people need
to have cleaner and simpler logs to look at, where developers get all this information they
need” P13.

We also observed that the importance of loggability and monitorability increases consider-
ably when a monolithic application is split into smaller units (e.g., microservices). This is due
to the fact that splitting a monolith into multiple independently deployable services presents
challenges in identifying problems (e.g., performance issues) in a system. Furthermore, it is
needed to trace how services go through a system. It is essential to ensure that there is enough
trace information for logs.

Key Findings
Finding 11. While software organizations extensively use monitoring tools to address the shortcomings of CD

tools, the applications in a CD context should expose the different types of log and monitoring data with a
standard format. This helps build architectures that are responsive to operational needs over time.

5.3.4 Testability

One of the main concerns stated by the participants in transition to CD was about testing. It was
observed during the interviews that addressing testability concerns influences architectural design
decisions for explicitly building testability inside a system. It is emphasized that architectures in aCD
context should support testing to the extent that tests should be performed quickly and automatically.
Another solution adopted by the participants to improve testability was using the right tools and
technologies. Nevertheless, the participants worried about the potential limitations of tools, as tools
alone are insufficient for addressing all the testing problems. For example, wewere told that existing
automated testing tools tend to be fragile in some types of applications (e.g., mobile applications) or
environments (see (Shahin et al. 2017b) for more information). That is why the participants typically
approached the testing challenges by combining architectural (i.e., testability inside the design) and
technological (i.e., selecting the right tools) solutions. Apart from choosing appropriate testing tools,
we found the following techniques support testability inside a system:

T1. Improving test quality: To avoid putting overhead on a CD pipeline, it was frequently
suggested that there should be improvements to the quality of tests (data) rather than increasing
the number of test cases. One interviewee put it, “We are looking at the quality to improve the
DevOps model. One of the things that we can improve is the quality of the tests themselves; do
we have the right test suites? Do we have the right coverage?” P6. This includes improving
quality by selecting the right number of test cases to be performed at the right time on quality test
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data (it was also affirmed by P5, P12, P15, and P17). The cycle time of a CD pipeline (i.e., the
required time to push code from the repository to the production environment) can be increased by
long-running tests. Furthermore, long-running tests can slow down the feedback cycle in a CD
pipeline. Respondent R5 commented that running tests in parallel can decrease the cycle time of a
CD pipeline. These issues happen when test cases are poorly written and designed. One of the
interviewees (P12) described how improving the quality of tests could help to accelerate the
feedback cycle in the CD pipeline. He highlighted two practices: (i) designing smaller test units
that result in immediate feedback, (ii) decreasing the number of functional tests. The applied
practices resulted in receiving the same level of feedback from applications, in a timely manner.

T2. Making code more testable: It was also found that testability should be addressed at
code level. Whilst services and components need to be tested independently, testing them
within a larger CD pipeline with all dependencies can be a complicated and costly process. For
instance, it may be costly to provide all the resources (e.g., databases) for testing in staging
environments. A typical solution to this problem was dependency injection, which would
bring more flexibility to the testing process. One participant opined: “From the architectural
standpoint, we very often build projects that use dependency injection mechanism in, like
Spring, so that we can inject a set of dependencies. For example, you inject an in-memory fake
database rather than a production database, you inject a fake set of resources rather than
relying on [real] resources, which makes the code much more easily testable” P13.

Another example comes from participant P6, who built performance tests into the code. Rather
than just running performance tests as black box testing from outside of the code, performance
testing was actually tightly integrated into the code. To put it another way, the code itself would be
measuring start and stop times between operations and between events occurring within the code.
All these times (i.e., the start and stop times for different operations in the system) are recorded to
compare them with a baseline to decide whether there is a problem or not. According to P6, this
practice significantly improved the overall performance of the system.

Key Findings
Finding 12. CD practices require high quality tests that run easily. Therefore, it is necessary to make informed

(architectural) design decisions to improve the testability of a system by (1) improving test quality (e.g., more
suitable, simpler test methods and decreasing test cycle times); (2) making code more testable; (3) using
smaller components.

5.3.5 Resilience

Increasing the frequency of deployment to production may increase the number and severity of
failures. So, failures are inevitable in a CD context. Through the interview study, we found that for
some participants, designing for failure guides their architecture designs. P11 characterized the
software architecture in a CD context as follows: “an architecture that splits the system also by units
that should fail independently” and P14 told us, “resilience is also a matter of integration aspect:
how to integrate with the third party [units]; what if a third party starts to fail”. We also observed
that many discussions among the participants were centered on resilience versus reliability as the
main concernwas not to prevent failures but to think about how fast the failures can be identified and
isolated, and how to automatically rollback to an early, stable version. An example of this trend is
vividly typified in the following anecdote: “I think when we are moving to this paradigm [CD],
rather than ensuring your software is gold before you deploy it to production, for example, by three
month testing cycles to validate every bit of it, we are going to a mode [where the] mean time to
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recovery [is important]. [For example] if I face an issue in production, how soon I can recover from
that failure” P10.

Whilst we could not conclude that the resilience quality attribute needs to be prioritized over
reliability within a CD context (Gabhart 2014), the responses to statement S21 indicate that the
survey participants are significantly concerned with resilience when designing and implementing
applications. This quality attribute appeals to a large portion of respondents: 80.2% strongly agreed
or agreed that the CD practices increase the need for resilience (see statement S21 in Fig. 11).

Key Findings
Finding 13. Design for failure is considered as the foundation of the architecture in a CD context, in which,

instead of preventing failures (reliability), it is more important to learn how to deal with failures (resilience).

5.3.6 Reusability

Our analysis reveals the architecture designs that emphasize reusability could make practicing CD
more challenging. The drawbacks of overthinking on reusability at architecture level (e.g., using
shared components, or packaged software) in the context of CD are two-fold: (1) inter-dependencies
between software development teams increase in the sense that they rely on shared software units. It
means that changing the shared units requires seeking inputs and reaching agreements among all the
relevant stakeholders, which demands significant time and effort (e.g., “If you really do not control
explicitly what you really expose and what you really reuse, you will end up with a lot of mess in the
code.” P14). This approach hinders the autonomy of software teams in building and deploying
software components and applications. (2) The other concern is about being able to test the
configuration of shared software units (e.g., well-known packaged software). Our interviews
revealed that it is vital for the application developers working in the context of CD to write test
cases, through which they can validate the configuration of software packages used in the
application. Hence, reusing packaged software may hinder their ability to perform potential unit
tests and push the packaged software into a CD pipeline on a continuous basis. This leads to losing
the testability of those configurations, which is significant. As P14 explained: “We had plenty of
products and there are a lot of [common] things between them. We reused [things] like utilities and
even some part of the domain. We spent a vast amount of time maintaining agreements between
teams; [for example] how to evolve them. We decided to fork them; just go your own way, whatever
you want and just leave us alone, because reuse has side effects. So, we have to understand
duplication is not evil”.

As shown in Fig. 11, about 42.8% of the survey respondents (39 out of 91) strongly agreed or
agreed that overthinking about reusability at architecture level (e.g., reusing packaged software)
hinders CD success, while 28.5% disagreed or strongly disagreed. This fairly agrees with the
interview findings. We found that such attitudes were mostly dominant among software architects,
as 20 out of the 39 architects who participated in the survey have voted statement S22 as strongly
agree and agree,while only 7 architects rated it as strongly disagree or disagree. Other respondents
(28.5%) had no idea whether or not having too much reusability is a major roadblock for CD.

Key Findings
Finding 14. Overthinking about reusability at architecture level has two side effects: (1) increased inter-team

dependency and (2) losing testability. However, among other roles (e.g., developers), software architects
strongly believe that a lack of explicit control on reuse at architecture level (e.g., shared components) would
make practicing CD harder.
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5.4 Perspectives on Operational Aspects

The importance of operational aspect management (i.e., of the production environment,
operations stakeholders and their requirements) for the architecting process in a CD context
was highlighted during the interview study. We observed that the participants’ organizations
have been shifting from considering operational aspects as separate and sometimes uncon-
trolled entities to treating them as first-class entities in the architecting process, particularly
after CD adoption (Bass et al. 2015). The shift from the first to the second paradigm was also
confirmed by the survey results, in which 83.5% of the respondents indicated that they
consider operational aspects during the architecting process almost always or often (see
statement S16 in Fig. 10). Additionally, the respondents believed that operations requirements
and aspects significantly impact on architecture design and design decisions (see Fig. 5).
83.5% of the surveyed practitioners strongly agreed or agreed with statement S24 in Fig. 12
(“Operational aspects and concerns impact on our architecture design decisions”). Other
studies have also found that involving relevant stakeholders in the architecting process leads to
informed and balanced architectural decisions (Wnuk 2017; Ernst et al. 2017). This
might help to mature the architecting process (Ford 2016). In the following subsec-
tions, we provide more insights into why operational aspects need to be perceived as
important in a CD context.

5.4.1 Production Environment Challenges

The interview study revealed that production environments may pose challenges to architec-
ture design. One of the top challenges is to make sure software changes are being seamlessly
transferred and deployed into multiple, inconsistent production environments. A program
manager (P4) described the challenge of inconsistent environments thus “One challenge is
that there are multiple environments. [We must] make sure that the system of development is
compatible with all environments, which means we [need to] give the current infrastructure,
hardware and technical details of all environments”. Regulatory and controlled environments
were also stumbling blocks to CD as these environments usually follow a formal deployment
process. There is a need to adjust and adapt architectures in the regulated environments so that
apart from those parts of a system that are not really able to adopt CD, the rest are being
deployed on a continuous basis. As P14 mentioned, “Architecture is also about compliance
and security as well. Because let’s say there is a kind of regulated environment and you want to
have CD there; how [should we] adjust the architecture? For example, you can rip out part of
your software and make sure it is part of your architecture which can’t really support CD but
let the rest of the architecture and software be deployed in a CD fashion”. Our previous work
(Shahin et al. 2017b) shows that a lack of control of the production environment by the
development team negatively impacts on deployment frequency (e.g., “Inside the client
network, the processes are less mature and more overhead exists to deploy code to controlled
environments, which requires manual processes to turn over code” P3).

Another category of the challenges is related to the extent to which operations requirements need
to be collected and sharedwith software architects. Taking into account toomany requirements in an
operations environment could result in designing a system too specific for that environment. This
introduces the risk that design decisions become dependent on the operational configurations and are
therefore fragile to the changes that are made in that environment. On the other hand, ignoring the
characteristics of an operations environment during the architectural design of an application is likely
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to result in losing the operability of the designed architecture. This challenge was explained by P5,
“They [the operations team] had purchased some infrastructure and some hardware and what they
wanted from us [was] that our solution (architecture design) should be in compliance with their
already purchased infrastructures. This all added to the challenges [to the architecture design]”.

All the above challenges may lead to the expansion of the role of architects. Architecting for CD
goes beyond designing a software application: it requires incorporating consideration of the whole
environment (e.g., database, automation, and test data). Architects are expected to look into a
broader spectrum and propose solutions that keep consistency after the application is deployed and
upgraded. This implies versioning the whole environment rather than versioning the source code
alone (i.e., everything-as-code (Suneja et al. 2017)). One interviewee described this trend in these
words: “It is not architecting things in terms of source code, but it is more about architecting the
deployment as a larger entity, [for example], in finding ways to drive and maintain the consistency
across those environments after we deploy and upgrade because they are on different servers. It is
not [similar to] a cloud system in a multi-tenant environment” P7.

5.4.2 Operations Stakeholders and Requirements

In this section, we discuss what strategies have been applied in industry to treat the operations team
and their concerns as the first-class entity in the software development process, which also affects
the architecting process (see Fig. 5).

S1. Leveraging logs and metric data in an appropriate format for operational tasks: The
most cited strategy, indicated by 62 (68.1%) survey respondents, refers to collecting and structuring
logs, metrics (e.g., CPU and memory usage) and operational data in appropriate formats to enable
the operations team to make faster and more informed operational decisions in post-deployment
activities such as assessing the deployed application in production. For example, we have: “One of
the key aspects [of CD] would be around having sufficient logging in place, which you can identify
when things go bad. You have to build a dashboard to tell you what the current load is and also
aggregate that data on the period of time” P12.

S2. Early and continuous engagement of operations staff in decision-making: The partic-
ipants also reported that early and continuous involvement of the operations team in the develop-
ment process, particularly in the design process, boosted the productivity of their respective
organizations in delivering value on a continuous basis. It is mainly because the deployability of
the application is more thoroughly considered in the development and design phases; the deploy-
ment process would not be a big issue at the end. As shown in Table 2, this was the second most
cited (55, 60.4%) strategy by the survey participants. Here are just a few of the example quotations
supporting this strategy:

“Once the operations team was brought into planning meetings, most of the operations
requirements could be negotiated off and we would find cheaper wins that would be less
expensive than the original plans of the software developers. So those operations
requirements could be better implemented and landed in production” P17.

S3. Prioritizing operations concerns: It is argued that the operations team has a set of
concerns (e.g., quickly detecting and predicting failures), which should be effectively

Fig. 12 Survey responses to the statements on operational aspects
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addressed (Bass et al. 2015). During the interviews, we learned that despite the adoption of
CD, operations concerns and requirements still have a lower priority than other requirements. This is
moderately confirmed by the survey study as 41.7% of the survey respondents (strongly) agreed
with this finding (see statement S23 in Fig. 12). It is interesting to note that there is a relatively large
proportion of the respondents (29.6%)who are neutral about statement S23 and only 28.5% strongly
disagreed or disagreed. The interviewees revealed several reasons for deprioritizing operations
requirements. For example, developers usually believe that the role of the operations team is only
to serve the development team. It has been discussed by the interviewees that people who
historically decide on priorities (e.g., the product owner) usually do not consider so much business
value from operational aspects. According to the interviewees, ignoring and deprioritizing opera-
tions requirements has resulted in severe bottlenecks for deploying applications on a continuous
basis. The interviewees’ organizations started treating the operations personnel and their require-
ments as having the same priority as others. So, the operations requirements became an integrated
part of the requirements engineering and architecture design phases. Table 2 shows that 41 (45.1%)
of the surveyed practitioners adopted this stagey.P18 referred to this strategy as follows: “One thing
[that] we are doing for this client, for this software is to emphasize the importance and address
operational things much more. That is starting to happen, but it is quite a big change”.

When we asked the participants about their experiences in thinking about operational aspects
from day one of a project, we noted several benefits: (i) it puts operations staff on the team and
reviews their concerns quite early; (ii) it influences how developers look at applications in
production effectively; (iii) it forces architects to think much more about the problems that may
happen in the deployment process (e.g., “Only recently we have realized that operations concerns
are a really fundamental part of architecture. If you take that as part of the architecture and treat
them as first-class citizens, it allows you to build an architecture that is much more flexible” P13);
(iv) it provides much more flexibility and enables organizations to get applications deployed much
faster and therefore realize CD.

We also added the “Other” field to gather more strategies in this regard. Interestingly, only 8.7%
of the survey respondents filled in the “Other” field. The respondents mostly used the “Other” field
to elaborate their previous choices (e.g., “Ensuring we have scheduled placeholders to revisit
changes in operational requirements, and that we have an operational requirements champion”
R16, “Operations [team] owns the final solution and must sign off on it” R40).

Key Findings
Finding 15. The requirement for continuously and automatically deploying to unpredictable production environments

can expand the role of architects as, apart from software design, they need to collaborate substantially with
operations personnel and deal with infrastructure architecture, test architecture, and automation.

Finding 16. Designing highly operations-friendly architectures are achieved by (1) leveraging logs and metric
data; (2) engaging operations personnel in decision-making; (3) prioritizing operational concerns; and (4)
understanding production environments’ constraints (i.e., constraints in inconsistent, regulatory and
controlled environments).

Table 2 Strategies for increasing the amount of attention paid to operations team and their concerns

Strategy # %

Leveraging logs and metric data in appropriate formats for operational tasks 62 68.1
Early and continuous engagement of operations staff in decision-making 55 60.4
Prioritizing operational concerns 41 45.1
Others 8 8.7
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6 Discussion and Conclusion

This work has empirically explored how an application should be (re-) architected for CD. We
applied a mix-methods approach consisting of semi-structured interviews and an online survey
for collecting qualitative and quantitative data, which have been systematically and rigorously
analyzed using appropriate data analysis methods. The findings from this study are expected to
make significant contributions to the growing body of evidential knowledge about the state of
the art of architecting for CD practices. Furthermore, the results of this research can provide
improvements to the adoption of DevOps and CD. In this section, we first discuss this study’s
main findings while comparing and contrasting them with the most related literature on this
topic. Then, we draw some implications of this study for practitioners. It is worth noting that
from the methodological perspective, our study includes varied demographics rather than the
peculiarities of practitioners’ own experiences (Bass et al. 2015; Chen 2015b; Humble and
Farley 2010; Newman 2015) or a single case company and particular domain (Chen 2015b;
Balalaie et al. 2016).

6.1 Main Findings

Monoliths and CD are Not Intrinsically Oxymoronic Our conclusion is in line with the
results of (Laukkanen et al. 2017; Schermann et al. 2016; Newman 2015) that monoliths
present significant challenges to CD success. Yet, we have found some examples in both the
interview and the survey parts of this study that it is possible to do CD with monoliths. This
has also been indicated by personal experience reports by Prewer (2015), Vishal (2015),
Schauenberg (2014) and Savor et al. (2016). However, an overwhelming majority of the
interviewees and the survey participants believe that it is much more difficult to adopt CD
within large monolithic systems or large components. Compared with the work by Bass et al.
(2015), Schermann et al. (2016), and Newman (2015), our study has independently identified
the reasons why practicing CD within monoliths is difficult (Finding 1). We found that
growing monoliths leads to increased complexity of internal and external dependencies,
restricted automation (test and deployment), impeding teams’ ownership and having slow
and inconsistent feedback (Laukkanen et al. 2017; Schermann et al. 2016; Arun 2015), which
together can be roadblocks to frequent and automatic deployment. Finally, we have provided
principles, practices, and strategies with concrete examples to achieve CD with monoliths.
Specifically, those organizations that effectively embraced CD for their monoliths mostly
employ the following practices to optimize their deployments: (i) developing highly custom-
ized tools and infrastructures for monitoring and logging (Vishal 2015); (ii) reducing test run
times by improving the test quality (e.g., parallelization of automated testing); (iii) describing,
testing and deploying components/services only through interface specification with back-
wards capability; and (iv) deploying all entities including components and databases through a
rigorous CD pipeline.

Characteristics of the Principle of “Small and Independent Deployment Units” All of the
above-mentioned monolith-related challenges compelled many participants’ organizations to
move beyond the monoliths to facilitate the CD adoption journey. Similar to Newman (2015),
and Lewis and Fowler (2010), we can conclude that the principle of “small and independent
deployment units” is an alternative to monolithic systems for this purpose and serves as a
foundation to design CD-driven architectures (Finding 4). We observed that this principle has
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mostly been implemented in the industry using two concrete architectural styles: vertical
decomposing and microservices. Our findings particularly emphasize that adopting these
architectural styles may result in overhead costs to deal with complex deployment processes,
which require having sophisticated logging and monitoring mechanisms and high operations
skills (Finding 6) (Fowler 2015b). For example, the microservices style requires every team to
build a CD pipeline for each component or service rather than having 1 CD pipeline for the
whole application. However, recently, tools such as Spinnaker6 have been developed which
help teams to have global control of various pipelines with different stages, quality control
processes, and release cadences. Software organizations incrementally split their applications
into “small and independent deployment units” that can be independently managed. Our study
includes other scopes compared with (Newman 2015; Lewis and Fowler 2010), as we also
focused on the characterization of “small and independent deployment units” (Finding 5). We
have proposed that “deployment units” need to represent only one business domain problem
(i.e., should not cross its bounded context) and each of the “deployment units” should be
autonomous in terms of deployability, modifiability, testability, and scalability. These factors
are among the highest rated statements by the participants (i.e., more than 68% of the
participants (strongly) agreed with all these factors). That means organizations can use these
factors as reliable criteria when moving towards CD. Other factors such as having team-scale
autonomy per “deployment unit” are desirable but less cited by the participants.

First Class Quality Attributes in the CD Context Our findings indicate that CD and its
associated constraints (e.g., unpredictable environments) expect a certain kind of architecture
to emerge. That means CD practices significantly change the priority of some quality attributes
such as deployability, modifiability, testability, monitorability, loggability, and resilience.
Whilst these quality attributes are important for all types of contexts and systems, they are
considered critically important for a CD-driven architecture design.

Previous research also highlights the importance of these quality attributes (Chen 2015b;
Bellomo et al. 2014). Bellomo et al. (2014) only focus on deployability as a new quality
attribute in three projects and introduce tactics to achieve deployability. In contrast to (Bellomo
et al. 2014), we have investigated the impact of deployability on different aspects of
(architecture) design (high-level vs. low-level design) and also we indicated that deployability
has a minimum conflict with other quality attributes (Finding 8). Chen (2015b) also highlights
what quality attributes (i.e., deployability, modifiability, security, monitorability, testability, and
loggability) can be more important in the CD context; however, he did not provide any details
about how these quality attributes can impact on the architecture design and how they can be
achieved. Our results confirm and extend the previous findings (Chen 2015b; Bellomo et al.
2014) (i) by improving our understanding of how the aforementioned quality attributes affect
architectural decisions; and (ii) by introducing techniques to achieve these quality attributes
(e.g., keeping components stateless helps improve modifiability) (Findings 8 to 14). Whilst
we targeted the quality attributes of applications in the CD context, Bass et al. (Bass et al.
2015) focus on the quality concerns of a CD pipeline rather than applications. They indicate
that the primary quality concerns that need to be built early in a CD pipeline include
repeatability, performance, reliability, recoverability, interoperability, testability, modifiability,
and security.

6 https://www.spinnaker.io/
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Furthermore, we have observed that from an architect’s perspective, “reusability” at the
architecture level is the only quality attribute that should not be overthought, as it contributes
to overturning CD adoption (Finding 14). It should be noted that we could not conclude that
CD substantially influences other quality attributes (e.g., security as indicated by Chen
(2015b)). On the other hand, our study highlights that CD practices seek software architectures
that are easily composable, self-contained, and less monolithic with less shared data among
components. Architectures in CD should be atomized for autonomy and independent evolution
to make sure there is a minimum overlap between teams (Finding 2). Consequently, software
architects should avoid upfront (architectural) design decisions and delay them to the last
possible moment to effectively meet the aforementioned quality attributes (Finding 10).

Operations-Friendly Architectures One of the most intriguing findings of this study is that
there is an increasing trend of paying significant attention to operational aspects (e.g.,
operations requirements) in the architecting process. Our observation from our previous work
(Shahin et al. 2017b) and this study is that the constraints of the production environment (e.g.,
lack of access to the production environment) may slow down the pace of production
deployment. We can conclude that one of the reasons for not continuously and automatically
deploying into production environments stems from not carefully understanding and dealing
with the production environments’ constraints. We recommend that software development
organizations invest time in understanding their production environments and their respective
constraints that may not support CD. Accordingly, software architects need to collaborate
substantially with operations teams during the requirements engineering and architecture
design phases (Finding 15). Though we know from other studies (e.g., Bass et al. (2015))
that operations teams and their requirements play significant roles in CD adoption, our study is
the (first) large-scale piece of empirical work that has specifically explored the strategies (e.g.,
early and continuous engagement of the operations team in architecture design) that are
practiced in industry to achieve this goal (Finding 16). We emphasize that considering the
operational aspects of a system early in the software development process helps to scale the
complexity of the deployment process at approximately the same pace as the code base. This
trend has changed the role and responsibilities of the architect (Finding 15). From the research
perspective, further investigation is necessary for understanding how software architects
perform their work in a CD context to provide guidance for the required job skills and
education programs (Bass 2017; Hohpe et al. 2016).

6.2 Implications

It is argued that the findings of empirical studies should provide insights for practitioners. At
the end of the online survey, the participants were asked if they wanted to receive the results of
our study by providing their email addresses. Surprisingly, 81.3% (74 out of 91) of the
respondents provided their email as they were interested in receiving the findings of this
study. We believe this indicates that our findings are highly likely to draw the interest of
software engineering practitioners. Based on the findings from this study, we draw some
implications for research and practice.

Deployable Units Do Not Only Mean Software Components/Services The results of our
study suggest the concept of “Continuously Deployable Units”. This indicates that in addition
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to software components/services, every entity (e.g., database and dependencies) that an
application depends on, should be a unit of deployment in a CD pipeline. We have observed
that the database should be continuously provided with as much automation support as
possible for successfully implementing CD. Whilst the participants in our study employed
some practices (e.g., schema-less databases) and used appropriate tools for this purpose
(Finding 7), it is clear that there is not much support for automatically delivering database
changes on a continuous basis (Jong et al. 2017; Yaniv 2014). Our study reveals that there are a
number of organizations that could not succeed with CD due to a lack of database automation
in their CD pipeline. The reason for this stems from the fact that validating data and managing
schema migration in the CD pipeline remain immature (e.g., manual steps requiring DBA
involvement). Hence, organizations prefer to do it offline. We believe that this can be a reason
that our study’s participants rated the database-related challenges as the least important in their
CD journey (see Section 5.1.1). On the research side, more focus is needed on mining and
analyzing database-related failures in the CD pipeline to thoroughly understand the behavior of
databases in a CD context. This helps to design effective and robust solutions (e.g., tools) to
support organizations in automating the deployment of schema modifications and data con-
versions in CD pipelines without compromising the continuous deployment of application
code changes (Jong et al. 2017).

Adjust the Organizational Structure to Support CD Our experience in this study was that
the process of changing to a CD organization requires more than providing tool support and
automation. CD impacts on organizational structures (e.g., team structures), roles and respon-
sibilities. From practitioners’ perspectives, the inflexibility of organizational structures with the
spirit of CD practices is the most critical challenge for implementing CD (Finding 3). A
software organization can succeed in CD adoption once there is flexibility in optimizing
organizational structures to be aligned with CD and certain skills and responsibilities need
to be sought. Finding the best organizational structures that suit an organization depends on
many factors, such as the flexibility of the current organizational structure, available skills and
management procedures (Brown 2015; What Team Structure is Right for DevOps to Flourish
2017). Answering this question requires extensive empirical studies to explore these organi-
zational structures, supporting CD practices in different situations. Our previous study (Shahin
et al. 2017c) has provided preliminary findings about how team structures, roles, and respon-
sibilities can change while adopting CD. We have identified four main patterns for organizing
development and operations teams (e.g., no visible operations team) in industry. We believe
that there is a need for further research to gain an in-depth understanding of suitable
organizational structures for implementing CD.

Real-Time, Digestible and Customizable Monitoring is Key As elaborated in Section 5.3.3,
we have seen the growing importance of monitorability and loggability in the transition to CD.
In fact, there is a growing tendency to adopt log-driven, log-specific architectures that support
the continuous collection of operational data, facilitate aggregation of logs and transform them
into a searchable format (Bosch 2016). More importantly, breaking down a monolith into
“small and independent deployment units” can worsen the monitoring challenges because
tracing a large number of independently deployable units and identifying problems inside a
system can be even more challenging. Such issues can significantly impact the way that a
system is composed of smaller pieces. Whilst a number of solutions (e.g., extensive use of
monitoring tools, creating monitoring and log data into applications) have been introduced,
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there are still several challenges to be addressed in order to implement monitoring and logging
in a CD context. Based on our knowledge, two main areas that usually cause practical challenges in
this regard are the readability of logs for all stakeholders and the abundance of logs and monitoring
data. We believe these challenges can be alleviated by (1) establishing a standard for logging and
monitoring bywhich all developers and applications in an organization create consistent logging and
monitoring data (Wallgren 2015), and (2) applying analytical techniques (e.g., machine learning
approaches) to summarize, prioritize or filter monitoring and logging data. Our findings re-
emphasize the conclusion by Bass et al. (2015) and Humble and Farley (2010) that to achieve
effective monitoring in the CD context, there is a need to build a centralized platform for providing
real-time, digestible and customizablemonitoring and alerting for the different types of stakeholders.
This would enable stakeholders to understand what happens and why in real (or near) time.
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Appendix 1. Interview Guide

Interviewee’s background

Q1. What are your role and responsibilities in the project team?
Q2. How long have you performed that role? Are you an architect?
Q3. Please talk about the size and domain of your organization.

Project’s description

Q4. What is/was the domain and type of project?
Q5. Team size: how many people are/were involved in this project?
Q6. How often is/was the application in a releasable state? How often do/did you deploy
the application to production or the customer?

Operations stakeholders and their requirements

Q7. How do/did you consider operations requirements in the design process?
Q8. Do/Did you involve operations stakeholders in the decision-making process at the
early stage of software development? If so, how?
Q9. Do/Did you have any difficulties in prioritizing the concerns of operations stake-
holders with other stakeholders? How did you manage them?

Architecture and Continuous Delivery/Deployment Practices

Q10. How would you describe the relationship between architecture and CD practice?
How does the adoption of CD practice change the architecting process?
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Q11. How do/did you design the architecture of your system to enable and better support
CD practice e.g., improving deployability?
Q11.1 How do/did you predict and evaluate the deployability of your software system
during the design process?
Q11.2 Can you provide one example of architectural decisions you made for improving
deployability?
Q12. What architecture principles and practices (e.g., patterns, styles, and tactics) did you
employ to promote and support CD practice?
Q12.1 How do you break down the monolithic applications into independently deploy-
able units/components/services?
Q12.2 Are you using any criteria for this purpose?
Q12.3 Are you using the microservices style for this purpose? What about other tech-
niques for this purpose?
Q13. What challenges do/did you experience whilst designing the application architecture
for CD?
Q14. What quality attributes are more influenced by the CD context? How is this so?
Q15. What quality attributes are in support of or in conflict with deployability? How is
this so?

Appendix 2. Survey Questions

Questions Scale

Demographic Questions
How many years have you worked in software or IT
industry?

0–2 / 3–5 / 6–10 / > 10 years

What is your role in the development project? Developer / Architect / Tester / QA / …
How large is your organization? 1–100 / 101–1000 / >1000 employees
What is the domain of your organization? Consulting and IT services / Embedded system/ …

Practicing Continuous Delivery and Continuous Deployment
On average, how often is your application in a
releasable state (i.e., production-ready)?

Multiple times a day / Once a day / A few times (e.g.,
one or two) a week / A few times (e.g., one or two) a
month / A few times (e.g., one or two) a year

On average, how often do you deploy/release an
application to production or the customer environ-
ment?

Multiple times a day / Once a day / A few times (e.g.,
one or two) a week / A few times (e.g., one or two) a
month / A few times (e.g., one or two) a year

Operations Stakeholders and their Concerns
Despite the adoption of CD in my organization, the
operations team’s concerns and requirements still
have a lower priority than other stakeholders.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

To increase the amount of attention paid to
operations team and their concerns, my organization
has adopted the following strategies:

Prioritizing operations concerns (i.e., consider the
operations and their requirements as being as
important as others) …

Early and continuous engagement of Ops staff in the
decision-making process for the development pro-
cess (i.e., design process).

Leveraging logs and metric data for operational
activities. We collect and structure logs, metrics
(e.g., CPU usage) and operational data in
appropriate formats to enable …
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Questions Scale

Other (Specify):
Software Architecture and Quality Attributes in Continuous Delivery and Deployment
How would you grade the importance of software
architecture design in successfully adopting and
implementing CD practice?

Very important / Important / Moderately important / Of
little importance / Unimportant

When we are designing the architecture of an
application, we also consider the operational aspects,
requirements and concerns (e.g., to make the
architecture readily supportive of CD).

Almost Always / Often / Sometimes / Rarely / Never

Operational aspects and concerns impact on our
architecture design decisions.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

It is “possible” to successfully practice CD in
“monolithic applications”.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

In order to break down (monolithic) applications into smaller and independent units/components/services as
STRONGLY recommended by CD practice, how would you define small services/components/units in your
organization?
A component/service is small if it can be scaled
independently.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

A component/service is small if it can be deployed
independently.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

A component/service is small if it can be tested
independently.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

A component/service is small if it can be modified
independently.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Can you describe (e.g., in one sentence) how a
component or service should be to be suitable for
successfully practicing CD?

Free text

In the projects that have adopted or are adopting CD
practice, deployability concerns impact(ed) the
design of individual classes.

Almost Always / Often / Sometimes / Rarely / Never

In the projects that have adopted or are adopting CD
practice, deployability concerns impact(ed) the
design of individual components/services.

Almost Always / Often / Sometimes / Rarely / Never

In the projects that have adopted or are adopting CD
practice, deployability concerns impact(ed) the
design of interactions among components/services.

Almost Always / Often / Sometimes / Rarely / Never

In the projects that have adopted or are adopting CD
practice, deployability concerns impact(ed) the
design of an entire application.

Almost Always / Often / Sometimes / Rarely / Never

In order to improve deployability of an application, I
can sacrifice performance, security, usability, etc.

Almost Always / Often / Sometimes / Rarely / Never

Focusing too much on reusability at component or
application level can be a bottleneck to continuously
deploying software.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Since moving to CD practice, the need for
monitoring (i.e., having a centralized monitoring
system) has increased.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Since moving to CD practice, the need for logging
(i.e., having a centralized logging system) has
increased.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Since moving to CD practice, Domain Driven
Design and Bounded Context patterns have been
applied MORE often and practiced when designing
loosely coupled architectures.

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Compared with less frequent releases, we avoid big
upfront architectural decisions for CD practices to
support evolutionary changes (i.e., architectural
decisions are made as late as possible).

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree
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Questions Scale

CD practice increases the need for resilience (i.e.,
design for failure).

Strongly agree / Agree / Neutral / Disagree / Strongly
disagree

Challenges and Barriers to Adopting Continuous Delivery and Deployment Practices
How important are the following challenges (if any) during adopting and implementing CD and which may put

you in trouble?
Huge dependencies and coordination among
software development team members.

Very important / Important / Moderately important / Of
little importance / Unimportant

Difficulty of splitting a (monolithic) application into
independently deployable and autonomous
components/services.

Very important / Important / Moderately important / Of
little importance / Unimportant

Inflexibility of the organization’s structure with the
spirit of CD practice.

Very important / Important / Moderately important / Of
little importance / Unimportant

Difficulty of breaking down a single-monolithic
database into smaller and continuously deployable
databases (i.e., decentralized data).

Very important / Important / Moderately important / Of
little importance / Unimportant

Difficulty of identifying autonomous business
capabilities.

Very important / Important / Moderately important / Of
little importance / Unimportant
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